WO2013146085A1 - Method for producing 5-hydroxymethyl furfural - Google Patents

Method for producing 5-hydroxymethyl furfural Download PDF

Info

Publication number
WO2013146085A1
WO2013146085A1 PCT/JP2013/055559 JP2013055559W WO2013146085A1 WO 2013146085 A1 WO2013146085 A1 WO 2013146085A1 JP 2013055559 W JP2013055559 W JP 2013055559W WO 2013146085 A1 WO2013146085 A1 WO 2013146085A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmf
hydroxymethylfurfural
reaction
solvent
group
Prior art date
Application number
PCT/JP2013/055559
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 渡邊
快 矢代
西 隆文
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012071119A external-priority patent/JP2013203666A/en
Priority claimed from JP2012071113A external-priority patent/JP2013203665A/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to IN6715DEN2014 priority Critical patent/IN2014DN06715A/en
Priority to CN201380014869.5A priority patent/CN104169264A/en
Publication of WO2013146085A1 publication Critical patent/WO2013146085A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen

Definitions

  • the present invention relates to a method for producing 5-hydroxymethylfurfural and its oxide.
  • 5-Hydroxymethylfurfural (hereinafter also referred to as “HMF”) is expected as an intermediate raw material for PET substitute resins, fuels, chemicals, surfactants, cosmetics and the like as a biorefinery base material.
  • HMF 5-Hydroxymethylfurfural
  • 2,5-furandicarboxylic acid hereinafter also referred to as “FDCA”
  • DFF 2,5-diformylfuran
  • HMF 5-hydroxymethylfurfural
  • CFF 2-carboxy-5-formylfuran
  • HMFA 5-hydroxymethyl-2-furancarboxylic acid
  • AcMFA 5-acetoxymethyl-2- Furan carboxylic acid
  • FDCA has a high utility value as an intermediate in various fields such as monomers for resins and toner binders, pharmaceuticals, agricultural chemicals, insecticides, antibacterial agents, perfumes, and the like.
  • DFF is attracting attention as a polymer monomer, a crosslinking agent, and the like. Similar applications are also expected for HMF oxides other than FDCA and DFF.
  • HMF is produced by intramolecular dehydration of a raw material containing a hexose skeleton (see, for example, Patent Document 1 and Non-Patent Documents 1 to 3). Moreover, when synthesizing HMF, it is known that many byproducts such as levulinic acid, formic acid, sugar condensate, HMF polymer, humin-like substance are generated.
  • HMF is generated by dehydration reaction of a saccharide containing a hexose sugar skeleton, and then HMF is oxidized using permanganate in an alkaline environment ( Patent Document 6).
  • a method using oxygen as an oxidizing agent a method of oxidizing HMF in the presence of a platinum group metal catalyst (see Patent Document 7), a method of oxidizing HMF in the presence of bromine and a metal catalyst (see Patent Document 8), A method of oxidizing HMF in an acetic acid solvent in the presence of a metal bromide catalyst (see Patent Document 9 and Non-Patent Document 4) is known.
  • the present invention relates to a method for producing 5-hydroxymethylfurfural having the following steps a to c and a method for producing 5-hydroxymethylfurfural oxide having the following steps a to d.
  • Step a A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural
  • Step b obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural
  • Step c obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural
  • Step d 5-hydroxymethylfurfural obtained in Step c Oxidation process
  • the HMF purification techniques described in Patent Documents 2 to 5 have problems in productivity, such as low yields. In addition, it is necessary to dispose of the adsorbing / separating agent or a complicated regeneration process after the purification treatment, which is not environmentally friendly or economical.
  • the oxidation reaction can be performed without purifying the raw material HMF synthesized from the sugar raw material.
  • permanganate is a homogeneous catalyst and is difficult to use for recycling, there is a problem that separation operation and catalyst disposal become complicated and productivity and economy are poor.
  • Patent Documents 7 to 9 and Non-Patent Document 4 can obtain 5-hydroxymethylfurfural oxide with a good yield, and the catalyst can be reused.
  • by-products generated when producing HMF from a sugar raw material cause reaction inhibition and catalyst activity reduction, a complicated purification step of HMF by high vacuum distillation or column chromatography is necessary. There is a problem in economy. Therefore, the present invention relates to a method for producing highly pure 5-hydroxymethylfurfural and its oxide easily and economically from a sugar raw material.
  • the present inventors have found that the above problem can be solved by an extraction method using two or more solvents having low miscibility and an oxidation reaction.
  • the present invention relates to a method for producing 5-hydroxymethylfurfural having the following steps a to c and a method for producing 5-hydroxymethylfurfural oxide having the following steps a to d.
  • Step a A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural
  • Step b obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural
  • Step c obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural
  • Step d 5-hydroxymethylfurfural obtained in Step c Oxidation process
  • high-purity HMF and its oxide can be efficiently and efficiently produced from a sugar raw material by a simple extraction operation and an oxidation reaction.
  • the method for producing 5-hydroxymethylfurfural of the present invention has the following a to c.
  • the method for producing 5-hydroxymethylfurfural oxide (hereinafter also referred to as “HMF oxide”) of the present invention includes the following steps a to d.
  • Step a A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural
  • Step b obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural
  • Step c obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural
  • Step d 5-hydroxymethylfurfural obtained in Step c Oxidation process
  • step b substances having a higher polarity than HMF (sugar, sugar condensate, acid, catalyst, etc.) are removed, and step c
  • impurities generated during the synthesis reaction of HMF from the sugar raw material are efficiently removed by removing substances (HMF polymer, humin-like substance, etc.) having a lower polarity than HMF.
  • HMF oxide can be produced efficiently and with high productivity by the production method of the present invention is not clear, but an intermediate raw material in which HMF and impurities are efficiently separated can be obtained through steps a to c. Therefore, it is estimated that this is because an oxidation reaction with a good yield can be performed.
  • Step a in the production method of the present invention is a step of obtaining a reaction solvent containing HMF by dehydrating a sugar raw material in the presence of the reaction solvent to produce HMF in the reaction solvent.
  • reaction form The reaction form of step a is not particularly limited, and may be a batch type, a semi-batch type, a continuous type, or a combination of these. From the viewpoint of improving productivity, semi-batch reaction and continuous reaction are preferable, and from the viewpoint of easy operation, batch reaction is preferable.
  • sugar raw material used in step a may be naturally derived or artificially synthesized, or a mixture of two or more of them.
  • specific examples of the sugar raw material include one or more saccharides selected from the group consisting of monosaccharides, disaccharides, oligosaccharides, and polysaccharides.
  • Examples of the monosaccharide include one or more selected from the group consisting of fructose, glucose, galactose, mannose, and sorbose.
  • disaccharide include one or more selected from the group consisting of sucrose, maltose, cellobiose and lactose.
  • the oligosaccharide is one or more selected from the group consisting of any monosaccharide combination, and the polysaccharide is any one selected from the group consisting of any monosaccharide combination, starch, cellulose and inulin. Or 2 or more types are mentioned.
  • the sugar raw material is selected from the group consisting of a sugar solution derived from starch, sugarcane, sugar beet, soybean, etc., which is a mixture containing the saccharide, and a purified intermediate and a purified byproduct obtained from the sugar solution.
  • the sugar raw material used in step a is preferably a sugar raw material containing fructose from the viewpoint of economically and efficiently producing HMF and its oxide.
  • the sugar raw material containing fructose include, for example, fructose, a mixture of fructose and an arbitrary monosaccharide, a disaccharide combining fructose and an arbitrary monosaccharide, an oligosaccharide combining fructose and an arbitrary monosaccharide, and fructose.
  • monosaccharides that can be combined with fructose include one or more selected from the group consisting of glucose, galactose, mannose, and sorbose.
  • one or more selected from the group consisting of glucose, mannose, and galactose are preferable, and glucose is more preferable.
  • a sugar raw material containing fructose it is obtained from a sugar solution derived from a mixture of glucose and fructose, fructose, sucrose, inulin, sugarcane and sugar beet, from the viewpoint of economically and efficiently producing HMF and its oxide.
  • a sugar solution derived from a mixture of glucose and fructose, fructose, sucrose, inulin, sugarcane and sugar beet from the viewpoint of economically and efficiently producing HMF and its oxide.
  • One or more kinds selected from the group consisting of purified sugar, crude sugar and molasses are more preferred.
  • pre-treatment may be performed in advance to increase the fructose content.
  • Specific examples of the pretreatment include isomerization treatment, hydrolysis treatment, acid treatment, base treatment and the like with enzymes and chemical substances. Among these, from the viewpoint of productivity and economy, pretreatment using an enzyme is preferred, and pretreatment including isomerase treatment is preferred. Further, when the pretreatment is not performed, the sugar raw material may be treated in the step a in the same manner as the pretreatment to generate fructose in the reaction system.
  • the concentration of the sugar raw material in the reaction solvent is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and more preferably 0.5% by mass or more from the viewpoint of achieving both improvement in reaction rate and improvement in HMF yield.
  • it is 1 mass% or more, More preferably, it is 3 mass% or more,
  • it is 80 mass% or less, More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less.
  • the synthesis reaction of HMF from the sugar raw material in step a is a three-molecule dehydration reaction from hexose, mainly fructose. This dehydration reaction is preferably performed using a reaction solvent and a catalyst from the viewpoint of improving the productivity of HMF and improving the purity of the obtained HMF.
  • the reaction solvent used in step a is preferably a polar solvent from the viewpoint of improving the productivity of HMF and its oxide and improving the purity of the obtained HMF.
  • Preferred polar solvents include one or more selected from the group consisting of water, highly polar aprotic organic solvents, and ionic liquids.
  • water 1 type, or 2 or more types chosen from the group which consists of distilled water, ion-exchange water, and pure water is mentioned.
  • Examples of the highly polar aprotic organic solvent include dimethyl sulfoxide, sulfolane, dimethylacetamide, N, N-dimethylformamide, N-methylmorpholine, N-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazo.
  • the high polar aprotic organic solvent preferably has a water-octanol distribution coefficient (Log P value) of less than 0.3, more preferably 0.2 or less, and 0.1 or less. More preferred is 0 or less.
  • the ionic liquid examples include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride; pyrrolidinium salts such as 1-butyl-1-methylpyrrolidinium bromide; 1-butyl-1-methylpiperidi Piperidinium salts such as nitrotriflate; pyridinium salts such as 1-butylpyridinium tetrafluoroborate; ammonium salts such as tetrabutylammonium chloride; phosphonium salts such as tetrabutylammonium bromide; sulfonium salts such as triethylsulfonium bis (trifluoromethanesulfonyl) imide 1 type (s) or 2 or more types chosen from the group which consists of are mentioned.
  • imidazolium salts such as 1-ethyl-3-methylimidazolium chloride
  • pyrrolidinium salts such as 1-butyl-1-methylpyr
  • water, dimethyl sulfoxide, dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidinone from the viewpoint of improving the productivity of HMF and its oxides, improving the purity of HMF, operability and economy
  • One or more kinds selected from the group consisting of acetone, methyl ethyl ketone, sulfolane, imidazolium salts, pyridinium salts, and tetrahydrofuran are more preferable
  • water, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, dimethylacetamide, acetone, imidazo One or more selected from the group consisting of a lithium salt and tetrahydrofuran is more preferable, and one or more selected from the group consisting of water, dimethyl sulfoxide, acetone, imidazolium salts, and tetrahydrofuran is more preferable.
  • step a and step b described later are simultaneously performed.
  • it is done. Specifically, by performing the dehydration reaction in step a in the presence of water and a hydrophobic solvent, while generating HMF in water, at least a part of the generated HMF is transferred into the hydrophobic solvent, It is preferable to obtain water containing HMF and a hydrophobic solvent containing HMF.
  • the hydrophobic solvent used when performing step a and step b at the same time is miscible with water from the viewpoint of improving the productivity of HMF and its oxides, suppressing the formation of by-products, and improving the purity of HMF. It is preferable that the aqueous phase and the hydrophobic solvent phase are phase-separated.
  • the water-octanol partition coefficient (Log P value) is preferably 0.4 or more, more preferably 0.5 or more, preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less. is there.
  • a hydrophobic solvent used when performing step a and step b at the same time productivity of HMF and its oxide is improved, formation of by-products is suppressed, purity of HMF is improved, reaction temperature and catalyst
  • MIBK methyl isobutyl ketone
  • the amount of the hydrophobic solvent used when performing step a and step b at the same time is preferably relative to water used as a reaction solvent from the viewpoints of economy, suppression of HMF by-product formation, and reduction of equipment load.
  • the reaction temperature in step a is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of improving the reaction rate and suppressing the production of byproducts, although it depends on the type of catalyst used, the reaction solvent and the reaction type. More preferably, it is 70 ° C. or higher, more preferably 80 ° C. or higher, more preferably 90 ° C. or higher, more preferably 100 ° C. or higher, preferably 300 ° C. or lower, more preferably 280 ° C. or lower, still more preferably 270 ° C. or lower. More preferably, it is 260 ° C. or less, more preferably 250 ° C. or less, and further preferably 240 ° C. or less.
  • reaction pressure The reaction pressure in step a depends on the type of catalyst used, the reaction solvent, and the reaction type, but is preferably 0.01 MPa or more, more preferably from the viewpoint of improving the reaction rate, reducing the amount of by-products generated, and reducing the equipment load. Is 0.05 MPa or more, more preferably 0.1 MPa or more, preferably 40 MPa or less, more preferably 20 MPa or less, still more preferably 15 MPa or less.
  • step a the dehydration reaction is preferably performed in the presence of a catalyst from the viewpoint of improving the productivity of HMF and improving the selectivity of HMF.
  • a catalyst either a homogeneous catalyst or a heterogeneous catalyst can be used, and an acid catalyst is preferred.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and boric acid; sulfonic acids such as p-toluenesulfonic acid and xylenesulfonic acid; formic acid, acetic acid, levulinic acid, oxalic acid, fumaric acid, Examples thereof include one or more selected from the group consisting of carboxylic acids such as maleic acid and citric acid; and neutralized salts thereof.
  • heterogeneous catalysts include strongly acidic cation exchange resins represented by amberlist, amberlite, diamond ion, etc .; zeolite, alumina, silica-alumina, silica-magnesia, silica-titania, titania, tin- Metal oxides such as titania and niobia, clays, sulfuric acid immobilization catalysts represented by sulfated zirconia; phosphoric acid immobilization catalysts represented by phosphorylated titania; heteropoly acids, Lewis acids such as aluminum chloride and chromium chloride 1 type or 2 types or more chosen from the group which consists of metal salt which has an effect
  • strongly acidic cation exchange resins represented by amberlist, amberlite, diamond ion, etc .
  • inorganic acids from the viewpoint of improving the yield of HMF and its oxides and economical efficiency
  • immobilized catalysts are preferred, more preferably one or more selected from the group consisting of inorganic acids, carboxylic acids, and strongly acidic cation exchange resins, more preferably Is one or two selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, boric acid, formic acid, acetic acid, levulinic acid, oxalic acid, fumaric acid, maleic acid, citric acid, and neutralized salts thereof More preferably, one or more selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid, levulinic acid, oxalic acid, boric acid and neutral
  • the amount of catalyst used in step a is the same as the sugar raw material when a homogeneous catalyst is used from the viewpoints of improving the pH of the reaction system, the productivity of HMF and its oxide, suppressing the production of by-products, and economy. It is preferable that it is 0.001 mass% or more with respect to it, More preferably, it is 0.005 mass% or more, More preferably, it is 0.01 mass% or more, More preferably, it is 0.025 mass% or more, More preferably, it is 0.05.
  • neutralizing agent include basic substances such as anion exchange resins, basic zeolites, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, organic amines. 1 type (s) or 2 or more types chosen from the group which consists of a kind, calcium oxide, magnesium oxide, and ammonium salt.
  • alkali metal hydroxide alkaline earth metal hydroxide, alkali metal carbonate, alkaline earth metal carbonate and organic amine 1 type or 2 types or more selected from are preferable, and 1 type or 2 types or more selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides are more preferable.
  • the pH of the solution after neutralization is preferably 4 or more, more preferably 5 or more, still more preferably 6 or more, and preferably 10 or less. 9 or less is more preferable, and 8 or less is more preferable.
  • insoluble matter may be generated during the reaction depending on the reaction conditions, catalyst type, catalyst amount, sugar raw material, and concentration thereof.
  • This insoluble matter is an anhydrous sugar or sugar condensate due to intramolecular and intermolecular dehydration of sugar in the sugar raw material, HMF polymer, HMF, sugar raw material, reaction intermediate, and HMF overreaction product due to condensation polymerization between HMFs.
  • Presumed to be humic substances produced from This insoluble matter is preferably removed by filtration or centrifugation as necessary. The removal step may be performed after step b or step c described later.
  • Step b in the method of the present invention is a step of obtaining a hydrophobic solvent containing HMF by extracting HMF into a hydrophobic solvent from the reaction solvent containing HMF obtained in the step a.
  • a reaction solvent containing HMF and a hydrophobic solvent are mixed, and HMF is extracted into the hydrophobic solvent, or the solvent is once distilled off from the reaction solvent containing HMF.
  • a hydrophobic solvent and a salt or an organic solvent are added to the product to extract HMF into the hydrophobic solvent.
  • the salt used here include one selected from the group consisting of chloride, sulfate, bromide, iodide, nitrate, and carbonate of a metal selected from, for example, sodium, potassium, calcium, and magnesium. Or 2 or more types are mentioned.
  • the organic solvent examples include one or more selected from the group consisting of methanol, ethanol, and isopropanol.
  • the step b of extracting HMF into a hydrophobic solvent from the water containing HMF obtained in step a is further performed. Preferably it is done.
  • the reaction solvent containing HMF obtained in step a may be appropriately concentrated before performing step b.
  • the concentration method include concentration under reduced pressure, a method using an osmotic membrane, transpiration, freeze drying, and the like.
  • concentration under reduced pressure from the viewpoint of the thermal stability of HMF, it is preferably performed at 150 ° C. or lower, more preferably 120 ° C. or lower, more preferably 100 ° C. under sufficient reduced pressure conditions that can distill off the reaction solvent. ° C or lower, more preferably 80 ° C or lower.
  • reaction solvent containing HMF obtained in step a When the reaction solvent containing HMF obtained in step a is concentrated before carrying out step b, it is added to the hydrophobic solvent used in step b from the viewpoint of improving the amount of solution and operability and improving the HMF purity.
  • Water may be added.
  • the water used is preferably one or more selected from the group consisting of distilled water, ion-exchanged water and pure water from the viewpoints of economic efficiency and HMF purity improvement.
  • the hydrophobic solvent used in step b is low in miscibility with water from the viewpoint of improving the productivity of HMF and its oxides, suppressing the formation of by-products, and improving the purity of HMF, and is an aqueous phase-hydrophobic solvent. It is preferable that the phases are separated.
  • the hydrophobic solvent preferably has a water-octanol distribution coefficient (Log P value) of 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, More preferably, it is 10 or less.
  • Preferred hydrophobic solvents used in step b include aliphatic ketones, aliphatic ethers, aliphatic alcohols, aliphatic esters, lactones, aromatic hydrocarbons having a water-octanol partition coefficient of 0.3 or more. 1 type (s) or 2 or more types chosen from the group which consists of a group, aliphatic hydrocarbons, halogenated hydrocarbons, and hydrophobic ionic liquids.
  • aliphatic ketones, aliphatic ethers, aliphatic alcohols, aliphatic esters, fatty acid amides, aromatic hydrocarbons from the viewpoint of extraction efficiency of HMF and suppression of the amount of hydrophobic solvent dissolved in water 1 type or 2 or more types selected from the group consisting of hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, more preferably 3-methyl-2-butanone, methyl isobutyl ketone, diisobutyl ketone, 5- Methyl-3-heptanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, isophorone, tetrahydrofuran, furfural, furfuryl alcohol, n-butanol, 2-butanol, n-amyl alcohol, isopentyl alcohol, hexyl alcohol, Chloromethane, dichloromethane, trichlorome
  • the extraction can be performed by, for example, batch extraction or countercurrent extraction.
  • the temperature at the time of extraction is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, further preferably 15 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, from the viewpoint of the thermal stability of HMF. More preferably, it is 80 degrees C or less.
  • the amount of the hydrophobic solvent used per extraction process is not particularly limited.
  • the mass ratio of the reaction solvent or water (reaction solvent) Or water / hydrophobic solvent preferably 1/100 or more, more preferably 1/50 or more, further preferably 1/20 or more, preferably 10/1 or less, more preferably 5/1 or less, Preferably it is 2/1 or less.
  • insoluble matter may be generated depending on the type of sugar raw material, solvent, catalyst, and the like used. This is presumed to be humic substances produced from anhydrous sugar, sugar condensate, HMF polymer by condensation polymerization of HMF, and HMF, sugar raw material, reaction intermediate and HMF overreaction product. This insoluble matter is preferably removed by filtration, centrifugation or the like, if necessary. The removal step may be performed after step b or after step c described later.
  • Step c in the method of the present invention is a step of obtaining an aqueous solution containing HMF by extracting HMF into water from the hydrophobic solvent containing HMF obtained in the aforementioned step b.
  • the extraction method in step b a method of extracting HMF into water by mixing a hydrophobic solvent containing HMF and water, or once distilling off the hydrophobic solvent from the hydrophobic solvent containing HMF And a method of extracting HMF into water by adding a hydrophobic solvent and water.
  • the hydrophobic solvent used in the extraction of step b may be distilled off after step b and before step c to concentrate HMF.
  • the method for concentrating HMF include vacuum concentration, a method using an osmotic membrane, and transpiration.
  • concentration under reduced pressure from the viewpoint of the thermal stability of HMF, it is preferably performed at 150 ° C. or lower, more preferably 120 ° C. or lower, and more preferably 120 ° C. or lower, under a sufficient reduced pressure condition capable of distilling off the hydrophobic solvent. 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the HMF extract obtained in step b is concentrated to obtain an HMF concentrate, and then the extraction operation in step c is performed, in addition to water, it is hydrophobic in addition to water from the viewpoint of improving the amount of solution, operability, and HMF purity.
  • a suitable solvent may be added as appropriate.
  • the hydrophobic solvent used in step c a hydrophobic solvent that can be used in step b can be used, and examples thereof include the same specific examples and preferred examples as described in step b.
  • the hydrophobic solvent used in step c may be the same as or different from the hydrophobic solvent used in step b.
  • the water used in step c is one or two selected from the group consisting of distilled water, ion-exchanged water, and pure water from the viewpoints of economic efficiency, HMF purity improvement, and HMF oxide productivity. The above is preferable.
  • one or more organic solvents may be further mixed with water.
  • Preferred organic solvents include one or more selected from the group consisting of methanol, ethanol, propanols, butanols, acetonitrile, tetrahydrofuran, dioxanes, acetone, and methyl ethyl ketone.
  • one or more selected from the group consisting of methanol, ethanol, and isopropanol is preferable, and more preferably, one or two selected from the group consisting of methanol and isopropanol. More than species, more preferably isopropanol.
  • the mixing ratio of water and the hydrophobic solvent containing HMF in step c is not particularly limited. From the viewpoint of improving the extraction efficiency of HMF, for example, when performing a batch type extraction method, [water / The hydrophobic solvent containing HMF] is preferably 1/100 or more, more preferably 1/50 or more, still more preferably 1/20 or more, preferably 100/1 or less, more preferably 20/1. Hereinafter, it is more preferably 10/1 or less.
  • the aqueous solution used for extraction may be distilled off and concentrated.
  • concentration method include concentration under reduced pressure, a method using an osmotic membrane, transpiration, lyophilization, and the like.
  • concentration under reduced pressure from the viewpoint of the thermal stability of HMF, it is preferably performed at 150 ° C. or lower, more preferably 120 ° C. or lower, more preferably 100 ° C. under a sufficient reduced pressure condition that water can be distilled off. Below, it is 80 degrees C or less more preferably.
  • it is also preferable from the viewpoint of HMF purity improvement to add and distill off the solvent which forms an azeotrope with water for example, methanol, ethanol, isopropanol, or acetone.
  • the production method of the present invention preferably includes a step (c-2) (hereinafter sometimes referred to as “step c-2”) for further purifying HMF from the aqueous solution containing HMF obtained in step c.
  • Preferable purification methods include, for example, one or more selected from the group consisting of dehydration, crystallization and recrystallization, solvent extraction, adsorption treatment, column chromatography, and distillation.
  • dehydration for example, drying under reduced pressure or using a dehydrating agent such as sodium sulfate or molecular sieves is performed.
  • recrystallization for example, it is performed by cooling to a temperature at which HMF is recrystallized.
  • the solvent to be used is preferably one that has low miscibility with water used in step c and phase separation of the aqueous phase and the hydrophobic solvent phase.
  • the preferable solvent used in the solvent extraction in step c-2 the above-mentioned hydrophobic solvent is preferable.
  • the hydrophobic solvent preferably has a water-octanol partition coefficient (Log P value) of 0.5 or more, more preferably 1.0 or more, still more preferably 1.3 or more, and even more preferably 5 or less. 1 type, or 2 or more types selected from the group consisting of xylene and hexane. Of these, toluene is preferable from the viewpoint of improving the HMF purity.
  • adsorption treatment depending on the impurities in the solution after step c and its concentration, for example, silica, activated carbon, white clay, adsorption treatment resin, ion exchange resin, or the like can be used.
  • silica, activated carbon, white clay, adsorption treatment resin, ion exchange resin, or the like can be used.
  • one or more selected from the group consisting of dehydration, recrystallization, solvent extraction, and adsorption treatment is preferable, and from the group consisting of dehydration, recrystallization, and solvent extraction.
  • One or more selected are more preferable, and recrystallization is more preferable.
  • Step d in the method of the present invention is a step of oxidizing the HMF obtained in step c or step c-2.
  • the method for oxidizing HMF is not particularly limited, but preferred methods include (1) a method of oxidizing HMF by contacting it with an oxidizing gas in an organic acid solvent in the presence of a metal catalyst and a halogen compound (hereinafter referred to as “the HMF”). (Also referred to as “oxidation method 1”), and (2) a method in which an oxidizing gas and HMF are brought into contact with each other in the presence of a catalyst containing at least one metal element selected from Groups 8 to 11 of the periodic table. (Hereinafter also referred to as “oxidation method 2”).
  • the oxidation method 1 is a method of oxidizing HMF in contact with an oxidizing gas in an organic acid solvent in the presence of a metal catalyst and a halogen compound.
  • the reaction of the oxidation method 1 may be carried out by any of batch, semi-continuous and continuous methods.
  • the batch method is a method in which the raw material HMF and the whole amount of the catalyst are charged in a reactor in advance, an oxidizing gas is passed through the reaction solution to perform an oxidation reaction, and the reaction solution is recovered at a time after the reaction is completed.
  • the semi-continuous method is, for example, a method in which the entire amount of the catalyst is charged into the reactor, the oxidation reaction is performed while continuously supplying the raw material HMF and the oxidizing gas to the reactor, and the reaction liquid is recovered at once after the reaction is completed. It is.
  • the continuous method is a method in which an oxidation reaction is performed while continuously supplying all of the raw material HMF, the catalyst, and the oxidizing gas to the reactor, and the reaction solution is continuously recovered.
  • the continuous type or semi-continuous type is preferable from the viewpoint of operation efficiency.
  • the organic acid solvent used in the oxidation method 1 is preferably one or more selected from the group consisting of acetic acid, propionic acid, and a mixed solvent of acetic acid / acetic anhydride from the viewpoint of reaction yield and solvent recovery. Is more preferable.
  • the amount of the organic acid solvent used is not particularly limited, but from the viewpoint of productivity, the mass ratio of [organic acid solvent / HMF] is preferably 1.0 or more, more preferably 3 or more, still more preferably 5 or more, and 30 or less. Is preferable, 20 or less is more preferable, and 15 or less is still more preferable.
  • the metal catalyst used in the oxidation method 1 is preferably one or more selected from the group consisting of a cobalt-based catalyst and a manganese-based catalyst.
  • the cobalt-based catalyst and the manganese-based catalyst are not particularly limited as long as they can be dissolved in the reaction solvent at the reaction temperature.
  • Examples of the cobalt-based catalyst include one or more selected from the group consisting of cobalt inorganic acid salts (eg, bromide, carbonate, etc.) and organic acid salts (eg, acetate, propionate, etc.). It is done.
  • cobalt acetate preferably one or more selected from the group consisting of cobalt acetate, cobalt bromide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt chloride, and cobalt.
  • more preferably one or more selected from the group consisting of cobalt acetate and cobalt bromide, still more preferably cobalt acetate, and hydrates thereof may be used.
  • the manganese-based catalyst include one or more selected from the group consisting of inorganic salts of manganese (eg, bromide, carbonate, etc.) and organic acid salts (eg, acetate, propionate, etc.). It is done.
  • manganese acetate preferably one or more selected from the group consisting of manganese acetate, manganese bromide, manganese sulfate, manganese nitrate, manganese carbonate, manganese chloride, and manganese.
  • more preferably one or more selected from the group consisting of manganese acetate and manganese bromide, still more preferably manganese acetate, and hydrates thereof may be used.
  • the halogen compound used in the oxidation method 1 may be any halogen compound that can be dissolved in a reaction solvent at a reaction temperature and can supply a halogen ion.
  • halogen ion examples thereof include one or more selected from the group consisting of cobalt salts, manganese salts, ammonium salts, and organic halides.
  • cobalt salts manganese salts, ammonium salts, and organic halides.
  • one or two or more selected from the group consisting of bromine, sodium bromide, potassium bromide, cobalt bromide, and manganese bromide are preferable.
  • Cobalt bromide and manganese bromide can serve as both the cobalt catalyst and the halogen compound.
  • the amount of the metal catalyst used in the oxidation method 1 is preferably 0.1 mol% or more with respect to the raw material HMF obtained by the method including steps a to c, from the viewpoint of reactivity and the yield of HMF oxide. More preferably 0.5 mol% or more, still more preferably 1.0 mol% or more, preferably 60.0 mol% or less, more preferably 40.0 mol% or less, still more preferably 15.0 mol% or less. It is.
  • the amount of the cobalt-based catalyst used in the oxidation method 1 is preferably 0.1 mol% or more with respect to the raw material HMF obtained by the method including steps a to c from the viewpoint of reactivity and the yield of HMF oxide.
  • the amount of the manganese-based catalyst used in the oxidation method 1 is preferably 0.1 mol% or more with respect to the raw material HMF obtained by the method including steps a to c from the viewpoint of reactivity and the yield of HMF oxide. More preferably, it is 0.5 mol% or more, more preferably 1.0 mol% or more, preferably 30 mol% or less, more preferably 20.0 mol% or less.
  • the amount of the halogen compound used in oxidation method 1 is preferably 0.01 mol% or more with respect to the raw material HMF obtained by the method including steps a to c, from the viewpoint of reactivity and the yield of HMF oxide. More preferably, it is 0.1 mol% or more, Preferably it is 20.0 mol% or less, More preferably, it is 15.0 mol% or less, More preferably, it is 10.0 mol% or less.
  • the oxidizing gas used in the oxidation method 1 may be oxygen, air, and a mixed gas of two or more selected from the group consisting of oxygen, air, and inert gas for dilution (nitrogen, argon, etc.).
  • the method for supplying the oxidizing gas is not particularly limited as long as it can be supplied to the reactor at a predetermined pressure and flow rate.
  • the oxidizing gas may be circulated in the gas phase space or may be blown from the liquid.
  • a typical supply method of the oxidizing gas is a mixture of air and an inert gas for dilution (nitrogen, argon, etc.) using a known mixer, and a predetermined pressure and / or a predetermined flow rate as a mixed gas in which the oxygen concentration is controlled. This is a method of supplying to the reactor.
  • the higher the pressure of the oxidizing gas the higher the reactivity, as long as the reaction solvent can maintain a liquid phase at the reaction temperature.
  • the pressure is too high, the capital investment for securing confidentiality increases, and the preparation time before and after the reaction often increases, which increases the possibility of reducing productivity.
  • the pressure of the oxidizing gas is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, preferably 10 MPa or less, more preferably 8 MPa or less, and still more preferably 5 MPa or less.
  • the flow rate of the oxidizing gas is preferably 1 L / min or more per 1.0 mol of charged HMF, more preferably 2 L / min or more, and preferably 20 L / min or less, and 10 L / min or less. More preferably.
  • the reaction temperature of the oxidation reaction 1 is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 80 ° C. or higher, still more preferably 90 ° C. or higher, further preferably 100 ° C. or higher, more preferably 250 ° C. from the viewpoint of reactivity.
  • the following is preferable, 240 ° C. or lower is more preferable, 230 ° C. or lower is further preferable, 220 ° C. or lower is further preferable, and 200 ° C. or lower is further preferable.
  • the HMF oxide may be purified after completion of the oxidation reaction, and can be purified by a known method such as JP-A-2001-288139.
  • a liquid containing water is added to the HMF oxide obtained by filtration after completion of the oxidation reaction to form a slurry, which is heated and dissolved in the presence of the hydrogenation catalyst.
  • It can refine
  • separated into solid and liquid may be dried and it may be set as a product.
  • the oxidation method 2 is a method in which an oxidizing gas and HMF are brought into contact with each other and oxidized in the presence of a catalyst containing at least one metal element selected from Groups 8 to 11 of the periodic table.
  • the catalyst used in the oxidation method 2 is a catalyst containing one or more metal elements selected from the group consisting of Groups 8 to 11 of the periodic table (hereinafter also referred to as “noble metal catalyst”).
  • the noble metal catalyst is one or two selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt (hereinafter also referred to as “platinum group elements”) from the viewpoint of catalytic activity. It is preferable to contain the above elements, more preferably one or more elements selected from the group consisting of palladium, gold, ruthenium and platinum, and more preferably selected from the group consisting of palladium and platinum. More preferably, one or more elements are contained.
  • the noble metal catalyst contains one or more elements selected from the group consisting of platinum group elements (hereinafter, also referred to as “catalyst first component”), as a catalyst component, tin, bismuth, It is preferable to contain one or more elements selected from the group consisting of selenium, zinc, lead, tellurium and antimony (hereinafter also referred to as “catalyst second component”). Further, when the noble metal catalyst contains a first catalyst component and a second catalyst component, the catalyst component is further selected from one or more elements selected from rare earth elements (hereinafter also referred to as “catalyst third component”). ) Can be contained.
  • the ratio of the first catalyst component to the second catalyst component is preferably 0.001 or more, more preferably 0.005 or more in terms of the [catalyst second component / catalyst first component] atomic ratio, from the viewpoint of catalyst activity. 0.01 or more is more preferable, 10 or less is preferable, 7 or less is more preferable, and 6 or less is more preferable.
  • the ratio of the first catalyst component to the third catalyst component is preferably 0.01 or more, and more preferably 5 or less in terms of the [catalyst third component / catalyst first component] atomic ratio.
  • the noble metal catalyst used in the oxidation method 2 is preferably used as a supported catalyst supported on a carrier.
  • the carrier is preferably an inorganic carrier such as activated carbon, alumina, silica gel, activated clay, diatomaceous earth, clay, zeolite, silica, silica-alumina, silica-magnesia, silica-titania, titania, tin-titania, niobium, zirconia, and ceria.
  • 1 type (s) or 2 or more types chosen from the group which consists of are mentioned. Of these, one or more selected from the group consisting of alumina, silica, titania, ceria, and activated carbon are more preferable.
  • the total supported amount of the first catalyst component is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 2.0% by mass or more, preferably 20% by mass or less, based on the total amount of the supported catalyst. More preferably, it is 15 mass% or less, More preferably, it is 13 mass% or less.
  • the total supported amount of the second catalyst component is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, preferably 20% by mass, based on the total amount of the supported catalyst. % Or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
  • the total supported amount of the third catalyst component is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, preferably 20% by mass, based on the total amount of the supported catalyst. % Or less, more preferably 15% by mass or less, and still more preferably 5% by mass or less.
  • the noble metal catalyst used in the oxidation method 2 can be produced by a known method such as JP-A-62-269746.
  • aqueous solution of a compound containing an element of the first catalyst component (palladium chloride, chloroplatinic acid, etc.), an aqueous solution of a compound containing the element of the second catalyst component (bismuth chloride, antimony pentachloride, etc.)
  • bismuth chloride, antimony pentachloride, etc. bismuth chloride, antimony pentachloride, etc.
  • an aqueous solution of a compound containing three elements (cerium chloride, lanthanum chloride, etc.) is adsorbed on a carrier such as activated carbon in water in a lump or divided and then the catalyst component is reduced.
  • the amount of the noble metal catalyst used is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and still more preferably the total amount of the first catalyst component in the noble metal catalyst with respect to HMF from the viewpoint of catalyst activity. Is 0.01% by mass or more, preferably 2.0% by mass or less, more preferably 1.5% by mass or less, and still more preferably 1.0% by mass or less.
  • the noble metal catalyst includes the first catalyst component and the second catalyst component
  • the total amount of the first catalyst component and the second catalyst component is preferably 0.0001% by mass or more with respect to HMF, and more preferably.
  • the total amount of the first catalyst component, the second catalyst component, and the third catalyst component is preferably 0 with respect to the HMF. It is 0.001 mass% or more, More preferably, it is 0.01 mass% or more, Preferably it is 6.0 mass% or less, More preferably, it is 4.0 mass% or less.
  • solvent In the oxidation method 2, it is preferable to use a solvent.
  • the solvent water is preferable from the viewpoints of availability, economy and safety. Moreover, an organic solvent can also be used as needed.
  • the concentration of water in the liquid phase at the time of preparation is usually 0% by mass or more, preferably 5% by mass or more, and usually 99% by mass or less, and 95% by mass or less. Is preferable, and 80 mass% or less is more preferable.
  • the oxidizing gas used in the oxidation method 2 is the same as the oxidizing gas used in the oxidation method 1 described above.
  • the amount of dissolved oxygen in the liquid phase is preferably 1 ppm or less, more preferably 0 to 0.8 ppm, and still more preferably 0 to 0.5 ppm, and then an oxidizing gas such as oxygen is supplied. It is preferable to start. In this way, the reaction proceeds promptly even in the initial reaction. Before starting the supply of oxidizing gas, the amount of dissolved oxygen in the liquid phase is 1 ppm or less.
  • the liquid phase helium, argon, nitrogen, carbon dioxide, methane, ethane, propane, etc.
  • (2) Add methanol, ethanol, propanol, formaldehyde, acetaldehyde, propionaldehyde, hydrogen, etc. that react with oxidizing gas to the reaction solution.
  • the method (1) is preferable from the viewpoints of operability and safety.
  • the oxygen concentration in the gas to be blown is preferably 10% by volume or more, more preferably 20% by volume or more, but particularly preferably oxygen alone is blown.
  • reaction temperature The reaction temperature in the oxidation reaction by the oxidation method 2 is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, preferably 200 ° C. or lower, from the viewpoints of oxygen solubility and low energy. Preferably it is 180 degrees C or less, More preferably, it is 150 degrees C or less.
  • reaction pressure Although the reaction pressure may be normal pressure, it is usually 0.01 MPa or more, usually 3.0 MPa or less, preferably 2.0 MPa or less, more preferably 1.5 MPa or less.
  • alkaline substance The oxidation of HMF by the oxidation method 2 is preferably performed in a liquid phase containing an alkaline substance.
  • alkaline substances include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, alkali metal carbonates, and alkaline earth metal carbonates. 1 type (s) or 2 or more types selected from the group which consists of. Of these, alkali metal hydroxides are preferred from the viewpoints of reactivity and economy. From the viewpoint of reaction rate and suppression of side reaction of HMF, it is preferable to use an alkaline substance in such an amount that the pH of the liquid phase is preferably 7.5 or more, more preferably pH 8 or more, more preferably pH 13 or less.
  • HMF, FDCA, and carboxylic acids are included in the liquid phase after completion of the reaction and after removal of the catalyst by a method such as filtration or centrifugation.
  • HMF, FDCA, and carboxylic acids are included in the liquid phase after completion of the reaction and after removal of the catalyst by a method such as filtration or centrifugation.
  • Examples of the 5-hydroxymethylfurfural oxide of the present invention include 2,5-furandicarboxylic acid (FDCA), diformylfuran (DFF), 2-carboxy-5-formylfuran (CFF), 5-hydroxymethyl-2- One or more selected from the group consisting of furan carboxylic acid (HMFA) and 5-acetoxymethyl-2-furan carboxylic acid (AcMFA) can be mentioned, and the reaction conditions in step d can be appropriately selected for oxidation. By performing the reaction, a desired product can be produced.
  • 2,5-furandicarboxylic acid (FDCA) is preferable from the viewpoint of usefulness as a chemical raw material.
  • the present invention discloses the following 5-hydroxymethylfurfural and its oxide with respect to the above-described embodiment.
  • a method for producing 5-hydroxymethylfurfural comprising the following steps a to c.
  • Step a A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural
  • Step b obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural
  • Step c obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural
  • the sugar raw material used in step a is preferably a sugar raw material containing fructose, more preferably fructose, a mixture of fructose and any monosaccharide, a disaccharide combining fructose and any monosaccharide, fructose Oligosaccharides combining sucrose and any monosaccharide, and polysaccharides combining fructose and any saccharose; high fructose corn syrup, its purified intermediates and by-products; derived from soy sugar liquor, sugarcane and sugar beet Sugar solution, and purified sugar, crude sugar, molasses, and invert sugar obtained from the sugar solution; and one or more selected from the group consisting of inulin, more preferably a mixture of glucose and fructose, fructose, sucrose, Purified sugar, crude sugar and waste from inulin and sugar solution derived from sugarcane and sugar beet It is one or more selected from the group consisting of honey, production method of 5-hydroxy
  • Monosaccharide is preferably one or more selected from the group consisting of glucose, galactose, mannose and sorbose, more preferably one or more selected from the group consisting of glucose, mannose and galactose More preferably, the method for producing 5-hydroxymethylfurfural according to the above ⁇ 2>, which is glucose.
  • the concentration of the sugar raw material in the reaction solvent in step a is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and further preferably 3% by mass or more.
  • the reaction solvent used in step a is preferably a polar solvent, more preferably one or more selected from the group consisting of water, a highly polar aprotic organic solvent, and an ionic liquid, and more preferably Is one or two selected from the group consisting of water, dimethyl sulfoxide, dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidinone, acetone, methyl ethyl ketone, sulfolane, imidazolium salts, pyridinium salts, and tetrahydrofuran More preferably, one or more selected from the group consisting of water, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, dimethylacetamide, acetone, imidazolium salts, and tetrahydrofuran, more preferably water, dimethyl sulfoxide, Acetone, imidazo Um salts, and is one or more selected from the group consisting of t
  • the water-octanol partition coefficient of the hydrophobic solvent used in step b is preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, and even more preferably 10 or less.
  • the hydrophobic solvent used in step b is preferably an aliphatic ketone, an aliphatic ether, an aliphatic alcohol, an aliphatic ester, a lactone, an aromatic hydrocarbon, an aliphatic hydrocarbon, a halogen
  • the reaction solvent used in step a is water.
  • a sugar raw material is subjected to a dehydration reaction in the presence of water and a hydrophobic solvent, and water containing 5-hydroxymethylfurfural and 5-hydroxymethylfurfural
  • the water-octanol partition coefficient of the hydrophobic solvent is preferably 0.4 or more, more preferably 0.5 or more, preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less.
  • the hydrophobic solvent is preferably one selected from the group consisting of aliphatic ketones, aliphatic alcohols, aliphatic esters, aliphatic ethers, aromatic hydrocarbons and halogenated hydrocarbons 2 or more, more preferably methyl isobutyl ketone, cyclohexanone, n-butanol, 2-butanol, n-amyl alcohol, cyclohexanol, dichloromethane, trichloromethane, toluene, xylene, benzene, cumene, benzonitrile, chlorobenzene, dichloroethane , Isophorone, ethyl acetate, propyl acetate and butyl acetate, or more preferably selected from the group consisting of methyl isobutyl ketone, cyclohexanone, n-butan
  • the amount of the hydrophobic solvent used is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and further preferably 1% by mass with respect to water. Or more, more preferably 2% by mass or more, further preferably 5% by mass or more, further preferably 10% by mass or more, preferably 100000% by mass or less, more preferably 50000% by mass or less, and further preferably 25000% by mass or less.
  • step b is 10,000% by mass or less, more preferably 7500% by mass or less, further preferably 5000% by mass or less, and still more preferably 2500% by mass or less, according to any one of ⁇ 8> to ⁇ 10> above.
  • step c the hydrophobic solvent used in the extraction in step b is distilled off, HMF is concentrated, and the resulting HMF concentrate is mixed with hydrophobic solvent and water.
  • Step c-2 One or more selected from the group consisting of the aqueous solution containing HMF obtained in Step c, preferably from dehydration, crystallization and recrystallization, solvent extraction, adsorption treatment, column chromatography and distillation. More preferably, one or more selected from the group consisting of dehydration, recrystallization, solvent extraction, and adsorption treatment, more preferably one or two selected from the group consisting of dehydration, recrystallization, and solvent extraction More preferably, the step of purifying HMF by recrystallization
  • a method for producing 5-hydroxymethylfurfural oxide comprising the step d of oxidizing 5-hydroxymethylfurfural obtained by the production method according to any one of ⁇ 1> to ⁇ 13>.
  • the oxidation of 5-hydroxymethylfurfural in step d is performed by contacting with an oxidizing gas in the presence of a metal catalyst and a halogen compound in an organic acid solvent in the presence of a metal catalyst and a halogen compound. Production method of furfural oxide.
  • the organic acid solvent is preferably one or more selected from the group consisting of acetic acid, propionic acid, and a mixed solvent of acetic acid / acetic anhydride, more preferably acetic acid, more preferably acetic acid.
  • a process for producing 5-hydroxymethylfurfural oxide ⁇ 17> The method for producing 5-hydroxymethylfurfural oxide according to ⁇ 15> or ⁇ 16>, wherein the metal catalyst is one or more selected from a cobalt catalyst and a manganese catalyst.
  • the cobalt-based catalyst is preferably one or more selected from the group consisting of cobalt acetate, cobalt bromide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt chloride, and cobalt, more preferably cobalt acetate and
  • the manganese-based catalyst is preferably one or more selected from the group consisting of manganese acetate, manganese bromide, manganese sulfate, manganese nitrate, manganese carbonate, manganese chloride, and manganese, and more preferably acetic acid.
  • the method for producing 5-hydroxymethylfurfural oxide according to the above ⁇ 17> which is one or more selected from the group consisting of manganese and manganese bromide, and more preferably manganese acetate.
  • the halogen compound is preferably one selected from the group consisting of bromine, chlorine, fluorine, and iodine, and hydrides, alkali metal salts, cobalt salts, manganese salts, ammonium salts, and organic halides of these halogens. Or more, more preferably one or more selected from the group consisting of bromine, sodium bromide, potassium bromide, cobalt bromide, and manganese bromide, ⁇ 15> to ⁇ 19>
  • the method for producing 5-hydroxymethylfurfural oxide according to any one of the above.
  • the amount of the metal catalyst used is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, still more preferably 1.
  • mol% or more based on the raw material HMF obtained by the method including steps a to c.
  • the amount of ⁇ 22> halogen compound used is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, preferably 20 mol% or more with respect to the raw material HMF obtained by the method including steps a to c.
  • the oxidation of 5-hydroxymethylfurfural in step d is performed by contacting with an oxidizing gas, preferably in the presence of a catalyst containing at least one metal element selected from Groups 8 to 11 of the periodic table.
  • the catalyst containing at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table is preferably from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt.
  • One or more elements selected more preferably one or more elements selected from the group consisting of palladium, gold, ruthenium and platinum, more preferably selected from the group consisting of palladium and platinum.
  • the catalyst preferably contains at least one metal element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt as the first catalyst component, and the second catalyst component
  • the method for producing an oxide of 5-hydroxymethylfurfural according to the above ⁇ 23> or ⁇ 24> which contains at least one element selected from the group consisting of tin, bismuth, selenium, tellurium and antimony.
  • the 5-hydroxymethylfurfural oxide according to ⁇ 25>, wherein the catalyst preferably further contains one or more elements selected from the group consisting of rare earth elements as the third component of the catalyst. Production method.
  • the ratio of the catalyst first component to the catalyst second component is preferably 0.001 or more, more preferably 0.005 or more, and still more preferably 0, in terms of the atomic ratio of [catalyst second component / catalyst first component].
  • the method for producing an oxide of 5-hydroxymethylfurfural according to the above ⁇ 25> or ⁇ 26> which is 0.01 or more, preferably 10 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the catalyst is preferably a supported catalyst supported on a carrier, and the carrier is preferably an inorganic carrier, more preferably activated carbon, alumina, silica gel, activated clay, diatomaceous earth, clay, zeolite, silica, silica-alumina.
  • the total amount of the first catalyst component in the catalyst containing one or more metal elements selected from the group consisting of Groups 8 to 11 of the periodic table is preferably 0.0001 mass relative to HMF.
  • % Or more more preferably 0.001% by mass or more, further preferably 0.01% by mass or more, preferably 2.0% by mass or less, more preferably 1.5% by mass or less, and still more preferably 1.0% by mass.
  • the total amount of the catalyst first component and the catalyst second component is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, preferably 4.0% by mass with respect to HMF. % Or less, more preferably 3.0% by mass or less, The method for producing an oxide of 5-hydroxymethylfurfural according to any one of ⁇ 25> to ⁇ 29> above.
  • the total use amount of the first catalyst component, the second catalyst component, and the third catalyst component is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, preferably with respect to HMF.
  • 5-hydroxymethylfurfural oxide is preferably 2,5-furandicarboxylic acid, diformylfuran, 2-carboxy-5-formylfuran, 5-hydroxymethyl-2-furancarboxylic acid, and 5-acetoxy
  • the 5-hydroxy according to any one of ⁇ 14> to ⁇ 31>, which is one or more selected from the group consisting of methyl-2-furancarboxylic acid, more preferably 2,5-furandicarboxylic acid A method for producing methylfurfural oxide.
  • the water-octanol partition coefficient of the hydrophobic solvent used in the examples is as shown in Table 1.
  • the “Log P value” in this specification means the logarithmic value of the 1-octanol / water partition coefficient of the solvent, and is calculated using the fragment approach by SRC's LOGKOW / KOWWIN Program of KowWin (Syracuse Research Corporation, USA). The KowWin Program methodology is described in the following journal article: Meylan, WM and PH Howard. 1995. Atom / fragment contribution method for using octanol-water partition coefficients. J. Pharm. Sci. 84: 83- 92.). The fragment approach is based on the chemical structure of the compound and takes into account the number of atoms and the type of chemical bond.
  • the LogP value is a numerical value generally used for relative evaluation of the hydrophilicity / hydrophobicity of an organic compound.
  • Example 1 (Production of HMF from fructose) (Process a and Process b) 1L glass solenoid valve autoclave (made by pressure-resistant glass industry), 40g of D-fructose (made by Wako Pure Chemical Industries) as sugar raw material, 80g of ion-exchanged water as reaction solvent, MIBK (Wako Pure Chemical Industries, Ltd.) as hydrophobic solvent 320 g manufactured by Kogyo Co., Ltd., LogP value: 1.31) and 4.0 g phosphoric acid (purity 85%, manufactured by Sigma-Aldrich Japan Co., Ltd.) were charged as a catalyst. After sealing the container, the internal space was sufficiently replaced with nitrogen. Thereafter, the contents were heated to 140 ° C.
  • the mass of HMF in the concentrate was 20.1 g, and the HMF extraction recovery rate was 98.6%.
  • the concentrated solution and tetradecane (internal standard substance) were mixed and diluted with acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and the peak areas of HMF and tetradecane were measured by gas chromatography. From the peak area ratio of 5-hydroxymethylfurfural and tetradecane and the sample preparation mass ratio in the obtained chromatogram, the relational expression of the area ratio-mass ratio of 5-hydroxymethylfurfural and tetradecane prepared in advance was used.
  • the HMF purity in the sample was calculated, and the HMF purity was 82.2% by mass.
  • the water content in the HMF concentrate was 2.6% by mass.
  • the same operation was performed to obtain 11.0 g of HMF concentrate (HMF purity: 79.7%). Further, the same operation was performed to obtain 4.1 g of HMF concentrate (HMF purity 80.3%).
  • the HMF extraction rate into the aqueous layer was 88.5%, and the HMF purity in the HMF concentrate was 83.
  • the content of water in the 0% by mass HMF concentrate was 13.3% by mass.
  • the residual amount of MIBK in the concentrate was below the detection limit as measured by gas chromatography.
  • Example 1 Example 1 except that in Step c, 5.0 g of cyclohexanone (Example 2), dichloromethane (Example 3), and ethyl acetate (Example 4) were used in place of the methyl isobutyl ketone used in Example 1.
  • HMF concentrate was obtained in the same manner as above.
  • Table 2 shows the HMF extraction rate into the aqueous layer in step c, the HMF purity in the HMF concentrate, and the moisture content.
  • Example 11 (Process a and Process b)
  • molasses 1 As a raw material for sugar, 40 g of molasses containing 24.4% by mass of sucrose, 7.0% by mass of glucose, 9.9% by mass of fructose and 25.4% by mass of water, reaction temperature of 150 ° C., reaction time The reaction and cooling were carried out in the same manner as in Example 1 except that was changed to 1 hour. The gauge pressure during the reaction was 0.5 MPa. After cooling, the contents were filtered to remove solids, and then analyzed in the same manner as in Example 1.
  • the conversion rate of sucrose was 99%
  • the conversion rate of fructose was 92%
  • the conversion rate of glucose was 42%
  • the HMF content in the aqueous solution layer after the extraction operation was 0.045 g
  • the HMF content in the methyl isobutyl ketone solution layer was 1.350 g
  • the HMF extraction recovery was 96.8%.
  • the obtained methyl isobutyl ketone solution layer was concentrated in the same manner as in Example 1 to obtain an HMF concentrate.
  • the HMF purity in the concentrate was 73.3% by mass.
  • the water content in the HMF concentrate was 2.7% by mass.
  • Example 12 (Production of HMF from molasses 2) Step a and step b were performed in the same manner as in Example 11 to prepare 6.5 g of HMF concentrate (HMF purity: 73.6%).
  • step c Example 5 was carried out except that 6.5 g of the HMF concentrate prepared above, 19.6 g of methyl isobutyl ketone and 19.6 g of ion-exchanged water were used as the hydrophobic solvent, and the extraction operation was performed 5 times.
  • an HMF concentrate was obtained.
  • the HMF extraction rate into the aqueous layer was 87.9%, and the HMF purity in the HMF concentrate was 92.1%.
  • the residual amount of methyl isobutyl ketone in the concentrate was 0.05% by mass or less as measured by gas chromatography.
  • the water content in the HMF concentrate was 3.9% by mass. The results are shown in Table 3.
  • Example 13 (Step c-2: Solvent extraction) 1.49 g of the HMF concentrate prepared in the same manner as in Steps a to c of Example 1 was dissolved in 1.5 ml of ethyl acetate. The obtained ethyl acetate solution was slowly added dropwise to 50 ml of toluene in a glass beaker and stirred. After completion of dropping, the solution was allowed to stand and the organic solvent layer was separated. The residue obtained after separating the organic solvent layer was again dissolved in 1.5 ml of ethyl acetate and collected. The recovered ethyl acetate solution was again subjected to the same steps as above to separate the organic solvent layer. The obtained organic solvent layers were mixed and concentrated with a rotary evaporator (50 ° C. warm bath) to obtain 1.20 g of an orange HMF concentrate. The HMF purity in the concentrate was 98.2%.
  • Example 14 Recrystallization 1.20 g of the HMF concentrate obtained in Example 13 was dissolved in 100 g of toluene and allowed to cool and stand in a freezer at ⁇ 30 ° C. to precipitate light yellow needle crystals. The toluene solution was collected and concentrated with a rotary evaporator (50 ° C. warm bath), and the same operation was performed twice. The crystals were washed with sufficiently cooled toluene and dried under reduced pressure to obtain 0.86 g of pale yellow needle crystals. The HMF purity of the pale yellow needle crystal was 99% or more.
  • Example 15 (Production of HMF from molasses 3) (Process a) In an autoclave (manufactured by Nitto Koatsu Co., Ltd.) equipped with a 100 mL Teflon (registered trademark) container, 6.0 g of molasses used in Example 11 as a sugar raw material, 53.7 g of ion-exchanged water as a reaction solvent, and sulfuric acid ( 0.3 g of Wako Pure Chemical Industries, Ltd. was charged. After sealing the container, the internal space was sufficiently replaced with nitrogen. Thereafter, the contents were heated to 150 ° C. with sufficient stirring, and then the reaction was carried out for 2.5 hours while maintaining the temperature and stirring.
  • Teflon registered trademark
  • the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower.
  • the filtrate contents were neutralized by dropwise addition of 8N aqueous sodium hydroxide while stirring to adjust the pH of the filtrate contents to 7.
  • the contents were filtered to remove insolubles, and an aqueous solution of HMF was obtained.
  • the obtained aqueous solution phase was collected, diluted with pure water, and measured by liquid chromatography. As a result, production of 0.46 g of HMF was confirmed. This corresponds to 30% on a molar basis of sucrose, glucose and fructose in the charged molasses.
  • Example 16 (Production of HMF from molasses 4) (Process a) A 200 mL glass four-necked flask was charged with 16.2 g of molasses used in Example 11 as a sugar raw material, 64.8 g of dimethyl sulfoxide (manufactured by Sigma-Aldrich Japan) as a reaction solvent, and 1.6 g of phosphoric acid as a catalyst. It is. Nitrogen was passed through the inner space of the container at a rate of 50 ml / min, and the contents were heated to 140 ° C. while sufficiently stirring the contents, and then the reaction was carried out for 3 hours while keeping the temperature and stirring.
  • This extraction operation was performed 3 times, the dichloromethane solution layer obtained by the extraction operation was mixed, dichloromethane was distilled off with a rotary evaporator (50 ° C. warm bath), and HMF was concentrated.
  • the mass of HMF in the concentrate was 0.34 g, the purity was 61.6 mass%, and the content of dimethyl sulfoxide was 19.4 mass%.
  • the extraction recovery rate of HMF was 76.2%.
  • the HMF extraction rate into the aqueous layer was 94.5%
  • the HMF purity in the HMF concentrate was 74.5% by mass.
  • the water content in the HMF concentrate was 1.6% by mass
  • the content of dimethyl sulfoxide was 19.6% by mass.
  • Example 17 HMF production 5 from waste molasses
  • Step a was performed in the same manner as in Example 16.
  • the same extraction operation as in Step b of Example 16 was performed except that methyl isobutyl ketone was used as the hydrophobic solvent in Step b of Example 16.
  • the mass of HMF in the concentrate was 0.40 g, the purity was 61.1% by mass, and the content of dimethyl sulfoxide was 3.3% by mass.
  • the extraction recovery rate of HMF was 91.8%.
  • the extraction operation was performed in the same manner as in Step c of Example 16, except that methyl isobutyl ketone was used as the hydrophobic solvent in Step c of Example 16.
  • the HMF extraction rate into the aqueous layer was 83.5%, and the HMF purity in the HMF concentrate was 69.0% by mass. Further, the water content in the HMF concentrate was 2.9% by mass, and the content of dimethyl sulfoxide was 4.3% by mass.
  • Example 18 (Production of HMF from fructose) (Process c: Water extraction purification) 5.5 g (HMF purity 82.2%) of the HMF concentrate obtained in step b of Example 1 was weighed, transferred to a separatory funnel, and dichloromethane (Wako Pure Chemical Industries, Log P value: 1. 25) After adding 40.0 g and diluting the HMF concentrate, 1.0 g of isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) and 20.0 g of ion-exchanged water are added, and the separation and extraction of HMF in the organic solvent layer is performed. It was.
  • This extraction operation was performed 5 times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate.
  • the HMF extraction rate into the aqueous layer was 92%, and the HMF purity in the HMF concentrate was 97.0%.
  • Example 19 (Production of HMF from fructose) (Process c: Water extraction purification) 5.0 g (purity 82.2%) of the HMF concentrate obtained by the same operation as in step b of Example 1 was weighed, transferred to a separatory funnel, and cyclohexanone (manufactured by Sigma-Aldrich Japan) 40.0 g. After diluting the HMF concentrate, 20.0 g of ion-exchanged water was added, and the separation and extraction of HMF in the organic solvent layer was performed. This extraction operation was performed 5 times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate. The HMF extraction rate into the aqueous layer was 51.0%, and the HMF purity in the HMF concentrate was 95.9%.
  • Example 20 (Production of HMF from fructose) (Step c-2: Solvent extraction purification) 1.5 g of the HMF concentrate obtained in step c of Example 1 was dissolved in 1.5 ml of ethyl acetate (Wako Pure Chemical Industries, Ltd., Log P value: 0.73). The obtained ethyl acetate solution was slowly added dropwise while stirring 50 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) in a glass beaker in advance. After completion of dropping, the solution was allowed to stand and the organic solvent layer was separated. The residue was again dissolved in 1.5 ml of ethyl acetate and collected.
  • ethyl acetate Waako Pure Chemical Industries, Ltd., Log P value: 0.73
  • the collected ethyl acetate solution was again subjected to the above step, and the organic solvent layer was separated.
  • the obtained organic solvent layers were mixed and concentrated with a rotary evaporator (50 ° C. warm bath) to obtain 1.2 g of orange HMF concentrate.
  • the HMF purity in the concentrate was 98.2%.
  • Example 21 (Production of HMF from fructose) (Step c-2: Recrystallization purification) 1.2 g of the HMF concentrate obtained in Example 20 was dissolved in 100 g of toluene and allowed to cool and stand at ⁇ 30 ° C. to precipitate pale yellow needle crystals. The toluene solution was collected and concentrated with a rotary evaporator (50 ° C. warm bath), and the same operation was repeated twice. The obtained crystals were washed with sufficiently cooled toluene and dried under reduced pressure. 0.9 g of pale yellow needle crystals were obtained. The same operation was repeated to obtain 4.5 g of pale yellow needle crystals. The HMF purity in the concentrate was 96.7%.
  • Example 22 (Production of 2,5-furandicarboxylic acid (FDCA) by oxidation method 1) HMF (purity 97.0%) 3.97 g obtained in Example 18 in a 500 mL titanium solenoid valve autoclave (manufactured by Nitto High Pressure Co., Ltd.), 44.89 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 0.27 g Of cobalt acetate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.47 g of manganese acetate (manufactured by Sigma Aldrich Japan), and 0.10 g of sodium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) were charged.
  • FDCA 2,5-furandicarboxylic acid
  • the internal space was sufficiently replaced with oxygen. Thereafter, the contents were heated to 150 ° C. with sufficient stirring, and maintained at 0.3 MPa while supplying oxygen to the internal space. Thereafter, the reaction was carried out for 3 hours while maintaining the temperature and stirring. After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the contents were filtered to separate the solid and the filtrate, and the solid and the filtrate were diluted with a mixed solution of pure water and methanol and measured by liquid chromatography.
  • HMF measured the peak area of HMF in the chromatogram obtained by the UV detection method (absorption wavelength: 254 nm), and calculated the concentration in the sample using the HMF concentration-area relational expression prepared in advance. .
  • the conversion of HMF was 100% based on the amount of HMF charged, and the yield of HMF oxide was 80.9% (3.78 g).
  • the yield of FDCA was 73.8% (3.52 g), and the yield of DFF was 7.1% (0.27 g).
  • Example 23 (Production of FDCA and formylfuran (DFF) by oxidation method 1) 4.53 g of HMF (purity 96.7%) obtained in Example 21, 41.93 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 0.26 g of cobalt acetate, 0.52 g of manganese acetate, 0.14 g
  • the reaction was conducted under the same conditions as in Example 22 except that sodium bromide was charged, and measurement was performed by liquid chromatography. As a result, the conversion of HMF was 99.9% based on the amount of HMF charged, and the yield of HMF oxide was 84.2% (4.42 g).
  • the yield of FDCA was 71.0% (3.85 g), and the yield of DFF was 13.1% (0.57 g).
  • Comparative Example 1 (Production of HMF from fructose) (Step c-2: Adsorption treatment purification) Purified by column chromatogram using 6.37 g (HMF content: 3.96 g, HMF purity: 62.2%) of the HMF concentrate obtained in step b of Example 1 (step c was not carried out). .
  • silica Silica Gel 60N, 40-50 ⁇ m, manufactured by Kanto Chemical Co., Inc.
  • the developing solvent used was prepared by mixing acetone (made by Wako Pure Chemical Industries) and hexane (made by Wako Pure Chemical Industries) at 1: 1 (volume ratio).
  • the HMF concentrate was fractionated into a test tube by a certain amount by a column, and the solvent was distilled off to obtain 4.1 g of HMF concentrate.
  • the HMF recovery rate was 99.7%, and the HMF purity in the concentrate was 94.7%.
  • Comparative Example 2 (Production of FDCA by oxidation method 1) 10.0 g of HMF (purity 79.7%) obtained by step b of Example 1 (step c not carried out), 48.85 g of acetic acid, 0.31 g of cobalt acetate, 0.59 g of manganese acetate, The reaction was conducted under the same conditions as in Example 22 except that 0.14 g of sodium bromide was charged, and the measurement was performed by liquid chromatography. As a result, the conversion of HMF was 99.9% based on the amount of HMF charged, and FDCA was confirmed as a HMF oxide in a yield of 1.3% (0.12 g).
  • Comparative Example 3 (Production of FDCA, DFF, and CFF by oxidation method 1) Other than charging 3.92 g of HMF (purity 94.7%) obtained in Comparative Example 1, 46.05 g acetic acid, 0.07 g cobalt acetate, 0.15 g manganese acetate, 0.06 g sodium bromide. Were reacted under the same conditions as in Example 22 and measured by liquid chromatography. As a result, the conversion of HMF was 94.1% based on the amount of HMF charged, and the yield of HMF oxide was 0.5% (0.018 g). Among them, the yield of FDCA was 0.3% (0.012 g), the yield of DFF was 0.1% (0.003 g), and the yield of CFF was 0.1% (0.003 g).
  • Example 24 (Production of 2,5-furandicarboxylic acid (FDCA) by oxidation method 2)
  • a catalyst (Evonik Deguss, Inc.) in which a 50 ml glass three-necked flask was loaded with 1.71 g of HMF (purity 95.9%) obtained in Example 19, 4% palladium, 1% platinum, 5% bismuth on activated carbon. Manufactured, water content 53.7%) 0.19 g and ion-exchanged water 12.92 g.
  • a stirring blade (crescent moon type), an oxygen gas introduction pipe, a discharge pipe and a thermometer were attached to the flask.
  • the liquid phase was stirred at 400 rpm, and the temperature of the reaction liquid (liquid phase) was increased to 60 ° C. in 16 minutes while flowing nitrogen at 50 ml / min.
  • an oxidation reaction was carried out for 24 hours while 2.15 g of a 48% aqueous sodium hydroxide solution (25.80 mmol as sodium hydroxide) and oxygen were blown at a rate of 100 mol% / hour (to the HMF charge ratio).
  • the catalyst was filtered off from the reaction solution to obtain an aqueous solution of HMF.
  • the aqueous phase was collected, diluted with a mixture of pure water and methanol, and measured by liquid chromatography. As a result, the conversion of HMF was 99.6% based on the amount of HMF charged, and FDCA (sodium salt type) was confirmed as the HMF oxide in a yield of 37.3% (0.97 g).
  • Example 25 (Production of FDCA by oxidation method 2) HMF obtained by Example 20 (purity 98.2%) 1.21 g, 4% palladium, 1% platinum, catalyst having 5% bismuth supported on activated carbon (manufactured by Evonik Degussa, water content 53.7%) 0.18 g and 9.07 g of ion-exchanged water were respectively added, and the temperature of the reaction solution (liquid phase) was increased to reach 60 ° C. in 23 minutes, and 1.79 g of 48% sodium hydroxide aqueous solution (sodium hydroxide The same operation as in Example 24 was performed except that the reaction was performed for 27 hours. As a result, the conversion of HMF was 100% on the basis of the amount of HMF charged, and FDCA (sodium salt type) was confirmed as the HMF oxide in a yield of 56.0% (1.03 g).
  • Comparative Example 4 (Production of FDCA and CFF by oxidation method 2) HMF (purity 80.3%) obtained by step b of Example 1 (purity 80.3%) 3.57 g, catalyst with 4% palladium, 1% platinum, 5% bismuth supported on activated carbon (Evonik Degussa Co., Ltd. (water content 53.7%) was charged with 0.38 g and ion-exchanged water 27.76 g. The temperature of the reaction solution (liquid phase) reached 60 ° C. in 15 minutes, and 48% The same operation as in Example 24 was performed except that 4.01 g of sodium hydroxide aqueous solution (48.12 mmol as sodium hydroxide) was added and the reaction was performed for 30 hours.
  • sodium hydroxide aqueous solution 48.12 mmol as sodium hydroxide
  • the conversion of HMF was 100% based on the amount of HMF charged, and the yield of HMF oxide was 26.9% (1.08 g).
  • the yield of FDCA sodium salt type
  • the yield of CFF was 1.0% (0.04 g).
  • the HMF obtained by the production method of the present invention is expected to be used as an intermediate raw material for PET substitute resins, fuels, chemicals, surfactants, cosmetics and the like as a biorefinery base material, and to be used for pharmaceuticals and functional foods. Development is also expected. Further, the HMF oxide obtained by the production method of the present invention can be suitably used as an intermediate in the fields of resins, toner binder monomers, pharmaceuticals, agricultural chemicals, fragrances and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Furan Compounds (AREA)

Abstract

The present invention relates to: a method for producing 5-hydroxymethyl furfural (HMF), which comprises the steps a-c described below; and a method for producing 5-hydroxymethyl furfural oxide, which comprises the steps a-d described below. Each of the methods simply and economically produces high-purity 5-hydroxymethyl furfural or an oxide thereof from a starting sugar material. Step a: A step wherein the staring sugar material is subjected to a dehydration reaction in the presence of a reaction solvent, thereby producing HMF in the reaction solvent and obtaining a reaction solvent containing HMF. Step b: A step wherein HMF is extracted from the reaction solvent containing HMF, which has been obtained in step a, into a hydrophobic solvent, thereby obtaining a hydrophobic solvent containing HMF. Step c: A step wherein HMF is extracted from the hydrophobic solvent containing HMF, which has been obtained in step b, into water, thereby obtaining an aqueous solution containing HMF. Step d: A step wherein HMF which has been obtained in step c is oxidized.

Description

5-ヒドロキシメチルフルフラールの製造方法Method for producing 5-hydroxymethylfurfural
 本発明は、5-ヒドロキシメチルフルフラール及びその酸化物の製造方法に関する。 The present invention relates to a method for producing 5-hydroxymethylfurfural and its oxide.
 5-ヒドロキシメチルフルフラール(以下、「HMF」ともいう)は、バイオリファイナリー基幹物質としてPET代替樹脂や燃料、化成品、界面活性剤、香粧品などの中間体原料として期待されている。また、血液の抗凝固作用など多面的薬理作用から、近年では医薬品(例えば鎌型赤血球病治療薬)や機能性食品などへの展開も期待されている。 5-Hydroxymethylfurfural (hereinafter also referred to as “HMF”) is expected as an intermediate raw material for PET substitute resins, fuels, chemicals, surfactants, cosmetics and the like as a biorefinery base material. In addition, due to the multifaceted pharmacological action such as anticoagulant action of blood, in recent years, it is expected to develop into pharmaceuticals (for example, sickle cell remedy) and functional foods.
 5-ヒドロキシメチルフルフラール(以下、「HMF」ともいう)の酸化物である、2,5-フランジカルボン酸、(以下、「FDCA」ともいう)、2,5-ジホルミルフラン(以下、「DFF」ともいう)、2-カルボキシ-5-ホルミルフラン(以下、「CFF」ともいう)、5-ヒドロキシメチル-2-フランカルボン酸(以下、「HMFA」ともいう)、5-アセトキシメチル-2-フランカルボン酸(以下、「AcMFA」ともいう)は、ファインケミカルスや医薬、農薬の中間体として有用な化合物である。これらの中でも、FDCAは樹脂やトナーバインダーのモノマー、医薬、農薬、殺虫剤、抗菌剤、香料、その他各種の分野の中間体として利用価値が高い。また、DFFは、高分子モノマー、架橋剤等として注目されている。また、FDCA、DFF以外のHMF酸化物も同様の用途が期待されている。 2,5-furandicarboxylic acid (hereinafter also referred to as “FDCA”), 2,5-diformylfuran (hereinafter referred to as “DFF”), which is an oxide of 5-hydroxymethylfurfural (hereinafter also referred to as “HMF”). 2-carboxy-5-formylfuran (hereinafter also referred to as “CFF”), 5-hydroxymethyl-2-furancarboxylic acid (hereinafter also referred to as “HMFA”), 5-acetoxymethyl-2- Furan carboxylic acid (hereinafter also referred to as “AcMFA”) is a useful compound as an intermediate for fine chemicals, pharmaceuticals, and agricultural chemicals. Among these, FDCA has a high utility value as an intermediate in various fields such as monomers for resins and toner binders, pharmaceuticals, agricultural chemicals, insecticides, antibacterial agents, perfumes, and the like. DFF is attracting attention as a polymer monomer, a crosslinking agent, and the like. Similar applications are also expected for HMF oxides other than FDCA and DFF.
 HMFは、六炭糖骨格を含有する原料を分子内脱水させることで生成することが知られている(例えば、特許文献1、非特許文献1~3参照)。また、HMFを合成する際、レブリン酸、蟻酸、糖縮合物、HMF重合物、フミン様物質など多くの副産物が生成することが知られている。 It is known that HMF is produced by intramolecular dehydration of a raw material containing a hexose skeleton (see, for example, Patent Document 1 and Non-Patent Documents 1 to 3). Moreover, when synthesizing HMF, it is known that many byproducts such as levulinic acid, formic acid, sugar condensate, HMF polymer, humin-like substance are generated.
 こうした副生成物に加え、残存原料、反応中間体、反応溶媒や触媒の存在するHMFの夾雑物から高純度なHMFを得る技術として、例えば、高真空条件下、低温で短い蒸留経路で蒸留する方法や、ポリエチレングリコールを添加する蒸留手法が知られている(例えば、特許文献2、3参照)。
 また、合成反応後のHMFの夾雑物から高純度なHMFを得る他の技術として、HMFやHMF二量体を、吸着剤を用いて分離する手法や、カラムクロマトグラフィーによる精製法が知られている(例えば、特許文献3~5参照)。
In addition to these by-products, as a technique for obtaining high-purity HMF from HMF contaminants in which residual raw materials, reaction intermediates, reaction solvents and catalysts are present, for example, distillation under high vacuum conditions and a short distillation path at low temperature Methods and distillation methods in which polyethylene glycol is added are known (see, for example, Patent Documents 2 and 3).
In addition, as other techniques for obtaining high-purity HMF from HMF contaminants after the synthesis reaction, a technique for separating HMF and HMF dimer using an adsorbent and a purification method by column chromatography are known. (For example, see Patent Documents 3 to 5).
 5-ヒドロキシメチルフルフラール酸化物を製造する方法としては、六炭糖骨格を含有する糖類の脱水反応によりHMFを生成させた後、アルカリ性環境下で過マンガン酸塩を用いてHMFを酸化する方法(特許文献6参照)がある。酸素を酸化剤とする方法としては、白金族金属触媒の存在下、HMFを酸化する方法(特許文献7参照)、臭素及び金属触媒の存在下でHMFを酸化する方法(特許文献8参照)や酢酸溶媒中、金属臭化物触媒の存在下でHMFを酸化する方法(特許文献9、非特許文献4参照)等が知られている。 As a method for producing 5-hydroxymethylfurfural oxide, HMF is generated by dehydration reaction of a saccharide containing a hexose sugar skeleton, and then HMF is oxidized using permanganate in an alkaline environment ( Patent Document 6). As a method using oxygen as an oxidizing agent, a method of oxidizing HMF in the presence of a platinum group metal catalyst (see Patent Document 7), a method of oxidizing HMF in the presence of bromine and a metal catalyst (see Patent Document 8), A method of oxidizing HMF in an acetic acid solvent in the presence of a metal bromide catalyst (see Patent Document 9 and Non-Patent Document 4) is known.
特開昭55-53280号公報JP-A-55-53280 米国特許出願公開第2008/0200698号明細書US Patent Application Publication No. 2008/0200698 米国特許出願公開第2011/0137052号明細書US Patent Application Publication No. 2011/0137052 特開2007-277198号公報JP 2007-277198 A 米国特許第4740605号明細書U.S. Pat. No. 4,740,605 特開2007-261990号公報JP 2007-261990 A 特開平2-88569号公報Japanese Patent Laid-Open No. 2-88569 特開2011-84540号公報JP 2011-84540 A 特表2003-528868号公報Special table 2003-528868 gazette
 本発明は、下記工程a~cを有する5-ヒドロキシメチルフルフラールの製造方法、及び下記工程a~dを有する5-ヒドロキシメチルフルフラール酸化物の製造方法に関する。
 工程a:反応溶媒の存在下、糖原料を脱水反応させ、該反応溶媒中に5-ヒドロキシメチルフルフラールを生成させて、5-ヒドロキシメチルフルフラールを含む反応溶媒を得る工程
 工程b:工程aで得られた5-ヒドロキシメチルフルフラールを含む反応溶媒から、5-ヒドロキシメチルフルフラールを疎水性溶媒中に抽出して、5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得る工程
 工程c:工程bで得られた5-ヒドロキシメチルフルフラールを含む疎水性溶媒から、水中に5-ヒドロキシメチルフルフラールを抽出して、5-ヒドロキシメチルフルフラールを含む水溶液を得る工程
 工程d:工程cで得られた5-ヒドロキシメチルフルフラールを酸化する工程
The present invention relates to a method for producing 5-hydroxymethylfurfural having the following steps a to c and a method for producing 5-hydroxymethylfurfural oxide having the following steps a to d.
Step a: A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural Step b: obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural Step c: obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural Step d: 5-hydroxymethylfurfural obtained in Step c Oxidation process
 特許文献2~5に記載されたHMFの精製技術は、いずれも収率が低いなど生産性に課題がある。また、精製処理後に吸着・分離剤の廃棄又は煩雑な再生処理等が必要であり、環境配慮性や経済性に欠ける。
 特許文献6に記載された過マンガン酸塩を用いる5-ヒドロキシメチルフルフラール酸化物を製造する方法では、糖原料から合成した原料HMFを精製せずに酸化反応を行うことができる。しかしながら、過マンガン酸塩は均一触媒であり、リサイクル使用が困難なことから、分離操作や触媒廃棄が煩雑となり、生産性、経済性に乏しいという課題がある。
 また、特許文献7~9、及び非特許文献4に記載された方法は、良好な収率で5-ヒドロキシメチルフルフラール酸化物を得ることができ、かつ触媒の再使用も可能である。しかしながら、HMFを糖原料から製造する際に生じる副生成物が反応阻害や触媒の活性低下を引き起こすため、高真空蒸留やカラムクロマトグラフィー等によるHMFの煩雑な精製工程が必要であり、製造設備面、経済性において課題がある。
 そこで、本発明は、糖原料から、簡便かつ経済的に高純度の5-ヒドロキシメチルフルフラール及びその酸化物を製造する方法に関する。
The HMF purification techniques described in Patent Documents 2 to 5 have problems in productivity, such as low yields. In addition, it is necessary to dispose of the adsorbing / separating agent or a complicated regeneration process after the purification treatment, which is not environmentally friendly or economical.
In the method for producing 5-hydroxymethylfurfural oxide using permanganate described in Patent Document 6, the oxidation reaction can be performed without purifying the raw material HMF synthesized from the sugar raw material. However, since permanganate is a homogeneous catalyst and is difficult to use for recycling, there is a problem that separation operation and catalyst disposal become complicated and productivity and economy are poor.
In addition, the methods described in Patent Documents 7 to 9 and Non-Patent Document 4 can obtain 5-hydroxymethylfurfural oxide with a good yield, and the catalyst can be reused. However, since by-products generated when producing HMF from a sugar raw material cause reaction inhibition and catalyst activity reduction, a complicated purification step of HMF by high vacuum distillation or column chromatography is necessary. There is a problem in economy.
Therefore, the present invention relates to a method for producing highly pure 5-hydroxymethylfurfural and its oxide easily and economically from a sugar raw material.
 本発明者らは、互いに混和性の低い2種以上の溶媒を用いた抽出手法及び酸化反応によって前記課題を解決できることを見出した。 The present inventors have found that the above problem can be solved by an extraction method using two or more solvents having low miscibility and an oxidation reaction.
 すなわち、本発明は、下記工程a~cを有する5-ヒドロキシメチルフルフラールの製造方法、及び下記工程a~dを有する5-ヒドロキシメチルフルフラール酸化物の製造方法に関する。
 工程a:反応溶媒の存在下、糖原料を脱水反応させ、該反応溶媒中に5-ヒドロキシメチルフルフラールを生成させて、5-ヒドロキシメチルフルフラールを含む反応溶媒を得る工程
 工程b:工程aで得られた5-ヒドロキシメチルフルフラールを含む反応溶媒から、5-ヒドロキシメチルフルフラールを疎水性溶媒中に抽出して、5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得る工程
 工程c:工程bで得られた5-ヒドロキシメチルフルフラールを含む疎水性溶媒から、水中に5-ヒドロキシメチルフルフラールを抽出して、5-ヒドロキシメチルフルフラールを含む水溶液を得る工程
 工程d:工程cで得られた5-ヒドロキシメチルフルフラールを酸化する工程
That is, the present invention relates to a method for producing 5-hydroxymethylfurfural having the following steps a to c and a method for producing 5-hydroxymethylfurfural oxide having the following steps a to d.
Step a: A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural Step b: obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural Step c: obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural Step d: 5-hydroxymethylfurfural obtained in Step c Oxidation process
 本発明によれば、糖原料から、簡便な抽出操作と酸化反応により高純度のHMF及びその酸化物を効率的かつ生産性よく製造することができる。 According to the present invention, high-purity HMF and its oxide can be efficiently and efficiently produced from a sugar raw material by a simple extraction operation and an oxidation reaction.
 本発明の5-ヒドロキシメチルフルフラールの製造方法は、下記a~cを有する。
 本発明の5-ヒドロキシメチルフルフラール酸化物(以下、「HMF酸化物」ともいう)の製造方法は、下記工程a~dを有する。
 工程a:反応溶媒の存在下、糖原料を脱水反応させ、該反応溶媒中に5-ヒドロキシメチルフルフラールを生成させて、5-ヒドロキシメチルフルフラールを含む反応溶媒を得る工程
 工程b:工程aで得られた5-ヒドロキシメチルフルフラールを含む反応溶媒から、5-ヒドロキシメチルフルフラールを疎水性溶媒中に抽出して、5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得る工程
 工程c:工程bで得られた5-ヒドロキシメチルフルフラールを含む疎水性溶媒から、水中に5-ヒドロキシメチルフルフラールを抽出して、5-ヒドロキシメチルフルフラールを含む水溶液を得る工程
 工程d:工程cで得られた5-ヒドロキシメチルフルフラールを酸化する工程
The method for producing 5-hydroxymethylfurfural of the present invention has the following a to c.
The method for producing 5-hydroxymethylfurfural oxide (hereinafter also referred to as “HMF oxide”) of the present invention includes the following steps a to d.
Step a: A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural Step b: obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural Step c: obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural Step d: 5-hydroxymethylfurfural obtained in Step c Oxidation process
 本発明の製造方法により、高純度のHMFが製造できる理由は明らかではないが、工程bにより、HMFよりも高極性な物質(糖、糖縮合物、酸、触媒等)が除去され、工程cにより、HMFより低極性な物質(HMF重合物、フミン様物質等)が除去されることにより、糖原料からHMFの合成反応中に生ずる不純物が効率よく除去されるためであると推測される。
 本発明の製造方法により、HMF酸化物が効率的かつ生産性よく製造できる理由は明らかではないが、工程a~工程cを経ることにより、効率よくHMFと不純物とを分離した中間原料が得られるため、良好な収率の酸化反応が行えるためであると推測される。
The reason why high-purity HMF can be produced by the production method of the present invention is not clear, but in step b, substances having a higher polarity than HMF (sugar, sugar condensate, acid, catalyst, etc.) are removed, and step c Thus, it is presumed that impurities generated during the synthesis reaction of HMF from the sugar raw material are efficiently removed by removing substances (HMF polymer, humin-like substance, etc.) having a lower polarity than HMF.
The reason why HMF oxide can be produced efficiently and with high productivity by the production method of the present invention is not clear, but an intermediate raw material in which HMF and impurities are efficiently separated can be obtained through steps a to c. Therefore, it is estimated that this is because an oxidation reaction with a good yield can be performed.
<工程a>
 本発明の製造方法における工程aは、反応溶媒の存在下、糖原料を脱水反応させて、反応溶媒中にHMFを生成させて、HMFを含む反応溶媒を得る工程である。
<Step a>
Step a in the production method of the present invention is a step of obtaining a reaction solvent containing HMF by dehydrating a sugar raw material in the presence of the reaction solvent to produce HMF in the reaction solvent.
(反応形態)
 工程aの反応形態は特に限定されず、バッチ式でも半回分式でも連続式でもよく、これらを組み合わせた反応形態でもよい。生産性向上の観点からは、半回分式反応及び連続式反応が好ましく、操作の簡易さの観点からは、バッチ式反応が好ましい。
(Reaction form)
The reaction form of step a is not particularly limited, and may be a batch type, a semi-batch type, a continuous type, or a combination of these. From the viewpoint of improving productivity, semi-batch reaction and continuous reaction are preferable, and from the viewpoint of easy operation, batch reaction is preferable.
(糖原料)
 工程aで使用される糖原料は、天然由来のものでも、人工的に合成されたものでもよく、それらのうち二種以上の混合物であってもよい。糖原料の具体例としては、単糖、二糖、オリゴ糖及び多糖からなる群から選ばれる1種又は2種以上の糖類が挙げられる。
 前記単糖としては、フルクトース、グルコース、ガラクトース、マンノース及びソルボースからなる群から選ばれる1種又は2種以上が挙げられる。二糖としては、スクロース、マルトース、セロビオース及びラクトースからなる群から選ばれる1種又は2種以上が挙げられる。前記オリゴ糖類としては任意の単糖類の組み合わせからなる群から選ばれる1種又は2種以上が、前記多糖類としては任意の単糖類の組み合わせやデンプンやセルロース及びイヌリンからなる群から選ばれる1種又は2種以上が挙げられる。
 また、糖原料としては、前記糖類を含有する混合物であるデンプン、サトウキビ、シュガービート、大豆などに由来する糖液、並びにその糖液から得られる精製中間物及び精製副産物からなる群から選ばれる1種又は2種以上、例えばデンプン、サトウキビ、シュガービート、大豆などに由来する糖液から得られる精製糖、粗糖、廃糖蜜、転化糖、及び異性化糖からなる群から選ばれる1種又は2種以上を用いることができる。
(Sugar raw material)
The sugar raw material used in step a may be naturally derived or artificially synthesized, or a mixture of two or more of them. Specific examples of the sugar raw material include one or more saccharides selected from the group consisting of monosaccharides, disaccharides, oligosaccharides, and polysaccharides.
Examples of the monosaccharide include one or more selected from the group consisting of fructose, glucose, galactose, mannose, and sorbose. Examples of the disaccharide include one or more selected from the group consisting of sucrose, maltose, cellobiose and lactose. The oligosaccharide is one or more selected from the group consisting of any monosaccharide combination, and the polysaccharide is any one selected from the group consisting of any monosaccharide combination, starch, cellulose and inulin. Or 2 or more types are mentioned.
The sugar raw material is selected from the group consisting of a sugar solution derived from starch, sugarcane, sugar beet, soybean, etc., which is a mixture containing the saccharide, and a purified intermediate and a purified byproduct obtained from the sugar solution. One or two species selected from the group consisting of purified sugar, crude sugar, molasses, invert sugar, and isomerized sugar obtained from a sugar solution derived from a seed or two or more kinds, for example, starch, sugarcane, sugar beet, soybean, etc. The above can be used.
 工程aで使用される糖原料は、HMF及びその酸化物を経済的かつ効率的に製造する観点から、フルクトースを含む糖原料であることが好ましい。
 フルクトースを含む糖原料としては、例えば、フルクトース、フルクトースと任意の単糖との混合物、フルクトースと任意の単糖とを組み合わせた二糖、フルクトースと任意の単糖とを組み合わせたオリゴ糖、及びフルクトースと任意の単糖とを組み合わせた多糖;高フルクトースコーンシロップ、その精製中間体、及びその副産物;大豆糖液、サトウキビやシュガービートに由来する糖液、及びその糖液から得られる精製糖、粗糖、廃糖蜜、及び転化糖;並びにイヌリンからなる群から選ばれる1種又は2種以上が挙げられる。フルクトースと組み合わせることができる単糖としては、グルコース、ガラクトース、マンノース及びソルボースからなる群から選ばれる1種又は2種以上が挙げられる。このうち、HMF及びその酸化物を経済的かつ効率的に製造する観点から、グルコース、マンノース、及びガラクトースからなる群から選ばれる1種又は2種以上が好ましく、グルコースがより好ましい。
 フルクトースを含む糖原料としては、HMF及びその酸化物を経済的かつ効率的に製造する観点から、グルコースとフルクトースの混合物、フルクトース、スクロース、イヌリン、並びにサトウキビやシュガービートに由来する糖液から得られる精製糖、粗糖及び廃糖蜜からなる群から選ばれる1種又は2種以上がより好ましい。
The sugar raw material used in step a is preferably a sugar raw material containing fructose from the viewpoint of economically and efficiently producing HMF and its oxide.
Examples of the sugar raw material containing fructose include, for example, fructose, a mixture of fructose and an arbitrary monosaccharide, a disaccharide combining fructose and an arbitrary monosaccharide, an oligosaccharide combining fructose and an arbitrary monosaccharide, and fructose. A high-fructose corn syrup, its refined intermediate, and its by-products; a sugar solution derived from soybean sugar, sugarcane and sugar beet, and a refined sugar and a crude sugar obtained from the sugar solution , Waste molasses, and invert sugar; and one or more selected from the group consisting of inulin. Examples of monosaccharides that can be combined with fructose include one or more selected from the group consisting of glucose, galactose, mannose, and sorbose. Among these, from the viewpoint of economically and efficiently producing HMF and its oxide, one or more selected from the group consisting of glucose, mannose, and galactose are preferable, and glucose is more preferable.
As a sugar raw material containing fructose, it is obtained from a sugar solution derived from a mixture of glucose and fructose, fructose, sucrose, inulin, sugarcane and sugar beet, from the viewpoint of economically and efficiently producing HMF and its oxide. One or more kinds selected from the group consisting of purified sugar, crude sugar and molasses are more preferred.
 フルクトースを含まない、又はフルクトース含有量が少ない糖原料を用いる場合は、あらかじめ前処理を行い、フルクトース含有量を増加させてもよい。前記前処理の具体例としては、酵素や化学物質による異性化処理や加水分解処理、酸処理、塩基処理等が挙げられる。このうち、生産性ならびに経済性の観点から、酵素を用いた前処理が好ましく、異性化酵素処理を含む前処理が好ましい。また、前記前処理を行わない場合、工程aにて前記前処理と同様に糖原料の処理を行い、反応系中にフルクトースを生成させてもよい。 When using a sugar raw material that does not contain fructose or has a low fructose content, pre-treatment may be performed in advance to increase the fructose content. Specific examples of the pretreatment include isomerization treatment, hydrolysis treatment, acid treatment, base treatment and the like with enzymes and chemical substances. Among these, from the viewpoint of productivity and economy, pretreatment using an enzyme is preferred, and pretreatment including isomerase treatment is preferred. Further, when the pretreatment is not performed, the sugar raw material may be treated in the step a in the same manner as the pretreatment to generate fructose in the reaction system.
 工程aにおいて、糖原料の反応溶媒中の濃度としては、反応速度向上及びHMFの収率向上を両立する観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、更に好ましくは3質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、更に好ましくは50質量%以下である。 In the step a, the concentration of the sugar raw material in the reaction solvent is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and more preferably 0.5% by mass or more from the viewpoint of achieving both improvement in reaction rate and improvement in HMF yield. Preferably it is 1 mass% or more, More preferably, it is 3 mass% or more, Preferably it is 80 mass% or less, More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less.
(脱水反応)
 工程aにおける糖原料からHMFの合成反応は、六炭糖、主にはフルクトースからの3分子脱水反応である。この脱水反応はHMFの生産性向上、得られるHMFの純度向上の観点から、反応溶媒及び触媒を用いて行うことが好ましい。
(Dehydration reaction)
The synthesis reaction of HMF from the sugar raw material in step a is a three-molecule dehydration reaction from hexose, mainly fructose. This dehydration reaction is preferably performed using a reaction solvent and a catalyst from the viewpoint of improving the productivity of HMF and improving the purity of the obtained HMF.
(反応溶媒)
 工程aで用いられる反応溶媒は、HMF及びその酸化物の生産性向上、得られるHMFの純度向上の観点から、極性溶媒が好ましい。好ましい極性溶媒としては、水、高極性非プロトン性有機溶媒、及びイオン性液体からなる群から選ばれる1種又は2種以上が挙げられる。
 水としては、蒸留水、イオン交換水及び純水からなる群から選ばれる1種又は2種以上が挙げられる。
 前記高極性非プロトン性有機溶媒としては、例えば、ジメチルスルホキシド、スルホラン、ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルモルホリン、N-メチル-2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルリン酸トリアミド、テトラメチルウレア、アセトニトリル、エチレングリコールジメチルエーテル、アセトン、メチルエチルケトン、1,4-ジオキサン及びテトラヒドロフランからなる群から選ばれる1種又は2種以上が挙げられる。前記高極性非プロトン性有機溶媒としては、水-オクタノール分配係数(LogP値)が0.3未満であるものが好ましく、0.2以下であるものがより好ましく、0.1以下であるものが更に好ましく、0以下であるものが更に好ましい。
 前記イオン性液体としては、例えば、1-エチル-3-メチルイミダゾリウムクロリド等のイミダゾリウム塩類;1-ブチル-1-メチルピロリジニウムブロミド等のピロリジニウム塩類;1-ブチル-1-メチルピペリジニウムトリフラート等のピペリジニウム塩類;1-ブチルピリジニウムテトラフルオロボレート等のピリジニウム塩類;テトラブチルアンモニウムクロリド等のアンモニウム塩類;テトラブチルアンモニウムブロミド等のホスホニウム塩類;トリエチルスルホニウムビス(トリフルオロメタンスルホニル)イミド等のスルホニウム塩類からなる群から選ばれる1種又は2種以上が挙げられる。
 このうち、HMF及びその酸化物の生産性向上、HMFの純度向上、操作性、経済性の観点から、水、ジメチルスルホキシド、ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、アセトン、メチルエチルケトン、スルホラン、イミダゾリウム塩類、ピリジニウム塩類、及びテトラヒドロフランからなる群から選ばれる1種又は2種以上がより好ましく、水、ジメチルスルホキシド、N-メチル-2-ピロリジノン、ジメチルアセトアミド、アセトン、イミダゾリウム塩類、及びテトラヒドロフランからなる群から選ばれる1種又は2種以上が更に好ましく、水、ジメチルスルホキシド、アセトン、イミダゾリウム塩類、及びテトラヒドロフランからなる群から選ばれる1種又は2種以上が更に好ましい。
(Reaction solvent)
The reaction solvent used in step a is preferably a polar solvent from the viewpoint of improving the productivity of HMF and its oxide and improving the purity of the obtained HMF. Preferred polar solvents include one or more selected from the group consisting of water, highly polar aprotic organic solvents, and ionic liquids.
As water, 1 type, or 2 or more types chosen from the group which consists of distilled water, ion-exchange water, and pure water is mentioned.
Examples of the highly polar aprotic organic solvent include dimethyl sulfoxide, sulfolane, dimethylacetamide, N, N-dimethylformamide, N-methylmorpholine, N-methyl-2-pyrrolidinone, 1,3-dimethyl-2-imidazo. Examples thereof include one or more selected from the group consisting of lydinone, hexamethylphosphoric triamide, tetramethylurea, acetonitrile, ethylene glycol dimethyl ether, acetone, methyl ethyl ketone, 1,4-dioxane and tetrahydrofuran. The high polar aprotic organic solvent preferably has a water-octanol distribution coefficient (Log P value) of less than 0.3, more preferably 0.2 or less, and 0.1 or less. More preferred is 0 or less.
Examples of the ionic liquid include imidazolium salts such as 1-ethyl-3-methylimidazolium chloride; pyrrolidinium salts such as 1-butyl-1-methylpyrrolidinium bromide; 1-butyl-1-methylpiperidi Piperidinium salts such as nitrotriflate; pyridinium salts such as 1-butylpyridinium tetrafluoroborate; ammonium salts such as tetrabutylammonium chloride; phosphonium salts such as tetrabutylammonium bromide; sulfonium salts such as triethylsulfonium bis (trifluoromethanesulfonyl) imide 1 type (s) or 2 or more types chosen from the group which consists of are mentioned.
Of these, water, dimethyl sulfoxide, dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidinone, from the viewpoint of improving the productivity of HMF and its oxides, improving the purity of HMF, operability and economy, One or more kinds selected from the group consisting of acetone, methyl ethyl ketone, sulfolane, imidazolium salts, pyridinium salts, and tetrahydrofuran are more preferable, and water, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, dimethylacetamide, acetone, imidazo One or more selected from the group consisting of a lithium salt and tetrahydrofuran is more preferable, and one or more selected from the group consisting of water, dimethyl sulfoxide, acetone, imidazolium salts, and tetrahydrofuran is more preferable.
(疎水性溶媒)
 本発明では、HMF及びその酸化物の生産性向上、副成物の生成抑制、及びHMFの純度向上の観点から、反応溶媒として水を用いる場合には、工程aと後述する工程bとを同時に行うことが好ましい。具体的には、工程aにおける脱水反応を、水及び疎水性溶媒の存在下で行うことにより、水中にHMFを生成させつつ、生成したHMFの少なくとも一部を疎水性溶媒中に移行させて、HMFを含む水、及びHMFを含む疎水性溶媒を得ることが好ましい。
(Hydrophobic solvent)
In the present invention, from the viewpoint of improving the productivity of HMF and its oxide, suppressing the formation of by-products, and improving the purity of HMF, when water is used as the reaction solvent, step a and step b described later are simultaneously performed. Preferably it is done. Specifically, by performing the dehydration reaction in step a in the presence of water and a hydrophobic solvent, while generating HMF in water, at least a part of the generated HMF is transferred into the hydrophobic solvent, It is preferable to obtain water containing HMF and a hydrophobic solvent containing HMF.
 工程aと工程bとを同時に行う場合に使用される疎水性溶媒は、HMF及びその酸化物の生産性向上、副成物の生成抑制、及びHMFの純度向上の観点から、水と混和性が低く、水相-疎水性溶媒相が相分離するものであることが好ましい。具体的には、水-オクタノール分配係数(LogP値)が、好ましくは0.4以上、より好ましくは0.5以上であり、好ましくは10以下、より好ましくは7以下、更に好ましくは5以下である。
 さらに、工程aと工程bとを同時に行う場合に使用される疎水性溶媒としては、HMF及びその酸化物の生産性向上、副成物の生成抑制、及びHMFの純度向上、並びに反応温度や触媒に対する安定性の観点から、好ましくは、脂肪族ケトン類、脂肪族アルコール類、脂肪族エステル類、脂肪族エーテル類、芳香族炭化水素類及びハロゲン化炭化水素類からなる群から選ばれる1種又は2種以上であり、より好ましくはメチルイソブチルケトン(以下、「MIBK」ともいう)、シクロヘキサノン、n-ブタノール、2-ブタノール、n-アミルアルコール、シクロヘキサノール、ジクロロメタン、トリクロロメタン、トルエン、キシレン、ベンゼン、クメン、ベンゾニトリル、クロロベンゼン、ジクロロエタン、イソホロン、酢酸エチル、酢酸プロピル及び酢酸ブチルからなる群から選ばれる1種又は2種以上であり、更に好ましくは、メチルイソブチルケトン、シクロヘキサノン、n-ブタノール、2-ブタノール、トルエン、及びイソホロンからなる群から選ばれる1種又は2種以上であり、更に好ましくはメチルイソブチルケトン、イソホロン、及びトルエンからなる群から選ばれる1種又は2種以上である。
The hydrophobic solvent used when performing step a and step b at the same time is miscible with water from the viewpoint of improving the productivity of HMF and its oxides, suppressing the formation of by-products, and improving the purity of HMF. It is preferable that the aqueous phase and the hydrophobic solvent phase are phase-separated. Specifically, the water-octanol partition coefficient (Log P value) is preferably 0.4 or more, more preferably 0.5 or more, preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less. is there.
Furthermore, as a hydrophobic solvent used when performing step a and step b at the same time, productivity of HMF and its oxide is improved, formation of by-products is suppressed, purity of HMF is improved, reaction temperature and catalyst From the viewpoint of stability to the above, preferably, one kind selected from the group consisting of aliphatic ketones, aliphatic alcohols, aliphatic esters, aliphatic ethers, aromatic hydrocarbons and halogenated hydrocarbons or 2 or more, more preferably methyl isobutyl ketone (hereinafter also referred to as “MIBK”), cyclohexanone, n-butanol, 2-butanol, n-amyl alcohol, cyclohexanol, dichloromethane, trichloromethane, toluene, xylene, benzene , Cumene, benzonitrile, chlorobenzene, dichloroethane, isophorone, ethyl acetate, One or more selected from the group consisting of propyl acid and butyl acetate, more preferably one selected from the group consisting of methyl isobutyl ketone, cyclohexanone, n-butanol, 2-butanol, toluene, and isophorone Or they are 2 or more types, More preferably, they are 1 type, or 2 or more types chosen from the group which consists of methyl isobutyl ketone, isophorone, and toluene.
 工程aと工程bとを同時に行う場合の前記疎水性溶媒の使用量は、経済性ならびにHMFの副生成物の生成抑制、及び設備負荷低減の観点から、反応溶媒として使用する水に対して好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、更に好ましくは1質量%以上、更に好ましくは2質量%以上、更に好ましくは5質量%以上、更に好ましくは10質量%以上であり、好ましくは100000質量%以下、より好ましくは50000質量%以下、更に好ましくは25000質量%以下、更に好ましくは10000質量%以下、更に好ましくは7500質量%以下、更に好ましくは5000質量%以下、更に好ましくは2500質量%以下である。 The amount of the hydrophobic solvent used when performing step a and step b at the same time is preferably relative to water used as a reaction solvent from the viewpoints of economy, suppression of HMF by-product formation, and reduction of equipment load. Is 0.01% by mass or more, more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and further preferably 5% by mass. Or more, more preferably 10% by mass or more, preferably 100000% by mass or less, more preferably 50000% by mass or less, still more preferably 25000% by mass or less, still more preferably 10,000% by mass or less, and further preferably 7500% by mass or less. More preferably, it is 5000 mass% or less, More preferably, it is 2500 mass% or less.
(反応温度)
 工程aにおける反応温度は、用いる触媒の種類、反応溶媒及び反応形式にもよるが、反応速度の向上、及び副産物の生成抑制の観点から、好ましくは50℃以上であり、より好ましくは60℃以上、更に好ましくは70℃以上、更に好ましくは80℃以上、更に好ましくは90℃以上、更に好ましくは100℃以上であり、好ましくは300℃以下、より好ましくは280℃以下、更に好ましくは270℃以下、更に好ましくは260℃以下、更に好ましくは250℃以下、更に好ましくは240℃以下である。
(Reaction temperature)
The reaction temperature in step a is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of improving the reaction rate and suppressing the production of byproducts, although it depends on the type of catalyst used, the reaction solvent and the reaction type. More preferably, it is 70 ° C. or higher, more preferably 80 ° C. or higher, more preferably 90 ° C. or higher, more preferably 100 ° C. or higher, preferably 300 ° C. or lower, more preferably 280 ° C. or lower, still more preferably 270 ° C. or lower. More preferably, it is 260 ° C. or less, more preferably 250 ° C. or less, and further preferably 240 ° C. or less.
(反応圧力)
 工程aにおける反応圧力は、用いる触媒の種類、反応溶媒及び反応形式にもよるが、反応速度の向上、副産物の生成量低減、及び設備負荷低減の観点から、好ましくは0.01MPa以上、より好ましくは0.05MPa以上、更に好ましくは0.1MPa以上であり、好ましくは40MPa以下、より好ましくは20MPa以下、更に好ましくは15MPa以下である。
(Reaction pressure)
The reaction pressure in step a depends on the type of catalyst used, the reaction solvent, and the reaction type, but is preferably 0.01 MPa or more, more preferably from the viewpoint of improving the reaction rate, reducing the amount of by-products generated, and reducing the equipment load. Is 0.05 MPa or more, more preferably 0.1 MPa or more, preferably 40 MPa or less, more preferably 20 MPa or less, still more preferably 15 MPa or less.
(触媒)
 工程aは、HMFの生産性向上、HMFの選択性向上の観点から、脱水反応を触媒の存在下で行うことが好ましい。触媒としては、均一系触媒及び不均一系触媒のいずれも用いることができ、酸触媒が好ましい。
 例えば、均一系触媒として、塩酸、硫酸、リン酸、硝酸、ホウ酸等の無機酸類;p-トルエンスルホン酸、キシレンスルホン酸等のスルホン酸類;ギ酸、酢酸、レブリン酸、シュウ酸、フマル酸、マレイン酸、クエン酸等のカルボン酸類;及びそれらの中和塩類からなる群から選ばれる1種又は2種以上が挙げられる。
 不均一系触媒としては、例えば、アンバーリスト、アンバーライト、ダイヤイオン等に代表される強酸性陽イオン交換樹脂類;ゼオライト、アルミナ、シリカ-アルミナ、シリカ-マグネシア、シリカ-チタニア、チタニア、スズ-チタニア、ニオビア等の金属酸化物、粘土、硫酸化ジルコニアに代表される硫酸固定化触媒;リン酸化チタニアに代表されるリン酸固定化触媒;ヘテロポリ酸類、塩化アルミニウムや塩化クロム等のルイス酸としての作用がある金属塩;及びこれらの混合物からなる群から選ばれる1種又は2種以上が挙げられる。
(catalyst)
In step a, the dehydration reaction is preferably performed in the presence of a catalyst from the viewpoint of improving the productivity of HMF and improving the selectivity of HMF. As the catalyst, either a homogeneous catalyst or a heterogeneous catalyst can be used, and an acid catalyst is preferred.
For example, as homogeneous catalysts, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and boric acid; sulfonic acids such as p-toluenesulfonic acid and xylenesulfonic acid; formic acid, acetic acid, levulinic acid, oxalic acid, fumaric acid, Examples thereof include one or more selected from the group consisting of carboxylic acids such as maleic acid and citric acid; and neutralized salts thereof.
Examples of heterogeneous catalysts include strongly acidic cation exchange resins represented by amberlist, amberlite, diamond ion, etc .; zeolite, alumina, silica-alumina, silica-magnesia, silica-titania, titania, tin- Metal oxides such as titania and niobia, clays, sulfuric acid immobilization catalysts represented by sulfated zirconia; phosphoric acid immobilization catalysts represented by phosphorylated titania; heteropoly acids, Lewis acids such as aluminum chloride and chromium chloride 1 type or 2 types or more chosen from the group which consists of metal salt which has an effect | action; and these mixtures are mentioned.
 このうち、工程aで用いる触媒としては、HMF及びその酸化物の収率向上、及び経済性の観点から、無機酸類、カルボン酸類、強酸性陽イオン交換樹脂類、硫酸固定化触媒、及びリン酸固定化触媒からなる群から選ばれる1種又は2種以上が好ましく、より好ましくは無機酸類、カルボン酸類、及び強酸性陽イオン交換樹脂類からなる群から選ばれる1種又は2種以上、更に好ましくは、塩酸、硫酸、リン酸、硝酸、ホウ酸、ギ酸、酢酸、レブリン酸、シュウ酸、フマル酸、マレイン酸、クエン酸、及びそれらの中和塩からなる群から選ばれる1種又は2種以上、更に好ましくは硫酸、塩酸、リン酸、ギ酸、酢酸、レブリン酸、シュウ酸、ホウ酸及びそれらの中和塩からなる群から選ばれる1種又は2種以上、更に好ましくは硫酸、塩酸、リン酸、及びそれらの中和塩からなる群から選ばれる1種又は2種以上である。 Among these, as the catalyst used in step a, from the viewpoint of improving the yield of HMF and its oxides and economical efficiency, inorganic acids, carboxylic acids, strongly acidic cation exchange resins, sulfuric acid-immobilized catalysts, and phosphoric acid One or more selected from the group consisting of immobilized catalysts are preferred, more preferably one or more selected from the group consisting of inorganic acids, carboxylic acids, and strongly acidic cation exchange resins, more preferably Is one or two selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, boric acid, formic acid, acetic acid, levulinic acid, oxalic acid, fumaric acid, maleic acid, citric acid, and neutralized salts thereof More preferably, one or more selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid, levulinic acid, oxalic acid, boric acid and neutralized salts thereof, more preferably sulfuric acid, hydrochloric acid Phosphoric acid, and is one or more selected from the group consisting of neutralized salt.
(触媒使用量)
 工程aにおける触媒の使用量は、反応系内のpHやHMF及びその酸化物の生産性の向上、副産物の生成抑制、及び経済性の観点から、均一系触媒を用いる場合には、糖原料に対して0.001質量%以上であることが好ましく、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上、更に好ましくは0.025質量%以上、更に好ましくは0.05質量%以上であり、50質量%以下であることが好ましく、より好ましくは30質量%以下、更に好ましくは20質量%以下、更に好ましくは15質量%以下、更に好ましくは10質量%以下である。不均一系触媒を用いる場合、例えば触媒固定床を用いた連続式反応を行う場合はこの限りではない。
(Amount of catalyst used)
The amount of catalyst used in step a is the same as the sugar raw material when a homogeneous catalyst is used from the viewpoints of improving the pH of the reaction system, the productivity of HMF and its oxide, suppressing the production of by-products, and economy. It is preferable that it is 0.001 mass% or more with respect to it, More preferably, it is 0.005 mass% or more, More preferably, it is 0.01 mass% or more, More preferably, it is 0.025 mass% or more, More preferably, it is 0.05. It is preferably not less than 50% by weight, more preferably not more than 30% by weight, still more preferably not more than 20% by weight, still more preferably not more than 15% by weight, and still more preferably not more than 10% by weight. This is not the case when a heterogeneous catalyst is used, for example, when a continuous reaction using a catalyst fixed bed is performed.
(中和工程)
 工程aにおいて酸触媒を使用する場合、もしくは反応終了後の系内が酸性の状態である場合、HMF及びその酸化物の生産性向上、HMFの純度向上の観点から、反応終了後または後述する工程bの終了後に中和することが好ましく、反応終了後に中和することがより好ましい。
 好ましい中和剤としては、塩基性物質、例えば、陰イオン交換樹脂、塩基性ゼオライト、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金炭酸塩、有機アミン類、酸化カルシウム、酸化マグネシウム、及びアンモニウム塩類からなる群から選ばれる1種又は2種以上が挙げられる。このうち、HMF及びその酸化物の生産性向上、経済性の観点から、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩及び有機アミンからなる群から選ばれる1種又は2種以上が好ましく、アルカリ金属水酸化物及びアルカリ土類金属水酸化物からなる群から選ばれる1種又は2種以上がより好ましい。
(Neutralization process)
When an acid catalyst is used in step a, or when the reaction system is in an acidic state, from the viewpoint of improving the productivity of HMF and its oxides and improving the purity of HMF, the step after the completion of the reaction or the steps described later It is preferable to neutralize after completion of b, and more preferably neutralize after completion of the reaction.
Preferred neutralizing agents include basic substances such as anion exchange resins, basic zeolites, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, organic amines. 1 type (s) or 2 or more types chosen from the group which consists of a kind, calcium oxide, magnesium oxide, and ammonium salt. Among these, from the viewpoint of improving productivity and economic efficiency of HMF and its oxides, a group consisting of alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkaline earth metal carbonate and organic amine 1 type or 2 types or more selected from are preferable, and 1 type or 2 types or more selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides are more preferable.
 中和を行う場合、HMFの収率向上ならびにHMFの純度向上の観点から、中和後の溶液のpHは、4以上が好ましく、5以上がより好ましく、6以上が更に好ましく、10以下が好ましく、9以下がより好ましく、8以下が更に好ましい。 When neutralization is performed, from the viewpoint of improving the yield of HMF and improving the purity of HMF, the pH of the solution after neutralization is preferably 4 or more, more preferably 5 or more, still more preferably 6 or more, and preferably 10 or less. 9 or less is more preferable, and 8 or less is more preferable.
(不溶物の除去)
 工程aにおいて、反応条件や触媒種、触媒量、糖原料及びその濃度によっては反応中に不溶物が生成することがある。この不溶物は、糖原料中の糖の分子内及び分子間脱水による無水糖や糖縮合体、HMF同士の縮重合によるHMFポリマー、HMF、糖原料、反応中間体、及びHMFの過反応生成物から生成するフミン質であると推測される。この不溶物は必要に応じて、ろ過や遠心分離などにて除去することが好ましい。該除去工程は、後述する工程b又は工程cの後に行ってもよい。
(Removal of insoluble matter)
In step a, insoluble matter may be generated during the reaction depending on the reaction conditions, catalyst type, catalyst amount, sugar raw material, and concentration thereof. This insoluble matter is an anhydrous sugar or sugar condensate due to intramolecular and intermolecular dehydration of sugar in the sugar raw material, HMF polymer, HMF, sugar raw material, reaction intermediate, and HMF overreaction product due to condensation polymerization between HMFs. Presumed to be humic substances produced from This insoluble matter is preferably removed by filtration or centrifugation as necessary. The removal step may be performed after step b or step c described later.
<工程b>
 本発明方法における工程bは、前記工程aで得られたHMFを含む反応溶媒から、HMFを疎水性溶媒中に抽出して、HMFを含む疎水性溶媒を得る工程である。
 工程bにおける抽出方法の具体例としては、HMFを含む反応溶媒と、疎水性溶媒とを混合し、疎水性溶媒中にHMFを抽出する方法や、HMFを含む反応溶媒から溶媒を一旦留去して濃縮物を得た後、前記濃縮物に、前記反応溶媒として使用し得る溶媒と疎水性溶媒とを添加して、疎水性溶媒中にHMFを抽出する方法、HMFを含む反応溶媒または前記濃縮物に、疎水性溶媒と、塩、或いは有機溶媒とを添加して疎水性溶媒中にHMFを抽出する方法等が挙げられる。ここで使用される塩としては、例えばナトリウム、カリウム、カルシウム、及びマグネシウムから選ばれる金属の塩化物塩、硫酸塩、臭化物塩、ヨウ化物塩、硝酸塩、及び炭酸塩からなる群から選ばれる1種又は2種以上が挙げられる。有機溶媒としては、例えばメタノール、エタノール、及びイソプロパノールからなる群から選ばれる1種又は2種以上が挙げられる。
 工程a及び工程bを同時に行った場合には、工程a及び工程bを同時に行った後に、さらに前記工程aで得られたHMFを含む水から、HMFを疎水性溶媒中に抽出する工程bを行うことが好ましい。
<Process b>
Step b in the method of the present invention is a step of obtaining a hydrophobic solvent containing HMF by extracting HMF into a hydrophobic solvent from the reaction solvent containing HMF obtained in the step a.
As specific examples of the extraction method in step b, a reaction solvent containing HMF and a hydrophobic solvent are mixed, and HMF is extracted into the hydrophobic solvent, or the solvent is once distilled off from the reaction solvent containing HMF. After obtaining a concentrate, a method of extracting HMF in a hydrophobic solvent by adding a solvent that can be used as the reaction solvent and a hydrophobic solvent to the concentrate, a reaction solvent containing HMF, or the concentration Examples thereof include a method in which a hydrophobic solvent and a salt or an organic solvent are added to the product to extract HMF into the hydrophobic solvent. Examples of the salt used here include one selected from the group consisting of chloride, sulfate, bromide, iodide, nitrate, and carbonate of a metal selected from, for example, sodium, potassium, calcium, and magnesium. Or 2 or more types are mentioned. Examples of the organic solvent include one or more selected from the group consisting of methanol, ethanol, and isopropanol.
When step a and step b are performed at the same time, after step a and step b are performed at the same time, the step b of extracting HMF into a hydrophobic solvent from the water containing HMF obtained in step a is further performed. Preferably it is done.
 経済性ならびに設備負荷低減、HMFの抽出効率向上の観点から、工程bを行う前に、工程aで得られたHMFを含む反応溶媒を適宜濃縮してもよい。その際、濃縮の方法としては、例えば減圧濃縮や、浸透膜を用いる方法、蒸散、凍結乾燥などが挙げられる。減圧濃縮を行う場合は、HMFの熱安定性の観点から、反応溶媒を留去できる十分な減圧条件のもと、150℃以下で行うことが好ましく、より好ましくは120℃以下、更に好ましくは100℃以下、更に好ましくは80℃以下である。 From the viewpoint of economy, reduction of equipment load, and improvement of HMF extraction efficiency, the reaction solvent containing HMF obtained in step a may be appropriately concentrated before performing step b. In this case, examples of the concentration method include concentration under reduced pressure, a method using an osmotic membrane, transpiration, freeze drying, and the like. In the case of concentration under reduced pressure, from the viewpoint of the thermal stability of HMF, it is preferably performed at 150 ° C. or lower, more preferably 120 ° C. or lower, more preferably 100 ° C. under sufficient reduced pressure conditions that can distill off the reaction solvent. ° C or lower, more preferably 80 ° C or lower.
 工程bを行う前に、工程aで得られたHMFを含む反応溶媒を濃縮する場合、溶液量及び操作性向上、ならびにHMF純度向上の観点から、工程bにおいて、使用される疎水性溶媒に加えて水を添加してもよい。用いられる水としては、経済性ならびにHMF純度向上の観点から、蒸留水、イオン交換水及び純水からなる群から選ばれる1種又は2種以上が好ましい。 When the reaction solvent containing HMF obtained in step a is concentrated before carrying out step b, it is added to the hydrophobic solvent used in step b from the viewpoint of improving the amount of solution and operability and improving the HMF purity. Water may be added. The water used is preferably one or more selected from the group consisting of distilled water, ion-exchanged water and pure water from the viewpoints of economic efficiency and HMF purity improvement.
(疎水性溶媒)
 工程bにおいて使用される疎水性溶媒は、HMF及びその酸化物の生産性向上、副成物の生成抑制、及びHMFの純度向上の観点から、水と混和性が低く、水相-疎水性溶媒相の相分離するものであることが好ましい。また、疎水性溶媒は、同様の観点から、水-オクタノール分配係数(LogP値)が0.3以上であることが好ましく、より好ましくは0.4以上、更に好ましくは0.5以上であり、更に好ましくは10以下である。
(Hydrophobic solvent)
The hydrophobic solvent used in step b is low in miscibility with water from the viewpoint of improving the productivity of HMF and its oxides, suppressing the formation of by-products, and improving the purity of HMF, and is an aqueous phase-hydrophobic solvent. It is preferable that the phases are separated. In addition, from the same viewpoint, the hydrophobic solvent preferably has a water-octanol distribution coefficient (Log P value) of 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, More preferably, it is 10 or less.
 工程bで用いる好ましい疎水性溶媒としては、水-オクタノール分配係数が0.3以上である脂肪族ケトン類、脂肪族エーテル類、脂肪族アルコール類、脂肪族エステル類、ラクトン類、芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化炭化水素類、及び疎水性イオン性液体類からなる群から選ばれる1種又は2種以上が挙げられる。このうち、HMFの抽出効率及び疎水性溶媒の水への溶解量抑制の観点から、脂肪族ケトン類、脂肪族エーテル類、脂肪族アルコール類、脂肪族エステル類、脂肪酸アミド類、芳香族炭化水素類、脂肪族炭化水素類、及びハロゲン化炭化水素類からなる群から選ばれる1種又は2種以上が好ましく、より好ましくは、3-メチル-2-ブタノン、メチルイソブチルケトン、ジイソブチルケトン、5-メチル-3-ヘプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、イソホロン、テトラヒドロフラン、フルフラール、フルフリルアルコール、n-ブタノール、2-ブタノール、n-アミルアルコール、イソペンチルアルコール、ヘキシルアルコール、クロロメタン、ジクロロメタン、トリクロロメタン、トリクロロエタン、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、トルエン、キシレン、ベンゼン、クメン、ジクロロエタン、デカン、デセン、ドデカン、ドデセン、ヘキサン、ペンタン、石油エーテル、酢酸エチル、酢酸プロピル、及び酢酸ブチルからなる群から選ばれる1種又は2種以上、更に好ましくは、メチルイソブチルケトン、シクロヘキサノン、n-ブタノール、2-ブタノール、n-アミルアルコール、ジクロロメタン、トリクロロメタン、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、トルエン、ジクロロエタン、ヘキサン、酢酸エチル、酢酸プロピル、及び酢酸ブチルからなる群から選ばれる1種又は2種以上、更に好ましくは、メチルイソブチルケトン、シクロヘキサノン、2-ブタノール、ジクロロメタン、トリクロロメタン、ジエチルエーテル、ジイソプロピルエーテル、酢酸エチル、酢酸ブチル、トルエン、ジクロロエタン、及びヘキサンからなる群から選ばれる1種又は2種以上である。 Preferred hydrophobic solvents used in step b include aliphatic ketones, aliphatic ethers, aliphatic alcohols, aliphatic esters, lactones, aromatic hydrocarbons having a water-octanol partition coefficient of 0.3 or more. 1 type (s) or 2 or more types chosen from the group which consists of a group, aliphatic hydrocarbons, halogenated hydrocarbons, and hydrophobic ionic liquids. Among these, aliphatic ketones, aliphatic ethers, aliphatic alcohols, aliphatic esters, fatty acid amides, aromatic hydrocarbons from the viewpoint of extraction efficiency of HMF and suppression of the amount of hydrophobic solvent dissolved in water 1 type or 2 or more types selected from the group consisting of hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, more preferably 3-methyl-2-butanone, methyl isobutyl ketone, diisobutyl ketone, 5- Methyl-3-heptanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, isophorone, tetrahydrofuran, furfural, furfuryl alcohol, n-butanol, 2-butanol, n-amyl alcohol, isopentyl alcohol, hexyl alcohol, Chloromethane, dichloromethane, trichloromethane, Consists of trichloroethane, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, toluene, xylene, benzene, cumene, dichloroethane, decane, decene, dodecane, dodecene, hexane, pentane, petroleum ether, ethyl acetate, propyl acetate, and butyl acetate One or more selected from the group, more preferably methyl isobutyl ketone, cyclohexanone, n-butanol, 2-butanol, n-amyl alcohol, dichloromethane, trichloromethane, diethyl ether, methyl-tert-butyl ether, diisopropyl ether 1 or more selected from the group consisting of toluene, dichloroethane, hexane, ethyl acetate, propyl acetate, and butyl acetate, more preferably methyl isobutyl ketone, One or more selected from the group consisting of rohexanone, 2-butanol, dichloromethane, trichloromethane, diethyl ether, diisopropyl ether, ethyl acetate, butyl acetate, toluene, dichloroethane, and hexane.
 抽出は、例えば、バッチ式抽出や、向流式抽出等により行うことができる。抽出時の温度は、HMFの熱安定性の観点から、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは15℃以上であり、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは80℃以下である。
 抽出処理一回あたりに使用される疎水性溶媒の量は特に限定されないが、HMFの抽出効率向上の観点から、例えばバッチ式の抽出手法を行う場合は反応溶媒又は水との質量比率(反応溶媒又は水/疎水性溶媒)で、好ましくは1/100以上、より好ましくは1/50以上、更に好ましくは1/20以上であり、好ましくは10/1以下、より好ましくは5/1以下、更に好ましくは2/1以下である。
The extraction can be performed by, for example, batch extraction or countercurrent extraction. The temperature at the time of extraction is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, further preferably 15 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, from the viewpoint of the thermal stability of HMF. More preferably, it is 80 degrees C or less.
The amount of the hydrophobic solvent used per extraction process is not particularly limited. From the viewpoint of improving the extraction efficiency of HMF, for example, when performing a batch extraction method, the mass ratio of the reaction solvent or water (reaction solvent) Or water / hydrophobic solvent), preferably 1/100 or more, more preferably 1/50 or more, further preferably 1/20 or more, preferably 10/1 or less, more preferably 5/1 or less, Preferably it is 2/1 or less.
(不溶物の除去)
 工程bにおいて、使用する糖原料、溶媒、触媒等の種類により不溶物が生成することがある。これは無水糖や糖縮合体、HMF同士の縮重合によるHMFポリマー、ならびにHMF、糖原料、反応中間体及びHMFの過反応生成物から生成するフミン質であると推測される。この不溶物は必要に応じて、ろ過や遠心分離等により除去することが好ましい。該除去工程は、工程bの後に行ってもよく、後述する工程cの後に行ってもよい。
(Removal of insoluble matter)
In step b, insoluble matter may be generated depending on the type of sugar raw material, solvent, catalyst, and the like used. This is presumed to be humic substances produced from anhydrous sugar, sugar condensate, HMF polymer by condensation polymerization of HMF, and HMF, sugar raw material, reaction intermediate and HMF overreaction product. This insoluble matter is preferably removed by filtration, centrifugation or the like, if necessary. The removal step may be performed after step b or after step c described later.
<工程c>
 本発明方法における工程cは、前述の工程bで得られたHMFを含む疎水性溶媒から、水中にHMFを抽出して、HMFを含む水溶液を得る工程である。
 工程bにおける抽出方法の具体例としては、HMFを含む疎水性溶媒と水とを混合して、HMFを水中に抽出する方法や、HMFを含む疎水性溶媒から疎水性溶媒を一旦留去した後、疎水性溶媒と水とを添加して、水中にHMFを抽出する方法等が挙げられる。
<Process c>
Step c in the method of the present invention is a step of obtaining an aqueous solution containing HMF by extracting HMF into water from the hydrophobic solvent containing HMF obtained in the aforementioned step b.
As specific examples of the extraction method in step b, a method of extracting HMF into water by mixing a hydrophobic solvent containing HMF and water, or once distilling off the hydrophobic solvent from the hydrophobic solvent containing HMF And a method of extracting HMF into water by adding a hydrophobic solvent and water.
 設備負荷の低減、HMFの抽出効率向上の観点から、工程bの終了後、工程cの前に、工程bの抽出に用いた疎水性溶媒を留去し、HMFを濃縮してもよい。
 HMFを濃縮する方法としては、例えば、減圧濃縮や、浸透膜を用いる方法、蒸散等が挙げられる。減圧濃縮を行う場合は、HMFの熱安定性の観点から、疎水性溶媒を留去できる十分な減圧条件のもと、150℃以下で行うことが好ましく、より好ましくは120℃以下、更に好ましくは100℃以下、更に好ましくは80℃以下である。
From the viewpoint of reducing the equipment load and improving the extraction efficiency of HMF, the hydrophobic solvent used in the extraction of step b may be distilled off after step b and before step c to concentrate HMF.
Examples of the method for concentrating HMF include vacuum concentration, a method using an osmotic membrane, and transpiration. In the case of concentration under reduced pressure, from the viewpoint of the thermal stability of HMF, it is preferably performed at 150 ° C. or lower, more preferably 120 ° C. or lower, and more preferably 120 ° C. or lower, under a sufficient reduced pressure condition capable of distilling off the hydrophobic solvent. 100 ° C. or lower, more preferably 80 ° C. or lower.
 工程bで得られたHMF抽出液を濃縮し、HMF濃縮液を得た後、工程cの抽出操作を行う場合、溶液量、及び操作性向上、HMF純度向上の観点から、水に加えて疎水性溶媒を適宜添加してもよい。工程cにおいて使用される疎水性溶媒としては、工程bにおいて使用され得る疎水性溶媒を用いることができ、工程bで述べた具体例及び好適例と同じものが挙げられる。工程cにおいて使用される疎水性溶媒は、工程bで使用した疎水性溶媒と同一でも異なっていてもよい。 When the HMF extract obtained in step b is concentrated to obtain an HMF concentrate, and then the extraction operation in step c is performed, in addition to water, it is hydrophobic in addition to water from the viewpoint of improving the amount of solution, operability, and HMF purity. A suitable solvent may be added as appropriate. As the hydrophobic solvent used in step c, a hydrophobic solvent that can be used in step b can be used, and examples thereof include the same specific examples and preferred examples as described in step b. The hydrophobic solvent used in step c may be the same as or different from the hydrophobic solvent used in step b.
 工程cに用いられる水としては、経済性ならびにHMF純度向上の観点、HMF酸化物の生産性向上の観点から、蒸留水、イオン交換水、及び純水からなる群から選ばれる1種又は2種以上が好ましい。工程cにおいて、抽出効率及び抽出時の操作性改善の観点、作業工程を短縮する観点から、水に1種又は2種以上の有機溶媒をさらに混合してもよい。好ましい有機溶媒としては、メタノール、エタノール、プロパノール類、ブタノール類、アセトニトリル、テトラヒドロフラン、ジオキサン類、アセトン、及びメチルエチルケトンからなる群から選ばれる1種又は2種以上が挙げられる。このうち、HMFの純度向上の観点から、メタノール、エタノール、及びイソプロパノールからなる群から選ばれる1種又は2種以上が好ましく、より好ましくは、メタノール、及びイソプロパノールからなる群から選ばれる1種又は2種以上、更に好ましくはイソプロパノールである。 The water used in step c is one or two selected from the group consisting of distilled water, ion-exchanged water, and pure water from the viewpoints of economic efficiency, HMF purity improvement, and HMF oxide productivity. The above is preferable. In step c, from the viewpoint of improving extraction efficiency and operability during extraction and shortening the work process, one or more organic solvents may be further mixed with water. Preferred organic solvents include one or more selected from the group consisting of methanol, ethanol, propanols, butanols, acetonitrile, tetrahydrofuran, dioxanes, acetone, and methyl ethyl ketone. Among these, from the viewpoint of improving the purity of HMF, one or more selected from the group consisting of methanol, ethanol, and isopropanol is preferable, and more preferably, one or two selected from the group consisting of methanol and isopropanol. More than species, more preferably isopropanol.
 工程cにおける、水とHMFを含む疎水性溶媒との混合比率は特に限定されないが、HMFの抽出効率向上の観点から、例えばバッチ式の抽出手法を行う場合は抽出処理一回あたり、〔水/HMFを含む疎水性溶媒〕の質量比で、好ましくは1/100以上、より好ましくは1/50以上、更に好ましくは1/20以上であり、好ましくは100/1以下、より好ましくは20/1以下、更に好ましくは10/1以下である。 The mixing ratio of water and the hydrophobic solvent containing HMF in step c is not particularly limited. From the viewpoint of improving the extraction efficiency of HMF, for example, when performing a batch type extraction method, [water / The hydrophobic solvent containing HMF] is preferably 1/100 or more, more preferably 1/50 or more, still more preferably 1/20 or more, preferably 100/1 or less, more preferably 20/1. Hereinafter, it is more preferably 10/1 or less.
 工程cの終了後、抽出に用いた水溶液を留去して濃縮してもよい。濃縮の方法としては、例えば減圧濃縮や、浸透膜を用いる方法、蒸散、凍結乾燥などが挙げられる。減圧濃縮を行う場合は、HMFの熱安定性の観点から、水を留去できる十分な減圧条件のもと、150℃以下で行うことが好ましく、より好ましくは120℃以下、更に好ましくは100℃以下、更に好ましくは80℃以下である。この際、窒素などの気体を吹き込みながら留去することが、得られるHMF純度の観点から好ましい。または水と共沸混合物を形成する溶媒、例えばメタノール、エタノール、イソプロパノール、又はアセトン等を加えて留去することも、HMF純度向上の観点から好ましい。 After the completion of step c, the aqueous solution used for extraction may be distilled off and concentrated. Examples of the concentration method include concentration under reduced pressure, a method using an osmotic membrane, transpiration, lyophilization, and the like. In the case of concentration under reduced pressure, from the viewpoint of the thermal stability of HMF, it is preferably performed at 150 ° C. or lower, more preferably 120 ° C. or lower, more preferably 100 ° C. under a sufficient reduced pressure condition that water can be distilled off. Below, it is 80 degrees C or less more preferably. At this time, it is preferable to distill off a gas such as nitrogen from the viewpoint of the obtained HMF purity. Or it is also preferable from the viewpoint of HMF purity improvement to add and distill off the solvent which forms an azeotrope with water, for example, methanol, ethanol, isopropanol, or acetone.
<工程(c-2)>
 本発明の製造方法は、工程cで得られたHMFを含む水溶液からHMFをさらに精製する工程(c-2)(以下、「工程c-2」ということがある。)を含むことが好ましい。好ましい精製方法としては、例えば、脱水、晶析や再結晶、溶媒抽出、吸着処理、カラムクロマトグラフィー、及び蒸留からなる群から選ばれる1種又は2種以上が挙げられる。
 脱水の場合は、例えば、減圧乾燥や硫酸ナトリウムやモレキュラーシーブスなどの脱水剤を用いて行う。
 再結晶の場合は、例えば、HMFが再結晶化する温度まで冷却することによって行う。
 溶媒抽出の場合は、使用する溶媒は、工程cで使用する水と混和性が低く、水相-疎水性溶媒相の相分離するものであることが好ましい。
 工程c-2で溶媒抽出する場合に使用される好ましい溶媒としては、前述の疎水性溶媒が好ましい。該疎水性溶媒としては、水-オクタノール分配係数(LogP値)が好ましくは0.5以上、より好ましくは1.0以上、更に好ましくは1.3以上、更に好ましくは5以下であり、例えばトルエン、キシレン、及びヘキサンからなる群から選ばれる1種又は2種以上が挙げられる。このうち、HMF純度向上の観点から、トルエンが好ましい。
 吸着処理の場合は、工程cの終了後の溶液中の不純物とその濃度にもよるが、例えばシリカや活性炭や白土、吸着処理用樹脂、イオン交換樹脂などを用いることができる。
 このうち、得られるHMFの純度の観点から、脱水、再結晶、溶媒抽出、及び吸着処理からなる群から選ばれる1種又は2種以上が好ましく、脱水、再結晶、及び溶媒抽出からなる群から選ばれる1種又は2種以上がより好ましく、再結晶が更に好ましい。
<Step (c-2)>
The production method of the present invention preferably includes a step (c-2) (hereinafter sometimes referred to as “step c-2”) for further purifying HMF from the aqueous solution containing HMF obtained in step c. Preferable purification methods include, for example, one or more selected from the group consisting of dehydration, crystallization and recrystallization, solvent extraction, adsorption treatment, column chromatography, and distillation.
In the case of dehydration, for example, drying under reduced pressure or using a dehydrating agent such as sodium sulfate or molecular sieves is performed.
In the case of recrystallization, for example, it is performed by cooling to a temperature at which HMF is recrystallized.
In the case of solvent extraction, the solvent to be used is preferably one that has low miscibility with water used in step c and phase separation of the aqueous phase and the hydrophobic solvent phase.
As the preferable solvent used in the solvent extraction in step c-2, the above-mentioned hydrophobic solvent is preferable. The hydrophobic solvent preferably has a water-octanol partition coefficient (Log P value) of 0.5 or more, more preferably 1.0 or more, still more preferably 1.3 or more, and even more preferably 5 or less. 1 type, or 2 or more types selected from the group consisting of xylene and hexane. Of these, toluene is preferable from the viewpoint of improving the HMF purity.
In the case of adsorption treatment, depending on the impurities in the solution after step c and its concentration, for example, silica, activated carbon, white clay, adsorption treatment resin, ion exchange resin, or the like can be used.
Among these, from the viewpoint of the purity of the obtained HMF, one or more selected from the group consisting of dehydration, recrystallization, solvent extraction, and adsorption treatment is preferable, and from the group consisting of dehydration, recrystallization, and solvent extraction. One or more selected are more preferable, and recrystallization is more preferable.
<工程d>
 本発明方法における工程dは、前記工程c又は工程c-2で得られたHMFを酸化する工程である。
 HMFを酸化する方法は特に限定されないが、好適な方法としては、(1)金属触媒及びハロゲン化合物の存在下、有機酸溶媒中で、HMFを酸化性気体と接触させて酸化する方法(以下、「酸化方法1」ともいう)、及び(2)周期表第8~11族から選ばれる少なくとも1種の金属元素を含有する触媒の存在下に、酸化性気体とHMFを接触させて酸化する方法(以下、「酸化方法2」ともいう)が挙げられる。
<Process d>
Step d in the method of the present invention is a step of oxidizing the HMF obtained in step c or step c-2.
The method for oxidizing HMF is not particularly limited, but preferred methods include (1) a method of oxidizing HMF by contacting it with an oxidizing gas in an organic acid solvent in the presence of a metal catalyst and a halogen compound (hereinafter referred to as “the HMF”). (Also referred to as “oxidation method 1”), and (2) a method in which an oxidizing gas and HMF are brought into contact with each other in the presence of a catalyst containing at least one metal element selected from Groups 8 to 11 of the periodic table. (Hereinafter also referred to as “oxidation method 2”).
(酸化方法1)
 酸化方法1は、金属触媒及びハロゲン化合物の存在下、有機酸溶媒中で、HMFを酸化性気体と接触させて酸化する方法である。
(Oxidation method 1)
The oxidation method 1 is a method of oxidizing HMF in contact with an oxidizing gas in an organic acid solvent in the presence of a metal catalyst and a halogen compound.
(反応形式)
 酸化方法1の反応は、回分式、半連続式、及び連続式のいずれの方式で実施してもよい。
 回分式は、原料HMF及び触媒の全量を反応器に予め仕込み、酸化性気体を反応液に通気して酸化反応を行い、反応終了後に反応液を一度に回収する方法である。
 半連続式は、例えば、触媒の全量を反応器に装入し、原料HMFと酸化性気体を連続的に反応器に供給しながら酸化反応を行い、反応終了後に反応液を一度に回収する方法である。
 連続式は、原料HMF、触媒及び酸化性気体のすべてを連続的に反応器に供給しながら酸化反応を行い、反応液を連続的に回収する方法である。
 工業的実施においては、連続式又は半連続式が操業効率の点から好ましい。
(Reaction format)
The reaction of the oxidation method 1 may be carried out by any of batch, semi-continuous and continuous methods.
The batch method is a method in which the raw material HMF and the whole amount of the catalyst are charged in a reactor in advance, an oxidizing gas is passed through the reaction solution to perform an oxidation reaction, and the reaction solution is recovered at a time after the reaction is completed.
The semi-continuous method is, for example, a method in which the entire amount of the catalyst is charged into the reactor, the oxidation reaction is performed while continuously supplying the raw material HMF and the oxidizing gas to the reactor, and the reaction liquid is recovered at once after the reaction is completed. It is.
The continuous method is a method in which an oxidation reaction is performed while continuously supplying all of the raw material HMF, the catalyst, and the oxidizing gas to the reactor, and the reaction solution is continuously recovered.
In industrial implementation, the continuous type or semi-continuous type is preferable from the viewpoint of operation efficiency.
(有機酸溶媒)
 酸化方法1で用いる有機酸溶媒としては、反応収率、溶剤回収の観点から、酢酸、プロピオン酸、及び酢酸/無水酢酸の混合溶媒からなる群から選ばれる1種又は2種以上が好ましく、酢酸がより好ましい。
 有機酸溶媒の使用量は特に限定されないが、生産性の観点から、[有機酸溶媒/HMF]の質量比で1.0以上が好ましく、3以上がより好ましく、5以上が更に好ましく、30以下が好ましく、20以下がより好ましく、15以下が更に好ましい。
(Organic acid solvent)
The organic acid solvent used in the oxidation method 1 is preferably one or more selected from the group consisting of acetic acid, propionic acid, and a mixed solvent of acetic acid / acetic anhydride from the viewpoint of reaction yield and solvent recovery. Is more preferable.
The amount of the organic acid solvent used is not particularly limited, but from the viewpoint of productivity, the mass ratio of [organic acid solvent / HMF] is preferably 1.0 or more, more preferably 3 or more, still more preferably 5 or more, and 30 or less. Is preferable, 20 or less is more preferable, and 15 or less is still more preferable.
(触媒)
 酸化方法1で用いる金属触媒は、コバルト系触媒、及びマンガン系触媒からなる群から選ばれる1種又は2種以上が好ましい。コバルト系触媒及びマンガン系触媒は、反応温度において反応溶媒に溶解可能なものであれば特に制限されない。
 コバルト系触媒としては、コバルトの無機酸塩(例えば、臭素化物、炭酸塩等)及び有機酸塩(例えば、酢酸塩、プロピオン酸塩等)からなる群から選ばれる1種又は2種以上が挙げられる。これらの中では、入手性、経済性の観点から、好ましくは酢酸コバルト、臭化コバルト、硫酸コバルト、硝酸コバルト、炭酸コバルト、塩化コバルト、及びコバルトからなる群から選ばれる1種又は2種以上であり、より好ましくは酢酸コバルト及び臭化コバルトからなる群から選ばれる1種又は2種以上であり、更に好ましくは酢酸コバルトであり、その水和物を用いてもよい。
 マンガン系触媒としては、マンガンの無機酸塩(例えば、臭素化物、炭酸塩等)及び有機酸塩(例えば、酢酸塩、プロピオン酸塩等)からなる群から選ばれる1種又は2種以上が挙げられる。これらの中では、入手性、経済性の観点から、好ましくは酢酸マンガン、臭化マンガン、硫酸マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、及びマンガンからなる群から選ばれる1種又は2種以上であり、より好ましくは酢酸マンガン及び臭化マンガンからなる群から選ばれる1種又は2種以上であり、更に好ましくは酢酸マンガンであり、その水和物を用いてもよい。
(catalyst)
The metal catalyst used in the oxidation method 1 is preferably one or more selected from the group consisting of a cobalt-based catalyst and a manganese-based catalyst. The cobalt-based catalyst and the manganese-based catalyst are not particularly limited as long as they can be dissolved in the reaction solvent at the reaction temperature.
Examples of the cobalt-based catalyst include one or more selected from the group consisting of cobalt inorganic acid salts (eg, bromide, carbonate, etc.) and organic acid salts (eg, acetate, propionate, etc.). It is done. Among these, from the viewpoint of availability and economy, preferably one or more selected from the group consisting of cobalt acetate, cobalt bromide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt chloride, and cobalt. Yes, more preferably one or more selected from the group consisting of cobalt acetate and cobalt bromide, still more preferably cobalt acetate, and hydrates thereof may be used.
Examples of the manganese-based catalyst include one or more selected from the group consisting of inorganic salts of manganese (eg, bromide, carbonate, etc.) and organic acid salts (eg, acetate, propionate, etc.). It is done. Among these, from the viewpoint of availability and economy, preferably one or more selected from the group consisting of manganese acetate, manganese bromide, manganese sulfate, manganese nitrate, manganese carbonate, manganese chloride, and manganese. Yes, more preferably one or more selected from the group consisting of manganese acetate and manganese bromide, still more preferably manganese acetate, and hydrates thereof may be used.
 酸化方法1で用いるハロゲン化合物としては、反応温度において反応溶媒に溶解してハロゲンイオンを供給できるものであればよく、臭素、塩素、フッ素、及びヨウ素、並びにこれらハロゲンの水素化物、アルカリ金属塩、コバルト塩、マンガン塩、アンモニウム塩、及び有機ハロゲン化物からなる群から選ばれる1種又は2種以上が挙げられる。
 これらの中では、反応性の観点から、臭素、臭化ナトリウム、臭化カリウム、臭化コバルト、及び臭化マンガンからなる群から選ばれる1種又は2種以上が好ましい。
 なお、臭化コバルト及び臭化マンガンは前述のコバルト系触媒とハロゲン化合物の両方を兼ねることができる。
The halogen compound used in the oxidation method 1 may be any halogen compound that can be dissolved in a reaction solvent at a reaction temperature and can supply a halogen ion. Examples thereof include one or more selected from the group consisting of cobalt salts, manganese salts, ammonium salts, and organic halides.
Among these, from the viewpoint of reactivity, one or two or more selected from the group consisting of bromine, sodium bromide, potassium bromide, cobalt bromide, and manganese bromide are preferable.
Cobalt bromide and manganese bromide can serve as both the cobalt catalyst and the halogen compound.
(酸化触媒量)
 酸化方法1で用いる金属触媒の使用量は、反応性、HMF酸化物の収率の観点から、工程a~cを含む方法により得られる原料HMFに対して、好ましくは0.1モル%以上、より好ましくは0.5モル%以上、更に好ましくは1.0モル%以上であり、好ましくは60.0モル%以下、より好ましくは40.0モル%以下、更に好ましくは15.0モル%以下である。
 酸化方法1で用いるコバルト系触媒の使用量は、反応性、HMF酸化物の収率の観点から、工程a~cを含む方法により得られる原料HMFに対して、好ましくは0.1モル%以上、より好ましくは0.5モル%以上、更に好ましくは1.0モル%以上であり、好ましくは30.0モル%以下、より好ましくは20.0モル%以下、更に好ましくは15.0モル%以下である。
 酸化方法1で用いるマンガン系触媒の使用量は、反応性、HMF酸化物の収率の観点から、工程a~cを含む方法により得られる原料HMFに対して、好ましくは0.1モル%以上、より好ましくは0.5モル%以上、更に好ましくは1.0モル%以上であり、好ましくは30モル%以下、より好ましくは20.0モル%以下である。
 酸化方法1で用いるハロゲン化合物の使用量は、反応性、HMF酸化物の収率の観点から、工程a~cを含む方法により得られる原料HMFに対して、好ましくは0.01モル%以上、より好ましくは0.1モル%以上であり、好ましくは20.0モル%以下、より好ましくは15.0モル%以下、更に好ましくは10.0モル%以下である。
(Oxidation catalyst amount)
The amount of the metal catalyst used in the oxidation method 1 is preferably 0.1 mol% or more with respect to the raw material HMF obtained by the method including steps a to c, from the viewpoint of reactivity and the yield of HMF oxide. More preferably 0.5 mol% or more, still more preferably 1.0 mol% or more, preferably 60.0 mol% or less, more preferably 40.0 mol% or less, still more preferably 15.0 mol% or less. It is.
The amount of the cobalt-based catalyst used in the oxidation method 1 is preferably 0.1 mol% or more with respect to the raw material HMF obtained by the method including steps a to c from the viewpoint of reactivity and the yield of HMF oxide. More preferably 0.5 mol% or more, still more preferably 1.0 mol% or more, preferably 30.0 mol% or less, more preferably 20.0 mol% or less, still more preferably 15.0 mol%. It is as follows.
The amount of the manganese-based catalyst used in the oxidation method 1 is preferably 0.1 mol% or more with respect to the raw material HMF obtained by the method including steps a to c from the viewpoint of reactivity and the yield of HMF oxide. More preferably, it is 0.5 mol% or more, more preferably 1.0 mol% or more, preferably 30 mol% or less, more preferably 20.0 mol% or less.
The amount of the halogen compound used in oxidation method 1 is preferably 0.01 mol% or more with respect to the raw material HMF obtained by the method including steps a to c, from the viewpoint of reactivity and the yield of HMF oxide. More preferably, it is 0.1 mol% or more, Preferably it is 20.0 mol% or less, More preferably, it is 15.0 mol% or less, More preferably, it is 10.0 mol% or less.
(酸化性気体の供給方法、圧力、流量)
 酸化方法1で用いる酸化性気体としては、酸素、空気、及び酸素、空気、希釈用不活性ガス(窒素、アルゴン等)からなる群から選ばれる2種類以上の混合気体でもよい。
 酸化性気体の供給方法は、所定の圧力・流量で反応器に供給できればよく特に制限されない。酸化性気体は気相空間部に流通させてもよいし、液中から吹き込んでもよい。
(Oxidizing gas supply method, pressure, flow rate)
The oxidizing gas used in the oxidation method 1 may be oxygen, air, and a mixed gas of two or more selected from the group consisting of oxygen, air, and inert gas for dilution (nitrogen, argon, etc.).
The method for supplying the oxidizing gas is not particularly limited as long as it can be supplied to the reactor at a predetermined pressure and flow rate. The oxidizing gas may be circulated in the gas phase space or may be blown from the liquid.
 酸化性気体の典型的な供給方法は、空気と希釈用不活性ガス(窒素、アルゴン等)とを公知の混合器により混合し、酸素濃度が制御された混合ガスとして所定圧力及び/又は所定流量で反応器に供給する方法である。
 酸化性気体の圧力は、反応溶媒が反応温度において液相を保つことができれば、高いほど反応性が高まるため好ましい。しかしながら、圧力が高すぎると機密性確保のための設備投資が大きくなり、また反応前後の準備時間が長くなる場合が多いため、生産性の低下を招く可能性が高まる。これらの観点から、酸化性気体の圧力は、0.01MPa以上が好ましく、0.1MPa以上がより好ましく、10MPa以下が好ましく、8MPa以下がより好ましく、5MPa以下が更に好ましい。
 酸化性気体の流量は、大きいほど反応性は高まるものの、流量が大きすぎると供給のための設備投資が大きくなる上に、排気ガス量も多くなるため、経済性の低下を招く。したがって、酸化性気体の流量は、仕込みのHMF1.0mol当たり1L/分以上とすることが好ましく、2L/分以上とすることがより好ましく、20L/分以下とすることが好ましく、10L/分以下とすることがより好ましい。
A typical supply method of the oxidizing gas is a mixture of air and an inert gas for dilution (nitrogen, argon, etc.) using a known mixer, and a predetermined pressure and / or a predetermined flow rate as a mixed gas in which the oxygen concentration is controlled. This is a method of supplying to the reactor.
The higher the pressure of the oxidizing gas, the higher the reactivity, as long as the reaction solvent can maintain a liquid phase at the reaction temperature. However, if the pressure is too high, the capital investment for securing confidentiality increases, and the preparation time before and after the reaction often increases, which increases the possibility of reducing productivity. From these viewpoints, the pressure of the oxidizing gas is preferably 0.01 MPa or more, more preferably 0.1 MPa or more, preferably 10 MPa or less, more preferably 8 MPa or less, and still more preferably 5 MPa or less.
As the flow rate of the oxidizing gas increases, the reactivity increases. However, if the flow rate is too high, the capital investment for supply increases and the amount of exhaust gas increases, resulting in a decrease in economic efficiency. Accordingly, the flow rate of the oxidizing gas is preferably 1 L / min or more per 1.0 mol of charged HMF, more preferably 2 L / min or more, and preferably 20 L / min or less, and 10 L / min or less. More preferably.
(反応温度)
 酸化反応1の反応温度は、反応性の観点から、50℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましく、90℃以上が更に好ましく、100℃以上が更に好ましく、250℃以下が好ましく、240℃以下がより好ましく、230℃以下が更に好ましく、220℃以下が更に好ましく、200℃以下が更に好ましい。
(Reaction temperature)
The reaction temperature of the oxidation reaction 1 is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 80 ° C. or higher, still more preferably 90 ° C. or higher, further preferably 100 ° C. or higher, more preferably 250 ° C. from the viewpoint of reactivity. The following is preferable, 240 ° C. or lower is more preferable, 230 ° C. or lower is further preferable, 220 ° C. or lower is further preferable, and 200 ° C. or lower is further preferable.
(精製)
 純度向上の観点から、酸化反応終了後にHMF酸化物の精製を行ってもよく、特開2001-288139号公報等の公知の方法で精製することができる。例えば、HMF酸化物がFDCAの場合には、酸化反応終了後にろ過して得られるHMF酸化物に水を含む液体を加えてスラリー化し、これを加熱溶解した状態で、水素添加触媒の存在下に水素添加処理を行い、得られた反応物に、晶析、及び固液分離を施すことによって精製することができる。精製工程後に固液分離して得られる固形物をそのまま乾燥して製品とすることが好ましい。さらに、新たに水を加えて洗浄した後、固液分離された固形物を乾燥して製品としてもよい。
(Purification)
From the viewpoint of improving the purity, the HMF oxide may be purified after completion of the oxidation reaction, and can be purified by a known method such as JP-A-2001-288139. For example, when the HMF oxide is FDCA, a liquid containing water is added to the HMF oxide obtained by filtration after completion of the oxidation reaction to form a slurry, which is heated and dissolved in the presence of the hydrogenation catalyst. It can refine | purify by performing a hydrogenation process and subjecting the obtained reaction material to crystallization and solid-liquid separation. It is preferable to dry the solid obtained by solid-liquid separation after the purification step as it is to obtain a product. Furthermore, after adding water and washing | cleaning newly, the solid substance isolate | separated into solid and liquid may be dried and it may be set as a product.
(酸化方法2)
 酸化方法2は、周期表第8~11族から選ばれる少なくとも1種の金属元素を含有する触媒の存在下に、酸化性気体とHMFを接触させて酸化する方法である。
(Oxidation method 2)
The oxidation method 2 is a method in which an oxidizing gas and HMF are brought into contact with each other and oxidized in the presence of a catalyst containing at least one metal element selected from Groups 8 to 11 of the periodic table.
(酸化触媒)
 酸化方法2で用いる触媒は、周期表第8~11族からなる群から選ばれる1種又は2種以上の金属元素を含有する触媒(以下、「貴金属触媒」ともいう)である。
 貴金属触媒は、触媒活性の観点から、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、金、及びコバルト(以下、これらを「白金族元素」ともいう)からなる群から選ばれる1種又は2種以上の元素を含有することが好ましく、パラジウム、金、ルテニウム、及び白金からなる群から選ばれる1種又は2種以上の元素を含有することがより好ましく、パラジウム、及び白金からなる群から選ばれる1種又は2種以上の元素を含有することがより好ましい。
(Oxidation catalyst)
The catalyst used in the oxidation method 2 is a catalyst containing one or more metal elements selected from the group consisting of Groups 8 to 11 of the periodic table (hereinafter also referred to as “noble metal catalyst”).
The noble metal catalyst is one or two selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt (hereinafter also referred to as “platinum group elements”) from the viewpoint of catalytic activity. It is preferable to contain the above elements, more preferably one or more elements selected from the group consisting of palladium, gold, ruthenium and platinum, and more preferably selected from the group consisting of palladium and platinum. More preferably, one or more elements are contained.
 また、貴金属触媒が、白金族元素からなる群から選ばれる1種又は2種以上の元素(以下、「触媒第1成分」ともいう)を含有する場合、更に、触媒成分として、スズ、ビスマス、セレン、亜鉛、鉛、テルル、及びアンチモンからなる群から選ばれる1種又は2種以上の元素(以下、「触媒第2成分」ともいう)を含有することが好ましい。
 更に、貴金属触媒が、触媒第1成分及び触媒第2成分を含有する場合、更に、触媒成分として、希土類元素から選ばれる1種又は2種以上の元素(以下、「触媒第3成分」ともいう)を含有することができる。
 触媒第1成分と触媒第2成分の比率は、触媒活性の観点から、[触媒第2成分/触媒第1成分]の原子比で0.001以上が好ましく、0.005以上がより好ましく、0.01以上が更に好ましく、10以下が好ましく、7以下がより好ましく、6以下が更に好ましい。また、触媒第1成分と触媒第3成分の比率は、[触媒第3成分/触媒第1成分]の原子比で0.01以上が好ましく、5以下が好ましい。
Further, when the noble metal catalyst contains one or more elements selected from the group consisting of platinum group elements (hereinafter, also referred to as “catalyst first component”), as a catalyst component, tin, bismuth, It is preferable to contain one or more elements selected from the group consisting of selenium, zinc, lead, tellurium and antimony (hereinafter also referred to as “catalyst second component”).
Further, when the noble metal catalyst contains a first catalyst component and a second catalyst component, the catalyst component is further selected from one or more elements selected from rare earth elements (hereinafter also referred to as “catalyst third component”). ) Can be contained.
The ratio of the first catalyst component to the second catalyst component is preferably 0.001 or more, more preferably 0.005 or more in terms of the [catalyst second component / catalyst first component] atomic ratio, from the viewpoint of catalyst activity. 0.01 or more is more preferable, 10 or less is preferable, 7 or less is more preferable, and 6 or less is more preferable. In addition, the ratio of the first catalyst component to the third catalyst component is preferably 0.01 or more, and more preferably 5 or less in terms of the [catalyst third component / catalyst first component] atomic ratio.
 酸化方法2で用いる貴金属触媒は、担体に担持させた担持触媒として用いるのが好ましい。担体は無機担体が好ましく、例えば、活性炭、アルミナ、シリカゲル、活性白土、珪藻土、粘土、ゼオライト、シリカ、シリカ-アルミナ、シリカ-マグネシア、シリカ-チタニア、チタニア、スズ-チタニア、ニオブ、ジルコニア、及びセリアからなる群から選ばれる1種又は2種以上が挙げられる。このうち、アルミナ、シリカ、チタニア、セリア、及び活性炭からなる群から選ばれる1種又は2種以上がより好ましい。
 触媒第1成分の合計担持量は、担持触媒全体量の好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2.0質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは13質量%以下である。
 触媒第2成分の合計担持量は、担持触媒全体量の好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
 触媒第3成分の合計担持量は、担持触媒全体量の好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは5質量%以下である。
The noble metal catalyst used in the oxidation method 2 is preferably used as a supported catalyst supported on a carrier. The carrier is preferably an inorganic carrier such as activated carbon, alumina, silica gel, activated clay, diatomaceous earth, clay, zeolite, silica, silica-alumina, silica-magnesia, silica-titania, titania, tin-titania, niobium, zirconia, and ceria. 1 type (s) or 2 or more types chosen from the group which consists of are mentioned. Of these, one or more selected from the group consisting of alumina, silica, titania, ceria, and activated carbon are more preferable.
The total supported amount of the first catalyst component is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 2.0% by mass or more, preferably 20% by mass or less, based on the total amount of the supported catalyst. More preferably, it is 15 mass% or less, More preferably, it is 13 mass% or less.
The total supported amount of the second catalyst component is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, preferably 20% by mass, based on the total amount of the supported catalyst. % Or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
The total supported amount of the third catalyst component is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, preferably 20% by mass, based on the total amount of the supported catalyst. % Or less, more preferably 15% by mass or less, and still more preferably 5% by mass or less.
 酸化方法2で用いる貴金属触媒は、特開昭62-269746号公報等の公知の方法で製造することができる。例えば、触媒第1成分の元素を含む化合物(塩化パラジウム、塩化白金酸等)の水溶液、触媒第2成分の元素を含む化合物(塩化ビスマス、五塩化アンチモン等)の水溶液、必要に応じて触媒第3成分の元素を含む化合物(塩化セリウム、塩化ランタン等)の水溶液を一括又は分割で、水中で、活性炭等の担体に吸着させた後、触媒成分の還元処理を行う方法で製造できる。
 貴金属触媒の使用量は、触媒活性の観点から、貴金属触媒中の触媒第1成分の合計量がHMFに対して好ましくは0.0001質量%以上、より好ましくは0.001質量%以上、更に好ましくは0.01質量%以上であり、好ましくは2.0質量%以下、より好ましくは1.5質量%以下、更に好ましくは1.0質量%以下である。
 また、貴金属触媒が、触媒第1成分、触媒第2成分を含む場合、触媒第1成分と触媒第2成分との合計使用量は、HMFに対して好ましくは0.0001質量%以上、より好ましくは0.001質量%以上であり、好ましくは4.0質量%以下、より好ましくは3.0質量%以下である。
 貴金属触媒が、触媒第1成分、触媒第2成分及び触媒第3成分を含む場合、触媒第1成分と触媒第2成分と触媒第3成分との合計使用量は、HMFに対して好ましくは0.001質量%以上、より好ましくは0.01質量%以上であり、好ましくは6.0質量%以下、より好ましくは4.0質量%以下である。
The noble metal catalyst used in the oxidation method 2 can be produced by a known method such as JP-A-62-269746. For example, an aqueous solution of a compound containing an element of the first catalyst component (palladium chloride, chloroplatinic acid, etc.), an aqueous solution of a compound containing the element of the second catalyst component (bismuth chloride, antimony pentachloride, etc.), It can be produced by a method in which an aqueous solution of a compound containing three elements (cerium chloride, lanthanum chloride, etc.) is adsorbed on a carrier such as activated carbon in water in a lump or divided and then the catalyst component is reduced.
The amount of the noble metal catalyst used is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and still more preferably the total amount of the first catalyst component in the noble metal catalyst with respect to HMF from the viewpoint of catalyst activity. Is 0.01% by mass or more, preferably 2.0% by mass or less, more preferably 1.5% by mass or less, and still more preferably 1.0% by mass or less.
When the noble metal catalyst includes the first catalyst component and the second catalyst component, the total amount of the first catalyst component and the second catalyst component is preferably 0.0001% by mass or more with respect to HMF, and more preferably. Is 0.001% by mass or more, preferably 4.0% by mass or less, more preferably 3.0% by mass or less.
When the noble metal catalyst includes the first catalyst component, the second catalyst component, and the third catalyst component, the total amount of the first catalyst component, the second catalyst component, and the third catalyst component is preferably 0 with respect to the HMF. It is 0.001 mass% or more, More preferably, it is 0.01 mass% or more, Preferably it is 6.0 mass% or less, More preferably, it is 4.0 mass% or less.
(溶媒)
 酸化方法2においては溶媒を用いることが好ましい。溶媒としては、入手性、経済性、安全性の観点から水が好ましい。また、必要に応じて有機溶媒を使用することもできる。HMF酸化物の生産性向上の観点から、仕込み時において液相中の水の濃度は、通常0質量%以上であり、5質量%以上が好ましく、通常99質量%以下であり、95質量%以下が好ましく、80質量%以下がより好ましい。
(solvent)
In the oxidation method 2, it is preferable to use a solvent. As the solvent, water is preferable from the viewpoints of availability, economy and safety. Moreover, an organic solvent can also be used as needed. From the viewpoint of improving the productivity of the HMF oxide, the concentration of water in the liquid phase at the time of preparation is usually 0% by mass or more, preferably 5% by mass or more, and usually 99% by mass or less, and 95% by mass or less. Is preferable, and 80 mass% or less is more preferable.
(酸化性気体)
 酸化方法2で用いる酸化性気体は、前記の酸化方法1で用いる酸化性気体と同様である。
 酸化方法2の酸化反応では、液相中の溶存酸素量を好ましくは1ppm以下、より好ましくは0~0.8ppm、更に好ましくは0~0.5ppmにした後、酸素等の酸化性気体の供給を開始することが好ましい。こうすれば反応初期においても速やかに反応は進行する。
 酸化性気体の供給を開始する前に液相中の溶存酸素量を1ppm以下にする方法としては、(1)液相中に、ヘリウム、アルゴン、窒素、二酸化炭素等やメタン、エタン、プロパン等の炭化水素等の接触酸化に影響を与えない不活性ガスを流通させる方法、(2)酸化性気体と反応するメタノール、エタノール、プロパノール、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、水素等を反応液に添加する方法等が挙げられる。このうち、操作性、安全性の観点から、(1)の方法が好ましい。
 酸素含有混合ガスを用いる場合、吹き込まれるガス中の酸素濃度は、10体積%以上が好ましく、20体積%以上がより好ましいが、特に酸素単独で吹き込むことが好ましい。
(Oxidizing gas)
The oxidizing gas used in the oxidation method 2 is the same as the oxidizing gas used in the oxidation method 1 described above.
In the oxidation reaction of oxidation method 2, the amount of dissolved oxygen in the liquid phase is preferably 1 ppm or less, more preferably 0 to 0.8 ppm, and still more preferably 0 to 0.5 ppm, and then an oxidizing gas such as oxygen is supplied. It is preferable to start. In this way, the reaction proceeds promptly even in the initial reaction.
Before starting the supply of oxidizing gas, the amount of dissolved oxygen in the liquid phase is 1 ppm or less. (1) In the liquid phase, helium, argon, nitrogen, carbon dioxide, methane, ethane, propane, etc. (2) Add methanol, ethanol, propanol, formaldehyde, acetaldehyde, propionaldehyde, hydrogen, etc. that react with oxidizing gas to the reaction solution. Methods and the like. Among these, the method (1) is preferable from the viewpoints of operability and safety.
In the case of using an oxygen-containing mixed gas, the oxygen concentration in the gas to be blown is preferably 10% by volume or more, more preferably 20% by volume or more, but particularly preferably oxygen alone is blown.
(反応温度)
 酸化方法2による酸化反応における反応温度は酸素の溶解性、低エネルギーの観点から、好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上であり、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは150℃以下である。
(Reaction temperature)
The reaction temperature in the oxidation reaction by the oxidation method 2 is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, preferably 200 ° C. or lower, from the viewpoints of oxygen solubility and low energy. Preferably it is 180 degrees C or less, More preferably, it is 150 degrees C or less.
(反応圧力)
 反応圧力は常圧でもよいが、通常0.01MPa以上であり、通常3.0MPa以下、好ましくは2.0MPa以下、より好ましくは1.5MPa以下である。
(Reaction pressure)
Although the reaction pressure may be normal pressure, it is usually 0.01 MPa or more, usually 3.0 MPa or less, preferably 2.0 MPa or less, more preferably 1.5 MPa or less.
(アルカリ物質)
 酸化方法2によるHMFの酸化は、アルカリ物質を含有する液相で行うことが好ましい。アルカリ物質としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、アルカリ金属炭酸塩、及びアルカリ土類金属炭酸塩からなる群から選ばれる1種又は2種以上が挙げられる。なかでも、反応性、経済性の観点からアルカリ金属水酸化物が好ましい。
 反応速度及びHMFの副反応抑制の観点から、液相のpHは好ましくは7.5以上、より好ましくはpH8以上、より好ましくはpH13以下となるような量でアルカリ物質を用いることが好ましい。
(Alkaline substance)
The oxidation of HMF by the oxidation method 2 is preferably performed in a liquid phase containing an alkaline substance. Examples of alkaline substances include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, alkali metal carbonates, and alkaline earth metal carbonates. 1 type (s) or 2 or more types selected from the group which consists of. Of these, alkali metal hydroxides are preferred from the viewpoints of reactivity and economy.
From the viewpoint of reaction rate and suppression of side reaction of HMF, it is preferable to use an alkaline substance in such an amount that the pH of the liquid phase is preferably 7.5 or more, more preferably pH 8 or more, more preferably pH 13 or less.
 酸化方法2によるHMFの酸化を、アルカリ物質を含有する液相で行った場合、反応終了後、ろ過、又は遠心分離等の方法で触媒を除去した液相には、HMF、FDCA、及びカルボン酸類がアルカリ物質との塩の形で溶解しているので、必要であれば塩酸等の鉱酸で酸型化して、HMFの酸化物を得ることもできる。
 酸型化工程を簡略化し、生産性を向上させる観点からは、アルカリ物質を使用せずに、水、又は有機溶媒中でHMFの酸化を行うことが好ましい。
When the oxidation of HMF by oxidation method 2 is carried out in a liquid phase containing an alkaline substance, HMF, FDCA, and carboxylic acids are included in the liquid phase after completion of the reaction and after removal of the catalyst by a method such as filtration or centrifugation. Is dissolved in the form of a salt with an alkaline substance. If necessary, it can be acidified with a mineral acid such as hydrochloric acid to obtain an oxide of HMF.
From the viewpoint of simplifying the acidification step and improving productivity, it is preferable to oxidize HMF in water or an organic solvent without using an alkaline substance.
(5-ヒドロキシメチルフルフラール酸化物)
 本発明の5-ヒドロキシメチルフルフラール酸化物としては、2,5-フランジカルボン酸(FDCA)、ジホルミルフラン(DFF)、2-カルボキシ-5-ホルミルフラン(CFF)、5-ヒドロキシメチル-2-フランカルボン酸(HMFA)、及び5-アセトキシメチル-2-フランカルボン酸(AcMFA)からなる群から選ばれる1種又は2種以上を挙げることができ、工程dの反応条件を適宜選択して酸化反応を行うことで、所望の生成物を製造することができる。この中でも、化学品原料としての有用性の観点から、2,5-フランジカルボン酸(FDCA)が好ましい。
(5-hydroxymethylfurfural oxide)
Examples of the 5-hydroxymethylfurfural oxide of the present invention include 2,5-furandicarboxylic acid (FDCA), diformylfuran (DFF), 2-carboxy-5-formylfuran (CFF), 5-hydroxymethyl-2- One or more selected from the group consisting of furan carboxylic acid (HMFA) and 5-acetoxymethyl-2-furan carboxylic acid (AcMFA) can be mentioned, and the reaction conditions in step d can be appropriately selected for oxidation. By performing the reaction, a desired product can be produced. Among these, 2,5-furandicarboxylic acid (FDCA) is preferable from the viewpoint of usefulness as a chemical raw material.
 上述した実施形態に関し、本発明は以下の5-ヒドロキシメチルフルフラール及びその酸化物を開示する。
<1>下記工程a~cを有する、5-ヒドロキシメチルフルフラールの製造方法。
 工程a:反応溶媒の存在下、糖原料を脱水反応させ、該反応溶媒中に5-ヒドロキシメチルフルフラールを生成させて、5-ヒドロキシメチルフルフラールを含む反応溶媒を得る工程
 工程b:工程aで得られた5-ヒドロキシメチルフルフラールを含む反応溶媒から、5-ヒドロキシメチルフルフラールを疎水性溶媒中に抽出して、5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得る工程
 工程c:工程bで得られた、5-ヒドロキシメチルフルフラールを含む疎水性溶媒から、水中に5-ヒドロキシメチルフルフラールを抽出して、5-ヒドロキシメチルフルフラールを含む水溶液を得る工程
The present invention discloses the following 5-hydroxymethylfurfural and its oxide with respect to the above-described embodiment.
<1> A method for producing 5-hydroxymethylfurfural, comprising the following steps a to c.
Step a: A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural Step b: obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural Step c: obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural
<2>工程aで使用される糖原料が、好ましくはフルクトースを含む糖原料、より好ましくはフルクトース、フルクトースと任意の単糖との混合物、フルクトースと任意の単糖とを組み合わせた二糖、フルクトースと任意の単糖とを組み合わせたオリゴ糖、及びフルクトースと任意の単糖とを組み合わせた多糖;高フルクトースコーンシロップ、その精製中間体、及びその副産物;大豆糖液、サトウキビやシュガービートに由来する糖液、及びその糖液から得られる精製糖、粗糖、廃糖蜜、及び転化糖;並びにイヌリンからなる群から選ばれる1種又は2種以上、更に好ましくはグルコースとフルクトースの混合物、フルクトース、スクロース、イヌリン、並びにサトウキビやシュガービートに由来する糖液から得られる精製糖、粗糖及び廃糖蜜からなる群から選ばれる1種又は2種以上である、前記<1>に記載の5-ヒドロキシメチルフルフラールの製造方法。
<3>単糖が、好ましくはグルコース、ガラクトース、マンノース及びソルボースからなる群から選ばれる1種又は2種以上、より好ましくはグルコース、マンノース、及びガラクトースからなる群から選ばれる1種又は2種以上、更に好ましくはグルコースである、前記<2>に記載の5-ヒドロキシメチルフルフラールの製造方法。
<4>工程aにおける糖原料の反応溶媒中の濃度が、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、更に好ましくは3質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、更に好ましくは50質量%以下である、前記<1>~<3>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<5>工程aで用いる反応溶媒が、好ましくは極性溶媒、より好ましくは水、高極性非プロトン性有機溶媒、及びイオン性液体からなる群から選ばれる1種又は2種以上であり、更に好ましくは水、ジメチルスルホキシド、ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、アセトン、メチルエチルケトン、スルホラン、イミダゾリウム塩類、ピリジニウム塩類、及びテトラヒドロフランからなる群から選ばれる1種又は2種以上、更に好ましくは水、ジメチルスルホキシド、N-メチル-2-ピロリジノン、ジメチルアセトアミド、アセトン、イミダゾリウム塩類、及びテトラヒドロフランからなる群から選ばれる1種又は2種以上、更に好ましくは水、ジメチルスルホキシド、アセトン、イミダゾリウム塩類、及びテトラヒドロフランからなる群から選ばれる1種又は2種以上である、前記<1>~<4>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<2> The sugar raw material used in step a is preferably a sugar raw material containing fructose, more preferably fructose, a mixture of fructose and any monosaccharide, a disaccharide combining fructose and any monosaccharide, fructose Oligosaccharides combining sucrose and any monosaccharide, and polysaccharides combining fructose and any saccharose; high fructose corn syrup, its purified intermediates and by-products; derived from soy sugar liquor, sugarcane and sugar beet Sugar solution, and purified sugar, crude sugar, molasses, and invert sugar obtained from the sugar solution; and one or more selected from the group consisting of inulin, more preferably a mixture of glucose and fructose, fructose, sucrose, Purified sugar, crude sugar and waste from inulin and sugar solution derived from sugarcane and sugar beet It is one or more selected from the group consisting of honey, production method of 5-hydroxymethyl furfural according to <1>.
<3> Monosaccharide is preferably one or more selected from the group consisting of glucose, galactose, mannose and sorbose, more preferably one or more selected from the group consisting of glucose, mannose and galactose More preferably, the method for producing 5-hydroxymethylfurfural according to the above <2>, which is glucose.
<4> The concentration of the sugar raw material in the reaction solvent in step a is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and further preferably 3% by mass or more. Preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and further preferably 50% by mass or less, according to any one of <1> to <3>. A process for producing 5-hydroxymethylfurfural.
<5> The reaction solvent used in step a is preferably a polar solvent, more preferably one or more selected from the group consisting of water, a highly polar aprotic organic solvent, and an ionic liquid, and more preferably Is one or two selected from the group consisting of water, dimethyl sulfoxide, dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidinone, acetone, methyl ethyl ketone, sulfolane, imidazolium salts, pyridinium salts, and tetrahydrofuran More preferably, one or more selected from the group consisting of water, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, dimethylacetamide, acetone, imidazolium salts, and tetrahydrofuran, more preferably water, dimethyl sulfoxide, Acetone, imidazo Um salts, and is one or more selected from the group consisting of tetrahydrofuran, the <1> to <4> method for producing 5-hydroxymethyl furfural as claimed in any one of.
<6>工程bで用いる疎水性溶媒の水-オクタノール分配係数が、好ましくは0.3以上、より好ましくは0.4以上、更に好ましくは0.5以上であり、更に好ましくは10以下である、前記<1>~<5>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<7>工程bで用いる疎水性溶媒が、好ましくは脂肪族ケトン類、脂肪族エーテル類、脂肪族アルコール類、脂肪族エステル類、ラクトン類、芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化炭化水素類、及び疎水性イオン性液体類からなる群から選ばれる1種又は2種以上、より好ましくは脂肪族ケトン類、脂肪族エーテル類、脂肪族アルコール類、脂肪族エステル類、脂肪酸アミド類、芳香族炭化水素類、脂肪族炭化水素類、及びハロゲン化炭化水素類からなる群から選ばれる1種又は2種以上、更に好ましくは3-メチル-2-ブタノン、メチルイソブチルケトン、ジイソブチルケトン、5-メチル-3-ヘプタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、イソホロン、テトラヒドロフラン、フルフラール、フルフリルアルコール、n-ブタノール、2-ブタノール、n-アミルアルコール、イソペンチルアルコール、ヘキシルアルコール、クロロメタン、ジクロロメタン、トリクロロメタン、トリクロロエタン、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、トルエン、キシレン、ベンゼン、クメン、ジクロロエタン、デカン、デセン、ドデカン、ドデセン、ヘキサン、ペンタン、石油エーテル、酢酸エチル、酢酸プロピル、及び酢酸ブチルからなる群から選ばれる1種又は2種以上、更に好ましくは、メチルイソブチルケトン、シクロヘキサノン、n-ブタノール、2-ブタノール、n-アミルアルコール、ジクロロメタン、トリクロロメタン、ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、トルエン、ジクロロエタン、ヘキサン、酢酸エチル、酢酸プロピル、及び酢酸ブチルからなる群から選ばれる1種又は2種以上、更に好ましくはメチルイソブチルケトン、シクロヘキサノン、2-ブタノール、ジクロロメタン、トリクロロメタン、ジエチルエーテル、ジイソプロピルエーテル、酢酸エチル、酢酸ブチル、トルエン、ジクロロエタン、及びヘキサンからなる群から選ばれる1種又は2種以上である、前記<1>~<6>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<6> The water-octanol partition coefficient of the hydrophobic solvent used in step b is preferably 0.3 or more, more preferably 0.4 or more, still more preferably 0.5 or more, and even more preferably 10 or less. The method for producing 5-hydroxymethylfurfural according to any one of <1> to <5>.
<7> The hydrophobic solvent used in step b is preferably an aliphatic ketone, an aliphatic ether, an aliphatic alcohol, an aliphatic ester, a lactone, an aromatic hydrocarbon, an aliphatic hydrocarbon, a halogen One or more selected from the group consisting of hydrofluoric hydrocarbons and hydrophobic ionic liquids, more preferably aliphatic ketones, aliphatic ethers, aliphatic alcohols, aliphatic esters, fatty acid amides , Aromatic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, one or more selected from the group consisting of halogenated hydrocarbons, more preferably 3-methyl-2-butanone, methyl isobutyl ketone, diisobutyl ketone 5-methyl-3-heptanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, isophorone, tetrahydrofuran, Furfural, furfuryl alcohol, n-butanol, 2-butanol, n-amyl alcohol, isopentyl alcohol, hexyl alcohol, chloromethane, dichloromethane, trichloromethane, trichloroethane, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, toluene, One or more selected from the group consisting of xylene, benzene, cumene, dichloroethane, decane, decene, dodecane, dodecene, hexane, pentane, petroleum ether, ethyl acetate, propyl acetate, and butyl acetate, more preferably methyl Isobutyl ketone, cyclohexanone, n-butanol, 2-butanol, n-amyl alcohol, dichloromethane, trichloromethane, diethyl ether, methyl-tert-butyl ether, di One or more selected from the group consisting of isopropyl ether, toluene, dichloroethane, hexane, ethyl acetate, propyl acetate, and butyl acetate, more preferably methyl isobutyl ketone, cyclohexanone, 2-butanol, dichloromethane, trichloromethane, diethyl 5-hydroxymethyl according to any one of the above <1> to <6>, which is one or more selected from the group consisting of ether, diisopropyl ether, ethyl acetate, butyl acetate, toluene, dichloroethane, and hexane Production method of furfural.
<8>工程aで用いる反応溶媒が水であり、該工程aにおいて、水及び疎水性溶媒の存在下、糖原料を脱水反応させ、5-ヒドロキシメチルフルフラールを含む水、及び5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得ることにより、工程a及び工程bを同時に行う、前記<1>~<7>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<9>疎水性溶媒の水-オクタノール分配係数が、好ましくは0.4以上、より好ましくは0.5以上であり、好ましくは10以下、より好ましくは7以下、更に好ましくは5以下のものである、前記<8>に記載の5-ヒドロキシメチルフルフラールの製造方法。
<10>疎水性溶媒が、好ましくは脂肪族ケトン類、脂肪族アルコール類、脂肪族エステル類、脂肪族エーテル類、芳香族炭化水素類及びハロゲン化炭化水素類からなる群から選ばれる1種又は2種以上であり、より好ましくはメチルイソブチルケトン、シクロヘキサノン、n-ブタノール、2-ブタノール、n-アミルアルコール、シクロヘキサノール、ジクロロメタン、トリクロロメタン、トルエン、キシレン、ベンゼン、クメン、ベンゾニトリル、クロロベンゼン、ジクロロエタン、イソホロン、酢酸エチル、酢酸プロピル及び酢酸ブチルからなる群から選ばれる1種又は2種以上であり、更に好ましくは、メチルイソブチルケトン、シクロヘキサノン、n-ブタノール、2-ブタノール、トルエン、及びイソホロンからなる群から選ばれる1種又は2種以上であり、更に好ましくはメチルイソブチルケトン、イソホロン、及びトルエンからなる群から選ばれる1種又は2種以上である、前記<8>又は<9>に記載の5-ヒドロキシメチルフルフラールの製造方法。
<11>疎水性溶媒の使用量が、水に対して好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上、更に好ましくは1質量%以上、更に好ましくは2質量%以上、更に好ましくは5質量%以上、更に好ましくは10質量%以上であり、好ましくは100000質量%以下、より好ましくは50000質量%以下、更に好ましくは25000質量%以下、更に好ましくは10000質量%以下、更に好ましくは7500質量%以下、更に好ましくは5000質量%以下、更に好ましくは2500質量%以下である、前記<8>~<10>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<12>工程bの終了後、工程cの前に、工程bの抽出に用いた疎水性溶媒を留去し、HMFを濃縮し、得られたHMF濃縮液に、疎水性溶媒と水とを添加して、工程cの抽出を行う、前記<1>~<11>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
<13>下記工程c-2を有する、前記<1>~<12>のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
工程c-2:工程cで得られたHMFを含む水溶液から、好ましくは脱水、晶析や再結晶、溶媒抽出、吸着処理、カラムクロマトグラフィー及び蒸留からなる群から選ばれる1種又は2種以上、より好ましくは脱水、再結晶、溶媒抽出、及び吸着処理からなる群から選ばれる1種又は2種以上、更に好ましくは脱水、再結晶、及び溶媒抽出からなる群から選ばれる1種又は2種以上、更に好ましくは再結晶により、HMFを精製する工程
<8> The reaction solvent used in step a is water. In step a, a sugar raw material is subjected to a dehydration reaction in the presence of water and a hydrophobic solvent, and water containing 5-hydroxymethylfurfural and 5-hydroxymethylfurfural The method for producing 5-hydroxymethylfurfural according to any one of <1> to <7>, wherein the step a and the step b are simultaneously performed by obtaining a hydrophobic solvent containing:
<9> The water-octanol partition coefficient of the hydrophobic solvent is preferably 0.4 or more, more preferably 0.5 or more, preferably 10 or less, more preferably 7 or less, and even more preferably 5 or less. The method for producing 5-hydroxymethylfurfural as described in <8> above.
<10> The hydrophobic solvent is preferably one selected from the group consisting of aliphatic ketones, aliphatic alcohols, aliphatic esters, aliphatic ethers, aromatic hydrocarbons and halogenated hydrocarbons 2 or more, more preferably methyl isobutyl ketone, cyclohexanone, n-butanol, 2-butanol, n-amyl alcohol, cyclohexanol, dichloromethane, trichloromethane, toluene, xylene, benzene, cumene, benzonitrile, chlorobenzene, dichloroethane , Isophorone, ethyl acetate, propyl acetate and butyl acetate, or more preferably selected from the group consisting of methyl isobutyl ketone, cyclohexanone, n-butanol, 2-butanol, toluene and isophorone. Select from group 5-hydroxy as described in <8> or <9> above, which is one or more selected from the group consisting of methyl isobutyl ketone, isophorone, and toluene. A method for producing methylfurfural.
<11> The amount of the hydrophobic solvent used is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and further preferably 1% by mass with respect to water. Or more, more preferably 2% by mass or more, further preferably 5% by mass or more, further preferably 10% by mass or more, preferably 100000% by mass or less, more preferably 50000% by mass or less, and further preferably 25000% by mass or less. More preferably, it is 10,000% by mass or less, more preferably 7500% by mass or less, further preferably 5000% by mass or less, and still more preferably 2500% by mass or less, according to any one of <8> to <10> above. -A process for producing hydroxymethylfurfural.
<12> After the completion of step b, before step c, the hydrophobic solvent used in the extraction in step b is distilled off, HMF is concentrated, and the resulting HMF concentrate is mixed with hydrophobic solvent and water. The method for producing 5-hydroxymethylfurfural according to any one of <1> to <11>, wherein the extraction is performed in the step c.
<13> The process for producing 5-hydroxymethylfurfural according to any one of <1> to <12>, which comprises the following step c-2.
Step c-2: One or more selected from the group consisting of the aqueous solution containing HMF obtained in Step c, preferably from dehydration, crystallization and recrystallization, solvent extraction, adsorption treatment, column chromatography and distillation. More preferably, one or more selected from the group consisting of dehydration, recrystallization, solvent extraction, and adsorption treatment, more preferably one or two selected from the group consisting of dehydration, recrystallization, and solvent extraction More preferably, the step of purifying HMF by recrystallization
<14>前記<1>~<13>のいずれかに記載の製造方法により得られた5-ヒドロキシメチルフルフラールを酸化する工程dを有する5-ヒドロキシメチルフルフラール酸化物の製造方法。
<15>工程dの5-ヒドロキシメチルフルフラールの酸化を、金属触媒及びハロゲン化合物の存在下、有機酸溶媒中で、酸化性気体と接触させて行う、前記<14>に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<16>有機酸溶媒が、好ましくは酢酸、プロピオン酸、及び酢酸/無水酢酸の混合溶媒からなる群から選ばれる1種又は2種以上、より好ましくは酢酸である、前記<15>に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<17>金属触媒が、コバルト系触媒及びマンガン系触媒から選ばれる1種又は2種以上である、前記<15>又は<16>に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<18>コバルト系触媒が、好ましくは酢酸コバルト、臭化コバルト、硫酸コバルト、硝酸コバルト、炭酸コバルト、塩化コバルト、及びコバルトからなる群から選ばれる1種又は2種以上、より好ましくは酢酸コバルト及び臭化コバルトからなる群から選ばれる1種又は2種以上、更に好ましくは酢酸コバルトである、前記<17>に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<19>マンガン系触媒が、好ましくは酢酸マンガン、臭化マンガン、硫酸マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、及びマンガンからなる群から選ばれる1種又は2種以上であり、より好ましくは酢酸マンガン及び臭化マンガンからなる群から選ばれる1種又は2種以上であり、更に好ましくは酢酸マンガンである、前記<17>に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<20>ハロゲン化合物が、好ましくは臭素、塩素、フッ素、及びヨウ素、並びにこれらハロゲンの水素化物、アルカリ金属塩、コバルト塩、マンガン塩、アンモニウム塩、及び有機ハロゲン化物からなる群から選ばれる1種又は2種以上、より好ましくは、臭素、臭化ナトリウム、臭化カリウム、臭化コバルト、及び臭化マンガンからなる群から選ばれる1種又は2種以上である、前記<15>~<19>のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<21>金属触媒の使用量が、工程a~cを含む方法により得られる原料HMFに対して、好ましくは0.1モル%以上、より好ましくは0.5モル%以上、更に好ましくは1.0モル%以上であり、好ましくは60.0モル%以下、より好ましくは40.0モル%以下、更に好ましくは15.0モル%以下である、前記<15>~<20>のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<22>ハロゲン化合物の使用量が、工程a~cを含む方法により得られる原料HMFに対して、好ましくは0.01モル%以上、より好ましくは0.1モル%以上であり、好ましくは20.0モル%以下、より好ましくは15.0モル%以下、更に好ましくは10.0モル%以下である前記<15>~<21>のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<14> A method for producing 5-hydroxymethylfurfural oxide, comprising the step d of oxidizing 5-hydroxymethylfurfural obtained by the production method according to any one of <1> to <13>.
<15> The oxidation of 5-hydroxymethylfurfural in step d is performed by contacting with an oxidizing gas in the presence of a metal catalyst and a halogen compound in an organic acid solvent in the presence of a metal catalyst and a halogen compound. Production method of furfural oxide.
<16> The organic acid solvent is preferably one or more selected from the group consisting of acetic acid, propionic acid, and a mixed solvent of acetic acid / acetic anhydride, more preferably acetic acid, more preferably acetic acid. A process for producing 5-hydroxymethylfurfural oxide.
<17> The method for producing 5-hydroxymethylfurfural oxide according to <15> or <16>, wherein the metal catalyst is one or more selected from a cobalt catalyst and a manganese catalyst.
<18> The cobalt-based catalyst is preferably one or more selected from the group consisting of cobalt acetate, cobalt bromide, cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt chloride, and cobalt, more preferably cobalt acetate and The method for producing 5-hydroxymethylfurfural oxide according to <17>, wherein one or more selected from the group consisting of cobalt bromide, more preferably cobalt acetate.
<19> The manganese-based catalyst is preferably one or more selected from the group consisting of manganese acetate, manganese bromide, manganese sulfate, manganese nitrate, manganese carbonate, manganese chloride, and manganese, and more preferably acetic acid. The method for producing 5-hydroxymethylfurfural oxide according to the above <17>, which is one or more selected from the group consisting of manganese and manganese bromide, and more preferably manganese acetate.
<20> The halogen compound is preferably one selected from the group consisting of bromine, chlorine, fluorine, and iodine, and hydrides, alkali metal salts, cobalt salts, manganese salts, ammonium salts, and organic halides of these halogens. Or more, more preferably one or more selected from the group consisting of bromine, sodium bromide, potassium bromide, cobalt bromide, and manganese bromide, <15> to <19> The method for producing 5-hydroxymethylfurfural oxide according to any one of the above.
<21> The amount of the metal catalyst used is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, still more preferably 1. mol% or more based on the raw material HMF obtained by the method including steps a to c. Any one of the above <15> to <20>, which is 0 mol% or more, preferably 60.0 mol% or less, more preferably 40.0 mol% or less, and still more preferably 15.0 mol% or less. A process for producing the 5-hydroxymethylfurfural oxide as described.
The amount of <22> halogen compound used is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, preferably 20 mol% or more with respect to the raw material HMF obtained by the method including steps a to c. The production of 5-hydroxymethylfurfural oxide according to any one of <15> to <21>, which is 0.0 mol% or less, more preferably 15.0 mol% or less, and still more preferably 10.0 mol% or less. Method.
<23>工程dの5-ヒドロキシメチルフルフラールの酸化を、好ましくは周期表第8~11族から選ばれる少なくとも1種の金属元素を含有する触媒の存在下に、酸化性気体と接触させて行う、前記<14>~<22>のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<24>周期表第8~11族からなる群から選ばれる少なくとも1種の金属元素を含有する触媒が、好ましくはルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、金、及びコバルトからなる群から選ばれる1種又は2種以上の元素、より好ましくは、パラジウム、金、ルテニウム、及び白金からなる群から選ばれる1種又は2種以上の元素、更に好ましくはパラジウム、及び白金からなる群から選ばれる1種又は2種以上の元素を含有する、前記<23>に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<25>触媒が、好ましくは触媒第1成分としてルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、金、及びコバルトからなる群から選ばれる少なくとも1種の金属元素を含有し、かつ触媒第2成分としてスズ、ビスマス、セレン、テルル、及びアンチモンからなる群から選ばれる1種以上の元素を含有する、前記<23>又は<24>に記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<26>触媒が、好ましくは更に触媒第3成分として希土類元素からなる群から選ばれる1種又は2種以上の元素を含有する、前記<25>に記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<27>触媒第1成分と触媒第2成分の比率が、[触媒第2成分/触媒第1成分]の原子比で好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.01以上であり、好ましくは10以下、より好ましくは7以下、更に好ましくは6以下である、前記<25>又は<26>に記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<28>触媒が、好ましくは担体に担持させた担持触媒であり、担体が、好ましくは無機担体、より好ましくは、活性炭、アルミナ、シリカゲル、活性白土、珪藻土、粘土、ゼオライト、シリカ、シリカ-アルミナ、シリカ-マグネシア、シリカ-チタニア、チタニア、スズ-チタニア、ニオブ、ジルコニア、及びセリアからなる群から選ばれる1種又は2種以上、更に好ましくはアルミナ、シリカ、チタニア、セリア、及び活性炭からなる群から選ばれる1種又は2種以上である、前記<23>~<27>のいずれかに記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<29>周期表第8~11族からなる群から選ばれる1種又は2種以上の金属元素を含有する触媒中の触媒第1成分の合計量が、HMFに対して好ましくは0.0001質量%以上、より好ましくは0.001質量%以上、更に好ましくは0.01質量%以上であり、好ましくは2.0質量%以下、より好ましくは1.5質量%以下、更に好ましくは1.0質量%以下である、前記<23>~<28>のいずれかに記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<30>触媒第1成分と触媒第2成分との合計使用量が、HMFに対して好ましくは0.0001質量%以上、より好ましくは0.001質量%以上であり、好ましくは4.0質量%以下、より好ましくは3.0質量%以下である、前記<25>~<29>のいずれかに記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<31>触媒第1成分と触媒第2成分と触媒第3成分との合計使用量が、HMFに対して好ましくは0.001質量%以上、より好ましくは0.01質量%以上であり、好ましくは6.0質量%以下、より好ましくは4.0質量%以下である、前記<26>~<30>のいずれかに記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。
<32>5-ヒドロキシメチルフルフラール酸化物が、好ましくは2,5-フランジカルボン酸、ジホルミルフラン、2-カルボキシ-5-ホルミルフラン、5-ヒドロキシメチル-2-フランカルボン酸、及び5-アセトキシメチル-2-フランカルボン酸からなる群から選ばれる1種又は2種以上、より好ましくは2,5-フランジカルボン酸である、前記<14>~<31>のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。
<23> The oxidation of 5-hydroxymethylfurfural in step d is performed by contacting with an oxidizing gas, preferably in the presence of a catalyst containing at least one metal element selected from Groups 8 to 11 of the periodic table. The method for producing 5-hydroxymethylfurfural oxide according to any one of <14> to <22>.
<24> The catalyst containing at least one metal element selected from the group consisting of Groups 8 to 11 of the periodic table is preferably from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt. One or more elements selected, more preferably one or more elements selected from the group consisting of palladium, gold, ruthenium and platinum, more preferably selected from the group consisting of palladium and platinum The method for producing 5-hydroxymethylfurfural oxide according to the above <23>, which contains one or more elements.
<25> The catalyst preferably contains at least one metal element selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt as the first catalyst component, and the second catalyst component The method for producing an oxide of 5-hydroxymethylfurfural according to the above <23> or <24>, which contains at least one element selected from the group consisting of tin, bismuth, selenium, tellurium and antimony.
<26> The 5-hydroxymethylfurfural oxide according to <25>, wherein the catalyst preferably further contains one or more elements selected from the group consisting of rare earth elements as the third component of the catalyst. Production method.
<27> The ratio of the catalyst first component to the catalyst second component is preferably 0.001 or more, more preferably 0.005 or more, and still more preferably 0, in terms of the atomic ratio of [catalyst second component / catalyst first component]. The method for producing an oxide of 5-hydroxymethylfurfural according to the above <25> or <26>, which is 0.01 or more, preferably 10 or less, more preferably 7 or less, and even more preferably 6 or less.
<28> The catalyst is preferably a supported catalyst supported on a carrier, and the carrier is preferably an inorganic carrier, more preferably activated carbon, alumina, silica gel, activated clay, diatomaceous earth, clay, zeolite, silica, silica-alumina. One or more selected from the group consisting of silica, magnesia, silica-titania, titania, tin-titania, niobium, zirconia, and ceria, more preferably the group consisting of alumina, silica, titania, ceria, and activated carbon The method for producing an oxide of 5-hydroxymethylfurfural according to any one of <23> to <27>, which is one or more selected from the group consisting of:
<29> The total amount of the first catalyst component in the catalyst containing one or more metal elements selected from the group consisting of Groups 8 to 11 of the periodic table is preferably 0.0001 mass relative to HMF. % Or more, more preferably 0.001% by mass or more, further preferably 0.01% by mass or more, preferably 2.0% by mass or less, more preferably 1.5% by mass or less, and still more preferably 1.0% by mass. The method for producing an oxide of 5-hydroxymethylfurfural according to any one of <23> to <28>, wherein the oxide is 5% by mass or less.
<30> The total amount of the catalyst first component and the catalyst second component is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, preferably 4.0% by mass with respect to HMF. % Or less, more preferably 3.0% by mass or less, The method for producing an oxide of 5-hydroxymethylfurfural according to any one of <25> to <29> above.
<31> The total use amount of the first catalyst component, the second catalyst component, and the third catalyst component is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, preferably with respect to HMF. The method for producing an oxide of 5-hydroxymethylfurfural according to any one of <26> to <30>, wherein is 6.0% by mass or less, more preferably 4.0% by mass or less.
<32> 5-hydroxymethylfurfural oxide is preferably 2,5-furandicarboxylic acid, diformylfuran, 2-carboxy-5-formylfuran, 5-hydroxymethyl-2-furancarboxylic acid, and 5-acetoxy The 5-hydroxy according to any one of <14> to <31>, which is one or more selected from the group consisting of methyl-2-furancarboxylic acid, more preferably 2,5-furandicarboxylic acid A method for producing methylfurfural oxide.
 以下、本発明を具体的に示す実施例等について説明する。なお、以下の実施例及び比較例において、特記しない限り、「%」は「質量%」を意味する。 Hereinafter, examples and the like specifically showing the present invention will be described. In the following examples and comparative examples, “%” means “mass%” unless otherwise specified.
<糖転化率と六炭糖含有量>
 高速液体クロマトグラフィーにて測定を行った。なお、バイオマス原料中の糖の含有量も下記方法により算出した。また、糖原料の種類により、以下の測定法1または測定法2にて測定を行った。
(測定法1)
・検出器:CAD
・カラム:Shodex Asahipak NH2P-50 4E
・温度 :25℃
・溶離液:a)アセトニトリル b)30%メタノール含有水
・流量 :1.0mL/分
・測定サンプル希釈溶媒:純水
(測定法2)
・検出器:RI
・カラム:ICSep COREGEL-87H
・温度 :80℃
・溶離液:0.1%トリフルオロ酢酸含有水
・流量 :0.6mL/min
・測定サンプル希釈溶媒:純水
<Sugar conversion and hexose content>
Measurement was performed by high performance liquid chromatography. The sugar content in the biomass raw material was also calculated by the following method. Moreover, it measured by the following measuring method 1 or measuring method 2 according to the kind of sugar raw material.
(Measurement method 1)
・ Detector: CAD
Column: Shodex Asahipak NH2P-50 4E
・ Temperature: 25 ℃
・ Eluent: a) Acetonitrile b) Water containing 30% methanol ・ Flow rate: 1.0 mL / min ・ Measurement sample dilution solvent: Pure water (Measurement method 2)
・ Detector: RI
Column: ICSep COREGEL-87H
・ Temperature: 80 ℃
-Eluent: water containing 0.1% trifluoroacetic acid-Flow rate: 0.6 mL / min
・ Measurement sample dilution solvent: pure water
<HMF収率、HMF抽出率、有機酸含有量>
 高速液体クロマトグラフィーにて測定を行った。
・検出器:RI
・カラム:ICSep COREGEL-87H
・温度 :80℃
・溶離液:0.1%トリフルオロ酢酸含有水
・流量 :0.6mL/min
・測定サンプル希釈溶媒:純水
<HMF yield, HMF extraction rate, organic acid content>
Measurement was performed by high performance liquid chromatography.
・ Detector: RI
Column: ICSep COREGEL-87H
・ Temperature: 80 ℃
・ Eluent: Water containing 0.1% trifluoroacetic acid ・ Flow rate: 0.6 mL / min
・ Measurement sample dilution solvent: pure water
<HMF純度>
 ガスクロマトグラフィーにより測定を行った。
・GC機器:アジレントテクノロジー社製、6850
・カラム:アジレントテクノロジー社製、DB-WAX (30m×0.25mmid×0.25μm)
・検出器:FID
・キャリア:ヘリウムガス、24.5mL/分
・昇温条件:40℃10分保持、40℃~230℃まで10℃/分で昇温。その後、8分間230℃を保持。
・キャリアガス:ヘリウム、24.5mL/分
・内部標準物質:テトラデカン
・測定サンプル希釈溶媒:アセトン
<HMF purity>
Measurement was performed by gas chromatography.
-GC equipment: 6850, manufactured by Agilent Technologies
・ Column: DB-WAX (30 m × 0.25 mm × 0.25 μm) manufactured by Agilent Technologies
・ Detector: FID
Carrier: Helium gas, 24.5 mL / min Temperature rising conditions: 40 ° C. held for 10 minutes, heated from 40 ° C. to 230 ° C. at 10 ° C./min. Thereafter, maintained at 230 ° C for 8 minutes.
Carrier gas: Helium, 24.5 mL / min Internal standard: Tetradecane Measurement sample diluent solvent: Acetone
<HMF組成物中の水分の含有率>
 カールフィッシャー水分計を用い、容量滴定法にて測定を行った。
<Water content in HMF composition>
Measurement was performed by volumetric titration using a Karl Fischer moisture meter.
<HMF酸化組成物>
 高速液体クロマトグラフィーにて測定を行った。
・検出器:UV
・カラム:L-column2 ODS
・温度:40℃
・溶離液:0.1%トリフルオロ酢酸含有水、0.1%トリフルオロ酢酸含有メタノール
・流量:1.0mL/min
<HMF oxidation composition>
Measurement was performed by high performance liquid chromatography.
・ Detector: UV
・ Column: L-column2 ODS
・ Temperature: 40 ℃
-Eluent: water containing 0.1% trifluoroacetic acid, methanol containing 0.1% trifluoroacetic acid-Flow rate: 1.0 mL / min
<溶媒の水-オクタノール分配係数(LogP値)>
 実施例で使用した疎水性溶媒の水-オクタノール分配係数は、表1に示すとおりである。
 なお、本明細書における「LogP値」とは、溶媒の1-オクタノール/水の分配係数の対数値を意味し、KowWin(Syracuse Research Corporation,USA)のSRC's LOGKOW / KOWWIN Programにより、フラグメントアプローチで計算された数値を用いる(The KowWin Program methodology is described in the following journal article: Meylan, W.M. and P.H. Howard. 1995. Atom/fragment contribution method for estimating octanol-water partition coefficients. J. Pharm. Sci. 84: 83-92.)。
 フラグメントアプローチは化合物の化学構造に基づいており、原子の数及び化学結合のタイプを考慮している。LogP値は、一般に有機化合物の親疎水性の相対的評価に用いられる数値である。
<Water-octanol partition coefficient of solvent (Log P value)>
The water-octanol partition coefficient of the hydrophobic solvent used in the examples is as shown in Table 1.
The “Log P value” in this specification means the logarithmic value of the 1-octanol / water partition coefficient of the solvent, and is calculated using the fragment approach by SRC's LOGKOW / KOWWIN Program of KowWin (Syracuse Research Corporation, USA). The KowWin Program methodology is described in the following journal article: Meylan, WM and PH Howard. 1995. Atom / fragment contribution method for using octanol-water partition coefficients. J. Pharm. Sci. 84: 83- 92.).
The fragment approach is based on the chemical structure of the compound and takes into account the number of atoms and the type of chemical bond. The LogP value is a numerical value generally used for relative evaluation of the hydrophilicity / hydrophobicity of an organic compound.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1(フルクトースからのHMFの製造)
(工程aおよび工程b)
 1Lガラス製電磁弁式オートクレーブ(耐圧硝子工業社製)に、糖原料としてD-フルクトース(和光純薬工業社製)40g、反応溶媒としてイオン交換水80g、疎水性溶媒としてMIBK(和光純薬工業社製、LogP値:1.31)320g、及び触媒としてリン酸(純度85%、シグマアルドリッチ ジャパン社製)4.0gを仕込んだ。容器を密閉後、内部空間を窒素で十分に置換した。その後内容物を充分に撹拌しながら140℃まで昇温し、その後3時間、保温及び撹拌を続けながら反応を行った。なお、反応時のゲージ圧力は0.4MPaであった。
 反応終了後、攪拌を維持しながら内容物の温度が30℃以下になるまで冷却した。冷却後に内容物を濾過した後、濾液を攪拌しながら50%水酸化ナトリウム水溶液を滴下して中和し、内容物のpHを7とした。中和後、内容物を濾過して不溶物の除去を行った。
 不溶物を除去した後、水溶液層及びMIBK溶液層の各層からサンプルを採取し、純水で希釈して高速液体クロマトグラフィーにてD-フルクトースならびにHMFのピーク面積を測定した。得られたクロマトグラムにおけるD-フルクトースならびに5-ヒドロキシメチルフルフラールのピーク面積から、あらかじめ作成しておいたD-フルクトースならびに5-ヒドロキシメチルフルフラールの濃度-面積の関係式を用いて試料中のD-フルクトースならびにHMF濃度を計算したところ、D-フルクトースの転化率は93%であり、仕込んだD-フルクトースのモル基準で73%(20.4g)のHMFの生成を確認した。
Example 1 (Production of HMF from fructose)
(Process a and Process b)
1L glass solenoid valve autoclave (made by pressure-resistant glass industry), 40g of D-fructose (made by Wako Pure Chemical Industries) as sugar raw material, 80g of ion-exchanged water as reaction solvent, MIBK (Wako Pure Chemical Industries, Ltd.) as hydrophobic solvent 320 g manufactured by Kogyo Co., Ltd., LogP value: 1.31) and 4.0 g phosphoric acid (purity 85%, manufactured by Sigma-Aldrich Japan Co., Ltd.) were charged as a catalyst. After sealing the container, the internal space was sufficiently replaced with nitrogen. Thereafter, the contents were heated to 140 ° C. with sufficient stirring, and then reacted for 3 hours while keeping the temperature and stirring. The gauge pressure during the reaction was 0.4 MPa.
After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the content was filtered, and the filtrate was agitated and neutralized by adding 50% aqueous sodium hydroxide dropwise to adjust the pH of the content to 7. After neutralization, the contents were filtered to remove insoluble matters.
After removing insoluble matter, samples were taken from each of the aqueous solution layer and MIBK solution layer, diluted with pure water, and the peak areas of D-fructose and HMF were measured by high performance liquid chromatography. From the peak areas of D-fructose and 5-hydroxymethylfurfural in the obtained chromatogram, the D-fructose and 5-hydroxymethylfurfural concentration-area relations prepared in advance were used to determine the D- When the fructose and HMF concentrations were calculated, the conversion of D-fructose was 93%, and it was confirmed that 73% (20.4 g) of HMF was formed based on the molar amount of D-fructose charged.
(工程b)
 前記(工程a及び工程b)の反応終了後かつ中和後に得られた濾液の水溶液層とMIBK溶液層の各々を分取した。得られた水溶液相を分液漏斗へ移し、水溶液相に対し0.5倍質量のMIBKを入れ、水溶液層中のHMFの分液抽出操作を行った。この抽出操作を3回行い、抽出操作にて得られたMIBK溶液層と、上記で分取した反応終了後かつ中和後のMIBK溶液層を混合し、ロータリーエバポレーター(50℃温浴)にてMIBKを留去し、HMFを濃縮した。工程aと同様の方法で高速液体クロマトグラフィーにて測定を行ったところ、濃縮液中のHMFの質量は20.1g、HMFの抽出回収率は98.6%であった。また、濃縮液とテトラデカン(内部標準物質)とを混合してアセトン(和光純薬工業社製)で希釈し、ガスクロマトグラフィーにてHMFならびにテトラデカンのピーク面積を測定した。得られたクロマトグラムにおける5-ヒドロキシメチルフルフラールとテトラデカンとのピーク面積比ならびにサンプル調製質量比から、あらかじめ作成しておいた5-ヒドロキシメチルフルフラールとテトラデカンとの面積比-質量比の関係式を用いて試料中のHMF純度を計算したところ、HMF純度は82.2質量%であった。HMF濃縮液中の水分の含有率は2.6質量%であった。
 同様の操作を行い、HMFの濃縮液を11.0g(HMF純度79.7%)で得た。
 さらに同様の操作を行い、HMFの濃縮液を4.1g(HMF純度80.3%)で得た。
(Process b)
Each of the aqueous solution layer and the MIBK solution layer of the filtrate obtained after the completion of the reaction in (Step a and Step b) and after neutralization was separated. The obtained aqueous solution phase was transferred to a separatory funnel, and 0.5 times mass of MIBK was added to the aqueous solution phase to separate and extract HMF in the aqueous solution layer. This extraction operation was performed three times, and the MIBK solution layer obtained by the extraction operation was mixed with the MIBK solution layer after completion of the reaction separated and neutralized, and the MIBK solution layer was mixed with a rotary evaporator (50 ° C. warm bath). Was distilled off and HMF was concentrated. When measured by high performance liquid chromatography in the same manner as in step a, the mass of HMF in the concentrate was 20.1 g, and the HMF extraction recovery rate was 98.6%. Further, the concentrated solution and tetradecane (internal standard substance) were mixed and diluted with acetone (manufactured by Wako Pure Chemical Industries, Ltd.), and the peak areas of HMF and tetradecane were measured by gas chromatography. From the peak area ratio of 5-hydroxymethylfurfural and tetradecane and the sample preparation mass ratio in the obtained chromatogram, the relational expression of the area ratio-mass ratio of 5-hydroxymethylfurfural and tetradecane prepared in advance was used. The HMF purity in the sample was calculated, and the HMF purity was 82.2% by mass. The water content in the HMF concentrate was 2.6% by mass.
The same operation was performed to obtain 11.0 g of HMF concentrate (HMF purity: 79.7%).
Further, the same operation was performed to obtain 4.1 g of HMF concentrate (HMF purity 80.3%).
(工程c)
 前記(工程b)で得られたHMF濃縮液を1.0g(HMF純度82.2%)秤量し、これを分液漏斗へ移し、MIBK 5.0gを入れ、HMF濃縮液を希釈した後、7.5gのイオン交換水を入れ、有機溶媒層中のHMFの分液抽出操作を行った。この抽出操作を3回行い、抽出操作にて得られた水溶液をロータリーエバポレーター(50℃温浴)にて濃縮し、HMF濃縮物を得た。実施例1の工程bと同様にHMFの抽出回収率ならびにHMF濃縮物中のHMF純度を測定したところ、水層へのHMF抽出率は88.5%、HMF濃縮物中のHMF純度は83.0質量%、HMF濃縮物中の水分の含有率は13.3質量%であった。なお、濃縮物中のMIBKの残留量はガスクロマトグラフィーによる測定で検出限界以下であった。
(Process c)
After weighing 1.0 g (HMF purity 82.2%) of the HMF concentrate obtained in the above (step b), this was transferred to a separatory funnel, and 5.0 g of MIBK was added to dilute the HMF concentrate. 7.5 g of ion-exchanged water was added, and a liquid separation extraction operation of HMF in the organic solvent layer was performed. This extraction operation was performed three times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate. The extraction recovery rate of HMF and the HMF purity in the HMF concentrate were measured in the same manner as in step b of Example 1. The HMF extraction rate into the aqueous layer was 88.5%, and the HMF purity in the HMF concentrate was 83. The content of water in the 0% by mass HMF concentrate was 13.3% by mass. The residual amount of MIBK in the concentrate was below the detection limit as measured by gas chromatography.
実施例2~4
 工程cで、実施例1で使用したメチルイソブチルケトンに代えて、シクロヘキサノン(実施例2)、ジクロロメタン(実施例3)、酢酸エチル(実施例4)5.0gを用いた以外は、実施例1と同様の方法でHMF濃縮物を得た。工程cにおける水層へのHMF抽出率及びHMF濃縮物中のHMF純度ならびに水分の含有率を表2に示す。
Examples 2-4
Example 1 except that in Step c, 5.0 g of cyclohexanone (Example 2), dichloromethane (Example 3), and ethyl acetate (Example 4) were used in place of the methyl isobutyl ketone used in Example 1. HMF concentrate was obtained in the same manner as above. Table 2 shows the HMF extraction rate into the aqueous layer in step c, the HMF purity in the HMF concentrate, and the moisture content.
実施例5~10
 工程cで、実施例1で使用したメチルイソブチルケトンに代えて、酢酸ブチル(実施例5)、ジエチルエーテル(実施例6)、ジイソプロピルエーテル(実施例7)、メチルイソブチルケトン/n-ヘキサン=1/1(質量比)(実施例8)、メチルイソブチルケトン/トルエン=1/1(質量比)(実施例9)、2-ブタノール/n-ヘキサン=1/1(質量比)(実施例10)を10.0g用い、イオン交換水の使用量を15.0gに変更した以外は、実施例1と同様の方法でHMF濃縮物を得た。工程cにおける水層へのHMF抽出率及びHMF濃縮物中のHMF純度ならびに水分の含有率を表2に示す。
Examples 5 to 10
In Step c, instead of methyl isobutyl ketone used in Example 1, butyl acetate (Example 5), diethyl ether (Example 6), diisopropyl ether (Example 7), methyl isobutyl ketone / n-hexane = 1 / 1 (mass ratio) (Example 8), methyl isobutyl ketone / toluene = 1/1 (mass ratio) (Example 9), 2-butanol / n-hexane = 1/1 (mass ratio) (Example 10) ) Was used in the same manner as in Example 1 except that 10.0 g was used and the amount of ion-exchanged water used was changed to 15.0 g. Table 2 shows the HMF extraction rate into the aqueous layer in step c, the HMF purity in the HMF concentrate, and the moisture content.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例11(廃糖蜜からのHMF製造1)
(工程aおよび工程b)
 糖原料として、スクロースを24.4質量%、グルコースを7.0質量%、フルクトースを9.9質量%、水分を25.4質量%含む廃糖蜜40gを用い、反応温度を150℃、反応時間を1時間とした以外は実施例1と同様に反応ならびに冷却を行った。なお、反応時のゲージ圧力は0.5MPaであった。冷却後、内容物を濾過して固形分の除去を行った後、実施例1と同様の方法で分析した。その結果、スクロースの転化率は99%、フルクトースの転化率は92%、グルコースの転化率は42%であり、仕込んだ廃糖蜜の質量基準で12.4%(4.97g)のHMFの生成を確認した。
Example 11 (Production of HMF from molasses 1)
(Process a and Process b)
As a raw material for sugar, 40 g of molasses containing 24.4% by mass of sucrose, 7.0% by mass of glucose, 9.9% by mass of fructose and 25.4% by mass of water, reaction temperature of 150 ° C., reaction time The reaction and cooling were carried out in the same manner as in Example 1 except that was changed to 1 hour. The gauge pressure during the reaction was 0.5 MPa. After cooling, the contents were filtered to remove solids, and then analyzed in the same manner as in Example 1. As a result, the conversion rate of sucrose was 99%, the conversion rate of fructose was 92%, the conversion rate of glucose was 42%, and production of 12.4% (4.97 g) of HMF based on the mass of the charged molasses. It was confirmed.
(工程b)
 前記(工程aおよび工程b)の反応終了後かつ冷却後に得られた濾液を、水溶液層及びメチルイソブチルケトン溶液層に分取した。分取した水溶液層22.5gとメチルイソブチルケトン溶液層100.2gを混合し、攪拌しながら8N水酸化ナトリウム水溶液を滴下して中和し、濾液のpHを7とした。
 その後、実施例1の工程bと同様の方法で水溶液層中のHMFの分液抽出操作を行った。抽出操作後の水溶液層中のHMF含有量は0.045g、メチルイソブチルケトン溶液層中のHMF含有量は1.350g、HMFの抽出回収率は96.8%であった。
 その後、得られたメチルイソブチルケトン溶液層を実施例1と同様の方法で濃縮し、HMF濃縮液を得た。濃縮液中のHMF純度は73.3質量%であった。また、HMF濃縮液中の水分の含有率は2.7質量%であった。
(Process b)
The filtrate obtained after the completion of the reaction (step a and step b) and after cooling was separated into an aqueous solution layer and a methyl isobutyl ketone solution layer. The separated aqueous solution layer (22.5 g) and methyl isobutyl ketone solution layer (100.2 g) were mixed and neutralized by adding an 8N aqueous sodium hydroxide solution dropwise with stirring to adjust the pH of the filtrate to 7.
Then, the liquid separation extraction operation of HMF in an aqueous solution layer was performed by the method similar to the process b of Example 1. The HMF content in the aqueous solution layer after the extraction operation was 0.045 g, the HMF content in the methyl isobutyl ketone solution layer was 1.350 g, and the HMF extraction recovery was 96.8%.
Thereafter, the obtained methyl isobutyl ketone solution layer was concentrated in the same manner as in Example 1 to obtain an HMF concentrate. The HMF purity in the concentrate was 73.3% by mass. The water content in the HMF concentrate was 2.7% by mass.
(工程c)
 前記(工程b)で得られたHMF濃縮液4.7gを調製した。前記で調製したHMF濃縮液4.7g、疎水性溶媒としてジクロロメタン50g、イオン交換水30gを用い、抽出操作を4回行ったこと以外は、実施例1と同様の方法で抽出操作を行い、HMF濃縮物を得た。水層へのHMF抽出率は96.7%、HMF濃縮物中のHMF純度は96.0%であった。なお、濃縮物中のジクロロメタンの残留量はガスクロマトグラフィーによる測定で0.05質量%以下であった。また、HMF濃縮物中の水分の含有率は3.2質量%であった。結果を表3に示す。
(Process c)
4.7 g of the HMF concentrate obtained in the above (step b) was prepared. The extraction operation was performed in the same manner as in Example 1 except that 4.7 g of the HMF concentrate prepared above, 50 g of dichloromethane as a hydrophobic solvent, and 30 g of ion-exchanged water were used, and the extraction operation was performed four times. A concentrate was obtained. The HMF extraction rate into the aqueous layer was 96.7%, and the HMF purity in the HMF concentrate was 96.0%. The residual amount of dichloromethane in the concentrate was 0.05% by mass or less as measured by gas chromatography. The water content in the HMF concentrate was 3.2% by mass. The results are shown in Table 3.
実施例12(廃糖蜜からのHMF製造2)
 工程a及び工程bは、実施例11と同様の方法で行い、HMF濃縮液6.5g(HMF純度73.6%)を調製した。
 次に工程cとして、前記で調製したHMF濃縮液6.5g、疎水性溶媒としてメチルイソブチルケトン19.6g、イオン交換水19.6gを用い、抽出操作を5回行ったこと以外は、実施例11と同様の方法でHMF濃縮物を得た。水層へのHMF抽出率は87.9%、HMF濃縮物中のHMF純度は92.1%であった。なお、濃縮物中のメチルイソブチルケトンの残留量はガスクロマトグラフィーによる測定で0.05質量%以下であった。また、HMF濃縮物中の水分の含有率は3.9質量%であった。結果を表3に示す。
Example 12 (Production of HMF from molasses 2)
Step a and step b were performed in the same manner as in Example 11 to prepare 6.5 g of HMF concentrate (HMF purity: 73.6%).
Next, as step c, Example 5 was carried out except that 6.5 g of the HMF concentrate prepared above, 19.6 g of methyl isobutyl ketone and 19.6 g of ion-exchanged water were used as the hydrophobic solvent, and the extraction operation was performed 5 times. In the same manner as in No. 11, an HMF concentrate was obtained. The HMF extraction rate into the aqueous layer was 87.9%, and the HMF purity in the HMF concentrate was 92.1%. The residual amount of methyl isobutyl ketone in the concentrate was 0.05% by mass or less as measured by gas chromatography. The water content in the HMF concentrate was 3.9% by mass. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例13
(工程c-2:溶媒抽出)
 実施例1の工程a~cと同様方法で調製したHMF濃縮物1.49gを酢酸エチル1.5mlに溶解した。得られた酢酸エチル溶液を、予めガラス製ビーカーにトルエン50mlを入れて攪拌した中にゆっくりと滴下した。滴下終了後、溶液を静置し、有機溶媒層を分取した。有機溶媒層を分取した後に得られた残渣は再度酢酸エチル1.5mlに溶解して回収した。
 回収した酢酸エチル溶液は再度上記と同様の工程を行い、有機溶媒層を分取した。得られた有機溶媒層を混合し、ロータリーエバポレーター(50℃温浴)にて濃縮し、橙色のHMF濃縮物1.20gを得た。濃縮液中のHMF純度は98.2%であった。
Example 13
(Step c-2: Solvent extraction)
1.49 g of the HMF concentrate prepared in the same manner as in Steps a to c of Example 1 was dissolved in 1.5 ml of ethyl acetate. The obtained ethyl acetate solution was slowly added dropwise to 50 ml of toluene in a glass beaker and stirred. After completion of dropping, the solution was allowed to stand and the organic solvent layer was separated. The residue obtained after separating the organic solvent layer was again dissolved in 1.5 ml of ethyl acetate and collected.
The recovered ethyl acetate solution was again subjected to the same steps as above to separate the organic solvent layer. The obtained organic solvent layers were mixed and concentrated with a rotary evaporator (50 ° C. warm bath) to obtain 1.20 g of an orange HMF concentrate. The HMF purity in the concentrate was 98.2%.
実施例14
(工程c-2:再結晶)
 実施例13で得られたHMF濃縮物1.20gをトルエン100gに溶解させ、-30℃の冷凍室にて冷却静置し、淡黄色針状結晶を析出させた。トルエン溶液を回収し、ロータリーエバポレーター(50℃温浴)にて濃縮し、同様の操作を2回行った。結晶は十分に冷却したトルエンで洗浄し、減圧乾燥させ、淡黄色針状結晶0.86gを得た。淡黄色針状結晶のHMF純度は99%以上であった。
Example 14
(Step c-2: Recrystallization)
1.20 g of the HMF concentrate obtained in Example 13 was dissolved in 100 g of toluene and allowed to cool and stand in a freezer at −30 ° C. to precipitate light yellow needle crystals. The toluene solution was collected and concentrated with a rotary evaporator (50 ° C. warm bath), and the same operation was performed twice. The crystals were washed with sufficiently cooled toluene and dried under reduced pressure to obtain 0.86 g of pale yellow needle crystals. The HMF purity of the pale yellow needle crystal was 99% or more.
実施例15(廃糖蜜からのHMF製造3)
(工程a)
 100mLテフロン(登録商標)内容器を備えたオートクレーブ(日東高圧社製)に、糖原料として実施例11で使用した廃糖蜜6.0g、反応溶媒としてイオン交換水53.7g、及び触媒として硫酸(和光純薬工業社製)0.3gを仕込んだ。容器を密閉後、内部空間を窒素で十分に置換した。その後内容物を充分に撹拌しながら150℃まで昇温し、その後2.5時間、保温・撹拌を続けながら反応を行った。
 反応終了後、攪拌を維持しながら内容物の温度が30℃以下になるまで冷却した。冷却後、濾液内容物を攪拌しながら8N水酸化ナトリウム水溶液を滴下して中和し、濾液内容物のpHを7とした。中和後、内容物を濾過して不溶分の除去を行い、HMFの水溶液を得た。得られた水溶液相を採取し、純水で希釈して液体クロマトグラフィーにて測定した。その結果、0.46gのHMFの生成が確認された。これは仕込んだ廃糖蜜中のスクロース、グルコース、フルクトースのモル基準で30%にあたる。
Example 15 (Production of HMF from molasses 3)
(Process a)
In an autoclave (manufactured by Nitto Koatsu Co., Ltd.) equipped with a 100 mL Teflon (registered trademark) container, 6.0 g of molasses used in Example 11 as a sugar raw material, 53.7 g of ion-exchanged water as a reaction solvent, and sulfuric acid ( 0.3 g of Wako Pure Chemical Industries, Ltd. was charged. After sealing the container, the internal space was sufficiently replaced with nitrogen. Thereafter, the contents were heated to 150 ° C. with sufficient stirring, and then the reaction was carried out for 2.5 hours while maintaining the temperature and stirring.
After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the filtrate contents were neutralized by dropwise addition of 8N aqueous sodium hydroxide while stirring to adjust the pH of the filtrate contents to 7. After neutralization, the contents were filtered to remove insolubles, and an aqueous solution of HMF was obtained. The obtained aqueous solution phase was collected, diluted with pure water, and measured by liquid chromatography. As a result, production of 0.46 g of HMF was confirmed. This corresponds to 30% on a molar basis of sucrose, glucose and fructose in the charged molasses.
(工程b)
 上記と同様の手法工程aで得られたHMFの水溶液を混合して分液漏斗へ移し、水溶液相に対し0.33倍質量のメチルイソブチルケトンを入れ、水溶液層中のHMFの分液抽出操作を行った。この抽出操作を4回行い、抽出操作にて得られたメチルイソブチルケトン溶液層を混合し、ロータリーエバポレーター(50℃温浴)にてメチルイソブチルケトンを留去し、HMFを濃縮した。高速液体クロマトグラフィーにて測定を行ったところ、濃縮液中のHMFの質量は0.7g、純度は81質量%、HMFの抽出回収率は76%であった。
(Process b)
The aqueous solution of HMF obtained in the same method step a as above is mixed and transferred to a separatory funnel, 0.33 times the mass of methyl isobutyl ketone is added to the aqueous solution phase, and the separation extraction operation of HMF in the aqueous solution layer is performed. Went. This extraction operation was performed 4 times, the methyl isobutyl ketone solution layer obtained by the extraction operation was mixed, methyl isobutyl ketone was distilled off with a rotary evaporator (50 ° C. warm bath), and HMF was concentrated. When measured by high performance liquid chromatography, the mass of HMF in the concentrate was 0.7 g, the purity was 81 mass%, and the HMF extraction recovery was 76%.
(工程c)
 工程bで得られたHMF濃縮液を分液漏斗へ移し、疎水性溶媒として酢酸エチル5.0gを入れ、HMF濃縮液を希釈した後、5.0gのイオン交換水を入れ、有機溶媒層中のHMFの分液抽出操作を行った。この抽出操作を5回行い、抽出操作にて得られた水溶液をロータリーエバポレーター(50℃温浴)にて濃縮し、HMF濃縮物を得た。HMFの抽出回収率ならびにHMF濃縮物中のHMF純度を測定したところ、水層へのHMF抽出率は96.7%、HMF濃縮物中のHMF純度は88.7質量%であった。また、HMF濃縮物中の水分の含有率は3.1質量%であった。
(Process c)
Transfer the HMF concentrate obtained in step b to a separatory funnel, add 5.0 g of ethyl acetate as a hydrophobic solvent, dilute the HMF concentrate, add 5.0 g of ion-exchanged water, and in the organic solvent layer The liquid separation extraction operation of HMF was performed. This extraction operation was performed 5 times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate. When the HMF extraction recovery rate and the HMF purity in the HMF concentrate were measured, the HMF extraction rate into the aqueous layer was 96.7%, and the HMF purity in the HMF concentrate was 88.7% by mass. The water content in the HMF concentrate was 3.1% by mass.
実施例16(廃糖蜜からのHMF製造4)
(工程a)
 200mLガラス製4つ口フラスコに、糖原料として実施例11で使用した廃糖蜜16.2g、反応溶媒としてジメチルスルホキシド(シグマアルドリッチ ジャパン社製)64.8g、及び触媒としてリン酸1.6gを仕込んだ。容器内部空間を50ml/分で窒素を流通させ、内容物を充分に撹拌しながら140℃まで昇温し、その後3時間、保温及び撹拌を続けながら反応を行った。
 反応終了後、攪拌を維持しながら内容物の温度が30℃以下になるまで冷却した。冷却後、実施例1と同様の方法で分析した。その結果、スクロースの転化率は99%以上、フルクトースの転化率は99%以上、グルコースの転化率は28%であり、仕込んだ廃糖蜜の質量基準で14.8%(2.38g)のHMFの生成を確認した。
Example 16 (Production of HMF from molasses 4)
(Process a)
A 200 mL glass four-necked flask was charged with 16.2 g of molasses used in Example 11 as a sugar raw material, 64.8 g of dimethyl sulfoxide (manufactured by Sigma-Aldrich Japan) as a reaction solvent, and 1.6 g of phosphoric acid as a catalyst. It is. Nitrogen was passed through the inner space of the container at a rate of 50 ml / min, and the contents were heated to 140 ° C. while sufficiently stirring the contents, and then the reaction was carried out for 3 hours while keeping the temperature and stirring.
After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, analysis was performed in the same manner as in Example 1. As a result, the conversion rate of sucrose was 99% or more, the conversion rate of fructose was 99% or more, the conversion rate of glucose was 28%, and 14.8% (2.38 g) of HMF based on the mass of the charged molasses. Confirmed the generation of.
(工程b)
 上記工程aと同様の手法で得られた7.7gのHMFを含有するジメチルスルホキシド溶液を、0.6kPaで減圧蒸留してジメチルスルホキシドを留去し、24.2gのHMF濃縮液を得た。得られたHMF濃縮液にイオン交換水105.0gを入れて濃縮液を希釈した。
 得られた水溶液25.0gに対し、2倍質量のジクロロメタンを入れ、水溶液層中のHMFの分液抽出操作を行った。この抽出操作を3回行い、抽出操作にて得られたジクロロメタン溶液層を混合し、ロータリーエバポレーター(50℃温浴)にてジクロロメタンを留去し、HMFを濃縮した。高速液体クロマトグラフィーにて測定を行ったところ、濃縮液中のHMFの質量は0.34g、純度は61.6質量%、ジメチルスルホキシドの含有率は19.4質量%であった。HMFの抽出回収率は76.2%であった。
(Process b)
A dimethyl sulfoxide solution containing 7.7 g of HMF obtained by the same method as in the above step a was distilled under reduced pressure at 0.6 kPa to distill off the dimethyl sulfoxide to obtain 24.2 g of an HMF concentrate. To the obtained HMF concentrate, 105.0 g of ion-exchanged water was added to dilute the concentrate.
A double mass of dichloromethane was added to 25.0 g of the obtained aqueous solution, and a separation extraction operation of HMF in the aqueous solution layer was performed. This extraction operation was performed 3 times, the dichloromethane solution layer obtained by the extraction operation was mixed, dichloromethane was distilled off with a rotary evaporator (50 ° C. warm bath), and HMF was concentrated. When measured by high performance liquid chromatography, the mass of HMF in the concentrate was 0.34 g, the purity was 61.6 mass%, and the content of dimethyl sulfoxide was 19.4 mass%. The extraction recovery rate of HMF was 76.2%.
(工程c)
 工程bで得られたHMF濃縮液を分液漏斗へ移し、疎水性溶媒としてジクロロメタン10.0gを入れ、HMF濃縮液を希釈した後、7.0gのイオン交換水と0.1gのイソプロパノールを入れ、有機溶媒層中のHMFの分液抽出操作を行った。この抽出操作を4回行い、抽出操作にて得られた水溶液をロータリーエバポレーター(50℃温浴)にて濃縮し、HMF濃縮物を得た。HMFの抽出回収率ならびにHMF濃縮物中のHMF純度を測定したところ、水層へのHMF抽出率は94.5%、HMF濃縮物中のHMF純度は74.5質量%であった。また、HMF濃縮物中の水分の含有率は1.6質量%、ジメチルスルホキシドの含有率は19.6質量%であった。
(Process c)
Transfer the HMF concentrate obtained in step b to a separatory funnel, add 10.0 g of dichloromethane as a hydrophobic solvent, dilute the HMF concentrate, and then add 7.0 g of ion-exchanged water and 0.1 g of isopropanol. Then, liquid separation extraction operation of HMF in the organic solvent layer was performed. This extraction operation was performed 4 times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate. When the extraction recovery rate of HMF and the HMF purity in the HMF concentrate were measured, the HMF extraction rate into the aqueous layer was 94.5%, and the HMF purity in the HMF concentrate was 74.5% by mass. The water content in the HMF concentrate was 1.6% by mass, and the content of dimethyl sulfoxide was 19.6% by mass.
実施例17(廃糖蜜からのHMF製造5)
 実施例16と同様の方法で工程aを行った。
 実施例16の工程bで疎水性溶媒としてメチルイソブチルケトンを用いて抽出操作を行ったこと以外は、実施例16の工程bと同様の抽出操作を行った。濃縮液中のHMFの質量は0.40g、純度は61.1質量%、ジメチルスルホキシドの含有率は3.3質量%であった。HMFの抽出回収率は91.8%であった。
 実施例16の工程cで疎水性溶媒としてメチルイソブチルケトンを用いて抽出操作を行ったこと以外は、実施例16の工程cと同様の抽出操作を行った。水層へのHMF抽出率は83.5%、HMF濃縮物中のHMF純度は69.0質量%であった。また、HMF濃縮物中の水分の含有率は2.9質量%、ジメチルスルホキシドの含有率は4.3質量%であった。
Example 17 (HMF production 5 from waste molasses)
Step a was performed in the same manner as in Example 16.
The same extraction operation as in Step b of Example 16 was performed except that methyl isobutyl ketone was used as the hydrophobic solvent in Step b of Example 16. The mass of HMF in the concentrate was 0.40 g, the purity was 61.1% by mass, and the content of dimethyl sulfoxide was 3.3% by mass. The extraction recovery rate of HMF was 91.8%.
The extraction operation was performed in the same manner as in Step c of Example 16, except that methyl isobutyl ketone was used as the hydrophobic solvent in Step c of Example 16. The HMF extraction rate into the aqueous layer was 83.5%, and the HMF purity in the HMF concentrate was 69.0% by mass. Further, the water content in the HMF concentrate was 2.9% by mass, and the content of dimethyl sulfoxide was 4.3% by mass.
実施例18(フルクトースからのHMFの製造)
(工程c:水抽出精製)
 実施例1の工程bで得られたHMF濃縮液を5.5g(HMF純度82.2%)秤量し、これを分液漏斗へ移し、ジクロロメタン(和光純薬工業社製、LogP値:1.25)40.0gを入れ、HMF濃縮液を希釈した後、イソプロピルアルコール(関東化学社製)1.0g、イオン交換水20.0gを入れ、有機溶媒層中のHMFの分液抽出操作を行った。この抽出操作を5回行い、抽出操作にて得られた水溶液をロータリーエバポレーター(50℃温浴)にて濃縮しHMF濃縮物を得た。水層へのHMF抽出率は92%、HMF濃縮物中のHMF純度は97.0%であった。
Example 18 (Production of HMF from fructose)
(Process c: Water extraction purification)
5.5 g (HMF purity 82.2%) of the HMF concentrate obtained in step b of Example 1 was weighed, transferred to a separatory funnel, and dichloromethane (Wako Pure Chemical Industries, Log P value: 1. 25) After adding 40.0 g and diluting the HMF concentrate, 1.0 g of isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) and 20.0 g of ion-exchanged water are added, and the separation and extraction of HMF in the organic solvent layer is performed. It was. This extraction operation was performed 5 times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate. The HMF extraction rate into the aqueous layer was 92%, and the HMF purity in the HMF concentrate was 97.0%.
実施例19(フルクトースからのHMFの製造)
(工程c:水抽出精製)
 実施例1の工程bと同様の操作により得られたHMF濃縮液を5.0g(純度82.2%)秤量し、これを分液漏斗へ移し、シクロヘキサノン(シグマアルドリッチ ジャパン社製)40.0gを入れ、HMF濃縮液を希釈した後、20.0gのイオン交換水を入れ、有機溶媒層中のHMFの分液抽出操作を行った。この抽出操作を5回行い、抽出操作にて得られた水溶液をロータリーエバポレーター(50℃温浴)にて濃縮しHMF濃縮物を得た。水層へのHMF抽出率は51.0%、HMF濃縮物中のHMF純度は95.9%であった。
Example 19 (Production of HMF from fructose)
(Process c: Water extraction purification)
5.0 g (purity 82.2%) of the HMF concentrate obtained by the same operation as in step b of Example 1 was weighed, transferred to a separatory funnel, and cyclohexanone (manufactured by Sigma-Aldrich Japan) 40.0 g. After diluting the HMF concentrate, 20.0 g of ion-exchanged water was added, and the separation and extraction of HMF in the organic solvent layer was performed. This extraction operation was performed 5 times, and the aqueous solution obtained by the extraction operation was concentrated with a rotary evaporator (50 ° C. warm bath) to obtain an HMF concentrate. The HMF extraction rate into the aqueous layer was 51.0%, and the HMF purity in the HMF concentrate was 95.9%.
実施例20(フルクトースからのHMFの製造)
(工程c-2:溶媒抽出精製)
 実施例1の工程cで得られたHMF濃縮物1.5gを酢酸エチル(和光純薬工業社製、LogP値:0.73)1.5mlに溶解した。得られた酢酸エチル溶液を、予めガラス製ビーカーにトルエン(和光純薬工業社製)50mlを入れて攪拌した中にゆっくりと滴下した。滴下終了後、溶液を静置し、有機溶媒層を分取した。残渣は再度酢酸エチル1.5mlに溶解させて回収した。回収した酢酸エチル溶液は再度上記工程に賦し、有機溶媒層を分取した。得られた有機溶媒層を混合し、ロータリーエバポレーター(50℃温浴)にて濃縮し、橙色のHMF濃縮物1.2gを得た。濃縮物中のHMF純度は98.2%であった。
Example 20 (Production of HMF from fructose)
(Step c-2: Solvent extraction purification)
1.5 g of the HMF concentrate obtained in step c of Example 1 was dissolved in 1.5 ml of ethyl acetate (Wako Pure Chemical Industries, Ltd., Log P value: 0.73). The obtained ethyl acetate solution was slowly added dropwise while stirring 50 ml of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) in a glass beaker in advance. After completion of dropping, the solution was allowed to stand and the organic solvent layer was separated. The residue was again dissolved in 1.5 ml of ethyl acetate and collected. The collected ethyl acetate solution was again subjected to the above step, and the organic solvent layer was separated. The obtained organic solvent layers were mixed and concentrated with a rotary evaporator (50 ° C. warm bath) to obtain 1.2 g of orange HMF concentrate. The HMF purity in the concentrate was 98.2%.
実施例21(フルクトースからのHMFの製造)
(工程c-2:再結晶精製)
 実施例20で得られたHMF濃縮物1.2gをトルエン100gに溶解させ、-30℃で冷却静置し、淡黄色針状結晶を析出させた。トルエン溶液を回収し、ロータリーエバポレーター(50℃温浴)にて濃縮し、同様の操作を2回繰り返した。得られた結晶は十分に冷却したトルエンで洗浄し、減圧乾燥させた。淡黄色針状結晶0.9gを得た。
 同様の操作を繰り返して、淡黄色針状結晶4.5gを得た。濃縮物中のHMF純度は96.7 %であった。
Example 21 (Production of HMF from fructose)
(Step c-2: Recrystallization purification)
1.2 g of the HMF concentrate obtained in Example 20 was dissolved in 100 g of toluene and allowed to cool and stand at −30 ° C. to precipitate pale yellow needle crystals. The toluene solution was collected and concentrated with a rotary evaporator (50 ° C. warm bath), and the same operation was repeated twice. The obtained crystals were washed with sufficiently cooled toluene and dried under reduced pressure. 0.9 g of pale yellow needle crystals were obtained.
The same operation was repeated to obtain 4.5 g of pale yellow needle crystals. The HMF purity in the concentrate was 96.7%.
実施例22(酸化方法1による2,5-フランジカルボン酸(FDCA)の製造)
 500mLチタン製電磁弁式オートクレーブ(日東高圧社製)に実施例18により得られたHMF(純度97.0%)3.97g、44.89gの酢酸(和光純薬工業社製)、0.27gの酢酸コバルト(和光純薬工業社製)、0.47gの酢酸マンガン(シグマアルドリッチ ジャパン社製)、0.10gの臭化ナトリウム(和光純薬工業社製)を仕込んだ。容器を密閉後、内部空間を酸素で十分に置換した。その後内容物を充分に撹拌しながら150℃まで昇温し、内部空間部に酸素を供給しながら0.3MPaに保った。その後3時間、保温・撹拌を続けながら反応を行った。反応終了後、攪拌を維持しながら内容物の温度が30℃以下になるまで冷却した。冷却後、内容物をろ過して固形物とろ液を分離し、固形物とろ液を純水及びメタノールの混合液で希釈して、液体クロマトグラフィーで測定した。
 HMFはUV検出法(吸収波長:254nm)で得られたクロマトグラムにおけるHMFのピーク面積を測定し、あらかじめ作成しておいたHMFの濃度-面積の関係式を用いて試料中の濃度を計算した。その結果、仕込んだHMF量基準でHMFの転化率は100%であり、HMF酸化物の収率は80.9%(3.78g)であった。その内、FDCAの収率73.8%(3.52g)、DFFの収率7.1%(0.27g)であった。
Example 22 (Production of 2,5-furandicarboxylic acid (FDCA) by oxidation method 1)
HMF (purity 97.0%) 3.97 g obtained in Example 18 in a 500 mL titanium solenoid valve autoclave (manufactured by Nitto High Pressure Co., Ltd.), 44.89 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 0.27 g Of cobalt acetate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.47 g of manganese acetate (manufactured by Sigma Aldrich Japan), and 0.10 g of sodium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) were charged. After sealing the container, the internal space was sufficiently replaced with oxygen. Thereafter, the contents were heated to 150 ° C. with sufficient stirring, and maintained at 0.3 MPa while supplying oxygen to the internal space. Thereafter, the reaction was carried out for 3 hours while maintaining the temperature and stirring. After the reaction was completed, the contents were cooled while maintaining stirring until the temperature of the contents became 30 ° C or lower. After cooling, the contents were filtered to separate the solid and the filtrate, and the solid and the filtrate were diluted with a mixed solution of pure water and methanol and measured by liquid chromatography.
HMF measured the peak area of HMF in the chromatogram obtained by the UV detection method (absorption wavelength: 254 nm), and calculated the concentration in the sample using the HMF concentration-area relational expression prepared in advance. . As a result, the conversion of HMF was 100% based on the amount of HMF charged, and the yield of HMF oxide was 80.9% (3.78 g). Among them, the yield of FDCA was 73.8% (3.52 g), and the yield of DFF was 7.1% (0.27 g).
実施例23(酸化方法1によるFDCAとホルミルフラン(DFF)の製造)
 実施例21により得られたHMF(純度96.7%)4.53g、41.93gの酢酸(和光純薬工業社製)、0.26gの酢酸コバルト、0.52gの酢酸マンガン、0.14gの臭化ナトリウムを仕込んだ以外は、実施例22と同様の条件で反応を行い、液体クロマトグラフィーで測定した。
 その結果、仕込んだHMF量基準でHMFの転化率は99.9%であり、HMF酸化物の収率は84.2%(4.42g)であった。その内、FDCAの収率71.0%(3.85g)、DFFの収率13.1%(0.57g)であった。
Example 23 (Production of FDCA and formylfuran (DFF) by oxidation method 1)
4.53 g of HMF (purity 96.7%) obtained in Example 21, 41.93 g of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), 0.26 g of cobalt acetate, 0.52 g of manganese acetate, 0.14 g The reaction was conducted under the same conditions as in Example 22 except that sodium bromide was charged, and measurement was performed by liquid chromatography.
As a result, the conversion of HMF was 99.9% based on the amount of HMF charged, and the yield of HMF oxide was 84.2% (4.42 g). Among them, the yield of FDCA was 71.0% (3.85 g), and the yield of DFF was 13.1% (0.57 g).
比較例1(フルクトースからのHMFの製造)
(工程c-2:吸着処理精製)
 実施例1の工程b(工程cは実施せず)で得られたHMF濃縮物6.37g(HMF含有量:3.96g、HMF純度:62.2%)を用いてカラムクロマトグラムにより精製した。ガラス製カラム容器にシリカ(関東化学株式会社製Silica Gel 60N、40~50μm)200gと展開溶媒を混合して入れた。展開溶媒はアセトン(和光純薬工業社製)とヘキサン(和光純薬工業社製)を1:1(体積比)で混合して調製したものを使用した。HMF濃縮物をカラムにより、試験管に一定量ずつ分画し、溶媒を留去してHMF濃縮物4.1gを得た。HMF回収率は99.7%であり、濃縮物中のHMF純度は94.7%であった。
Comparative Example 1 (Production of HMF from fructose)
(Step c-2: Adsorption treatment purification)
Purified by column chromatogram using 6.37 g (HMF content: 3.96 g, HMF purity: 62.2%) of the HMF concentrate obtained in step b of Example 1 (step c was not carried out). . In a glass column container, 200 g of silica (Silica Gel 60N, 40-50 μm, manufactured by Kanto Chemical Co., Inc.) and a developing solvent were mixed and put. The developing solvent used was prepared by mixing acetone (made by Wako Pure Chemical Industries) and hexane (made by Wako Pure Chemical Industries) at 1: 1 (volume ratio). The HMF concentrate was fractionated into a test tube by a certain amount by a column, and the solvent was distilled off to obtain 4.1 g of HMF concentrate. The HMF recovery rate was 99.7%, and the HMF purity in the concentrate was 94.7%.
比較例2(酸化方法1によるFDCAの製造)
 実施例1の工程b(工程cは実施せず)により得られたHMF(純度79.7%)10.0g、48.85gの酢酸、0.31gの酢酸コバルト、0.59gの酢酸マンガン、0.14gの臭化ナトリウムを仕込んだ以外は実施例22と同様の条件で反応を行い、液体クロマトグラフィーで測定した。
 その結果、仕込んだHMF量基準でHMFの転化率は99.9%であり、HMF酸化物としてFDCAが収率1.3%(0.12g)で確認された。
Comparative Example 2 (Production of FDCA by oxidation method 1)
10.0 g of HMF (purity 79.7%) obtained by step b of Example 1 (step c not carried out), 48.85 g of acetic acid, 0.31 g of cobalt acetate, 0.59 g of manganese acetate, The reaction was conducted under the same conditions as in Example 22 except that 0.14 g of sodium bromide was charged, and the measurement was performed by liquid chromatography.
As a result, the conversion of HMF was 99.9% based on the amount of HMF charged, and FDCA was confirmed as a HMF oxide in a yield of 1.3% (0.12 g).
比較例3(酸化方法1によるFDCAとDFFのとCFFの製造)
 比較例1により得られたHMF(純度94.7%)3.92g、46.05gの酢酸、0.07gの酢酸コバルト、0.15gの酢酸マンガン、0.06gの臭化ナトリウムを仕込んだ以外は実施例22と同様の条件で反応を行い、液体クロマトグラフィーで測定した。
 その結果、仕込んだHMF量基準でHMFの転化率は94.1%であり、HMF酸化物の収率は0.5%(0.018g)であった。その内、FDCAの収率0.3%(0.012g)、DFFの収率0.1%(0.003g)、CFFの収率0.1%(0.003g)であった。
Comparative Example 3 (Production of FDCA, DFF, and CFF by oxidation method 1)
Other than charging 3.92 g of HMF (purity 94.7%) obtained in Comparative Example 1, 46.05 g acetic acid, 0.07 g cobalt acetate, 0.15 g manganese acetate, 0.06 g sodium bromide. Were reacted under the same conditions as in Example 22 and measured by liquid chromatography.
As a result, the conversion of HMF was 94.1% based on the amount of HMF charged, and the yield of HMF oxide was 0.5% (0.018 g). Among them, the yield of FDCA was 0.3% (0.012 g), the yield of DFF was 0.1% (0.003 g), and the yield of CFF was 0.1% (0.003 g).
実施例24(酸化方法2による2,5-フランジカルボン酸(FDCA)の製造)
 50mlガラス製3つ口フラスコに、実施例19により得られたHMF(純度95.9%)1.71g、4%パラジウム、1%白金、5%ビスマスを活性炭に担持させた触媒(Evonik Deguss社製、含水率53.7%)を0.19g、イオン交換水12.92gを加えた。次いで、フラスコに攪拌翼(三日月型)、酸素ガス導入管、排出管及び温度計を取り付けた。液相を400rpmで撹拌し、窒素を50ml/min流通しながら反応液(液相)の温度が16分で60℃に達するように昇温した。次いで48%水酸化ナトリウム水溶液2.15g(水酸化ナトリウムとして25.80mmol)、酸素を100モル%/時間(対HMF仕込み比)の割合で吹き込みながら、24時間酸化反応を行った。
 反応終了後、反応液から触媒をろ別しHMFの水溶液を得た。水溶液相を採取し、純水及びメタノールの混合液で希釈して液体クロマトグラフィーで測定した。その結果、仕込んだHMF量基準でHMFの転化率は99.6%であり、HMF酸化物としてFDCA(ナトリウム塩型)が収率37.3%(0.97g)で確認された。
Example 24 (Production of 2,5-furandicarboxylic acid (FDCA) by oxidation method 2)
A catalyst (Evonik Deguss, Inc.) in which a 50 ml glass three-necked flask was loaded with 1.71 g of HMF (purity 95.9%) obtained in Example 19, 4% palladium, 1% platinum, 5% bismuth on activated carbon. Manufactured, water content 53.7%) 0.19 g and ion-exchanged water 12.92 g. Next, a stirring blade (crescent moon type), an oxygen gas introduction pipe, a discharge pipe and a thermometer were attached to the flask. The liquid phase was stirred at 400 rpm, and the temperature of the reaction liquid (liquid phase) was increased to 60 ° C. in 16 minutes while flowing nitrogen at 50 ml / min. Next, an oxidation reaction was carried out for 24 hours while 2.15 g of a 48% aqueous sodium hydroxide solution (25.80 mmol as sodium hydroxide) and oxygen were blown at a rate of 100 mol% / hour (to the HMF charge ratio).
After completion of the reaction, the catalyst was filtered off from the reaction solution to obtain an aqueous solution of HMF. The aqueous phase was collected, diluted with a mixture of pure water and methanol, and measured by liquid chromatography. As a result, the conversion of HMF was 99.6% based on the amount of HMF charged, and FDCA (sodium salt type) was confirmed as the HMF oxide in a yield of 37.3% (0.97 g).
実施例25(酸化方法2によるFDCAの製造)
 実施例20により得られたHMF(純度98.2%)1.21g、4%パラジウム、1%白金、5%ビスマスを活性炭に担持させた触媒(Evonik Degussa社製、含水率53.7%)を0.18g、イオン交換水9.07gをそれぞれ仕込み、反応液(液相)の温度が23分で60℃に達するように昇温し、48%水酸化ナトリウム水溶液1.79g(水酸化ナトリウムとして21.48mmol)を加えて、27時間反応を行った以外は、実施例24と同様の操作を行った。
 その結果、仕込んだHMF量基準でHMFの転化率は100%であり、HMF酸化物としてFDCA(ナトリウム塩型)が収率56.0%(1.03g)で確認された。
Example 25 (Production of FDCA by oxidation method 2)
HMF obtained by Example 20 (purity 98.2%) 1.21 g, 4% palladium, 1% platinum, catalyst having 5% bismuth supported on activated carbon (manufactured by Evonik Degussa, water content 53.7%) 0.18 g and 9.07 g of ion-exchanged water were respectively added, and the temperature of the reaction solution (liquid phase) was increased to reach 60 ° C. in 23 minutes, and 1.79 g of 48% sodium hydroxide aqueous solution (sodium hydroxide The same operation as in Example 24 was performed except that the reaction was performed for 27 hours.
As a result, the conversion of HMF was 100% on the basis of the amount of HMF charged, and FDCA (sodium salt type) was confirmed as the HMF oxide in a yield of 56.0% (1.03 g).
比較例4(酸化方法2によるFDCAとCFFの製造)
 実施例1の工程b(工程cは実施せず)によって得られたHMF(純度80.3%)3.57g、4%パラジウム、1%白金、5%ビスマスを活性炭に担持させた触媒(Evonik Degussa社製、含水率53.7%)を0.38g、イオン交換水27.76gをそれぞれ仕込み、反応液(液相)の温度が15分で60℃に達するように昇温し、48%水酸化ナトリウム水溶液4.01g(水酸化ナトリウムとして48.12mmol)を加えて、30時間反応を行った以外は実施例24と同様の操作を行った。
 その結果、仕込んだHMF量基準でHMFの転化率は100%であり、HMF酸化物の収率は26.9%(1.08g)であった。その内、FDCA(ナトリウム塩型)は収率25.9%(1.04g)、CFFは収率1.0%(0.04g)であった。
Comparative Example 4 (Production of FDCA and CFF by oxidation method 2)
HMF (purity 80.3%) obtained by step b of Example 1 (purity 80.3%) 3.57 g, catalyst with 4% palladium, 1% platinum, 5% bismuth supported on activated carbon (Evonik Degussa Co., Ltd. (water content 53.7%) was charged with 0.38 g and ion-exchanged water 27.76 g. The temperature of the reaction solution (liquid phase) reached 60 ° C. in 15 minutes, and 48% The same operation as in Example 24 was performed except that 4.01 g of sodium hydroxide aqueous solution (48.12 mmol as sodium hydroxide) was added and the reaction was performed for 30 hours.
As a result, the conversion of HMF was 100% based on the amount of HMF charged, and the yield of HMF oxide was 26.9% (1.08 g). Among them, the yield of FDCA (sodium salt type) was 25.9% (1.04 g), and the yield of CFF was 1.0% (0.04 g).
 上記の実施例1~21によれば、疎水性溶媒及び反応溶媒を用いた簡便な抽出操作により高純度の5-ヒドロキシメチルフルフラールを効率的かつ経済的に製造することができることが分かる。さらに、上記の実施例22~25によれば、前記で得られた5-ヒドロキシメチルフルフラールを簡便に酸化することにより、高純度の5-ヒドロキシメチルフルフラール酸化物を効率的かつ経済的に製造することができることが分かる。
 一方、本発明方法に係る工程cを行わない比較例2~4では、工程dを行っても酸化が阻害されて、5-ヒドロキシメチルフルフラール酸化物を収率よく得ることができないことが分かる。
According to the above Examples 1 to 21, it can be seen that high-purity 5-hydroxymethylfurfural can be efficiently and economically produced by a simple extraction operation using a hydrophobic solvent and a reaction solvent. Furthermore, according to the above Examples 22 to 25, high-purity 5-hydroxymethylfurfural oxide is efficiently and economically produced by simply oxidizing the 5-hydroxymethylfurfural obtained as described above. I can see that
On the other hand, in Comparative Examples 2 to 4 where the step c according to the method of the present invention is not performed, it can be seen that even if the step d is performed, the oxidation is inhibited and 5-hydroxymethylfurfural oxide cannot be obtained in good yield.
 本発明の製造方法により得られたHMFは、バイオリファイナリー基幹物質としてPET代替樹脂や燃料、化成品、界面活性剤、香粧品などの中間体原料として期待され、医薬品や機能性食品などのへの展開も期待されている。また、本発明の製造方法により得られたHMF酸化物は、樹脂やトナーバインダーのモノマー、医薬、農薬、香料などの分野における中間体として好適に用いることができる。 The HMF obtained by the production method of the present invention is expected to be used as an intermediate raw material for PET substitute resins, fuels, chemicals, surfactants, cosmetics and the like as a biorefinery base material, and to be used for pharmaceuticals and functional foods. Development is also expected. Further, the HMF oxide obtained by the production method of the present invention can be suitably used as an intermediate in the fields of resins, toner binder monomers, pharmaceuticals, agricultural chemicals, fragrances and the like.

Claims (12)

  1.  下記工程a~cを有する、5-ヒドロキシメチルフルフラールの製造方法。
     工程a:反応溶媒の存在下、糖原料を脱水反応させ、該反応溶媒中に5-ヒドロキシメチルフルフラールを生成させて、5-ヒドロキシメチルフルフラールを含む反応溶媒を得る工程
     工程b:工程aで得られた5-ヒドロキシメチルフルフラールを含む反応溶媒から、5-ヒドロキシメチルフルフラールを疎水性溶媒中に抽出して、5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得る工程
     工程c:工程bで得られた、5-ヒドロキシメチルフルフラールを含む疎水性溶媒から、水中に5-ヒドロキシメチルフルフラールを抽出して、5-ヒドロキシメチルフルフラールを含む水溶液を得る工程
    A process for producing 5-hydroxymethylfurfural, comprising the following steps a to c.
    Step a: A step of dehydrating a sugar raw material in the presence of a reaction solvent to produce 5-hydroxymethylfurfural in the reaction solvent to obtain a reaction solvent containing 5-hydroxymethylfurfural Step b: obtained in Step a Extracting 5-hydroxymethylfurfural into a hydrophobic solvent from the obtained reaction solvent containing 5-hydroxymethylfurfural to obtain a hydrophobic solvent containing 5-hydroxymethylfurfural Step c: obtained in Step b Extracting 5-hydroxymethylfurfural into water from a hydrophobic solvent containing 5-hydroxymethylfurfural to obtain an aqueous solution containing 5-hydroxymethylfurfural
  2.  工程aで用いる反応溶媒が、水、高極性非プロトン性有機溶媒、及びイオン性液体からなる群から選ばれる1種又は2種以上である、請求項1に記載の5-ヒドロキシメチルフルフラールの製造方法。 The production of 5-hydroxymethylfurfural according to claim 1, wherein the reaction solvent used in step a is one or more selected from the group consisting of water, a highly polar aprotic organic solvent, and an ionic liquid. Method.
  3.  工程bで用いる疎水性溶媒の水‐オクタノール分配係数が0.3以上である、請求項1又は2に記載の5-ヒドロキシメチルフルフラールの製造方法。 The method for producing 5-hydroxymethylfurfural according to claim 1 or 2, wherein the hydrophobic solvent used in step b has a water-octanol partition coefficient of 0.3 or more.
  4.  工程bで用いる疎水性溶媒が、メチルイソブチルケトン、シクロヘキサノン、2-ブタノール、ジクロロメタン、トリクロロメタン、ジエチルエーテル、ジイソプロピルエーテル、酢酸エチル、酢酸ブチル、トルエン、ジクロロエタン、及びヘキサンからなる群から選ばれる1種又は2種以上である、請求項1~3のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。 The hydrophobic solvent used in step b is one selected from the group consisting of methyl isobutyl ketone, cyclohexanone, 2-butanol, dichloromethane, trichloromethane, diethyl ether, diisopropyl ether, ethyl acetate, butyl acetate, toluene, dichloroethane, and hexane Alternatively, the method for producing 5-hydroxymethylfurfural according to any one of claims 1 to 3, wherein two or more are used.
  5.  工程aで用いる反応溶媒が水であり、該工程aにおいて、水及び疎水性溶媒の存在下、糖原料を脱水反応させ、5-ヒドロキシメチルフルフラールを含む水、及び5-ヒドロキシメチルフルフラールを含む疎水性溶媒を得ることにより、工程a及び工程bを同時に行う、請求項1~4のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。 The reaction solvent used in step a is water, and in step a, a sugar raw material is subjected to a dehydration reaction in the presence of water and a hydrophobic solvent, and water containing 5-hydroxymethylfurfural and hydrophobic containing 5-hydroxymethylfurfural. The method for producing 5-hydroxymethylfurfural according to any one of claims 1 to 4, wherein the step a and the step b are simultaneously performed by obtaining a neutral solvent.
  6.  さらに下記工程c-2を有する、請求項1~5のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。
     工程c-2:工程cで得られた5-ヒドロキシメチルフルフラールを含む水溶液から、脱水、再結晶、溶媒抽出、及び吸着処理からなる群から選ばれる1種又は2種以上により、5-ヒドロキシメチルフルフラールを精製する工程
    The method for producing 5-hydroxymethylfurfural according to any one of claims 1 to 5, further comprising the following step c-2.
    Step c-2: From the aqueous solution containing 5-hydroxymethylfurfural obtained in Step c, 5-hydroxymethyl by one or more selected from the group consisting of dehydration, recrystallization, solvent extraction, and adsorption treatment Process for purifying furfural
  7.  請求項1~6のいずれかに記載の製造方法により得られた5-ヒドロキシメチルフルフラールを酸化する工程dを有する5-ヒドロキシメチルフルフラール酸化物の製造方法。 A method for producing 5-hydroxymethylfurfural oxide, comprising a step d of oxidizing 5-hydroxymethylfurfural obtained by the production method according to any one of claims 1 to 6.
  8.  工程dの5-ヒドロキシメチルフルフラールの酸化を、金属触媒及びハロゲン化合物の存在下、有機酸溶媒中で、酸化性気体と接触させて行う、請求項7に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。 The oxidation of 5-hydroxymethylfurfural oxide in step d is performed by contacting with an oxidizing gas in an organic acid solvent in the presence of a metal catalyst and a halogen compound. Production method.
  9.  金属触媒が、コバルト系触媒及びマンガン系触媒からなる群から選ばれる1種又は2種以上である、請求項8に記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。 The method for producing 5-hydroxymethylfurfural oxide according to claim 8, wherein the metal catalyst is one or more selected from the group consisting of a cobalt-based catalyst and a manganese-based catalyst.
  10.  工程dの5-ヒドロキシメチルフルフラールの酸化を、周期表第8~11族から選ばれる1種又は2種以上の金属元素を含有する触媒の存在下に、酸化性気体と接触させて行う、請求項7~9のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。 The oxidation of 5-hydroxymethylfurfural in step d is carried out in contact with an oxidizing gas in the presence of a catalyst containing one or more metal elements selected from Groups 8 to 11 of the periodic table. Item 10. The method for producing 5-hydroxymethylfurfural oxide according to any one of Items 7 to 9.
  11.  触媒がルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、金、及びコバルトからなる群から選ばれる1種又は2種以上の金属元素を含有し、かつ第2金属としてスズ、ビスマス、セレン、テルル、及びアンチモンからなる群から選ばれる1種以上の元素を含有する、請求項10に記載の5-ヒドロキシメチルフルフラールの酸化物の製造方法。 The catalyst contains one or more metal elements selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, platinum, gold, and cobalt, and tin, bismuth, selenium, tellurium, as the second metal, The method for producing an oxide of 5-hydroxymethylfurfural according to claim 10, comprising at least one element selected from the group consisting of: and antimony.
  12.  5-ヒドロキシメチルフルフラール酸化物が、2,5-フランジカルボン酸、ジホルミルフラン、2-カルボキシ-5-ホルミルフラン、5-ヒドロキシメチル-2-フランカルボン酸、及び5-アセトキシメチル-2-フランカルボン酸からなる群から選ばれる1種又は2種以上である、請求項6~11のいずれかに記載の5-ヒドロキシメチルフルフラール酸化物の製造方法。 5-hydroxymethylfurfural oxide is 2,5-furandicarboxylic acid, diformylfuran, 2-carboxy-5-formylfuran, 5-hydroxymethyl-2-furancarboxylic acid, and 5-acetoxymethyl-2-furan The method for producing 5-hydroxymethylfurfural oxide according to any one of claims 6 to 11, which is one or more selected from the group consisting of carboxylic acids.
PCT/JP2013/055559 2012-03-27 2013-02-28 Method for producing 5-hydroxymethyl furfural WO2013146085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
IN6715DEN2014 IN2014DN06715A (en) 2012-03-27 2013-02-28
CN201380014869.5A CN104169264A (en) 2012-03-27 2013-02-28 Method for producing 5-hydroxymethyl furfural

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-071113 2012-03-27
JP2012071119A JP2013203666A (en) 2012-03-27 2012-03-27 Method of producing 5-hydroxymethylfurfural oxide
JP2012071113A JP2013203665A (en) 2012-03-27 2012-03-27 Manufacturing method for 5-hydroxymethylfurfural
JP2012-071119 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146085A1 true WO2013146085A1 (en) 2013-10-03

Family

ID=49259360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055559 WO2013146085A1 (en) 2012-03-27 2013-02-28 Method for producing 5-hydroxymethyl furfural

Country Status (3)

Country Link
CN (1) CN104169264A (en)
IN (1) IN2014DN06715A (en)
WO (1) WO2013146085A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327019A (en) * 2014-11-24 2015-02-04 苏州乔纳森新材料科技有限公司 Method for catalytically synthesizing 2,5-furyldiformaldehyde from carbohydrates
WO2015041601A1 (en) * 2013-09-20 2015-03-26 Agency For Science, Technology And Research Conversion and purification of biomass
WO2015041013A1 (en) 2013-09-19 2015-03-26 花王株式会社 2,5-furan dicarboxylic acid production method
US9982093B2 (en) * 2014-03-10 2018-05-29 Empire Technology Development Llc Methods for producing nylon 7
JP2018528171A (en) * 2015-07-22 2018-09-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing furan-2,5-dicarboxylic acid
US11274089B2 (en) 2016-06-27 2022-03-15 Nihon Shokuhin Kako Co., Ltd. 5-hydroxymethyl-2-furfural production method
CN115193470A (en) * 2022-07-08 2022-10-18 华南理工大学 Sulfuric acid modified MCM-41 loaded monometallic solid acid catalyst, and preparation and application thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017019441A1 (en) * 2015-07-24 2017-02-02 E I Du Pont De Nemours And Company Processes for preparing 2,5-furandicarboxylic acid and esters thereof
CN105272950B (en) * 2015-10-20 2018-08-24 浙江大学 A method of 5 hydroxymethyl furfural is produced by carbohydrate
US10428039B2 (en) * 2015-11-04 2019-10-01 Basf Se Process for preparing furan-2,5-dicarboxylic acid
CN107629027B (en) * 2017-11-09 2020-03-10 北京林业大学 Method for preparing 5-hydroxymethylfurfural by catalyzing biomass with phosphorylated composite oxide
CN109574962B (en) * 2018-12-06 2023-05-02 中国科学技术大学 Method for preparing 2, 5-furandicarboxylic acid from sugar
CN110302816B (en) * 2019-06-20 2021-11-09 广西科技大学鹿山学院 ZnO@SiO2Synthesis method of supported mesoporous niobium phosphate catalyst and application of supported mesoporous niobium phosphate catalyst in preparation of 5-hydroxymethylfurfural
CN115636806B (en) * 2022-04-27 2024-03-12 合肥利夫生物科技有限公司 Preparation method of high-purity 5-hydroxymethylfurfural
CN115850213B (en) * 2022-11-11 2024-02-06 南京师范大学 Method for efficiently preparing 2, 5-furan dicarboxaldehyde

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288569A (en) * 1988-07-30 1990-03-28 Hoechst Ag Oxidation of 5-hydroxymethylfuurfural
WO1992010486A1 (en) * 1990-12-07 1992-06-25 Commissariat A L'energie Atomique Method for preparing 5-hydroxymethyl furfural by contact catalysis
WO2001072732A2 (en) * 2000-03-27 2001-10-04 E.I. Dupont De Nemours And Company Oxidation of 5-(hydroxymethyl) furfural to 2,5-diformylfuran and subsequent decarbonylation to unsubstituted furan
JP2007261990A (en) * 2006-03-28 2007-10-11 Canon Inc Method for producing furan-2,5-dicarboxylic acid
JP2009215172A (en) * 2008-03-07 2009-09-24 Tokyo Institute Of Technology Production method of furfurals
JP2011084540A (en) * 2009-10-19 2011-04-28 Canon Inc Method for producing 2,5-furandicarboxylic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987839B (en) * 2009-07-31 2012-11-14 中国科学院大连化学物理研究所 Method for preparing 2,5-diformylfuran by oxidizing 5-hydroxymethylfurfural
CN101891719A (en) * 2010-07-15 2010-11-24 华南理工大学 Method for synthesizing 2,5-furandicarboxylic acid
CN101941957B (en) * 2010-08-13 2012-11-14 中国科学院山西煤炭化学研究所 Method for producing hydroxymethylfurfural by using two-phase method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288569A (en) * 1988-07-30 1990-03-28 Hoechst Ag Oxidation of 5-hydroxymethylfuurfural
WO1992010486A1 (en) * 1990-12-07 1992-06-25 Commissariat A L'energie Atomique Method for preparing 5-hydroxymethyl furfural by contact catalysis
WO2001072732A2 (en) * 2000-03-27 2001-10-04 E.I. Dupont De Nemours And Company Oxidation of 5-(hydroxymethyl) furfural to 2,5-diformylfuran and subsequent decarbonylation to unsubstituted furan
JP2007261990A (en) * 2006-03-28 2007-10-11 Canon Inc Method for producing furan-2,5-dicarboxylic acid
JP2009215172A (en) * 2008-03-07 2009-09-24 Tokyo Institute Of Technology Production method of furfurals
JP2011084540A (en) * 2009-10-19 2011-04-28 Canon Inc Method for producing 2,5-furandicarboxylic acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041013A1 (en) 2013-09-19 2015-03-26 花王株式会社 2,5-furan dicarboxylic acid production method
US9738619B2 (en) 2013-09-19 2017-08-22 Kao Corporation 2,5-furan dicarboxylic acid production method
WO2015041601A1 (en) * 2013-09-20 2015-03-26 Agency For Science, Technology And Research Conversion and purification of biomass
US10167267B2 (en) 2013-09-20 2019-01-01 Agency For Science, Technology And Research Conversion and purification of biomass
US9982093B2 (en) * 2014-03-10 2018-05-29 Empire Technology Development Llc Methods for producing nylon 7
CN104327019A (en) * 2014-11-24 2015-02-04 苏州乔纳森新材料科技有限公司 Method for catalytically synthesizing 2,5-furyldiformaldehyde from carbohydrates
JP2018528171A (en) * 2015-07-22 2018-09-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing furan-2,5-dicarboxylic acid
US11274089B2 (en) 2016-06-27 2022-03-15 Nihon Shokuhin Kako Co., Ltd. 5-hydroxymethyl-2-furfural production method
CN115193470A (en) * 2022-07-08 2022-10-18 华南理工大学 Sulfuric acid modified MCM-41 loaded monometallic solid acid catalyst, and preparation and application thereof
CN115193470B (en) * 2022-07-08 2023-10-20 华南理工大学 Sulfuric acid modified MCM-41 loaded single metal type solid acid catalyst and preparation and application thereof

Also Published As

Publication number Publication date
CN104169264A (en) 2014-11-26
IN2014DN06715A (en) 2015-05-22

Similar Documents

Publication Publication Date Title
WO2013146085A1 (en) Method for producing 5-hydroxymethyl furfural
Mukherjee et al. Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities
EP2423205B1 (en) Conversion of carbohydrates to hydroxymethylfurfural (HMF) and derivatives
JP2013203666A (en) Method of producing 5-hydroxymethylfurfural oxide
AU2011205117B2 (en) Process for the preparation and purification of hydroxymethylfuraldehyde and derivatives
CN108484545B (en) Method and system for continuously synthesizing furan dicarboxylic acid
KR101901875B1 (en) Process for the conversion of a carbohydrate-containing feedstock
UA98615C2 (en) Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural
US20130172584A1 (en) Process for the production of furfural
JP2013203665A (en) Manufacturing method for 5-hydroxymethylfurfural
JP5779888B2 (en) Method for producing 2-furaldehyde compound
Mun et al. Facile isomerization of glucose into fructose using anion-exchange resins in organic solvents and application to direct conversion of glucose into furan compounds
AU2019276050B2 (en) Salt and acid mixture catalyzed hmf production
US20150274686A1 (en) 2.5-furandicarboxylic acid integrated production process
JP6410822B2 (en) Synthesis method of furan derivatives using acid catalyst and preparation of acid catalyst
JP2018039779A (en) Production method of alcohol
JP6447061B2 (en) Method for recovering furfural production catalyst, furfural production catalyst, and production method of furfural using the furfural production catalyst
CN114805253B (en) Method for preparing 5-hydroxymethylfurfural
WO2023166503A1 (en) Synthesis of 5-acetoxymethyl furfural in the presence of recyclable salt catalysts
WO2019150578A1 (en) Method for preparing cyclopentenone
EA045367B1 (en) PRODUCTION OF HMF CATALYZED BY A MIXTURE OF SALT AND ACID

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769971

Country of ref document: EP

Kind code of ref document: A1