WO2013102015A1 - Process for the production of furfural - Google Patents

Process for the production of furfural Download PDF

Info

Publication number
WO2013102015A1
WO2013102015A1 PCT/US2012/071964 US2012071964W WO2013102015A1 WO 2013102015 A1 WO2013102015 A1 WO 2013102015A1 US 2012071964 W US2012071964 W US 2012071964W WO 2013102015 A1 WO2013102015 A1 WO 2013102015A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
furfural
sugar
process according
catalyst
Prior art date
Application number
PCT/US2012/071964
Other languages
French (fr)
Inventor
David Richard Corbin
Paul Joseph Fagan
Stuart B. Fergusson
Keith W. Hutchenson
Michael Stephen Mckinnon
Ronnie Ozer
Bhuma Rajagopalan
Sourav Kumar Sengupta
Eric J. TILL
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Priority to EP12861625.7A priority Critical patent/EP2797905A4/en
Priority to CA2859898A priority patent/CA2859898A1/en
Priority to BR112014016001A priority patent/BR112014016001B8/en
Priority to CN201280065178.3A priority patent/CN104039772B/en
Priority to AU2012362300A priority patent/AU2012362300A1/en
Publication of WO2013102015A1 publication Critical patent/WO2013102015A1/en
Priority to ZA2014/04218A priority patent/ZA201404218B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • a method for the production of furfural and related compounds from sugar streams is provided.
  • Furfural and related compounds such as hydroxymethylfurfural (HMF) are useful precursors and starting materials for industrial chemicals for use as pharmaceuticals, herbicides, stabilizers, and polymers.
  • the current furfural manufacturing process utilizes biomass such as corn cob and sugar cane bagasse as a raw material feed stock for obtaining xylose or hemicellulose.
  • the hemicellulose is hydrolyzed under acidic conditions to its monomer sugars, such as glucose, fructose, xylose, mannose, galactose, rhamnose, and arabinose.
  • Xylose which is a pentose (i.e., a "C 5 sugar") is the sugar present in the largest amount.
  • C 5 sugars are subsequently dehydrated and cyclized to furfural.
  • a major difficulty with known methods for dehydration of sugars is the formation of undesirable resinous material that not only leads to yield loss but also leads to fouling of exposed reactor surface and negatively impacts heat transfer characteristics. Further, the use of solid acid catalyst could also lead to coking issues.
  • hydrochloric acid hydrochloric acid. These acids are difficult to separate from the reaction medium or product stream. Low yields can result from formation of undesirable byproducts. Further, their use can require increased capital costs because of associated corrosion and environmental emission issues.
  • reaction zone in between the top and the bottom, and a solid acid catalyst disposed in the reaction zone;
  • the process further comprises feeding a water-miscible organic solvent to the reaction zone.
  • the feedstock solution further comprises a water- miscible organic solvent.
  • there is a process comprising the steps of:
  • the temperature of the reaction mixture is between about 90°C and about 250°C
  • reaction mixture is held at a pressure between about atmospheric pressure and about 3.87 x 10 6 Pa, and (iii) the sugar solution and catalyst are in contact for a time sufficient to produce water and furfural;
  • Figure 1 is a schematic illustration of an exemplary reactor configuration used in the production of furfural in accordance with various embodiments of the present invention.
  • sucrose includes monosaccharides, disaccharides, and oligosaccharides.
  • Monosaccharides, or “simple sugars,” are aldehyde or ketone derivatives of straight-chain polyhydroxy alcohols containing at least three carbon atoms.
  • a pentose is a
  • oligosaccharide molecules consist of about 3 to about 20 covalently linked
  • C n sugar includes monosaccharides having n carbon atoms; disaccharides comprising monosaccharide units having n carbon atoms; and oligosaccharides comprising monosaccharide units having n carbon atoms.
  • C 5 sugar includes pentoses, disaccharides comprising pentose units, and oligosaccharides comprising pentose units.
  • hemicellulose refers to a polymer comprising C 5 and C 6 monosaccharide units. Hemicellulose consists of short, highly branched chains of sugars. In contrast to cellulose, which is a polymer of only glucose, a hemicellulose is a polymer of five different sugars. It contains five-carbon sugars (usually D-xylose and L-arabinose) and six-carbon sugars (D-galactose, D-glucose, and D- mannose, fructose). Hemicellulose can also contain uronic acid, sugars in which the terminal carbon's hydroxyl group has been
  • a carboxylic acid such as, D-glucuronic acid, 4-O-methyl- D-glucuronic acid, and D-galacturonic acid.
  • the sugars are partially acetylated. Typically the acetyl content is 2 to 3% by weight of the total weight of hemicellulose.
  • Xylose is typically the sugar monomer present in hemicellulose in the largest amount.
  • solid acid catalyst refers to any solid material containing Bronsted and/or Lewis acid sites, and which is substantially undissolved by the reaction medium under ambient conditions.
  • nonvolatile byproduct denotes a reaction byproduct that either has a boiling point at one atmospheric pressure greater than the boiling point of the distilled product(s), or is a nonvolatile solid.
  • heteropolyacid denotes an oxygen- containing acid with P, As, Si, or B as a central atom which is connected via oxygen bridges to W, Mo or V.
  • Some examples are phosphotungstic acid, molybdophosphoric acid.
  • high boiling denotes a solvent having a boiling point above about 100°C at one atmosphere.
  • water-miscible organic solvent refers to an organic solvent that can form a monophasic solution with water at the temperature at which the reaction is carried out.
  • humin(s) refers to dark, amorphous byproduct(s) resulting from acid induced sugar and furfural degradation.
  • the term "selectivity" refers to the moles of furfural produced, divided by the moles of xylose transformed to products over a particular time period.
  • there is a process for the production of furfural comprising providing a reactive distillation column comprising a top, a bottom, a reaction zone in between the top and the bottom, and a solid acid catalyst disposed in the reaction zone.
  • Figure 1 shows a schematic illustration of an exemplary reactor configuration comprising a reactive distillation column 10 comprising a top 11 , a bottom 12, a reaction zone 20 in between the top 11 and the bottom 12, and a solid acid catalyst 2 disposed in the reaction zone 20.
  • the solid acid catalyst is a solid acid having the thermal stability required to survive reaction conditions.
  • the solid acid catalyst may be supported on at least one catalyst support.
  • suitable solid acids include without limitation the following categories: 1 ) heterogeneous heteropolyacids (HPAs) and their salts, 2) natural or synthetic clay minerals, such as those containing alumina and/or silica (including zeolites), 3) cation exchange resins, 4) metal oxides, 5) mixed metal oxides, 6) metal salts such as metal sulfides, metal sulfates, metal sulfonates, metal nitrates, metal phosphates, metal phosphonates, metal molybdates, metal tungstates, metal borates, and 7) combinations of any members of any of these categories.
  • HPAs heterogeneous heteropolyacids
  • natural or synthetic clay minerals such as those containing alumina and/or silica (including zeolites), 3) cation exchange resins
  • the metal components of categories 4 to 6 may be selected from elements from Groups 1 through 12 of the Periodic Table of the Elements, as well as aluminum, chromium, tin, titanium, and zirconium. Examples include, without limitation, sulfated zirconia and sulfated titania.
  • Suitable HPAs include compounds of the general formula X a MbO c q" , where X is a heteroatom such as phosphorus, silicon, boron, aluminum, germanium, titanium, zirconium, cerium, cobalt or chromium, M is at least one transition metal such as tungsten, molybdenum, niobium, vanadium, or tantalum, and q, a, b, and c are individually selected whole numbers or fractions thereof.
  • Nonlimiting examples of salts of HPAs are lithium, sodium, potassium, cesium, magnesium, barium, copper, gold and gallium, and onium salts such as ammonia. Methods for preparing HPAs are well known in the art and are described, for example, in G. J.
  • HPAs Hutchings, CP. Nicolaides and M.S. Scurrel, Catal Today (1994) p 23; selected HPAs are also available commercially, for example, through Sigma-Aldrich Corp. (St. Louis, Mo.). Examples of HPAs suitable for the disclosed process include, but are not limited to, tungstosilicic acid
  • vanadomolybdosilicic acid H 4+n [SiV n Moi 2- nO 4 o]-xH 2 O
  • molybdotungstophosphoric acid H 3 [PMOnW 12-n O 4 o]-xH 2 O
  • n in the formulas is an integer from 1 to 1 1
  • x is an integer of 1 or more.
  • Natural clay minerals are well known in the art and include, without limitation, kaolinite, bentonite, attapulgite, montmorillonite and zeolites.
  • the solid acid catalyst is a cation exchange resin that is a sulfonic-acid-functionalized polymer.
  • Suitable cation exchange resins include, but are not limited to the following: styrene-divinylbenzene copolymer-based strong cation exchange resins such as AmberlystTM and Dowex ® available from Dow Chemicals (Midland, Ml) (for example, Dowex ® Monosphere M-31 , Amberlyst TM 15, Amberlite TM 120); CG resins available from Resintech, Inc.
  • Nafion ® perfluorinated sulfonic acid polymer Nafion ® Super Acid Catalyst (a bead-form strongly acidic resin which is a copolymer of
  • the solid acid catalyst is a supported acid catalyst.
  • the support for the solid acid catalyst can be any solid substance that is inert under the reaction conditions including, but not limited to, oxides such as silica, alumina, titania, sulfated titania, and compounds thereof and combinations thereof; barium sulfate; calcium carbonate;
  • Acid washed carbon is a carbon that has been washed with an acid, such as nitric acid, sulfuric acid or acetic acid, to remove impurities.
  • the support can be in the form of powder, granules, pellets, or the like.
  • the supported acid catalyst can be prepared by depositing the acid catalyst on the support by any number of methods well known to those skilled in the art of catalysis, such as spraying, soaking or physical mixing, followed by drying, calcination, and if necessary, activation through methods such as reduction or oxidation.
  • the loading of the at least one acid catalyst on the at least one support is is in the range of 0.1 -20 weight based on the combined weights of the at least one acid catalyst and the at least one support. Certain acid catalysts perform better at low loadings such as 0.1 -5 %, whereas other acid catalysts are more likely to be useful at higher loadings such as 10-20%.
  • the acid catalyst is an unsupported catalyst having 100% acid catalyst with no support such as, pure zeolites and acidic ion exchange resins.
  • supported solid acid catalysts include, but are not limited to, phosphoric acid on silica, Nafion ® perfluorinated sulfonic acid polymer on silica, HPAs on silica, sulfated zirconia, and sulfated titania.
  • Nafion ® on silica a loading of 12.5% is typical of commercial examples.
  • the solid acid catalyst comprises
  • the solid acid catalyst comprises a Nafion ® supported on silica (SiO 2 ).
  • the solid acid catalyst comprises natural or synthetic clay minerals, such as those containing alumina and/or silica (including zeolites).
  • Zeolites suitable for use herein can be generally represented by the following formula M 2/ nO AI 2 O3-xSiO2 yH2O wherein M is a cation of valence n, x is greater than or equal to about 2, and y is a number determined by the porosity and the hydration state of the zeolite, generally from about 2 to about 8.
  • M is principally represented by Na, Ca, K, Mg and Ba in proportions usually reflecting their approximate geochemical abundance.
  • the cations M are loosely bound to the structure and can frequently be completely or partially replaced with other cations by conventional ion exchange.
  • the zeolite framework structure has corner-linked tetrahedra with Al or Si atoms at centers of the tetrahedra and oxygen atoms at the corners. Such tetrahedra are combined in a well-defined repeating structure comprising various combinations of 4-, 6-, 8-, 10-, and 12-membered rings.
  • the resulting framework structure is a pore network of regular channels and cages that is useful for separation.
  • Pore dimensions are determined by the geometry of the aluminosilicate tetrahedra forming the zeolite channels or cages, with nominal openings of about 0.26 nm for 6- member rings, about 0.40 nm for 8-member rings, about 0.55 nm for 10- member rings, and about 0.74 nm for 12-member rings (these numbers assume the ionic radii for oxygen). Zeolites with the largest pores, being 8-member rings, 10-member rings, and 12-member rings, are frequently considered small, medium and large pore zeolites, respectively.
  • silicon to aluminum ratio or, equivalently, “Si/AI ratio” means the ratio of silicon atoms to aluminum atoms. Pore dimensions are critical to the performance of these materials in catalytic and separation applications, since this characteristic determines whether molecules of certain size can enter and exit the zeolite framework.
  • zeolite type A access can be restricted by monovalent ions, such as Na + or K + , which are situated in or near 8-member ring openings as well as 6-member ring openings. Access can be enhanced by divalent ions, such as Ca 2+ , which are situated only in or near 6-member ring openings.
  • monovalent ions such as Na + or K +
  • divalent ions such as Ca 2+
  • the potassium and sodium salts of zeolite A exhibit effective pore openings of about 0.3 nm and about 0.4 nm respectively
  • the calcium salt of zeolite A has an effective pore opening of about 0.5 nm.
  • zeolites are (i) small pore zeolites such as NaA (LTA), CaA (LTA), Erionite (ERI), Rho (RHO), ZK-5 (KFI) and chabazite (CHA); (ii) medium pore zeolites such as ZSM-5 (MFI), ZSM-1 1 (MEL), ZSM -22 (TON), and ZSM-48 ( * MRE); and (iii) large pore zeolites such as zeolite beta (BEA), faujasite (FAU), mordenite (MOR), zeolite L (LTL), NaX (FAU), NaY (FAU), DA-Y (FAU) and CaY (FAU).
  • small pore zeolites such as NaA (LTA), CaA (LTA), Erionite (ERI), Rho (RHO), ZK-5 (KFI) and chabazite (CHA);
  • medium pore zeolites such as ZSM-5 (MFI), Z
  • Zeolites suitable for use herein include medium or large pore, acidic, hydrophobic zeolites, including without limitation ZSM-5, faujasites, beta, mordenite zeolites or mixtures thereof, having a high silicon to aluminum ratio, such as in the range of 5:1 to 400:1 or 5:1 to 200:1 .
  • Medium pore zeolites have a framework structure consisting of 10- membered rings with a pore size of about 0.5-0.6 nm.
  • Large pore zeolites have a framework structure consisting of 12-membered rings with a pore size of about 0.65 to about 0.75 nm.
  • Hydrophobic zeolites generally have Si/AI ratios greater than or equal to about 5, and the hydrophobicity generally increases with increasing Si/AI ratios.
  • Other suitable zeolites include without limitation acidic large pore zeolites such as H-Y with Si/AI in the range of about 2.25 to 5.
  • Zeolites with a high Si/AI ratio can be prepared synthetically, or by modification of high alumina containing zeolites using methods known in the art. These methods include without limitation treatment with SiCI 4 or (NH ) 2 SiF 6 to replace Al with Si, as well as treatment with steam followed by acid.
  • a SiCI 4 treatment is described by Blatter [J. Chem. Ed. 67 (1990) 519].
  • a (NH 4 ) 2 SiF 6 treatment is described in U.S. Patent 4,503,023.
  • hydrophobic and generally more organophilic Hydrophobicity in zeolites is further discussed by Chen [J. Phys. Chem. 80 (1976) 60]. Generally, high Si/AI containing zeolites exhibit higher thermal and acid stability. Acid forms of zeolites can be prepared by a variety of techniques including ammonium exchange followed by calcination or by direct exchange of alkali ions for protons using mineral acids or ion exchangers. Acid sites in zeolites are further discussed in Dwyer, "Zeolite, Structure, Composition and Catalysis" in Chemistry and Industry, April 2, 1984.
  • molecular sieves of which zeolites are a sub-type, may also be used as the catalytic material in the processes hereof. While zeolites are aluminosilicates, molecular sieves contain other elements in place of aluminum and silicon, but have analogous structures. Large pore, hydrophobic molecular sieves that have similar properties to the preferred zeolites described above are suitable for use herein. Examples of such molecular sieves include without limitation Ti-Beta, B-Beta, and Ga-Beta silicates. Molecular sieves are further discussed in Szostak, Molecular Sieves Principles of Synthesis and Identification, (Van Nostrand Reinhold, NY, 1989).
  • the process also comprises, as shown in Figure 1 bringing a feedstock solution 1 into contact with the solid acid catalyst 2 for a residence time sufficient to produce a mixture 5 of water 7 and furfural 8 in the reaction zone 20.
  • the feedstock solution 1 comprises C 5 sugar, C6 sugar or a mixture thereof dissolved in water, or a high boiling water- miscible organic solvent, or a mixture thereof.
  • the reaction zone is at a temperature in the range of 90-250°C and a pressure in the range of 0.1 -3.87 MPa.
  • the feedstock solution comprises at least one C 5 sugar, at least one C6 sugar, or a mixture of at least one C 5 sugar and at least one Ce sugar.
  • suitable C 5 sugars, pentoses include without limitation xylose, arabinose, lyxose and ribose.
  • suitable C 6 sugars, hexoses include without limitation glucose, fructose, mannose, and galactose.
  • the feedstock solution comprises xylose. In another embodiment, the feedstock solution comprises glucose. In another embodiment, the feedstock solution comprises comprises xylose and glucose.
  • the total sugar (C 5 sugar, Ce sugar, or a mixture thereof) is present in the feedstock solution in the range of 1 - 99 weight % or 0.1 -50 weight % or 5-35 weight % or 5 -10 weight %, based on the total weight of the feedstock solution.
  • the feedstock solution 1 is an aqueous feedstock solution.
  • the feedstock solution 1 is added to the distillation column 10 at a location between the rectifying section 16 and the reaction zone 20 at a rate that provides sufficient residence time in the reaction zone 20 (which is also the stripping section) for complete or nearly complete conversion of sugars to furfural.
  • the required residence time is a function of temperature and sugar concentration and is readily determined by one of skill in the art.
  • the residence time in the reaction zone is in the range of 1-500 min or 1-250 min or 5- 120 min.
  • the feedstock solution 1 flows down through the reaction zone 20 and is converted to a mixture 5 of furfural 8 and water 7 which is then partially vaporized and refluxes as part of the distillation column 10.
  • the temperature of the feedstock solution in the reaction zone 20 is in the range of 90-250 °C or 140-220 °C or 155-200 °C.
  • the reaction is carried at a pressure between about atmospheric pressure and 3.87 MPa or 0.1-3.4 MPa or 0.1-2.0 MPa.
  • the feedstock solution is an aqueous feedstock solution and the reaction is carried at a pressure in the range of 0.5-1 .6 MPa.
  • the feedstock solution comprises a high boiling water-miscible organic solvent, and the reaction is carried at about atmospheric pressure.
  • the process for the production of furfural further comprises removing the mixture 5 of water and furfural from the top 11 of the reactive distillation column 10 and collecting water and/or solvent unreacted sugars and nonvolatile byproducts into the reboiler 3 from the bottom of the reactive distillation column 10, as shown in Figure 1 .
  • a mixture 5 of vapors comprising one or more of furfural, water, acetic acid, acetone, and formic acid are removed from the reaction mixture via reflux through a multistage distillation column 10, condensed, and collected as a solution 5 of furfural and water.
  • the use of staging in the distillation process allows more efficient stripping of furfural away from the acid catalyst solution. This increases furfural yield by driving the reaction toward completion and by minimizing formation of byproducts.
  • furfural which, along with water (from the aqueous feedstock and water produced by the reacton), is then drawn at the top 11 of the distillation column 10. This minimizes the residence time of furfural in the acidic environment of the reaction zone 20 and thereby minimizes its degradation.
  • the furfural 8 is separated from the water and purified by any convenient methods known in the art, and the product furfural is removed. The water is either recycled to the source of the feedstock sugar solution or is released from the process.
  • Reaction byproducts 3 inluding, but not limited to, water, unreacted sugars, and non-volatile byproducts such as humins are collected in the reboiler 15 beneath the distillation column 10, as shown in Figure 1 .
  • the nonvolatile byproducts 4 are removed from the reboiler 15 (e.g., by filtration).
  • the solution 6 of water and unreacted sugars can be disposed of, or at least a portion can be concentrated by evaporation and fed as a stream 6' to be used as feedstock solution 1 , as shown in Figure 1 .
  • the feedstock solution 1 is fed into the distillation column 10 at a location between the rectifying section 16 of the distillation column 10 and the reaction zone 20, above the solid catalyst 2.
  • the catalyst 2 is included in the bottom, stripping section, which is the reaction zone 20.
  • a mixture 5 of furfural and water (as steam) are drawn off at the top 11 of the column 5.
  • Reaction byproducts 3 such as, water and/or solvent, unreacted sugars, and nonvolatile byproducts (e.g., humins and other higher boiling byproducts) are collected in the reboiler 15.
  • the nonvolatile materials 4 are removed from the reboiler 15.
  • the remaining solution 6 is concentrated by evaporation, with evaporated water vapor removed for disposal or reuse.
  • the concentrated stream 6' is then fed back as the feedstock solution 1.
  • the process comprises feeding a high boiling water-miscible organic solvent to the reaction zone 20, which would dissolve water-insoluble, nonvolatile byproducts such as humins.
  • the high boiling water-miscible organic solvent is added to the feedstock solution before feeding to the reaction zone 20.
  • the nonvolatile byproducts can be removed diluting the remaining contents of the reboiler in a mixing chamber with water or aqueous feedstock solution, thereby precipitating water-insoluble byproducts; and removing the precipitated water-insoluble byproducts, e.g., by filtration or centrifugation and feeding the precipitate-free solution remaining back to the reaction zone 20.
  • the water-miscible organic solvent has a boiling point higher than about 100°C at atmospheric pressure.
  • suitable solvents include without limitation: sulfolane, polyethylene glycol, isosorbide dimethyl ether, isosorbide, propylene carbonate, poly(ethylene glycol) dimethyl ether, adipic acid, diethylene glycol, 1 ,3-propanediol, glycerol, gamma-butyrolactone, and gamma-valerolactone.
  • the water-miscible organic solvent is sulfolane.
  • the solvent is PEG 4600, PEG 10000, PEG 1000, polyethylene glycol, gamma-valerolactone, gamma- butyrolactone, isosorbide dimethyl ether, propylene carbonate, adipic acid, poly(ethylene glycol)dimethyl ether, isosorbide, CerenolTM 270 (poly(1 ,3- propanediol), CerenolTM 1000 ((poly(1 ,3-propanediol)), or diethylene glycol.
  • a process is provided comprising the steps of:
  • reactor comprising a reactive distillation column comprising an upper, rectifying section; a lower, stripping section; and a reboiler, wherein the stripping section or the reboiler is a reaction zone containing a solid acid catalyst,
  • the temperature of the reaction mixture is between about 90°C and about 250°C
  • reaction mixture is held at a pressure between about atmospheric pressure and about 3.87 x 10 6 Pa, and (iii) the sugar solution and catalyst are in contact for a time sufficient to produce water and furfural;
  • the combination of high yield and high conversion is desirable for a most efficient and economical process. In the event that a higher selectivity can be obtained at lower concversion, it may be desirable to run at lower conversion, for example 50-80%, and recycle unreacted sugars back to the reaction zone.
  • the process described above produces furfural from solutions of C5 and/or C6 sugars at both high yield and medium to high conversion, without production of insoluble char in the reaction vessel.
  • the furfural yield is in the range of 40-95% or 60-95% or 65-85%.
  • the conversion of sugar to furfural is in the range of 10-100% or 25-100% or 50-100%.
  • the furfural selectivity is in the range of 40-95% or 60-95% or 65-85%
  • Solid acid catalysts have the advantage of not inducing corrosion in the reaction vessels and other process equipment as compared to liquid acid catalysts.
  • compositions comprising, “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or.
  • a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • the term "invention” or “present invention is a non- limiting term and is not intended to refer to any single variation of the particular invention but encompasses all possible variations described in the specification and recited in the claims.
  • the term "about" modifying the quantity of an ingredient or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making
  • Amberlyst® A70 ion exchange resin was manufactured by Dow
  • Xylose, sulfolane, and dimethylsulfoxide were obtained from Sigma- Aldrich Corporation (St. Louis, MO).
  • Zeolite CP7146 used in Example 3 was obtained from Zeolyst International (Conshohocken, PA)
  • the following soid acid catalysts were obtained from Zeolyst International, Conshohocken, PA, or Conteka B. V. (now Zeolyst, International):
  • AmberlystTM 70 was obtained from Dow Chemical Company( Midland, Ml). AmberlystTM 70 is a macroreticular polymer based catalyst primarily comprising sulfonic-acid-functionalized styrene divinylbenzene
  • the solid acid catalyst 13% Nafion ® on silica (SiO 2 ) was obtained from E. I. du Pont de Nemours and Co. (Wilmington, DE).
  • Nafion ® is a registered trademark of E. I. du Pont de Nemours and
  • PROPHETIC EXAMPLE 1 Conversion via Reactive Distillation of Sugar Solution to Furfural with Solid Acid Catalyst A solution of 10 wt% pentose and pentose oligomers with less than
  • 1 wt% hexose and hexose oligomers is fed to a distillation column.
  • the 1 inch (2.54 cm) diameter stainless steel distillation column has 5 trays located above the feed point and 5 trays with enhanced hold up time per tray loaded with AmberlystTM A70 sulfonic acid ion exchange resin beads.
  • the column is refluxing water upon startup at a temperature of 180°C and pressure of 120 psi (0.827 MPa).
  • Feed is begun at 5 grams per minute above the stripping/reactive section of the column, and the material reacts to produce a material comprising furfural, water and high boilers
  • the reboiler of the distillation column is level controlled with a flow out of 1 .33 grams per minute analyzing at, for example, 0.5 wt% in pentose and hexose and oligomers, 8.3 wt% in humins and other high boilers (present primarily as solids), and about 91 .2 wt% water. Furfural is not detectable in the reboiler material.
  • the distillate is removed at a rate of 3.67 grams per minute at the top of the column with a composition of, for example, 7.0 wt% furfural, the remainder comprising primarily water.
  • the steady state yield to furfural from pentose and pentose oligomers of the process as run in this example would be 70.0 %.
  • Zeolites having different frameworks were used as catalysts as indicated in Table 1 , including faujasite (FAU), zeolite beta (BEA), ZSM-5 (MFI), and mordenite (MOR). All zeolites were calcined at 550°C for 8 h in air prior to use. All of the zeolites are in proton form after calcining except for CBV 10A which was in the sodium form.
  • the polymer catalysts AmberlystTM 70 and 13% Nafion on silica were used as obtained.
  • the flask was lowered into the hot oil to bring the reactor contents to the desired internal temperature and addition of the xylose solution from the syringe using the syringe pump was started.
  • the xylose solution was added at a constant rate and the temperature of the reaction mixture was maintained as constant as possible by slight adjustments to the height of the apparatus in the oil bath.
  • the syringe pump was stopped, the tube was pulled from the reaction flask and the apparatus was raised out of the oil bath.
  • the amount of distillate collected was weighed, a measured amount of the internal standard (dimethylsulfoxide) was added for analytical purposes, and the solution was then mixed until it was homogeneous (additional water was added to dilute the mixture if necessary).
  • the reaction flask was removed from the distillation head and was weighed to determine the mass of material in the flask. A measured amount of internal standard (dimethylsulfoxide) was added to the reaction flask and it was mixed well. The contents of the reaction flask were then transferred to a 50 ml_ centrifuge tube. The distillation head was washed with water and the washes were also used to wash the reboiler.
  • the catalysts that gave the highest yields in these experiments were the beta zeolites, particularly catalysts derived from calcinations of CP814C and CP814E. AmberlystTM 70 also gave high yields and conversion.
  • the reactive distillation unit used here consisted of a jacketed glass tube reactor.
  • the glass reactor present inside the outer jacket, had a length of 8.5 inch (21 .6 cm) and an outer diameter of 1 .38" (3.5 cm).
  • the glass reactor was filled with about 10 gm of beta-zeolite catalyst
  • the catalyst was provided by Zeolyst International (product # CP814E, lot # 2200-42, SiO 2 :AI 2 O 3 mol ratio 25:1 , Si: Al ratio 12.5:1 , surface area 680 m 2 /g) in a powder form.
  • the powder was calcined in air at 550 °C for about 8 h.
  • the calcined powder was then charged in stainless steel die and pressed at 1 .82 x 10 5 kPa using a Preco hydraulic press.
  • the resulting slugs (25 mm diameter x -25 mm thick) were crushed and sieved to produce granules of -12/+14 mesh (1 .40 mm - 1 .70 mm).
  • These beta-zeolite granules were used as catalyst in this study.
  • the catalyst bed was positioned in the middle of the glass reactor and the rest of the reactor was packed with glass beads (Chemglass Inc. Catalog No. CG-1 101 -01 ) of 2 mm diameter, placed above (stripping section) and below the reactor. A stainless steel mesh was placed below the glass beads (in the bottom portion of the reactor) to support the catalyst bed and glass beads. A thermocouple was used to monitor the catalyst bed temperature and was placed insidea thermowell located in middle of the glass reactor.
  • the inner glass reactor was surrounded by an outer jacket (Outer diameter: 5.7 cm) through which an oil (Lauda Brinkmann LZB 222, THERM240) was circulated continuously in order to maintain the reactor temperature at a desired value.
  • a high temperature oil bath (Neslab Exacal EX-250HT) was used to control the oil temperature, and the flow rate of the oil through the outer jacket of the reactor.
  • the oil bath temperature was kept at 195-200 °C so that an average temperature of about 175 °C was maintained in the catalyst bed (placed inside the glass reactor).
  • a distillation head including a condenser was attached to the top of the reactor, where a temperature of 15 °C was maintained constant with a continuous circulation of a coolant mixture containing 50 wt.% ethylene glycol (VWR, BDH 2033) and 50 wt. % water.
  • a circulation bath (Lauda Ecoline Staredition RE1 12) was used for this purpose.
  • the reactor was connected to a continuous flow system capable of precisely controlled liquid feed delivered by an HPLC Pump (Lab Alliance Series I).
  • HPLC Pump Lab Alliance Series I
  • a feed consisting of 5 wt.% xylose (Sigma Aldrich, X1500) in a mixture that contained 15 wt% water and 80 wt.% high boiling solvent, sulfolane (Sigma Aldrich, T22209), was loaded to the HPLC pump.
  • the feed rate (to the reactor) was maintained constant at 0.75 ml/min.
  • a glass container filled with the above feed solution was kept on a balance to continuously monitor the amount of feed introduced to the reactor.
  • the feed was introduced above the catalyst bed at the specified feed rate.
  • the stripping section (containing glass beads) also aided in uniformly distributing the liquid feed to the catalyst bed.
  • the feed mixture reacted on the catalyst bed to form furfural, which was the desired product of this reaction along with some high boilers and water.
  • Water and furfural being low boilers, formed vapors and travelled to the distillation head containing the condenser.
  • the vapors were then condensed and were collected in a glass flask (250 ml, Chemglass Inc., Catalog No. CG-1559- 10) surrounded by an ice bath (for the purpose of providing a low temperature atmosphere for further cooling the vapors).
  • One of the necks of this flask was sealed with a rubber septum.
  • a 10 ml plastic syringe with Luer lock tip (BD, REF 309604) was connected to a needle which was pierced through the septum. This syringe was used to collect the distillate sample at regular intervals. The reaction was carried out under
  • the unreacted feed (containing xylose and sulfolane) along with high boilers (humins) formed during the reaction was collected in the reboiler located below the reactor.
  • the reboiler was a 3-necked round-bottom glass flask (250 ml, Chemglass Inc., Catalog No. CG-1530-01 ).
  • a 20 ml plastic syringe with Luer lock tip (BD 20 ml syringe REF 309661 ) was connected to a needle, which was pierced through a rubber septum used to seal one of the necks of the round bottom flask. This syringe was used to collect the reboiler sample at regular intervals. Another neck of the round bottom flask was sealed with a rubber septum and a 1/8" Teflon tubing
  • the samples (both distillate and reboiler) were collected in glass vials and weighed.
  • the reboiler samples collected during the reactive distillation run were analyzed by HPLC on a calibrated Biorad Aminex HPX-87H column using a refractive index detector.
  • a measured amount of the internal standard (dimethylsulfoxide) was added for analytical purposes, and the solution was then mixed until it was homogeneous.
  • the detected amounts of xylose and furfural were recorded.
  • the distillate samples were analyzed by an Agilent 6890GC equipped with a 30 meter DB-1 capillary column (J&W 125-1032). 5 microliters of solution was injected into an injector port set to 175 °C with a split ratio of 5:1 , a total helium flow of 55.2 ml/min, a split flow of 44.4 ml/min and a head pressure of 6.25 psi.
  • the oven temperature was held at 50 °C for 2 min and then it was increased to 1 10 °C at 10 °C/min followed by a second increase to 240 °C at 20 °C/min.
  • a flame ionization detector set at 250 °C was used to detect signal.
  • a measured amount of the internal standard (1 -pentanol) was added for the GC analysis. The detected amounts of furfural were recorded. Results obtained during the dehydration of xylose to furfural using beta-zeolite catalyst have been presented in Table 2.
  • Table 2 shows the result of a 3-day run (140 min on day 1 , 390 min on day 2 and 150 min on day 3) carried out for about 12 hours (under identical conditions of temperature, flow rate, etc.). The data are reported for the steady state conditions achieved in the reactor. As seen in the table 2, the beta-zeolite catalyst resulted in xylose conversion of greater than 95%. The furfural yields (and hence the selectivity towards furfural) were nearly steady over the entire run.
  • Table 2 Dehydration of Xylose to Furfural via Reactive Distillation Using beta-Zeolite Catalyst and a Feed Containing 5 wt.% Xylose, 15 wt.% Water and 80 wt.% Sulfolane.
  • H-mordenite catalyst used here was provided by Zeolyst International (Product # CBV21A, lot # 2200-77, SiO 2 /AI 2 O 3 mol ratio 20:1 , Si:AI ratio 10:1 , surface area 500 m 2 /g) in a powder form.
  • the powder catalyst was then calcined and converted into granules using a similar technique described earlier for the beta-zeolite catalyst.
  • Example 3 gives an example of production of furfural with reactive distillation utilizing a high boiling solvent resulting in a higher yield than seen in the Comparative Examples.
  • Example 4 shows an even higher yield of furfural than seen in Example 3.
  • Comparative Example A described below gives a comparison run using a fixed bed reactor with an acidic ion exchange resin and no high boiling solvent with a much poorer resulting yield and selectivity to furfural.
  • Comparative Example B described below gives a comparison with a fixed bed reactor using a beta Zeolite catalyst and a high boiling solvent, similar to that used in example 3, with a worse result for yield.
  • COMPARATIVE EXAMPLE A Lab-scale Continuous Process: Fixed Bed Reactor with Aqueous Xylose Feed and Strongly Acidic Ion Exchange Resin Catalyst.
  • a 5 inch (12.7 cm) long, 1 ⁇ 2" (1 .27 cm) outer diameter of 316 stainless steel tubing (Swagelock Corporation) was used as a fixed bed reactor.
  • the catalyst bed was supported by a 3/8" (0.952 cm) steel tube at the bottom of the upflow arrangement, with a stainless mesh supported by this tube as bed support for the catalyst.
  • the reactor tube was loaded with 3 cm 3 of AmberlystTM A70 ion exchange resin.
  • the reactor was then connected to a continuous flow system capable of precisely controlled liquid feed delivered by an ISCO D-500 Syringe Pump (Teledyne ISCO, Lincoln Kansas, USA).
  • the reactor was installed within a tube furnace which allowed temperature control of the catalyst bed as read by an internal 1/16" (15.9 mm) stainless steel thermocouple.
  • the flow exiting the reactor was then pressure controlled by a Swagelock backpressure regulator capable of up to 1000 psig (6.89 MPa-g) at the chosen liquid flows.
  • the product from the regulator was then collected in sample vials for analysis by HPLC.
  • Example 2 The apparatus of Example 2 was used with a high boiling water- miscible solvent.
  • Sulfolane in addition to being high boiling, is an excellent solvent for biomass and humins (by-products from furfural synthesis). It is hoped that use of such a solvent will increase the lifetime of a solid acid catalyst used for production of furfural from xylose.
  • the feed was 4 wt% xylose in a mixture that contained 10 wt% water and 86 wt% sulfolane, loaded to the ISCO pump.
  • CP 7146 Zeolyst International
  • CP 814E Zeolyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

Furfural is produced by contacting a feedstock solution containing C5 sugar and/or C6 sugar with a solid acid catalyst using reactive distillation. Both high yield and high conversion are obtained, without production of insoluble char in the reaction vessel. Degradation of furfural is minimized by its low residence time in contact with the solid acid catalyst. Higher catalyst lifetime can be achieved because the catalyst is continually washed with the refluxing aqueous solution and not sitting in high-boiling byproducts like humins, which are known to be deleterious to catalyst lifetime.

Description

TITLE
PROCESS FOR THE PRODUCTION OF FURFURAL
This application claims the benefit under 35 U.S.C. §1 19(e) of U.S. Provisional Application No. 61/580,717, filed December 28, 201 1 , which is herein incorporated by reference.
FIELD OF THE INVENTION
A method for the production of furfural and related compounds from sugar streams is provided.
BACKGROUND OF THE INVENTION
Furfural and related compounds, such as hydroxymethylfurfural (HMF), are useful precursors and starting materials for industrial chemicals for use as pharmaceuticals, herbicides, stabilizers, and polymers. The current furfural manufacturing process utilizes biomass such as corn cob and sugar cane bagasse as a raw material feed stock for obtaining xylose or hemicellulose.
The hemicellulose is hydrolyzed under acidic conditions to its monomer sugars, such as glucose, fructose, xylose, mannose, galactose, rhamnose, and arabinose. Xylose, which is a pentose (i.e., a "C5 sugar") is the sugar present in the largest amount. In a similar aqueous acidic environment, the C5 sugars are subsequently dehydrated and cyclized to furfural.
A major difficulty with known methods for dehydration of sugars is the formation of undesirable resinous material that not only leads to yield loss but also leads to fouling of exposed reactor surface and negatively impacts heat transfer characteristics. Further, the use of solid acid catalyst could also lead to coking issues.
A review by R. Karinen et al. {ChemSusChem 4 (201 1 ), pp. 1002 - 1016) includes several commonly used methods of producing furfural generally as described above. All of those methods involve use of a soluble inorganic acid catalyst, such as sulfuric, phosphoric, or
hydrochloric acid. These acids are difficult to separate from the reaction medium or product stream. Low yields can result from formation of undesirable byproducts. Further, their use can require increased capital costs because of associated corrosion and environmental emission issues.
There remains a need for a process to produce furfural and related compounds from sugars at both high yield and high conversion.
SUMMARY OF THE INVENTION
In an aspect of the invention, there is a process comprising:
(a) providing a reactive distillation column comprising a top, a
bottom, a reaction zone in between the top and the bottom, and a solid acid catalyst disposed in the reaction zone;
(b) bringing a feedstock solution into contact with the solid acid catalyst for a residence time sufficient to produce a mixture of water and furfural, wherein the feedstock solution comprises C5 sugar, C6 sugar or a mixture thereof, and the reaction zone is at a temperature in the range of 90-250°C and a pressure in the range of 0.1 -3.87 MPa;
(c) removing the mixture of water and furfural from the top of the reactive distillation column; and
(d) collecting water, unreacted sugars and nonvolatile byproducts from the bottom of the reactive distillation column.
In an aspect, the process further comprises feeding a water-miscible organic solvent to the reaction zone. In another aspect, the feedstock solution further comprises a water- miscible organic solvent. In another aspect, there is a process comprising the steps of:
(a) providing a reactor comprising a reactive distillation column comprising an upper, rectifying section; a lower, stripping section; and a reboiler, wherein the stripping section or the reboiler is a reaction zone containing a solid acid catalyst;
(b) continuously feeding a solution comprising C5 sugar, Ce sugar or a mixture thereof to the column at a location between the rectifying section and the stripping section, allowing the solution to flow into the reaction zone into contact with the solid acid catalyst, thereby forming a reaction mixture, wherein
(i) the temperature of the reaction mixture is between about 90°C and about 250°C
(ii) the reaction mixture is held at a pressure between about atmospheric pressure and about 3.87 x 106 Pa, and (iii) the sugar solution and catalyst are in contact for a time sufficient to produce water and furfural;
(c) drawing off a mixture of furfural and water at the top of the column;
(d) collecting water, unreacted sugars, and nonvolatile byproducts in the reboiler;
(e) removing nonvolatile byproducts from the reboiler; and
(f) removing the water and unreacted sugars from the reboiler for further use or disposal.
BRIEF DESCRIPTION OF THE DRAWINGS Various features and/or embodiments of this invention are illustrated in drawings as described below. These features and/or embodiments are representative only, and the selection of these features and/or embodiments for inclusion in the drawings should not be
interpreted as an indication that subject matter not included in the drawings is not suitable for practicing the invention, or that subject matter not included in the drawings is excluded from the scope of the appended claims and equivalents thereof.
Figure 1 is a schematic illustration of an exemplary reactor configuration used in the production of furfural in accordance with various embodiments of the present invention.
DETAILED DESCRIPTION
Definitions
As used herein, the term "sugar" includes monosaccharides, disaccharides, and oligosaccharides. Monosaccharides, or "simple sugars," are aldehyde or ketone derivatives of straight-chain polyhydroxy alcohols containing at least three carbon atoms. A pentose is a
monosaccharide having five carbon atoms; some examples are xylose, arabinose, lyxose and ribose. A hexose is a monosaccharide having six carbon atoms; some examples are glucose and fructose. Disaccharide molecules (e.g., sucrose, lactose, fructose, and maltose) consist of two covalently linked monosaccharide units. As used herein, "oligosaccharide" molecules consist of about 3 to about 20 covalently linked
monosaccharide units. As used herein, the term "Cn sugar" includes monosaccharides having n carbon atoms; disaccharides comprising monosaccharide units having n carbon atoms; and oligosaccharides comprising monosaccharide units having n carbon atoms. Thus, "C5 sugar" includes pentoses, disaccharides comprising pentose units, and oligosaccharides comprising pentose units.
As used herein, the term "hemicellulose" refers to a polymer comprising C5 and C6 monosaccharide units. Hemicellulose consists of short, highly branched chains of sugars. In contrast to cellulose, which is a polymer of only glucose, a hemicellulose is a polymer of five different sugars. It contains five-carbon sugars (usually D-xylose and L-arabinose) and six-carbon sugars (D-galactose, D-glucose, and D- mannose, fructose). Hemicellulose can also contain uronic acid, sugars in which the terminal carbon's hydroxyl group has been
oxidized to a carboxylic acid, such as, D-glucuronic acid, 4-O-methyl- D-glucuronic acid, and D-galacturonic acid. The sugars are partially acetylated. Typically the acetyl content is 2 to 3% by weight of the total weight of hemicellulose. Xylose is typically the sugar monomer present in hemicellulose in the largest amount.
As used herein, the term "solid acid catalyst" refers to any solid material containing Bronsted and/or Lewis acid sites, and which is substantially undissolved by the reaction medium under ambient conditions.
As used herein, the term "nonvolatile byproduct" denotes a reaction byproduct that either has a boiling point at one atmospheric pressure greater than the boiling point of the distilled product(s), or is a nonvolatile solid.
As used herein, the term "heteropolyacid" denotes an oxygen- containing acid with P, As, Si, or B as a central atom which is connected via oxygen bridges to W, Mo or V. Some examples are phosphotungstic acid, molybdophosphoric acid. As used herein, the term "high boiling" denotes a solvent having a boiling point above about 100°C at one atmosphere.
As used herein the term "water-miscible organic solvent" refers to an organic solvent that can form a monophasic solution with water at the temperature at which the reaction is carried out. As used herein the term "humin(s)" refers to dark, amorphous byproduct(s) resulting from acid induced sugar and furfural degradation.
As used herein, the term "selectivity" refers to the moles of furfural produced, divided by the moles of xylose transformed to products over a particular time period. In an embodiment, there is a process for the production of furfural comprising providing a reactive distillation column comprising a top, a bottom, a reaction zone in between the top and the bottom, and a solid acid catalyst disposed in the reaction zone. Figure 1 shows a schematic illustration of an exemplary reactor configuration comprising a reactive distillation column 10 comprising a top 11 , a bottom 12, a reaction zone 20 in between the top 11 and the bottom 12, and a solid acid catalyst 2 disposed in the reaction zone 20.
The solid acid catalyst is a solid acid having the thermal stability required to survive reaction conditions. The solid acid catalyst may be supported on at least one catalyst support. Examples of suitable solid acids include without limitation the following categories: 1 ) heterogeneous heteropolyacids (HPAs) and their salts, 2) natural or synthetic clay minerals, such as those containing alumina and/or silica (including zeolites), 3) cation exchange resins, 4) metal oxides, 5) mixed metal oxides, 6) metal salts such as metal sulfides, metal sulfates, metal sulfonates, metal nitrates, metal phosphates, metal phosphonates, metal molybdates, metal tungstates, metal borates, and 7) combinations of any members of any of these categories. The metal components of categories 4 to 6 may be selected from elements from Groups 1 through 12 of the Periodic Table of the Elements, as well as aluminum, chromium, tin, titanium, and zirconium. Examples include, without limitation, sulfated zirconia and sulfated titania.
Suitable HPAs include compounds of the general formula XaMbOc q", where X is a heteroatom such as phosphorus, silicon, boron, aluminum, germanium, titanium, zirconium, cerium, cobalt or chromium, M is at least one transition metal such as tungsten, molybdenum, niobium, vanadium, or tantalum, and q, a, b, and c are individually selected whole numbers or fractions thereof. Nonlimiting examples of salts of HPAs are lithium, sodium, potassium, cesium, magnesium, barium, copper, gold and gallium, and onium salts such as ammonia. Methods for preparing HPAs are well known in the art and are described, for example, in G. J.
Hutchings, CP. Nicolaides and M.S. Scurrel, Catal Today (1994) p 23; selected HPAs are also available commercially, for example, through Sigma-Aldrich Corp. (St. Louis, Mo.). Examples of HPAs suitable for the disclosed process include, but are not limited to, tungstosilicic acid
(H4[SivVi2O4o]-xH2O), tungstophosphoric acid (H3[PWi2O40]-xH2O), molybdophosphoric acid (H3[PMoi2O4o]-xH2O), molybdosilicic acid
(H4[SiMoi2O4o]-xH2O), vanadotungstosilicic acid (H4+n[SiVnWi2- nO40]-xH2O), vanadotungstophosphoric acid (H3+n[PVnW12-nO4o]-xH2O), vanadomolybdophosphoric acid (H3+n[PVnMoi2-nO4o]-xH2O),
vanadomolybdosilicic acid (H4+n[SiVnMoi2-nO4o]-xH2O),
molybdotungstosilicic acid (H4[SiMonWi2-nO4o]-xH2O),
molybdotungstophosphoric acid (H3[PMOnW12-nO4o]-xH2O), wherein n in the formulas is an integer from 1 to 1 1 and x is an integer of 1 or more.
Natural clay minerals are well known in the art and include, without limitation, kaolinite, bentonite, attapulgite, montmorillonite and zeolites. In an embodiment, the solid acid catalyst is a cation exchange resin that is a sulfonic-acid-functionalized polymer. Suitable cation exchange resins include, but are not limited to the following: styrene-divinylbenzene copolymer-based strong cation exchange resins such as Amberlyst™ and Dowex® available from Dow Chemicals (Midland, Ml) (for example, Dowex® Monosphere M-31 , Amberlyst 15, Amberlite 120); CG resins available from Resintech, Inc. (West Berlin, N.J.); Lewatit resins such as MonoPlus™ S 100H available from Sybron Chemicals Inc. (Birmingham, N.J.); fluorinated sulfonic acid polymers (these acids are partially or totally fluorinated hydrocarbon polymers containing pendant sulfonic acid groups, which may be partially or totally converted to the salt form) such as
Nafion® perfluorinated sulfonic acid polymer, Nafion® Super Acid Catalyst (a bead-form strongly acidic resin which is a copolymer of
tetrafluoroethylene and perfluoro-3,6-dioxa-4-methyl-7-octene sulfonyl fluoride, converted to either the proton (H+), or the metal salt form) available from DuPont Company (Wilmington, DE).
In an embodiment, the solid acid catalyst is a supported acid catalyst. The support for the solid acid catalyst can be any solid substance that is inert under the reaction conditions including, but not limited to, oxides such as silica, alumina, titania, sulfated titania, and compounds thereof and combinations thereof; barium sulfate; calcium carbonate;
zirconia; carbons, particularly acid washed carbon; and combinations thereof. Acid washed carbon is a carbon that has been washed with an acid, such as nitric acid, sulfuric acid or acetic acid, to remove impurities. The support can be in the form of powder, granules, pellets, or the like. The supported acid catalyst can be prepared by depositing the acid catalyst on the support by any number of methods well known to those skilled in the art of catalysis, such as spraying, soaking or physical mixing, followed by drying, calcination, and if necessary, activation through methods such as reduction or oxidation. The loading of the at least one acid catalyst on the at least one support is is in the range of 0.1 -20 weight based on the combined weights of the at least one acid catalyst and the at least one support. Certain acid catalysts perform better at low loadings such as 0.1 -5 %, whereas other acid catalysts are more likely to be useful at higher loadings such as 10-20%. In an embodiment, the acid catalyst is an unsupported catalyst having 100% acid catalyst with no support such as, pure zeolites and acidic ion exchange resins. Examples of supported solid acid catalysts include, but are not limited to, phosphoric acid on silica, Nafion® perfluorinated sulfonic acid polymer on silica, HPAs on silica, sulfated zirconia, and sulfated titania. In the case of Nafion® on silica, a loading of 12.5% is typical of commercial examples. In another embodiment, the solid acid catalyst comprises
Amberlyst™ 70.
In one embodiment, the solid acid catalyst comprises a Nafion® supported on silica (SiO2).
In one embodiment, the solid acid catalyst comprises natural or synthetic clay minerals, such as those containing alumina and/or silica (including zeolites).
Zeolites suitable for use herein can be generally represented by the following formula M2/nO AI2O3-xSiO2 yH2O wherein M is a cation of valence n, x is greater than or equal to about 2, and y is a number determined by the porosity and the hydration state of the zeolite, generally from about 2 to about 8. In naturally occurring zeolites, M is principally represented by Na, Ca, K, Mg and Ba in proportions usually reflecting their approximate geochemical abundance. The cations M are loosely bound to the structure and can frequently be completely or partially replaced with other cations by conventional ion exchange.
The zeolite framework structure has corner-linked tetrahedra with Al or Si atoms at centers of the tetrahedra and oxygen atoms at the corners. Such tetrahedra are combined in a well-defined repeating structure comprising various combinations of 4-, 6-, 8-, 10-, and 12-membered rings. The resulting framework structure is a pore network of regular channels and cages that is useful for separation. Pore dimensions are determined by the geometry of the aluminosilicate tetrahedra forming the zeolite channels or cages, with nominal openings of about 0.26 nm for 6- member rings, about 0.40 nm for 8-member rings, about 0.55 nm for 10- member rings, and about 0.74 nm for 12-member rings (these numbers assume the ionic radii for oxygen). Zeolites with the largest pores, being 8-member rings, 10-member rings, and 12-member rings, are frequently considered small, medium and large pore zeolites, respectively.
In a zeolite, the term "silicon to aluminum ratio" or, equivalently, "Si/AI ratio" means the ratio of silicon atoms to aluminum atoms. Pore dimensions are critical to the performance of these materials in catalytic and separation applications, since this characteristic determines whether molecules of certain size can enter and exit the zeolite framework.
In practice, it has been observed that very slight decreases in ring dimensions can effectively hinder or block movement of particular molecular species through the zeolite structure. The effective pore dimensions that control access to the interior of the zeolites are
determined not only by the geometric dimensions of the tetrahedra forming the pore opening, but also by the presence or absence of ions in or near the pore. For example, in the case of zeolite type A, access can be restricted by monovalent ions, such as Na+ or K+, which are situated in or near 8-member ring openings as well as 6-member ring openings. Access can be enhanced by divalent ions, such as Ca2+, which are situated only in or near 6-member ring openings. Thus, the potassium and sodium salts of zeolite A exhibit effective pore openings of about 0.3 nm and about 0.4 nm respectively, whereas the calcium salt of zeolite A has an effective pore opening of about 0.5 nm.
The presence or absence of ions in or near the pores, channels and/or cages can also significantly modify the accessible pore volume of the zeolite for sorbing materials. Representative examples of zeolites are (i) small pore zeolites such as NaA (LTA), CaA (LTA), Erionite (ERI), Rho (RHO), ZK-5 (KFI) and chabazite (CHA); (ii) medium pore zeolites such as ZSM-5 (MFI), ZSM-1 1 (MEL), ZSM -22 (TON), and ZSM-48 (*MRE); and (iii) large pore zeolites such as zeolite beta (BEA), faujasite (FAU), mordenite (MOR), zeolite L (LTL), NaX (FAU), NaY (FAU), DA-Y (FAU) and CaY (FAU). The letters in parentheses give the framework structure type of the zeolite. Definitions of zeolite framework types may be found in the following references: http://www.iza-structure.org/, and Baerlocher, McCusker, Olson[" Atlas of Zeolite Framework Types, 6th revised edition, Elsevier, Amsterdam].
Zeolites suitable for use herein include medium or large pore, acidic, hydrophobic zeolites, including without limitation ZSM-5, faujasites, beta, mordenite zeolites or mixtures thereof, having a high silicon to aluminum ratio, such as in the range of 5:1 to 400:1 or 5:1 to 200:1 .
Medium pore zeolites have a framework structure consisting of 10- membered rings with a pore size of about 0.5-0.6 nm. Large pore zeolites have a framework structure consisting of 12-membered rings with a pore size of about 0.65 to about 0.75 nm. Hydrophobic zeolites generally have Si/AI ratios greater than or equal to about 5, and the hydrophobicity generally increases with increasing Si/AI ratios. Other suitable zeolites include without limitation acidic large pore zeolites such as H-Y with Si/AI in the range of about 2.25 to 5.
Zeolites with a high Si/AI ratio can be prepared synthetically, or by modification of high alumina containing zeolites using methods known in the art. These methods include without limitation treatment with SiCI4 or (NH )2SiF6 to replace Al with Si, as well as treatment with steam followed by acid. A SiCI4 treatment is described by Blatter [J. Chem. Ed. 67 (1990) 519]. A (NH4)2SiF6 treatment is described in U.S. Patent 4,503,023.
These treatments are generally very effective at increasing the Si/AI ratio for zeolites such as zeolites Y and mordenite. The presence of aluminum atoms in the frameworks results in hydrophilic sites. On removal of these framework aluminum atoms, water adsorption is seen to decrease and the material becomes more
hydrophobic and generally more organophilic. Hydrophobicity in zeolites is further discussed by Chen [J. Phys. Chem. 80 (1976) 60]. Generally, high Si/AI containing zeolites exhibit higher thermal and acid stability. Acid forms of zeolites can be prepared by a variety of techniques including ammonium exchange followed by calcination or by direct exchange of alkali ions for protons using mineral acids or ion exchangers. Acid sites in zeolites are further discussed in Dwyer, "Zeolite, Structure, Composition and Catalysis" in Chemistry and Industry, April 2, 1984.
Certain types of molecular sieves, of which zeolites are a sub-type, may also be used as the catalytic material in the processes hereof. While zeolites are aluminosilicates, molecular sieves contain other elements in place of aluminum and silicon, but have analogous structures. Large pore, hydrophobic molecular sieves that have similar properties to the preferred zeolites described above are suitable for use herein. Examples of such molecular sieves include without limitation Ti-Beta, B-Beta, and Ga-Beta silicates. Molecular sieves are further discussed in Szostak, Molecular Sieves Principles of Synthesis and Identification, (Van Nostrand Reinhold, NY, 1989).
Referring back to the process for the production of furfural, the process also comprises, as shown in Figure 1 bringing a feedstock solution 1 into contact with the solid acid catalyst 2 for a residence time sufficient to produce a mixture 5 of water 7 and furfural 8 in the reaction zone 20. In an embodiment, the feedstock solution 1 comprises C5 sugar, C6 sugar or a mixture thereof dissolved in water, or a high boiling water- miscible organic solvent, or a mixture thereof. In another embodiment, the reaction zone is at a temperature in the range of 90-250°C and a pressure in the range of 0.1 -3.87 MPa.
The feedstock solution comprises at least one C5 sugar, at least one C6 sugar, or a mixture of at least one C5 sugar and at least one Ce sugar. Examples of suitable C5 sugars, pentoses include without limitation xylose, arabinose, lyxose and ribose. Examples of suitable C6 sugars, hexoses include without limitation glucose, fructose, mannose, and galactose.
In one embodiment, the feedstock solution comprises xylose. In another embodiment, the feedstock solution comprises glucose. In another embodiment, the feedstock solution comprises comprises xylose and glucose.
The total sugar (C5 sugar, Ce sugar, or a mixture thereof) is present in the feedstock solution in the range of 1 - 99 weight % or 0.1 -50 weight % or 5-35 weight % or 5 -10 weight %, based on the total weight of the feedstock solution. In an embodiment, the feedstock solution 1 is an aqueous feedstock solution.
As shown in the Figure 1 , the feedstock solution 1 is added to the distillation column 10 at a location between the rectifying section 16 and the reaction zone 20 at a rate that provides sufficient residence time in the reaction zone 20 (which is also the stripping section) for complete or nearly complete conversion of sugars to furfural. The required residence time is a function of temperature and sugar concentration and is readily determined by one of skill in the art. In an embodiment, the residence time in the reaction zone is in the range of 1-500 min or 1-250 min or 5- 120 min. The feedstock solution 1 flows down through the reaction zone 20 and is converted to a mixture 5 of furfural 8 and water 7 which is then partially vaporized and refluxes as part of the distillation column 10. The temperature of the feedstock solution in the reaction zone 20 is in the range of 90-250 °C or 140-220 °C or 155-200 °C.
The reaction is carried at a pressure between about atmospheric pressure and 3.87 MPa or 0.1-3.4 MPa or 0.1-2.0 MPa. In an
embodiment, the feedstock solution is an aqueous feedstock solution and the reaction is carried at a pressure in the range of 0.5-1 .6 MPa. In another embodiment, the feedstock solution comprises a high boiling water-miscible organic solvent, and the reaction is carried at about atmospheric pressure. The process for the production of furfural further comprises removing the mixture 5 of water and furfural from the top 11 of the reactive distillation column 10 and collecting water and/or solvent unreacted sugars and nonvolatile byproducts into the reboiler 3 from the bottom of the reactive distillation column 10, as shown in Figure 1 .
As the reaction proceeds, a mixture 5 of vapors comprising one or more of furfural, water, acetic acid, acetone, and formic acid are removed from the reaction mixture via reflux through a multistage distillation column 10, condensed, and collected as a solution 5 of furfural and water. The use of staging in the distillation process allows more efficient stripping of furfural away from the acid catalyst solution. This increases furfural yield by driving the reaction toward completion and by minimizing formation of byproducts.
The sugar in the feedstock solution undergoes chemical
transformation to furfural, which, along with water (from the aqueous feedstock and water produced by the reacton), is then drawn at the top 11 of the distillation column 10. This minimizes the residence time of furfural in the acidic environment of the reaction zone 20 and thereby minimizes its degradation. The furfural 8 is separated from the water and purified by any convenient methods known in the art, and the product furfural is removed. The water is either recycled to the source of the feedstock sugar solution or is released from the process.
Reaction byproducts 3, inluding, but not limited to, water, unreacted sugars, and non-volatile byproducts such as humins are collected in the reboiler 15 beneath the distillation column 10, as shown in Figure 1 . The nonvolatile byproducts 4 are removed from the reboiler 15 (e.g., by filtration). The solution 6 of water and unreacted sugars can be disposed of, or at least a portion can be concentrated by evaporation and fed as a stream 6' to be used as feedstock solution 1 , as shown in Figure 1 .
In one embodiment, with reference to Figure 1 , the feedstock solution 1 is fed into the distillation column 10 at a location between the rectifying section 16 of the distillation column 10 and the reaction zone 20, above the solid catalyst 2. The catalyst 2 is included in the bottom, stripping section, which is the reaction zone 20. A mixture 5 of furfural and water (as steam) are drawn off at the top 11 of the column 5. Reaction byproducts 3 such as, water and/or solvent, unreacted sugars, and nonvolatile byproducts (e.g., humins and other higher boiling byproducts) are collected in the reboiler 15. The nonvolatile materials 4 are removed from the reboiler 15. The remaining solution 6 is concentrated by evaporation, with evaporated water vapor removed for disposal or reuse. The concentrated stream 6' is then fed back as the feedstock solution 1.
In an embodiment, the process comprises feeding a high boiling water-miscible organic solvent to the reaction zone 20, which would dissolve water-insoluble, nonvolatile byproducts such as humins. In one embodiment, the high boiling water-miscible organic solvent is added to the feedstock solution before feeding to the reaction zone 20. The nonvolatile byproducts can be removed diluting the remaining contents of the reboiler in a mixing chamber with water or aqueous feedstock solution, thereby precipitating water-insoluble byproducts; and removing the precipitated water-insoluble byproducts, e.g., by filtration or centrifugation and feeding the precipitate-free solution remaining back to the reaction zone 20.
The water-miscible organic solvent has a boiling point higher than about 100°C at atmospheric pressure. Examples of suitable solvents include without limitation: sulfolane, polyethylene glycol, isosorbide dimethyl ether, isosorbide, propylene carbonate, poly(ethylene glycol) dimethyl ether, adipic acid, diethylene glycol, 1 ,3-propanediol, glycerol, gamma-butyrolactone, and gamma-valerolactone.
In one embodiment, the water-miscible organic solvent is sulfolane.
In one embodiment of the invention, the solvent is PEG 4600, PEG 10000, PEG 1000, polyethylene glycol, gamma-valerolactone, gamma- butyrolactone, isosorbide dimethyl ether, propylene carbonate, adipic acid, poly(ethylene glycol)dimethyl ether, isosorbide, Cerenol™ 270 (poly(1 ,3- propanediol), Cerenol™ 1000 ((poly(1 ,3-propanediol)), or diethylene glycol. In one embodiment of the invention disclosed herein, a process is provided comprising the steps of:
(a) providing reactor comprising a reactive distillation column comprising an upper, rectifying section; a lower, stripping section; and a reboiler, wherein the stripping section or the reboiler is a reaction zone containing a solid acid catalyst,
(b) continuously feeding an solution comprising C5 sugar, C6 sugar or a mixture thereof to the column at a location between the rectifying section and the stripping section, allowing the solution to flow into the reaction zone into contact with the solid acid catalyst, thereby forming a reaction mixture, wherein
(i) the temperature of the reaction mixture is between about 90°C and about 250°C
(ii) the reaction mixture is held at a pressure between about atmospheric pressure and about 3.87 x 106 Pa, and (iii) the sugar solution and catalyst are in contact for a time sufficient to produce water and furfural;
(c) drawing off a mixture of furfural and water at the top of the column;
(d) collecting water, unreacted sugars, and nonvolatile byproducts in the reboiler; (e) removing nonvolatile byproducts from the reboiler; and
(f) removing the water and unreacted sugars from the reboiler for further use or disposal.
The combination of high yield and high conversion is desirable for a most efficient and economical process. In the event that a higher selectivity can be obtained at lower concversion, it may be desirable to run at lower conversion, for example 50-80%, and recycle unreacted sugars back to the reaction zone. The process described above produces furfural from solutions of C5 and/or C6 sugars at both high yield and medium to high conversion, without production of insoluble char in the reaction vessel. In an embodiment, the furfural yield is in the range of 40-95% or 60-95% or 65-85%. In another embodiment, the conversion of sugar to furfural is in the range of 10-100% or 25-100% or 50-100%. In an embodiment, the furfural selectivity is in the range of 40-95% or 60-95% or 65-85%
Degradation of furfural is minimized by its low residence time in contact with the solid acid catalyst. Higher catalyst lifetime can be achieved because the catalyst is continually washed with the refluxing solution and not in contact for long periods of time with high-boiling byproducts like humins, which are known to be deleterious to catalyst lifetime. Solid acid catalysts have the advantage of not inducing corrosion in the reaction vessels and other process equipment as compared to liquid acid catalysts.
As used herein, where the indefinite article "a" or "an" is used with respect to a statement or description of the presence of a step in a process of this invention, it is to be understood, unless the statement or description explicitly provides to the contrary, that the use of such indefinite article does not limit the presence of the step in the process to one in number. As used herein, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having," "contains" or "containing," or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present). As used herein, the term "invention" or "present invention is a non- limiting term and is not intended to refer to any single variation of the particular invention but encompasses all possible variations described in the specification and recited in the claims.
As used herein, the term "about" modifying the quantity of an ingredient or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making
concentrates or use solutions in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of the ingredients employed to make the compositions or carry out the methods; and the like. The term "about" also
encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture.
Whether or not modified by the term "about", the claims include
equivalents to the quantities. The term "about" may mean within 10% of the reported numerical value, preferably within 5% of the reported numerical value.
EXAMPLES
The methods described herein are illustrated in the following examples. From the above discussion and these examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
Abbreviations The meaning of abbreviations is as follows: "cm" means centimeter(s), "g" means gram(s), "h" means hour(s), "HPLC" means high pressure liquid chromatography, "m" means meter(s), "min" means minute(s), "mL" means milliliter(s), "mm" means millimeter(s), "MPa" means megapascal(s), "N" means normal, "psi" means pound(s) per square inch, "PTFE" means poly(tetrafluoroethylene), "rpm" means revolutions per minute, "wt%" means weight percent(age), "μί" means microliter(s), and "μηη" means micrometer(s).
Materials
Amberlyst® A70 ion exchange resin was manufactured by Dow
Chemical's Rohm and Haas division (Philadelphia, PA).
Xylose, sulfolane, and dimethylsulfoxide were obtained from Sigma- Aldrich Corporation (St. Louis, MO).
Zeolite CP7146 used in Example 3 was obtained from Zeolyst International (Conshohocken, PA) The following soid acid catalysts were obtained from Zeolyst International, Conshohocken, PA, or Conteka B. V. (now Zeolyst, International):
Product #: CBV 400, CBV 500, CBV 712, CBV 720, CBV 760, CBV 780, CP 814C, CP 814E, CP 81 1 B-200, CP 81 1 C-300, CBV 3020, CBV 5020, CBV 1502, CBV 2802 (now CBV 28014), CBV 10A, CBV 20A, and CBV 30A. The solid acid catalyst S-1 15 (LA) was obtained from Union Carbide Corporation (now UOP, Des Plaines, IL). The solid acid catalyst
Amberlyst™ 70 was obtained from Dow Chemical Company( Midland, Ml). Amberlyst™ 70 is a macroreticular polymer based catalyst primarily comprising sulfonic-acid-functionalized styrene divinylbenzene
copolymers. The solid acid catalyst 13% Nafion® on silica (SiO2) was obtained from E. I. du Pont de Nemours and Co. (Wilmington, DE).
Nafion® is a registered trademark of E. I. du Pont de Nemours and
Company for its perfluorinated sulfonic acid polymer products.
Deionized water was used unless otherwise indicated..
Analytical Methods
For Example 1 (prophetic), Comparative Examples A and B.
Furfural and sugar analysis is done by HPLC. Samples were collected and passed through a 0.2 μιτι syringe filter prior to analysis. The samples were neutralized with calcium carbonate and re-filtered before they were analyzed by high pressure liquid chromatography (HPLC). The HPLC instrument employed was a HP 1 100 Series equipped with Agilent 1200 Series refractive index (Rl) detector and an auto injector (Santa Clara, CA). The analytical method was adapted from an NREL procedure (NREL/TP-510-42623). Separation and quantitation of monomeric sugars (glucose, xylose, and arabinose), and furfural (FF) was performed by injecting the sample (10 μί) on to a Bio-Rad HPX-87P (Bio-Rad, Hercules, CA) column maintained at 85°C. Water was used as the eluant, with a flow-rate of 0.6 mL/min. The reaction products in the eluant were identified with the Rl detector operating at 55°C.
For Examples 2, 3, 4 and Comparative Example C Distillates and reaction flask contents were analyzed on a calibrated Aminex HPX-87H HPLC column (Bio-Rad Company) using a refractive index detector, and the column wash was analyzed via gas
chromatographic analysis using a flame ionization detector and a calibrated 30 m HP-INNOWax GC column (Agilent Technologies).
PROPHETIC EXAMPLE 1 : Conversion via Reactive Distillation of Sugar Solution to Furfural with Solid Acid Catalyst A solution of 10 wt% pentose and pentose oligomers with less than
1 wt% hexose and hexose oligomers is fed to a distillation column. The 1 inch (2.54 cm) diameter stainless steel distillation column has 5 trays located above the feed point and 5 trays with enhanced hold up time per tray loaded with Amberlyst™ A70 sulfonic acid ion exchange resin beads. The column is refluxing water upon startup at a temperature of 180°C and pressure of 120 psi (0.827 MPa). Feed is begun at 5 grams per minute above the stripping/reactive section of the column, and the material reacts to produce a material comprising furfural, water and high boilers The reboiler of the distillation column is level controlled with a flow out of 1 .33 grams per minute analyzing at, for example, 0.5 wt% in pentose and hexose and oligomers, 8.3 wt% in humins and other high boilers (present primarily as solids), and about 91 .2 wt% water. Furfural is not detectable in the reboiler material. The distillate is removed at a rate of 3.67 grams per minute at the top of the column with a composition of, for example, 7.0 wt% furfural, the remainder comprising primarily water. The steady state yield to furfural from pentose and pentose oligomers of the process as run in this example would be 70.0 %.
EXAMPLE 1 : Production of Furfural with Solid Acid Catalysts
Zeolites having different frameworks were used as catalysts as indicated in Table 1 , including faujasite (FAU), zeolite beta (BEA), ZSM-5 (MFI), and mordenite (MOR). All zeolites were calcined at 550°C for 8 h in air prior to use. All of the zeolites are in proton form after calcining except for CBV 10A which was in the sodium form. The polymer catalysts Amberlyst™ 70 and 13% Nafion on silica were used as obtained.
The following amounts and variables were the same for all experiments in this Example: 1 ) solvent was sulfolane, 2) mass of solvent was 5 g, 3) mass of solid catalyst was 0.075 g (1 .5 % of the solvent mass), 4) aqueous xylose solution concentration was 5 wt%, 5) xylose solution addition rate was 0.4 mL/min, 6) stirring rate was approximately 500 rpm, 7) reaction run time was 40 min, 8) average reaction temperature was 170°C, 9) oil bath temperature was 250°C, and 10) the internal standard added for analysis was dimethylsulfoxide.
The conversion of xylose to furfural was carried out in a 10 mL three-necked round bottomed flask (Chemglass, Inc. Life Sciences
Catalog No. PN CG-1507-03) containing a PTFE-coated stirring bar (VWR Company Catalog No. 58949-010), a thermowell, a threaded adapter with cap (Chemglass, Inc. Life Sciences Catalog No. CG-350-01 ), and a PTFE- lined silicon septum (National Scientific Catalog No. B7995-15). The flask was connected to a vacuum-jacketed Vigreux distillation column
(Chemglass, Inc. Life Sciences Catalog No. CG-1242) loaded with 8.0 g of 4 mm diameter glass beads (Chemglass, Inc. Life Sciences Catalog No. CG-1 101 -03). The beads were held in place at the bottom of the distillation column with a piece of 1/16" diameter thick fluoropolymer film that was approximately 3/4" wide by 3" long which was either wound up into a coil or folded so that it contained pleats. A 20 mL plastic syringe with Luer lock tip (Chemglass, Inc. Life Sciences Catalog No. PN 309661 ) was connected to 1/16" fluoropolymer tubing which was pierced through the septum. Addition of the xylose solution from the syringe to the reaction vessel was controlled with a digital syringe pump. The reactions were carried out under an atmosphere of nitrogen.
To the reaction flask were added 5 g of solvent and 0.075 g of solid acid catalyst. The syringe on the syringe pump was filled with an aqueous xylose solution which was weighed prior to addition, and then reweighed after the completion of addition to determine the total amount of xylose solution added to the reaction mixture. After the flask was loaded, it was attached to the distillation column and one end of the 1/16" diameter fluoropolymer tube was attached to the syringe containing the aqueous xylose solution and the other end was inserted through the septum and into the reactor. The flask was lowered into the hot oil to bring the reactor contents to the desired internal temperature and addition of the xylose solution from the syringe using the syringe pump was started. The xylose solution was added at a constant rate and the temperature of the reaction mixture was maintained as constant as possible by slight adjustments to the height of the apparatus in the oil bath. At the end of the reaction, the syringe pump was stopped, the tube was pulled from the reaction flask and the apparatus was raised out of the oil bath.
The amount of distillate collected was weighed, a measured amount of the internal standard (dimethylsulfoxide) was added for analytical purposes, and the solution was then mixed until it was homogeneous (additional water was added to dilute the mixture if necessary). The reaction flask was removed from the distillation head and was weighed to determine the mass of material in the flask. A measured amount of internal standard (dimethylsulfoxide) was added to the reaction flask and it was mixed well. The contents of the reaction flask were then transferred to a 50 ml_ centrifuge tube. The distillation head was washed with water and the washes were also used to wash the reboiler. All the washes were combined in the 50 ml_ centrifuge tube, and solids were centrifuged to the bottom of the tube using the supernatant for analysis. The distillate, reaction flask contents, and the washes were then analyzed by HPLC on a calibrated Biorad Aminex HPX-87H column using a refractive index detector. An aqueous 0.01 N H2SO4 isocratic mobile phase flowing at 0.6 mL/min through a column heated to 65°C and a refractive index detector heated to 55°C. The detected amounts of xylose and furfural were recorded. Results for different solid acid catalysts are presented in Table 1 .
Table 1. Run Original Catalyst Mole Mole Surface Xylose Selectivity Yield of Catalyst Type or Ratio Ratio Area Conto Furfural Furfural Source Zeolite Si/Al in (AI/AI+Si) (m2/g) version (%) (%)
Framework Catalyst in (%)
Type Catalyst
1.1 CP814E BEA 12.5 0.074 680 99 74 73
1.2 CP814 BEA 19 0.05 710 97 74 72 c
1.3 CP BEA 100 0.01 94 67 63
811 B-
200
1.4 Amber- polymer 93 63 59 lyst™
70
1.5 CP BEA 150 0.007 620 91 62 57 811 C- 300
1.6 CBV FAU 15 0.063 780 89 57 51 720
1.7 CBV MFI 15 0.063 405 92 55 51 3020
1.8 CBV MOR 15 0.063 600 91 55 50 30A
1.9 CBV FAU 40 0.024 780 90 55 49 780
.10 CBV FAU 30 0.032 720 92 52 48 760
.1 1 CBV MOR 10 0.091 500 91 53 48 20A
.12 CBV FAU 6 0.143 730 87 47 41 712
.13 CBV MFI 75 0.013 420 86 46 40 1502
.14 13% polymer 91 44 40
Nafion/
Si02
.15 CBV MFI 140 0.007 41 1 88 43 38 2802
.16 CBV MFI 25 0.038 425 87 42 37 5020
.17 CBV FAU 2.60 0.278 750 84 29 24 500
,18 CBV FAU 2.55 0.282 730 83 25 20 400
The catalysts that gave the highest yields in these experiments were the beta zeolites, particularly catalysts derived from calcinations of CP814C and CP814E. Amberlyst™ 70 also gave high yields and conversion.
EXAMPLE 2: Dehydration of Xylose to Furfural via Reactive
Distillation with Solid Acid Catalyst
The reactive distillation unit used here consisted of a jacketed glass tube reactor. The glass reactor, present inside the outer jacket, had a length of 8.5 inch (21 .6 cm) and an outer diameter of 1 .38" (3.5 cm). The glass reactor was filled with about 10 gm of beta-zeolite catalyst
(granules). The catalyst was provided by Zeolyst International (product # CP814E, lot # 2200-42, SiO2:AI2O3 mol ratio 25:1 , Si: Al ratio 12.5:1 , surface area 680 m2/g) in a powder form. The powder was calcined in air at 550 °C for about 8 h. The calcined powder was then charged in stainless steel die and pressed at 1 .82 x 105 kPa using a Preco hydraulic press. The resulting slugs (25 mm diameter x -25 mm thick) were crushed and sieved to produce granules of -12/+14 mesh (1 .40 mm - 1 .70 mm). These beta-zeolite granules were used as catalyst in this study.
The catalyst bed was positioned in the middle of the glass reactor and the rest of the reactor was packed with glass beads (Chemglass Inc. Catalog No. CG-1 101 -01 ) of 2 mm diameter, placed above (stripping section) and below the reactor. A stainless steel mesh was placed below the glass beads (in the bottom portion of the reactor) to support the catalyst bed and glass beads. A thermocouple was used to monitor the catalyst bed temperature and was placed insidea thermowell located in middle of the glass reactor.
The inner glass reactor was surrounded by an outer jacket (Outer diameter: 5.7 cm) through which an oil (Lauda Brinkmann LZB 222, THERM240) was circulated continuously in order to maintain the reactor temperature at a desired value. A high temperature oil bath (Neslab Exacal EX-250HT) was used to control the oil temperature, and the flow rate of the oil through the outer jacket of the reactor. The oil bath temperature was kept at 195-200 °C so that an average temperature of about 175 °C was maintained in the catalyst bed (placed inside the glass reactor).
A distillation head including a condenser was attached to the top of the reactor, where a temperature of 15 °C was maintained constant with a continuous circulation of a coolant mixture containing 50 wt.% ethylene glycol (VWR, BDH 2033) and 50 wt. % water. A circulation bath (Lauda Ecoline Staredition RE1 12) was used for this purpose.
The reactor was connected to a continuous flow system capable of precisely controlled liquid feed delivered by an HPLC Pump (Lab Alliance Series I). In this particular study of catalyst activity and stability for a beta- zeolite catalyst sample, a feed consisting of 5 wt.% xylose (Sigma Aldrich, X1500) in a mixture that contained 15 wt% water and 80 wt.% high boiling solvent, sulfolane (Sigma Aldrich, T22209), was loaded to the HPLC pump. The feed rate (to the reactor) was maintained constant at 0.75 ml/min. A glass container filled with the above feed solution was kept on a balance to continuously monitor the amount of feed introduced to the reactor. The feed was introduced above the catalyst bed at the specified feed rate. The stripping section (containing glass beads) also aided in uniformly distributing the liquid feed to the catalyst bed. The feed mixture reacted on the catalyst bed to form furfural, which was the desired product of this reaction along with some high boilers and water. Water and furfural being low boilers, formed vapors and travelled to the distillation head containing the condenser. The vapors were then condensed and were collected in a glass flask (250 ml, Chemglass Inc., Catalog No. CG-1559- 10) surrounded by an ice bath (for the purpose of providing a low temperature atmosphere for further cooling the vapors). One of the necks of this flask was sealed with a rubber septum. A 10 ml plastic syringe with Luer lock tip (BD, REF 309604) was connected to a needle which was pierced through the septum. This syringe was used to collect the distillate sample at regular intervals. The reaction was carried out under
atmospheric pressure.
The reactive distillation unit was also equipped with a reflux valve, which was closed (reflux ratio = 0), in order to avoid the reaction between furfural (with itself, forming oligomers of furfural) and xylose further resulting in the formation of high boilers, commonly known as humins. The unreacted feed (containing xylose and sulfolane) along with high boilers (humins) formed during the reaction was collected in the reboiler located below the reactor. The reboiler was a 3-necked round-bottom glass flask (250 ml, Chemglass Inc., Catalog No. CG-1530-01 ). A 20 ml plastic syringe with Luer lock tip (BD 20 ml syringe REF 309661 ) was connected to a needle, which was pierced through a rubber septum used to seal one of the necks of the round bottom flask. This syringe was used to collect the reboiler sample at regular intervals. Another neck of the round bottom flask was sealed with a rubber septum and a 1/8" Teflon tubing
(Chemglass Inc., Catalog No. CG-1037-10) was pierced through the septum into the reboiler. This tubing was used to introduce water to the reboiler at a constant rate of 0.50 ml/min maintained with the help of a digital syringe pump (KD Scientific, Model No. KDS KEGATO 270, Catalog No. 78-8270). The reboiler was kept heated at a temperature of 160 °C. With this sufficient high temperature and a continuous input of water in the reboiler, there was a steady formation of steam which traveled up through the catalyst bed and further helped to effectively remove furfural (by forming an azeotrope) from the reaction zone. Thus the steam stripping brings additional advantage of effective furfural separation from the reaction zone. N2 was also introduced in one of the necks of the reboiler, for further removal of furfural from the reaction zone.
The samples (both distillate and reboiler) were collected in glass vials and weighed. The reboiler samples collected during the reactive distillation run were analyzed by HPLC on a calibrated Biorad Aminex HPX-87H column using a refractive index detector. An aqueous 0.01 N H2SO4 isocratic mobile phase flowing at 0.6 ml/min through a column heated to 65°C and a refractive index detector heated to 55 °C. A measured amount of the internal standard (dimethylsulfoxide) was added for analytical purposes, and the solution was then mixed until it was homogeneous. The detected amounts of xylose and furfural were recorded. The distillate samples were analyzed by an Agilent 6890GC equipped with a 30 meter DB-1 capillary column (J&W 125-1032). 5 microliters of solution was injected into an injector port set to 175 °C with a split ratio of 5:1 , a total helium flow of 55.2 ml/min, a split flow of 44.4 ml/min and a head pressure of 6.25 psi. The oven temperature was held at 50 °C for 2 min and then it was increased to 1 10 °C at 10 °C/min followed by a second increase to 240 °C at 20 °C/min. A flame ionization detector set at 250 °C was used to detect signal. A measured amount of the internal standard (1 -pentanol) was added for the GC analysis. The detected amounts of furfural were recorded. Results obtained during the dehydration of xylose to furfural using beta-zeolite catalyst have been presented in Table 2.
Table 2 below shows the result of a 3-day run (140 min on day 1 , 390 min on day 2 and 150 min on day 3) carried out for about 12 hours (under identical conditions of temperature, flow rate, etc.). The data are reported for the steady state conditions achieved in the reactor. As seen in the table 2, the beta-zeolite catalyst resulted in xylose conversion of greater than 95%. The furfural yields (and hence the selectivity towards furfural) were nearly steady over the entire run.
Table 2 - Dehydration of Xylose to Furfural via Reactive Distillation Using beta-Zeolite Catalyst and a Feed Containing 5 wt.% Xylose, 15 wt.% Water and 80 wt.% Sulfolane.
Figure imgf000029_0001
EXAMPLE 3: Xylose Reactive Distillation Using H-Mordenite Catalyst
Above experimental set up (in Example 3) was then used to study the dehydration of xylose to furfural reaction using H-mordenite catalyst. The H-mordenite catalyst used here was provided by Zeolyst International (Product # CBV21A, lot # 2200-77, SiO2/AI2O3 mol ratio 20:1 , Si:AI ratio 10:1 , surface area 500 m2/g) in a powder form. The powder catalyst was then calcined and converted into granules using a similar technique described earlier for the beta-zeolite catalyst. The rest of the experimental conditions were the same as used earlier for the beta-zeolite catalyst (feed composition: 5 wt.% xylose, 15 wt.% water, 80 wt.% sulfolane; feed flow rate = 0.75 ml/min; water folw rate in the pot = 0.50 ml/min; pot temperature = 160 °C, etc.) The reactor temperature was maintained in the range of 175-180 °C. Table 3 summarizes the results for the H- mordenite catalyst.
Table 3 - Dehydration of Xylose to Furfural via Reactive Distillation Using H-mordenite Catalyst and a Feed Containing 5 wt.% Xylose, 15 wt.% Water and 80 wt.% Sulfolane.
Figure imgf000030_0001
Example 3 gives an example of production of furfural with reactive distillation utilizing a high boiling solvent resulting in a higher yield than seen in the Comparative Examples. Example 4 shows an even higher yield of furfural than seen in Example 3.
Comparative Example A described below gives a comparison run using a fixed bed reactor with an acidic ion exchange resin and no high boiling solvent with a much poorer resulting yield and selectivity to furfural. Comparative Example B described below gives a comparison with a fixed bed reactor using a beta Zeolite catalyst and a high boiling solvent, similar to that used in example 3, with a worse result for yield.
COMPARATIVE EXAMPLE A: Lab-scale Continuous Process: Fixed Bed Reactor with Aqueous Xylose Feed and Strongly Acidic Ion Exchange Resin Catalyst. A 5 inch (12.7 cm) long, ½" (1 .27 cm) outer diameter of 316 stainless steel tubing (Swagelock Corporation) was used as a fixed bed reactor. The catalyst bed was supported by a 3/8" (0.952 cm) steel tube at the bottom of the upflow arrangement, with a stainless mesh supported by this tube as bed support for the catalyst. The reactor tube was loaded with 3 cm3 of Amberlyst™ A70 ion exchange resin. The reactor was then connected to a continuous flow system capable of precisely controlled liquid feed delivered by an ISCO D-500 Syringe Pump (Teledyne ISCO, Lincoln Nebraska, USA). The reactor was installed within a tube furnace which allowed temperature control of the catalyst bed as read by an internal 1/16" (15.9 mm) stainless steel thermocouple. The flow exiting the reactor was then pressure controlled by a Swagelock backpressure regulator capable of up to 1000 psig (6.89 MPa-g) at the chosen liquid flows. The product from the regulator was then collected in sample vials for analysis by HPLC.
In the study of catalyst activity and lifetime for Amberlyst™ A70, the feed was 4 wt% xylose in water, loaded to the ISCO pump. The solution was fed through the reactor which was loaded as described previously with 3 cm3 of Amberlyst™ A70 acidic ion exchange resin. The reactor was controlled at 160°C via a tube furnace and the pressure was controlled at 200 psig (1 .38 MPa-g) by a backpressure regulator. Table 4 below shows the result of a continuous run where the flowrate was changed to study the effect of space velocity on the xylose conversion and furfural yield in an upflow fixed bed system. Also shown in the table is a calculated first order rate constant (k) for xylose conversion which permits comparison of catalyst activity as a function of time. As seen in the table, the activity is low from the start of the run, with a dramatic decrease over the course of the experiment. The buildup of humins is believed to be the primary cause of catalyst activity loss. Table 4 - Furfural Production in a Fixed Bed Solid Acid Reactor with Time
Time on Space Xylose Furfural Furfural k %
Stream (h) velocity Conversion Yield Selectivity (1/min) Initial
1/h Activity
2.5 16 40.4% 1 1.6% 28.9% 0.138 100.0% 2.7 16 40.6% 1 1.3% 27.8% 0.139 100.6%
3.8 32 20.2% 7.5% 37.2% 0.120 87.2%
3.9 32 23.1 % 7.1 % 30.9% 0.140 101.6%
22.5 4 30.4% 8.8% 29.0% 0.024 17.6%
23.0 4 31 .5% 8.5% 27.1 % 0.025 18.3%
27.1 8 14.7% 4.8% 32.5% 0.021 15.4%
27.3 8 1 1 .6% 5.0% 43.0% 0.016 1 1.9%
29.3 16 9.4% 2.8% 29.7% 0.026 19.2%
29.5 16 9.6% 2.7% 27.8% 0.027 19.5%
35.2 2 46.6% 12.4% 26.6% 0.021 15.2%
35.4 2 46.4% 12.1 % 26.0% 0.021 15.1 %
COMPARATIVE EXAMPLE B: Lab-scale Continuous Process: Fixed
Bed Reactor with Sulfolane solvent. And Zeolite Beta Catalyst
The apparatus of Example 2 was used with a high boiling water- miscible solvent. Sulfolane, in addition to being high boiling, is an excellent solvent for biomass and humins (by-products from furfural synthesis). It is hoped that use of such a solvent will increase the lifetime of a solid acid catalyst used for production of furfural from xylose.
In the study of catalyst activity and lifetime for a Zeolite Beta sample, the feed was 4 wt% xylose in a mixture that contained 10 wt% water and 86 wt% sulfolane, loaded to the ISCO pump. CP 7146 (Zeolyst International) is an extruded form of ammonium-beta (CP 814E (Zeolyst), Si/AI=12.5). The sample was calcined by heating in air to 525 deg C at a rate of 10 deg C/min, then 2 deg C/min to 540 deg C and finally 1 deg C/min to 550 deg C where the sample was held for 8 hours. 1 .4935 grams of CP 7146 was loaded to the tubular reactor of Comparative Example A.. The reactor was controlled at 160°C via a tube furnace and the pressure was controlled at 200 psig (1 .38 MPa-g) by a backpressure regulator. Table 5 below shows the result of a continuous run where the flowrate was changed to study the effect of space velocity on the xylose conversion and furfural yield in an upflow fixed bed system. Also shown in the table is a calculated first order rate constant (k) for xylose conversion which permits comparison of catalyst activity as a function of time. As seen in the table, the activity is much better in sulfolane solvent than in an aqueous system such as Comparative Example A. There is however a dramatic decrease over the course of the experiment as seen in Comparative Example A The buildup of humins is believed to be the primary cause of catalyst activity loss. The use of sulfolane solvent, which solubilizes humins, apparently does not prevent the deactivation of the catalyst.
Table 5 - Furfural Production in a Fixed Bed Solid Acid Reactor with Time, Sulfolane Solvent with Zeolite Beta Catalyst
Figure imgf000033_0001
Comparative Example C Using an analogous procedure as described in Example 2, the materials derived from S-1 15 (LA) and CBV 10A after calcination were tested as catalysts for production of furfural. The results are presented in Table 5.
Table 5
Figure imgf000034_0001
The catalysts derived from S-1 15 (LA), a zeolite with very low aluminum content, and CBV 10A, a zeolite with sodium cations and few Bronsted acid sites, showed 0% yield of furfural in Run A and Run B. This demonstrated that zeolites with a low number of Bronsted acid sites, or low aluminum content (very high Si/AI ratio, greater than or equal to 400) were not good catalysts for furfural production from C5 and/or C6 sugars.

Claims

CLAIMS What is claimed is:
1 . A process comprising:
(a) providing a reactive distillation column comprising a top, a
bottom, a reaction zone in between the top and the bottom, and a solid acid catalyst disposed in the reaction zone;
(b) bringing a feedstock solution into contact with the solid acid catalyst for a residence time sufficient to produce a mixture of water and furfural, wherein the feedstock solution comprises C5 sugar, C6 sugar or a mixture thereof, and the reaction zone is at a temperature in the range of 90-250°C and a pressure in the range of 0.1 -3.87 MPa;
(c) removing the mixture of water and furfural from the top of the reactive distillation column; and
(d) collecting water, unreacted sugars and nonvolatile byproducts from the bottom of the reactive distillation column in a reboiler.
The process according to claim 1 , wherein the acid catalyst comprises a heterogeneous heteropolyacid, a salt of a heterogeneous
heteropolyacid, a natural or synthetic clay mineral, a cation exchange resin, a metal oxide, a mixed metal oxide , a metal sulfide, a metal sulfate, a metal sulfonate, sulfated titania, sulfated zirconia, a metal nitrate, a metal phosphate, a metal phosphonate, a metal molybdate, a metal tungstate, a metal borate, or a combination of any of these.
The process according to claim 2, wherein the acid catalyst comprises a cation exchange resin that is a sulfonic-acid-functionalized polymer.
The process according to claim 2, wherein the acid catalyst comprises a clay mineral that is a zeolite.
5. The process according to claim 4, wherein the acid catalyst is a medium or large pore, acidic, hydrophobic zeolite.
6. The process according to claim 5, wherein the zeolite comprises ZSM- 5, faujasite, beta zeolite , Y zeolite , mordenite, or a combination of any of these.
7. The process according to claim 1 further comprising:
e. removing water and unreacted sugars from the water,
unreacted sugars and nonvolatile byproducts of step (d); and f. concentrating by evaporation at least a portion of the water and unreacted sugars and using it as feedstock solution in step (b).
8. The process according to claim 1 further comprising separating the furfural from the removed water and furfural of step (c).
9. The process according to claim 1 wherein the combined concentration of C5 sugar and/or Ce sugar in the feedstock solution is in the range of 1 -99 weight percent based on the total weight of the feedstock solution.
10. The process according to claim 9 wherein the combined concentration of C5 sugar and/or Ce sugar in the feedstock solution is in the range of 5-35 weight percent based on the total weight of the feedstock solution.
1 1 .The process according to claim 1 wherein the feedstock solution
comprises xylose, glucose, or a mixture thereof.
12 The process according to claim 1 , wherein the feedstock further
comprises a water-miscible organic solvent.
13. The process according to claim 1 , further comprising a steam-stripping step, comprising feeding water or steam to the reaction zone from the bottom of the reactive distillation column.
14. The process of claim 1 further comprising the steps of:
h) diluting at least a portion of the contents of the reboiler with water or with the feedstock solution, thereby precipitating water-insoluble byproducts;
i) removing the byproducts precipitated in step h); and
j) feeding the precipitate-free solution remaining after step i) back to the reaction zone.
15. A process comprising the steps of:
(a) providing a reactor comprising a reactive distillation column comprising an upper, rectifying section; a lower, stripping section; and a reboiler, wherein the stripping section or the reboiler is a reaction zone containing a solid acid catalyst,
(b) continuously feeding a feedstock solution comprising C5 sugar, C6 sugar or a mixture thereof to the column at a location between the rectifying section and the stripping section, allowing the solution to flow into the reaction zone into contact with the solid acid catalyst, thereby forming a reaction mixture, wherein
(i) the temperature of the reaction mixture is between about 90°C and about 250°C
(ii) the reaction mixture is held at a pressure between atmospheric pressure and 3.87 MPa, and
(iii) the sugar solution and catalyst are in contact for a time sufficient to produce water and furfural
(c) drawing off a mixture of furfural and water at the top of the column (d) collecting water, unreacted sugars, and nonvolatile byproducts in the reboiler;
(e) removing nonvolatile byproducts from the reboiler; and
(f) removing the water and unreacted sugars from the reboiler for further use or disposal.
PCT/US2012/071964 2011-12-28 2012-12-28 Process for the production of furfural WO2013102015A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12861625.7A EP2797905A4 (en) 2011-12-28 2012-12-28 Process for the production of furfural
CA2859898A CA2859898A1 (en) 2011-12-28 2012-12-28 Process for the production of furfural
BR112014016001A BR112014016001B8 (en) 2011-12-28 2012-12-28 processes
CN201280065178.3A CN104039772B (en) 2011-12-28 2012-12-28 For the method preparing furfural
AU2012362300A AU2012362300A1 (en) 2011-12-28 2012-12-28 Process for the production of furfural
ZA2014/04218A ZA201404218B (en) 2011-12-28 2014-06-09 Process for the production of furfural

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161580717P 2011-12-28 2011-12-28
US61/580,717 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013102015A1 true WO2013102015A1 (en) 2013-07-04

Family

ID=48695359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/071964 WO2013102015A1 (en) 2011-12-28 2012-12-28 Process for the production of furfural

Country Status (8)

Country Link
US (2) US9012664B2 (en)
EP (1) EP2797905A4 (en)
CN (1) CN104039772B (en)
AU (1) AU2012362300A1 (en)
BR (1) BR112014016001B8 (en)
CA (1) CA2859898A1 (en)
WO (1) WO2013102015A1 (en)
ZA (1) ZA201404218B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193704A (en) * 2014-07-31 2014-12-10 华南理工大学 Method for preparing furfural by catalyzing xylose by using acid catalyst
WO2016039996A1 (en) * 2014-09-11 2016-03-17 E. I. Du Pont De Nemours And Company Production of levoglucosenone
CN109880861A (en) * 2019-03-06 2019-06-14 四川金象赛瑞化工股份有限公司 A kind of method that xylose mother liquid continuously produces furfural

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034964A1 (en) * 2013-09-03 2015-03-12 Virdia, Inc. Methods for extracting and converting hemicellulose sugars
US9783474B2 (en) * 2013-10-27 2017-10-10 Purdue Research Foundation Catalytic biomass conversion methods, catalysts, and methods of making the same
WO2015126581A1 (en) 2014-02-20 2015-08-27 Archer Daniels Midland Company Process for making furfural
CN105503789B (en) * 2015-10-29 2018-03-06 常州大学 Montmorillonite load metal ion solid acid catalysis xylose is the method for furfural
FR3071497B1 (en) * 2017-09-28 2021-06-11 Ifp Energies Now PROCESS FOR THE PRODUCTION OF 5-HYDROXYMETHYLFURFURAL IN THE PRESENCE OF AN INORGANIC DEHYDRATION CATALYST AND A SOURCE OF CHLORIDE
CN107822196B (en) * 2017-10-19 2019-11-08 湖北中烟工业有限责任公司 The application of the tobacco aromaticss of the method preparation of tobacco aromaticss is prepared using xylose hydrolysis
ES2981778T3 (en) 2017-12-06 2024-10-10 Eco Biomass Tech Company Limited System and method for preparing furfural continuously using a pentose solution containing acid
CN109776460A (en) * 2019-03-27 2019-05-21 北京林业大学 A method of Furfural Production from Xylose is catalyzed using solid acid catalyst
CN111939953B (en) * 2020-08-17 2023-03-21 杭州电子科技大学 Preparation method of MXene-based catalyst for preparing furfural with high selectivity
CN114573529B (en) * 2022-01-29 2023-07-18 北京林业大学 Method for continuously and efficiently catalyzing poplar to convert furfural

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265468A (en) * 1997-03-24 1998-10-06 Fukuoka Pref Gov Production of 5hydroxymethyl2-furfural
WO2000047569A1 (en) * 1999-02-11 2000-08-17 Steiner, Philipp, Daniel Process for the manufacture of furfural
WO2011063500A1 (en) * 2009-11-24 2011-06-03 National Research Council Of Canada Process for preparing furfural from xylose
US20110144359A1 (en) * 2009-12-16 2011-06-16 Heide Evert Van Der Method for producing furfural from lignocellulosic biomass material

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2536732A (en) 1947-03-20 1951-01-02 Quaker Oats Co Production of furfural
US2559607A (en) 1948-07-02 1951-07-10 John W Dunning Production of furfural from pentose liquors
US2750394A (en) 1952-05-22 1956-06-12 Food Chemical And Res Lab Inc Manufacture of 5-hydroxymethyl 2-furfural
GB799603A (en) 1953-12-15 1958-08-13 Adriaan Honig S Kunsthars Ind Process and apparatus for the continuous preparation of furfural from vegetable material containing pentosans
GB838957A (en) 1956-11-26 1960-06-22 Merck & Co Inc Production of 5-hydroxymethyl furfural
US4154744A (en) 1976-10-12 1979-05-15 Sumitomo Chemical Company, Limited Process for producing a furan derivative
FR2462433A1 (en) 1979-08-03 1981-02-13 Bertin & Cie IMPROVEMENTS IN PROCESSES AND EQUIPMENT FOR OBTAINING FURFURAL FROM PLANT MATERIALS
US4503023A (en) 1979-08-14 1985-03-05 Union Carbide Corporation Silicon substituted zeolite compositions and process for preparing same
US4533743A (en) 1983-12-16 1985-08-06 Atlantic Richfield Company Furfural process
JPH02108682A (en) 1988-10-14 1990-04-20 Agency Of Ind Science & Technol Production and concentration of furfural
JP2000065468A (en) 1998-08-18 2000-03-03 Matsushita Refrig Co Ltd Circuit substrate-housing structure for thermoelectric module type electric refrigerator
US6603026B2 (en) 2001-08-07 2003-08-05 Gene E. Lightner Heterocyclic compounds produced from biomass
US6441202B1 (en) 2001-08-20 2002-08-27 Gene E. Lightner Heterocyclic compounds extracted by a hydrocarbon
EA011136B1 (en) 2004-08-31 2008-12-30 Биотек Прогресс, А.С. Method and devices for continuous processing of renewable raw materials
JP5101821B2 (en) 2006-01-28 2012-12-19 公立大学法人大阪府立大学 Heterogeneous zirconium phosphate catalyst, dehydration reaction method, 5-hydroxymethylfurfural production method, cellulose decomposition method, and heterogeneous zirconium phosphate catalyst regeneration method
EP1834950A1 (en) 2006-03-10 2007-09-19 Avantium International B.V. Method for the synthesis of 5-alkoxymethylfurfural ethers and their use
EP2050742B1 (en) 2006-03-10 2010-07-07 Furanix Technologies B.V Use of an organic acid esters of 5-hydroxymethylfurfural
US7572925B2 (en) 2006-06-06 2009-08-11 Wisconsin Alumni Research Foundation Catalytic process for producing furan derivatives in a biphasic reactor
US7880049B2 (en) 2006-06-06 2011-02-01 Wisconsin Alumni Research Foundation Production of liquid alkanes in the jet fuel range (C8-C15) from biomass-derived carbohydrates
US7939681B2 (en) 2006-08-07 2011-05-10 Battelle Memorial Institute Methods for conversion of carbohydrates in ionic liquids to value-added chemicals
CN100999677B (en) 2006-12-31 2011-06-08 安徽理工大学 Process of preparing rich furol biological oil by biomass microwave catalytic pyrolysis
EP2033958A1 (en) 2007-09-07 2009-03-11 Furanix Technologies B.V Hydroxymethylfurfural ethers from sugars and di- and triols
WO2009030507A2 (en) 2007-09-07 2009-03-12 Furanix Technologies B.V. Hydroxymethylfurfural ethers from sugars and higher alcohols
US20100299991A1 (en) 2007-09-07 2010-12-02 Furanix Technologies B.V. Hydroxymethylfurfural Ethers from Sugars and Olefins
EP2183236B1 (en) 2007-09-07 2011-02-16 Furanix Technologies B.V. Hydroxymethylfurfural ethers and esters prepared in ionic liquids
UA97690C2 (en) 2007-09-07 2012-03-12 Фураникс Технолоджиз Б.В. Method for the manufacture of a mixture of 5-hydroxymethylfurfural ethers and a fuel or fuel composition comprising the ether mixture
EP2197867B1 (en) 2007-09-07 2016-03-02 Furanix Technologies B.V Hydroxymethylfurfural ethers from sugars or hmf and branched alcohols
US20100212218A1 (en) 2007-09-07 2010-08-26 Furanix Technologies B.V. 5-(substituted methyl) 2-methylfuran
UA98002C2 (en) * 2007-09-07 2012-04-10 Фураникс Технолоджиз Б.В. Mixture of furfural and 5-(alkoxymethyl)furfural derivatives from sugars and alcohols
CN101130530B (en) * 2007-09-17 2010-11-24 济南圣泉集团股份有限公司 System and method for producing furol by using agricultural and forestry castoff
EP2423205B9 (en) 2007-12-12 2020-03-18 Archer-Daniels-Midland Company Conversion of carbohydrates to hydroxymethylfurfural (HMF) and derivatives
US8119823B2 (en) 2008-07-16 2012-02-21 Renmatix, Inc. Solvo-thermal hydrolysis of xylose
CN101367782B (en) 2008-10-09 2012-04-25 四川大学 Method for preparing 5-hydroxymethyl furfural by catalyzing glucose with solid ultra-strong acid
CN101486695B (en) * 2009-02-10 2011-08-17 清华大学 Solid acid catalysis and supercritical extraction coupled furfural preparation method and apparatus
EP2449057B1 (en) 2009-07-01 2021-08-11 Circa Group PTY Ltd Method for converting lignocellulosic materials into useful chemicals
US8263792B2 (en) 2009-09-24 2012-09-11 Board Of Regents, The University Of Texas System Biomass refining by selective chemical reactions
US9637765B2 (en) 2010-03-30 2017-05-02 Cornell University Biphasic supercritical carbon dioxide-water pretreatment of lignocellulosic biomass
WO2012038968A1 (en) * 2010-09-03 2012-03-29 Ganapati Dadasaheb Yadav Process for production of furfural from xylose using a heterogeneous mesoporous silica catalyst comprising rare earth metals
NL2005588C2 (en) * 2010-10-27 2012-05-01 Univ Delft Tech Process for the production of furfural from pentoses.
US8524924B2 (en) 2010-12-21 2013-09-03 E I Du Pont De Nemours And Company Process for furfural production from biomass
US8399688B2 (en) 2011-05-25 2013-03-19 Wisconsin Alumni Research Foundation Production of levulinic acid, furfural, and gamma valerolactone from C5 and C6 carbohydrates in mono- and biphasic systems using gamma-valerolactone as a solvent
US8389749B2 (en) 2011-05-25 2013-03-05 Wisconsin Alumni Research Foundation Method to produce, recover and convert furan derivatives from aqueous solutions using alkylphenol extraction
FR2979344B1 (en) * 2011-08-26 2014-01-24 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF FURFURAL
DE102012200086A1 (en) * 2011-09-30 2013-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of furan compounds from renewable raw materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265468A (en) * 1997-03-24 1998-10-06 Fukuoka Pref Gov Production of 5hydroxymethyl2-furfural
WO2000047569A1 (en) * 1999-02-11 2000-08-17 Steiner, Philipp, Daniel Process for the manufacture of furfural
WO2011063500A1 (en) * 2009-11-24 2011-06-03 National Research Council Of Canada Process for preparing furfural from xylose
US20110144359A1 (en) * 2009-12-16 2011-06-16 Heide Evert Van Der Method for producing furfural from lignocellulosic biomass material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797905A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193704A (en) * 2014-07-31 2014-12-10 华南理工大学 Method for preparing furfural by catalyzing xylose by using acid catalyst
WO2016039996A1 (en) * 2014-09-11 2016-03-17 E. I. Du Pont De Nemours And Company Production of levoglucosenone
CN109880861A (en) * 2019-03-06 2019-06-14 四川金象赛瑞化工股份有限公司 A kind of method that xylose mother liquid continuously produces furfural

Also Published As

Publication number Publication date
ZA201404218B (en) 2015-12-23
AU2012362300A1 (en) 2014-06-26
CN104039772A (en) 2014-09-10
EP2797905A4 (en) 2015-07-08
BR112014016001A8 (en) 2017-07-04
BR112014016001B1 (en) 2019-03-19
BR112014016001A2 (en) 2017-06-13
US9012664B2 (en) 2015-04-21
CA2859898A1 (en) 2013-07-04
EP2797905A1 (en) 2014-11-05
CN104039772B (en) 2016-06-29
BR112014016001B8 (en) 2019-06-25
US20150152074A1 (en) 2015-06-04
US20130172583A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US9012664B2 (en) Process for the production of furfural
US9181211B2 (en) Process for the production of furfural
US10865190B2 (en) Processes for preparing 2,5-furandicarboxylic acid and esters thereof
US10919030B2 (en) Forming dienes from cyclic ethers and diols, including tetrahydrofuran and 2-methyl-1,4-butanediol
EP3325460B1 (en) Reactive distillation process for the esterification of furandicarboxylic acid
WO2013146085A1 (en) Method for producing 5-hydroxymethyl furfural
JP2013203666A (en) Method of producing 5-hydroxymethylfurfural oxide
US20220274941A1 (en) Process for producing 2,5-furandicarboxylic acid dialkyl ester
US20130172585A1 (en) Process for the production of furfural
US20210070721A1 (en) Process for the production of furfural using a water immiscible organic solvent
US10533017B2 (en) Method for producing dianhydrohexitol with a step of distillation on a thin-film evaporator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861625

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012861625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012861625

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2859898

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012362300

Country of ref document: AU

Date of ref document: 20121228

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014016001

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014016001

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627