WO2013102143A1 - Underwater led lights - Google Patents
Underwater led lights Download PDFInfo
- Publication number
- WO2013102143A1 WO2013102143A1 PCT/US2012/072179 US2012072179W WO2013102143A1 WO 2013102143 A1 WO2013102143 A1 WO 2013102143A1 US 2012072179 W US2012072179 W US 2012072179W WO 2013102143 A1 WO2013102143 A1 WO 2013102143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- heat
- led light
- water
- leds
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/04—Refractors for light sources of lens shape
- F21V5/048—Refractors for light sources of lens shape the lens being a simple lens adapted to cooperate with a point-like source for emitting mainly in one direction and having an axis coincident with the main light transmission direction, e.g. convergent or divergent lenses, plano-concave or plano-convex lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/02—Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/502—Cooling arrangements characterised by the adaptation for cooling of specific components
- F21V29/507—Cooling arrangements characterised by the adaptation for cooling of specific components of means for protecting lighting devices from damage, e.g. housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/71—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/83—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V31/00—Gas-tight or water-tight arrangements
- F21V31/005—Sealing arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V21/00—Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
- F21V21/40—Hand grips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/003—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
- F21V23/007—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array enclosed in a casing
- F21V23/009—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array enclosed in a casing the casing being inside the housing of the lighting device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/502—Cooling arrangements characterised by the adaptation for cooling of specific components
- F21V29/508—Cooling arrangements characterised by the adaptation for cooling of specific components of electrical circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/51—Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
- F21V29/76—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
- F21V29/77—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/85—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
- F21V29/89—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/40—Lighting for industrial, commercial, recreational or military use
- F21W2131/401—Lighting for industrial, commercial, recreational or military use for swimming pools
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2113/00—Combination of light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to the field of underwater lighting.
- the brightness of present LED based underwater lights is limited by the buildup of heat within the light fixture. This heat is generated by the LEDs themselves which, though more efficient than tungsten and many other light sources, still suffer from a less than 100% efficient conversion of input energy to light, the balance turning into heat, primarily at the light emitting diode junction, plus heat from the power supply and related control electronics that operate the LEDs.
- the brightest underwater LED light fixtures are typically about 8 to 20 watts, with a few approaching 60 watts. Attempts to make these fixtures brighter by increasing either the power of the individual LEDs, or the quantity of LEDs, or both, have met with failure because of the increased internal heat within the waterproof housing, which dramatically shortens the operating life span of the LEDs, or causes significant color or output degradation, or destroys them entirely. Even the few fixtures that approach 60 watts do so only by becoming very large in size, to the point of being cumbersome and limited in applicability.
- Figure 1 illustrates an Elation LED lighting module and associated initial assembly of parts of an exemplary embodiment of the present invention.
- Figure 2 illustrates the full assembly of the various parts illustrated in Figure 1.
- Figure 3 is an illustration of the side view of a complete LED light in accordance with one embodiment of the present invention.
- Figure 4 is a perspective view of the embodiment of Figure 3.
- Figure 5 illustrates another embodiment for cooling for the LED light.
- Figure 6 is a cross section of the embodiment of Figure 5.
- Figure 7 illustrates another embodiment for cooling the LED light.
- Figure 8 is a cross section of the embodiment of Figure 7.
- Figure 9 schematically illustrates another embodiment for cooling of the LED light.
- Figure 10 is a cross section of the embodiment of Figure 9.
- Figure 11 is a cross section illustrating another embodiment for cooling the LED light of the present invention.
- Figure 12 is a cross section illustrating another embodiment of cooling for the LED light of the present invention.
- Figure 13 is a cross section illustrating another embodiment for cooling the LED light fixtures of the present invention.
- Figure 14 is a cross section illustrating another embodiment for cooling the LED light fixtures of the present invention.
- Figure 15 is a cross section illustrating still another embodiment for cooling the LED light fixtures of the present invention.
- Figure 16 illustrates another embodiment for cooling the LED light fixture of the present invention.
- Figure 17 is a cross section of the embodiment of Figure 16.
- Figure 18 is a top view of the embodiment of Figure 16.
- Figure 19 illustrates another embodiment for cooling the LED light fixture of the present invention.
- FIG 20 illustrates another underwater LED lamp, which lamp uses 12 high power LEDS as the LED light sources.
- Figure 21 illustrates the bottom of the lamp of Figure 20.
- Figure 22 is a half cross section of the entire lamp assembly of the embodiment of Figures 20 and 21.
- the exemplary embodiment of the present invention utilizes a commercially available LED lighting fixture manufactured by Elation Professional as their Arena Par Fixture.
- This lighting fixture is intended for use in non- submersible applications where fan cooling is practical because of the relatively unlimited supply of cooling air.
- the lighting unit uses 90 3- watt Cree XP-E LEDs, namely, 18 red, 24 green, 24 blue and 24 white LEDs. This allows white lighting as well as controlled mixing of three primary colors to obtain white and/or any mixture of the primary colors, all with intensity control so that substantially any color of any brightness may be achieved under program control.
- the lighting module includes a power supply connection and two communication ports using the DMX-512 protocol so that multiple lighting modules may be daisy chained.
- the Elation lighting module and associated initial assembly of parts of an exemplary embodiment are shown in an exploded view in Figure 1.
- the Elation lighting module 20 has a heat sink 22 at the top thereof which is in very good thermal contact with the 90 LEDs in the lighting module.
- the present invention clamps to the lighting module in such a way as to provide excellent heat conduction to the outside of a waterproof housing, as shall be subsequently described in detail.
- a pair of half rings are provided which may be bolted together by bolts 26 using lock washers 30.
- Half clamps 24 clamp around the heat sink 22 on the lighting module 20 with thermal interface pads 32 therebetween to assure good heat conduction from the heat sink 22 to the half clamps 24.
- the half clamps 24 are preferably fabricated from a high thermal conductivity material, in the exemplary embodiment, aluminum.
- the half clamps could be clamped directly around the heat sink 22, and to the extent there is good contact therebetween, there will be good heat conduction from the heat sink 22 to the half clamps 24. This is not preferred, however, as one cannot be assured that the contact is good and uniform around the full perimeter of the heat sink, and any gap between the heat sink 22 and the half clamps 24 will have very poor heat transfer characteristics. In particular, heat transfer through that gap would be primarily by the thermal conductivity of the air in that gap, which conductivity is quite low.
- thermal interface pads 32 a thermally conductive paste of other material may be used in this or in alternate embodiments to be described.
- a copper heat sink ring 34 bolts to two half clamps 24 by bolts passing through holes 36 in the copper heat sink ring 34 into threaded holes 38 in the half clamps.
- This assembly provides excellent heat conduction from the heat sink 22 on the lighting module 20 to the copper heat sink ring 34, as the half clamps 24 and thermal interface pads 32 provide a substantial contact area to the heat sink 22, with the half clamps 24 also providing a substantial area of contact to the copper heat sink ring 34.
- Figure 2 illustrates the full assembly of the various parts illustrated in Figure 1.
- the assembly of Figure 2 fits within a housing 40, preferably of stainless steel, having a flange 42 welded thereto.
- the flange 42 includes handles 44 thereon, which may also be seen in Figure 4.
- the assembly of Figure 2 fits within the housing 40 with the copper heat sink ring 34 resting on a seal 46. Resting on the copper heat sink ring 34 is another seal (not shown) with lens 48 thereon, with the entire assembly being screwed together using screws 50 through four 90° clamps 52.
- the finished assembly may be seen in Figure 4.
- the entire assembly shown is fully water tight, except for openings 54 and 56 in housing 40, which openings are for a power cord and a communication cable, and which will also be sealed so that the entire assembly is water tight for use as an underwater lighting fixture.
- the copper heat sink ring 34 extends outward somewhat into the water (except in the handle region) to provide a substantial area for conduction of heat to the water, with heated water rising to provide a normal convection type supply of cool water to maintain the entire LED assembly relatively cool to prevent thermal degradation or failure of the LEDs or electronics in the lighting module 20 ( Figures 1 and 2).
- a high intensity, fully controllable white and colored underwater lighting fixture is provided using a relatively large number of high powered LEDs to provide a highly versatile yet compact underwater lighting fixture.
- the present invention provides the ability to dramatically increase the quantity and/or power and/or both of LEDs in an underwater light fixtures. It also provides the ability to enclose a high power "dry" LED light fixture in an underwater enclosure that is capable of transferring sufficient heat out into the water to allow the LEDs to operate with normal life expectancy and brightness. The present invention also provides the ability to place a high power light engine of any new design in a water tight enclosure, as opposed to enclosing an existing theatrical fixture.
- the present invention allows the foregoing by directly and physically coupling the heat source to a highly conductive material that is in direct physical contact with the inside of the enclosure and has heat conductive materials such as conductive pastes or pads at the junctures to essentially create a "heat highway" that obviates the need to rely on internal radiation, air conduction and/or air convection.
- This is accomplished by directly and physically coupling the heat source to a highly conductive material that passes through the walls of the enclosure and out into the surrounding water. It also achieves the foregoing using a limited amount of expensive, heat conducting material, such as copper, and thereby allows the enclosure or housing itself to be substantially built of less costly materials.
- the present invention includes various other ways to cool such a light fixture.
- multiple fins 74 penetrating the housing 76 into the water could be used to transfer heat transferred to the inside of the housing 76 by heat conduction, as illustrated in Figures 5 and 6. This would involve fins 74 placed at different cross sections of the housing instead of a single fin. Each fin 74 would penetrate the waterproof enclosure to extend into the water. On the inside of the enclosure each fin would be in contact with heat producing elements such as LED circuit boards or power supplies 78.
- the enclosure could be completed various ways, such as by using a transparent cover as in the embodiment of Figures 1-4. This method would allow more efficient removal of heat than a single fin, as all components that generate heat could have a significant and direct thermally conductive path to the water.
- FIG. 7 and 8 Another method of cooling the light fixture is illustrated in Figures 7 and 8.
- a significant conductive heat path from heat producing elements such as, but not limited to, LED circuit boards and heat conductor 86 at the upper part of the housing 82 and power supplies 80, to the inside wall (bottom in the case of power supplies 80) of the waterproof enclosure, for example a stainless steel or copper enclosure.
- Heat transferred to the inside wall of a metal, or other type of fairly heat conductive, enclosure 82 (housing) would be conducted through the wall by conduction and into the water by convection past optional vertical fins 84 very quickly.
- embodiments of the invention is realized by significant heat conductive elements in contact with both heat producing elements and the inside wall of the enclosure.
- a copper plate to which the power supply on which the LEDs are mounted could then be press fit to the inside of the housing.
- one or more copper plates could be in contact with the LED circuit board, or could be an extension of it, and then extend to have a significant area pressed into the inside of the waterproof enclosure.
- such plates could be bolted, welded, glued, or brazed to the inside of the enclosure; any method that puts them in close contact with the inside wall of the housing without a high heat transfer resistive medium in-between would suffice.
- FIGS 9 and 10 an embodiment is schematically shown wherein the heat producing LEDs 88 are mounted on a shelf like heat conductor 90, and the power supply 92 is mounted directly against the bottom of the housing 102.
- the waterproof enclosure could be made with areas on the inside to which heat producing elements could be directly mounted.
- a part of the enclosure forms a shelf on the inside of the housing to which the power supply or LED circuit board attaches.
- fins on the outside of the enclosure will further increase the heat transfer, if needed.
- Heat pipes utilizing a medium that undergoes a phase change could be utilized to transfer heat away from heat producing elements such as LED circuit boards or power supplies.
- Such pipes 94 could transfer heat to the inside wall of the waterproof enclosure ( Figure 11). This would operate similar to the method above, but instead of bringing the heat to the inside wall of the enclosure by conduction it would be brought there by the bulk fluid movement and phase changes of the fluid within the heat pipes. This method of moving heat to the inside wall would be much more efficient than current methods of moving heat to the inside wall by convection of air trapped within the waterproof enclosure.
- the power supply 96 is directly mounted on the bottom of the housing and the LED cluster is directly mounted on the heat conductor element 98 that conducts heat directly to the wall of housing 102.
- the housing 102 includes fins 100 for additional cooling.
- such heat pipes 103 could transfer the heat by penetrating the housing and extending directly into the water (Figure 12). The heat would then be taken away from the pipes by convection in the water. Alternatively, such pipes could remain within the enclosure and transfer heat to a fin, or fins 104, that penetrate each side of the wall of the waterproof enclosure and deliver the heat to the water by convection (Figure 13).
- FIG 14 another embodiment using heat pipe pipes may be seen.
- This embodiment is similar to the embodiment of Figure 11, though uses a heat pipe or heat pipes 150 to aide in the distribution of the LED heat from heat conductor 98 to the housing 102, and thus to the surrounding water.
- multiple heat pipes may be used, or a single annular heat pipe may be used.
- the annular heat pipe might be less extensive to manufacture, though would not work well unless the underwater light was point vertically upward to maintain the annular heat pipe horizontal. Multiple heat pipes would work well, even with an angular tilt of the underwater light to an angular extent dependent on the angular extent of each light pipe around the inside of the housing 102 and other heat pipe parameters.
- Figure 15 is similar to Figure 14 in that it uses heat pipes 152 to couple LED heat from the heat conductor, though in this embodiment, directly to the water.
- a single heat pipe could not be used in the configuration shown, as a single heat pipe could not penetrate the housing as shown.
- a single annular heat pipe may be used as a local section or extension of the housing itself, subject however to the vertical limitation previously mentioned.
- heat pipes 106 could be produced that carry water from outside of the waterproof enclosure 108 to the inside of the enclosure and back out again (Figures 16-18). Water, with or without a phase change, would move through the pipes by convection generated by the heat producing elements. As the water moved through the housing 108, it would gain heat from the heat producing elements, such as LED circuit boards on heat conductors 110, or power supplies 112, and then exit the waterproof enclosure, back into the greater body of water, at a higher level than it entered. Simultaneously cooler water would enter the pipe at the lower level. Such heat pipes could actually pass through the heat conductor 110 and/or the power supply 112, and serve to effectively increase the cooling area over that of a housing alone.
- the heat producing elements such as LED circuit boards on heat conductors 110, or power supplies 112
- each will have an inside circumference of ⁇ (just over 3D) or collectively, they will have an inside circumference of approximately three halves the circumference of the circle their centers are on. This together with the circumference of the housing itself provides an area exposed to the water of approaching 2.5 times that of the housing alone.
- LEDs could be placed on circuit boards that were of good thermal conductivity, for example copper boards with the respective circuit connections and circuitry being to a printed circuit board locally mounted thereon. Such a configuration is well facilitated by some high power LEDs that have a thermal pad under the heat generating LED with the electrical connections somewhat displaced from the thermal pad. This enables the thermal pad to be mounted directly to the copper or other heat conductor, though such a configuration is not a limitation of the invention.
- This general configuration provides the following features, as illustrated in Figure 19. These circuit boards 110, 120, etc. would have a larger footprint than the LEDs and attending circuitry placed on them.
- the portion, and only the portion, of the circuit boards containing the LEDs and attending circuitry could be sealed in a waterproof medium, for example epoxy, to form part of the housing to allow the entire unit to be exposed to the water, as shown in Figure 19.
- a waterproof medium for example epoxy
- the circuit boards would be larger than the electronics and LEDs placed on them, and since they would be of good thermal conductivity, this would allow significant and efficient heat transfer to the water from the non- sealed portion of the circuit board exposed to the water. Heat would travel efficiently to the non-sealed portion of the circuit boards by conduction and then into the water efficiently due to the non-sealed section of each circuit board being in contact with the water.
- the boards may extend outward to the extent that both sides of the periphery of the boards are exposed to the water.
- Figure 20 illustrates another underwater LED lamp 58, which lamp uses 12 high power LEDS as the light sources.
- the LEDs are arranged in an inner circle of 3 LEDs and an outer circle of 9 LEDs.
- FIG 21 illustrates the bottom of the lamp of Figure 20.
- a cooling fin or plate 60 has a number of "U" shaped grooves cut therein that run from the edge of the fin/plate 60 to just under the LEDs. These grooves are configured in the form of three single grooves 62 with three double grooves 64 and 66 interleaved therewith.
- the three grooves 62 extend inward to the outer circle of LEDs so as to be oriented just below a respective one of three of the LEDs in the outer circle of LEDs. Of the three pairs for grooves 64 and 66, grooves 64 extend inward to the inner circle of LEDs so as to be positioned just below a respective inner circle LED.
- the three grooves 66 extend inward to just under a respective pair of the remaining six LEDs in the outer circle of LEDs.
- the shaded areas shown in the Figure are meant to highlight some of the hot spots in on the fin/plate 60, and are not part of the physical structure.
- Figure 22 is a half cross section of the entire lamp assembly of this embodiment taken through opening 68, one of multiple such openings.
- Member 70 is sealed with respect to the top assembly and with respect to the cooling fin/plate 60 forming the base of the lamp assembly on which the LEDs are mounted.
- the cooling fin/plate 60 extends radially outward beyond the member 70, but not to the lamp outer casing 72, so as to form an entrance of cooling water between the outer diameter of the cooling fin/plate 60 and the inner diameter of the casing 72.
- cooling fin/plate 60 In operation, the heat given off by the high power LEDs on the top of cooling fin/plate 60 heat the cooling fin/plate 60 and the water particularly in the grooves 62, 64 and 66.
- the cooling fin/plate 60 conducts some of that heat to the outer ring thereof that is outside or beyond the casing 72, also heating the water beneath, over and beyond the cooling fin/plate.
- This heated water rises because of its drop in density, ultimately passing out to the openings 68 as a first cooling source.
- this flow of water lowers the pressure at the end of the grooves 62, 64 and 66, causing a flow of water out the end of the grooves, to be replaced by cooler water rising to maintain the grooves full of water.
- the grooves provide both flow passages and short conduction paths to the water without thinning the overall cooling fin/plate, which thinning would reduce the radially outward conduction of the cooling fin/plate.
- annular gap above the cooling fin/plate 60 helps to draw heated water up away from the fin/plate, and cooler water to come in from below.
- grooves 62, 64 and 66 are cut into the cooling fin/plate on the water-side. These grooves serve several purposes:
- the grooves are cut such that they still allow very good lateral dispersion of the heat while providing thinner cross sections that allow heat to transfer from the inside of the light fixture to the water-side of the cooling fin/plate. This allows optimization of heat transfer by allowing good heat transfer from inside the fixture to the water- side while still allowing much better lateral transfer of heat to the rest of the fin/plate.
- a fin/plate that was simply thinner overall would have areas that did not add to cooling, as much of the fin/plate would not efficiently have heat transferred to it; namely those areas that are not directly, or close to directly, underneath an LED element.
- a fin/plate that was thick overall would allow good lateral transfer of heat, but would be less efficient at getting the heat from the inside of the fixture to the water side of the fin/plate.
- the grooves optimize the transfer of heat by providing the best fit between transfer of heat laterally and from inside the fixture to the water-side of the fin/plate.
- a water pump can be incorporated so as to continuously move cooler water across the fin/plate.
- the completer water proof enclosure is not illustrated, but only certain aspects are illustrated. In general such enclosures may be completed and sealed in any conventional manner, such as, but not limited to that illustrated with respect to Figures 1-4.
- the majority of the heat given off by the LEDs is transferred to the housing of the underwater light by heat transfer techniques, other than by convection of the air or other gases within the enclosure, by direct heat conveyance to or through the light enclosure walls, providing conduction through a heat conductor preferably having a coefficient of heat transfer of at least 8 Btu/(ft.hr.°F) such as stainless steel, and more preferably at least 110 Btu/(ft.hr.°F) such as aluminum or still more preferably 220
- Btu/(ft.hr.°F) such as copper, or by or as augmented by heat pipes to the inside wall of the enclosure or through the wall of the enclosure to the water.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Underwater LED lights with enhanced cooling to allow the use of substantial numbers of high power LEDs. In all embodiments, the majority of the heat given off by the LEDs is transferred to the housing of the underwater light by heat transfer techniques other than by convection of the air or other gases within the enclosure, providing direct heat conveyance from the LEDs to or through the light enclosure walls, by conduction through a thermal conductor or by or as augmented by heat pipes to the inside wall of the enclosure or through the wall of the enclosure to the water. Various embodiments are disclosed.
Description
UNDERWATER LED LIGHTS
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application No.
61/582,019 filed December 30, 2011, U.S. Provisional Patent Application No. 61/586,051 filed January 12, 2012 and U.S. Provisional Patent Application No. 61/683,128 filed August 14, 2012.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of underwater lighting.
2. Prior Art
The brightness of present LED based underwater lights is limited by the buildup of heat within the light fixture. This heat is generated by the LEDs themselves which, though more efficient than tungsten and many other light sources, still suffer from a less than 100% efficient conversion of input energy to light, the balance turning into heat, primarily at the light emitting diode junction, plus heat from the power supply and related control electronics that operate the LEDs.
Currently, the brightest underwater LED light fixtures are typically about 8 to 20 watts, with a few approaching 60 watts. Attempts to make these fixtures brighter by increasing either the power of the individual LEDs, or the quantity of LEDs, or both, have met with failure because of the increased internal heat within the waterproof housing, which dramatically shortens the operating life span of the LEDs, or causes significant color or output degradation, or destroys them entirely. Even the few fixtures that approach 60 watts do so only by becoming very large in size, to the point of being cumbersome and limited in applicability.
On the other hand, in non-submersible uses such as in theatre stage lights and outdoor concert lights, higher power LED fixtures are available, of the order of several hundred watts or more. This is because these fixtures' housings readily dissipate their internal heat away from the LED junctions by incorporating cooling openings and fans to vigorously draw atmospheric air into, through, and away from the LEDs or their heat sinks. Various additional fins and heat sink housings can also be attached to further the transfer of heat to the
atmosphere. The cooling is facilitated by a nearly endless supply of relatively cool air in such applications.
However, none of the foregoing is effective when the entire light assembly has to be sealed inside a container that is submerged under water. In such a case, there is a very small
amount of internal air, which rapidly becomes very, very elevated in temperature. The only means available for cooling is for the heat to be transferred from the LEDs to the air via convection or conduction, and from the air to the inner wall of the enclosure, then through the enclosure, and into the water. Some heat may travel by radiation from the LEDs (or power supply, etc.) directly to the inner wall of the enclosure, and then through the wall and out to the water. Still, heat buildup is the largest impediment to obtaining higher power underwater LED lighting. The largest impediment here is getting the heat from the air to the inner wall of the enclosure. The transfer from air to inner wall is very poor, and consequently, the air rises in temperature to the point where insufficient heat can transfer from the LEDs to the air until the LEDs reach a damaging, high temperature.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an Elation LED lighting module and associated initial assembly of parts of an exemplary embodiment of the present invention.
Figure 2 illustrates the full assembly of the various parts illustrated in Figure 1.
Figure 3 is an illustration of the side view of a complete LED light in accordance with one embodiment of the present invention.
Figure 4 is a perspective view of the embodiment of Figure 3.
Figure 5 illustrates another embodiment for cooling for the LED light.
Figure 6 is a cross section of the embodiment of Figure 5.
Figure 7 illustrates another embodiment for cooling the LED light.
Figure 8 is a cross section of the embodiment of Figure 7.
Figure 9 schematically illustrates another embodiment for cooling of the LED light. Figure 10 is a cross section of the embodiment of Figure 9.
Figure 11 is a cross section illustrating another embodiment for cooling the LED light of the present invention.
Figure 12 is a cross section illustrating another embodiment of cooling for the LED light of the present invention.
Figure 13 is a cross section illustrating another embodiment for cooling the LED light fixtures of the present invention.
Figure 14 is a cross section illustrating another embodiment for cooling the LED light fixtures of the present invention.
Figure 15 is a cross section illustrating still another embodiment for cooling the LED light fixtures of the present invention.
Figure 16 illustrates another embodiment for cooling the LED light fixture of the present invention.
Figure 17 is a cross section of the embodiment of Figure 16.
Figure 18 is a top view of the embodiment of Figure 16.
Figure 19 illustrates another embodiment for cooling the LED light fixture of the present invention.
Figure 20 illustrates another underwater LED lamp, which lamp uses 12 high power LEDS as the LED light sources.
Figure 21 illustrates the bottom of the lamp of Figure 20.
Figure 22 is a half cross section of the entire lamp assembly of the embodiment of Figures 20 and 21.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The exemplary embodiment of the present invention utilizes a commercially available LED lighting fixture manufactured by Elation Professional as their Arena Par Fixture. This lighting fixture is intended for use in non- submersible applications where fan cooling is practical because of the relatively unlimited supply of cooling air. The lighting unit uses 90 3- watt Cree XP-E LEDs, namely, 18 red, 24 green, 24 blue and 24 white LEDs. This allows white lighting as well as controlled mixing of three primary colors to obtain white and/or any mixture of the primary colors, all with intensity control so that substantially any color of any brightness may be achieved under program control. In that regard, the lighting module includes a power supply connection and two communication ports using the DMX-512 protocol so that multiple lighting modules may be daisy chained.
The Elation lighting module and associated initial assembly of parts of an exemplary embodiment are shown in an exploded view in Figure 1. The Elation lighting module 20 has a heat sink 22 at the top thereof which is in very good thermal contact with the 90 LEDs in the lighting module. The present invention clamps to the lighting module in such a way as to provide excellent heat conduction to the outside of a waterproof housing, as shall be subsequently described in detail. To clamp tightly to the heat sink 22, a pair of half rings are provided which may be bolted together by bolts 26 using lock washers 30. Half clamps 24 clamp around the heat sink 22 on the lighting module 20 with thermal interface pads 32 therebetween to assure good heat conduction from the heat sink 22 to the half clamps 24. In that regard, the half clamps 24 are preferably fabricated from a high thermal conductivity material, in the exemplary embodiment, aluminum. The half clamps could be clamped directly around the heat sink 22, and to the extent there is good contact therebetween, there will be
good heat conduction from the heat sink 22 to the half clamps 24. This is not preferred, however, as one cannot be assured that the contact is good and uniform around the full perimeter of the heat sink, and any gap between the heat sink 22 and the half clamps 24 will have very poor heat transfer characteristics. In particular, heat transfer through that gap would be primarily by the thermal conductivity of the air in that gap, which conductivity is quite low. Because the gap would be quite small, there would be substantially no heat transfer by convection, and of course heat transfer by radiation depends on a very substantial temperature difference between the two surfaces, the very thing that the present invention is trying to substantially eliminate to protect the LEDs and driver circuitry. Of course, rather than the thermal interface pads 32, a thermally conductive paste of other material may be used in this or in alternate embodiments to be described.
After the half clamps 24 are clamped to the heat sink 22 on the lighting module 20 with the thermal interface pads 32 therebetween, a copper heat sink ring 34 bolts to two half clamps 24 by bolts passing through holes 36 in the copper heat sink ring 34 into threaded holes 38 in the half clamps. This assembly provides excellent heat conduction from the heat sink 22 on the lighting module 20 to the copper heat sink ring 34, as the half clamps 24 and thermal interface pads 32 provide a substantial contact area to the heat sink 22, with the half clamps 24 also providing a substantial area of contact to the copper heat sink ring 34. While not shown in Figure 1, one could also use an appropriately shaped thermal interface pad or a thermally conductive paste of a thermally conductive filler between the half clamps 24 and the copper heat sink ring 34 for the same reasons as herein previously mentioned.
Figure 2 illustrates the full assembly of the various parts illustrated in Figure 1. As may be seen in Figure 3, the assembly of Figure 2 fits within a housing 40, preferably of stainless steel, having a flange 42 welded thereto. The flange 42 includes handles 44 thereon, which may also be seen in Figure 4. The assembly of Figure 2 fits within the housing 40 with the copper heat sink ring 34 resting on a seal 46. Resting on the copper heat sink ring 34 is another seal (not shown) with lens 48 thereon, with the entire assembly being screwed together using screws 50 through four 90° clamps 52.
The finished assembly may be seen in Figure 4. The entire assembly shown is fully water tight, except for openings 54 and 56 in housing 40, which openings are for a power cord and a communication cable, and which will also be sealed so that the entire assembly is water tight for use as an underwater lighting fixture. In that regard, the copper heat sink ring 34 extends outward somewhat into the water (except in the handle region) to provide a substantial area for conduction of heat to the water, with heated water rising to provide a normal
convection type supply of cool water to maintain the entire LED assembly relatively cool to prevent thermal degradation or failure of the LEDs or electronics in the lighting module 20 (Figures 1 and 2). Thus a high intensity, fully controllable white and colored underwater lighting fixture is provided using a relatively large number of high powered LEDs to provide a highly versatile yet compact underwater lighting fixture.
The present invention provides the ability to dramatically increase the quantity and/or power and/or both of LEDs in an underwater light fixtures. It also provides the ability to enclose a high power "dry" LED light fixture in an underwater enclosure that is capable of transferring sufficient heat out into the water to allow the LEDs to operate with normal life expectancy and brightness. The present invention also provides the ability to place a high power light engine of any new design in a water tight enclosure, as opposed to enclosing an existing theatrical fixture. The present invention allows the foregoing by directly and physically coupling the heat source to a highly conductive material that is in direct physical contact with the inside of the enclosure and has heat conductive materials such as conductive pastes or pads at the junctures to essentially create a "heat highway" that obviates the need to rely on internal radiation, air conduction and/or air convection. This is accomplished by directly and physically coupling the heat source to a highly conductive material that passes through the walls of the enclosure and out into the surrounding water. It also achieves the foregoing using a limited amount of expensive, heat conducting material, such as copper, and thereby allows the enclosure or housing itself to be substantially built of less costly materials.
The present invention includes various other ways to cool such a light fixture. By way of example, multiple fins 74 penetrating the housing 76 into the water could be used to transfer heat transferred to the inside of the housing 76 by heat conduction, as illustrated in Figures 5 and 6. This would involve fins 74 placed at different cross sections of the housing instead of a single fin. Each fin 74 would penetrate the waterproof enclosure to extend into the water. On the inside of the enclosure each fin would be in contact with heat producing elements such as LED circuit boards or power supplies 78. The enclosure could be completed various ways, such as by using a transparent cover as in the embodiment of Figures 1-4. This method would allow more efficient removal of heat than a single fin, as all components that generate heat could have a significant and direct thermally conductive path to the water.
Another method of cooling the light fixture is illustrated in Figures 7 and 8. Here a significant conductive heat path from heat producing elements, such as, but not limited to, LED circuit boards and heat conductor 86 at the upper part of the housing 82 and power supplies 80, to the inside wall (bottom in the case of power supplies 80) of the waterproof
enclosure, for example a stainless steel or copper enclosure. Heat transferred to the inside wall of a metal, or other type of fairly heat conductive, enclosure 82 (housing) would be conducted through the wall by conduction and into the water by convection past optional vertical fins 84 very quickly. If the heat is transferred onto the inside wall of the enclosure 82 by conduction, then the overall process of transferring heat to the water would operate much more efficiently than current methods of transferring heat to the inside wall of an enclosure mainly by convection (forced or free) between air trapped in the enclosure and the inside wall. This convective path to the inside wall is the main path for heat transfer in current underwater LED lights on the market and represents a significant barrier to heat transfer. This method would eliminate the highly heat transfer resistive convective path.
The conductive path to the inside wall of the enclosure in accordance with
embodiments of the invention is realized by significant heat conductive elements in contact with both heat producing elements and the inside wall of the enclosure. For example, a copper plate to which the power supply on which the LEDs are mounted could then be press fit to the inside of the housing. Similarly one or more copper plates could be in contact with the LED circuit board, or could be an extension of it, and then extend to have a significant area pressed into the inside of the waterproof enclosure. Similarly such plates could be bolted, welded, glued, or brazed to the inside of the enclosure; any method that puts them in close contact with the inside wall of the housing without a high heat transfer resistive medium in-between would suffice.
In Figures 9 and 10, an embodiment is schematically shown wherein the heat producing LEDs 88 are mounted on a shelf like heat conductor 90, and the power supply 92 is mounted directly against the bottom of the housing 102. Thus the waterproof enclosure could be made with areas on the inside to which heat producing elements could be directly mounted. For example a part of the enclosure forms a shelf on the inside of the housing to which the power supply or LED circuit board attaches. Of course for all these examples of this method, fins on the outside of the enclosure will further increase the heat transfer, if needed.
Another method of removing heat from the enclosure is to use some form of heat pipe. Heat pipes utilizing a medium that undergoes a phase change could be utilized to transfer heat away from heat producing elements such as LED circuit boards or power supplies. Such pipes 94 (only one is shown, though multiple heat pipes typically would be used) could transfer heat to the inside wall of the waterproof enclosure (Figure 11). This would operate similar to the method above, but instead of bringing the heat to the inside wall of the enclosure by conduction it would be brought there by the bulk fluid movement and phase changes of the
fluid within the heat pipes. This method of moving heat to the inside wall would be much more efficient than current methods of moving heat to the inside wall by convection of air trapped within the waterproof enclosure. In the embodiment of Figure 11, the power supply 96 is directly mounted on the bottom of the housing and the LED cluster is directly mounted on the heat conductor element 98 that conducts heat directly to the wall of housing 102. In the embodiment shown, the housing 102 includes fins 100 for additional cooling.
Alternatively, such heat pipes 103 could transfer the heat by penetrating the housing and extending directly into the water (Figure 12). The heat would then be taken away from the pipes by convection in the water. Alternatively, such pipes could remain within the enclosure and transfer heat to a fin, or fins 104, that penetrate each side of the wall of the waterproof enclosure and deliver the heat to the water by convection (Figure 13).
Now referring to Figure 14, another embodiment using heat pipe pipes may be seen. This embodiment is similar to the embodiment of Figure 11, though uses a heat pipe or heat pipes 150 to aide in the distribution of the LED heat from heat conductor 98 to the housing 102, and thus to the surrounding water. Because of the configuration shown, multiple heat pipes may be used, or a single annular heat pipe may be used. The annular heat pipe might be less extensive to manufacture, though would not work well unless the underwater light was point vertically upward to maintain the annular heat pipe horizontal. Multiple heat pipes would work well, even with an angular tilt of the underwater light to an angular extent dependent on the angular extent of each light pipe around the inside of the housing 102 and other heat pipe parameters.
Figure 15 is similar to Figure 14 in that it uses heat pipes 152 to couple LED heat from the heat conductor, though in this embodiment, directly to the water. Here a single heat pipe could not be used in the configuration shown, as a single heat pipe could not penetrate the housing as shown. As a further alternative however, a single annular heat pipe may be used as a local section or extension of the housing itself, subject however to the vertical limitation previously mentioned.
Also heat pipes 106 could be produced that carry water from outside of the waterproof enclosure 108 to the inside of the enclosure and back out again (Figures 16-18). Water, with or without a phase change, would move through the pipes by convection generated by the heat producing elements. As the water moved through the housing 108, it would gain heat from the heat producing elements, such as LED circuit boards on heat conductors 110, or power supplies 112, and then exit the waterproof enclosure, back into the greater body of water, at a higher level than it entered. Simultaneously cooler water would enter the pipe at the lower
level. Such heat pipes could actually pass through the heat conductor 110 and/or the power supply 112, and serve to effectively increase the cooling area over that of a housing alone. By way of example, if the heat pipes are spaced one heat pipe inside diameter "D" apart (two diameters heat pipe center to center), each will have an inside circumference of πϋ (just over 3D) or collectively, they will have an inside circumference of approximately three halves the circumference of the circle their centers are on. This together with the circumference of the housing itself provides an area exposed to the water of approaching 2.5 times that of the housing alone.
Also LEDs could be placed on circuit boards that were of good thermal conductivity, for example copper boards with the respective circuit connections and circuitry being to a printed circuit board locally mounted thereon. Such a configuration is well facilitated by some high power LEDs that have a thermal pad under the heat generating LED with the electrical connections somewhat displaced from the thermal pad. This enables the thermal pad to be mounted directly to the copper or other heat conductor, though such a configuration is not a limitation of the invention. This general configuration provides the following features, as illustrated in Figure 19. These circuit boards 110, 120, etc. would have a larger footprint than the LEDs and attending circuitry placed on them. Then the portion, and only the portion, of the circuit boards containing the LEDs and attending circuitry, could be sealed in a waterproof medium, for example epoxy, to form part of the housing to allow the entire unit to be exposed to the water, as shown in Figure 19. As the circuit boards would be larger than the electronics and LEDs placed on them, and since they would be of good thermal conductivity, this would allow significant and efficient heat transfer to the water from the non- sealed portion of the circuit board exposed to the water. Heat would travel efficiently to the non-sealed portion of the circuit boards by conduction and then into the water efficiently due to the non-sealed section of each circuit board being in contact with the water. In some cases such as boards 130 and 140, the boards may extend outward to the extent that both sides of the periphery of the boards are exposed to the water.
Figure 20 illustrates another underwater LED lamp 58, which lamp uses 12 high power LEDS as the light sources. The LEDs are arranged in an inner circle of 3 LEDs and an outer circle of 9 LEDs.
Figure 21 illustrates the bottom of the lamp of Figure 20. A cooling fin or plate 60 has a number of "U" shaped grooves cut therein that run from the edge of the fin/plate 60 to just under the LEDs. These grooves are configured in the form of three single grooves 62 with three double grooves 64 and 66 interleaved therewith. The three grooves 62 extend inward to
the outer circle of LEDs so as to be oriented just below a respective one of three of the LEDs in the outer circle of LEDs. Of the three pairs for grooves 64 and 66, grooves 64 extend inward to the inner circle of LEDs so as to be positioned just below a respective inner circle LED. The three grooves 66 extend inward to just under a respective pair of the remaining six LEDs in the outer circle of LEDs. The shaded areas shown in the Figure are meant to highlight some of the hot spots in on the fin/plate 60, and are not part of the physical structure.
Figure 22 is a half cross section of the entire lamp assembly of this embodiment taken through opening 68, one of multiple such openings. Member 70 is sealed with respect to the top assembly and with respect to the cooling fin/plate 60 forming the base of the lamp assembly on which the LEDs are mounted. The cooling fin/plate 60 extends radially outward beyond the member 70, but not to the lamp outer casing 72, so as to form an entrance of cooling water between the outer diameter of the cooling fin/plate 60 and the inner diameter of the casing 72.
In operation, the heat given off by the high power LEDs on the top of cooling fin/plate 60 heat the cooling fin/plate 60 and the water particularly in the grooves 62, 64 and 66. The cooling fin/plate 60 conducts some of that heat to the outer ring thereof that is outside or beyond the casing 72, also heating the water beneath, over and beyond the cooling fin/plate. This heated water rises because of its drop in density, ultimately passing out to the openings 68 as a first cooling source. In addition, this flow of water lowers the pressure at the end of the grooves 62, 64 and 66, causing a flow of water out the end of the grooves, to be replaced by cooler water rising to maintain the grooves full of water. This then forms a second source of cooling, making the overall system quite efficient for the intended purpose. In essence the grooves provide both flow passages and short conduction paths to the water without thinning the overall cooling fin/plate, which thinning would reduce the radially outward conduction of the cooling fin/plate.
Thus an annular gap above the cooling fin/plate 60 helps to draw heated water up away from the fin/plate, and cooler water to come in from below. To achieve this, grooves 62, 64 and 66 are cut into the cooling fin/plate on the water-side. These grooves serve several purposes:
i) They pass underneath the base of each LED element where the temperature is
highest and due to the reduced thickness of the plate's cross section there they allow quicker transfer of heat to the water- side of the plate where the heat can be removed by the water.
ii) They increase the surface area of the plate that is exposed to water, allowing more heat to be drawn away by the water.
iii) The grooves are cut such that they still allow very good lateral dispersion of the heat while providing thinner cross sections that allow heat to transfer from the inside of the light fixture to the water-side of the cooling fin/plate. This allows optimization of heat transfer by allowing good heat transfer from inside the fixture to the water- side while still allowing much better lateral transfer of heat to the rest of the fin/plate. A fin/plate that was simply thinner overall would have areas that did not add to cooling, as much of the fin/plate would not efficiently have heat transferred to it; namely those areas that are not directly, or close to directly, underneath an LED element. Similarly, a fin/plate that was thick overall would allow good lateral transfer of heat, but would be less efficient at getting the heat from the inside of the fixture to the water side of the fin/plate. The grooves optimize the transfer of heat by providing the best fit between transfer of heat laterally and from inside the fixture to the water-side of the fin/plate.
A water pump can be incorporated so as to continuously move cooler water across the fin/plate.
In a number of embodiments disclosed herein, the completer water proof enclosure is not illustrated, but only certain aspects are illustrated. In general such enclosures may be completed and sealed in any conventional manner, such as, but not limited to that illustrated with respect to Figures 1-4. In all cases, the majority of the heat given off by the LEDs is transferred to the housing of the underwater light by heat transfer techniques, other than by convection of the air or other gases within the enclosure, by direct heat conveyance to or through the light enclosure walls, providing conduction through a heat conductor preferably having a coefficient of heat transfer of at least 8 Btu/(ft.hr.°F) such as stainless steel, and more preferably at least 110 Btu/(ft.hr.°F) such as aluminum or still more preferably 220
Btu/(ft.hr.°F) such as copper, or by or as augmented by heat pipes to the inside wall of the enclosure or through the wall of the enclosure to the water.
Thus the present invention has a number of aspects, which aspects may be practiced alone or in various combinations or sub-combinations, as desired. While a preferred embodiment of the present invention has been disclosed and described herein for purposes of illustration and not for purposes of limitation, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Claims
1. An LED light for underwater use comprising:
an LED light assembly having a heat sink thermally accessible from the periphery of the assembly;
a plate coupled to the heat sink to conduct heat from the heat sink;
a housing having an open top and an outward extending flange at the open top thereof; the LED light assembly being positioned in the housing with the plate fastened to the flange at the top of the housing and extending outward beyond most of the flange; and
a lens;
at least one lens clamp holding the lens with respect to the plate;
the lens, plate and flange assembly being sealed, whereby any other openings in the housing may be sealed to provide the LED light for underwater use.
2. The LED light of claim 1 wherein the plate is coupled to the heat sink through a thermally conductive clamp clamped to the heat sink.
3. The LED light of claim 1 wherein the any other openings in the housing comprise an opening for a power supply connection.
4. An LED light for underwater use comprising:
a housing;
a plurality of LEDs within the housing;
the LEDs being mounted in the housing to transfer the majority of the heat from the LEDs to the housing and/or water surrounding the housing by other than convection within the housing.
5. The LED light of claim 4 wherein heat is transferred from the LEDs to the water by conduction through a heat conductor to an inside surface of a wall of the housing, and from an outside wall of the housing to the water by convection outside the housing.
6. The LED light of claim 4 wherein the housing has at least one heat conductor passing through the housing, and wherein heat is transferred from the LEDs to the water by conduction through the heat conductor passing through a wall of the housing, and from the heat conductor to the water by convection outside the housing.
7. The LED light of claim 4 wherein the housing has a plurality of fins on an outside wall of the housing, and wherein heat is transferred from the LEDs to the water by conduction through a heat conductor to an inside surface of a wall of the housing, and from an outside wall of the housing and from the fins to the water by convection outside the housing.
8. The LED light of claim 7 wherein the fins are horizontal fins.
9. The LED light of claim 7 wherein the fins are vertical fins.
10. The LED light of claim 4 further comprising a power supply in the housing and at least one heat pipe, and wherein the heat from the power supply is transferred to an inside surface of the housing by the at least one heat pipe coupled between the power supply and the inside surface of the housing.
11. The LED light of claim 10 wherein the housing has vertical fins on the outside surface of the housing.
12. The LED light of claim 4 further comprising a power supply in the housing and at least one heat pipe, and wherein the heat from the power supply is transferred to the water by the at least one heat pipe having a first end coupled to the power supply and a second end passing through a wall of the housing to transfer heat directly to the water.
13. The LED light of claim 12 wherein the housing has vertical fins on the outside surface of the housing.
14. The LED light of claim 4 wherein the housing has a plurality of vertical pipes through the housing for water convection there through, and wherein heat is transferred from the LEDs to the water, at least in part, by conduction through a heat conductor to the vertical pipes for transfer to the water in the vertical pipes.
15. The LED light of claim 4 wherein the LEDs are mounted on a bottom of the housing and wherein the bottom of the housing extends outward beyond sidewalls of the housing, the housing having a casing around the outside of the housing with at least one opening between the casing and the bottom of the housing and at least one opening adjacent the top of the casing whereby water may flow between the casing and the housing and over the top of at least a part of the bottom of the housing.
16. The LED light of claim 15 wherein a lower surface of the bottom of the housing has grooves therein, each groove extending from below at least one LED to the edge of the bottom of the housing to provide a water flow path from below each LED to an outer edge side of the bottom of the housing.
17. An LED light for underwater use comprising:
an LED light assembly having a heat sink thermally accessible from the periphery of the assembly;
a clamp coupled around the heat sink to conduct heat from the heat sink;
a plate coupled to the clamp to conduct heat from the clamp;
a housing having an open top and an outward extending flange at the open top thereof; the LED light assembly and clamp being positioned in the housing with the plate fastened to the flange at the top of the housing and extending outward beyond most of the flange; and
a lens;
at least one lens clamp holding the lens with respect to the plate;
the lens, plate and flange assembly being sealed, whereby any other openings in the housing may be sealed to provide the LED light for underwater use.
18. The LED light of claim 17 wherein the any other openings in the housing comprise an opening for a power supply connection.
19. An LED light for underwater use comprising;
a housing;
an LED cluster within the housing;
the LED cluster being mounted on and in close thermal contact with a heat conductor; the heat conductor being in close thermal contact with a first surface of a wall having water on a second surface of the wall opposite the first surface;
whereby when the housing is sealed and the LED light is operated under water, the majority of the cooling of the LED cluster is by conduction of the heat generated by the LED cluster to the inside surface of the housing and not by convection or radiation of heat to the inside surface of the housing.
20. The LED light of claim 19 wherein the thermal conductivity of the heat conductor is at least 14 W/mK.
21. The LED light of claim 19 wherein the wall forms part of a housing with at least one cooling fin on the outer surface of the housing.
22. The LED light of claim 21 wherein the cooling fin is oriented perpendicular to the direction the LED light projects light.
23. The LED light of claim 22 wherein the cooling fin is an extension of the heat conductor.
24. The LED light of claim 22 wherein the cooling fin comprises a plurality of cooling fins.
25. The LED light of claim 22 wherein the cooling fin is oriented parallel to the direction the LED light projects light.
26. The LED light of claim 25 wherein the cooling fin comprises a plurality of cooling fins.
27. The LED light of claim 19 wherein the wall comprises a plurality of vertical tubes passing through a housing for water flow there through.
28. The LED light of claim 19 wherein the wall comprises a housing within a casing having openings between the housing and the casing for water flow there through.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12862342.8A EP2800932A4 (en) | 2011-12-30 | 2012-12-28 | Underwater led lights |
CN201280070633.9A CN104136841A (en) | 2011-12-30 | 2012-12-28 | Underwater LED lights |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161582019P | 2011-12-30 | 2011-12-30 | |
US61/582,019 | 2011-12-30 | ||
US201261586051P | 2012-01-12 | 2012-01-12 | |
US61/586,051 | 2012-01-12 | ||
US201261683128P | 2012-08-14 | 2012-08-14 | |
US61/683,128 | 2012-08-14 | ||
US13/728,781 | 2012-12-27 | ||
US13/728,781 US9039232B2 (en) | 2011-12-30 | 2012-12-27 | Underwater LED lights |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013102143A1 true WO2013102143A1 (en) | 2013-07-04 |
Family
ID=48694657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/072179 WO2013102143A1 (en) | 2011-12-30 | 2012-12-28 | Underwater led lights |
Country Status (4)
Country | Link |
---|---|
US (2) | US9039232B2 (en) |
EP (1) | EP2800932A4 (en) |
CN (1) | CN104136841A (en) |
WO (1) | WO2013102143A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8947527B1 (en) * | 2011-04-01 | 2015-02-03 | Valdis Postovalov | Zoom illumination system |
US9039232B2 (en) * | 2011-12-30 | 2015-05-26 | Wet | Underwater LED lights |
US20160334093A1 (en) * | 2013-06-12 | 2016-11-17 | Q Technology, Inc. | Multiple emission source multiple cooling path lighting system and method |
CN104534364A (en) * | 2014-12-31 | 2015-04-22 | 麦康林 | Novel underwater lamp and assembling and disassembling method thereof |
CN104930408B (en) * | 2015-06-26 | 2017-08-25 | 矽照光电(厦门)有限公司 | A kind of LED underwater lamps |
CN104930446A (en) * | 2015-06-26 | 2015-09-23 | 固态照明张家口有限公司 | LED underwater lamp system |
CN105465686A (en) * | 2015-12-29 | 2016-04-06 | 李小鹏 | Water-cooled soaking LED lamp |
US10125967B2 (en) * | 2016-08-24 | 2018-11-13 | Henry Lockard | Underwater light cover kit |
US12007098B2 (en) * | 2018-08-17 | 2024-06-11 | Sportsbeams Lighting, Inc. | Sports light having single multi-function body |
CN110925678A (en) * | 2018-09-19 | 2020-03-27 | 漳浦比速光电科技有限公司 | Self-dimming lamp special for underwater lighting |
CN109430185B (en) * | 2018-12-13 | 2024-01-26 | 程洲山 | Water-cooling LED fish-attracting lamp capable of being disassembled and assembled by bare hands |
USD920543S1 (en) * | 2019-10-09 | 2021-05-25 | Min Wei | Diving light |
USD895175S1 (en) | 2019-12-31 | 2020-09-01 | Zhengping LI | Underwater LED light |
US11353208B2 (en) * | 2020-09-03 | 2022-06-07 | Innotec, Corp. | Underwater LED lamp |
CN112856356B (en) * | 2020-12-31 | 2023-06-13 | 河南卓立瀚光科技有限公司 | Radiator for fish-attracting lamp |
US12052981B1 (en) | 2023-04-08 | 2024-08-06 | John Collier | Submersible lighting device for attracting fish |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020125804A1 (en) * | 1994-03-22 | 2002-09-12 | Mcguire Kevin P. | Underwater lamp |
US20070159833A1 (en) * | 2005-10-26 | 2007-07-12 | Pentair Water Pool And Spa, Inc. | LED pool and spa light |
USRE39856E1 (en) * | 1999-11-30 | 2007-09-25 | Zodiac Pool Care, Inc. | Multicolor LED lamp bulb for underwater pool lights |
US20070285926A1 (en) * | 2006-06-08 | 2007-12-13 | Lighting Science Group Corporation | Method and apparatus for cooling a lightbulb |
US20080048566A1 (en) * | 2006-08-25 | 2008-02-28 | Yuan Lin | Coin shaped light-emitting device and coin shaped spotlight comprising same |
US20080205062A1 (en) * | 2006-09-01 | 2008-08-28 | Dahm Jonathan S | Multiple light-emitting element heat pipe assembly |
US20110267834A1 (en) * | 2010-04-28 | 2011-11-03 | Hayward Industries, Inc. | Underwater Light Having A Sealed Polymer Housing and Method of Manufacture Therefor |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3338974B2 (en) | 1995-01-11 | 2002-10-28 | ミヤチテクノス株式会社 | Laser device |
US5842771A (en) * | 1995-11-03 | 1998-12-01 | American Products, Inc. | Submersible light fixture |
WO2011143643A2 (en) * | 2010-05-14 | 2011-11-17 | Matrix Railway Inc | Led lighting apparatus |
US20130141903A1 (en) * | 2003-09-23 | 2013-06-06 | Matrix Railway Inc | Led lighting apparatus |
US7125146B2 (en) | 2004-06-30 | 2006-10-24 | H-Tech, Inc. | Underwater LED light |
US20060176686A1 (en) * | 2005-02-09 | 2006-08-10 | Mcvicker Brian D | Submersible lighting device |
CN2816596Y (en) * | 2005-07-08 | 2006-09-13 | 劳缵球 | Safety all-sealed under-water lamp |
DE102005040185B4 (en) * | 2005-08-25 | 2010-04-01 | Schmalenberger Gmbh & Co. Kg | Underwater light |
US7985005B2 (en) | 2006-05-30 | 2011-07-26 | Journée Lighting, Inc. | Lighting assembly and light module for same |
US20090027900A1 (en) * | 2006-10-31 | 2009-01-29 | The L.D. Kichler Co. | Positionable outdoor lighting |
US7712933B2 (en) * | 2007-03-19 | 2010-05-11 | Interlum, Llc | Light for vehicles |
CN101378613B (en) * | 2007-08-27 | 2012-07-04 | 佶益投资股份有限公司 | LED light source and LED lamp body |
CN101463989B (en) * | 2007-12-18 | 2011-07-06 | 富士迈半导体精密工业(上海)有限公司 | Underwater illumination device |
TW201024611A (en) * | 2008-12-26 | 2010-07-01 | Everlight Electronics Co Ltd | Heat dissipation device and light emitting device comprising the same |
WO2010102594A1 (en) * | 2009-03-11 | 2010-09-16 | Joachim Springer | Underwater spotlights |
US8197098B2 (en) * | 2009-09-14 | 2012-06-12 | Wyndsor Lighting, Llc | Thermally managed LED recessed lighting apparatus |
FR2954809B1 (en) * | 2009-12-24 | 2012-11-02 | Siebec | LAMP FOR PROJECTOR AND PROJECTOR PROVIDED WITH SUCH A LAMP |
CN101776229A (en) * | 2010-01-05 | 2010-07-14 | 中山市正丰照明科技有限公司 | Waterproof structure of LED illuminating module |
US20130175569A1 (en) * | 2010-01-26 | 2013-07-11 | Michel Asseraf | LED Lighting Device |
US8469533B2 (en) * | 2010-02-05 | 2013-06-25 | Beijing AVC Technology Research Center Co., Ltd. | Water-cooling heat dissipation system for LED signboard |
CN201964255U (en) * | 2010-11-18 | 2011-09-07 | 厦门通士达照明有限公司 | LED (light-emitting diode) spot lamp |
US9039232B2 (en) * | 2011-12-30 | 2015-05-26 | Wet | Underwater LED lights |
-
2012
- 2012-12-27 US US13/728,781 patent/US9039232B2/en active Active
- 2012-12-28 CN CN201280070633.9A patent/CN104136841A/en active Pending
- 2012-12-28 WO PCT/US2012/072179 patent/WO2013102143A1/en active Application Filing
- 2012-12-28 EP EP12862342.8A patent/EP2800932A4/en not_active Withdrawn
-
2015
- 2015-05-08 US US14/708,060 patent/US20150354802A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020125804A1 (en) * | 1994-03-22 | 2002-09-12 | Mcguire Kevin P. | Underwater lamp |
USRE39856E1 (en) * | 1999-11-30 | 2007-09-25 | Zodiac Pool Care, Inc. | Multicolor LED lamp bulb for underwater pool lights |
US20070159833A1 (en) * | 2005-10-26 | 2007-07-12 | Pentair Water Pool And Spa, Inc. | LED pool and spa light |
US20070285926A1 (en) * | 2006-06-08 | 2007-12-13 | Lighting Science Group Corporation | Method and apparatus for cooling a lightbulb |
US20080048566A1 (en) * | 2006-08-25 | 2008-02-28 | Yuan Lin | Coin shaped light-emitting device and coin shaped spotlight comprising same |
US20080205062A1 (en) * | 2006-09-01 | 2008-08-28 | Dahm Jonathan S | Multiple light-emitting element heat pipe assembly |
US20110267834A1 (en) * | 2010-04-28 | 2011-11-03 | Hayward Industries, Inc. | Underwater Light Having A Sealed Polymer Housing and Method of Manufacture Therefor |
Non-Patent Citations (1)
Title |
---|
See also references of EP2800932A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN104136841A (en) | 2014-11-05 |
US20150354802A1 (en) | 2015-12-10 |
EP2800932A1 (en) | 2014-11-12 |
EP2800932A4 (en) | 2015-10-07 |
US20130170212A1 (en) | 2013-07-04 |
US9039232B2 (en) | 2015-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9039232B2 (en) | Underwater LED lights | |
US8485691B2 (en) | High powered light emitting diode lighting unit | |
RU2452894C2 (en) | Lighting instrument | |
US8506135B1 (en) | LED light engine apparatus for luminaire retrofit | |
JP5968911B2 (en) | Lighting device | |
EA014861B1 (en) | High-power and high heat-dissipating light emitting diode illuminating equipment | |
US20170023228A1 (en) | Light fixture | |
WO2011079387A1 (en) | High powered light emitting diode lighting unit | |
TW201500685A (en) | LED illuminating apparatus and heat dissipater thereof | |
CN102494317A (en) | Water cooling device and water cooling method for large-scale light-emitting diode (LED) lamp system | |
US20100148652A1 (en) | Solid state lighting | |
WO2021093226A1 (en) | Plant lamp and cooling system therefor | |
WO2015062293A1 (en) | Led light source heat dissipation structure and heat dissipation method thereof | |
WO2011085529A1 (en) | Illumination lamp module comprising led light source | |
KR101035100B1 (en) | Cooling device for led lamp | |
CN104121498A (en) | Radiating lamp | |
CN103104841B (en) | Light-emitting diode (LED) lamp unit with high heat-radiating performance and modular high-power LED lamp thereof | |
KR101039556B1 (en) | Socket type LED lighting device having double cooling fin structure | |
CN211040568U (en) | High power density light emitting device using multi-layer phosphor plate | |
CN106051646A (en) | Illumination device | |
CN104654256A (en) | Honeycomb radiator and LED (light-emitting diode) bulb applying same | |
KR101039553B1 (en) | Socket type LED lighting device having double cooling fin structure | |
TWM563516U (en) | Heat-dissipation device of lamp | |
CN203948986U (en) | A kind of light-emitting device that contains heat radiating type bullhead LED | |
CN103134022A (en) | Light emitting diode (LED) lamp simulation sunlight source cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862342 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: P714/2014 Country of ref document: AE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012862342 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012862342 Country of ref document: EP |