WO2013100023A1 - Heat-resistant resin, adhesive agent, insulating adhesive layer, separator, solid electrolyte, and electrical storage device - Google Patents

Heat-resistant resin, adhesive agent, insulating adhesive layer, separator, solid electrolyte, and electrical storage device Download PDF

Info

Publication number
WO2013100023A1
WO2013100023A1 PCT/JP2012/083811 JP2012083811W WO2013100023A1 WO 2013100023 A1 WO2013100023 A1 WO 2013100023A1 JP 2012083811 W JP2012083811 W JP 2012083811W WO 2013100023 A1 WO2013100023 A1 WO 2013100023A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant resin
heat
storage device
separator
electrode layer
Prior art date
Application number
PCT/JP2012/083811
Other languages
French (fr)
Japanese (ja)
Inventor
上羽悠介
澤田学
日比野幹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013100023A1 publication Critical patent/WO2013100023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a heat resistant resin, and more specifically, a heat resistant resin suitable for use in a separator or an insulating adhesive layer constituting an electricity storage device, an adhesive using the same, an insulating adhesive layer, a separator, a solid electrolyte
  • the present invention relates to a power storage device including a separator using the heat resistant resin and an insulating adhesive layer.
  • Examples of such a resin include (A) 10 to 40 parts by weight of a structural unit derived from a monomer in which a carbonate group is introduced into the epoxy group of a (meth) acrylate monomer having an epoxy group, and (B) 10 to 10 structural units derived from acrylonitrile.
  • (A ′) a structural unit derived from 35 to 99% by mass of (meth) acrylate with respect to the total mass of the acrylic polymer;
  • the structural unit 1 derived from the (meth) acrylate represented by the general formula (1) is 1 to 99 mol%
  • the structural unit 2 having an epoxy group represented by the general formula (2) is 1 to 99 mol%.
  • An acrylic polymer having a weight average molecular weight of 1,000 to 100,000 has been proposed (see Patent Document 7).
  • D 1 is a porous film having a D 2 / D 1 value of 0.15 or less, where the second largest value is D 2, and uses a nitrogen-containing aromatic polymer as a heat-resistant resin. It has been proposed (see Patent Document 8).
  • Patent Documents 1 to 7 a copolymer made of an acrylic acid derivative or a methacrylic acid derivative made of various monomers is used as a binder for the separator.
  • References 1 to 7 do not mention the composition of an acrylic binder having a particularly high heat resistance.
  • the binder resin is decomposed at high temperatures such as reflow.
  • the decomposition product of the binder is vaporized due to high temperature, which may cause a problem that the package internal pressure is increased and the package is deformed.
  • the present invention solves the above-mentioned problems, does not thermally decompose even at reflow soldering temperature (260 ° C.), can maintain the given shape and structure, and is compatible with surface mounting by reflow soldering.
  • the inventors have studied a resin material having sufficient oxidation resistance with respect to the positive electrode potential and sufficient reduction resistance with respect to the negative electrode potential used in the electricity storage device, and has developed acrylic acid or acrylic resin.
  • acid esters homopolymers and copolymers having methacrylic acid or methacrylic acid esters as constituent monomers, those satisfying a predetermined condition are sufficient in oxidation resistance with respect to the positive electrode potential used in the electricity storage device, and the negative electrode It has been found that it has sufficient reduction resistance against electric potential and has thermal decomposition resistance that does not thermally decompose even at a reflow temperature (eg, 260 ° C.). And based on this knowledge, further experiment and examination were carried out, and the present invention was completed.
  • a reflow temperature eg, 260 ° C.
  • the heat resistant resin of the present invention is It is characterized by containing at least one of the following (a) and (b) as a main component.
  • R 1 represented by the chemical formula (1) has at least one carbon, the R 1 is bonded to the ester bond represented by the chemical formula (1) and the carbon, and the carbon (hereinafter referred to as the carbon bonded to the ester bond).
  • acrylic acid esters and "carbon of 1-position of R 1") is a primary or secondary, or a homopolymer or co-R 1 represented by the chemical formula (1) is a constituent monomer of acrylic acid is hydrogen
  • Polymer (b) A copolymer having at least one of acrylic acid ester and acrylic acid and at least one of methacrylic acid ester and methacrylic acid as a constituent monomer, wherein the constituent monomer is R represented by chemical formula (1) 1 has at least one carbon, R 1 is bonded by the carbon ester bond represented by the chemical formula (1), acrylic acid ester carbon at the 1-position of R 1 is a primary or secondary, methacrylic Ester, formula (1) are shown acrylate R 1 is hydrogen, a methacrylic acid, a copolymer mol% of the sum of methacrylic acid esters and methacrylic acid constituting the copolymer is not more than 30% [In the formula (1), R is H or CH 3 : R 1 is H or a chemical species having at least one carbon]
  • the heat-resistant resin of the present invention is At least one homopolymer included in the group of homopolymers defined in (a), At least one copolymer included in the group of copolymers defined in (a) above, It may be a mixture of at least two selected from the group consisting of at least one copolymer included in the group of copolymers defined in (b).
  • the heat resistant resin of the present invention preferably has a thermal decomposition temperature exceeding 260 ° C. According to the present invention, it is possible to realize a heat-resistant resin having a thermal decomposition temperature exceeding 260 ° C. By using this heat-resistant resin, for example, by forming a separator or an insulating adhesive layer, reflow soldering It is possible to obtain an electricity storage device that supports surface mounting by attaching.
  • the heat-resistant resin has the basic requirements of the present invention, for example, by controlling the ratio of acrylic resin and methacrylic resin, or by selecting an appropriate side chain structure
  • the pyrolysis temperature can easily be raised above 260 ° C.
  • the HOMO of the constituent monomer is preferably ⁇ 8.40 eV or less.
  • the heat-resistant resin of the present invention is used as, for example, a binder resin for a positive electrode of an electricity storage device, it is necessary to have oxidation resistance because it is exposed to an oxidizing atmosphere, but is not exposed to a reducing atmosphere, In particular, since reduction resistance is not required, it is not necessary to define LUMO. Therefore, when the HOMO of the constituent monomer is ⁇ 8.40 eV or less, it can be used without any particular problem for a positive electrode binder resin of an electricity storage device having a relatively low operating positive electrode potential.
  • the HOMO of the constituent monomer is more preferably ⁇ 10.71 eV or less.
  • the storage device such as a lithium ion secondary battery or an electric double layer capacitor having a high operating positive electrode potential is used. It can also be used as a positive electrode binder resin.
  • the LUMO of the constituent monomer is more preferably 2.77 eV or more.
  • an electricity storage device such as a lithium ion secondary battery or an electric double layer capacitor having a low operating negative electrode potential It can also be used as a negative electrode binder resin.
  • the constituent monomers preferably have a HOMO of ⁇ 8.40 eV or less and a LUMO of 2.70 eV or more.
  • the constituent monomers have the requirements that the HOMO is ⁇ 8.40 eV or less and the LUMO is 2.70 eV or more, since both the oxidation resistance and the reduction resistance are provided, the electricity storage device having a relatively low energy density
  • the heat-resistant resin of the present invention can be used for the separator and the insulating adhesive layer that are bonded to both the negative electrode and the positive electrode that constitute the material.
  • the constituent monomers have a HOMO of 10.71 eV or less and a LUMO of 2.77 eV or more.
  • a separator constituting a power storage device such as a lithium ion secondary battery or an electric double layer capacitor having a high energy density
  • the heat resistant resin of the present invention can be used for the insulating adhesive layer.
  • the heat resistant resin of this invention can be set as the structure which mix
  • inorganic fine particles for example, it becomes possible to impart high liquid content, so that when the heat-resistant resin of the present invention is used for a separator or an insulating adhesive layer of an electricity storage device, the production of the electricity storage device is performed.
  • the electrolyte solution is injected and impregnated into a laminate formed by laminating the positive electrode layer and the negative electrode layer via the separator and the insulating adhesive layer, the time required for the impregnation is shortened and the productivity is improved. It becomes possible to make it.
  • the addition of inorganic fine particles increases the elasticity of separators, insulating adhesive layers, etc., and can improve reliability by preventing deformation due to external forces and the accompanying short circuit caused by contact between the positive and negative electrode layers. it can.
  • the heat-resistant resin of the present invention is preferably used for an electricity storage device, and is preferably used for an electricity storage device that supports mounting by reflow soldering.
  • the heat-resistant resin of the present invention has sufficient heat resistance, and when used in an electricity storage device that supports mounting by reflow soldering, it is possible to perform efficient mounting and reliability. Can be provided.
  • a heat-resistant resin having oxidation resistance and / or reduction resistance with the requirements of HOMO and LUMO it forms important elements that constitute an electricity storage device such as a binder for electrodes, a separator, and an insulating adhesive layer. It can use suitably as a material for doing.
  • the adhesive of the present invention is characterized by using the above heat-resistant resin of the present invention.
  • the positive electrode layer and the negative electrode layer are laminated so as to face each other via the insulating adhesive layer in a predetermined region, and face each other via a separator in the other predetermined region.
  • an insulating adhesive layer used in an electricity storage device having a structure in which the positive electrode layer and the negative electrode layer are bonded via the insulating adhesive layer Using a heat resistant resin in which HOMO of the constituent monomer is ⁇ 8.40 eV or less and LUMO is 2.70 eV or more, or HOMO of the constituent monomer is ⁇ 10.71 eV or less and LUMO is 2.77 eV or more. It is characterized by being manufactured.
  • the HOMO of the constituent monomer and the constituent monomer is ⁇ 8.40 eV or less
  • the LUMO is 2.70 eV or more
  • the HOMO of the constituent monomer is ⁇ 10.71 eV or less.
  • the positive electrode layer and the negative electrode layer are laminated so as to oppose each other via an insulating adhesive layer in a predetermined region, and so as to oppose each other via a separator in other predetermined regions.
  • the electricity storage device of the present invention has a structure in which a positive electrode layer and a negative electrode layer are stacked via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly bonded to the separator.
  • An electricity storage device with a body An electricity storage device comprising the separator of the present invention as the separator.
  • the electricity storage device of the present invention can be configured as one selected from the group consisting of a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor.
  • the heat-resistant resin of the present invention has characteristics such as oxidation resistance and / or reduction resistance and heat resistance. Therefore, by using the heat-resistant resin of the present invention, the heat-resistant resin has good characteristics.
  • a highly reliable lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor can be provided.
  • the heat-resistant resin of the present invention having the above-mentioned configuration has heat resistance, and is generally not thermally decomposed even in the reflow soldering process, so that the structure is maintained, so that it can be used for surface mounting by reflow soldering. It can be suitably used as a resin for use in electrical storage devices such as the electric double layer capacitor, lithium ion secondary battery, lithium ion capacitor, sulfide solid state battery, oxide solid state battery, and thin film battery.
  • the fact that thermal decomposition does not occur even in the reflow soldering process is not limited to literally no thermal decomposition at all, and it causes deterioration of characteristics that are particularly problematic even after the reflow process. This means that it is as stable as possible.
  • the heat-resistant resin of the present invention has characteristics such as oxidation resistance and / or reduction resistance, heat resistance, etc., so that it is widely used for adhesives used in the manufacture of power storage devices. Can do.
  • the insulating adhesive layer of the present invention is the heat resistant resin of the present invention, wherein the constituent monomer has a HOMO of ⁇ 8.40 eV or less, a LUMO of 2.70 eV or more, or a constituent monomer has a HOMO of ⁇ Since it is produced using a heat-resistant resin having 10.71 eV or less and LUMO of 2.77 eV or more, the necessary heat resistance, oxidation resistance, reduction resistance as an insulating adhesive layer used in an electricity storage device Therefore, it is possible to provide a highly reliable power storage device that supports surface mounting by reflow soldering.
  • the separator of the present invention is a separator used for an electricity storage device including a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and a constituent monomer has a HOMO of ⁇ 8.40 eV.
  • LUMO is 2.70 eV or more, or it is produced using a heat-resistant resin whose constituent monomer has HOMO of ⁇ 10.71 eV or less and LUMO of 2.77 eV or more.
  • a separator used in the above it has necessary heat resistance, oxidation resistance, and reduction resistance, and can provide a highly reliable power storage device corresponding to surface mounting by reflow soldering.
  • the solid electrolyte of the present invention comprises a powdered electrolyte and the heat-resistant resin of the present invention (whether the constituent monomer has a HOMO of ⁇ 8.40 eV or less and a LUMO of 2.70 eV or more, or the constituent monomer has a HOMO of -10.71 eV or less and a LUMO having a heat resistance resin having a LUMO of 2.77 eV or more), it has heat resistance, oxidation resistance, reduction resistance, and excellent shape retention.
  • a solid electrolyte having high characteristics and reliability can be provided.
  • FIG. 7 is a diagram illustrating a process of punching the printed body of FIG. 6 into a predetermined shape, where (a) is a plan view showing the position of a cutting line of the printed body, and (b) is a positive electrode layer obtained by punching the printed body
  • FIG. 4C is a front sectional view showing a negative electrode layer obtained by punching a printed body.
  • (a) is a front sectional view showing a step of forming a laminate by laminating and adhering the positive electrode layer and the negative electrode layer shown in FIG. 7 with the surface on which the insulating adhesive layer is printed facing each other
  • FIG. 3 is a front sectional view showing the laminate obtained in (a). It is front sectional drawing which shows the electric double layer capacitor (cell) formed by accommodating the laminated body shown in FIG. 8 in a package, inject
  • R 1 represented by the chemical formula (1) has at least one carbon, R 1 is bonded to the ester bond represented by the chemical formula (1) and the carbon, and R 1 A homopolymer or copolymer having a constituent monomer of acrylic acid ester in which the carbon at the 1-position is primary or secondary, or acrylic acid in which R 1 is hydrogen represented by chemical formula (1), or (b ) A copolymer having at least one of acrylic acid ester and acrylic acid and at least one of methacrylic acid ester and methacrylic acid as a constituent monomer, wherein the constituent monomer has an R 1 of at least 1 in the chemical formula (1).
  • R 1 is bonded to the ester bond represented by the chemical formula (1) by the above carbon, and the carbon at the 1-position of R 1 is primary or secondary, or R represented by the chemical formula (1) acrylic acid 1 is hydrogen, meta An acrylic acid, those containing copolymer mol% of the sum of methacrylic acid esters and methacrylic acid constituting the copolymer is 30% or less, as major component.
  • R is H or CH 3 : R 1 is H or a chemical species having at least one carbon]
  • the heat-resistant resin of the present invention having the above-described structure has sufficient heat resistance, and maintains its structure without being thermally decomposed even in a normal reflow soldering process. This is for the reason described below.
  • R 1 represented by the chemical formula (1) has at least one carbon, and R 1 has the chemical formula (1 ) And the above-mentioned carbon and when the carbon at the 1-position of R 1 is primary or secondary, even at 260 ° C. of reflow soldering temperature (hereinafter “reflow temperature”) Side chains do not break down.
  • reflow temperature reflow soldering temperature
  • the methacrylic acid skeleton is more easily decomposed than the acrylic acid skeleton.
  • a homopolymer of a methacrylic acid ester is decomposed around 130 ° C. and cannot be used because it easily decomposes at a high temperature such as reflow.
  • an acrylic resin consisting only of an acrylic acid skeleton has high heat resistance that does not decompose at 260 ° C. Therefore, the heat resistant resin of the present invention can be constituted by using an acrylic resin.
  • an acrylic resin has a low glass transition temperature, and it is not always easy to obtain a heat-resistant resin (particularly an adhesive) having no tack. Therefore, the introduction of a methacrylic acid skeleton into the acrylic acid skeleton was studied so that a heat resistant resin having a high glass transition temperature could be obtained.
  • the thermal decomposability increases with the introduction of the methacrylic acid skeleton (the thermal decomposability decreases)
  • the sum of the mol% of methacrylic acid and methacrylic acid ester monomer constituting the polymer is 30% or less. In some cases, it was confirmed that it did not decompose even at a reflow temperature of 260 ° C. and showed sufficient heat resistance for reflow.
  • acrylic acid ester and methacrylic acid ester Since the reactivity of acrylic acid ester and methacrylic acid ester is relatively similar, they can be easily copolymerized. By selecting the monomer and copolymer composition ratio, a wide range of glass transition temperatures can be obtained. Can be designed. That is, it is a resin material that is very effective in that a resin design having a composition corresponding to the bonding temperature required for use as an adhesive material can be performed. For example, when an adhesive material having no instantaneous adhesiveness (tack) is required, it is possible to easily control the glass transition temperature by copolymerization so that the glass transition temperature becomes room temperature or higher.
  • tack instantaneous adhesiveness
  • heat-resistant resins using acrylic and methacrylic resins include fluororesins such as PTFE, PVDF, and PVDF-HFP (a copolymer of PVDF and hexafluoropropylene (HFP)), and engineering plastics such as polyimide and polyamide.
  • fluororesins such as PTFE, PVDF, and PVDF-HFP (a copolymer of PVDF and hexafluoropropylene (HFP)
  • engineering plastics such as polyimide and polyamide.
  • an acrylic resin and a methacrylic resin are advantageous in that they are cheaper than these.
  • high heat-resistant resins such as fluororesins such as PTFE, PVDF, PVDF-HFP (copolymer of PVDF and hexafluoropropylene (HFP)) as described above, engineering plastics such as polyimide and polyamide are highly stable.
  • fluororesins such as PTFE, PVDF, PVDF-HFP (copolymer of PVDF and hexafluoropropylene (HFP)
  • engineering plastics such as polyimide and polyamide are highly stable.
  • acrylic resins and methacrylic resins are soluble in many solvents, and not only can an inexpensive solvent be selected, but also a solvent according to the process can be selected. There are many options.
  • the side chain structures of acrylic resins and methacrylic resins are diverse and have different physical properties such as glass transition temperature, the degree of freedom in designing physical properties by selecting side chains is high.
  • the high heat-resistant resins described above do not have as many types of constituent monomers as acrylic resins and methacrylic resins, and the design range of characteristics and physical properties is narrow. Also from this point, acrylic resins and methacrylic resins are superior to other heat resistant resins.
  • acrylic resins and methacrylic resins have high oxidation resistance and reduction resistance that do not decompose even in high energy density power storage devices such as lithium ion secondary batteries.
  • the inventors examined the oxidation resistance and reduction resistance of various resin materials, and when many of acrylic acid, acrylic acid ester, methacrylic acid, and methacrylic acid ester polymers are used in power storage devices. It was discovered that the required oxidation resistance and reduction resistance were satisfied.
  • acrylic acid, acrylic acid ester, methacrylic acid, a homopolymer of methacrylic acid ester, a copolymer thereof or the like Use a mixture.
  • a monomer (constituent monomer) that can be used to obtain a homopolymer, a copolymer, or a mixture thereof is defined by the values of HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital).
  • the heat-resistant resin of the present invention is intended for use in power storage devices such as lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, sulfide solid state batteries, oxide solid state batteries, and thin film batteries. .
  • power storage devices such as lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, sulfide solid state batteries, oxide solid state batteries, and thin film batteries.
  • the values of HOMO and LUMO are used as indicators of oxidation resistance and reduction resistance.
  • Table 1 Table 2A, Table 2B, Table 3A, Table 3B show HOMO values and LUMO values obtained by calculation for various resin materials.
  • Table 1 shows HOMO values and LUMO values of polyolefin resin, CMC (carboxymethylcellulose), PVDF (polyvinylidene fluoride), acrylic acid ester, and methacrylic acid ester.
  • Tables 2A and 2B show HOMO values and LUMO values of acrylic acid, acrylic acid ester and acrylamide
  • Tables 3A and 3B show HOMO values of methacrylic acid, methacrylic acid ester and methacrylamide. , Shows the LUMO value.
  • the side chains shown in Table 2A, Table 2B, Table 3A, and Table 3B correspond to the portion of —O—R 1 shown in Formula (1). That is, the chemical species bonded to the carbonyl group of the chemical formula represented by formula (1) was defined as a side chain.
  • the quantum chemistry calculation program Gaussian 03 was used to obtain the HOMO value and the LUMO value.
  • the molecular structure was optimized to determine the stable structure of the molecule.
  • the energy levels of HOMO and LUMO were calculated using the stable structure.
  • the conditions in each calculation are as follows. In the structural optimization calculation, B3LYP method was used, and 3-21G * was used as the basis function of atomic orbitals.
  • the Hartree-Fock method was used to calculate the energy levels of HOMO and LUMO, and 6-311G was used as the basis function of atomic orbitals.
  • monomers such as acrylic acid, acrylic acid ester, methacrylic acid, and methacrylic acid ester are used for separators of lithium ion batteries, and polyolefin-based polymer resins that are known not to be decomposed even in contact with the positive electrode Compared with (polyethylene, polypropylene), it has lower or equivalent HOMO (the smaller the value of HOMO, the less it is oxidized) (see Table 1, Table 2A, 2B, Table 3A, 3B).
  • LUMO has a higher value than CMC (carboxymethylcellulose) and PVDF (polyvinylidene fluoride) widely used for a binder of a negative electrode layer of a lithium ion battery (the larger the LUMO value, the more difficult it is reduced). (See Table 1, Tables 2A and 2B, Tables 3A and 3B).
  • the polymer and copolymer used in the heat-resistant resin of the present invention are those obtained by polymerization or copolymerization of monomers having the above HOMO and LUMO values.
  • the polymer also has the same oxidation resistance and reduction resistance as the monomer.
  • the heat resistant resin of the present invention it is not always necessary to define both HOMO and LUMO of the constituent monomers.
  • the member using the heat-resistant resin of the present invention is a separator or an electrolyte part, since they are disposed between and in contact with the positive electrode and the negative electrode, both oxidation resistance and reduction resistance are provided. I need it.
  • the resin used in the electricity storage device has a HOMO of ⁇ 8.40 eV or less and a LUMO of 2.70 eV or more.
  • This value is based on polyacrylamide.
  • Polyacrylamide is used in power storage devices with relatively low energy density, for example, by adding it to the electrolyte of lead acid batteries or manganese dry batteries. Therefore, if it has a value of HOMO and LUMO comparable to those of polyacrylamide, it can be used as a resin for an electricity storage device having a relatively low energy density.
  • HOMO is ⁇ 10.71 eV or less and LUMO is 2.77 eV or more.
  • the values of HOMO and LUMO are determined based on the resin currently used in the lithium ion secondary battery. That is, the HOMO value was set to ⁇ 10.71 eV or less in consideration of the HOMO of polypropylene, which is a general separator material, and the LUMO value was set to 2.77 eV or more in the positive electrode layer and the negative electrode layer. This is in consideration of the LUMO of PVDF, which is a binder material that can be used for any of these (see Tables 1, 2A, 2B, and 3A, 3B).
  • acrylic resin and methacrylic resin were prepared, and the thermal decomposition temperature was examined.
  • polymethyl acrylate has heat resistance that does not decompose even at 260 ° C., but polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), polymethacrylic acid having a methacrylic acid skeleton. It was confirmed that the decomposition of n-butyl (PBMA) started at 130 ° C.
  • the rate of temperature increase is 10 ° C./min.
  • the power storage device passes through a reflow furnace set to a predetermined temperature. Therefore, the time of exposure to high temperature is short, and the temperature rise and fall are also performed quickly. Therefore, when judging whether or not thermal decomposition has occurred using the weight loss rate under the above TG measurement conditions as an index, weight loss If the rate is up to about 2%, it is considered appropriate to judge that there is no problem of thermal decomposition. This is the same when the thermal decomposition resistance is evaluated from the results shown in FIGS.
  • the copolymer was synthesized as follows. A 1-liter separable flask equipped with a nitrogen gas inlet tube, a reflux device, a thermometer, and a stirring function was charged with 198.5 g of methanol and 0.82 g of azobisisobutyronitrile and stirred, and nitrogen gas was bubbled. While warming to 63 ° C. Then, 180 g of methyl acrylate and methyl methacrylate mixed in the above proportions were added dropwise to the flask over 2 hours using a dropping funnel. After completion of the dropwise addition, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, then heated to 65 ° C.
  • the copolymer was synthesized as follows. A 1-liter separable flask equipped with a nitrogen gas inlet tube, a reflux device, a thermometer, and a stirring function was charged with 198.5 g of methanol and 0.82 g of azobisisobutyronitrile and stirred while continuously bubbling nitrogen gas. Warmed to 63 ° C. Then, 180 g of methyl acrylate and cyclohexyl acrylate mixed at the following ratios were added dropwise to the flask with a dropping funnel over 2 hours. After completion of the dropwise addition, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, then heated to 65 ° C. and heated for 2 hours to obtain a polymer solution (resin solution).
  • the mixing ratio of said methyl acrylate and cyclohexyl acrylate is a molar ratio, respectively.
  • the produced polymer was dried overnight in an oven at 130 ° C. to remove the solvent. After removing the solvent, TG measurement was performed in the same manner as described in [1] above, and the thermal decomposition temperature was measured. The result of TG measurement is shown in FIG.
  • R 1 represented by the chemical formula (1) has at least one carbon, R 1 is bonded to the ester bond represented by the chemical formula (1) by the carbon, and the carbon at the 1-position of R 1 is primary. Or satisfying the requirement that acrylic acid ester that is secondary or acrylic acid in which R 1 represented by chemical formula (1) is hydrogen is used as a constituent monomer, (b) a copolymer having at least one of acrylic acid ester and acrylic acid and at least one of methacrylic acid ester and methacrylic acid as a constituent monomer, wherein the constituent monomer has R 1 represented by chemical formula (1) It has at least one carbon, and R 1 is bonded to the ester bond represented by the chemical formula (1) by the carbon, and the carbon at the 1-position of R 1 is primary or secondary, or the chemical formula (1) When reflow soldering is performed by satisfying the requirement that the R 1 shown is acrylic acid or methacrylic acid in which hydrogen is present, and the sum of mol% of methacrylic acid ester and methacrylic acid constitu
  • Example 2 in order to evaluate the heat-resistant resin of the present invention, a separator (ceramic separator) using a polyacrylic acid ester (polymethyl acrylate) having a heat-resistant composition having the requirements of the present invention as a binder resin. And an electric double layer capacitor (cell) having an insulating adhesive layer using a copolymer of methyl acrylate and ethyl acrylate as a binder resin, and the obtained electric double layer capacitor (cell) It was passed through a reflow furnace and the electrical characteristics before and after that were investigated.
  • CMC2260 carboxymethylcellulose
  • aqueous polyacrylate resin solution 38.8% by weight
  • methyl acrylate was dropped into the flask with a dropping funnel over 2 hours. After completion of dropping, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, and then heated to 65 ° C. and heated for 2 hours to obtain a polymer (methyl polyacrylate) solution. .
  • separator layer slurry 100 g of spherical alumina powder (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D50) 0.3 ⁇ m) and 80 g of NMP as a solvent were charged into a 500 ml pot. Furthermore, PSZ grinding media having a diameter of 5 mm were placed, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
  • the synthesized polymethyl acrylate binder solution (40 wt% NMP solution) was put into the pot and mixed at 150 rpm for 4 hours using a rolling ball mill to prepare a separator layer slurry of 80% PVC.
  • pigment volume concentration PVC (Pigment Volume Concentration) is a value calculated
  • PVC (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of binder resin) ⁇ 100 (1)
  • Volume of inorganic fine particles weight of inorganic fine particles / density of inorganic fine particles
  • Volume of binder resin weight of binder resin / density of binder resin
  • a binder solution of a copolymer of methyl acrylate and ethyl acrylate (40 wt% NMP solution) was put into the pot and mixed for 4 hours at 150 rpm using a rolling ball mill, and an insulating property of PVC 40% An adhesive layer slurry was prepared.
  • FIGS. 6 (a) and 6 (b) Coating of insulating adhesive layer slurry Using a # 500 mesh screen printing plate with a plate thickness of 5 ⁇ m, the insulating adhesive layer slurry prepared by the above method is shown in FIGS. 6 (a) and 6 (b). As shown in the figure, coating is performed on the positive electrode current collector layer 111 (negative electrode current collector layer 121) in the region surrounding the separator layer 113 (123), followed by drying at 120 ° C. for 30 minutes. An insulating adhesive layer 114 (124) having a thickness of 3 ⁇ m was formed in the surrounding region.
  • the positive electrode layer 115 includes a positive electrode current collector layer 111, a positive electrode active material layer 112 formed on the surface thereof, a separator layer 113, and an insulating adhesive layer 114.
  • the negative electrode layer 125 includes a negative electrode current collector layer 121, a negative electrode active material layer 122 formed on the surface thereof, a separator layer 123, and an insulating adhesive. Layer 124.
  • a lid 70a and a base portion 70b on which a positive electrode package electrode 61 and a negative electrode package electrode 62 are formed so as to wrap around from both ends to the lower surface side are provided.
  • a package 70 is prepared.
  • the lid body 70a and the base portion 70b those made of liquid crystal polymer are used.
  • a conductive adhesive containing gold as conductive particles is applied to the positive electrode side and negative electrode side extraction electrodes (electrode tabs) 116 and 126 of the laminate 106 by dipping.
  • the laminated body 106 is disposed inside the base portion 70b of the package 70 so that the applied conductive adhesive is connected to the positive electrode package electrode 61 and the negative electrode package electrode 62, and heated at 170 ° C. for 10 minutes.
  • the conductive adhesive 108 was cured.
  • the stacked body 106 is accommodated in the package 70, and the positive electrode side electrode tab 116 and the negative electrode side electrode tab 126 of the stacked body 106 are connected to the positive electrode package electrode via the conductive adhesive 108.
  • the structure connected to 61 and the negative electrode package electrode 62 was obtained.
  • the separator of the electric double layer capacitor and the insulating adhesive layer are formed of the heat resistant resin of the present invention.
  • the electricity storage device that can use the heat resistant resin of the present invention. Is not limited to electric double layer capacitors, but can also be applied to lithium ion secondary batteries, lithium ion capacitors, and the like.
  • each of the lithium ion secondary battery and the lithium ion capacitor has a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer or an insulating adhesive layer and are housed in an outer packaging material together with an electrolytic solution.
  • the material containing the heat resistant resin of this invention can be used for these separators and an insulating contact bonding layer.
  • a lithium ion secondary battery or a lithium ion capacitor the thing of the following structures is illustrated, for example.
  • a lithium ion secondary battery for example, an aluminum foil is used as a positive electrode current collector layer, and an electrode in which a mixture layer containing a lithium composite oxide is provided on the aluminum foil as a positive electrode active material layer is used as a positive electrode layer.
  • the negative electrode current collector layer for example, a copper foil is used, and an electrode in which a mixture layer containing graphite is provided as a negative electrode active material layer on the copper foil is used as the negative electrode layer.
  • the positive electrode layer and the negative electrode layer are laminated via a separator and an insulating adhesive layer using the heat-resistant resin of the present invention as in the above-described example, and a laminate is formed, for example.
  • a lithium ion secondary battery can be obtained by using 1 mol / l LiBF 4 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate as an electrolytic solution (nonaqueous electrolytic solution).
  • lithium ion capacitor for example, an aluminum foil is used as the positive electrode current collector layer, and an electrode in which a mixture layer containing activated carbon is provided as a positive electrode active material layer on the aluminum foil is used as the positive electrode layer.
  • the negative electrode current collector layer for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite as a negative electrode active material layer on the copper foil is used as a negative electrode layer, and lithium ions are further pre-doped into the negative electrode layer. To do.
  • a lithium ion capacitor can be obtained by using, as an electrolytic solution (nonaqueous electrolytic solution), 1 mol / l LiBF 4 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
  • the heat resistant resin of the present invention can also be used for sulfide solid state batteries, oxide solid state batteries, thin film batteries and the like.
  • the present invention is not limited to the above-described embodiments and examples, and the types and combinations of constituent monomers constituting the heat-resistant resin, the blending ratio, the types and blending ratios of the inorganic fine particles, the configuration of the positive electrode layer and the negative electrode layer
  • materials, forming methods, specific configurations of power storage elements such as positive electrode layers, negative electrode layers, separators, insulating adhesive layers and the number of layers
  • types of electrolytes etc. It is possible to add deformation.

Abstract

Provided is a heat-resistant resin for electrical storage devices that can be employed in surface mounting by reflow soldering. Used is either (a) a homopolymer or copolymer for which the constituent monomers are an acrylic acid ester in which R1 has at least one carbon, the R1 being bonded by the carbon with an ester bond, and in which the carbon bonded by the ester bond (hereinafter the "carbon of the 1-position in R1") is a primary or secondary carbon, or an acrylic acid in which R1 is hydrogen; or (b) a copolymer for which the constituent monomers are an acrylic acid ester and/or acrylic acid and a methacrylic acid ester and/or methacrylic acid, wherein the constituent monomers are an acrylic acid ester/methacrylic acid ester in which R1 has at least one carbon, the R1 being bonded by the carbon with an ester bond, and in which the carbon of the 1-position of the R1 is a primary or secondary carbon, or an acrylic acid/methacrylic acid in which R1 is a hydrogen, and wherein the sum of the methacrylic acid ester and methacrylic acid in mole percent is 30% or less.

Description

耐熱性樹脂、接着剤、絶縁性接着層、セパレータ、固体電解質および蓄電デバイスHeat resistant resin, adhesive, insulating adhesive layer, separator, solid electrolyte, and electricity storage device
 本発明は、耐熱性樹脂に関し、詳しくは、蓄電デバイスを構成するセパレータや絶縁性接着層などに用いるのに適した耐熱性樹脂、それを用いた接着剤、絶縁性接着層、セパレータ、固体電解質および、上記耐熱性樹脂を用いてなるセパレータ、絶縁性接着層を備えた蓄電デバイスに関する。 The present invention relates to a heat resistant resin, and more specifically, a heat resistant resin suitable for use in a separator or an insulating adhesive layer constituting an electricity storage device, an adhesive using the same, an insulating adhesive layer, a separator, a solid electrolyte In addition, the present invention relates to a power storage device including a separator using the heat resistant resin and an insulating adhesive layer.
 例えば、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの蓄電デバイスのセパレータや、絶縁性接着層には、耐熱性、接着性、耐酸化性、耐還元性などに関し、所望の特性を備えた種々の樹脂が用いられている。 For example, separators for power storage devices such as lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, and insulating adhesive layers have desired characteristics regarding heat resistance, adhesiveness, oxidation resistance, reduction resistance, etc. Various resins provided with are used.
 そのような樹脂として、例えば、(A)エポキシ基を有する(メタ)アクリレートモノマーのエポキシ基にカーボネート基を導入したモノマー由来の構造単位10~40重量部、(B)アクリロニトリル由来の構造単位10~30重量部、(C)アルキル(メタ)アクリレートモノマー由来の構造単位30~80重量部を成分として含むアクリル樹脂、
 (A)エポキシ基を有する(メタ)アクリレートモノマー由来の構造単位10~40重量部、(B)アクリロニトリル由来の構造単位10~30重量部および(C)アルキル(メタ)アクリレートモノマー由来の構造単位30~80重量部を成分として含むアクリル樹脂であって、上記エポキシ樹脂は該アクリル樹脂の側鎖に存在し、該エポキシ基にカーボネート基が付加されているアクリル樹脂
 などが提案示されている(特許文献1参照)。
Examples of such a resin include (A) 10 to 40 parts by weight of a structural unit derived from a monomer in which a carbonate group is introduced into the epoxy group of a (meth) acrylate monomer having an epoxy group, and (B) 10 to 10 structural units derived from acrylonitrile. 30 parts by weight of an acrylic resin containing 30 to 80 parts by weight of structural units derived from (C) alkyl (meth) acrylate monomer,
(A) 10 to 40 parts by weight of structural unit derived from (meth) acrylate monomer having epoxy group, (B) 10 to 30 parts by weight of structural unit derived from acrylonitrile, and (C) structural unit 30 derived from alkyl (meth) acrylate monomer An acrylic resin containing ˜80 parts by weight as a component, wherein the epoxy resin is present in the side chain of the acrylic resin and a carbonate group is added to the epoxy group has been proposed (Patent) Reference 1).
 また、(A')アクリルポリマー全体の質量に対して60~99質量%の(メタ)アクリレートに由来する構造単位;及び (B') アクリルポリマー全体の質量に対して1~40質量%の側鎖に炭素-炭素二重結合を有する構造単位を含み、質量平均分子量が10000~25000、分子量分散度が1.5~3.0であるアクリルポリマーが提案されている(特許文献2参照)。 And (A ′) 60 to 99% by mass of (meth) acrylate-derived structural units based on the total mass of the acrylic polymer; and (B ′) 1 to 40% by mass on the total mass of the acrylic polymer An acrylic polymer containing a structural unit having a carbon-carbon double bond in the chain, having a mass average molecular weight of 10,000 to 25,000 and a molecular weight dispersity of 1.5 to 3.0 has been proposed (see Patent Document 2).
 また、(メタ)アクリレートに由来する構造単位1を1~95モル%と、ヒドロキシル基を有する(メタ)アクリレート構造単位2を1~60モル%と、重合性官能基を有するジ(メタ)アクリレート構造単位3を1~60モル%とを有するアクリルポリマーであって、前記アクリルポリマーの質量平均分子量が1,000~100,000であるアクリルポリマーであって、ジ(メタ)アクリレート部分での架橋によりゲル電解質の作製を可能としたものが提案されている(特許文献3参照)。 Further, 1 to 95 mol% of the structural unit 1 derived from (meth) acrylate, 1 to 60 mol% of the (meth) acrylate structural unit 2 having a hydroxyl group, and di (meth) acrylate having a polymerizable functional group An acrylic polymer having 1 to 60 mol% of the structural unit 3, wherein the acrylic polymer has a mass average molecular weight of 1,000 to 100,000, and is a cross-link at a di (meth) acrylate moiety Has been proposed that enables the preparation of a gel electrolyte (see Patent Document 3).
 さらに、(メタ)アクリレートに由来する構造単位1を1~95モル%と、ヒドロキシル基を有する(メタ)アクリレート構造単位2を1~60モル%と、シアノ基を有する(メタ)アクリレート構造単位3を1~60モル%と、重合性官能基を有するジ(メタ)アクリレート構造単位4を1~60モル%とを有するアクリルポリマーであって、アクリルポリマーの質量平均分子量が1000~100000であるアクリルポリマーであって、ジ(メタ)アクリレート部分での架橋によりゲル電解質の作製を可能としたものが提案されている(特許文献4参照)。 Further, 1 to 95 mol% of the structural unit 1 derived from (meth) acrylate, 1 to 60 mol% of the (meth) acrylate structural unit 2 having a hydroxyl group, and (meth) acrylate structural unit 3 having a cyano group Acrylic polymer having 1 to 60 mol% of the polymer and 1 to 60 mol% of the di (meth) acrylate structural unit 4 having a polymerizable functional group, wherein the acrylic polymer has a mass average molecular weight of 1,000 to 100,000. There has been proposed a polymer that can produce a gel electrolyte by crosslinking at a di (meth) acrylate moiety (see Patent Document 4).
 また、一般式(1)で示される(メタ)アクリレートに由来する構造単位1~95モル%と、一般式(2)で示されるヒドロキシル基を有する構造単位1~60モル%と、一般式(3)で示される構造単位1~60モル%と、一般式(4)で示される構造単位1~60モル%と、一般式(5)で示される重合性官能基を有する構造単位1~60モル%とを含有するアクリルポリマーであって、前記アクリルポリマーの質量平均分子量が1000~100000であるアクリルポリマーが提案されている(特許文献5参照)。 Further, 1 to 95 mol% of structural units derived from (meth) acrylate represented by the general formula (1), 1 to 60 mol% of structural units having a hydroxyl group represented by the general formula (2), 1 to 60 mol% of the structural unit represented by 3), 1 to 60 mol% of the structural unit represented by the general formula (4), and 1 to 60 structural units having a polymerizable functional group represented by the general formula (5) An acrylic polymer containing a mol%, wherein the acrylic polymer has a mass average molecular weight of 1,000 to 100,000 has been proposed (see Patent Document 5).
 また、(A')アクリルポリマー全体の質量に対して35~99質量%の(メタ)アクリレートに由来する構造単位;及び(B')アクリルポリマー全体の質量に対して1~65質量%の側鎖に二重結合を有する構造単位を含み、質量平均分子量が1000~100000であり、及び、分子量分散度が1.3~4.0であるアクリルポリマーであって、架橋によりゲル電解質の作製を可能としたものが提案されている(特許文献6参照)。 Further, (A ′) a structural unit derived from 35 to 99% by mass of (meth) acrylate with respect to the total mass of the acrylic polymer; An acrylic polymer having a structural unit having a double bond in a chain, a mass average molecular weight of 1,000 to 100,000, and a molecular weight dispersity of 1.3 to 4.0, and producing a gel electrolyte by crosslinking What has been made possible has been proposed (see Patent Document 6).
 また、一般式(1)で示される(メタ)アクリレートに由来する構造単位1を1~99モル%と、一般式(2)で示されるエポキシ基を有する構造単位2を1~99モル%とを有するアクリルポリマーであって、前記アクリルポリマーの質量平均分子量が1000~100000であるアクリルポリマーが提案されている(特許文献7参照)。 Further, the structural unit 1 derived from the (meth) acrylate represented by the general formula (1) is 1 to 99 mol%, and the structural unit 2 having an epoxy group represented by the general formula (2) is 1 to 99 mol%. An acrylic polymer having a weight average molecular weight of 1,000 to 100,000 has been proposed (see Patent Document 7).
 また、耐熱樹脂と、2種以上のフィラーとを含有してなり、該2種以上のフィラーのそれぞれにつき構成する粒子の平均粒子径を測定して得られる値のうち、1番目に大きい値をD1、2番目に大きい値をD2としたとき、D2/D1の値が0.15以下である多孔質フィルムであって、耐熱樹脂として含窒素芳香族重合体を用いたものが提案されている(特許文献8参照)。 Moreover, it contains a heat resistant resin and two or more fillers, and the first largest value among the values obtained by measuring the average particle diameter of the particles constituting each of the two or more fillers. D 1 is a porous film having a D 2 / D 1 value of 0.15 or less, where the second largest value is D 2, and uses a nitrogen-containing aromatic polymer as a heat-resistant resin. It has been proposed (see Patent Document 8).
 上述のように、上記の各特許文献のうち、特許文献1~7においては、種々のモノマーからなるアクリル酸誘導体ないしメタクリル酸誘導体からなる共重合体がセパレータ用バインダとして用いられているが、特許文献1~7には、特に耐熱性の高いアクリルバインダの組成については言及されておらず、特許文献1~7に記載されているような組成では、リフローなどの高温下においてはバインダ樹脂が分解し、分解生成物によるデバイス特性の低下が懸念される。またパッケージを使用するような蓄電デバイスでは、バインダ分解生成物が高温により気化し、パッケージ内圧を上昇させてパッケージを変形させるという問題を引き起こすおそれがある。 As described above, in each of the above patent documents, in Patent Documents 1 to 7, a copolymer made of an acrylic acid derivative or a methacrylic acid derivative made of various monomers is used as a binder for the separator. References 1 to 7 do not mention the composition of an acrylic binder having a particularly high heat resistance. With compositions such as those described in Patent References 1 to 7, the binder resin is decomposed at high temperatures such as reflow. However, there is a concern about degradation of device characteristics due to decomposition products. Further, in an electricity storage device using a package, the decomposition product of the binder is vaporized due to high temperature, which may cause a problem that the package internal pressure is increased and the package is deformed.
 また、耐熱性を有するセパレータを実現するため、耐熱樹脂と2種以上のフィラー(セラミック)を含有する多孔質フィルムを提案している特許文献8においては、耐熱性樹脂(バインダ)として、ポリイミドやポリアミドなどが挙げられており、これらはリフローにおいても分解しない耐熱性を有している。 Further, in order to realize a separator having heat resistance, in Patent Document 8 which proposes a porous film containing a heat resistant resin and two or more fillers (ceramics), as a heat resistant resin (binder), polyimide or Polyamide etc. are mentioned, and these have heat resistance which does not decompose even in reflow.
 しかしながら、これらの樹脂は一般的に高価であり、コスト上の問題があるばかりでなく、これらの樹脂を溶解可能な溶媒にも制約があって、プロセス上の自由度が低いという問題点がある。さらに樹脂の構造に関し、アクリル系樹脂やメタクリル系樹脂のような多様性がないため、要求される特性に応じたバインダ樹脂の設計を行うことは困難であるのが実情である。 However, these resins are generally expensive and not only have cost problems, but also have a problem that the degree of freedom in the process is low due to restrictions on the solvent in which these resins can be dissolved. . Furthermore, regarding the resin structure, since there is no diversity like acrylic resin and methacrylic resin, it is actually difficult to design a binder resin according to the required characteristics.
特開2006-335971号公報JP 2006-335971 A 特開2008-156629号公報JP 2008-156629 A 特開2008-285666号公報JP 2008-285666 A 特開2008-285668号公報JP 2008-285668 A 特開2009-102608号公報JP 2009-102608 A 国際公開2007/086396号公報International Publication No. 2007/086396 特開2009-256570号公報JP 2009-256570 A 特開2008-266593号公報JP 2008-266593 A
 本発明は、上記課題を解決するものであり、リフローはんだ付け時の温度(260℃)でも熱分解せず、与えられた形状や構造を保つことが可能で、リフローはんだ付けによる表面実装に対応した蓄電デバイスのセパレータや絶縁性接着層などに用いるのに好適な耐熱性樹脂、それを用いた接着剤、絶縁性接着層、セパレータ、固体電解質、上記耐熱性樹脂を用いてなるセパレータや絶縁性接着層などを形成してなる蓄電デバイスを提供することを目的とする。 The present invention solves the above-mentioned problems, does not thermally decompose even at reflow soldering temperature (260 ° C.), can maintain the given shape and structure, and is compatible with surface mounting by reflow soldering. Heat-resistant resin suitable for use in separators and insulating adhesive layers of electrical storage devices, adhesives using the same, insulating adhesive layers, separators, solid electrolytes, separators using the above heat-resistant resins, and insulating properties It aims at providing the electrical storage device formed by forming an adhesive layer etc.
 リチウムイオン二次電池、リチウムイオンキャパシタ、および電気二重層キャパシタなどの蓄電デバイスのセパレータや絶縁性接着層を構成する樹脂には、蓄電デバイスに用いられる正極電位に対して十分な耐酸化性、負極電位に対して十分な耐還元性を有するものであることが要求される。
 また、リフローはんだ付けによる表面実装に対応した蓄電デバイスに用いられる樹脂材料としては、リフロー温度(例えば260℃)でも熱分解しないものであることが要求される。
 しかしながら、これらを満足するものとして知られている材料は限られており、PTFE(ポリテトラフルオロエチレン)などのフッ素系樹脂が主として用いられてきた。
The resin constituting separators and insulating adhesive layers of power storage devices such as lithium ion secondary batteries, lithium ion capacitors, and electric double layer capacitors has sufficient oxidation resistance with respect to the positive electrode potential used for power storage devices, negative electrode It is required to have sufficient reduction resistance against electric potential.
In addition, a resin material used for an electricity storage device that supports surface mounting by reflow soldering is required to be a material that does not thermally decompose even at a reflow temperature (for example, 260 ° C.).
However, materials known to satisfy these conditions are limited, and fluororesins such as PTFE (polytetrafluoroethylene) have been mainly used.
 このような状況下、発明者等は、蓄電デバイスに用いられる正極電位に対して十分な耐酸化性、負極電位に対して十分な耐還元性を有する樹脂材料について検討を行い、アクリル酸やアクリル酸エステル、メタクリル酸やメタクリル酸エステルを構成モノマーとする単独重合体や共重合体などのうち、所定の条件を満たすものが、蓄電デバイスに用いられる正極電位に対して十分な耐酸化性、負極電位に対して十分な耐還元性を有し、リフロー温度(例えば260℃)でも熱分解しない耐熱分解性を有していることを知った。
 そして、この知見に基づいてさらに実験、検討を行い、本発明を完成するに至った。
Under these circumstances, the inventors have studied a resin material having sufficient oxidation resistance with respect to the positive electrode potential and sufficient reduction resistance with respect to the negative electrode potential used in the electricity storage device, and has developed acrylic acid or acrylic resin. Among acid esters, homopolymers and copolymers having methacrylic acid or methacrylic acid esters as constituent monomers, those satisfying a predetermined condition are sufficient in oxidation resistance with respect to the positive electrode potential used in the electricity storage device, and the negative electrode It has been found that it has sufficient reduction resistance against electric potential and has thermal decomposition resistance that does not thermally decompose even at a reflow temperature (eg, 260 ° C.).
And based on this knowledge, further experiment and examination were carried out, and the present invention was completed.
 すなわち、本発明の耐熱性樹脂は、
 下記の(a)および(b)の少なくとも一方を主たる成分として含有するものであることを特徴としている。
 (a)化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と前記炭素によって結合しており、前記エステル結合と結合する前記炭素(以下「R1の1位の炭素」とする)が1級または2級であるアクリル酸エステル、または、化学式(1)に示すR1が水素であるアクリル酸を構成モノマーとする単独重合体もしくは共重合体
 (b) アクリル酸エステルとアクリル酸の少なくとも1種およびメタクリル酸エステルとメタクリル酸の少なくとも1種を構成モノマーとする共重合体であって、その構成モノマーが、化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と前記炭素によって結合しており、R1の1位の炭素が1級または2級であるアクリル酸エステル、メタクリル酸エステル、化学式(1)に示すR1が水素であるアクリル酸、メタクリル酸であり、該共重合体を構成するメタクリル酸エステルとメタクリル酸のモル%の和が30%以下である共重合体
Figure JPOXMLDOC01-appb-C000002
  [式(1)中、RはHまたはCH3 :R1はHまたは少なくとも炭素を1つ有する化学種]
That is, the heat resistant resin of the present invention is
It is characterized by containing at least one of the following (a) and (b) as a main component.
(a) R 1 represented by the chemical formula (1) has at least one carbon, the R 1 is bonded to the ester bond represented by the chemical formula (1) and the carbon, and the carbon (hereinafter referred to as the carbon bonded to the ester bond). acrylic acid esters and "carbon of 1-position of R 1") is a primary or secondary, or a homopolymer or co-R 1 represented by the chemical formula (1) is a constituent monomer of acrylic acid is hydrogen Polymer (b) A copolymer having at least one of acrylic acid ester and acrylic acid and at least one of methacrylic acid ester and methacrylic acid as a constituent monomer, wherein the constituent monomer is R represented by chemical formula (1) 1 has at least one carbon, R 1 is bonded by the carbon ester bond represented by the chemical formula (1), acrylic acid ester carbon at the 1-position of R 1 is a primary or secondary, methacrylic Ester, formula (1) are shown acrylate R 1 is hydrogen, a methacrylic acid, a copolymer mol% of the sum of methacrylic acid esters and methacrylic acid constituting the copolymer is not more than 30%
Figure JPOXMLDOC01-appb-C000002
[In the formula (1), R is H or CH 3 : R 1 is H or a chemical species having at least one carbon]
 また、上記本発明の耐熱性樹脂は、
 前記(a)で規定された前記単独重合体のグループに含まれる少なくとも1種の単独重合体、
 前記(a)で規定された前記共重合体のグループに含まれる少なくとも1種の共重合体、
 前記(b)で規定された前記共重合体のグループに含まれる少なくとも1種の共重合体
 からなる群より選ばれる少なくとも2種の混合物であってもよい。
The heat-resistant resin of the present invention is
At least one homopolymer included in the group of homopolymers defined in (a),
At least one copolymer included in the group of copolymers defined in (a) above,
It may be a mixture of at least two selected from the group consisting of at least one copolymer included in the group of copolymers defined in (b).
 また、本発明の耐熱性樹脂は、熱分解温度が260℃を超えるものであることが好ましい。
 本発明によれば、熱分解温度が260℃を超える耐熱性樹脂を実現することが可能であり、この耐熱性樹脂を用いて、例えば、セパレータや絶縁性接着層を形成することにより、リフローはんだ付けによる表面実装に対応した蓄電デバイスを得ることが可能になる。
The heat resistant resin of the present invention preferably has a thermal decomposition temperature exceeding 260 ° C.
According to the present invention, it is possible to realize a heat-resistant resin having a thermal decomposition temperature exceeding 260 ° C. By using this heat-resistant resin, for example, by forming a separator or an insulating adhesive layer, reflow soldering It is possible to obtain an electricity storage device that supports surface mounting by attaching.
 なお、耐熱性樹脂が、本発明の基本的な要件を備えている場合には、例えば、アクリル系樹脂とメタクリル系樹脂の割合を制御したり、適当な側鎖構造を選択したりすることにより、容易に熱分解温度を260℃より高くすることができる。 When the heat-resistant resin has the basic requirements of the present invention, for example, by controlling the ratio of acrylic resin and methacrylic resin, or by selecting an appropriate side chain structure The pyrolysis temperature can easily be raised above 260 ° C.
 また、前記構成モノマーのHOMOが-8.40eV以下であることが好ましい。
 本発明の耐熱性樹脂を、例えば、蓄電デバイスの正極用バインダ樹脂として使用する場合、酸化雰囲気にさらされるため、耐酸化性を備えていることが必要となるが、還元雰囲気にはさらされず、特に耐還元性は必要とはされないので、LUMOを規定する必要はない。したがって、構成モノマーのHOMOが-8.40eV以下であるというを備えている場合、比較的作動正極電位の低い蓄電デバイスの正極用バインダ樹脂などに、特に問題なく使用することができる。
Further, the HOMO of the constituent monomer is preferably −8.40 eV or less.
When the heat-resistant resin of the present invention is used as, for example, a binder resin for a positive electrode of an electricity storage device, it is necessary to have oxidation resistance because it is exposed to an oxidizing atmosphere, but is not exposed to a reducing atmosphere, In particular, since reduction resistance is not required, it is not necessary to define LUMO. Therefore, when the HOMO of the constituent monomer is −8.40 eV or less, it can be used without any particular problem for a positive electrode binder resin of an electricity storage device having a relatively low operating positive electrode potential.
 また、前記構成モノマーのHOMOが-10.71eV以下であることがより好ましい。
 本発明の耐熱性樹脂が、構成モノマーのHOMOが-10.71eV以下であるという要件を備えている場合には、作動正極電位の高いリチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスの正極用バインダ樹脂などにも使用することが可能になる。
The HOMO of the constituent monomer is more preferably −10.71 eV or less.
When the heat-resistant resin of the present invention has the requirement that the HOMO of the constituent monomer is −10.71 eV or less, the storage device such as a lithium ion secondary battery or an electric double layer capacitor having a high operating positive electrode potential is used. It can also be used as a positive electrode binder resin.
 また、前記構成モノマーのLUMOが2.70eV以上であることが好ましい。
 本発明の耐熱性樹脂を、例えば、蓄電デバイスの負極用バインダ樹脂として使用する場合、還元雰囲気にさらされるため、耐還元性を備えていることが必要であるが、酸化雰囲気にはさらされず、特に耐酸化性は必要とはされないので、HOMOを規定する必要はない。したがって、構成モノマーのLUMOが2.70eV以上であるという要件を備えている場合、比較的作動負極電位の高い蓄電デバイスの負極用バインダ樹脂などに、特に問題なく使用することができる。
Further, the LUMO of the constituent monomer is preferably 2.70 eV or more.
When using the heat resistant resin of the present invention as, for example, a binder resin for a negative electrode of an electricity storage device, it is necessary to have reduction resistance because it is exposed to a reducing atmosphere, but it is not exposed to an oxidizing atmosphere, In particular, since oxidation resistance is not required, it is not necessary to define HOMO. Accordingly, when the LUMO of the constituent monomer has a requirement of 2.70 eV or more, it can be used without any particular problem for the negative electrode binder resin of an electricity storage device having a relatively high operating negative electrode potential.
 また、前記構成モノマーのLUMOが2.77eV以上であることがより好ましい。
 また、本発明の耐熱性樹脂が、構成モノマーのLUMOが2.77eV以上であるという要件を備えている場合には、作動負極電位の低いリチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスの負極用バインダ樹脂などにも使用することが可能になる。
The LUMO of the constituent monomer is more preferably 2.77 eV or more.
In addition, when the heat-resistant resin of the present invention has a requirement that the LUMO of the constituent monomer is 2.77 eV or more, an electricity storage device such as a lithium ion secondary battery or an electric double layer capacitor having a low operating negative electrode potential It can also be used as a negative electrode binder resin.
 また、前記構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であることが好ましい。
 構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるという要件を備えている場合、耐酸化性と耐還元性の両方を備えているので、比較的エネルギー密度の低い蓄電デバイスを構成する負極と正極の両方と接合するセパレータや絶縁性接着層に、本発明の耐熱性樹脂を用いることができる。
The constituent monomers preferably have a HOMO of −8.40 eV or less and a LUMO of 2.70 eV or more.
When the constituent monomers have the requirements that the HOMO is −8.40 eV or less and the LUMO is 2.70 eV or more, since both the oxidation resistance and the reduction resistance are provided, the electricity storage device having a relatively low energy density The heat-resistant resin of the present invention can be used for the separator and the insulating adhesive layer that are bonded to both the negative electrode and the positive electrode that constitute the material.
 また、前記構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上であることがより好ましい。
 構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上の要件を備えている場合には、エネルギー密度の高い、リチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスを構成するセパレータや絶縁性接着層に、本発明の耐熱性樹脂を用いることができる。
More preferably, the constituent monomers have a HOMO of 10.71 eV or less and a LUMO of 2.77 eV or more.
When the constituent monomers have requirements of HOMO of -10.71 eV or less and LUMO of 2.77 eV or more, a separator constituting a power storage device such as a lithium ion secondary battery or an electric double layer capacitor having a high energy density The heat resistant resin of the present invention can be used for the insulating adhesive layer.
 また、本発明の耐熱性樹脂は、無機微粒子を配合した構成とすることができる。
 無機微粒子を含有させることにより、例えば、高い含液性を付与することが可能になるため、本発明の耐熱性樹脂を蓄電デバイスのセパレータや絶縁性接着層などに用いる場合に、蓄電デバイスの製造工程で、正極層と負極層をセパレータおよび絶縁性接着層を介して積層してなる積層体に、電解液を注液して含浸させる場合において、それに要する時間を短縮して、生産性を向上させることが可能になる。
 また、無機微粒子の添加によりセパレータや絶縁性接着層などの弾性が増し、外部からの力による変形、それに伴って起こる正極層と負極層の接触による短絡を防いで、信頼性を向上させることができる。
Moreover, the heat resistant resin of this invention can be set as the structure which mix | blended the inorganic fine particle.
By containing inorganic fine particles, for example, it becomes possible to impart high liquid content, so that when the heat-resistant resin of the present invention is used for a separator or an insulating adhesive layer of an electricity storage device, the production of the electricity storage device is performed. In the process, when the electrolyte solution is injected and impregnated into a laminate formed by laminating the positive electrode layer and the negative electrode layer via the separator and the insulating adhesive layer, the time required for the impregnation is shortened and the productivity is improved. It becomes possible to make it.
In addition, the addition of inorganic fine particles increases the elasticity of separators, insulating adhesive layers, etc., and can improve reliability by preventing deformation due to external forces and the accompanying short circuit caused by contact between the positive and negative electrode layers. it can.
 本発明の耐熱性樹脂は、蓄電デバイスに用いられるものであることが好ましく、また、リフローはんだ付けによる実装に対応した蓄電デバイスに用いられるものであることが好ましい。
 上述のように、本発明の耐熱性樹脂は、十分な耐熱性を備えており、リフローはんだ付けによる実装に対応した蓄電デバイスに用いた場合、効率のよい実装を行うことが可能で、信頼性の高い蓄電デバイスを提供することが可能になる。
 さらに、HOMOやLUMOの要件を備えた、耐酸化性および/または耐還元性を有する耐熱性樹脂の場合、電極用バインダ、セパレータや絶縁性接着層など、蓄電デバイスを構成する重要な要素を形成するための材料として好適に用いることができる。
The heat-resistant resin of the present invention is preferably used for an electricity storage device, and is preferably used for an electricity storage device that supports mounting by reflow soldering.
As described above, the heat-resistant resin of the present invention has sufficient heat resistance, and when used in an electricity storage device that supports mounting by reflow soldering, it is possible to perform efficient mounting and reliability. Can be provided.
Furthermore, in the case of a heat-resistant resin having oxidation resistance and / or reduction resistance with the requirements of HOMO and LUMO, it forms important elements that constitute an electricity storage device such as a binder for electrodes, a separator, and an insulating adhesive layer. It can use suitably as a material for doing.
 前記蓄電デバイスが、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ、硫化物固体電池、酸化物固体電池、薄膜電池からなる群より選ばれる1種であることが好ましい。
 本発明の耐熱性樹脂は、種々の蓄電デバイスに用いることが可能であり、特に、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ、硫化物固体電池、酸化物固体電池、薄膜電池に好適に用いることができる。
The power storage device is preferably one type selected from the group consisting of a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, a sulfide solid state battery, an oxide solid state battery, and a thin film battery.
The heat-resistant resin of the present invention can be used for various power storage devices, and in particular for lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, sulfide solid state batteries, oxide solid state batteries, and thin film batteries. It can be used suitably.
 また、本発明の接着剤は、上記の本発明の耐熱性樹脂を用いたことを特徴としている。 Also, the adhesive of the present invention is characterized by using the above heat-resistant resin of the present invention.
 また、本発明の絶縁性接着層は、正極層と負極層とが、所定領域においては絶縁接着層を介して互いに対向するように積層され、他の所定領域においてはセパレータを介して互いに対向するように積層され、かつ、前記正極層と前記負極層とが前記絶縁性接着層を介して接着された構造を有する蓄電デバイスに用いられる絶縁性接着層であって、
 前記構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるか、または、前記構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上である耐熱性樹脂を用いて作製されたものであることを特徴としている。
In the insulating adhesive layer of the present invention, the positive electrode layer and the negative electrode layer are laminated so as to face each other via the insulating adhesive layer in a predetermined region, and face each other via a separator in the other predetermined region. And an insulating adhesive layer used in an electricity storage device having a structure in which the positive electrode layer and the negative electrode layer are bonded via the insulating adhesive layer,
Using a heat resistant resin in which HOMO of the constituent monomer is −8.40 eV or less and LUMO is 2.70 eV or more, or HOMO of the constituent monomer is −10.71 eV or less and LUMO is 2.77 eV or more. It is characterized by being manufactured.
 また、本発明のセパレータは、正極層と負極層とが、セパレータを介して積層された構造を有する積層体を備えた蓄電デバイスに用いられるセパレータであって、前記構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるか、または、前記構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上である耐熱性樹脂を用いて作製されたものであることを特徴としている。 The separator of the present invention is a separator used for an electricity storage device having a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the constituent monomer has a HOMO of −8. 40 eV or less, LUMO is 2.70 eV or more, or is made using a heat-resistant resin having a HOMO of 10.71 eV or less and a LUMO of 2.77 eV or more. It is said.
 また、本発明の固体電解質は、粉末状の電解質と、前記構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるか、または、前記構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上である耐熱性樹脂とを含有することを特徴としている。 In the solid electrolyte of the present invention, the HOMO of the constituent monomer and the constituent monomer is −8.40 eV or less, the LUMO is 2.70 eV or more, or the HOMO of the constituent monomer is −10.71 eV or less. And a heat-resistant resin having a LUMO of 2.77 eV or more.
 また、本発明の蓄電デバイスは、正極層と負極層とが、所定領域においては絶縁接着層を介して互いに対向するように積層され、他の所定領域においてはセパレータを介して互いに対向するように積層され、かつ、前記正極層と前記負極層とが前記絶縁性接着層を介して接着された構造を有する蓄電デバイスであって、 前記絶縁性接着層として、上記の本発明の絶縁性接着層を備えていることを特徴としている。 Further, in the electricity storage device of the present invention, the positive electrode layer and the negative electrode layer are laminated so as to oppose each other via an insulating adhesive layer in a predetermined region, and so as to oppose each other via a separator in other predetermined regions. An electricity storage device having a structure in which the positive electrode layer and the negative electrode layer are bonded via the insulating adhesive layer, wherein the insulating adhesive layer of the present invention is used as the insulating adhesive layer. It is characterized by having.
 また、本発明の蓄電デバイスは、正極層と負極層とが、セパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイスであって、
 前記セパレータとして、上記本発明のセパレータを備えていることを特徴とする蓄電デバイス。
Further, the electricity storage device of the present invention has a structure in which a positive electrode layer and a negative electrode layer are stacked via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly bonded to the separator. An electricity storage device with a body,
An electricity storage device comprising the separator of the present invention as the separator.
 本発明の蓄電デバイスは、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタからなる群より選ばれる1種として構成することができる。
 本発明の耐熱性樹脂は、上述のように、耐酸化性および/または耐還元性、耐熱性などの特性を備えているので、本発明の耐熱性樹脂を用いることにより、良好な特性を備え、信頼性の高い、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタを提供することができる。
The electricity storage device of the present invention can be configured as one selected from the group consisting of a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor.
As described above, the heat-resistant resin of the present invention has characteristics such as oxidation resistance and / or reduction resistance and heat resistance. Therefore, by using the heat-resistant resin of the present invention, the heat-resistant resin has good characteristics. A highly reliable lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor can be provided.
 上述のような構成を備えた本発明の耐熱性樹脂は、耐熱性を備えており、通常、リフローはんだ付けの工程でも熱分解せず、構造を維持するため、リフローはんだ付けによる表面実装に対応した電気二重層キャパシタやリチウムイオン二次電池、リチウムイオンキャパシタ、硫化物固体電池、酸化物固体電池、薄膜電池などの蓄電デバイスに用いる樹脂として、好適に使用することが可能である。
 なお、本発明において、リフローはんだ付けの工程でも熱分解しないとは、文字どおり、まったく熱分解しない場合に限られるものではなく、リフロー工程を経ても、特に問題になるような特性の劣化を招くことがない程度に安定していることを意味するものである。
The heat-resistant resin of the present invention having the above-mentioned configuration has heat resistance, and is generally not thermally decomposed even in the reflow soldering process, so that the structure is maintained, so that it can be used for surface mounting by reflow soldering. It can be suitably used as a resin for use in electrical storage devices such as the electric double layer capacitor, lithium ion secondary battery, lithium ion capacitor, sulfide solid state battery, oxide solid state battery, and thin film battery.
In the present invention, the fact that thermal decomposition does not occur even in the reflow soldering process is not limited to literally no thermal decomposition at all, and it causes deterioration of characteristics that are particularly problematic even after the reflow process. This means that it is as stable as possible.
 また、本発明の耐熱性樹脂は、上述のように、耐酸化性および/または耐還元性、耐熱性などの特性を備えているので、蓄電デバイスの製造に際して使用される接着剤に広く用いることができる。 Further, as described above, the heat-resistant resin of the present invention has characteristics such as oxidation resistance and / or reduction resistance, heat resistance, etc., so that it is widely used for adhesives used in the manufacture of power storage devices. Can do.
 また、本発明の絶縁性接着層は、本発明の耐熱性樹脂であって、構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるか、または、構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上である耐熱性樹脂を用いて作製されたものであることから、蓄電デバイスに用いられる絶縁性接着層として、必要な耐熱性、耐酸化性、耐還元性を備えており、リフローはんだ付けによる表面実装に対応した信頼性の高い蓄電デバイスを提供することが可能になる。 The insulating adhesive layer of the present invention is the heat resistant resin of the present invention, wherein the constituent monomer has a HOMO of −8.40 eV or less, a LUMO of 2.70 eV or more, or a constituent monomer has a HOMO of − Since it is produced using a heat-resistant resin having 10.71 eV or less and LUMO of 2.77 eV or more, the necessary heat resistance, oxidation resistance, reduction resistance as an insulating adhesive layer used in an electricity storage device Therefore, it is possible to provide a highly reliable power storage device that supports surface mounting by reflow soldering.
 また、本発明のセパレータは、正極層と負極層とが、セパレータを介して積層された構造を有する積層体を備えた蓄電デバイスに用いられるセパレータであって、構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるか、または、構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上である耐熱性樹脂を用いて作製されたものであることから、蓄電デバイスに用いられるセパレータとして、必要な耐熱性、耐酸化性、耐還元性を備えており、リフローはんだ付けによる表面実装に対応した信頼性の高い蓄電デバイスを提供することができる。 The separator of the present invention is a separator used for an electricity storage device including a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and a constituent monomer has a HOMO of −8.40 eV. Hereinafter, LUMO is 2.70 eV or more, or it is produced using a heat-resistant resin whose constituent monomer has HOMO of −10.71 eV or less and LUMO of 2.77 eV or more. As a separator used in the above, it has necessary heat resistance, oxidation resistance, and reduction resistance, and can provide a highly reliable power storage device corresponding to surface mounting by reflow soldering.
 また、本発明の固体電解質は、粉末状の電解質と、本発明の耐熱性樹脂(構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であるか、または、構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上である耐熱性樹脂)とを含有するものであることから、耐熱性、耐酸化性、耐還元性を備え、かつ保形性に優れた、高特性で信頼性の高い固体電解質を提供することができる。 The solid electrolyte of the present invention comprises a powdered electrolyte and the heat-resistant resin of the present invention (whether the constituent monomer has a HOMO of −8.40 eV or less and a LUMO of 2.70 eV or more, or the constituent monomer has a HOMO of -10.71 eV or less and a LUMO having a heat resistance resin having a LUMO of 2.77 eV or more), it has heat resistance, oxidation resistance, reduction resistance, and excellent shape retention. A solid electrolyte having high characteristics and reliability can be provided.
アクリル系、メタクリル系の単独重合体の熱分解温度を調べるために行ったTG(熱重量)測定の結果を示す図である。It is a figure which shows the result of the TG (thermogravimetry) measurement performed in order to investigate the thermal decomposition temperature of an acrylic type and a methacrylic type homopolymer. アクリル酸エステルとメタクリル酸エステルの共重合体の熱分解温度を調べるために行ったTG測定の結果を示す図である。It is a figure which shows the result of the TG measurement performed in order to investigate the thermal decomposition temperature of the copolymer of acrylic acid ester and methacrylic acid ester. 側鎖構造の異なる樹脂の熱分解温度を調べるために行ったTG測定の結果を示す図である。It is a figure which shows the result of the TG measurement performed in order to investigate the thermal decomposition temperature of resin from which a side chain structure differs. 本発明の実施例にかかる蓄電デバイスの製造方法の一工程において、活物質集電体層上に、活物質層を形成した状態を示す図であって、(a)は平面図、(b)は正面断面図である。FIG. 2 is a diagram showing a state in which an active material layer is formed on an active material current collector layer in one step of a method for manufacturing an electricity storage device according to an example of the present invention, wherein (a) is a plan view, (b) Is a front sectional view. 図4に示した集電体層上に、活物質層を覆うようにセパレータ層を形成した状態を示す図であって、(a)は平面図、(b)は正面断面図である。It is a figure which shows the state which formed the separator layer so that an active material layer might be covered on the electrical power collector layer shown in FIG. 4, Comprising: (a) is a top view, (b) is front sectional drawing. (a)は図5に示したセパレータ層の周囲に絶縁性接着層を印刷した印刷体を示す図であって、(a)は平面図、(b)は正面断面図である。(a) is a figure which shows the printing body which printed the insulating contact bonding layer around the separator layer shown in FIG. 5, (a) is a top view, (b) is front sectional drawing. 図6の印刷体を、所定の形状に打ち抜く工程を説明する図であり、(a)は印刷体の切断線の位置を示す平面図、(b)は印刷体を打ち抜くことにより得た正極層を示す正面断面図、(c)は印刷体を打ち抜くことにより得た負極層を示す正面断面図である。FIG. 7 is a diagram illustrating a process of punching the printed body of FIG. 6 into a predetermined shape, where (a) is a plan view showing the position of a cutting line of the printed body, and (b) is a positive electrode layer obtained by punching the printed body FIG. 4C is a front sectional view showing a negative electrode layer obtained by punching a printed body. (a)は図7に示した正極層と負極層を、絶縁性接着層が印刷された面を対向させて積層、接着することにより積層体を形成する工程を示す正面断面図、(b)は(a)で得られた積層体を示す正面断面図である。(a) is a front sectional view showing a step of forming a laminate by laminating and adhering the positive electrode layer and the negative electrode layer shown in FIG. 7 with the surface on which the insulating adhesive layer is printed facing each other, (b) FIG. 3 is a front sectional view showing the laminate obtained in (a). 図8に示した積層体をパッケージに収容し、電解液を注入して封止することにより形成された電気二重層キャパシタ(セル)を示す正面断面図である。It is front sectional drawing which shows the electric double layer capacitor (cell) formed by accommodating the laminated body shown in FIG. 8 in a package, inject | pouring electrolyte solution, and sealing.
 以下に本発明の実施の形態を示して、本発明の特徴とするところを詳しく説明する。 Hereinafter, embodiments of the present invention will be shown, and features of the present invention will be described in detail.
 本発明の耐熱性樹脂は、(a)化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と上記炭素によって結合しており、R1の1位の炭素が1級または2級であるアクリル酸エステル、または、化学式(1)に示すR1が水素であるアクリル酸を構成モノマーとする単独重合体もしくは共重合体、または、(b) アクリル酸エステルとアクリル酸の少なくとも1種およびメタクリル酸エステルとメタクリル酸の少なくとも1種を構成モノマーとする共重合体であって、その構成モノマーが、化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と上記炭素によって結合しており、R1の1位の炭素が1級または2級であるか、化学式(1)に示すR1が水素であるアクリル酸、メタクリル酸であり、該共重合体を構成するメタクリル酸エステルとメタクリル酸のモル%の和が30%以下である共重合体、を主たる成分として含有するものである。 In the heat-resistant resin of the present invention, (a) R 1 represented by the chemical formula (1) has at least one carbon, R 1 is bonded to the ester bond represented by the chemical formula (1) and the carbon, and R 1 A homopolymer or copolymer having a constituent monomer of acrylic acid ester in which the carbon at the 1-position is primary or secondary, or acrylic acid in which R 1 is hydrogen represented by chemical formula (1), or (b ) A copolymer having at least one of acrylic acid ester and acrylic acid and at least one of methacrylic acid ester and methacrylic acid as a constituent monomer, wherein the constituent monomer has an R 1 of at least 1 in the chemical formula (1). R 1 is bonded to the ester bond represented by the chemical formula (1) by the above carbon, and the carbon at the 1-position of R 1 is primary or secondary, or R represented by the chemical formula (1) acrylic acid 1 is hydrogen, meta An acrylic acid, those containing copolymer mol% of the sum of methacrylic acid esters and methacrylic acid constituting the copolymer is 30% or less, as major component.
 [式(1)中、RはHまたはCH3 :R1はHまたは少なくとも炭素を1つ有する化学種] [In the formula (1), R is H or CH 3 : R 1 is H or a chemical species having at least one carbon]
 上述の構成を備えた本発明の耐熱性樹脂は、十分な耐熱性を備えており、通常の、リフローはんだ付けの工程でも熱分解せず、構造を維持する。これは、以下に説明するような理由による。 The heat-resistant resin of the present invention having the above-described structure has sufficient heat resistance, and maintains its structure without being thermally decomposed even in a normal reflow soldering process. This is for the reason described below.
[側鎖分解性]
 本発明の耐熱性樹脂に用いられている、アクリル酸エステルまたはメタクリル酸エステルの側鎖の分解性について、化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と上記炭素によって結合しており、R1の1位の炭素が1級または2級である場合、リフローはんだ付けの際の温度(以下、「リフロー温度」)の260℃でも側鎖は分解しない。一方、R1の1位の炭素が3級の場合、約150℃から側鎖の分解が生じるため、リフローはんだ付けにより実装を行うことを予定する蓄電デバイス用の樹脂として使用することはできない。
[Side chain degradability]
Regarding the decomposability of the side chain of the acrylic ester or methacrylic ester used in the heat resistant resin of the present invention, R 1 represented by the chemical formula (1) has at least one carbon, and R 1 has the chemical formula (1 ) And the above-mentioned carbon and when the carbon at the 1-position of R 1 is primary or secondary, even at 260 ° C. of reflow soldering temperature (hereinafter “reflow temperature”) Side chains do not break down. On the other hand, when the carbon at the 1-position of R 1 is tertiary, side chain decomposition occurs from about 150 ° C., and therefore cannot be used as a resin for an electricity storage device that is scheduled to be mounted by reflow soldering.
 このように、側鎖の分解性がエステル結合と結合する炭素の級数に依存するのは、エステル結合とそれに結合する炭素の間の結合が切れたときに生じるカルボカチオンの安定性が炭素の級数に依存することによるものであると考えられる。発明者等は、これが上記炭素の級数が低いほど結合が開裂したときに生じるカルボカチオンが不安定であるため、結合の開裂に必要なエネルギーが大きくなることによると推測し、後述する実験により確かめたところ、推測に準ずる結果を得た。 Thus, the decomposability of the side chain depends on the series of carbons bonded to the ester bond. The stability of the carbocation generated when the bond between the ester bond and the carbon bonded thereto is broken is the series of carbons. It is thought that this is due to dependence on The inventors presume that this is due to the fact that the lower the carbon series, the more unstable the carbocation generated when the bond is cleaved, so that the energy required for bond cleavage increases, and this is confirmed by experiments described later. As a result, the result according to the guess was obtained.
[主鎖分解性]
 メタクリル酸骨格はアクリル酸骨格よりも分解しやすく、実際メタクリル酸エステルの単独重合体は130℃近辺で分解が生じ、リフローのような高温では容易に分解するため使用することができない。一方、アクリル酸骨格のみからなるアクリル樹脂は260℃で分解しない高い耐熱性を有する。
 したがってアクリル系樹脂を用いることにより本発明の耐熱性樹脂を構成することができる。
[Main chain degradability]
The methacrylic acid skeleton is more easily decomposed than the acrylic acid skeleton. Actually, a homopolymer of a methacrylic acid ester is decomposed around 130 ° C. and cannot be used because it easily decomposes at a high temperature such as reflow. On the other hand, an acrylic resin consisting only of an acrylic acid skeleton has high heat resistance that does not decompose at 260 ° C.
Therefore, the heat resistant resin of the present invention can be constituted by using an acrylic resin.
 一方、アクリル系樹脂はガラス転移温度が低く、タックのない耐熱性樹脂(特に接着剤)を得ることは、必ずしも容易ではない。そこで、ガラス転移温度の高い耐熱性樹脂を得ることができるように、アクリル酸骨格にメタクリル酸骨格を部分的に導入することを検討した。
 そして、実験により、メタクリル酸骨格の導入に伴い、熱分解性は増加する(耐熱分解性は低下する)ものの、ポリマーを構成するメタクリル酸とメタクリル酸エステルモノマーのモル%の和が30%以下である場合には、リフロー温度である260℃でも分解せず、リフローに十分な耐熱性を示すことを確認した。
On the other hand, an acrylic resin has a low glass transition temperature, and it is not always easy to obtain a heat-resistant resin (particularly an adhesive) having no tack. Therefore, the introduction of a methacrylic acid skeleton into the acrylic acid skeleton was studied so that a heat resistant resin having a high glass transition temperature could be obtained.
As a result of experiments, although the thermal decomposability increases with the introduction of the methacrylic acid skeleton (the thermal decomposability decreases), the sum of the mol% of methacrylic acid and methacrylic acid ester monomer constituting the polymer is 30% or less. In some cases, it was confirmed that it did not decompose even at a reflow temperature of 260 ° C. and showed sufficient heat resistance for reflow.
 なお、アクリル酸エステルやメタクリル酸エステルなどの反応性は比較的よく似ているために、容易に共重合させることが可能であり、モノマーと共重合組成比の選択により、広範囲でのガラス転移温度の設計が可能である。つまり、接着材料として使用する場合に要求される、接着温度に対応した組成の樹脂設計を行うことができる点で非常に有効な樹脂材料である。例えば、瞬間的な接着性(タック)のない接着材料が必要な場合に、ガラス転移温度が室温以上になるように、共重合によりガラス転移温度を制御するといったことを容易に行うことができる。
 以下にアクリル系樹脂、メタクリル系樹脂を用いる利点について説明する。
Since the reactivity of acrylic acid ester and methacrylic acid ester is relatively similar, they can be easily copolymerized. By selecting the monomer and copolymer composition ratio, a wide range of glass transition temperatures can be obtained. Can be designed. That is, it is a resin material that is very effective in that a resin design having a composition corresponding to the bonding temperature required for use as an adhesive material can be performed. For example, when an adhesive material having no instantaneous adhesiveness (tack) is required, it is possible to easily control the glass transition temperature by copolymerization so that the glass transition temperature becomes room temperature or higher.
The advantages of using acrylic resin and methacrylic resin will be described below.
[アクリル系樹脂、メタクリル系樹脂を用いた耐熱性樹脂の特長]
 耐熱性の樹脂として、PTFE、PVDF、PVDF-HFP(PVDFとヘキサフルオロプロピレン(HFP)の共重合体)などのフッ素系樹脂、ポリイミド、ポリアミドなどのエンジニアリングプラスチックなどがあるが、これらはいずれも高価であるのに対して、アクリル系樹脂、メタクリル系樹脂はこれらに比べて、安価である点が利点として挙げられる。
[Features of heat-resistant resins using acrylic and methacrylic resins]
Examples of heat-resistant resins include fluororesins such as PTFE, PVDF, and PVDF-HFP (a copolymer of PVDF and hexafluoropropylene (HFP)), and engineering plastics such as polyimide and polyamide. On the other hand, an acrylic resin and a methacrylic resin are advantageous in that they are cheaper than these.
 さらに前述したようなPTFE、PVDF、PVDF-HFP(PVDFとヘキサフルオロプロピレン(HFP)の共重合体)などのフッ素系樹脂、ポリイミド、ポリアミドなどのエンジニアリングプラスチックなどの高耐熱性樹脂はその高い安定性から溶媒への溶解性が悪く、高価な溶媒が必要となる点で、高コストとなるばかりでなく、製造プロセスも制限される。これに対し、アクリル系樹脂、メタクリル系樹脂は、多くの溶媒に可溶であり、安価な溶媒を選択することができるばかりでなく、プロセスに応じた溶媒を選択することができるため、プロセスの選択肢も多い。 Furthermore, high heat-resistant resins such as fluororesins such as PTFE, PVDF, PVDF-HFP (copolymer of PVDF and hexafluoropropylene (HFP)) as described above, engineering plastics such as polyimide and polyamide are highly stable. In addition, since the solubility in the solvent is poor and an expensive solvent is required, not only the cost is increased but also the production process is limited. In contrast, acrylic resins and methacrylic resins are soluble in many solvents, and not only can an inexpensive solvent be selected, but also a solvent according to the process can be selected. There are many options.
 また、アクリル系樹脂、メタクリル系樹脂の側鎖構造は多岐にわたり、ガラス転移温度などの物性はそれぞれ異なるため、側鎖の選択による物性の設計の自由度が高い。前述した高耐熱性樹脂では、アクリル系樹脂、メタクリル系樹脂ほど構成モノマーの種類の多いものはなく、特性や物性の設計幅は狭い。この点からもアクリル系樹脂、メタクリル系樹脂は他の耐熱性樹脂に比べて優れている。 Also, since the side chain structures of acrylic resins and methacrylic resins are diverse and have different physical properties such as glass transition temperature, the degree of freedom in designing physical properties by selecting side chains is high. The high heat-resistant resins described above do not have as many types of constituent monomers as acrylic resins and methacrylic resins, and the design range of characteristics and physical properties is narrow. Also from this point, acrylic resins and methacrylic resins are superior to other heat resistant resins.
 さらにアクリル系樹脂、メタクリル系樹脂は、リチウムイオン二次電池のような高エネルギー密度の蓄電デバイス中でも分解しない高い耐酸化性、耐還元性を有しており、蓄電デバイスにおいて用いられる接着剤やバインダ樹脂として適している。 Furthermore, acrylic resins and methacrylic resins have high oxidation resistance and reduction resistance that do not decompose even in high energy density power storage devices such as lithium ion secondary batteries. Adhesives and binders used in power storage devices Suitable as resin.
 [本発明の耐熱性樹脂の特性]
 蓄電デバイス用の樹脂には耐酸化性・耐還元性が要求される。しかしこれらを満足する材料はあまり多くないのが実情で、PTFEやPVDFなどフッ素系樹脂などの限られた樹脂が主として用いられてきた。
[Characteristics of heat-resistant resin of the present invention]
Resins for power storage devices are required to have oxidation resistance and reduction resistance. However, there are not many materials that satisfy these requirements, and limited resins such as fluorine resins such as PTFE and PVDF have been mainly used.
 そこで、発明者等は、種々の樹脂材料について、耐酸化性、耐還元性を検討し、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルの重合体の多くが、蓄電デバイスに用いる場合に要求される耐酸化性、耐還元性を満足することを発見した。 Therefore, the inventors examined the oxidation resistance and reduction resistance of various resin materials, and when many of acrylic acid, acrylic acid ester, methacrylic acid, and methacrylic acid ester polymers are used in power storage devices. It was discovered that the required oxidation resistance and reduction resistance were satisfied.
 すなわち、本発明の耐熱性樹脂を構成する、耐酸化性、耐還元性を有する樹脂材料として、まず、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルの単独重合体、共重合体もしくはその混合物を使用する。そして、単独重合体、共重合体もしくはその混合物を得るために使用することが可能なモノマー(構成モノマー)は、HOMO(Highest Occupied Molecular Orbital)およびLUMO(Lowest Unoccupied Molecular Orbital)の値によって規定する。 That is, as a resin material having oxidation resistance and reduction resistance constituting the heat resistant resin of the present invention, first, acrylic acid, acrylic acid ester, methacrylic acid, a homopolymer of methacrylic acid ester, a copolymer thereof or the like Use a mixture. A monomer (constituent monomer) that can be used to obtain a homopolymer, a copolymer, or a mixture thereof is defined by the values of HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital).
 本発明の耐熱性樹脂は、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ、硫化物固体電池、酸化物固体電池、薄膜電池などの蓄電デバイス中で使用することを視野に入れている。これらの蓄電デバイス中での使用が可能な樹脂材料を選択するにあたっては、HOMOおよびLUMOの値を耐酸化性、耐還元性の指標として使用する。 The heat-resistant resin of the present invention is intended for use in power storage devices such as lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, sulfide solid state batteries, oxide solid state batteries, and thin film batteries. . In selecting a resin material that can be used in these power storage devices, the values of HOMO and LUMO are used as indicators of oxidation resistance and reduction resistance.
 各種の樹脂材料について、計算により求めたHOMOの値とLUMOの値を表1,表2A,表2B,表3A,表3Bに示す。 Table 1, Table 2A, Table 2B, Table 3A, Table 3B show HOMO values and LUMO values obtained by calculation for various resin materials.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、表1は、ポリオレフィン系樹脂、CMC(カルボキシメチルセルロース)、PVDF(ポリフッ化ビニリデン)、アクリル酸エステル、メタクリル酸エステルのHOMOの値と、LUMOの値を示す。 Table 1 shows HOMO values and LUMO values of polyolefin resin, CMC (carboxymethylcellulose), PVDF (polyvinylidene fluoride), acrylic acid ester, and methacrylic acid ester.
 また、表2A,表2Bは、アクリル酸およびアクリル酸エステル、アクリルアミドのHOMOの値と、LUMOの値を示し、表3A,表3Bは、メタクリル酸およびメタクリル酸エステル、メタクリルアミドのHOMOの値と、LUMOの値を示す。なお、表2A,表2B,表3A,表3Bに示す側鎖は、式(1)で示す、-O-R1の部分に相当する。つまり式(1)で示した化学式のカルボニル基に結合する化学種を側鎖とした。 Tables 2A and 2B show HOMO values and LUMO values of acrylic acid, acrylic acid ester and acrylamide, and Tables 3A and 3B show HOMO values of methacrylic acid, methacrylic acid ester and methacrylamide. , Shows the LUMO value. The side chains shown in Table 2A, Table 2B, Table 3A, and Table 3B correspond to the portion of —O—R 1 shown in Formula (1). That is, the chemical species bonded to the carbonyl group of the chemical formula represented by formula (1) was defined as a side chain.
 なお、HOMOの値とLUMOの値を求めるにあたっては、量子化学計算プログラムGaussian03を使用した。まず、分子構造の最適化計算を行って、その分子の安定な構造を決定した。その後に、その安定構造を用いて、HOMOおよびLUMOのエネルギー準位を計算した。それぞれの計算における条件は、次の通りである。
 構造最適化計算では、B3LYP法を用い、原子軌道の基底関数には3-21G*を使用した。
 また、HOMOおよびLUMOのエネルギー準位の計算には、Hartree-Fock法を用い、原子軌道の基底関数には6-311Gを使用した。
Note that the quantum chemistry calculation program Gaussian 03 was used to obtain the HOMO value and the LUMO value. First, the molecular structure was optimized to determine the stable structure of the molecule. Thereafter, the energy levels of HOMO and LUMO were calculated using the stable structure. The conditions in each calculation are as follows.
In the structural optimization calculation, B3LYP method was used, and 3-21G * was used as the basis function of atomic orbitals.
In addition, the Hartree-Fock method was used to calculate the energy levels of HOMO and LUMO, and 6-311G was used as the basis function of atomic orbitals.
 一般にアクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルなどのモノマーは、リチウムイオン電池のセパレータに使用され、正極と接触する部分においても分解が生じないことが知られているポリオレフィン系高分子樹脂(ポリエチレン、ポリプロピレン)と比較して低いか、あるいは同等のHOMOを有している(HOMOの値が小さいほど酸化されにくい)(表1、表2A,2B、表3A,3B参照)。また、LUMOについても、リチウムイオン電池の負極層のバインダなどに広く使用されるCMC(カルボキシメチルセルロース)、PVDF(ポリフッ化ビニリデン)よりも高い値を示している(LUMOの値が大きいほど還元されにくい)(表1、表2A,2B、表3A,3B参照)。 In general, monomers such as acrylic acid, acrylic acid ester, methacrylic acid, and methacrylic acid ester are used for separators of lithium ion batteries, and polyolefin-based polymer resins that are known not to be decomposed even in contact with the positive electrode Compared with (polyethylene, polypropylene), it has lower or equivalent HOMO (the smaller the value of HOMO, the less it is oxidized) (see Table 1, Table 2A, 2B, Table 3A, 3B). Also, LUMO has a higher value than CMC (carboxymethylcellulose) and PVDF (polyvinylidene fluoride) widely used for a binder of a negative electrode layer of a lithium ion battery (the larger the LUMO value, the more difficult it is reduced). (See Table 1, Tables 2A and 2B, Tables 3A and 3B).
 なお、本発明の耐熱性樹脂に用いられる重合体、共重合体は、上述のようなHOMOとLUMOの値を有するモノマーが重合、あるいは共重合したものであるが、そのような重合体、共重合体も、モノマーの場合と同様の耐酸化性および耐還元性を有している。 The polymer and copolymer used in the heat-resistant resin of the present invention are those obtained by polymerization or copolymerization of monomers having the above HOMO and LUMO values. The polymer also has the same oxidation resistance and reduction resistance as the monomer.
 ただし、本発明の耐熱性樹脂においては、常に構成モノマーのHOMOとLUMO両方を規定する必要はない。
例えば、本発明の耐熱性樹脂を用いた部材がセパレータや電解質部分である場合、それらは正極と負極の間に、両者に接して配設されるため、耐酸化性、耐還元性の両方が必要になる。
However, in the heat resistant resin of the present invention, it is not always necessary to define both HOMO and LUMO of the constituent monomers.
For example, when the member using the heat-resistant resin of the present invention is a separator or an electrolyte part, since they are disposed between and in contact with the positive electrode and the negative electrode, both oxidation resistance and reduction resistance are provided. I need it.
 一方、正極バインダとして使用する場合には、酸化雰囲気にさらされるため、耐酸化性の指標となるHOMOを規定することが必要になるが、還元雰囲気にさらされることがないのでLUMOを規定する必要はない。 On the other hand, when used as a positive electrode binder, since it is exposed to an oxidizing atmosphere, it is necessary to define HOMO as an index of oxidation resistance, but it is not exposed to a reducing atmosphere, so it is necessary to specify LUMO. There is no.
 逆に、負極用バインダとして使用する場合には、還元雰囲気にさらされるため、耐還元性の指標となるLUMOを規定することが必要になるが、酸化雰囲気にさらされることがないのでHOMOを規定する必要はない。 Conversely, when used as a negative electrode binder, since it is exposed to a reducing atmosphere, it is necessary to define LUMO as an index of reduction resistance, but since it is not exposed to an oxidizing atmosphere, HOMO is specified. do not have to.
 また、接着剤として使用するときには、どの部分に配置されるかによってHOMOとLUMOの規定の有無を選択する必要がある。 Also, when using as an adhesive, it is necessary to select whether or not HOMO and LUMO are prescribed depending on which part is arranged.
 蓄電デバイスで使用する樹脂には、HOMOが-8.40eV以下、LUMOが2.70eV以上であることが望ましい。この値はポリアクリルアミドを基準にしている。ポリアクリルアミドは鉛蓄電池やマンガン乾電池の電解質に添加されるなどして比較的エネルギー密度の低い蓄電デバイスでは使用されている。よってポリアクリルアミド程度のHOMOおよびLUMOの値を有していれば、比較的エネルギー密度の低い蓄電デバイス用の樹脂としての使用が可能である。 It is desirable that the resin used in the electricity storage device has a HOMO of −8.40 eV or less and a LUMO of 2.70 eV or more. This value is based on polyacrylamide. Polyacrylamide is used in power storage devices with relatively low energy density, for example, by adding it to the electrolyte of lead acid batteries or manganese dry batteries. Therefore, if it has a value of HOMO and LUMO comparable to those of polyacrylamide, it can be used as a resin for an electricity storage device having a relatively low energy density.
 さらにエネルギー密度の高いリチウムイオン二次電池や電気二重層キャパシタで使用するには、HOMOが-10.71eV以下、LUMOが2.77eV以上であることが望ましい。 Furthermore, for use in lithium ion secondary batteries and electric double layer capacitors with higher energy density, it is desirable that HOMO is −10.71 eV or less and LUMO is 2.77 eV or more.
 このHOMO、LUMOの値は、現在リチウムイオン二次電池において使用されている樹脂を基準に定めたものである。すなわち、HOMOの値を-10.71eV以下としたのは、一般的なセパレータ材料であるポリプロピレンのHOMOを考慮し、また、LUMOの値を2.77eV以上としたのは、正極層、負極層のいずれにも使用できるバインダ材料であるPVDFのLUMOを考慮したものである(表1,表2A,2B、表3A,3B参照)。 The values of HOMO and LUMO are determined based on the resin currently used in the lithium ion secondary battery. That is, the HOMO value was set to −10.71 eV or less in consideration of the HOMO of polypropylene, which is a general separator material, and the LUMO value was set to 2.77 eV or more in the positive electrode layer and the negative electrode layer. This is in consideration of the LUMO of PVDF, which is a binder material that can be used for any of these (see Tables 1, 2A, 2B, and 3A, 3B).
 この実施例では、アクリル系樹脂、メタクリル系樹脂を作製し、熱分解温度を調べた。 In this example, acrylic resin and methacrylic resin were prepared, and the thermal decomposition temperature was examined.
 [1]アクリル酸エステル、メタクリル酸エステルの単独重合体の熱分解温度測定
 ここでは、下記の樹脂(ポリマー(単独重合体))について、その熱分解温度をTGにより測定した。
 (1)ポリアクリル酸メチル(PMA;Aldrich,分子量40000)、
 (2)ポリメタクリル酸メチル(PMMA;ナカライ,分子量800000)、
 (3)ポリメタクリル酸エチル(PEMA;Aldrich,分子量515000)、
 (4)ポリメタクリル酸n-ブチル(PBMA;Aldrich,分子量337000)
 なお、測定にあたっては、十分に乾燥させた各樹脂(ポリマー)を約10mg測りとり、以下の測定条件で測定した。
[1] Measurement of thermal decomposition temperature of homopolymer of acrylic ester and methacrylic ester Here, the thermal decomposition temperature of the following resin (polymer (homopolymer)) was measured by TG.
(1) polymethyl acrylate (PMA; Aldrich, molecular weight 40000),
(2) polymethyl methacrylate (PMMA; Nacalai, molecular weight 800000),
(3) Polyethyl methacrylate (PEMA; Aldrich, molecular weight 515000),
(4) Poly (n-butyl methacrylate) (PBMA; Aldrich, molecular weight 337000)
In the measurement, about 10 mg of each sufficiently dried resin (polymer) was measured and measured under the following measurement conditions.
<TG(熱重量)測定条件>
  測定装置 : Seiko Instruments TG/DTA 320
  昇温範囲 : 25℃~600℃
  昇温速度 : 10℃/min
  雰囲気  : 空気雰囲気下
  空気流量 : 200mL/min
 上記のTG測定の結果を図1に示す。
<TG (thermogravimetric) measurement conditions>
Measuring device: Seiko Instruments TG / DTA 320
Temperature rise range: 25 ° C to 600 ° C
Temperature increase rate: 10 ° C / min
Atmosphere: Air atmosphere Air flow rate: 200mL / min
The results of the above TG measurement are shown in FIG.
 図1に示すように、ポリアクリル酸メチル(PMA)は260℃でも分解しない耐熱性を有するが、メタクリル酸骨格を有するポリメタクリル酸メチル(PMMA),ポリメタクリル酸エチル(PEMA),ポリメタクリル酸n-ブチル(PBMA)はいずれも130℃から分解が始まることが確認された。 As shown in FIG. 1, polymethyl acrylate (PMA) has heat resistance that does not decompose even at 260 ° C., but polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), polymethacrylic acid having a methacrylic acid skeleton. It was confirmed that the decomposition of n-butyl (PBMA) started at 130 ° C.
 なお、ここでのTG測定では、昇温速度を10℃/minとしているが、蓄電デバイスをリフローはんだ付けする際のリフロー工程では、所定の温度に設定されたリフロー炉を蓄電デバイスが通過することになるので、高温にさらされる時間が短く、昇温および降温も速やかに行われるので、上述のTG測定条件における重量減少率を指標として熱分解が生じているかどうかを判断するにあたっては、重量減少率が2%程度までは、問題となるほどの熱分解が生じていないと判断することが妥当であると考えられる。このことは、図2および図3に示す結果から耐熱分解性を評価する場合も同様に当てはまることである。 In this TG measurement, the rate of temperature increase is 10 ° C./min. However, in the reflow process when reflow soldering the power storage device, the power storage device passes through a reflow furnace set to a predetermined temperature. Therefore, the time of exposure to high temperature is short, and the temperature rise and fall are also performed quickly. Therefore, when judging whether or not thermal decomposition has occurred using the weight loss rate under the above TG measurement conditions as an index, weight loss If the rate is up to about 2%, it is considered appropriate to judge that there is no problem of thermal decomposition. This is the same when the thermal decomposition resistance is evaluated from the results shown in FIGS.
 [2]アクリル酸エステルとメタクリル酸エステルの共重合体の熱分解温度測定
 構成モノマーにアクリル酸メチルとメタクリル酸メチルを使用し、アクリル酸メチルとメタクリル酸メチルの混合比(モル比)を、
 アクリル酸メチル:メタクリル酸メチル=10:0(0%)、
 アクリル酸メチル:メタクリル酸メチル=9:1(10%)、
 アクリル酸メチル:メタクリル酸メチル=8:2(20%)、
 アクリル酸メチル:メタクリル酸メチル=7:3(30%)、
 アクリル酸メチル:メタクリル酸メチル=6:4(40%)
として共重合を行わせた。それから、共重合体について、TG測定を行い、熱分解温度を調べた。
[2] Thermal decomposition temperature measurement of copolymer of acrylic ester and methacrylic ester Using methyl acrylate and methyl methacrylate as constituent monomers, and mixing ratio (molar ratio) of methyl acrylate and methyl methacrylate,
Methyl acrylate: methyl methacrylate = 10: 0 (0%),
Methyl acrylate: methyl methacrylate = 9: 1 (10%),
Methyl acrylate: methyl methacrylate = 8: 2 (20%),
Methyl acrylate: methyl methacrylate = 7: 3 (30%),
Methyl acrylate: methyl methacrylate = 6: 4 (40%)
As a copolymer. And about the copolymer, TG measurement was performed and the thermal decomposition temperature was investigated.
 なお、共重合体の合成は以下のように行った。
 窒素ガス導入管、還流装置、温度計、攪拌機能を備えた1リットルのセパラブルフラスコにメタノール198.5gと、アゾビスイソブチロニトリル0.82 gを仕込んで撹拌し、窒素ガスをバブリングしながら63℃に加温した。
 そして、上記の各割合で混合したアクリル酸メチルとメタクリル酸メチルを合わせて180g、滴下ロートにより2時間かけて上記フラスコに滴下した。
 滴下終了後、アゾビスイソブチロニトリル0.41gとメタノール7.6gを加えて2時間加熱した後、65℃に昇温して2時間加熱し、重合体溶液(樹脂溶液)を得た。
 生成した重合体は130℃のオーブンで一昼夜乾燥させることにより、溶媒を除去した。
 溶媒除去後、上記[1]で説明した方法と同様の方法でTG測定を行い、熱分解温度を測定した。
 TG測定の結果を図2に示す。
The copolymer was synthesized as follows.
A 1-liter separable flask equipped with a nitrogen gas inlet tube, a reflux device, a thermometer, and a stirring function was charged with 198.5 g of methanol and 0.82 g of azobisisobutyronitrile and stirred, and nitrogen gas was bubbled. While warming to 63 ° C.
Then, 180 g of methyl acrylate and methyl methacrylate mixed in the above proportions were added dropwise to the flask over 2 hours using a dropping funnel.
After completion of the dropwise addition, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, then heated to 65 ° C. and heated for 2 hours to obtain a polymer solution (resin solution).
The produced polymer was dried overnight in an oven at 130 ° C. to remove the solvent.
After removing the solvent, TG measurement was performed in the same manner as described in [1] above, and the thermal decomposition temperature was measured.
The result of TG measurement is shown in FIG.
 図2に示すように、メタクリル酸メチルの割合が増えるにともない、分解温度が低下する傾向があるが、メタクリル酸メチルの割合が、モル%で20%(アクリル酸メチル:メタクリル酸メチル(モル比)=8:2)の場合にも、リフロー温度(260℃)では分解しないことが確認された。 As shown in FIG. 2, the decomposition temperature tends to decrease as the proportion of methyl methacrylate increases, but the proportion of methyl methacrylate is 20% in terms of mol% (methyl acrylate: methyl methacrylate (molar ratio). ) = 8: 2), it was confirmed that no decomposition occurs at the reflow temperature (260 ° C.).
 この実施例では、メタクリル酸メチルの割合、すなわち、全モノマーに占めるメタクリル酸骨格のモノマーの割合を、モル%で0%、10%、20%とした場合について示しているが、樹脂組成におけるメタクリル酸系の割合がモル%で30%(アクリル酸メチル:メタクリル酸メチル(モル比)=5:5)未満であれば、実用可能な耐熱性がえら得ることが確認されている。 In this example, the ratio of methyl methacrylate, that is, the ratio of the monomer of the methacrylic acid skeleton in the total monomer is shown as 0%, 10%, and 20% in mol%. It has been confirmed that practical heat resistance can be obtained when the acid-based ratio is less than 30% (methyl acrylate: methyl methacrylate (molar ratio) = 5: 5).
 [3]側鎖構造の異なる樹脂の熱分解温度の測定
 構成モノマーにアクリル酸メチル(R1の1位の炭素が1級であるアクリル酸エステル)とアクリル酸シクロヘキシル(R1の1位の炭素が2級であるアクリル酸エステル)を使用し、種々の比率で共重合を行わせた。それから、TG測定を行うことによって、熱分解温度を測定した。
[3] Measurement of thermal decomposition temperature of resins with different side chain structures Constituent monomers include methyl acrylate (an acrylate ester in which the first carbon of R 1 is primary) and cyclohexyl acrylate (the first carbon of R 1 Acrylic acid ester, which is secondary, was used for copolymerization at various ratios. Then, the thermal decomposition temperature was measured by performing TG measurement.
 共重合体の合成は以下のように行った。
 窒素ガス導入管、還流装置、温度計、攪拌機能を備えた1リットルのセパラブルフラスコにメタノール198.5gとアゾビスイソブチロニトリル0.82gを仕込んで撹拌し、窒素ガスをバブリングし続けながら63℃に加温した。
 そして、下記の各割合で混合したアクリル酸メチルとアクリル酸シクロヘキシルを合わせて180g、滴下ロートにより2時間かけてフラスコに滴下した。
 滴下終了後、アゾビスイソブチロニトリル0.41gとメタノール7.6gを加えて2時間加熱した後、65℃に昇温して2時間加熱し、重合体溶液(樹脂溶液)を得た。
The copolymer was synthesized as follows.
A 1-liter separable flask equipped with a nitrogen gas inlet tube, a reflux device, a thermometer, and a stirring function was charged with 198.5 g of methanol and 0.82 g of azobisisobutyronitrile and stirred while continuously bubbling nitrogen gas. Warmed to 63 ° C.
Then, 180 g of methyl acrylate and cyclohexyl acrylate mixed at the following ratios were added dropwise to the flask with a dropping funnel over 2 hours.
After completion of the dropwise addition, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, then heated to 65 ° C. and heated for 2 hours to obtain a polymer solution (resin solution).
 なお、上記のアクリル酸メチルとアクリル酸シクロヘキシルの混合比は、それぞれモル比で、
 アクリル酸メチル:アクリル酸シクロヘキシル=10:0(0%)、
 アクリル酸メチル:アクリル酸シクロヘキシル=9:1(10%)、
 アクリル酸メチル:アクリル酸シクロヘキシル=8:2(20%)、
 アクリル酸メチル:アクリル酸シクロヘキシル=7:3(30%)、
 アクリル酸メチル:アクリル酸シクロヘキシル=6:4(40%)、
 アクリル酸メチル:アクリル酸シクロヘキシル=5:5(50%)
とした。
In addition, the mixing ratio of said methyl acrylate and cyclohexyl acrylate is a molar ratio, respectively.
Methyl acrylate: cyclohexyl acrylate = 10: 0 (0%),
Methyl acrylate: cyclohexyl acrylate = 9: 1 (10%),
Methyl acrylate: cyclohexyl acrylate = 8: 2 (20%),
Methyl acrylate: cyclohexyl acrylate = 7: 3 (30%),
Methyl acrylate: cyclohexyl acrylate = 6: 4 (40%),
Methyl acrylate: cyclohexyl acrylate = 5: 5 (50%)
It was.
 生成した重合体は130℃のオーブンで一昼夜乾燥させることにより、溶媒を除去した。
 溶媒除去後、上記[1]で説明した方法と同様の方法でTG測定を行い、熱分解温度を測定した。
 TG測定の結果を図3に示す。
The produced polymer was dried overnight in an oven at 130 ° C. to remove the solvent.
After removing the solvent, TG measurement was performed in the same manner as described in [1] above, and the thermal decomposition temperature was measured.
The result of TG measurement is shown in FIG.
 図3に示すように、アクリル酸シクロヘキシルを配合していないアクリル酸メチル(R1の1位の炭素が1級であるアクリル酸エステル)の単独重合体では260℃で熱分解しないことがわかる。 As shown in FIG. 3, it can be seen that a homopolymer of methyl acrylate (an acrylate ester in which the carbon at the 1-position of R 1 is primary) not blended with cyclohexyl acrylate does not thermally decompose at 260 ° C.
 また、アクリル酸メチルとアクリル酸シクロヘキシル(R1の1位の炭素が2級であるアクリル酸エステル)の共重合体についてみた場合、上記の配合割合の範囲内では、いずれの場合も260℃で熱分解は生じないことが確認された。 In addition, in the case of a copolymer of methyl acrylate and cyclohexyl acrylate (acrylate ester in which the carbon at the 1-position of R 1 is secondary), within the above blending ratio range, in both cases, It was confirmed that no thermal decomposition occurred.
 なお、上で示した組み合わせに限らず、
 (a)アクリル酸メチル(R1の1位の炭素が1級であるアクリル酸エステル)とアクリル酸エチル(R1の1位の炭素が1級であるアクリル酸エステル)の共重合体、
 (b)アクリル酸メチル(R1の1位の炭素が1級であるアクリル酸エステル)とアクリル酸2-エチルヘキシル(R1の1位の炭素が1級であるアクリル酸エステル)の共重合体、
 (c)アクリル酸メチル(R1の1位の炭素が1級であるアクリル酸エステル)とアクリル酸イソプロピル(R1の1位の炭素が2級であるアクリル酸エステル)の共重合体
 などの場合においても、同様の傾向があることが確認されている。
In addition, not only the combination shown above,
(a) a copolymer of methyl acrylate (an acrylate ester in which the first carbon of R 1 is primary) and ethyl acrylate (an acrylate ester in which the first carbon of R 1 is primary);
(b) Copolymer of methyl acrylate (acrylic ester in which the first carbon of R 1 is primary) and 2-ethylhexyl acrylate (acrylic ester in which the first carbon of R 1 is primary) ,
(c) a copolymer of methyl acrylate (acrylic ester in which the first carbon of R 1 is primary) and isopropyl acrylate (acrylic ester in which the first carbon of R 1 is secondary), etc. In some cases, the same tendency has been confirmed.
 ただし、アクリル酸メチル(R1の1位の炭素が1級であるアクリル酸エステル)とアクリル酸t-ブチル(R1の1位の炭素が3級であるアクリル酸エステル)の共重合体では熱分解温度は大きく低下し、260℃では分解することが確認されている。 However, in the case of a copolymer of methyl acrylate (acrylate ester in which the 1st carbon of R 1 is primary) and t-butyl acrylate (acrylate ester in which the 1st carbon of R 1 is tertiary) It has been confirmed that the thermal decomposition temperature is greatly reduced and decomposes at 260 ° C.
 以上の結果より、
 (a)化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と前記炭素によって結合しており、R1の1位の炭素が1級または2級であるアクリル酸エステル、または、化学式(1)に示すR1が水素であるアクリル酸を構成モノマーとするという要件を満たすか、また、
 (b) アクリル酸エステルとアクリル酸の少なくとも1種およびメタクリル酸エステルとメタクリル酸の少なくとも1種を構成モノマーとする共重合体であって、その構成モノマーが、化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と前記炭素によって結合しており、R1の1位の炭素が1級または2級であるか、化学式(1)に示すR1が水素であるアクリル酸、メタクリル酸であり、該共重合体を構成するメタクリル酸エステルとメタクリル酸のモル%の和が30%以下であるという要件を満たすこと
 により、リフローはんだ付け時の温度(260℃)でもほとんど熱分解しない、耐熱性に優れた耐熱性樹脂材料が得られることがわかる。
based on the above results,
(a) R 1 represented by the chemical formula (1) has at least one carbon, R 1 is bonded to the ester bond represented by the chemical formula (1) by the carbon, and the carbon at the 1-position of R 1 is primary. Or satisfying the requirement that acrylic acid ester that is secondary or acrylic acid in which R 1 represented by chemical formula (1) is hydrogen is used as a constituent monomer,
(b) a copolymer having at least one of acrylic acid ester and acrylic acid and at least one of methacrylic acid ester and methacrylic acid as a constituent monomer, wherein the constituent monomer has R 1 represented by chemical formula (1) It has at least one carbon, and R 1 is bonded to the ester bond represented by the chemical formula (1) by the carbon, and the carbon at the 1-position of R 1 is primary or secondary, or the chemical formula (1) When reflow soldering is performed by satisfying the requirement that the R 1 shown is acrylic acid or methacrylic acid in which hydrogen is present, and the sum of mol% of methacrylic acid ester and methacrylic acid constituting the copolymer is 30% or less It can be seen that a heat-resistant resin material excellent in heat resistance that hardly undergoes thermal decomposition even at a temperature of 260 ° C. can be obtained.
 この実施例2では、本発明の耐熱性樹脂を評価するため、本発明の要件を備えた耐熱組成のポリアクリル酸エステル(ポリアクリル酸メチル)をバインダ樹脂に使用してなるセパレータ(セラミックセパレータ)と、アクリル酸メチルとアクリル酸エチルの共重合体をバインダ樹脂に用いた絶縁性接着層を備えた、電気二重層キャパシタ(セル)を作製するとともに、得られた電気二重層キャパシタ(セル)をリフロー炉に通し、その前後の電気特性を調べた。 In Example 2, in order to evaluate the heat-resistant resin of the present invention, a separator (ceramic separator) using a polyacrylic acid ester (polymethyl acrylate) having a heat-resistant composition having the requirements of the present invention as a binder resin. And an electric double layer capacitor (cell) having an insulating adhesive layer using a copolymer of methyl acrylate and ethyl acrylate as a binder resin, and the obtained electric double layer capacitor (cell) It was passed through a reflow furnace and the electrical characteristics before and after that were investigated.
 [1]正極層(負極層)集電体層の用意
 まず、正極層用および負極層用の集電体(活物質集電体層)として、厚みが20μmのアルミニウム箔を用意した。
[1] Preparation of positive electrode layer (negative electrode layer) current collector layer First, an aluminum foil having a thickness of 20 μm was prepared as a current collector (active material current collector layer) for the positive electrode layer and the negative electrode layer.
 [2]活物質層用スラリーの作製
 活性炭(BET比表面積1668m2/g、平均細孔直径1.83nm、平均粒子径(D50)1.26μm)29.0gと、カーボンブラック(東海カーボン株式会社製「トーカブラック#3855」、BET比表面積90m2/g)2.7gとを秤量して、1000mlのポットに投入し、さらに直径2.0mmのPSZ製粉砕メディアおよび286gの脱イオン水を投入した後、転動ボールミルを用いて150rpmで4時間混合して分散を行った。
 それから、ポットに3.0gのカルボキシメチルセルロース(ダイセル化学工業株式会社製「CMC2260」)と38.8重量%のポリアクリレート樹脂水溶液2.0gを投入し、さらに2時間混合することにより活物質層用スラリーを作製した。
[2] Preparation of slurry for active material layer Activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 μm) 29.0 g, carbon black (Tokai Carbon Co., Ltd.) “Toka Black # 3855”, 2.7 g of BET specific surface area of 90 m 2 / g) was weighed and put into a 1000 ml pot, and PSZ grinding media with a diameter of 2.0 mm and 286 g of deionized water were added. After the addition, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill.
Then, 3.0 g of carboxymethylcellulose (“CMC2260” manufactured by Daicel Chemical Industries, Ltd.) and 2.0 g of an aqueous polyacrylate resin solution of 38.8% by weight are added to the pot and further mixed for 2 hours. A slurry was prepared.
 [3]活物質層用スラリーの塗工
 版厚5μmの#500メッシュスクリーン印刷版を使用し、図4(a),(b)に示すように、活物質集電体層(正極集電体層111(負極集電体層121))上に、上記の方法で作製した活物質層用スラリーをスクリーン印刷し、100℃にて30分乾燥して、厚さ6μmの正極活物質層112(負極活物質層122)を形成した。
[3] Coating of slurry for active material layer Using a # 500 mesh screen printing plate with a plate thickness of 5 μm, as shown in FIGS. 4 (a) and 4 (b), an active material current collector layer (positive electrode current collector) The active material layer slurry produced by the above method is screen-printed on the layer 111 (negative electrode current collector layer 121) and dried at 100 ° C. for 30 minutes, and the positive electrode active material layer 112 (6 μm thick) ( A negative electrode active material layer 122) was formed.
 [4]セパレータ層用スラリーの作製
 (1)セパレータ層用バインダに用いる重合体(耐熱性樹脂)の合成
 窒素ガス導入管、還流装置、温度計、攪拌機能を備えた1リットルのセパラブルフラスコにメタノール198.5gと、アゾビスイソブチロニトリル0.82 gとを仕込んで撹拌し、窒素ガスをバブリングしながら63℃に加温した。
[4] Preparation of separator layer slurry (1) Synthesis of polymer (heat-resistant resin) used for separator layer binder A 1-liter separable flask equipped with a nitrogen gas inlet tube, a reflux device, a thermometer, and a stirring function 198.5 g of methanol and 0.82 g of azobisisobutyronitrile were charged and stirred, and heated to 63 ° C. while bubbling nitrogen gas.
 それから、アクリル酸メチル180gを滴下ロートにより2時間かけてフラスコに滴下した。滴下終了後アゾビスイソブチロニトリル0.41gとメタノール7.6gを加えて2時間加熱した後、65℃に昇温して2時間加熱し、重合体(ポリアクリル酸メチル)溶液を得た。 Then, 180 g of methyl acrylate was dropped into the flask with a dropping funnel over 2 hours. After completion of dropping, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, and then heated to 65 ° C. and heated for 2 hours to obtain a polymer (methyl polyacrylate) solution. .
 (2)セパレータ層用バインダの調整
 重合体溶液中に含まれる重合体の重量に対して2.5倍の重量のNMPを加えた後、50℃に加温しながらエバポレーションを行って、重合体溶液中の溶媒(メタノール)を除去し、ポリアクリル酸メチルの40重量%NMP溶液を得た。
(2) Preparation of separator layer binder After adding 2.5 times the weight of NMP to the weight of the polymer contained in the polymer solution, evaporation was performed while heating to 50 ° C. The solvent (methanol) in the combined solution was removed to obtain a 40 wt% NMP solution of polymethyl acrylate.
 (3)セパレータ層用スラリーの調合
 500mlのポットに球状アルミナ粉末(電気化学工業(株)製、平均粒子径(D50)0.3μm)を100gと、溶剤としてNMPを80g投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150 rpmで16時間混合し、分散を行った。
(3) Preparation of separator layer slurry 100 g of spherical alumina powder (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D50) 0.3 μm) and 80 g of NMP as a solvent were charged into a 500 ml pot. Furthermore, PSZ grinding media having a diameter of 5 mm were placed, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
 その後、合成したポリアクリル酸メチルのバインダ溶液(40重量%NMP溶液)を上記ポットに投入し、転動ボールミルを用いて150rpmで4時間混合し、PVC80%のセパレータ層用スラリーを作製した。 Thereafter, the synthesized polymethyl acrylate binder solution (40 wt% NMP solution) was put into the pot and mixed at 150 rpm for 4 hours using a rolling ball mill to prepare a separator layer slurry of 80% PVC.
 なお、顔料体積濃度PVC(Pigment Volume Concentration)は、下記の式(1)により求められる値である。
 PVC=(無機微粒子の体積)/(無機微粒子の体積+バインダ樹脂の体積)×100  ……(1)
 ただし、
 無機微粒子の体積=無機微粒子の重量/無機微粒子の密度
 バインダ樹脂の体積=バインダ樹脂の重量/バインダ樹脂の密度
In addition, pigment volume concentration PVC (Pigment Volume Concentration) is a value calculated | required by following formula (1).
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of binder resin) × 100 (1)
However,
Volume of inorganic fine particles = weight of inorganic fine particles / density of inorganic fine particles Volume of binder resin = weight of binder resin / density of binder resin
 [5]セパレータ層用スラリーの塗工
 版厚5μmの#500メッシュスクリーン印刷版を使用し、上記の方法で作製したセパレータ層用スラリーを、図5(a),(b)に示すように、正極活物質層121(負極活物質層122)上に塗工し、120℃にて30分乾燥することにより、厚さ3μmのセパレータ層113(123)を形成した。
[5] Coating of slurry for separator layer Using a # 500 mesh screen printing plate having a plate thickness of 5 μm, the slurry for separator layer prepared by the above method was used as shown in FIGS. 5 (a) and 5 (b). The separator layer 113 (123) having a thickness of 3 μm was formed by coating on the positive electrode active material layer 121 (negative electrode active material layer 122) and drying at 120 ° C. for 30 minutes.
 [6]絶縁性接着層用スラリーの作製
 (1)絶縁性接着層用バインダに用いる重合体(耐熱性樹脂)の合成
 窒素ガス導入管、還流装置、温度計、攪拌機能を備えた1リットルのセパラブルフラスコにメタノール198.5gと、アゾビスイソブチロニトリル0.82 gとを仕込んで撹拌し、窒素ガスをバブリングしながら63℃に加温した。
[6] Preparation of slurry for insulating adhesive layer (1) Synthesis of polymer (heat-resistant resin) used for binder for insulating adhesive layer 1 liter equipped with nitrogen gas inlet tube, reflux device, thermometer, stirring function A separable flask was charged with 198.5 g of methanol and 0.82 g of azobisisobutyronitrile and stirred, and heated to 63 ° C. while bubbling nitrogen gas.
 それから、アクリル酸メチル144gとアクリル酸エチル36gの混合液を滴下ロートにより2時間かけてフラスコに滴下した。滴下終了後アゾビスイソブチロニトリル0.41gとメタノール7.6gを加えて2時間加熱した後、65℃に昇温して2時間加熱し、重合体(共重合体)溶液を得た。 Then, a mixed solution of 144 g of methyl acrylate and 36 g of ethyl acrylate was dropped into the flask with a dropping funnel over 2 hours. After completion of dropping, 0.41 g of azobisisobutyronitrile and 7.6 g of methanol were added and heated for 2 hours, and then heated to 65 ° C. and heated for 2 hours to obtain a polymer (copolymer) solution.
 (2)絶縁性接着層層用バインダの調整
 重合体溶液中に含まれる重合体の重量に対して2.5倍の重量のNMPを加えた後、50℃に加温しながらエバポレーションを行って、重合体溶液中の溶媒であるメタノールを除去し、アクリル酸メチルとアクリル酸エチルの共重合体の40重量%NMP溶液を得た。
(2) Adjustment of insulating adhesive layer binder After adding 2.5 times the weight of NMP to the weight of the polymer contained in the polymer solution, evaporation was performed while heating to 50 ° C. Then, methanol as a solvent in the polymer solution was removed to obtain a 40 wt% NMP solution of a copolymer of methyl acrylate and ethyl acrylate.
 (3)絶縁性接着層用スラリーの調合
 500mlのポットに球状アルミナ粉末(電気化学工業(株)製、平均粒子径(D50)0.3μm)を100gと、溶剤としてNMPを80g投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150 rpmで16時間混合し、分散を行った。
 その後、合成したアクリル酸メチルとアクリル酸エチルの共重合体のバインダ溶液(40重量%NMP溶液)を上記ポットに投入し、転動ボールミルを用いて150rpmで4時間混合し、PVC40%の絶縁性接着層用スラリーを作製した。
(3) Preparation of Slurry for Insulating Adhesive Layer 100 g of spherical alumina powder (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D50) 0.3 μm) and 80 g of NMP as a solvent were charged into a 500 ml pot. Furthermore, PSZ grinding media having a diameter of 5 mm were placed, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
Thereafter, a binder solution of a copolymer of methyl acrylate and ethyl acrylate (40 wt% NMP solution) was put into the pot and mixed for 4 hours at 150 rpm using a rolling ball mill, and an insulating property of PVC 40% An adhesive layer slurry was prepared.
 [7]絶縁性接着層用スラリーの塗工
 版厚5μmの#500メッシュスクリーン印刷版を使用し、上記の方法で作製した絶縁性接着層用スラリーを、図6(a),(b)に示すように、セパレータ層113(123)を取り囲む領域の正極集電体層111(負極集電体層121)上に塗工し、120℃にて30分乾燥し、セパレータ層113(123)を取り囲む領域に、厚さ3μmの絶縁性接着層114(124)を形成した。
[7] Coating of insulating adhesive layer slurry Using a # 500 mesh screen printing plate with a plate thickness of 5 μm, the insulating adhesive layer slurry prepared by the above method is shown in FIGS. 6 (a) and 6 (b). As shown in the figure, coating is performed on the positive electrode current collector layer 111 (negative electrode current collector layer 121) in the region surrounding the separator layer 113 (123), followed by drying at 120 ° C. for 30 minutes. An insulating adhesive layer 114 (124) having a thickness of 3 μm was formed in the surrounding region.
 [8]印刷体の打ち抜き
 上記[7]で作製した活物質集電体層上に、活物質スラリー、セパレータ層用スラリーおよび絶縁性接着層用スラリーが印刷された印刷体を金型トムソン刃とハンドプレスを用いて、図7(a),(b),(c),(d),(e)に示すように、所定の形状に打ち抜き、正極層115と負極層125を作製した。
 なお、この打ち抜きの工程では、正極層115および負極層125を構成する、分割後の正極集電体111と負極集電体121に、接続用の端子として機能する突出部111a,121aが形成されるように打ち抜きを行っている。
[8] Punching of printed body A printed body on which an active material slurry, a separator layer slurry, and an insulating adhesive layer slurry are printed on the active material current collector layer produced in [7] above is used as a mold Thomson blade. Using a hand press, as shown in FIGS. 7A, 7B, 7C, 7D, and 7E, the positive electrode layer 115 and the negative electrode layer 125 were manufactured by punching into a predetermined shape.
In this punching process, protrusions 111a and 121a functioning as connection terminals are formed on the divided positive electrode current collector 111 and negative electrode current collector 121, which constitute the positive electrode layer 115 and the negative electrode layer 125. I am punching so that.
 正極層115は、図7(b),(c)に示すように、正極集電体層111と、その表面に形成された正極活物質層112と、セパレータ層113と、絶縁性接着層114とを備えている。
 また、負極層125は、図7(d),(e)に示すように、負極集電体層121と、その表面に形成された負極活物質層122と、セパレータ層123と、絶縁性接着層124とを備えている。
As shown in FIGS. 7B and 7C, the positive electrode layer 115 includes a positive electrode current collector layer 111, a positive electrode active material layer 112 formed on the surface thereof, a separator layer 113, and an insulating adhesive layer 114. And.
Further, as shown in FIGS. 7D and 7E, the negative electrode layer 125 includes a negative electrode current collector layer 121, a negative electrode active material layer 122 formed on the surface thereof, a separator layer 123, and an insulating adhesive. Layer 124.
 [9]積層体の作製
 上記[8]で作製した正極層115と、負極層125とを、図8(a),(b)に示すような姿勢で、各種スラリーの塗布された方の面が互いに対向するように配置し、端部を粘着テープ(図示せず)で固定することにより、積層体106を作製した。
 なお、この実施例1では、図7に示す、正極集電体111と負極集電体121の突出部111a,121aに、図8(a),(b)に示すように、Alタブを引き出し電極(電極タブ)116,126として接続している。
 以上のようにして、この実施例2では、正極層115と負極層125がセパレータ層123および絶縁性接着層124によって絶縁された積層体(1対の正極負極集合シート)106を作製した。
[9] Production of Laminate The surface of the positive electrode layer 115 and the negative electrode layer 125 produced in [8] above, on which various slurries are applied in the posture shown in FIGS. 8 (a) and 8 (b). Were arranged so as to face each other, and the end portion was fixed with an adhesive tape (not shown), to produce a laminate 106.
In Example 1, as shown in FIGS. 8 (a) and 8 (b), an Al tab is drawn into the protrusions 111a and 121a of the positive electrode current collector 111 and the negative electrode current collector 121 shown in FIG. The electrodes (electrode tabs) 116 and 126 are connected.
As described above, in Example 2, a laminated body (a pair of positive and negative electrode aggregate sheets) 106 in which the positive electrode layer 115 and the negative electrode layer 125 were insulated by the separator layer 123 and the insulating adhesive layer 124 was produced.
 [10]積層体のパッケージへの収納
 図9に示すように、蓋体70aと、両端から下面側に回り込むように正極パッケージ電極61および負極パッケージ電極62が形成されたベース部70bとを備えたパッケージ70を用意する。なお、ここでは、蓋体70a、ベース部70bとして、いずれも液晶ポリマー製のものを用いている。
[10] Storing the laminated body in a package As shown in FIG. 9, a lid 70a and a base portion 70b on which a positive electrode package electrode 61 and a negative electrode package electrode 62 are formed so as to wrap around from both ends to the lower surface side are provided. A package 70 is prepared. Here, as the lid body 70a and the base portion 70b, those made of liquid crystal polymer are used.
 そして、上記積層体106の正極側および負極側の引き出し電極(電極タブ)116,126のそれぞれに、導電性粒子として金を含有する導電性接着剤をディッピングにより塗布する。 Then, a conductive adhesive containing gold as conductive particles is applied to the positive electrode side and negative electrode side extraction electrodes (electrode tabs) 116 and 126 of the laminate 106 by dipping.
 それから、塗布された導電性接着剤が正極パッケージ電極61および負極パッケージ電極62に接続されるように、積層体106をパッケージ70のベース部70b内部に配置して、170℃で10分加熱することにより、導電性接着剤108を硬化させた。 Then, the laminated body 106 is disposed inside the base portion 70b of the package 70 so that the applied conductive adhesive is connected to the positive electrode package electrode 61 and the negative electrode package electrode 62, and heated at 170 ° C. for 10 minutes. Thus, the conductive adhesive 108 was cured.
 以上により、図9に示すように、積層体106がパッケージ70に収納され、積層体106の正極側電極タブ116と負極側電極タブ126とが、導電性接着剤108を介して、正極パッケージ電極61および負極パッケージ電極62に接続された構造体を得た。 As described above, as shown in FIG. 9, the stacked body 106 is accommodated in the package 70, and the positive electrode side electrode tab 116 and the negative electrode side electrode tab 126 of the stacked body 106 are connected to the positive electrode package electrode via the conductive adhesive 108. The structure connected to 61 and the negative electrode package electrode 62 was obtained.
 [11]電解液の注液
 それから、パッケージ70内部に電解液109を注液して、封止した。ここでは、電解液109として、EMITFSI(1-エチル-3-メチルイミダゾリウムビストリフルオロメタンスルホニルイミド)を減圧下で注液し、パッケージ70のベース部70b上面に、蓋体70aを配置し、パッケージ70のベース部70bの枠体部分に沿ってレーザー照射することにより、ベース部70bと蓋体70aを溶着して、図9に示すような構造を有する電気二重層キャパシタ(セル)を得た。
[11] Injection of electrolyte solution Then, the electrolyte solution 109 was injected into the package 70 and sealed. Here, EMITFSI (1-ethyl-3-methylimidazolium bistrifluoromethanesulfonylimide) is injected under reduced pressure as the electrolytic solution 109, a lid 70a is disposed on the upper surface of the base portion 70b of the package 70, and the package The base part 70b and the lid 70a were welded by irradiating laser along the frame part of the base part 70b of 70, and an electric double layer capacitor (cell) having a structure as shown in FIG. 9 was obtained.
 [12]リフロー炉を通過させる前と通過させた後の特性の測定
 以上のように作製した電気二重層キャパシタの電気化学特性として、直流容量を測定した。その結果、得られた電気二重層キャパシタ(リフロー炉を通過させる前の電気二重層キャパシタ)の直流容量は0.21mFであった。
 次に、この電気二重層キャパシタを、260℃に設定したリフロー炉を通過させた。そして、リフロー炉を通過した後の電気二重層キャパシタについて、直流容量を測定した。その結果、リフロー炉を通過させた後の電気二重層キャパシタ)の直流容量は0.20mFであり、問題となるような劣化は生じないことが確認された。
 この結果から、本発明の要件を備えた耐熱性樹脂を用いることにより、耐熱性に優れた信頼性の高い電気二重層キャパシタを作製できることがわかる。
[12] Measurement of characteristics before and after passing through the reflow furnace DC capacity was measured as the electrochemical characteristics of the electric double layer capacitor produced as described above. As a result, the DC capacity of the obtained electric double layer capacitor (electric double layer capacitor before passing through the reflow furnace) was 0.21 mF.
Next, the electric double layer capacitor was passed through a reflow furnace set at 260 ° C. And the direct-current capacity | capacitance was measured about the electric double layer capacitor after passing through a reflow furnace. As a result, the direct current capacity of the electric double layer capacitor after passing through the reflow furnace was 0.20 mF, and it was confirmed that no problematic deterioration occurred.
From this result, it is understood that a highly reliable electric double layer capacitor having excellent heat resistance can be produced by using a heat resistant resin having the requirements of the present invention.
 なお、上記実施例では、電気二重層キャパシタのセパレータおよび絶縁性接着層を本発明の耐熱性樹脂によって形成した場合を例にとって説明したが、本発明の耐熱性樹脂を用いることが可能な蓄電デバイスは、電気二重層キャパシタに限られるものではなく、リチウムイオン二次電池、リチウムイオンキャパシタなどにも適用することができる。 In the above embodiment, the case where the separator of the electric double layer capacitor and the insulating adhesive layer are formed of the heat resistant resin of the present invention has been described as an example. However, the electricity storage device that can use the heat resistant resin of the present invention. Is not limited to electric double layer capacitors, but can also be applied to lithium ion secondary batteries, lithium ion capacitors, and the like.
 すなわち、リチウムイオン二次電池およびリチウムイオンキャパシタには、いずれも、正極層と負極層とがセパレータ層や絶縁性接着層を介して積層され、電解液とともに外包材内に収容された構造を有するものがある。そして、これらのセパレータや絶縁性接着層に本発明の耐熱性樹脂を含む材料を用いることができる。 
 なお、リチウムイオン二次電池、あるいは、リチウムイオンキャパシタとしては、例えば、以下のような構成のものが例示される。
That is, each of the lithium ion secondary battery and the lithium ion capacitor has a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer or an insulating adhesive layer and are housed in an outer packaging material together with an electrolytic solution. There is something. And the material containing the heat resistant resin of this invention can be used for these separators and an insulating contact bonding layer.
In addition, as a lithium ion secondary battery or a lithium ion capacitor, the thing of the following structures is illustrated, for example.
<リチウムイオン二次電池>
 リチウムイオン二次電池では、正極集電体層として、例えば、アルミニウム箔を用い、そのアルミニウム箔上にリチウム複合酸化物を含む合剤層を正極活物質層として設けた電極を正極層として用いる。
 また、負極集電体層として、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層として設けた電極を負極層として用いる。
 そして、正極層と負極層とを、上述の実施例の場合のように、本発明の耐熱性樹脂を用いてなるセパレータおよび絶縁性接着層を介して積層して積層体を形成するとともに、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiBF4を溶解させたものを電解液(非水電解液)として使用することにより、リチウムイオン二次電池を得ることができる。
<Lithium ion secondary battery>
In a lithium ion secondary battery, for example, an aluminum foil is used as a positive electrode current collector layer, and an electrode in which a mixture layer containing a lithium composite oxide is provided on the aluminum foil as a positive electrode active material layer is used as a positive electrode layer.
In addition, as the negative electrode current collector layer, for example, a copper foil is used, and an electrode in which a mixture layer containing graphite is provided as a negative electrode active material layer on the copper foil is used as the negative electrode layer.
Then, the positive electrode layer and the negative electrode layer are laminated via a separator and an insulating adhesive layer using the heat-resistant resin of the present invention as in the above-described example, and a laminate is formed, for example. A lithium ion secondary battery can be obtained by using 1 mol / l LiBF 4 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate as an electrolytic solution (nonaqueous electrolytic solution).
<リチウムイオンキャパシタ>
 リチウムイオンキャパシタでは、正極集電体層として、例えば、アルミニウム箔を用い、そのアルミニウム箔上に活性炭を含む合剤層を正極活物質層として設けた電極を正極層として用いる。
 また、負極集電体層として、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層として設けた電極を負極層とし、その負極層にさらにリチウムイオンをプレドープする。
 そして、正極層と負極層とを、上述の実施例の場合のように、本発明の耐熱性樹脂を用いてなるセパレータおよび絶縁性接着層を介して積層して積層体を形成するとともに、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiBF4を溶解させたものを電解液(非水電解液)として使用することにより、リチウムイオンキャパシタを得ることができる。
 さらに、本発明の耐熱性樹脂は、硫化物固体電池、酸化物固体電池、薄膜電池などにも用いることができる。
<Lithium ion capacitor>
In the lithium ion capacitor, for example, an aluminum foil is used as the positive electrode current collector layer, and an electrode in which a mixture layer containing activated carbon is provided as a positive electrode active material layer on the aluminum foil is used as the positive electrode layer.
Further, as the negative electrode current collector layer, for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite as a negative electrode active material layer on the copper foil is used as a negative electrode layer, and lithium ions are further pre-doped into the negative electrode layer. To do.
Then, the positive electrode layer and the negative electrode layer are laminated via a separator and an insulating adhesive layer using the heat-resistant resin of the present invention as in the above-described example, and a laminate is formed, for example. A lithium ion capacitor can be obtained by using, as an electrolytic solution (nonaqueous electrolytic solution), 1 mol / l LiBF 4 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
Furthermore, the heat resistant resin of the present invention can also be used for sulfide solid state batteries, oxide solid state batteries, thin film batteries and the like.
 本発明は、上記の実施形態や実施例に限定されるものではなく、耐熱性樹脂を構成する構成モノマーの種類や組み合わせ、配合割合、無機微粒子の種類や配合割合、正極層や負極層の構成材料や形成方法、蓄電要素の具体的な構成(正極層、負極層、セパレータ、絶縁性接着層の積層態様や積層数など)、電解液の種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiments and examples, and the types and combinations of constituent monomers constituting the heat-resistant resin, the blending ratio, the types and blending ratios of the inorganic fine particles, the configuration of the positive electrode layer and the negative electrode layer Various applications within the scope of the invention regarding materials, forming methods, specific configurations of power storage elements (such as positive electrode layers, negative electrode layers, separators, insulating adhesive layers and the number of layers), types of electrolytes, etc. It is possible to add deformation.
 61         正極パッケージ電極
 62         負極パッケージ電極
 70         パッケージ
 70a        蓋体
 70b        ベース部
 106        積層体
 108        導電性接着剤
 109        電解液
 111(121)   活物質集電体層 
 112        正極活物質層
 113(123)   セパレータ層
 114(124)   絶縁性接着層
 115        正極層
 116(126)   引き出し電極(電極タブ)
 122        負極活物質層
 125        負極層
 A          電気二重層キャパシタ
61 Positive Package Electrode 62 Negative Electrode Package Electrode 70 Package 70a Lid 70b Base Part 106 Laminate 108 Conductive Adhesive 109 Electrolyte 111 (121) Active Material Current Collector Layer
112 Positive electrode active material layer 113 (123) Separator layer 114 (124) Insulating adhesive layer 115 Positive electrode layer 116 (126) Lead electrode (electrode tab)
122 Negative electrode active material layer 125 Negative electrode layer A Electric double layer capacitor

Claims (20)

  1.  下記の(a)および(b)の少なくとも一方を主たる成分として含有することを特徴とする耐熱性樹脂。
     (a)化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と前記炭素によって結合しており、前記エステル結合と結合する前記炭素が1級または2級であるアクリル酸エステル、または、化学式(1)に示すR1が水素であるアクリル酸を構成モノマーとする単独重合体もしくは共重合体
     (b) アクリル酸エステルとアクリル酸の少なくとも1種およびメタクリル酸エステルとメタクリル酸の少なくとも1種を構成モノマーとする共重合体であって、該構成モノマーが、化学式(1)に示すR1が少なくとも1つの炭素を有し、R1が化学式(1)に示すエステル結合と前記炭素によって結合しており、前記エステル結合と結合する前記炭素が1級または2級であるアクリル酸エステル、メタクリル酸エステル、化学式(1)に示すR1が水素であるアクリル酸、メタクリル酸であり、該共重合体を構成するメタクリル酸エステルとメタクリル酸のモル%の和が30%以下である共重合体
    Figure JPOXMLDOC01-appb-C000001
     [式(1)中、RはHまたはCH3 :R1はHまたは少なくとも炭素を1つ有する化学種]
    A heat resistant resin comprising at least one of the following (a) and (b) as a main component.
    (a) R 1 represented by the chemical formula (1) has at least one carbon, R 1 is bonded to the ester bond represented by the chemical formula (1) by the carbon, and the carbon bonded to the ester bond is 1 A homopolymer or a copolymer having acrylic acid ester which is secondary or secondary, or acrylic acid in which R 1 is hydrogen represented by chemical formula (1) as a constituent monomer (b) at least one of acrylic acid ester and acrylic acid A copolymer having at least one of a seed and a methacrylic acid ester and methacrylic acid as a constituent monomer, wherein R 1 in the chemical formula (1) has at least one carbon, and R 1 has the chemical formula Acrylic ester, methacrylic ester, chemical, which is bonded to the ester bond shown in (1) by the carbon, and the carbon bonded to the ester bond is primary or secondary. Acrylic acid wherein R 1 is hydrogen as shown in (1), a methacrylic acid, a copolymer mol% of the sum of methacrylic acid esters and methacrylic acid constituting the copolymer is not more than 30%
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R is H or CH 3 : R 1 is H or a chemical species having at least one carbon]
  2.  請求項1記載の耐熱性樹脂であって、
     前記(a)で規定された前記単独重合体のグループに含まれる少なくとも1種の単独重合体、
     前記(a)で規定された前記共重合体のグループに含まれる少なくとも1種の共重合体、
     前記(b)で規定された前記共重合体のグループに含まれる少なくとも1種の共重合体
     からなる群より選ばれる少なくとも2種の混合物であること
     を特徴とする耐熱性樹脂。
    The heat resistant resin according to claim 1,
    At least one homopolymer included in the group of homopolymers defined in (a),
    At least one copolymer included in the group of copolymers defined in (a) above,
    A heat-resistant resin, which is a mixture of at least two selected from the group consisting of at least one copolymer included in the group of copolymers defined in (b).
  3.  熱分解温度が260℃より高いことを特徴とする請求項1または2記載の耐熱性樹脂。 The heat-resistant resin according to claim 1 or 2, wherein the thermal decomposition temperature is higher than 260 ° C.
  4.  前記構成モノマーのHOMOが-8.40eV以下であることを特徴とする請求項1~3のいずれかに記載の耐熱性樹脂。 The heat resistant resin according to any one of claims 1 to 3, wherein the constituent monomer has a HOMO of -8.40 eV or less.
  5.  前記構成モノマーのHOMOが-10.71eV以下であることを特徴とする請求項1~3のいずれかに記載の耐熱性樹脂。 The heat-resistant resin according to any one of claims 1 to 3, wherein the constituent monomer has a HOMO of -10.71 eV or less.
  6.  前記構成モノマーのLUMOが2.70eV以上であることを特徴とする請求項1~3のいずれかに記載の耐熱性樹脂。 The heat resistant resin according to any one of claims 1 to 3, wherein the constituent monomer has a LUMO of 2.70 eV or more.
  7.  前記構成モノマーのLUMOが2.77eV以上であることを特徴とする請求項1~3のいずれかに記載の耐熱性樹脂。 The heat-resistant resin according to any one of claims 1 to 3, wherein the constituent monomer has a LUMO of 2.77 eV or more.
  8.  前記構成モノマーのHOMOが-8.40eV以下、LUMOが2.70eV以上であることを特徴とする請求項1~3のいずれかに記載の耐熱性樹脂。 The heat resistant resin according to any one of claims 1 to 3, wherein the constituent monomers have a HOMO of -8.40 eV or less and a LUMO of 2.70 eV or more.
  9.  前記構成モノマーのHOMOが-10.71eV以下、LUMOが2.77eV以上であることを特徴とする請求項1~3のいずれかに記載の耐熱性樹脂。 The heat-resistant resin according to any one of claims 1 to 3, wherein the constituent monomers have a HOMO of -10.71 eV or less and a LUMO of 2.77 eV or more.
  10.  無機微粒子を配合したことを特徴とする請求項1~9のいずれかに記載の耐熱性樹脂。 The heat resistant resin according to any one of claims 1 to 9, wherein inorganic fine particles are blended.
  11.  蓄電デバイスに用いられるものであることを特徴とする請求項1~10のいずれかに記載の耐熱性樹脂。 11. The heat-resistant resin according to claim 1, which is used for an electricity storage device.
  12.  リフローはんだ付けによる実装に対応した蓄電デバイスに用いられるものであることを特徴とする請求項1~10のいずれかに記載の耐熱性樹脂。 The heat-resistant resin according to any one of claims 1 to 10, wherein the heat-resistant resin is used for an electricity storage device that supports mounting by reflow soldering.
  13.  前記蓄電デバイスが、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ、硫化物固体電池、酸化物固体電池、薄膜電池からなる群より選ばれる1種であることを特徴とする請求項11または12記載の耐熱性樹脂。 12. The power storage device is one selected from the group consisting of a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, a sulfide solid state battery, an oxide solid state battery, and a thin film battery. Or the heat resistant resin of 12.
  14.  請求項1~10のいずれかに記載の耐熱性樹脂を用いたことを特徴とする、蓄電デバイスの製造に用いられる接着剤。 An adhesive used for manufacturing an electricity storage device, characterized by using the heat-resistant resin according to any one of claims 1 to 10.
  15.  正極層と負極層とが、所定領域においては絶縁接着層を介して互いに対向するように積層され、他の所定領域においてはセパレータを介して互いに対向するように積層され、かつ、前記正極層と前記負極層とが前記絶縁性接着層を介して接着された構造を有する蓄電デバイスに用いられる絶縁性接着層であって、
     請求項8または9記載の耐熱性樹脂を用いて作製されたものであること
     を特徴とする絶縁性接着層。
    The positive electrode layer and the negative electrode layer are laminated so as to face each other via an insulating adhesive layer in a predetermined region, and are laminated so as to face each other via a separator in the other predetermined region, and the positive electrode layer and An insulating adhesive layer used in an electricity storage device having a structure in which the negative electrode layer is bonded via the insulating adhesive layer;
    An insulating adhesive layer produced using the heat-resistant resin according to claim 8 or 9.
  16.  正極層と負極層とが、セパレータを介して積層された構造を有する積層体を備えた蓄電デバイスに用いられるセパレータであって、
     請求項8または9記載の耐熱性樹脂を用いて作製されたものであること
     を特徴とするセパレータ。
    A positive electrode layer and a negative electrode layer are separators for use in an electricity storage device including a laminate having a structure in which the separators are laminated via a separator,
    A separator produced using the heat-resistant resin according to claim 8 or 9.
  17.  粉末状の電解質と、請求項8または9記載の耐熱性樹脂とを含有することを特徴とする固体電解質。 A solid electrolyte comprising a powdered electrolyte and the heat resistant resin according to claim 8 or 9.
  18.  正極層と負極層とが、所定領域においては絶縁接着層を介して互いに対向するように積層され、他の所定領域においてはセパレータを介して互いに対向するように積層され、かつ、前記正極層と前記負極層とが前記絶縁性接着層を介して接着された構造を有する蓄電デバイスであって、
     前記絶縁性接着層として、請求項15記載の絶縁性接着層を備えていること を特徴とする蓄電デバイス。
    The positive electrode layer and the negative electrode layer are laminated so as to face each other via an insulating adhesive layer in a predetermined region, and are laminated so as to face each other via a separator in the other predetermined region, and the positive electrode layer and An electricity storage device having a structure in which the negative electrode layer is bonded via the insulating adhesive layer,
    An electrical storage device comprising the insulating adhesive layer according to claim 15 as the insulating adhesive layer.
  19.  正極層と負極層とが、セパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイスであって、
     前記セパレータとして、請求項16記載のセパレータを備えていることを特徴とする蓄電デバイス。
    A power storage device comprising a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly bonded to the separator. ,
    An electricity storage device comprising the separator according to claim 16 as the separator.
  20.  リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタからなる群より選ばれる1種であることを特徴とする請求項18または請求項19記載の蓄電デバイス。 The electricity storage device according to claim 18 or 19, wherein the electricity storage device is one selected from the group consisting of a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor.
PCT/JP2012/083811 2011-12-28 2012-12-27 Heat-resistant resin, adhesive agent, insulating adhesive layer, separator, solid electrolyte, and electrical storage device WO2013100023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011288214 2011-12-28
JP2011-288214 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013100023A1 true WO2013100023A1 (en) 2013-07-04

Family

ID=48697502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083811 WO2013100023A1 (en) 2011-12-28 2012-12-27 Heat-resistant resin, adhesive agent, insulating adhesive layer, separator, solid electrolyte, and electrical storage device

Country Status (1)

Country Link
WO (1) WO2013100023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128778A (en) * 2016-07-26 2016-11-16 胡英 A kind of all-solid-state supercapacitor and preparation method thereof
CN112259913A (en) * 2020-09-25 2021-01-22 东莞维科电池有限公司 Diaphragm slurry and preparation method and application thereof
JP7374134B2 (en) 2018-09-28 2023-11-06 エルジー エナジー ソリューション リミテッド Separation membrane for electrochemical devices and method for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161251A (en) * 2000-11-28 2002-06-04 Hitachi Chem Co Ltd Adhesive film, method for producing the same, and method for adhering the same
JP2002529891A (en) * 1998-11-04 2002-09-10 ビーエーエスエフ アクチェンゲゼルシャフト Composite materials and electrochemical cells
JP2007023145A (en) * 2005-07-15 2007-02-01 Achilles Corp Flexible film of polylactic acid-based resin
WO2007023932A1 (en) * 2005-08-26 2007-03-01 Kuraray Co., Ltd. Thermoplastic elastomer composition and composite molded article manufactured from the same
WO2007086396A1 (en) * 2006-01-25 2007-08-02 Hitachi Chemical Company, Ltd. Acrylic polymer and method for producing same
JP2008214418A (en) * 2007-03-01 2008-09-18 Nippon Zeon Co Ltd Acrylic rubber, acrylic rubber composition, and acrylic rubber crosslinked product
JP2009132888A (en) * 2007-11-05 2009-06-18 Hitachi Chem Co Ltd Acrylic elastomer and composition using it
JP2011071128A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof
WO2013005796A1 (en) * 2011-07-06 2013-01-10 日本ゼオン株式会社 Porous membrane for secondary battery, separator for secondary battery, and secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529891A (en) * 1998-11-04 2002-09-10 ビーエーエスエフ アクチェンゲゼルシャフト Composite materials and electrochemical cells
JP2002161251A (en) * 2000-11-28 2002-06-04 Hitachi Chem Co Ltd Adhesive film, method for producing the same, and method for adhering the same
JP2011071128A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof
JP2007023145A (en) * 2005-07-15 2007-02-01 Achilles Corp Flexible film of polylactic acid-based resin
WO2007023932A1 (en) * 2005-08-26 2007-03-01 Kuraray Co., Ltd. Thermoplastic elastomer composition and composite molded article manufactured from the same
WO2007086396A1 (en) * 2006-01-25 2007-08-02 Hitachi Chemical Company, Ltd. Acrylic polymer and method for producing same
JP2008214418A (en) * 2007-03-01 2008-09-18 Nippon Zeon Co Ltd Acrylic rubber, acrylic rubber composition, and acrylic rubber crosslinked product
JP2009132888A (en) * 2007-11-05 2009-06-18 Hitachi Chem Co Ltd Acrylic elastomer and composition using it
WO2013005796A1 (en) * 2011-07-06 2013-01-10 日本ゼオン株式会社 Porous membrane for secondary battery, separator for secondary battery, and secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128778A (en) * 2016-07-26 2016-11-16 胡英 A kind of all-solid-state supercapacitor and preparation method thereof
JP7374134B2 (en) 2018-09-28 2023-11-06 エルジー エナジー ソリューション リミテッド Separation membrane for electrochemical devices and method for manufacturing the same
CN112259913A (en) * 2020-09-25 2021-01-22 东莞维科电池有限公司 Diaphragm slurry and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR102286403B1 (en) Electrical insulation layer and battery device
JP6191597B2 (en) Secondary battery separator
JP5355823B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP5867044B2 (en) Insulating adhesive layer and power storage device using the same
JP7074284B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
JP5954524B2 (en) Negative electrode for power storage device and method for manufacturing power storage device
TW200902610A (en) Porous film
JP5431829B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2010150513A1 (en) Electrode structure and power storage device
JP2010050076A (en) Separator for electrochemical element, lithium battery or lithium ion battery using this, and manufacturing method of separator for electrochemical element
WO2012033089A1 (en) Nonaqueous electrolyte battery
CN106716683A (en) Positive electrode plate for non-aqueous electrolyte electricity-storage element, and non-aqueous electrolyte electricity-storage element
JPWO2011078263A1 (en) Secondary battery electrode and secondary battery
WO2019107463A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
JP6236964B2 (en) Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5169181B2 (en) Non-aqueous electrolyte secondary battery
JP5633817B2 (en) Non-aqueous electrolyte for electric device and secondary battery using the same
WO2013100023A1 (en) Heat-resistant resin, adhesive agent, insulating adhesive layer, separator, solid electrolyte, and electrical storage device
WO2018155712A1 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JP2007226974A (en) Lithium-ion secondary battery
CN114207882A (en) Composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
WO2014007183A1 (en) Lithium ion secondary battery
JP2006313819A (en) Electrochemical capacitor electrode, method for manufacturing the same composition for use therein, and electrochemical capacitor using the same
JP5845896B2 (en) Power storage device
JP4733359B2 (en) Method for producing composite reversible electrode for secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP