WO2013099777A1 - Touch panel, display device with touch panel, and method for producing touch panel - Google Patents

Touch panel, display device with touch panel, and method for producing touch panel Download PDF

Info

Publication number
WO2013099777A1
WO2013099777A1 PCT/JP2012/083153 JP2012083153W WO2013099777A1 WO 2013099777 A1 WO2013099777 A1 WO 2013099777A1 JP 2012083153 W JP2012083153 W JP 2012083153W WO 2013099777 A1 WO2013099777 A1 WO 2013099777A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
electrode
film
protective film
wiring
Prior art date
Application number
PCT/JP2012/083153
Other languages
French (fr)
Japanese (ja)
Inventor
美崎 克紀
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013099777A1 publication Critical patent/WO2013099777A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a touch panel, a display device with a touch panel, and a method for manufacturing the touch panel.
  • the sensor electrode formed in the display region is usually formed of a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • metal frames with low electrical resistance may be used in the frame area other than the display area.
  • the metal wiring is corroded by impurities such as moisture. For this reason, impurities such as moisture may permeate from the surface of the touch panel, reach the metal wiring, and corrode the metal wiring. This corrosion is a factor that degrades the reliability of the long-term wiring.
  • Japanese Patent Application Laid-Open No. 2011-28594 discloses a sensing region provided with an electrode, a light-transmitting substrate having a wiring region provided with a metal wiring, and an insulating film layer provided on the electrode and the metal wiring. And a corrosive component impervious film provided on the insulating film layer, wherein the corrosive component impervious film has a higher density than the insulating film layer.
  • SiO 2 and SiN have a relatively large refractive index. Therefore, when these layers are present, the difference in reflectance increases between the portion where the sensor electrode is formed and the portion where the sensor electrode is not formed. Therefore, the sensor electrode pattern is easily visible.
  • a touch panel configuration that can prevent corrosion of the metal wiring without making the sensor electrode pattern easily visible is preferable.
  • An object of the present invention is to obtain a touch panel configuration with improved reliability by preventing corrosion of metal wiring.
  • the touch panel disclosed herein includes an insulating substrate having a sensing region and a non-sensing region, a first electrode formed in the sensing region and extending in one direction, the first electrode formed in the sensing region, and the first electrode.
  • the second electrode extending in a direction intersecting with the first electrode, an insulating film formed at a location where the first electrode and the second electrode intersect, and insulating the first electrode and the second electrode from each other;
  • an inorganic wiring protective film made of an inorganic material. The inorganic wiring protective film is selectively formed in the non-sensing region.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a display device with a touch panel according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a schematic configuration of the touch panel according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 2.
  • FIG. 4 is an extracted view of the X electrode of the touch panel according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
  • FIG. 5B is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention.
  • FIG. 5A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
  • FIG. 5B is a cross-sectional view for explaining the touch panel manufacturing method
  • FIG. 5C is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention.
  • FIG. 5D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
  • FIG. 5E is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention.
  • FIG. 5F is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a schematic configuration of the touch panel according to the first comparative example.
  • FIG. 7 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 6.
  • FIG. 6 is a plan view illustrating a schematic configuration of the touch panel according to the first comparative example.
  • FIG. 7 is a cross-sectional view taken along lines A-A ′, B-B ′,
  • FIG. 8 is a plan view showing a schematic configuration of a touch panel according to a second comparative example.
  • FIG. 9 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 8.
  • FIG. 10 is a plan view showing a schematic configuration of a touch panel according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 10.
  • FIG. 12A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 2nd Embodiment of this invention.
  • FIG. 12A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 2nd Embodiment of this invention.
  • FIG. 12B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second embodiment of the present invention.
  • FIG. 12C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second embodiment of the present invention.
  • FIG. 12D is a cross-sectional view for explaining the touch panel manufacturing method according to the second embodiment of the present invention.
  • FIG. 12E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second embodiment of the present invention.
  • FIG. 12F is a cross-sectional view for explaining the touch panel manufacturing method according to the second embodiment of the present invention.
  • FIG. 13 is a top view which shows schematic structure of the touchscreen concerning the 3rd Embodiment of this invention.
  • FIG. 13 is a top view which shows schematic structure of the touchscreen concerning the 3rd Embodiment of this invention.
  • FIG. 14 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 13.
  • FIG. 15A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 3rd Embodiment of this invention.
  • FIG. 15B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 3rd Embodiment of this invention.
  • FIG. 15B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15C is a cross-sectional view for explaining
  • FIG. 15E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15F is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15G is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 15H is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of the touch panel manufacturing method according to the third embodiment of the present invention in which the step of reducing the area of the organic insulating film is omitted and the Y electrode connection portion is formed.
  • FIG. 17 shows a case where the Y electrode connecting portion is formed by reducing the area of the organic insulating film by the ashing process and then omitting the ozone water process in the touch panel manufacturing method according to the third embodiment of the present invention.
  • FIG. FIG. 18 is a plan view showing a schematic configuration of a touch panel according to the fourth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 18.
  • FIG. 20 is a plan view showing a schematic configuration of a touch panel according to the fifth embodiment of the present invention.
  • FIG. 21 is a sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 20.
  • FIG. 22 is a plan view showing a schematic configuration of a touch panel according to the sixth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 22.
  • FIG. 24 is a cross-sectional view showing a schematic configuration of a display device with a touch panel according to another embodiment of the present invention.
  • a touch panel includes an insulating substrate having a sensing region and a non-sensing region, a first electrode formed in the sensing region and extending in one direction, and formed in the sensing region.
  • a second electrode extending in a direction intersecting with the first electrode; and an insulating film formed at a location where the first electrode and the second electrode intersect to insulate the first electrode and the second electrode from each other
  • an inorganic wiring protective film made of an inorganic material so as to be covered.
  • the inorganic wiring protective film is selectively formed in the non-sensing region (first configuration).
  • the inorganic wiring protective film made of an inorganic material is formed so as to cover the metal wiring.
  • impurities such as moisture can be prevented from penetrating from the outside, and corrosion of the metal wiring can be prevented.
  • a film made of an inorganic material generally has a high refractive index. Therefore, when it is formed so as to overlap with the sensor electrodes such as the first electrode and the second electrode, the difference in reflectance between the portion where the sensor electrode is formed and the portion where it is not formed becomes large. Therefore, the sensor electrode pattern is easily visible. According to said structure, the inorganic wiring protective film is selectively formed in the non-sensing area
  • the inorganic wiring protective film may include one or more compounds selected from silicon oxide, silicon nitride, and silicon oxynitride (second configuration).
  • an organic wiring protective film made of an organic material formed on the inorganic wiring protective film (third configuration).
  • the touch panel further includes an organic wiring protective film on the inorganic wiring protective film.
  • the organic film is more elastic than the inorganic film and can reduce the impact caused by unexpected contact. For example, it is possible to prevent the surface from being scratched by a cullet generated when the substrate is cut.
  • the insulating film can be made of an organic material (fourth configuration).
  • the insulating film can be made of an inorganic material (fifth configuration).
  • the insulating film is a film in which a first layer made of an inorganic material and a second layer made of an organic material are laminated from the substrate side. (Sixth configuration).
  • the area of the second layer is preferably smaller than the area of the first layer (seventh configuration).
  • the insulating film has a laminated structure and the area of the second layer is larger than the area of the first layer, a step due to the thickness of the first layer is formed when the conductive film is formed over the insulating film.
  • the conductive film may become discontinuous or the connection may become unstable.
  • the surface roughness Ra of the insulating film is preferably 100 nm or less (eighth configuration).
  • a conductive film is formed over an insulating film having a large surface roughness, the conductive film cannot be formed uniformly, and the electrical resistance may increase.
  • the thickness of the conductive film is thin, it is easily affected by the surface roughness.
  • the surface roughness Ra of the insulating film is 100 nm or less, the conductive film can be formed uniformly and an increase in electrical resistance can be prevented.
  • a display device with a touch panel includes a liquid crystal display device and the touch panel according to any one of the first to eighth aspects (first configuration of the display device with a touch panel).
  • a touch panel manufacturing method is a touch panel manufacturing method having any one of the first to eighth configurations, comprising: forming an inorganic material film; and A step of forming a first organic material film, and a step of etching the inorganic material film to form the inorganic wiring protective film using the first organic material film as a mask (first method of manufacturing a touch panel) Embodiment).
  • the first aspect may further include a step of removing the first organic material film after the formation of the inorganic wiring protective film (second aspect of the touch panel manufacturing method).
  • the method may further include a step of forming a second organic material film (third aspect of the touch panel manufacturing method).
  • the first organic material film used as a mask for forming the inorganic wiring protective film can be removed, and the second organic material film can be formed at an arbitrary place.
  • the first aspect may further include a step of reducing the area of the first organic material film after forming the inorganic wiring protective film (fourth aspect of the touch panel manufacturing method).
  • the area to be patterned may be smaller than that of the first organic material film by side etching.
  • the conductive film may be interrupted or the connection may become unstable.
  • the area of the first organic material film is reduced. Therefore, a conductive film can be stably formed on the first organic material film. Therefore, the process of removing the first organic material film or separately forming an insulating film can be omitted. Thereby, a manufacturing process can be simplified.
  • the method may further include a step of bringing the first organic material film into contact with ozone water (a fifth method of manufacturing a touch panel).
  • the surface roughness of the first organic material film increases. If a conductive film is formed over the first organic material film having a large surface roughness, the conductive film may not be formed uniformly and the electrical resistance may increase. According to said aspect, the surface roughness of a 1st organic material film can be reduced by making a 1st organic material film contact ozone water. Thereby, an increase in electrical resistance of the conductive film formed on the first organic material film can be prevented.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a display device 100 with a touch panel according to an embodiment of the present invention.
  • a display device with a touch panel 100 includes a touch panel 1, a color filter substrate 101, a thin film transistor (TFT) substrate 102, a sealing material 103, a liquid crystal 104, polarizing plates 105 and 106, and an adhesive material 107.
  • TFT thin film transistor
  • the color filter substrate 101 and the TFT substrate 102 are disposed to face each other.
  • a sealing material 103 is formed on the peripheral portions of the color filter substrate 101 and the TFT substrate 102, and a liquid crystal 104 is sealed inside.
  • the touch panel 1 is bonded with a bonding material 107.
  • a polarizing plate 105 is disposed on the surface of the touch panel 1 opposite to the color filter substrate 101 side.
  • a polarizing plate 106 is disposed on the surface of the TFT substrate 102 opposite to the liquid crystal 104 side.
  • the touch panel 1 is a capacitive touch panel, which will be described in detail later, and includes an insulating substrate 10 and sensor electrodes (X electrode 11, Y electrode 12, etc.).
  • the X electrode 11 and the Y electrode 12 are formed in a lattice shape.
  • the X electrode 11 and the Y electrode 12 form a capacitance between the finger and the like close to the touch panel 1.
  • the touch panel 1 detects the position of a finger or the like based on the change in capacitance.
  • the color filter substrate 101 includes an insulating substrate 1011, a black matrix 1012, a color filter 1013, and a common electrode 1014.
  • the common electrode 1014 is uniformly formed on almost the entire surface of the substrate 1011.
  • the TFT substrate 102 includes an insulating substrate 1021, a pixel electrode 1022, and a TFT (not shown).
  • the pixel electrode 1022 and the TFT are formed in a matrix on the substrate 1021.
  • a TFT made of amorphous silicon or indium gallium zinc oxide (IZGO: Indium Zinc Gallium Oxide) can be used, but a TFT made of IZGO having a high electron mobility is preferably used.
  • the display device with a touch panel 100 drives the TFT of the TFT substrate 102 to generate an electric field between the arbitrary pixel electrode 1022 and the common electrode 1014. This electric field changes the orientation of the liquid crystal 104.
  • Light incident from the polarizing plate 106 side is polarized in a specific direction by the polarizing plate 106.
  • the polarization direction of the light incident on the liquid crystal 104 changes depending on the orientation of the liquid crystal 104. Only light polarized in a specific direction is transmitted through the polarizing plate 105.
  • the display device with a touch panel 100 can control transmission / non-transmission of light at an arbitrary pixel electrode 1022.
  • the light transmitted through the pixel electrode 1022 is colored by the color filter 1013.
  • the color filter 1013 By arranging a plurality of colors, for example, red, green, and blue color filters 1013 regularly, various colors can be displayed by additive color mixture.
  • the black matrix 1012 shields light from a portion other than the portion where the pixel electrode 1022 is formed, and improves the contrast.
  • the polarizing plate 105 is disposed on the outer surface of the touch panel 1 (on the side opposite to the color filter substrate 101 side).
  • the display device with a touch panel 100 may have a configuration in which the polarizing plate 105 is disposed on the surface of the color filter substrate 101 opposite to the liquid crystal 104 and the touch panel 1 is bonded thereon.
  • FIG. 2 is a plan view schematically showing a schematic configuration of the touch panel 1 according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 2.
  • the touch panel 1 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 15, an insulating film 16, a protective film 17, and extraction electrodes 181 to 184. Yes.
  • the wiring 14 and the ground wiring 140 are hatched for easy understanding of the drawing.
  • the touch panel 1 has a sensing area V and a non-sensing area P.
  • the sensing area V is an area that is detected when a finger or the like touches the touch panel 1. That is, a region where the sensor electrodes (X electrode 11 and Y electrode 12) are formed is a sensing region. In FIG. 2, a rectangular region surrounding the X electrode 11 and the Y electrode 12 is defined as a sensing region V.
  • the sensing area V is not limited to a rectangular area, and can take any shape. Further, it may be a discontinuous region.
  • the sensing area V is used by being overlapped with the display area of the display device. With this configuration, the user can specify a position corresponding to the image displayed on the display device.
  • the non-sensing area P terminals 13, wirings 14 and the like are formed.
  • the non-sensing area P is arranged on the right side and the lower part of the sensing area V.
  • the arrangement of the non-sensing area P is arbitrary.
  • the non-sensing region P may be arranged so as to surround the four sides of the sensing region V.
  • the non-sensing area P may be arranged in contact with only one side of the sensing area V.
  • FIG. 4 is a diagram showing the X electrode 11 extracted from the touch panel 1.
  • the X electrode 11 includes a plurality of island-shaped electrodes 110 arranged along one direction and a connection portion 111 that connects adjacent island-shaped electrodes 110.
  • the island-shaped electrode 110 and the connecting portion 111 are formed continuously and integrally.
  • the Y electrode 12 includes a plurality of island electrodes 120 arranged along the direction intersecting the X electrode 11, and a connecting portion 121 that connects adjacent island electrodes 120. Yes.
  • the insulating film 16 is formed at a location where the X electrode 11 and the Y electrode 12 intersect. As shown in FIG. 3, the connecting part 121 connects adjacent island electrodes 120 via the insulating film 16. With this configuration, the X electrode 11 and the Y electrode 12 are insulated from each other.
  • a terminal 13 is formed near the end of the substrate 10.
  • the X electrode 11 and the Y electrode 12 and the terminal portion 13 are electrically connected by a wiring 14.
  • the ground wiring 140 is not connected to either the X electrode 11 or the Y electrode 12.
  • the ground wiring 140 functions as a shield line that shields electromagnetic noise.
  • a wiring protective film 15 is formed so as to cover the wiring 14 and the ground wiring 140.
  • the wiring protective film 15 is selectively formed in the non-sensing region P. That is, the wiring protective film 15 is formed only in the non-sensing region P and is not formed in the sensing region V. In other words, the wiring protective film 15 does not reach the sensing region V.
  • Contact holes 15 a and 15 b are formed in the wiring protective film 15.
  • take-out electrodes 181 and 182 are formed at positions overlapping the contact hole 15a in plan view.
  • the extraction electrode 181 and the extraction electrode 182 are in contact with each other through the contact hole 15a.
  • the extraction electrode 182 is in contact with the X electrode 11.
  • the wiring 14 is formed so as to overlap with the extraction electrode 181.
  • the X electrode 11 and the wiring 14 are electrically connected to each other via the extraction electrodes 181 and 182.
  • illustration is omitted, similarly, the Y electrode 12 and the wiring 14 are electrically connected to each other via extraction electrodes 183 and 184.
  • the wiring protective film 15 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152.
  • the inorganic wiring protective film 151 is a film containing one or more compounds selected from silicon oxide (SiO 2 ), silicon nitride (SiN), and silicon oxynitride (SiON).
  • the inorganic wiring protective film 151 is denser than the organic wiring protective film 152 and prevents penetration of moisture and the like from the outside.
  • the inorganic wiring protective film 151 can prevent the wiring 14 from being corroded by moisture or the like.
  • the organic wiring protective film 152 is more elastic than the inorganic wiring protective film 151, and can reduce the impact caused by unexpected contact or the like.
  • the organic wiring protective film 152 and the insulating film 16 are formed of the same material.
  • a protective film 17 is formed to cover all of the X electrode 11, the Y electrode 12, the wiring protective film 15, the insulating film 16, and the extraction electrodes 181 to 184.
  • the protective film 17 also covers a part of the substrate 10 and the terminal 13. A part of the terminal 13 is exposed without being covered by the wiring protective film 15 or the protective film 17. An exposed portion of the terminal 13 is connected to a drive circuit via a flexible printed circuit board (FPC).
  • FPC flexible printed circuit board
  • FIGS. 5A to 5F are sectional views taken along lines AA ′, BB ′, and CC ′ in FIG.
  • the connecting portion 111 of the X electrode 11, the island electrode 120 of the Y electrode 12, and the terminal 13 are formed on the substrate 10.
  • the substrate 10 is a glass substrate, for example.
  • the island electrode 110 (see FIG. 2) of the X electrode 11, the extraction electrode 181 (see FIGS. 2 and 3), and the extraction electrode 183 (see FIG. 2) are also formed at the same time. To do.
  • a uniform transparent conductive film is formed on the substrate 10 by sputtering or CVD (Chemical Vapor Deposition).
  • the transparent conductive film is, for example, ITO or IZO.
  • the thickness of the transparent conductive film is not particularly limited, but is 10 to 50 nm, for example.
  • the transparent conductive film formed on the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a place where the island-shaped electrodes 110 and 120, the connection portion 111, the terminal 13, and the extraction electrodes 181 and 183 are formed. Then, the remaining part is removed by etching.
  • the etching method is arbitrary, for example, oxalic acid or a mixed acid of phosphoric acid / acetic acid / nitric acid can be used.
  • annealing is performed in a temperature range of 200 to 250 ° C.
  • the amorphous transparent conductive film (the island electrodes 110 and 120, the connection portion 111, the terminal 13, and the extraction electrodes 181 and 183) is polycrystallized.
  • the wiring 14 is formed.
  • the ground wiring 140 (see FIG. 2) is also formed at the same time.
  • a metal film is formed on the entire surface by sputtering or vapor deposition so as to cover the island-shaped electrodes 110 and 120, the connection portion 111, the terminal 13, and the extraction electrodes 181 and 183.
  • the metal film preferably has a low resistance, and for example, Al is used.
  • Al is easily corroded by alkali, and when Al and a conductive oxide film such as ITO are brought into direct contact, galvanic corrosion due to a difference in ionization tendency occurs. Therefore, a laminated structure with a metal having high corrosion resistance is preferable.
  • a laminated film of MoNb, Al, and MoNb, a laminated film of MoN, Al, and MoN, and a laminated film of Mo, Al, and Mo are preferably used as the metal film.
  • the thickness of the metal film is not particularly limited, but is, for example, 0.3 to 1.0 ⁇ m.
  • the metal film formed on the entire surface of the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a place where the wiring 14 is to be formed. Then, the remaining part is removed by etching.
  • the etching method is arbitrary, for example, a mixed acid of phosphoric acid, acetic acid and nitric acid can be used.
  • an inorganic wiring protective film 151 is formed so as to cover all of the wiring 14 and the ground wiring 140.
  • the inorganic wiring protective film 151 is a film including one or more compounds selected from SiO 2 , SiN, and SiON. First, a uniform inorganic material film of these compounds is formed on the entire surface of the substrate 10 by CVD. The thickness of the inorganic material film is preferably thicker, and is preferably at least twice the thickness of the wiring 14.
  • the inorganic material film formed on the entire surface of the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a location where the inorganic wiring protective film 151 is to be formed. Then, the remaining part is removed by etching. Although the etching method is arbitrary, for example, dry etching using a fluorine-based gas can be used. After the patterning, the photoresist used for the mask is removed.
  • an organic wiring protective film 152 and an insulating film 16 are formed.
  • the organic wiring protective film 152 and the insulating film 16 are insulators made of an organic material, and for example, a photoresist containing an acrylic resin or a novolac resin can be used.
  • a photoresist is uniformly applied to the entire surface of the substrate 10 by a spin coater or a slit coater.
  • a thicker photoresist film is preferred.
  • the thickness of the photoresist film is not particularly limited, but is, for example, 1.5 to 3.0 ⁇ m.
  • the photoresist film formed on the entire surface of the substrate 10 is patterned by photolithography to form the organic wiring protective film 152 and the insulating film 16.
  • the contact holes 15a and 15b are also formed at the same time. Then, the inorganic wiring protective film 151 is etched using the organic wiring protective film 152 as a mask, and the contact holes 15 a and 15 b are penetrated from the surface of the organic wiring protective film 152 to the bottom surface of the inorganic wiring protective film 151. In this way, the contact holes 15a and 15b can be accurately aligned between the inorganic wiring protective film 151 and the organic wiring protective film 152.
  • the contact holes 15a and 15b are formed in advance, and when the organic wiring protective film 152 is patterned, the contact holes 15a and 15b are aligned with this. May be formed.
  • the connecting portion 121 of the Y electrode 12 is formed.
  • extraction electrodes 182 and 184 are also formed at the same time.
  • a uniform transparent conductive film is formed by sputtering or CVD.
  • the transparent conductive film is, for example, ITO or IZO.
  • the thickness of the transparent conductive film is not particularly limited, but is 10 to 50 nm, for example.
  • the transparent conductive film formed on the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a location where the connection portion 121 and the extraction electrodes 182 and 184 are to be formed. Then, the remaining part is removed by etching.
  • the etching method is arbitrary, but for example, oxalic acid or a mixed acid of phosphoric acid, acetic acid and nitric acid can be used.
  • the extraction electrode 181 and the extraction electrode 182 are brought into contact with each other through the contact hole 15a formed in the wiring protective film 15 (see FIG. 3).
  • the extraction electrode 182 is preferably in contact with the extraction electrode 181 instead of the wiring 14.
  • the surface of the wiring 14 may be altered by an etching or cleaning process. For this reason, when the extraction electrode 182 is formed on the wiring 14 so as to be in contact therewith, the contact resistance may increase.
  • the extraction electrode 181 is formed first, and the wiring 14 is formed so as to overlap the extraction electrode 181. The contact resistance is stabilized by connecting the extraction electrode 182 and the wiring 14 via the extraction electrode 181.
  • the extraction electrode 183 and the extraction electrode 184 are brought into contact with each other through the contact hole 15 b formed in the wiring protective film 15.
  • annealing for polycrystallizing the connection part 121 and the extraction electrodes 183 and 184 may be performed.
  • a protective film 17 is formed so as to cover almost the entire surface of the substrate 10.
  • the protective film 17 is, for example, an acrylic resin.
  • a uniform film is formed on the entire surface of the substrate 10 by a spin coater or a slit coater. At this time, a part of the terminal 13 is exposed using a metal mask or the like.
  • the thickness of the protective film 17 is not particularly limited, but is, for example, 1.5 to 3.0 ⁇ m.
  • the inorganic wiring protective film 151 is formed so as to cover the wiring 14 and the ground wiring 140.
  • the inorganic wiring protective film 151 can prevent impurities such as moisture from permeating from the outside, and can prevent the wiring 14 and the ground wiring 140 from corroding.
  • a film made of an inorganic material generally has a high refractive index. Therefore, when it is formed in a region overlapping with the sensor electrodes such as the X electrode 11 and the Y electrode 12 in a plan view, there is a difference in reflectance between the portion where the sensor electrode is formed and the portion where the sensor electrode is not formed. growing. Therefore, the sensor electrode pattern is easily visible. According to the configuration of the touch panel 1, the inorganic wiring protective film 151 is selectively formed in the non-sensing region P. Thereby, the pattern of the sensor electrode can be made difficult to be visually recognized.
  • the wiring protective film 15 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152.
  • the organic wiring protective film 152 is more elastic than the inorganic wiring protective film 151 and can mitigate the impact caused by unexpected contact. For example, the surface can be prevented from being scratched by a cullet generated when the substrate 10 is cut.
  • FIG. 6 is a plan view showing a schematic configuration of the touch panel 7 according to the first comparative example.
  • FIG. 7 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG.
  • the touch panel 7 includes a substrate 10, an X electrode 11, a Y electrode 72, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 75, a protective film 17, and extraction electrodes 181, 183, 782, 784.
  • the wiring 14 and the ground wiring 140 are hatched for easy understanding of the drawing.
  • the touch panel 7 is different from the touch panel 1 in the configuration of the Y electrode, the extraction electrode, and the wiring protective film. Specifically, in the touch panel 1, the wiring protective film 15 is selectively formed in the non-sensing region P. On the other hand, in the touch panel 7, the wiring protective film 75 is formed so as to cover almost the entire surface of the substrate 10 except for the vicinity of the terminals 13 over both the sensing region V and the non-sensing region P.
  • Contact holes 75a to 75d are formed in the wiring protective film 75.
  • the wiring protective film 75 insulates the X electrode 11 from the Y electrode 72.
  • the island-shaped electrode 120 of the Y electrode 72 and the connecting portion 721 are connected to each other through a contact hole 75c.
  • the X electrode 11 and the extraction electrode 782 are in contact with each other through the contact hole 75d.
  • the extraction electrode 782 and the extraction electrode 181 are in contact with each other through the contact hole 75a.
  • a wiring 14 is formed so as to partially overlap the extraction electrode 181. With this configuration, the X electrode 11 and the wiring 14 are electrically connected.
  • the Y electrode 72 and the extraction electrode 784 are in contact with each other through the contact hole 75e.
  • the extraction electrode 784 and the extraction electrode 183 are in contact with each other through the contact hole 75b.
  • a wiring 14 is formed so as to partially overlap the extraction electrode 183. With this configuration, the Y electrode 72 and the wiring 14 are electrically connected.
  • the wiring protective film 75 has a laminated structure of an inorganic wiring protective film 751 and an organic wiring protective film 752.
  • the inorganic wiring protective film 751 is a film containing one or more compounds selected from SiO 2 , SiN, and SiON.
  • the organic wiring protective film 752 is a film made of, for example, an acrylic resin.
  • the inorganic wiring protective film 751 prevents impurities such as moisture from entering from the outside and prevents the wiring 14 and the ground wiring 140 from corroding.
  • an inorganic wiring protective film 751 is also formed in a region overlapping with sensor electrodes such as the X electrode 11 and the Y electrode 72 in a plan view.
  • the inorganic wiring protective film 751 generally has a higher refractive index than the organic wiring protective film 752 or the like. Therefore, the difference in reflectance increases between the part where the sensor electrode is formed and the part where the sensor electrode is not formed. Therefore, the sensor electrode pattern is easily visible.
  • the inorganic wiring protective film 151 is selectively formed in the non-sensing region P. Thereby, the pattern of the sensor electrode can be made difficult to be visually recognized.
  • FIG. 8 is a plan view showing a schematic configuration of the touch panel 8 according to the second comparative example.
  • FIG. 9 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG.
  • the touch panel 8 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 85, an insulating film 16, a protective film 17, and extraction electrodes 181 to 184.
  • the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
  • the touch panel 8 is different from the touch panel 1 in the configuration of the wiring protective film.
  • the wiring protective film 85 is formed of the same material as the insulating film 16. Both the wiring protective film 85 and the insulating film 16 are made of an organic material such as acrylic resin.
  • the wiring protective film 85 is formed of an organic material such as a resin, impurities such as moisture may penetrate from the outside and reach the wiring 14 or the like. Thereby, there exists a possibility that the wiring 14 etc. may corrode. This corrosion is a factor that degrades the reliability of the long-term wiring.
  • the wiring protective film 15 includes an inorganic wiring protective film 151.
  • the inorganic wiring protective film 151 can prevent impurities such as moisture from permeating from the outside, and can prevent the wiring 14 and the ground wiring 140 from corroding.
  • the display device with a touch panel 100 may include any one of touch panels 2 to 6 described below instead of the touch panel 1.
  • FIG. 10 is a plan view schematically showing a schematic configuration of the touch panel 2 according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 10.
  • the touch panel 2 includes a substrate 10, an X electrode 21, a Y electrode 22, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 15, an insulating film 26, a protective film 17, and extraction electrodes 181, 183, 282, and 284. ing.
  • the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
  • the touch panel 2 is different from the touch panel 1 in the configuration of the X electrode, the Y electrode, the insulating film, and the extraction wiring.
  • the X electrode 21 includes a plurality of island-like electrodes 210 arranged along one direction and a connecting portion 211 that connects adjacent island-like electrodes 210, similarly to the X electrode 11 of the touch panel 1.
  • the island-shaped electrode 210 and the connection part 211 are formed continuously and integrally. Note that the island electrode 210 and the extraction electrode 282 are also integrally formed continuously.
  • the connecting portion 211 of the X electrode 21 connects adjacent island electrodes 210 via the insulating film 26. Thereby, the X electrode 21 and the Y electrode 22 are insulated.
  • the Y electrode 22 includes a plurality of island electrodes 220 arranged along the direction intersecting with the X electrode 21 and a connection portion 221 that connects the adjacent island electrodes 220 to each other. As shown in FIG. 11, the island-shaped electrode 220 is formed so as to be in contact with the connection portion 221 and the insulating film 26 and to partially overlap these.
  • the island electrode 220 and the extraction electrode 284 are integrally formed continuously.
  • the extraction electrode 282 formed integrally with the island-shaped electrode 210 of the X electrode 21 is in contact with the extraction electrode 181 through the contact hole 15 a formed in the wiring protective film 15.
  • a wiring 14 is formed so as to partially overlap the extraction electrode 181. With this configuration, the X electrode 21 and the wiring 14 are electrically connected.
  • the extraction electrode 284 formed integrally with the island-shaped electrode 220 of the Y electrode 22 is in contact with the extraction electrode 183 through the contact hole 15 b formed in the wiring protective film 15.
  • a wiring 14 is formed so as to partially overlap the extraction electrode 183. With this configuration, the Y electrode 22 and the wiring 14 are electrically connected.
  • the X electrode 21 and the Y electrode 22 are formed in the sensing region V.
  • the wiring protective film 15 is selectively formed in the non-sensing region P.
  • FIGS. 12A to 12F are cross-sectional views taken along lines AA ′, BB ′, and CC ′ in FIG. Description of the steps similar to those of the touch panel 1 will be omitted as appropriate.
  • connection part 221 and the terminal 13 of the Y electrode 22 are formed on the substrate 10.
  • extraction electrodes 181 and 183 are formed simultaneously.
  • the wiring 14 is formed.
  • the ground wiring 140 (see FIG. 10) is formed at the same time.
  • an inorganic wiring protective film 151 is formed.
  • an organic wiring protective film 152 and an insulating film 26 are formed.
  • contact holes 15 a and 15 b are formed in the wiring protective film 15 in the same manner as the touch panel 1.
  • connection part 211 of the X electrode 21 and the island-like electrode 220 of the Y electrode 22 are formed.
  • the island-like electrode 210 of the X electrode 21 and the extraction electrodes 282 and 284 are also formed at the same time.
  • a protective film 17 is formed so as to cover almost the entire surface of the substrate 10.
  • the corrosion of the wiring 14 and the like can be prevented by the inorganic wiring protective film 151. Accordingly, variations in the configuration of the touch panel can be obtained.
  • FIG. 13 is a plan view schematically showing a schematic configuration of the touch panel 3 according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG.
  • the touch panel 3 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 15, an insulating film 36, a protective film 17, and extraction electrodes 181 to 184.
  • the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
  • the X electrode 11 and the Y electrode 12 are formed in the sensing region V.
  • the wiring protective film 15 is selectively formed in the non-sensing region P.
  • the touch panel 3 is different from the touch panel 1 in the configuration of the insulating film.
  • the insulating film 16 in the touch panel 1 is made of the same material as the organic wiring film 151.
  • the insulating film 36 in the touch panel 3 has a laminated structure of an inorganic insulating film 361 and an organic insulating film 362.
  • the inorganic insulating film 361 and the inorganic wiring protective film 151 are formed of the same material.
  • the organic insulating film 362 and the organic wiring protective film 152 are formed of the same material.
  • the area of the organic insulating film 362 is smaller than the area of the organic wiring protective film 152. Further, the surface roughness Ra of the organic insulating film 362 is 100 nm or less. More preferably, it is 70 nm or less, More preferably, it is 40 nm or less.
  • FIGS. 15A to 15F are sectional views taken along lines AA ′, BB ′, and CC ′ in FIG. Description of the steps similar to those of the touch panel 1 will be omitted as appropriate.
  • connection part 111 of the X electrode 11, the island electrode 120 of the Y electrode 12, and the terminal 13 are formed on the substrate 10.
  • the island-shaped electrode 110 (see FIG. 13) of the X electrode 11 and the extraction electrodes 181 (see FIGS. 13 and 14) and 183 (see FIG. 13) are formed simultaneously.
  • the wiring 14 is formed.
  • the wiring 140 (see FIG. 13) is formed at the same time.
  • a film 361A made of an inorganic material is formed so as to cover almost the entire surface of the substrate 10.
  • the film 361A is a film containing one or more compounds selected from SiO 2 , SiN, and SiON. A uniform film 361A of these compounds is formed on almost the entire surface of the substrate 10 by CVD. At this time, a part of the terminal 13 is exposed using a metal mask or the like.
  • the thickness of the film 361A is preferably thicker, and is preferably twice or more the thickness of the wiring 14.
  • the film 362 ⁇ / b> A is a film formed at a place where the organic insulating film 362 is formed, and is formed to be slightly larger than the organic insulating film 362.
  • the film 362A and the organic wiring protective film 152 are insulators made of an organic material, and for example, a photoresist containing an acrylic resin or a novolac resin can be used.
  • a photoresist is uniformly applied to the entire surface of the substrate 10 by a spin coater or a slit coater.
  • a thicker photoresist film is preferred.
  • the thickness of the photoresist film is not particularly limited, but is, for example, 1.5 to 3.0 ⁇ m.
  • a photoresist film formed on the entire surface of the substrate 10 is patterned by photolithography to form a film 362A and an organic wiring protective film 152. At this time, contact holes 15a and 15b (see FIG. 13) are formed in the organic wiring protective film 152.
  • the film 361A is etched using the film 362A and the organic wiring protective film 152 as a mask. Thereby, the inorganic insulating film 361 and the inorganic wiring protective film 151 are formed. Further, contact holes 15a and 15b are also formed in the inorganic wiring protective film 151 at the same locations as the contact holes 15a and 15b formed in the organic wiring protective film 152 (see FIG. 13).
  • the etching method is arbitrary, for example, dry etching using a fluorine-based gas can be used.
  • the area of the inorganic insulating film 361 may be smaller than that of the film 362A due to side etching (etching in the in-plane direction of the substrate 10).
  • the process of reducing the area of the film 362A is an ashing process or an ozone water process.
  • the ashing treatment can be performed, for example, by heating at 100 to 250 ° C. for 10 to 60 minutes in an oxygen gas atmosphere.
  • an ozone water shower having an ozone concentration of 2 to 8 ppm and a flow rate of 10 to 50 liters / min (for example, when the width of the substrate 10 in the direction perpendicular to the direction in which the ozone water flows is about 400 mm) is taken.
  • ozone water (dip treatment) for example, when the width of the substrate 10 in the direction perpendicular to the direction in which the ozone water flows is about 400 mm.
  • ashing when ashing is performed as a process for reducing the area of the film 362A, it is preferable to perform ozone water treatment subsequent to the ashing treatment.
  • the surface roughness of the organic insulating film 362 may be increased by the ashing process.
  • the conductive film cannot be formed uniformly and the electrical resistance may increase.
  • the thickness of the conductive film is thin, it is easily affected by the surface roughness.
  • the surface roughness of the organic insulating film 362 can be reduced by performing ozone water treatment.
  • the surface roughness Ra of the organic insulating film 362 is 100 nm or less. More preferably, it is 70 nm or less, More preferably, it is 40 nm or less.
  • the connecting portion 121 of the Y electrode 12 is formed.
  • extraction electrodes 183 and 184 are also formed at the same time.
  • a protective film 17 is formed so as to cover almost the entire surface of the substrate 10.
  • the corrosion of the wiring 14 and the like can be prevented by the inorganic wiring protective film 151.
  • the inorganic wiring protective film 151 is selectively formed in the non-sensing region P.
  • the inorganic insulating film 361 is formed at a location where the X electrode 11 and the Y electrode 12 intersect. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
  • the insulating film 36 is formed so as to cover at least a part of the connection part 111 of the X electrode 11, but covers a part of the island electrode 110 of the X electrode 11 and a part of the island electrode 120 of the Y electrode 12. May be.
  • the area of the insulating film 36 is preferably 32500 ⁇ m 2 or less. More preferably, it is 20000 micrometers 2 or less, More preferably, it is 12000 micrometers 2 or less.
  • the inorganic insulating film 361 and the inorganic wiring protective film 151 are formed using the film 362A and the organic wiring protective film 152 as a mask. Therefore, the process of forming a separate mask for forming the inorganic wiring protective film 151 and the like, and the process of removing it can be omitted, and the manufacturing process can be simplified.
  • the organic insulating film 362 is formed by reducing the area of the film 362A.
  • the area of the organic insulating film 362 is smaller than the area of the inorganic insulating film 361. Thereby, the connection part 121 of the Y electrode 12 can be formed stably.
  • the organic insulating film 362 is subjected to ozone treatment to reduce the surface roughness of the organic insulating film 362. Thereby, it can prevent that the electrical resistance of the connection part 121 of the Y electrode 12 becomes high.
  • the film 361A may be once formed on the entire surface of the substrate 10 and then removed by etching.
  • [Comparative Example 3] 16 omits the step of reducing the area of the film 362A to form the organic insulating film 362 (see FIG. 15F) in the method for manufacturing the touch panel 3 according to the present embodiment, and the connection part 121 of the Y electrode 12 is formed. It is sectional drawing at the time of forming.
  • the inorganic insulating film 361 is formed by etching the film 361A (see FIG. 15D) using the film 362A as a mask. At this time, the area of the inorganic insulating film 361 may be smaller than that of the film 362A due to side etching.
  • connection portion 121 when the connection portion 121 is formed via the film 362A, the connection portion 121A is interrupted by the step of the inorganic insulating film 361 as shown in FIG. 16 as the connection portion 121A.
  • the connection of the island electrode 120 may become unstable.
  • connection part 121 and the island electrode 120 can be stably connected by reducing the area of the film 362A to form the organic insulating film 362.
  • FIG. 17 shows a method of manufacturing the touch panel 3 according to the present embodiment. After forming the organic insulating film 362 by reducing the area of the film 362A by ashing (see FIG. 15F), the ozone water treatment is omitted. It is sectional drawing at the time of forming the connection part 121 of the Y electrode 12.
  • FIG. 15F shows a method of manufacturing the touch panel 3 according to the present embodiment.
  • the organic insulating film 362 is an organic insulating film 362B having a large surface roughness.
  • connection portion 121B When a conductive film is formed over the organic insulating film 362B having a large surface roughness, it may not be formed uniformly as shown as the connection portion 121B in FIG. Since the uniform conductive film cannot be formed like the connection portion 121B, the electrical resistance may increase.
  • the conductive film such as the connecting portion 121B is often formed thin in order to make the electrode pattern difficult to be seen. When the connection part 121B is thin, it is particularly susceptible to the surface roughness of the organic insulating film 362B.
  • the organic insulating film 362B when the organic insulating film 362B is formed by reducing the area of the film 362A by ashing, the surface roughness of the organic insulating film 362B is reduced by ozone water treatment, and the organic insulating film 362 And As a result, an increase in electrical resistance of the connection part 121 formed on the organic insulating film 362 can be prevented.
  • FIG. 18 is a plan view schematically showing a schematic configuration of the touch panel 4 according to the fourth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG.
  • the touch panel 4 includes a substrate 10, X electrode 21, Y electrode 22, terminal 13, wiring 14, ground wiring 140, wiring protective film 15, insulating film 46, protective film 17, and extraction electrodes 181, 183, 282, and 284. ing.
  • the wiring 14 and the ground wiring 140 are hatched for easy understanding of the drawing.
  • the X electrode 21 and the Y electrode 22 are formed in the sensing region V.
  • the wiring protective film 15 is selectively formed in the non-sensing region P.
  • the touch panel 4 includes an insulating film 46 instead of the insulating film 26 of the touch panel 2.
  • the insulating film 46 has a laminated structure of an inorganic insulating film 461 and an organic insulating film 462, similarly to the insulating film 36 of the touch panel 3.
  • the inorganic insulating film 461 and the inorganic wiring protective film 151 are formed of the same material. Further, the organic insulating film 462 and the organic wiring protective film 152 are formed of the same material.
  • the corrosion of the wiring 14 and the like can be prevented by the inorganic wiring protective film 151.
  • the inorganic wiring protective film 151 is selectively formed in the non-sensing region P.
  • the inorganic insulating film 461 is formed at a location where the X electrode 21 and the Y electrode 21 intersect. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
  • the touch panel 4 also forms the inorganic insulating film 461 and the inorganic wiring protective film 151 using the organic wiring protective film 152 as a mask in the same manner as the touch panel 3. Therefore, the process of forming a separate mask for forming the inorganic wiring protective film 151 and the like, and the process of removing it can be omitted, and the manufacturing process can be simplified.
  • FIG. 20 is a plan view schematically showing a schematic configuration of the touch panel 5 according to the fifth embodiment of the present invention.
  • FIG. 21 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG.
  • the touch panel 5 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 55, an insulating film 56, a protective film 17, and extraction electrodes 181 to 184.
  • the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
  • the touch panel 5 includes a wiring protective film 55 instead of the wiring protective film 15 in the touch panel 1.
  • the touch panel 5 further includes an insulating film 56 instead of the insulating film 16 in the touch panel 1.
  • the wiring protective film 15 of the touch panel 1 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152.
  • the wiring protective film 55 of the touch panel 5 is composed of one or more compounds selected from inorganic single phases, that is, SiO 2 , SiN, and SiON.
  • the insulating film 16 of the touch panel 1 is an insulator made of an organic material, and for example, a photoresist containing an acrylic resin or a novolac resin is used.
  • the insulating film 56 of the touch panel 5 is made of the same material as the wiring protective film 55, that is, one or more compounds selected from SiO 2 , SiN, and SiON.
  • the X electrode 11 and the Y electrode 12 are formed in the sensing region V.
  • the wiring protective film 55 is selectively formed in the non-sensing region P.
  • the wiring 14 and the like can be prevented from being corroded by the wiring protective film 55 formed of an inorganic material.
  • the wiring protective film 55 is selectively formed in the non-sensing region P.
  • the insulating film 561 made of an inorganic material is formed at a location where the X electrode 11 and the Y electrode 12 intersect. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
  • the wiring protective film 55 and the insulating film 56 are formed of the same material. Therefore, these can be formed by one patterning. Therefore, the manufacturing process can be simplified.
  • FIG. 22 is a plan view schematically showing a schematic configuration of the touch panel 6 according to the sixth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG.
  • the touch panel 6 includes a substrate 10, X electrode 21, Y electrode 22, terminal 13, wiring 14, ground wiring 140, wiring protective film 65, insulating film 26, protective film 17, and extraction electrodes 181, 183, 282, and 284. ing.
  • the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
  • the touch panel 6 includes a wiring protective film 65 instead of the wiring protective film 15 of the touch panel 2.
  • the wiring protective film 15 of the touch panel 2 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152.
  • the wiring protective film 65 of the touch panel 6 is composed of one or more compounds selected from inorganic single phases, that is, SiO 2 , SiN, and SiON.
  • the X electrode 21 and the Y electrode 22 are formed in the sensing region V.
  • the wiring protective film 65 is selectively formed in the non-sensing region P.
  • the wiring 14 or the like can be prevented from being corroded by the wiring protective film 65 formed of an inorganic material.
  • the wiring protective film 65 is selectively formed in the non-display area P. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
  • FIG. 24 is a cross-sectional view showing a schematic configuration of a display device 200 with a touch panel according to another embodiment of the present invention.
  • a display device 200 with a touch panel includes a color filter substrate 201, a TFT substrate 102, a sealing material 103, a liquid crystal 104, and polarizing plates 105 and 106.
  • the color filter substrate 201 has a black matrix 1012, a color filter 1013, and a common electrode 1014 formed on the back surface of the touch panel 1. That is, in the display device 200 with a touch panel, the touch panel 1 also functions as a color filter substrate.
  • the substrate 1011 and the adhesive material 107 are not required as compared with the display device 100 with a touch panel. Therefore, the thickness can be reduced and the light transmittance can be increased.
  • the sensor electrodes (X electrode 11, Y electrode 12) and the like, and the black matrix 1012 and the like are formed on opposite surfaces.
  • the sensor electrode and the black matrix 1012 and the like may be formed on the same surface.
  • a planarizing film or the like may be formed therebetween.
  • the color filter substrate 201 is obtained by combining the touch panel 1 and the configuration of any known color filter substrate.
  • the display device with a touch panel 200 may include any one of the touch panels 2 to 6 instead of the touch panel 1.
  • the present invention can be industrially used as a touch panel and a display device with a touch panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is a configuration of a touch panel in which reliability is improved by preventing the corrosion of metal wires. This touch panel comprises: an insulating substrate (10) having a sensing region (V) and a non-sensing region (P); a first electrode (11) formed in the sensing region (V) and extending in one direction; a second electrode (12) extending in a direction that intersects with the first electrode (11); an insulating film (16) that is formed in a section where the first electrode (11) and the second electrode (12) intersect with one another, the insulating film (16) insulating the first electrode (11) and the second electrode (12) from each other; a terminal part (13) formed in the non-sensing region (P); a metal wire (14) that electrically connects the first electrode (11) and the second electrode (12) with the terminal part (13); and an inorganic wire-protection film (151) made of an inorganic material and formed so as to cover the metal wire (14). The inorganic wire-protection film (151) is formed selectively in the non-sensing region (P).

Description

タッチパネルおよびタッチパネル付き表示装置ならびにタッチパネルの製造方法Touch panel, display device with touch panel, and method for manufacturing touch panel
 本発明は、タッチパネルおよびタッチパネル付き表示装置、ならびにタッチパネルの製造方法に関する。 The present invention relates to a touch panel, a display device with a touch panel, and a method for manufacturing the touch panel.
 タッチパネルは、表示装置と重ねて使用される。そのため、表示領域に形成されるセンサ電極は通常、酸化インジウムスズ(ITO:Indium Tin Oxide)、酸化インジウム亜鉛(IZO:Indium Zinc Oxide)等の透明導電膜により形成される。 The touch panel is used with the display device. Therefore, the sensor electrode formed in the display region is usually formed of a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO).
 一方、表示領域以外の額縁領域では、電気抵抗の低い金属配線が用いられることがある。しかしながら、金属配線は、水分などの不純物によって腐食する。そのため、水分等の不純物がタッチパネルの表面から浸透して、金属配線に達し、金属配線を腐食させる場合がある。この腐食は、長期的な配線の信頼性を低下させる要因となる。 On the other hand, metal frames with low electrical resistance may be used in the frame area other than the display area. However, the metal wiring is corroded by impurities such as moisture. For this reason, impurities such as moisture may permeate from the surface of the touch panel, reach the metal wiring, and corrode the metal wiring. This corrosion is a factor that degrades the reliability of the long-term wiring.
 特開2011-28594号公報には、電極が設けられたセンシング領域と、金属配線が設けられた配線領域を有する光透過性の基板と、前記電極と前記金属配線上に設けられた絶縁膜層と、前記絶縁膜層上に設けられた腐食成分不透過膜と、を具備し、前記腐食成分不透過膜は前記絶縁膜層よりも密度が大きいことを特徴とするタッチパネルが記載されている。 Japanese Patent Application Laid-Open No. 2011-28594 discloses a sensing region provided with an electrode, a light-transmitting substrate having a wiring region provided with a metal wiring, and an insulating film layer provided on the electrode and the metal wiring. And a corrosive component impervious film provided on the insulating film layer, wherein the corrosive component impervious film has a higher density than the insulating film layer.
 上記文献には、腐食成分不透過膜として、酸化ケイ素(SiO)の表面を窒化処理した膜(SiN)を用いることが記載されている。 The above document describes that a film (SiN) obtained by nitriding the surface of silicon oxide (SiO 2 ) is used as the corrosive component impermeable film.
 SiOやSiNは、比較的大きな屈折率を有する。そのため、これらの層が存在すると、センサ電極が形成された部分と形成されていない部分との間で、反射率の差が大きくなる。したがって、センサ電極のパターンが視認され易くなる。センサ電極のパターンが視認され易くなることなく、金属配線の腐食を防止できるタッチパネルの構成が好ましい。 SiO 2 and SiN have a relatively large refractive index. Therefore, when these layers are present, the difference in reflectance increases between the portion where the sensor electrode is formed and the portion where the sensor electrode is not formed. Therefore, the sensor electrode pattern is easily visible. A touch panel configuration that can prevent corrosion of the metal wiring without making the sensor electrode pattern easily visible is preferable.
 本発明の目的は、金属配線の腐食を防止して、信頼性を高めたタッチパネルの構成を得ることである。 An object of the present invention is to obtain a touch panel configuration with improved reliability by preventing corrosion of metal wiring.
 ここに開示するタッチパネルは、センシング領域および非センシング領域を有する絶縁性の基板と、前記センシング領域に形成され、一方向に延在する第1電極と、前記センシング領域に形成され、前記第1電極と交差する方向に延在する前記第2電極と、前記第1電極および前記第2電極が交差する箇所に形成され、前記第1電極および第2電極を相互に絶縁する絶縁膜と、前記非センシング領域に形成された端子部と、前記非センシング領域に形成され、前記第1電極および前記第2電極と前記端子部とを電気的に接続する金属配線と、前記金属配線を覆って形成された無機材料からなる無機配線保護膜とを備える。前記無機配線保護膜は、前記非センシング領域に選択的に形成されている。 The touch panel disclosed herein includes an insulating substrate having a sensing region and a non-sensing region, a first electrode formed in the sensing region and extending in one direction, the first electrode formed in the sensing region, and the first electrode. The second electrode extending in a direction intersecting with the first electrode, an insulating film formed at a location where the first electrode and the second electrode intersect, and insulating the first electrode and the second electrode from each other; A terminal portion formed in the sensing region, a metal wiring formed in the non-sensing region and electrically connecting the first electrode, the second electrode, and the terminal portion, and formed covering the metal wiring. And an inorganic wiring protective film made of an inorganic material. The inorganic wiring protective film is selectively formed in the non-sensing region.
 本発明によれば、金属配線の腐食を防止して、信頼性を高めたタッチパネルの構成が得られる。 According to the present invention, it is possible to obtain a configuration of a touch panel that prevents corrosion of metal wiring and increases reliability.
図1は、本発明の一実施形態にかかるタッチパネル付き表示装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a display device with a touch panel according to an embodiment of the present invention. 図2は、本発明の第1の実施形態にかかるタッチパネルの概略構成を示す平面図である。FIG. 2 is a plan view showing a schematic configuration of the touch panel according to the first embodiment of the present invention. 図3は、図2におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 3 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 2. 図4は、本発明の第1の実施形態にかかるタッチパネルのX電極を抜き出して示した図である。FIG. 4 is an extracted view of the X electrode of the touch panel according to the first embodiment of the present invention. 図5Aは、本発明の第1の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 5A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention. 図5Bは、本発明の第1の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 5B is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention. 図5Cは、本発明の第1の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 5C is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention. 図5Dは、本発明の第1の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 5D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention. 図5Eは、本発明の第1の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 5E is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention. 図5Fは、本発明の第1の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 5F is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention. 図6は、第1の比較例にかかるタッチパネルの概略構成を示す平面図である。FIG. 6 is a plan view illustrating a schematic configuration of the touch panel according to the first comparative example. 図7は、図6におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 7 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 6. 図8は、第2の比較例にかかるタッチパネルの概略構成を示す平面図である。FIG. 8 is a plan view showing a schematic configuration of a touch panel according to a second comparative example. 図9は、図8におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 9 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 8. 図10は、本発明の第2の実施形態にかかるタッチパネルの概略構成を示す平面図である。FIG. 10 is a plan view showing a schematic configuration of a touch panel according to the second embodiment of the present invention. 図11は、図10におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 11 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 10. 図12Aは、本発明の第2の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 12A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 2nd Embodiment of this invention. 図12Bは、本発明の第2の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 12B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second embodiment of the present invention. 図12Cは、本発明の第2の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 12C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second embodiment of the present invention. 図12Dは、本発明の第2の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 12D is a cross-sectional view for explaining the touch panel manufacturing method according to the second embodiment of the present invention. 図12Eは、本発明の第2の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 12E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second embodiment of the present invention. 図12Fは、本発明の第2の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 12F is a cross-sectional view for explaining the touch panel manufacturing method according to the second embodiment of the present invention. 図13は、本発明の第3の実施形態にかかるタッチパネルの概略構成を示す平面図である。FIG. 13: is a top view which shows schematic structure of the touchscreen concerning the 3rd Embodiment of this invention. 図14は、図13におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 14 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 13. 図15Aは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 3rd Embodiment of this invention. 図15Bは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図15Cは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図15Dは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図15Eは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図15Fは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15F is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図15Gは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15G is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図15Hは、本発明の第3の実施形態にかかるタッチパネルの製造方法を説明するための断面図である。FIG. 15H is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention. 図16は、本発明の第3の実施形態にかかるタッチパネルの製造方法において、有機絶縁膜の面積を縮小する工程を省略して、Y電極の接続部を形成した場合の断面図である。FIG. 16 is a cross-sectional view of the touch panel manufacturing method according to the third embodiment of the present invention in which the step of reducing the area of the organic insulating film is omitted and the Y electrode connection portion is formed. 図17は、本発明の第3の実施形態にかかるタッチパネルの製造方法において、アッシング処理によって有機絶縁膜の面積を縮小した後、オゾン水処理を省略して、Y電極の接続部を形成した場合の断面図である。FIG. 17 shows a case where the Y electrode connecting portion is formed by reducing the area of the organic insulating film by the ashing process and then omitting the ozone water process in the touch panel manufacturing method according to the third embodiment of the present invention. FIG. 図18は、本発明の第4の実施形態にかかるタッチパネルの概略構成を示す平面図である。FIG. 18 is a plan view showing a schematic configuration of a touch panel according to the fourth embodiment of the present invention. 図19は、図18におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 19 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 18. 図20は、本発明の第5の実施形態にかかるタッチパネルの概略構成を示す平面図である。FIG. 20 is a plan view showing a schematic configuration of a touch panel according to the fifth embodiment of the present invention. 図21は、図20におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 21 is a sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 20. 図22は、本発明の第6の実施形態にかかるタッチパネルの概略構成を示す平面図である。FIG. 22 is a plan view showing a schematic configuration of a touch panel according to the sixth embodiment of the present invention. 図23は、図22におけるA-A’線、B-B’線、C-C’線およびD-D’線の各線に沿った断面図である。FIG. 23 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 22. 図24は、本発明の他の実施形態にかかるタッチパネル付き表示装置の概略構成を示す断面図である。FIG. 24 is a cross-sectional view showing a schematic configuration of a display device with a touch panel according to another embodiment of the present invention.
 本発明の一実施形態にかかるタッチパネルは、センシング領域および非センシング領域を有する絶縁性の基板と、前記センシング領域に形成され、一方向に延在する第1電極と、前記センシング領域に形成され、前記第1電極と交差する方向に延在する第2電極と、前記第1電極および前記第2電極が交差する箇所に形成され、前記第1電極および前記第2電極を相互に絶縁する絶縁膜と、前記非センシング領域に形成された端子部と、前記非センシング領域に形成され、前記第1電極および前記第2電極と前記端子部とを電気的に接続する金属配線と、前記金属配線を覆って形成された無機材料からなる無機配線保護膜とを備える。前記無機配線保護膜は、前記非センシング領域に選択的に形成されている(第1の構成)。 A touch panel according to an embodiment of the present invention includes an insulating substrate having a sensing region and a non-sensing region, a first electrode formed in the sensing region and extending in one direction, and formed in the sensing region. A second electrode extending in a direction intersecting with the first electrode; and an insulating film formed at a location where the first electrode and the second electrode intersect to insulate the first electrode and the second electrode from each other A terminal portion formed in the non-sensing region, a metal wiring formed in the non-sensing region and electrically connecting the first electrode and the second electrode to the terminal portion, and the metal wiring And an inorganic wiring protective film made of an inorganic material so as to be covered. The inorganic wiring protective film is selectively formed in the non-sensing region (first configuration).
 上記の構成によれば、金属配線を覆って、無機材料からなる無機配線保護膜が形成されている。無機配線保護膜により、外部から水分等の不純物が浸透するのを防ぎ、金属配線の腐食を防止することができる。 According to the above configuration, the inorganic wiring protective film made of an inorganic material is formed so as to cover the metal wiring. By the inorganic wiring protective film, impurities such as moisture can be prevented from penetrating from the outside, and corrosion of the metal wiring can be prevented.
 無機材料からなる膜は、一般的に屈折率が高い。そのため、第1電極および第2電極等のセンサ電極と重畳して形成された場合、センサ電極の形成されている部分と形成されていない部分との間で、反射率の差が大きくなる。したがって、センサ電極のパターンが視認され易くなる。上記の構成によれば、無機配線保護膜は、非センシング領域に選択的に形成されている。これにより、センサ電極のパターンを視認されにくくすることができる。 A film made of an inorganic material generally has a high refractive index. Therefore, when it is formed so as to overlap with the sensor electrodes such as the first electrode and the second electrode, the difference in reflectance between the portion where the sensor electrode is formed and the portion where it is not formed becomes large. Therefore, the sensor electrode pattern is easily visible. According to said structure, the inorganic wiring protective film is selectively formed in the non-sensing area | region. Thereby, the pattern of the sensor electrode can be made difficult to be visually recognized.
 上記第1の構成において、前記無機配線保護膜は、酸化ケイ素、窒化ケイ素、および酸窒化ケイ素から選択される一種以上の化合物を含むことができる(第2の構成)。 In the first configuration, the inorganic wiring protective film may include one or more compounds selected from silicon oxide, silicon nitride, and silicon oxynitride (second configuration).
 上記第1または第2の構成において、前記無機配線保護膜上に形成された、有機物からなる有機配線保護膜をさらに備えることが好ましい(第3の構成)。 In the first or second configuration, it is preferable to further include an organic wiring protective film made of an organic material formed on the inorganic wiring protective film (third configuration).
 上記の構成によれば、タッチパネルは、前記無機配線保護膜の上に、有機配線保護膜をさらに備える。有機膜は、無機膜に比べて弾性があり不意の接触等による衝撃を緩和することができる。例えば、基板切断時に発生したカレット(cullet)等によって表面にキズが付くのを防止することができる。 According to the above configuration, the touch panel further includes an organic wiring protective film on the inorganic wiring protective film. The organic film is more elastic than the inorganic film and can reduce the impact caused by unexpected contact. For example, it is possible to prevent the surface from being scratched by a cullet generated when the substrate is cut.
 上記第1~第3のいずれかの構成において、前記絶縁膜は、有機物からなる構成とすることができる(第4の構成)。 In any one of the first to third configurations, the insulating film can be made of an organic material (fourth configuration).
 上記第1~第3のいずれかの構成において、前記絶縁膜は、無機物からなる構成とすることができる(第5の構成)。 In any one of the first to third configurations, the insulating film can be made of an inorganic material (fifth configuration).
 上記第1~第3のいずれかの構成において、前記絶縁膜は、基板側から、無機物からなる第1の層と、有機物からなる第2の層とが積層された膜である構成とすることができる(第6の構成)。 In any one of the first to third configurations, the insulating film is a film in which a first layer made of an inorganic material and a second layer made of an organic material are laminated from the substrate side. (Sixth configuration).
 上記第6の構成において、前記第2の層の面積は、前記第1の層の面積よりも小さいことが好ましい(第7の構成)。 In the sixth configuration, the area of the second layer is preferably smaller than the area of the first layer (seventh configuration).
 絶縁膜が積層構造であり、第2の層の面積が第1の層の面積よりも大きい場合、この絶縁膜の上を経由して導電膜を形成すると、第1の層の厚さによる段差で導電膜が不連続になったり、接続が不安定になる場合がある。第2の層の面積を第1の層の面積よりも小さくすることで、この絶縁膜の上に導電膜を安定して形成することができる。 When the insulating film has a laminated structure and the area of the second layer is larger than the area of the first layer, a step due to the thickness of the first layer is formed when the conductive film is formed over the insulating film. The conductive film may become discontinuous or the connection may become unstable. By making the area of the second layer smaller than the area of the first layer, the conductive film can be stably formed on the insulating film.
 上記第1~第7のいずれかの構成において、前記絶縁膜の表面粗さRaは100nm以下であることが好ましい(第8の構成)。 In any one of the first to seventh configurations, the surface roughness Ra of the insulating film is preferably 100 nm or less (eighth configuration).
 表面粗さの大きい絶縁膜の上に導電膜を形成すると、導電膜を均一に形成することができなくなり、電気抵抗が高くなる場合がある。特に導電膜の厚さが薄い場合には、表面粗さの影響を受けやすくなる。絶縁膜の表面粗さRaを100nm以下にすることで、導電膜を均一に形成することができ、電気抵抗が増加することを防ぐことができる。 If a conductive film is formed over an insulating film having a large surface roughness, the conductive film cannot be formed uniformly, and the electrical resistance may increase. In particular, when the thickness of the conductive film is thin, it is easily affected by the surface roughness. By setting the surface roughness Ra of the insulating film to 100 nm or less, the conductive film can be formed uniformly and an increase in electrical resistance can be prevented.
 本発明の一実施形態にかかるタッチパネル付き表示装置は、液晶表示装置と、上記第1~第8のいずれか一項に記載のタッチパネルとを備える(タッチパネル付き表示装置の第1の構成)。 A display device with a touch panel according to an embodiment of the present invention includes a liquid crystal display device and the touch panel according to any one of the first to eighth aspects (first configuration of the display device with a touch panel).
 本発明の一実施態様にかかるタッチパネルの製造方法は、上記第1~第8のいずれかの構成のタッチパネルの製造方法であって、無機材料膜を成膜する工程と、前記無機材料膜上に第1有機材料膜を形成する工程と、前記第1有機材料膜をマスクとして、前記無機材料膜をエッチングして前記無機配線保護膜を形成する工程とを含む(タッチパネルの製造方法の第1の態様)。 A touch panel manufacturing method according to an embodiment of the present invention is a touch panel manufacturing method having any one of the first to eighth configurations, comprising: forming an inorganic material film; and A step of forming a first organic material film, and a step of etching the inorganic material film to form the inorganic wiring protective film using the first organic material film as a mask (first method of manufacturing a touch panel) Embodiment).
 上記第1の態様において、前記無機配線保護膜の形成後に、前記第1有機材料膜を除去する工程をさらに含んでも良い(タッチパネルの製造方法の第2の態様)。 The first aspect may further include a step of removing the first organic material film after the formation of the inorganic wiring protective film (second aspect of the touch panel manufacturing method).
 上記の第2の態様において、第2有機材料膜を形成する工程をさらに含んでも良い(タッチパネルの製造方法の第3の態様)。 In the second aspect, the method may further include a step of forming a second organic material film (third aspect of the touch panel manufacturing method).
 上記の構成によれば、無機配線保護膜を形成するためのマスクとして用いた第1有機材料膜を除去して、任意の場所に第2有機材料膜を形成することができる。 According to the above configuration, the first organic material film used as a mask for forming the inorganic wiring protective film can be removed, and the second organic material film can be formed at an arbitrary place.
 上記第1の態様において、前記無機配線保護膜を形成後に、前記第1有機材料膜の面積を縮小させる工程をさらに含んでも良い(タッチパネルの製造方法の第4の態様)。 The first aspect may further include a step of reducing the area of the first organic material film after forming the inorganic wiring protective film (fourth aspect of the touch panel manufacturing method).
 第1有機材料膜をマスクとして無機材料膜をエッチングして無機配線保護膜を形成する際、サイドエッチングによって、パターン形成される面積が第1有機材料膜よりも小さくなる場合がある。この場合に第1有機材料膜を残したまま、この上に導電膜を形成すると、導電膜が途切れたり、接続が不安定になる場合がある。 When forming the inorganic wiring protective film by etching the inorganic material film using the first organic material film as a mask, the area to be patterned may be smaller than that of the first organic material film by side etching. In this case, if a conductive film is formed on the first organic material film while leaving the first organic material film, the conductive film may be interrupted or the connection may become unstable.
 上記第4の態様によれば、前記無機配線保護膜を形成後に、前記第1有機材料膜の面積を縮小させる。これにより、第1有機材料膜上に安定して導電膜を形成することができる。したがって、第1有機材料膜を除去したり、別途に絶縁膜を形成する工程を省略できる。これにより、製造工程を簡略化することができる。 According to the fourth aspect, after the inorganic wiring protective film is formed, the area of the first organic material film is reduced. Thereby, a conductive film can be stably formed on the first organic material film. Therefore, the process of removing the first organic material film or separately forming an insulating film can be omitted. Thereby, a manufacturing process can be simplified.
 上記第4の態様において、前記第1有機材料膜の面積を縮小させる工程後、前記第1有機材料膜をオゾン水に接触させる工程をさらに含んでいても良い(タッチパネルの製造方法の第5の態様)。 In the fourth aspect, after the step of reducing the area of the first organic material film, the method may further include a step of bringing the first organic material film into contact with ozone water (a fifth method of manufacturing a touch panel). Embodiment).
 第1有機材料膜の面積を縮小させる工程の種類によっては、第1有機材料膜の表面粗さが大きくなる。表面粗さの大きい第1有機材料膜の上に導電膜を形成すると、導電膜を均一に形成できず、電気抵抗が高くなる場合がある。上記の態様によれば、第1有機材料膜をオゾン水に接触させることで、第1有機材料膜の表面粗さを低下させることができる。これにより、第1有機材料膜上に形成する導電膜の電気抵抗の増加を防止できる。 Depending on the type of process for reducing the area of the first organic material film, the surface roughness of the first organic material film increases. If a conductive film is formed over the first organic material film having a large surface roughness, the conductive film may not be formed uniformly and the electrical resistance may increase. According to said aspect, the surface roughness of a 1st organic material film can be reduced by making a 1st organic material film contact ozone water. Thereby, an increase in electrical resistance of the conductive film formed on the first organic material film can be prevented.
 [実施の形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
[Embodiment]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
 [全体の構成]
 図1は、本発明の一実施形態にかかるタッチパネル付き表示装置100の概略構成を示す断面図である。タッチパネル付き表示装置100は、タッチパネル1、カラーフィルタ基板101、薄膜トランジスタ(TFT:Thin Film Transistor)基板102、シール材103、液晶104、偏光板105,106および貼付材107とを備えている。
[Overall configuration]
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a display device 100 with a touch panel according to an embodiment of the present invention. A display device with a touch panel 100 includes a touch panel 1, a color filter substrate 101, a thin film transistor (TFT) substrate 102, a sealing material 103, a liquid crystal 104, polarizing plates 105 and 106, and an adhesive material 107.
 カラーフィルタ基板101とTFT基板102とは、互いに対向して配置されている。カラーフィルタ基板101およびTFT基板102の周縁部にはシール材103が形成され、内部に液晶104が封入されている。カラーフィルタ基板101の、液晶104側と反対側の面には、タッチパネル1が、貼付材107により貼り合わされている。タッチパネル1の、カラーフィルタ基板101側と反対側の面には、偏光板105が配置されている。TFT基板102の、液晶104側と反対側の面には、偏光板106が配置されている。 The color filter substrate 101 and the TFT substrate 102 are disposed to face each other. A sealing material 103 is formed on the peripheral portions of the color filter substrate 101 and the TFT substrate 102, and a liquid crystal 104 is sealed inside. On the surface of the color filter substrate 101 opposite to the liquid crystal 104 side, the touch panel 1 is bonded with a bonding material 107. A polarizing plate 105 is disposed on the surface of the touch panel 1 opposite to the color filter substrate 101 side. A polarizing plate 106 is disposed on the surface of the TFT substrate 102 opposite to the liquid crystal 104 side.
 タッチパネル1は、詳しい構成は後述するが、静電容量方式のタッチパネルであり、絶縁性の基板10、センサ電極(X電極11、Y電極12等)を備えている。X電極11およびY電極12は、格子状に形成されている。X電極11およびY電極12は、タッチパネル1に近接した指等との間に静電容量を形成する。タッチパネル1は、この静電容量の変化に基づいて、指等の位置を検出する。 The touch panel 1 is a capacitive touch panel, which will be described in detail later, and includes an insulating substrate 10 and sensor electrodes (X electrode 11, Y electrode 12, etc.). The X electrode 11 and the Y electrode 12 are formed in a lattice shape. The X electrode 11 and the Y electrode 12 form a capacitance between the finger and the like close to the touch panel 1. The touch panel 1 detects the position of a finger or the like based on the change in capacitance.
 カラーフィルタ基板101は、絶縁性の基板1011と、ブラックマトリクス1012と、カラーフィルタ1013と、共通電極1014とを備えている。共通電極1014は、基板1011のほぼ全面に一様に形成されている。 The color filter substrate 101 includes an insulating substrate 1011, a black matrix 1012, a color filter 1013, and a common electrode 1014. The common electrode 1014 is uniformly formed on almost the entire surface of the substrate 1011.
 TFT基板102は、絶縁性の基板1021と、画素電極1022と、図示しないTFTとを備えている。画素電極1022およびTFTは、基板1021にマトリクス状に形成されている。なお、TFTとして、アモルファスシリコンや酸化インジウムガリウム亜鉛(IZGO:Indium Zinc Gallium Oxide)からなるものを用いることができるが、電子移動度の大きいIZGOからなるものを用いることが好ましい。 The TFT substrate 102 includes an insulating substrate 1021, a pixel electrode 1022, and a TFT (not shown). The pixel electrode 1022 and the TFT are formed in a matrix on the substrate 1021. Note that a TFT made of amorphous silicon or indium gallium zinc oxide (IZGO: Indium Zinc Gallium Oxide) can be used, but a TFT made of IZGO having a high electron mobility is preferably used.
 タッチパネル付き表示装置100は、TFT基板102のTFTを駆動して、任意の画素電極1022と共通電極1014との間に電界を生成する。この電界によって、液晶104の配向が変化する。偏光板106側から入射した光は、偏光板106によって、特定の方向に偏光している。液晶104に入射した光の偏光方向は、液晶104の配向によって変化する。そして、特定の方向に偏光した光のみが、偏光板105を透過する。 The display device with a touch panel 100 drives the TFT of the TFT substrate 102 to generate an electric field between the arbitrary pixel electrode 1022 and the common electrode 1014. This electric field changes the orientation of the liquid crystal 104. Light incident from the polarizing plate 106 side is polarized in a specific direction by the polarizing plate 106. The polarization direction of the light incident on the liquid crystal 104 changes depending on the orientation of the liquid crystal 104. Only light polarized in a specific direction is transmitted through the polarizing plate 105.
 このようにして、タッチパネル付き表示装置100は、任意の画素電極1022において、光の透過・非透過を制御することができる。画素電極1022を透過した光は、カラーフィルタ1013によって着色される。複数の色、例えば赤、緑、青のカラーフィルタ1013を規則的に配置しておくことにより、加法混色によって様々な色を表示することができる。ブラックマトリクス1012は、画素電極1022が形成されている箇所以外の箇所からの光を遮光して、コントラストを向上させる。 In this way, the display device with a touch panel 100 can control transmission / non-transmission of light at an arbitrary pixel electrode 1022. The light transmitted through the pixel electrode 1022 is colored by the color filter 1013. By arranging a plurality of colors, for example, red, green, and blue color filters 1013 regularly, various colors can be displayed by additive color mixture. The black matrix 1012 shields light from a portion other than the portion where the pixel electrode 1022 is formed, and improves the contrast.
 以上、タッチパネル付き表示装置100の概略構成を説明した。タッチパネル付き表示装置100では、偏光板105をタッチパネル1の外側(カラーフィルタ基板101側と反対側)の面に配置した。しかし、タッチパネル付き表示装置100は、偏光板105をカラーフィルタ基板101の液晶104側と反対側の面に配置し、その上にタッチパネル1を貼り合せた構成としても良い。 Heretofore, the schematic configuration of the display device 100 with a touch panel has been described. In the display device 100 with a touch panel, the polarizing plate 105 is disposed on the outer surface of the touch panel 1 (on the side opposite to the color filter substrate 101 side). However, the display device with a touch panel 100 may have a configuration in which the polarizing plate 105 is disposed on the surface of the color filter substrate 101 opposite to the liquid crystal 104 and the touch panel 1 is bonded thereon.
 [タッチパネルの構成]
 以下、タッチパネル1の構成について詳しく述べる。
[Configuration of touch panel]
Hereinafter, the configuration of the touch panel 1 will be described in detail.
 図2は、本発明の第1の実施形態にかかるタッチパネル1の、概略構成を模式的に示す平面図である。図3は、図2におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル1は、基板10、X電極11、Y電極12、端子13、配線14、グランド(ground)配線140、配線保護膜15、絶縁膜16、保護膜17、および取出し電極181~184を備えている。なお、図2では、図を見易くするために配線14およびグランド配線140にハッチングを付している。 FIG. 2 is a plan view schematically showing a schematic configuration of the touch panel 1 according to the first embodiment of the present invention. FIG. 3 is a cross-sectional view taken along the lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 2. The touch panel 1 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 15, an insulating film 16, a protective film 17, and extraction electrodes 181 to 184. Yes. In FIG. 2, the wiring 14 and the ground wiring 140 are hatched for easy understanding of the drawing.
 タッチパネル1は、センシング領域Vと、非センシング領域Pとを有している。センシング領域Vは、指等がタッチパネル1に接触した際に、検知される領域である。すなわち、センサ電極(X電極11およびY電極12)が形成されている領域が、センシング領域である。図2では、X電極11およびY電極12を囲った矩形領域をセンシング領域Vとして定義している。センシング領域Vは、矩形領域に限らず、任意の形状を取り得る。また、非連続領域であっても良い。センシング領域Vは、表示装置の表示領域と重ね合わせて使用される。この構成により、ユーザは、表示装置に表示された画像と対応する位置を指示することができる。 The touch panel 1 has a sensing area V and a non-sensing area P. The sensing area V is an area that is detected when a finger or the like touches the touch panel 1. That is, a region where the sensor electrodes (X electrode 11 and Y electrode 12) are formed is a sensing region. In FIG. 2, a rectangular region surrounding the X electrode 11 and the Y electrode 12 is defined as a sensing region V. The sensing area V is not limited to a rectangular area, and can take any shape. Further, it may be a discontinuous region. The sensing area V is used by being overlapped with the display area of the display device. With this configuration, the user can specify a position corresponding to the image displayed on the display device.
 非センシング領域Pには、端子13、配線14等が形成されている。図2では、非センシング領域Pを、センシング領域Vの右側部と下部とに配置している。しかし、非センシング領域Pの配置の仕方は任意である。例えば、非センシング領域Pを、センシング領域Vの四辺を囲むように配置しても良い。あるいは、非センシング領域Pを、センシング領域Vの一辺にのみ接して配置しても良い。 In the non-sensing area P, terminals 13, wirings 14 and the like are formed. In FIG. 2, the non-sensing area P is arranged on the right side and the lower part of the sensing area V. However, the arrangement of the non-sensing area P is arbitrary. For example, the non-sensing region P may be arranged so as to surround the four sides of the sensing region V. Alternatively, the non-sensing area P may be arranged in contact with only one side of the sensing area V.
 図4は、タッチパネル1のX電極11を抜き出して示した図である。X電極11は、一方向に沿って配置された複数の島状電極110と、隣接した島状電極110同士を接続する接続部111とを含んでいる。島状電極110と接続部111とは、連続して一体的に形成されている。 FIG. 4 is a diagram showing the X electrode 11 extracted from the touch panel 1. The X electrode 11 includes a plurality of island-shaped electrodes 110 arranged along one direction and a connection portion 111 that connects adjacent island-shaped electrodes 110. The island-shaped electrode 110 and the connecting portion 111 are formed continuously and integrally.
 Y電極12は、図2に示すように、X電極11と交差する方向に沿って配置された複数の島状電極120と、隣接した島状電極120同士を接続する接続部121とを含んでいる。 As shown in FIG. 2, the Y electrode 12 includes a plurality of island electrodes 120 arranged along the direction intersecting the X electrode 11, and a connecting portion 121 that connects adjacent island electrodes 120. Yes.
 絶縁膜16は、X電極11とY電極12とが交差する箇所に形成されている。図3に示すように、接続部121は、絶縁膜16上を経由して、隣接した島状電極120同士を接続している。この構成により、X電極11とY電極12とは、互いに絶縁されている。 The insulating film 16 is formed at a location where the X electrode 11 and the Y electrode 12 intersect. As shown in FIG. 3, the connecting part 121 connects adjacent island electrodes 120 via the insulating film 16. With this configuration, the X electrode 11 and the Y electrode 12 are insulated from each other.
 基板10の端部近傍には、端子13が形成されている。X電極11およびY電極12と、端子部13とは、配線14によって電気的に接続されている。 A terminal 13 is formed near the end of the substrate 10. The X electrode 11 and the Y electrode 12 and the terminal portion 13 are electrically connected by a wiring 14.
 グランド配線140は、X電極11およびY電極12のいずれとも接続されていない。グランド配線140は、電磁ノイズを遮蔽するシールド線として機能する。 The ground wiring 140 is not connected to either the X electrode 11 or the Y electrode 12. The ground wiring 140 functions as a shield line that shields electromagnetic noise.
 配線14およびグランド配線140を覆って、配線保護膜15が形成されている。配線保護膜15は、非センシング領域Pに選択的に形成されている。すなわち、配線保護膜15は、非センシング領域Pにのみ形成され、センシング領域Vには形成されていない。換言すれば、配線保護膜15は、センシング領域Vには及んでいない。 A wiring protective film 15 is formed so as to cover the wiring 14 and the ground wiring 140. The wiring protective film 15 is selectively formed in the non-sensing region P. That is, the wiring protective film 15 is formed only in the non-sensing region P and is not formed in the sensing region V. In other words, the wiring protective film 15 does not reach the sensing region V.
 なお、端子13は一部が配線保護膜15によって覆われ、残部は配線保護膜15に覆われずに露出している。 Note that a part of the terminal 13 is covered with the wiring protective film 15, and the remaining part is exposed without being covered with the wiring protective film 15.
 配線保護膜15にはコンタクトホール15aおよび15bが形成されている。図4に示すように、コンタクトホール15aと平面視で重畳する箇所には、取出し電極181,182が形成されている。取出し電極181と取出し電極182とは、コンタクトホール15aを介して互いに接している。取出し電極182は、X電極11と接している。さらに、配線14が、取出し電極181に重畳して形成されている。この構成により、X電極11と配線14とが、取出し電極181および182を介して、相互に電気的に接続されている。図示は省略するが、同様に、Y電極12と配線14とは、取出し電極183および184を介して、相互に電気的に接続されている。 Contact holes 15 a and 15 b are formed in the wiring protective film 15. As shown in FIG. 4, take-out electrodes 181 and 182 are formed at positions overlapping the contact hole 15a in plan view. The extraction electrode 181 and the extraction electrode 182 are in contact with each other through the contact hole 15a. The extraction electrode 182 is in contact with the X electrode 11. Further, the wiring 14 is formed so as to overlap with the extraction electrode 181. With this configuration, the X electrode 11 and the wiring 14 are electrically connected to each other via the extraction electrodes 181 and 182. Although illustration is omitted, similarly, the Y electrode 12 and the wiring 14 are electrically connected to each other via extraction electrodes 183 and 184.
 なお、取出し配線182と配線14とを直接接触させずに、取出し配線181を間に介するのは、後述するように、この方が接触抵抗が安定するためである。 The reason why the extraction wiring 182 and the wiring 14 are not directly in contact with each other and the extraction wiring 181 is interposed therebetween is that the contact resistance is more stable as will be described later.
 図3に示すように、配線保護膜15は、無機配線保護膜151と有機配線保護膜152との積層構造になっている。 As shown in FIG. 3, the wiring protective film 15 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152.
 無機配線保護膜151は、酸化ケイ素(SiO)、窒化ケイ素(SiN)、および酸窒化ケイ素(SiON)から選択される一種以上の化合物を含む膜である。無機配線保護膜151は、有機配線保護膜152よりも緻密であり、外部からの水分等の浸透を防ぐ。無機配線保護膜151によって、水分等による配線14の腐食を防止することができる。一方、有機配線保護膜152は無機配線保護膜151に比べて弾性があり、不意の接触等による衝撃を緩和することができる。 The inorganic wiring protective film 151 is a film containing one or more compounds selected from silicon oxide (SiO 2 ), silicon nitride (SiN), and silicon oxynitride (SiON). The inorganic wiring protective film 151 is denser than the organic wiring protective film 152 and prevents penetration of moisture and the like from the outside. The inorganic wiring protective film 151 can prevent the wiring 14 from being corroded by moisture or the like. On the other hand, the organic wiring protective film 152 is more elastic than the inorganic wiring protective film 151, and can reduce the impact caused by unexpected contact or the like.
 本実施形態では、有機配線保護膜152と絶縁膜16とは、同一材料で形成されている。 In this embodiment, the organic wiring protective film 152 and the insulating film 16 are formed of the same material.
 X電極11、Y電極12、配線保護膜15、絶縁膜16、および取出し電極181~184の全てを覆って、保護膜17が形成されている。保護膜17は、基板10および端子13の一部も覆っている。端子13の一部は、配線保護膜15にも保護膜17にも覆われることなく露出している。端子13の露出部分は、フレキシブルプリント基板(FPC:Flexible Printed Circuit)等を介して駆動回路に接続される。 A protective film 17 is formed to cover all of the X electrode 11, the Y electrode 12, the wiring protective film 15, the insulating film 16, and the extraction electrodes 181 to 184. The protective film 17 also covers a part of the substrate 10 and the terminal 13. A part of the terminal 13 is exposed without being covered by the wiring protective film 15 or the protective film 17. An exposed portion of the terminal 13 is connected to a drive circuit via a flexible printed circuit board (FPC).
 [タッチパネル1の製造方法]
 以下、図5A~図5Fを参照して、タッチパネル1の製造方法を説明する。なお、図5A~図5Fは、図2におけるA-A’線、B-B’線、およびC-C’線の各線に沿った断面図である。
[Method of manufacturing touch panel 1]
Hereinafter, a method of manufacturing the touch panel 1 will be described with reference to FIGS. 5A to 5F. 5A to 5F are sectional views taken along lines AA ′, BB ′, and CC ′ in FIG.
 図5Aに示すように、基板10上に、X電極11の接続部111、Y電極12の島状電極120、および端子13を形成する。基板10は、例えばガラス基板である。図5Aには図示していないが、X電極11の島状電極110(図2を参照)、取出し電極181(図2および図3を参照)、取出し電極183(図2を参照)も同時に形成する。 As shown in FIG. 5A, the connecting portion 111 of the X electrode 11, the island electrode 120 of the Y electrode 12, and the terminal 13 are formed on the substrate 10. The substrate 10 is a glass substrate, for example. Although not shown in FIG. 5A, the island electrode 110 (see FIG. 2) of the X electrode 11, the extraction electrode 181 (see FIGS. 2 and 3), and the extraction electrode 183 (see FIG. 2) are also formed at the same time. To do.
 まず、基板10上に、スパッタリングまたはCVD(Chemical Vapor Deposition)により、一様な透明導電膜を形成する。透明導電膜は、例えばITOやIZOである。透明導電膜の厚さは特に限定されないが、例えば10~50nmである。  First, a uniform transparent conductive film is formed on the substrate 10 by sputtering or CVD (Chemical Vapor Deposition). The transparent conductive film is, for example, ITO or IZO. The thickness of the transparent conductive film is not particularly limited, but is 10 to 50 nm, for example.
 基板10上に形成した透明導電膜を、フォトリソグラフィによりパターニングする。具体的には、島状電極110,120、接続部111、端子13、および取出し電極181,183を形成する箇所にフォトレジストによるマスクを形成する。そして、残部をエッチングにより除去する。エッチング方法は任意であるが、例えば、シュウ酸または燐酸/酢酸/硝酸の混酸等を用いることができる。 The transparent conductive film formed on the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a place where the island-shaped electrodes 110 and 120, the connection portion 111, the terminal 13, and the extraction electrodes 181 and 183 are formed. Then, the remaining part is removed by etching. Although the etching method is arbitrary, for example, oxalic acid or a mixed acid of phosphoric acid / acetic acid / nitric acid can be used.
 パターニングの終了後に、200~250℃の温度範囲でアニールを行う。このアニールで、アモルファスであった透明導電膜(島状電極110,120、接続部111、端子13、取出し電極181,183)が多結晶化する。 After the patterning is completed, annealing is performed in a temperature range of 200 to 250 ° C. By this annealing, the amorphous transparent conductive film (the island electrodes 110 and 120, the connection portion 111, the terminal 13, and the extraction electrodes 181 and 183) is polycrystallized.
 次に、図5Bに示すように、配線14を形成する。図5Bには図示していないが、グランド配線140(図2を参照)も同時に形成する。 Next, as shown in FIG. 5B, the wiring 14 is formed. Although not shown in FIG. 5B, the ground wiring 140 (see FIG. 2) is also formed at the same time.
 まず、スパッタリングまたは蒸着により、島状電極110,120、接続部111、端子13、取出し電極181,183を覆って、全面に金属膜を形成する。金属膜は、低抵抗であることが好ましく、例えばAlが用いられる。しかし、Alはアルカリで腐食され易く、また、AlとITO等の導電酸化膜とを直接接触させると、イオン化傾向の違いによるガルバニック腐食が発生する。そのため、耐食性の高い金属との積層構造とすることが好ましい。したがって、金属膜は例えば、MoNbとAlとMoNbとの積層膜、MoNとAlとMoNとの積層膜、およびMoとAlとMoとの積層膜等が好適に用いられる。金属膜の厚さは、特に制限されないが、例えば0.3~1.0μmである。 First, a metal film is formed on the entire surface by sputtering or vapor deposition so as to cover the island-shaped electrodes 110 and 120, the connection portion 111, the terminal 13, and the extraction electrodes 181 and 183. The metal film preferably has a low resistance, and for example, Al is used. However, Al is easily corroded by alkali, and when Al and a conductive oxide film such as ITO are brought into direct contact, galvanic corrosion due to a difference in ionization tendency occurs. Therefore, a laminated structure with a metal having high corrosion resistance is preferable. Therefore, for example, a laminated film of MoNb, Al, and MoNb, a laminated film of MoN, Al, and MoN, and a laminated film of Mo, Al, and Mo are preferably used as the metal film. The thickness of the metal film is not particularly limited, but is, for example, 0.3 to 1.0 μm.
 基板10の全面に形成した金属膜を、フォトリソグラフィによりパターニングする。具体的には、配線14を形成する箇所にフォトレジストによるマスクを形成する。そして、残部をエッチングにより除去する。エッチング方法は任意であるが、例えば、燐酸と酢酸と硝酸との混酸等を用いることができる。 The metal film formed on the entire surface of the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a place where the wiring 14 is to be formed. Then, the remaining part is removed by etching. Although the etching method is arbitrary, for example, a mixed acid of phosphoric acid, acetic acid and nitric acid can be used.
 次に、図5Cに示すように、配線14およびグランド配線140の全てを覆って、無機配線保護膜151を形成する。 Next, as shown in FIG. 5C, an inorganic wiring protective film 151 is formed so as to cover all of the wiring 14 and the ground wiring 140.
 無機配線保護膜151は、既述のように、SiO、SiN、およびSiONから選択される一種以上の化合物を含む膜である。まず、基板10の全面に、CVDによってこれらの化合物の均一な無機材料膜を形成する。無機材料膜の厚さは厚い方が好ましく、配線14の厚さの2倍以上であることが好ましい。 As described above, the inorganic wiring protective film 151 is a film including one or more compounds selected from SiO 2 , SiN, and SiON. First, a uniform inorganic material film of these compounds is formed on the entire surface of the substrate 10 by CVD. The thickness of the inorganic material film is preferably thicker, and is preferably at least twice the thickness of the wiring 14.
 基板10の全面に形成した無機材料膜を、フォトリソグラフィによりパターニングする。具体的には、無機配線保護膜151を形成する箇所にフォトレジストによるマスクを形成する。そして、エッチングにより残部を除去する。エッチング方法は任意であるが、例えば、フッ素系ガスによるドライエッチングを用いることができる。パターニング後、マスクに用いたフォトレジストを除去する。 The inorganic material film formed on the entire surface of the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a location where the inorganic wiring protective film 151 is to be formed. Then, the remaining part is removed by etching. Although the etching method is arbitrary, for example, dry etching using a fluorine-based gas can be used. After the patterning, the photoresist used for the mask is removed.
 次に、図5Dに示すように、有機配線保護膜152および絶縁膜16を形成する。 Next, as shown in FIG. 5D, an organic wiring protective film 152 and an insulating film 16 are formed.
 有機配線保護膜152および絶縁膜16は、有機材料からなる絶縁体であって、例えば、アクリル樹脂またはノボラック樹脂等を含むフォトレジストを用いることができる。 The organic wiring protective film 152 and the insulating film 16 are insulators made of an organic material, and for example, a photoresist containing an acrylic resin or a novolac resin can be used.
 基板10の全面に、スピンコータまたはスリットコータによって、フォトレジストを均一に塗布する。フォトレジストの膜は厚い方が好ましい。フォトレジストの膜の厚さは、特に限定されないが、例えば1.5~3.0μmである。基板10の全面に形成したフォトレジストの膜を、フォトリソグラフィによってパターニングし、有機配線保護膜152および絶縁膜16を形成する。 A photoresist is uniformly applied to the entire surface of the substrate 10 by a spin coater or a slit coater. A thicker photoresist film is preferred. The thickness of the photoresist film is not particularly limited, but is, for example, 1.5 to 3.0 μm. The photoresist film formed on the entire surface of the substrate 10 is patterned by photolithography to form the organic wiring protective film 152 and the insulating film 16.
 有機配線保護膜152を形成する際、コンタクトホール15aおよび15bも同時に形成する。そして、有機配線保護膜152をマスクとして無機配線保護膜151をエッチングし、コンタクトホール15aおよび15bを、有機配線保護膜152の表面から無機配線保護膜151の底面まで貫通させる。このようにすることで、無機配線保護膜151と有機配線保護膜152との間で、コンタクトホール15aおよび15bの位置合わせを正確に行うことができる。 When forming the organic wiring protective film 152, the contact holes 15a and 15b are also formed at the same time. Then, the inorganic wiring protective film 151 is etched using the organic wiring protective film 152 as a mask, and the contact holes 15 a and 15 b are penetrated from the surface of the organic wiring protective film 152 to the bottom surface of the inorganic wiring protective film 151. In this way, the contact holes 15a and 15b can be accurately aligned between the inorganic wiring protective film 151 and the organic wiring protective film 152.
 なお、無機配線保護膜151をパターニングする際に、コンタクトホール15aおよび15bをあらじかめ形成しておき、有機配線保護膜152をパターニングする際に、これに位置合わせして、コンタクトホール15aおよび15bを形成しても良い。 When the inorganic wiring protective film 151 is patterned, the contact holes 15a and 15b are formed in advance, and when the organic wiring protective film 152 is patterned, the contact holes 15a and 15b are aligned with this. May be formed.
 次に、図5Eに示すように、Y電極12の接続部121を形成する。図5Eには図示していないが、取出し電極182および184(図3を参照)も同時に形成する。スパッタリングまたはCVD法により、一様な透明導電膜を形成する。透明導電膜は、例えばITOやIZOである。透明導電膜の厚さは特に限定されないが、例えば10~50nmである。 Next, as shown in FIG. 5E, the connecting portion 121 of the Y electrode 12 is formed. Although not shown in FIG. 5E, extraction electrodes 182 and 184 (see FIG. 3) are also formed at the same time. A uniform transparent conductive film is formed by sputtering or CVD. The transparent conductive film is, for example, ITO or IZO. The thickness of the transparent conductive film is not particularly limited, but is 10 to 50 nm, for example.
 基板10上に形成した透明導電膜を、フォトリソグラフィによりパターニングする。具体的には、接続部121、取出し電極182および184を形成する箇所にフォトレジストによるマスクを形成する。そして、残部をエッチングにより除去する。エッチング方法は任意であるが、例えば、シュウ酸、または燐酸と酢酸と硝酸との混酸等を用いることができる。 The transparent conductive film formed on the substrate 10 is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a location where the connection portion 121 and the extraction electrodes 182 and 184 are to be formed. Then, the remaining part is removed by etching. The etching method is arbitrary, but for example, oxalic acid or a mixed acid of phosphoric acid, acetic acid and nitric acid can be used.
 このとき、配線保護膜15に形成したコンタクトホール15aを介して、取出し電極181と取出し電極182とを接触させる(図3を参照)。取出し電極182は、配線14ではなく取出し電極181と接触させることが好ましい。配線14は、エッチングや洗浄工程によって表面が変質している場合がある。そのため、配線14の上に取り出し電極182を接するように形成すると、接触抵抗が大きくなる場合がある。本実施形態では、先に取り出し電極181を形成しておき、取出し電極181に重畳して配線14を形成する。そして、取出し電極182と配線14とを、取出し電極181を介して接続することで、接触抵抗を安定化させている。 At this time, the extraction electrode 181 and the extraction electrode 182 are brought into contact with each other through the contact hole 15a formed in the wiring protective film 15 (see FIG. 3). The extraction electrode 182 is preferably in contact with the extraction electrode 181 instead of the wiring 14. The surface of the wiring 14 may be altered by an etching or cleaning process. For this reason, when the extraction electrode 182 is formed on the wiring 14 so as to be in contact therewith, the contact resistance may increase. In the present embodiment, the extraction electrode 181 is formed first, and the wiring 14 is formed so as to overlap the extraction electrode 181. The contact resistance is stabilized by connecting the extraction electrode 182 and the wiring 14 via the extraction electrode 181.
 同様に、配線保護膜15に形成したコンタクトホール15bを介して、取出し電極183と取出し電極184とを接触させる。 Similarly, the extraction electrode 183 and the extraction electrode 184 are brought into contact with each other through the contact hole 15 b formed in the wiring protective film 15.
 パターニングの終了後に、接続部121および取出し電極183,184を多結晶化するためのアニールを行っても良い。 After the patterning, annealing for polycrystallizing the connection part 121 and the extraction electrodes 183 and 184 may be performed.
 最後に、図5Fに示すように、基板10のほぼ全面を覆って、保護膜17を形成する。
保護膜17は、例えば、アクリル樹脂である。基板10の全面に、スピンコータまたはスリットコータによって均一な膜を形成する。このとき、メタルマスク等を使用して、端子13の一部が露出するようにする。保護膜17の厚さは特に限定されないが、例えば1.5~3.0μmである。
Finally, as shown in FIG. 5F, a protective film 17 is formed so as to cover almost the entire surface of the substrate 10.
The protective film 17 is, for example, an acrylic resin. A uniform film is formed on the entire surface of the substrate 10 by a spin coater or a slit coater. At this time, a part of the terminal 13 is exposed using a metal mask or the like. The thickness of the protective film 17 is not particularly limited, but is, for example, 1.5 to 3.0 μm.
 以上、本発明の第1の実施形態にかかるタッチパネル1の構成、および製造方法を説明した。 The configuration and manufacturing method of the touch panel 1 according to the first embodiment of the present invention have been described above.
 本実施形態にかかるタッチパネル1の構成によれば、配線14およびグランド配線140を覆って、無機配線保護膜151が形成されている。無機配線保護膜151により、外部から水分等の不純物が浸透するのを防ぎ、配線14およびグランド配線140の腐食を防止することができる。 According to the configuration of the touch panel 1 according to the present embodiment, the inorganic wiring protective film 151 is formed so as to cover the wiring 14 and the ground wiring 140. The inorganic wiring protective film 151 can prevent impurities such as moisture from permeating from the outside, and can prevent the wiring 14 and the ground wiring 140 from corroding.
 無機材料からなる膜は、一般的に屈折率が高い。そのため、X電極11およびY電極12等のセンサ電極と平面視で重畳する領域に形成された場合、センサ電極の形成されている部分と形成されていない部分との間で、反射率の差が大きくなる。したがって、センサ電極のパターンが視認され易くなる。タッチパネル1の構成によれば、無機配線保護膜151は、非センシング領域Pに選択的に形成されている。これにより、センサ電極のパターンを視認されにくくすることができる。 A film made of an inorganic material generally has a high refractive index. Therefore, when it is formed in a region overlapping with the sensor electrodes such as the X electrode 11 and the Y electrode 12 in a plan view, there is a difference in reflectance between the portion where the sensor electrode is formed and the portion where the sensor electrode is not formed. growing. Therefore, the sensor electrode pattern is easily visible. According to the configuration of the touch panel 1, the inorganic wiring protective film 151 is selectively formed in the non-sensing region P. Thereby, the pattern of the sensor electrode can be made difficult to be visually recognized.
 タッチパネル1において、配線保護膜15は、無機配線保護膜151と、有機配線保護膜152との積層構造となっている。有機配線保護膜152は、無機配線保護膜151と比べて弾性があり、不意の接触などによる衝撃を緩和することができる。例えば、基板10を切断する際に発生したカレット(cullet)等によって表面にキズが付くのを防止することができる。 In the touch panel 1, the wiring protective film 15 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152. The organic wiring protective film 152 is more elastic than the inorganic wiring protective film 151 and can mitigate the impact caused by unexpected contact. For example, the surface can be prevented from being scratched by a cullet generated when the substrate 10 is cut.
 [比較例1]
 ここで、本実施形態にかかるタッチパネル1の効果を説明するため、仮想的な比較例について述べる。図6は、第1の比較例にかかるタッチパネル7の概略構成を示す平面図である。図7は、図6におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル7は、基板10、X電極11、Y電極72、端子13、配線14、グランド配線140、配線保護膜75、保護膜17、および取出し電極181,183,782,784を備えている。なお、図6では、図を見易くするために配線14およびグランド配線140にハッチングを付している。
[Comparative Example 1]
Here, in order to explain the effect of the touch panel 1 according to the present embodiment, a virtual comparative example will be described. FIG. 6 is a plan view showing a schematic configuration of the touch panel 7 according to the first comparative example. FIG. 7 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG. The touch panel 7 includes a substrate 10, an X electrode 11, a Y electrode 72, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 75, a protective film 17, and extraction electrodes 181, 183, 782, 784. In FIG. 6, the wiring 14 and the ground wiring 140 are hatched for easy understanding of the drawing.
 タッチパネル7は、タッチパネル1と比較して、Y電極、取出し電極、および配線保護膜の構成が異なる。具体的には、タッチパネル1では、配線保護膜15は、非センシング領域Pに選択的に形成されている。これに対し、タッチパネル7では、配線保護膜75は、センシング領域Vおよび非センシング領域Pの両方にわたり、端子13の近傍を除いた基板10のほぼ全面を覆って形成されている。 The touch panel 7 is different from the touch panel 1 in the configuration of the Y electrode, the extraction electrode, and the wiring protective film. Specifically, in the touch panel 1, the wiring protective film 15 is selectively formed in the non-sensing region P. On the other hand, in the touch panel 7, the wiring protective film 75 is formed so as to cover almost the entire surface of the substrate 10 except for the vicinity of the terminals 13 over both the sensing region V and the non-sensing region P.
 配線保護膜75には、コンタクトホール75a~75dが形成されている。 Contact holes 75a to 75d are formed in the wiring protective film 75.
 タッチパネル7では、配線保護膜75が、X電極11とY電極72とを絶縁している。図7に示すように、Y電極72の島状電極120と接続部721とは、コンタクトホール75cを介して互いに接続されている。 In the touch panel 7, the wiring protective film 75 insulates the X electrode 11 from the Y electrode 72. As shown in FIG. 7, the island-shaped electrode 120 of the Y electrode 72 and the connecting portion 721 are connected to each other through a contact hole 75c.
 X電極11と取出し電極782とは、コンタクトホール75dを介して互いに接触している。取出し電極782と取出し電極181とは、コンタクトホール75aを介して互いに接触している。そして、取出し電極181に一部重畳して、配線14が形成されている。この構成により、X電極11と配線14とが電気的に接続されている。 The X electrode 11 and the extraction electrode 782 are in contact with each other through the contact hole 75d. The extraction electrode 782 and the extraction electrode 181 are in contact with each other through the contact hole 75a. A wiring 14 is formed so as to partially overlap the extraction electrode 181. With this configuration, the X electrode 11 and the wiring 14 are electrically connected.
 Y電極72と取出し電極784とは、コンタクトホール75eを介して互いに接触している。取出し電極784と取出し電極183とは、コンタクトホール75bを介して互いに接触している。そして、取出し電極183に一部重畳して、配線14が形成されている。この構成により、Y電極72と配線14とが電気的に接続されている。 The Y electrode 72 and the extraction electrode 784 are in contact with each other through the contact hole 75e. The extraction electrode 784 and the extraction electrode 183 are in contact with each other through the contact hole 75b. A wiring 14 is formed so as to partially overlap the extraction electrode 183. With this configuration, the Y electrode 72 and the wiring 14 are electrically connected.
 図7に示すように、配線保護膜75は、無機配線保護膜751と有機配線保護膜752との積層構造になっている。無機配線保護膜751は、SiO、SiN、およびSiONから選択される一種以上の化合物を含む膜である。有機配線保護膜752は、例えばアクリル樹脂等の膜である。 As shown in FIG. 7, the wiring protective film 75 has a laminated structure of an inorganic wiring protective film 751 and an organic wiring protective film 752. The inorganic wiring protective film 751 is a film containing one or more compounds selected from SiO 2 , SiN, and SiON. The organic wiring protective film 752 is a film made of, for example, an acrylic resin.
 タッチパネル7においても、無機配線保護膜751によって、外部から水分等の不純物の侵入が防がれ、配線14およびグランド配線140の腐食が防止される。 Also in the touch panel 7, the inorganic wiring protective film 751 prevents impurities such as moisture from entering from the outside and prevents the wiring 14 and the ground wiring 140 from corroding.
 タッチパネル7では、X電極11およびY電極72等のセンサ電極と平面視で重畳する領域にも、無機配線保護膜751が形成されている。無機配線保護膜751は、一般的に有機配線保護膜752等と比較して屈折率が高い。そのため、センサ電極の形成されている部分と形成されていない部分との間で、反射率の差が大きくなる。したがって、センサ電極のパターンが視認され易くなる。 In the touch panel 7, an inorganic wiring protective film 751 is also formed in a region overlapping with sensor electrodes such as the X electrode 11 and the Y electrode 72 in a plan view. The inorganic wiring protective film 751 generally has a higher refractive index than the organic wiring protective film 752 or the like. Therefore, the difference in reflectance increases between the part where the sensor electrode is formed and the part where the sensor electrode is not formed. Therefore, the sensor electrode pattern is easily visible.
 タッチパネル7と比較して、本実施形態にかかるタッチパネル1では、無機配線保護膜151は、非センシング領域Pに選択的に形成されている。これにより、センサ電極のパターンを視認されにくくすることができる。 Compared with the touch panel 7, in the touch panel 1 according to the present embodiment, the inorganic wiring protective film 151 is selectively formed in the non-sensing region P. Thereby, the pattern of the sensor electrode can be made difficult to be visually recognized.
 [比較例2]
 図8は、第2の比較例にかかるタッチパネル8の概略構成を示す平面図である。図9は、図8におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル8は、基板10、X電極11、Y電極12、端子13、配線14、グランド配線140、配線保護膜85、絶縁膜16、保護膜17、および取出し電極181~184を備えている。なお、図8では、図を見易くするために配線14およびグランド配線140にハッチングを付している。
[Comparative Example 2]
FIG. 8 is a plan view showing a schematic configuration of the touch panel 8 according to the second comparative example. FIG. 9 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG. The touch panel 8 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 85, an insulating film 16, a protective film 17, and extraction electrodes 181 to 184. In FIG. 8, the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
 タッチパネル8は、タッチパネル1と比較して、配線保護膜の構成が異なる。タッチパネル8では、配線保護膜85は、絶縁膜16と同一の材料で形成されている。配線保護膜85と絶縁膜16とは、ともにアクリル樹脂等の有機物で形成されている。 The touch panel 8 is different from the touch panel 1 in the configuration of the wiring protective film. In the touch panel 8, the wiring protective film 85 is formed of the same material as the insulating film 16. Both the wiring protective film 85 and the insulating film 16 are made of an organic material such as acrylic resin.
 タッチパネル8では、配線保護膜85が樹脂等の有機物で形成されているため、外部から水分等の不純物が浸透し、配線14等に到達する場合がある。これにより、配線14等が腐食する恐れがある。この腐食は、長期的な配線の信頼性を低下させる要因となる。 In the touch panel 8, since the wiring protective film 85 is formed of an organic material such as a resin, impurities such as moisture may penetrate from the outside and reach the wiring 14 or the like. Thereby, there exists a possibility that the wiring 14 etc. may corrode. This corrosion is a factor that degrades the reliability of the long-term wiring.
 タッチパネル8と比較して、本実施形態にかかるタッチパネル1では、配線保護膜15は、無機配線保護膜151を含む。無機配線保護膜151により、外部から水分等の不純物が浸透するのを防ぎ、配線14およびグランド配線140の腐食を防止することができる。 Compared with the touch panel 8, in the touch panel 1 according to the present embodiment, the wiring protective film 15 includes an inorganic wiring protective film 151. The inorganic wiring protective film 151 can prevent impurities such as moisture from permeating from the outside, and can prevent the wiring 14 and the ground wiring 140 from corroding.
 [第2の実施形態]
 タッチパネル付き表示装置100は、タッチパネル1に代えて、以下に説明するタッチパネル2~6のいずれかを備えていても良い。
[Second Embodiment]
The display device with a touch panel 100 may include any one of touch panels 2 to 6 described below instead of the touch panel 1.
 図10は、本発明の第2の実施形態にかかるタッチパネル2の、概略構成を模式的に示す平面図である。図11は、図10におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル2は、基板10、X電極21、Y電極22、端子13、配線14、グランド配線140、配線保護膜15、絶縁膜26、保護膜17、および取出し電極181,183,282,284を備えている。なお、図10では、図を見易くするために配線14およびグランド配線140にハッチングを付している。 FIG. 10 is a plan view schematically showing a schematic configuration of the touch panel 2 according to the second embodiment of the present invention. FIG. 11 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, and D-D ′ in FIG. 10. The touch panel 2 includes a substrate 10, an X electrode 21, a Y electrode 22, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 15, an insulating film 26, a protective film 17, and extraction electrodes 181, 183, 282, and 284. ing. In FIG. 10, the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
 タッチパネル2は、タッチパネル1と比較して、X電極、Y電極、絶縁膜、取出し配線の構成が異なっている。 The touch panel 2 is different from the touch panel 1 in the configuration of the X electrode, the Y electrode, the insulating film, and the extraction wiring.
 X電極21は、タッチパネル1のX電極11と同様に、一方向に沿って配置された複数の島状電極210と、隣接する島状電極同士210を接続する接続部211とを含む。島状電極210と接続部211とは、連続して一体的に形成されている。なお、島状電極210と取出し電極282とも、連続して一体的に形成されている。 The X electrode 21 includes a plurality of island-like electrodes 210 arranged along one direction and a connecting portion 211 that connects adjacent island-like electrodes 210, similarly to the X electrode 11 of the touch panel 1. The island-shaped electrode 210 and the connection part 211 are formed continuously and integrally. Note that the island electrode 210 and the extraction electrode 282 are also integrally formed continuously.
 X電極11とは異なり、X電極21の接続部211は、絶縁膜26上を経由して、隣接する島状電極210同士を接続している。これにより、X電極21とY電極22とが絶縁されている。 Unlike the X electrode 11, the connecting portion 211 of the X electrode 21 connects adjacent island electrodes 210 via the insulating film 26. Thereby, the X electrode 21 and the Y electrode 22 are insulated.
 Y電極22は、X電極21と交差する方向に沿って配置された複数の島状電極220と、隣接する島状電極220同士を接続する接続部221とを含む。図11に示すように、島状電極220は、接続部221および絶縁膜26に接して、これらと一部重畳するように形成されている。なお、島状電極220と取出し電極284とは、連続して一体的に形成されている。 The Y electrode 22 includes a plurality of island electrodes 220 arranged along the direction intersecting with the X electrode 21 and a connection portion 221 that connects the adjacent island electrodes 220 to each other. As shown in FIG. 11, the island-shaped electrode 220 is formed so as to be in contact with the connection portion 221 and the insulating film 26 and to partially overlap these. The island electrode 220 and the extraction electrode 284 are integrally formed continuously.
 X電極21の島状電極210と一体的に形成された取出し電極282は、配線保護膜15に形成されたコンタクトホール15aを介して、取出し電極181と接触している。そして、取出し電極181に一部重畳して、配線14が形成されている。この構成により、X電極21と配線14とが、電気的に接続されている。 The extraction electrode 282 formed integrally with the island-shaped electrode 210 of the X electrode 21 is in contact with the extraction electrode 181 through the contact hole 15 a formed in the wiring protective film 15. A wiring 14 is formed so as to partially overlap the extraction electrode 181. With this configuration, the X electrode 21 and the wiring 14 are electrically connected.
 同様に、Y電極22の島状電極220と一体的に形成された取出し電極284は、配線保護膜15に形成されたコンタクトホール15bを介して、取出し電極183と接触している。そして、取出し電極183に一部重畳して、配線14が形成されている。この構成により、Y電極22と配線14とが、電気的に接続されている。 Similarly, the extraction electrode 284 formed integrally with the island-shaped electrode 220 of the Y electrode 22 is in contact with the extraction electrode 183 through the contact hole 15 b formed in the wiring protective film 15. A wiring 14 is formed so as to partially overlap the extraction electrode 183. With this configuration, the Y electrode 22 and the wiring 14 are electrically connected.
 本実施形態においても、X電極21およびY電極22は、センシング領域Vに形成されている。配線保護膜15は、非センシング領域Pに選択的に形成されている。 Also in the present embodiment, the X electrode 21 and the Y electrode 22 are formed in the sensing region V. The wiring protective film 15 is selectively formed in the non-sensing region P.
 [タッチパネル2の製造方法]
 以下、図12A~図12Fを参照して、タッチパネル2の製造方法の概略を説明する。なお、図12A~図12Fは、図10におけるA-A’線、B-B’線、およびC-C’線の各線に沿った断面図である。タッチパネル1と同様の工程については、適宜説明を省略する。
[Method for Manufacturing Touch Panel 2]
Hereinafter, an outline of a method for manufacturing the touch panel 2 will be described with reference to FIGS. 12A to 12F. 12A to 12F are cross-sectional views taken along lines AA ′, BB ′, and CC ′ in FIG. Description of the steps similar to those of the touch panel 1 will be omitted as appropriate.
 まず、図12Aに示すように、基板10上に、Y電極22の接続部221、端子13を形成する。図12Aには図示していないが、取出し電極181および183(図11を参照)を同時に形成する。 First, as shown in FIG. 12A, the connection part 221 and the terminal 13 of the Y electrode 22 are formed on the substrate 10. Although not shown in FIG. 12A, extraction electrodes 181 and 183 (see FIG. 11) are formed simultaneously.
 次に、図12Bに示すように、配線14を形成する。図12Bには図示していないが、グランド配線140(図10を参照)を同時に形成する。 Next, as shown in FIG. 12B, the wiring 14 is formed. Although not shown in FIG. 12B, the ground wiring 140 (see FIG. 10) is formed at the same time.
 次に、図12Cに示すように、無機配線保護膜151を形成する。 Next, as shown in FIG. 12C, an inorganic wiring protective film 151 is formed.
 次に、図12Dに示すように、有機配線保護膜152および絶縁膜26を形成する。このとき、タッチパネル1と同様にして、配線保護膜15にコンタクトホール15aおよび15bを形成する。 Next, as shown in FIG. 12D, an organic wiring protective film 152 and an insulating film 26 are formed. At this time, contact holes 15 a and 15 b are formed in the wiring protective film 15 in the same manner as the touch panel 1.
 次に、図12Eに示すように、X電極21の接続部211およびY電極22の島状電極220を形成する。図12Eには図示していないが、X電極21の島状電極210、取出し電極282および284も同時に形成する。 Next, as shown in FIG. 12E, the connection part 211 of the X electrode 21 and the island-like electrode 220 of the Y electrode 22 are formed. Although not shown in FIG. 12E, the island-like electrode 210 of the X electrode 21 and the extraction electrodes 282 and 284 are also formed at the same time.
 最後に、図12Fに示すように、基板10のほぼ全面を覆って、保護膜17を形成する。 Finally, as shown in FIG. 12F, a protective film 17 is formed so as to cover almost the entire surface of the substrate 10.
 以上、本発明の第2の実施形態にかかるタッチパネル2の構成、および製造方法を説明した。 The configuration and manufacturing method of the touch panel 2 according to the second embodiment of the present invention have been described above.
 本実施形態にかかるタッチパネル2の構成によっても、無機配線保護膜151によって配線14等の腐食を防止することができる。したがって、タッチパネルの構成のバリエーションが得られる。 Also with the configuration of the touch panel 2 according to the present embodiment, the corrosion of the wiring 14 and the like can be prevented by the inorganic wiring protective film 151. Accordingly, variations in the configuration of the touch panel can be obtained.
 [第3の実施形態]
 図13は、本発明の第3の実施形態にかかるタッチパネル3の、概略構成を模式的に示す平面図である。図14は、図13におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル3は、基板10、X電極11、Y電極12、端子13、配線14、グランド配線140、配線保護膜15、絶縁膜36、保護膜17、および取出し電極181~184を備えている。なお、図13では、図を見易くするために配線14およびグランド配線140にハッチングを付している。
[Third Embodiment]
FIG. 13 is a plan view schematically showing a schematic configuration of the touch panel 3 according to the third embodiment of the present invention. FIG. 14 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG. The touch panel 3 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 15, an insulating film 36, a protective film 17, and extraction electrodes 181 to 184. In FIG. 13, the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
 本実施形態においても、X電極11およびY電極12は、センシング領域Vに形成されている。配線保護膜15は、非センシング領域Pに選択的に形成されている。 Also in the present embodiment, the X electrode 11 and the Y electrode 12 are formed in the sensing region V. The wiring protective film 15 is selectively formed in the non-sensing region P.
 タッチパネル3は、タッチパネル1と比較して、絶縁膜の構成が異なる。具体的には、タッチパネル1における絶縁膜16は、有機配線保膜膜151と同一の材料から形成されている。これに対し、タッチパネル3における絶縁膜36は、無機絶縁膜361と、有機絶縁膜362との積層構造になっている。無機絶縁膜361と無機配線保護膜151とは、同一の材料で形成されている。また、有機絶縁膜362と有機配線保護膜152とは、同一の材料で形成されている。 The touch panel 3 is different from the touch panel 1 in the configuration of the insulating film. Specifically, the insulating film 16 in the touch panel 1 is made of the same material as the organic wiring film 151. On the other hand, the insulating film 36 in the touch panel 3 has a laminated structure of an inorganic insulating film 361 and an organic insulating film 362. The inorganic insulating film 361 and the inorganic wiring protective film 151 are formed of the same material. Further, the organic insulating film 362 and the organic wiring protective film 152 are formed of the same material.
 有機絶縁膜362の面積は、有機配線保護膜152の面積よりも小さく形成されている。また、有機絶縁膜362の表面粗さRaは100nm以下である。より好ましくは70nm以下であり、さらに好ましくは40nm以下である。 The area of the organic insulating film 362 is smaller than the area of the organic wiring protective film 152. Further, the surface roughness Ra of the organic insulating film 362 is 100 nm or less. More preferably, it is 70 nm or less, More preferably, it is 40 nm or less.
 [タッチパネル3の製造方法]
 以下、図15A~図15Fを参照して、タッチパネル3の製造方法の概略を説明する。なお、図15A~図15Fは、図14におけるA-A’線、B-B’線、およびC-C’線の各線に沿った断面図である。タッチパネル1と同様の工程については、適宜説明を省略する。
[Method of manufacturing touch panel 3]
Hereinafter, an outline of a method for manufacturing the touch panel 3 will be described with reference to FIGS. 15A to 15F. 15A to 15F are sectional views taken along lines AA ′, BB ′, and CC ′ in FIG. Description of the steps similar to those of the touch panel 1 will be omitted as appropriate.
 まず、図15Aに示すように、基板10上に、X電極11の接続部111、Y電極12の島状電極120、端子13を形成する。図15Aには図示していないが、X電極11の島状電極110(図13を参照)、取出し電極181(図13および図14を参照)および183(図13を参照)を同時に形成する。 First, as shown in FIG. 15A, the connection part 111 of the X electrode 11, the island electrode 120 of the Y electrode 12, and the terminal 13 are formed on the substrate 10. Although not shown in FIG. 15A, the island-shaped electrode 110 (see FIG. 13) of the X electrode 11 and the extraction electrodes 181 (see FIGS. 13 and 14) and 183 (see FIG. 13) are formed simultaneously.
 次に、図15Bに示すように、配線14を形成する。図15Bには図示していないが、配線140(図13を参照)を同時に形成する。 Next, as shown in FIG. 15B, the wiring 14 is formed. Although not shown in FIG. 15B, the wiring 140 (see FIG. 13) is formed at the same time.
 次に、図15Cに示すように、基板10のほぼ全面を覆って、無機材料からなる膜361Aを形成する。 Next, as shown in FIG. 15C, a film 361A made of an inorganic material is formed so as to cover almost the entire surface of the substrate 10.
 膜361Aは、SiO、SiN、およびSiONから選択される一種以上の化合物を含む膜である。基板10のほぼ全面に、CVDによってこれらの化合物の均一な膜361Aを形成する。このとき、メタルマスク等を使用して、端子13の一部が露出するようにする。膜361Aの厚さは、厚い方が好ましく、配線14の厚さの2倍以上であることが好ましい。 The film 361A is a film containing one or more compounds selected from SiO 2 , SiN, and SiON. A uniform film 361A of these compounds is formed on almost the entire surface of the substrate 10 by CVD. At this time, a part of the terminal 13 is exposed using a metal mask or the like. The thickness of the film 361A is preferably thicker, and is preferably twice or more the thickness of the wiring 14.
 次に、図15Dに示すように、膜362Aおよび有機配線保護膜152を形成する。膜362Aは、有機絶縁膜362を形成する箇所に形成する膜であって、有機絶縁膜362よりも一回り大きく形成される。 Next, as shown in FIG. 15D, a film 362A and an organic wiring protective film 152 are formed. The film 362 </ b> A is a film formed at a place where the organic insulating film 362 is formed, and is formed to be slightly larger than the organic insulating film 362.
 膜362Aおよび有機配線保護膜152は、有機材料からなる絶縁体であって、例えば、アクリル樹脂、またはノボラック樹脂等を含むフォトレジストを用いることができる。 The film 362A and the organic wiring protective film 152 are insulators made of an organic material, and for example, a photoresist containing an acrylic resin or a novolac resin can be used.
 基板10の全面に、スピンコータまたはスリットコータによって、フォトレジストを均一に塗布する。フォトレジストの膜は厚い方が好ましい。フォトレジストの膜の厚さは、特に限定されないが、例えば1.5~3.0μmである。基板10の全面に形成したフォトレジストの膜を、フォトリソグラフィによってパターニングし、膜362Aおよび有機配線保護膜152を形成する。なお、このとき有機配線保護膜152に、コンタクトホール15aおよび15b(図13を参照)を形成する。 A photoresist is uniformly applied to the entire surface of the substrate 10 by a spin coater or a slit coater. A thicker photoresist film is preferred. The thickness of the photoresist film is not particularly limited, but is, for example, 1.5 to 3.0 μm. A photoresist film formed on the entire surface of the substrate 10 is patterned by photolithography to form a film 362A and an organic wiring protective film 152. At this time, contact holes 15a and 15b (see FIG. 13) are formed in the organic wiring protective film 152.
 次に、図15Eに示すように、膜362Aおよび有機配線保護膜152をマスクとして、膜361Aをエッチングする。これにより、無機絶縁膜361、無機配線保護膜151が形成される。また、有機配線保護膜152に形成されたコンタクトホール15aおよび15bと同じ個所に、無機配線保護膜151にもコンタクトホール15aおよび15bが形成される(図13を参照)。エッチング方法は任意であるが、例えば、フッ素系ガスによるドライエッチングを用いることができる。 Next, as shown in FIG. 15E, the film 361A is etched using the film 362A and the organic wiring protective film 152 as a mask. Thereby, the inorganic insulating film 361 and the inorganic wiring protective film 151 are formed. Further, contact holes 15a and 15b are also formed in the inorganic wiring protective film 151 at the same locations as the contact holes 15a and 15b formed in the organic wiring protective film 152 (see FIG. 13). Although the etching method is arbitrary, for example, dry etching using a fluorine-based gas can be used.
 このとき、サイドエッチング(基板10の面内方向のエッチング)により、無機絶縁膜361の面積が、膜362Aよりも小さくなる場合がある。 At this time, the area of the inorganic insulating film 361 may be smaller than that of the film 362A due to side etching (etching in the in-plane direction of the substrate 10).
 その場合、図15Fに示すように、膜362Aの面積を縮小させ、有機絶縁膜362を形成する。膜362Aの面積を縮小させる処理とは、具体的には、アッシング処理や、オゾン水処理である。アッシング処理は、例えば酸素ガス雰囲気で、100~250℃で、10~60分間加熱することにより行うことができる。オゾン水処理は、例えば、オゾン濃度2~8ppm、流量10~50リットル/min(例えば基板10の、オゾン水を流す方向と垂直な方向の幅が400mm程度の場合)のオゾン水のシャワーを浴びせること、およびオゾン水に浸漬すること(ディップ処理)のいずれか、またはその組み合わせによって行うことができる。 In that case, as shown in FIG. 15F, the area of the film 362A is reduced, and the organic insulating film 362 is formed. Specifically, the process of reducing the area of the film 362A is an ashing process or an ozone water process. The ashing treatment can be performed, for example, by heating at 100 to 250 ° C. for 10 to 60 minutes in an oxygen gas atmosphere. In the ozone water treatment, for example, an ozone water shower having an ozone concentration of 2 to 8 ppm and a flow rate of 10 to 50 liters / min (for example, when the width of the substrate 10 in the direction perpendicular to the direction in which the ozone water flows is about 400 mm) is taken. And soaking in ozone water (dip treatment), or a combination thereof.
 なお、膜362Aの面積を縮小させる処理としてアッシング処理を行った場合は、アッシング処理に続いて、オゾン水処理を行うことが好ましい。アッシング処理により、有機絶縁膜362の表面粗さが大きくなる場合がある。表面粗さの大きい有機絶縁膜362の上に導電膜を形成すると、導電膜を均一に形成することができなくなり、電気抵抗が高くなる場合がある。特に導電膜の厚さが薄い場合には、表面粗さの影響を受けやすくなる。 Note that when ashing is performed as a process for reducing the area of the film 362A, it is preferable to perform ozone water treatment subsequent to the ashing treatment. The surface roughness of the organic insulating film 362 may be increased by the ashing process. When a conductive film is formed over the organic insulating film 362 having a large surface roughness, the conductive film cannot be formed uniformly and the electrical resistance may increase. In particular, when the thickness of the conductive film is thin, it is easily affected by the surface roughness.
 オゾン水処理を行うことで、有機絶縁膜362の表面粗さを低減することができる。既述のように、有機絶縁膜362の表面粗さRaは100nm以下である。より好ましくは70nm以下であり、さらに好ましくは40nm以下である。 The surface roughness of the organic insulating film 362 can be reduced by performing ozone water treatment. As described above, the surface roughness Ra of the organic insulating film 362 is 100 nm or less. More preferably, it is 70 nm or less, More preferably, it is 40 nm or less.
 次に、図15Gに示すように、Y電極12の接続部121を形成する。図15Gには図示していないが、取出し電極183および184も同時に形成する。 Next, as shown in FIG. 15G, the connecting portion 121 of the Y electrode 12 is formed. Although not shown in FIG. 15G, extraction electrodes 183 and 184 are also formed at the same time.
 最後に、図15Hに示すように、基板10のほぼ全面を覆って、保護膜17を形成する。 Finally, as shown in FIG. 15H, a protective film 17 is formed so as to cover almost the entire surface of the substrate 10.
 以上、本発明の第3の実施形態にかかるタッチパネル3の構成、および製造方法を説明した。 The configuration and manufacturing method of the touch panel 3 according to the third embodiment of the present invention have been described above.
 本実施形態にかかるタッチパネル3の構成によっても、無機配線保護膜151によって配線14等の腐食を防止することができる。 Also with the configuration of the touch panel 3 according to the present embodiment, the corrosion of the wiring 14 and the like can be prevented by the inorganic wiring protective film 151.
 タッチパネル3においても、無機配線保護膜151は、非センシング領域Pに選択的に形成されている。また、無機絶縁膜361は、X電極11とY電極12とが交差する箇所に形成されている。これにより、第1の比較例にかかるタッチパネル7のように、電極パターンが視認されやすくなることを防いでいる。 Also in the touch panel 3, the inorganic wiring protective film 151 is selectively formed in the non-sensing region P. The inorganic insulating film 361 is formed at a location where the X electrode 11 and the Y electrode 12 intersect. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
 絶縁膜36は、少なくともX電極11の接続部111の一部を覆って形成されるが、X電極11の島状電極110の一部や、Y電極12の島状電極120の一部を覆っていても良い。一方、絶縁膜36の面積が大きくなると、無機絶縁膜361によって電極パターンが視認されやすくなってしまう。そのため、絶縁膜36の面積は、32500μm以下であることが好ましい。より好ましくは20000μm以下であり、さらに好ましくは12000μm以下である。 The insulating film 36 is formed so as to cover at least a part of the connection part 111 of the X electrode 11, but covers a part of the island electrode 110 of the X electrode 11 and a part of the island electrode 120 of the Y electrode 12. May be. On the other hand, when the area of the insulating film 36 is increased, the electrode pattern is easily visually recognized by the inorganic insulating film 361. Therefore, the area of the insulating film 36 is preferably 32500 μm 2 or less. More preferably, it is 20000 micrometers 2 or less, More preferably, it is 12000 micrometers 2 or less.
 本実施形態にかかるタッチパネル3の製造法によれば、膜362Aおよび有機配線保護膜152をマスクとして、無機絶縁膜361および無機配線保護膜151を形成する。そのため、無機配線保護膜151等を形成するための別個のマスクを形成する工程や、これを除去する工程を省略でき、製造工程を簡略化できる。 According to the manufacturing method of the touch panel 3 according to the present embodiment, the inorganic insulating film 361 and the inorganic wiring protective film 151 are formed using the film 362A and the organic wiring protective film 152 as a mask. Therefore, the process of forming a separate mask for forming the inorganic wiring protective film 151 and the like, and the process of removing it can be omitted, and the manufacturing process can be simplified.
 タッチパネル3の製造方法によれば、膜362Aの面積を縮小させて、有機絶縁膜362を形成する。有機絶縁膜362の面積は、無機絶縁膜361の面積よりも小さい。これにより、Y電極12の接続部121を安定して形成することができる。 According to the manufacturing method of the touch panel 3, the organic insulating film 362 is formed by reducing the area of the film 362A. The area of the organic insulating film 362 is smaller than the area of the inorganic insulating film 361. Thereby, the connection part 121 of the Y electrode 12 can be formed stably.
 タッチパネル3の製造方法によれば、有機絶縁膜362をオゾン処理して、有機絶縁膜362の表面粗さを低減させる。これにより、Y電極12の接続部121の電気抵抗が高くなるのを防止することができる。 According to the manufacturing method of the touch panel 3, the organic insulating film 362 is subjected to ozone treatment to reduce the surface roughness of the organic insulating film 362. Thereby, it can prevent that the electrical resistance of the connection part 121 of the Y electrode 12 becomes high.
 なお、本実施形態では、膜361Aを形成する工程(図15Cを参照)において、メタルマスクを用いて、端子13の近傍には膜361Aを形成しない場合を説明した。しかし、膜361Aを一旦基板10の全面に形成し、その後、エッチングにより取り除いても良い。 In the present embodiment, the case where the film 361A is not formed in the vicinity of the terminal 13 using the metal mask in the step of forming the film 361A (see FIG. 15C) has been described. However, the film 361A may be once formed on the entire surface of the substrate 10 and then removed by etching.
 [比較例3]
 図16は、本実施形態にかかるタッチパネル3の製造方法において、膜362Aの面積を縮小して有機絶縁膜362とする工程(図15Fを参照)を省略して、Y電極12の接続部121を形成した場合の断面図である。
[Comparative Example 3]
16 omits the step of reducing the area of the film 362A to form the organic insulating film 362 (see FIG. 15F) in the method for manufacturing the touch panel 3 according to the present embodiment, and the connection part 121 of the Y electrode 12 is formed. It is sectional drawing at the time of forming.
 既述のように、無機絶縁膜361は、膜362Aをマスクとして、膜361A(図15Dを参照)をエッチングすることで形成される。この際、サイドエッチングされることにより、無機絶縁膜361の面積は膜362Aよりも小さくなる場合がある。 As described above, the inorganic insulating film 361 is formed by etching the film 361A (see FIG. 15D) using the film 362A as a mask. At this time, the area of the inorganic insulating film 361 may be smaller than that of the film 362A due to side etching.
 この場合に、膜362A上を経由して接続部121を形成しようとすると、図16で接続部121Aとして示すように、無機絶縁膜361の段差によって、接続部121Aが途切れたり、接続部121Aと島状電極120の接続が不安定になったりする場合がある。 In this case, when the connection portion 121 is formed via the film 362A, the connection portion 121A is interrupted by the step of the inorganic insulating film 361 as shown in FIG. 16 as the connection portion 121A. The connection of the island electrode 120 may become unstable.
 本実施形態にかかるタッチパネル3では、膜362Aの面積を縮小して有機絶縁膜362とすることによって、接続部121と島状電極120とを安定的に接続することができる。 In the touch panel 3 according to the present embodiment, the connection part 121 and the island electrode 120 can be stably connected by reducing the area of the film 362A to form the organic insulating film 362.
 [比較例4]
 図17は、本実施形態にかかるタッチパネル3の製造方法において、アッシング処理によって膜362Aの面積を縮小して有機絶縁膜362を形成(図15Fを参照)した後、オゾン水処理を省略して、Y電極12の接続部121を形成した場合の断面図である。
[Comparative Example 4]
FIG. 17 shows a method of manufacturing the touch panel 3 according to the present embodiment. After forming the organic insulating film 362 by reducing the area of the film 362A by ashing (see FIG. 15F), the ozone water treatment is omitted. It is sectional drawing at the time of forming the connection part 121 of the Y electrode 12. FIG.
 図17では、アッシング処理後にオゾン水処理を省略したため、有機絶縁膜362は、表面粗さの大きい有機絶縁膜362Bとなっている。 In FIG. 17, since the ozone water treatment is omitted after the ashing treatment, the organic insulating film 362 is an organic insulating film 362B having a large surface roughness.
 表面粗さの大きい有機絶縁膜362Bの上に導電膜を形成すると、図17で接続部121Bとして示すように、均一に形成できない場合がある。接続部121Bのようにを均一な導電膜を形成できないことで、電気抵抗が高くなる場合がある。接続部121Bのような導電膜は、電極パターンを視認されにくくするため、薄く形成される場合が多い。接続部121Bが薄い場合には、特に、有機絶縁膜362Bの表面粗さの影響を受けやすい。 When a conductive film is formed over the organic insulating film 362B having a large surface roughness, it may not be formed uniformly as shown as the connection portion 121B in FIG. Since the uniform conductive film cannot be formed like the connection portion 121B, the electrical resistance may increase. The conductive film such as the connecting portion 121B is often formed thin in order to make the electrode pattern difficult to be seen. When the connection part 121B is thin, it is particularly susceptible to the surface roughness of the organic insulating film 362B.
 第3の実施形態にかかるタッチパネル3では、アッシングによって膜362Aの面積を縮小して有機絶縁膜362Bを形成した場合、オゾン水処理によって有機絶縁膜362Bの表面粗さを低減し、有機絶縁膜362とする。これにより、有機絶縁膜362上に形成する接続部121の電気抵抗の増加を防止できる。 In the touch panel 3 according to the third embodiment, when the organic insulating film 362B is formed by reducing the area of the film 362A by ashing, the surface roughness of the organic insulating film 362B is reduced by ozone water treatment, and the organic insulating film 362 And As a result, an increase in electrical resistance of the connection part 121 formed on the organic insulating film 362 can be prevented.
 [第4の実施形態]
 図18は、本発明の第4の実施形態にかかるタッチパネル4の、概略構成を模式的に示す平面図である。図19は、図18におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル4は、基板10、X電極21、Y電極22、端子13、配線14、グランド配線140、配線保護膜15、絶縁膜46、保護膜17、および取出し電極181,183,282,284を備えている。なお、図18では、図を見易くするために配線14およびグランド配線140にハッチングを付している。
[Fourth Embodiment]
FIG. 18 is a plan view schematically showing a schematic configuration of the touch panel 4 according to the fourth embodiment of the present invention. FIG. 19 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG. The touch panel 4 includes a substrate 10, X electrode 21, Y electrode 22, terminal 13, wiring 14, ground wiring 140, wiring protective film 15, insulating film 46, protective film 17, and extraction electrodes 181, 183, 282, and 284. ing. In FIG. 18, the wiring 14 and the ground wiring 140 are hatched for easy understanding of the drawing.
 本実施形態においても、X電極21およびY電極22は、センシング領域Vに形成されている。配線保護膜15は、非センシング領域Pに選択的に形成されている。 Also in the present embodiment, the X electrode 21 and the Y electrode 22 are formed in the sensing region V. The wiring protective film 15 is selectively formed in the non-sensing region P.
 タッチパネル4は、タッチパネル2の絶縁膜26に代えて、絶縁膜46を備える。絶縁膜46は、タッチパネル3の絶縁膜36と同様に、無機絶縁膜461と、有機絶縁膜462との積層構造になっている。無機絶縁膜461と無機配線保護膜151とは、同一の材料で形成されている。また、有機絶縁膜462と有機配線保護膜152とは、同一の材料で形成されている。 The touch panel 4 includes an insulating film 46 instead of the insulating film 26 of the touch panel 2. The insulating film 46 has a laminated structure of an inorganic insulating film 461 and an organic insulating film 462, similarly to the insulating film 36 of the touch panel 3. The inorganic insulating film 461 and the inorganic wiring protective film 151 are formed of the same material. Further, the organic insulating film 462 and the organic wiring protective film 152 are formed of the same material.
 本実施形態にかかるタッチパネル4の構成によっても、無機配線保護膜151によって配線14等の腐食を防止することができる。また、無機配線保護膜151は、非センシング領域Pに選択的に形成されている。また、無機絶縁膜461は、X電極21とY電極21とが交差する箇所に形成されている。これにより、第1の比較例にかかるタッチパネル7のように、電極パターンが視認されやすくなることを防いでいる。 Also with the configuration of the touch panel 4 according to the present embodiment, the corrosion of the wiring 14 and the like can be prevented by the inorganic wiring protective film 151. Further, the inorganic wiring protective film 151 is selectively formed in the non-sensing region P. The inorganic insulating film 461 is formed at a location where the X electrode 21 and the Y electrode 21 intersect. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
 また、本実施形態にかかるタッチパネル4も、タッチパネル3と同様にして、有機配線保護膜152等をマスクとして無機絶縁膜461および無機配線保護膜151を形成する。そのため、無機配線保護膜151等を形成するための別個のマスクを形成する工程や、これを除去する工程を省略でき、製造工程を簡略化できる。 The touch panel 4 according to the present embodiment also forms the inorganic insulating film 461 and the inorganic wiring protective film 151 using the organic wiring protective film 152 as a mask in the same manner as the touch panel 3. Therefore, the process of forming a separate mask for forming the inorganic wiring protective film 151 and the like, and the process of removing it can be omitted, and the manufacturing process can be simplified.
 [第5の実施形態]
 図20は、本発明の第5の実施形態にかかるタッチパネル5の、概略構成を模式的に示す平面図である。図21は、図20におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル5は、基板10、X電極11、Y電極12、端子13、配線14、グランド配線140、配線保護膜55、絶縁膜56、保護膜17、および取出し電極181~184を備えている。なお、図20では、図を見易くするために配線14およびグランド配線140にハッチングを付している。
[Fifth Embodiment]
FIG. 20 is a plan view schematically showing a schematic configuration of the touch panel 5 according to the fifth embodiment of the present invention. FIG. 21 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG. The touch panel 5 includes a substrate 10, an X electrode 11, a Y electrode 12, a terminal 13, a wiring 14, a ground wiring 140, a wiring protective film 55, an insulating film 56, a protective film 17, and extraction electrodes 181 to 184. In FIG. 20, the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
 タッチパネル5は、タッチパネル1における配線保護膜15に代えて、配線保護膜55を備えている。タッチパネル5はさらに、タッチパネル1における絶縁膜16に代えて、絶縁膜56を備えている。 The touch panel 5 includes a wiring protective film 55 instead of the wiring protective film 15 in the touch panel 1. The touch panel 5 further includes an insulating film 56 instead of the insulating film 16 in the touch panel 1.
 タッチパネル1の配線保護膜15は、無機配線保護膜151と有機配線保護膜152との積層構造になっている。これに対し、タッチパネル5の配線保護膜55は、無機物の単相、すなわち、SiO、SiN、およびSiONから選択される一種以上の化合物によって構成されている。 The wiring protective film 15 of the touch panel 1 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152. On the other hand, the wiring protective film 55 of the touch panel 5 is composed of one or more compounds selected from inorganic single phases, that is, SiO 2 , SiN, and SiON.
 タッチパネル1の絶縁膜16は、有機材料からなる絶縁体であって、例えば、アクリル樹脂、またはノボラック樹脂等を含むフォトレジストを用いている。これに対し、タッチパネル5の絶縁膜56は、配線保護膜55と同一材料、すなわち、SiO、SiN、およびSiONから選択される一種以上の化合物によって構成されている。 The insulating film 16 of the touch panel 1 is an insulator made of an organic material, and for example, a photoresist containing an acrylic resin or a novolac resin is used. In contrast, the insulating film 56 of the touch panel 5 is made of the same material as the wiring protective film 55, that is, one or more compounds selected from SiO 2 , SiN, and SiON.
 本実施形態においても、X電極11およびY電極12は、センシング領域Vに形成されている。配線保護膜55は、非センシング領域Pに選択的に形成されている。 Also in the present embodiment, the X electrode 11 and the Y electrode 12 are formed in the sensing region V. The wiring protective film 55 is selectively formed in the non-sensing region P.
 本実施形態にかかるタッチパネル5の構成によっても、無機物で形成された配線保護膜55によって配線14等の腐食を防止することができる。配線保護膜55は、非センシング領域Pに選択的に形成されている。また、無機物からなる絶縁膜561は、X電極11とY電極12とが交差する箇所に形成されている。
これにより、第1の比較例にかかるタッチパネル7のように、電極パターンが視認されやすくなることを防いでいる。
Also with the configuration of the touch panel 5 according to the present embodiment, the wiring 14 and the like can be prevented from being corroded by the wiring protective film 55 formed of an inorganic material. The wiring protective film 55 is selectively formed in the non-sensing region P. The insulating film 561 made of an inorganic material is formed at a location where the X electrode 11 and the Y electrode 12 intersect.
This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
 本実施形態にかかるタッチパネル5では、配線保護膜55と絶縁膜56とが同一の材料で形成されている。そのため、これらを一回のパターニングで形成することができる。したがって、製造工程を簡略化することができる。 In the touch panel 5 according to the present embodiment, the wiring protective film 55 and the insulating film 56 are formed of the same material. Therefore, these can be formed by one patterning. Therefore, the manufacturing process can be simplified.
 [第6の実施形態]
 図22は、本発明の第6の実施形態にかかるタッチパネル6の、概略構成を模式的に示す平面図である。図23は、図22におけるA-A’線、B-B’線、C-C’線、およびD-D’線の各線に沿った断面図である。タッチパネル6は、基板10、X電極21、Y電極22、端子13、配線14、グランド配線140、配線保護膜65、絶縁膜26、保護膜17、および取出し電極181,183,282,284を備えている。なお、図22では、図を見易くするために配線14およびグランド配線140にハッチングを付している。
[Sixth Embodiment]
FIG. 22 is a plan view schematically showing a schematic configuration of the touch panel 6 according to the sixth embodiment of the present invention. FIG. 23 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, and DD ′ in FIG. The touch panel 6 includes a substrate 10, X electrode 21, Y electrode 22, terminal 13, wiring 14, ground wiring 140, wiring protective film 65, insulating film 26, protective film 17, and extraction electrodes 181, 183, 282, and 284. ing. In FIG. 22, the wiring 14 and the ground wiring 140 are hatched to make the drawing easier to see.
 タッチパネル6は、タッチパネル2の配線保護膜15に代えて、配線保護膜65を備えている。 The touch panel 6 includes a wiring protective film 65 instead of the wiring protective film 15 of the touch panel 2.
 タッチパネル2の配線保護膜15は、無機配線保護膜151と有機配線保護膜152との積層構造になっている。これに対し、タッチパネル6の配線保護膜65は、無機物の単相、すなわち、SiO、SiN、SiONから選択される一種以上の化合物によって構成されている。 The wiring protective film 15 of the touch panel 2 has a laminated structure of an inorganic wiring protective film 151 and an organic wiring protective film 152. On the other hand, the wiring protective film 65 of the touch panel 6 is composed of one or more compounds selected from inorganic single phases, that is, SiO 2 , SiN, and SiON.
 本実施形態においても、X電極21およびY電極22は、センシング領域Vに形成されている。配線保護膜65は、非センシング領域Pに選択的に形成されている。 Also in the present embodiment, the X electrode 21 and the Y electrode 22 are formed in the sensing region V. The wiring protective film 65 is selectively formed in the non-sensing region P.
 本実施形態にかかるタッチパネル6の構成によっても、無機物で形成された配線保護膜65によって配線14等の腐食を防止することができる。また、配線保護膜65は、非表示領域Pに選択的に形成されている。これにより、第1の比較例にかかるタッチパネル7のように、電極パターンが視認されやすくなることを防いでいる。 Also with the configuration of the touch panel 6 according to the present embodiment, the wiring 14 or the like can be prevented from being corroded by the wiring protective film 65 formed of an inorganic material. The wiring protective film 65 is selectively formed in the non-display area P. This prevents the electrode pattern from being easily visually recognized as in the touch panel 7 according to the first comparative example.
 [その他の実施形態]
 図24は、本発明の他の実施形態にかかるタッチパネル付き表示装置200の概略構成を示す断面図である。タッチパネル付き表示装置200は、カラーフィルタ基板201、TFT基板102、シール材103、液晶104、偏光板105および106を備える。
[Other Embodiments]
FIG. 24 is a cross-sectional view showing a schematic configuration of a display device 200 with a touch panel according to another embodiment of the present invention. A display device 200 with a touch panel includes a color filter substrate 201, a TFT substrate 102, a sealing material 103, a liquid crystal 104, and polarizing plates 105 and 106.
 カラーフィルタ基板201は、タッチパネル1の裏面に、ブラックマトリクス1012、カラーフィルタ1013、および共通電極1014が形成されている。すなわち、タッチパネル付き表示装置200では、タッチパネル1が、カラーフィルタ基板の機能を兼ねている。 The color filter substrate 201 has a black matrix 1012, a color filter 1013, and a common electrode 1014 formed on the back surface of the touch panel 1. That is, in the display device 200 with a touch panel, the touch panel 1 also functions as a color filter substrate.
 タッチパネル付き表示装置200では、タッチパネル付き表示装置100と比較して、基板1011および貼付材107が不要になる。そのため、薄型化が可能であり、光透過度を高くすることができる。 In the display device 200 with a touch panel, the substrate 1011 and the adhesive material 107 are not required as compared with the display device 100 with a touch panel. Therefore, the thickness can be reduced and the light transmittance can be increased.
 タッチパネル付き表示装置200では、センサ電極(X電極11、Y電極12)等と、ブラックマトリクス1012等とを、互いに反対側の面に形成した。しかし、センサ電極等とブラックマトリクス1012等とを、同じ面に形成しても良い。この際、間に平坦化膜等を間に形成しても良い。 In the display device with a touch panel 200, the sensor electrodes (X electrode 11, Y electrode 12) and the like, and the black matrix 1012 and the like are formed on opposite surfaces. However, the sensor electrode and the black matrix 1012 and the like may be formed on the same surface. At this time, a planarizing film or the like may be formed therebetween.
 カラーフィルタ基板201は、タッチパネル1と、任意の公知のカラーフィルタ基板の構成とを組み合わせることで得られる。タッチパネル付き表示装置200は、タッチパネル1に代えて、タッチパネル2~タッチパネル6のいずれかを備えていても良い。 The color filter substrate 201 is obtained by combining the touch panel 1 and the configuration of any known color filter substrate. The display device with a touch panel 200 may include any one of the touch panels 2 to 6 instead of the touch panel 1.
 以上、本発明についての実施形態を説明したが、本発明は上述の各実施形態のみに限定されず、発明の範囲内で種々の変更が可能である。また、各実施形態は、適宜組み合わせて実施することが可能である。 As mentioned above, although embodiment about this invention was described, this invention is not limited only to each above-mentioned embodiment, A various change is possible within the scope of the invention. Moreover, each embodiment can be implemented in combination as appropriate.
 本発明は、タッチパネルおよびタッチパネル付き表示装置として産業上の利用が可能である。 The present invention can be industrially used as a touch panel and a display device with a touch panel.

Claims (14)

  1.  センシング領域および非センシング領域を有する絶縁性の基板と、
     前記センシング領域に形成され、一方向に延在する第1電極と、
     前記センシング領域に形成され、前記第1電極と交差する方向に延在する第2電極と、
     前記第1電極および前記第2電極が交差する箇所に形成され、前記第1電極および前記第2電極を相互に絶縁する絶縁膜と、
     前記非センシング領域に形成された端子部と、
     前記非センシング領域に形成され、前記第1電極および前記第2電極と前記端子部とを電気的に接続する金属配線と、
     前記金属配線を覆って形成された無機材料からなる無機配線保護膜とを備え、
     前記無機配線保護膜は、前記非センシング領域に選択的に形成されている、タッチパネル。
    An insulating substrate having a sensing region and a non-sensing region;
    A first electrode formed in the sensing region and extending in one direction;
    A second electrode formed in the sensing region and extending in a direction intersecting the first electrode;
    An insulating film formed at a location where the first electrode and the second electrode intersect, and insulating the first electrode and the second electrode from each other;
    A terminal portion formed in the non-sensing region;
    A metal wiring formed in the non-sensing region and electrically connecting the first electrode and the second electrode to the terminal portion;
    An inorganic wiring protective film made of an inorganic material formed to cover the metal wiring,
    The inorganic wiring protective film is a touch panel that is selectively formed in the non-sensing region.
  2.  前記無機配線保護膜は、酸化ケイ素、窒化ケイ素、および酸窒化ケイ素から選択される一種以上の化合物を含む、請求項1に記載のタッチパネル。 The touch panel according to claim 1, wherein the inorganic wiring protective film includes one or more compounds selected from silicon oxide, silicon nitride, and silicon oxynitride.
  3.  前記無機配線保護膜上に形成された、有機物からなる有機配線保護膜をさらに備える、請求項1または2に記載のタッチパネル。 The touch panel according to claim 1, further comprising an organic wiring protective film made of an organic material formed on the inorganic wiring protective film.
  4.  前記絶縁膜は、有機物からなる、請求項1~3のいずれか一項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 3, wherein the insulating film is made of an organic material.
  5.  前記絶縁膜は、無機物からなる、請求項1~3のいずれか一項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 3, wherein the insulating film is made of an inorganic material.
  6.  前記絶縁膜は、基板側から、無機物からなる第1の層と、有機物からなる第2の層とが積層された膜である、請求項1~3のいずれか一項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 3, wherein the insulating film is a film in which a first layer made of an inorganic material and a second layer made of an organic material are laminated from the substrate side.
  7.  前記第2の層の面積は、前記第1の層の面積よりも小さい、請求項6に記載のタッチパネル。 The touch panel according to claim 6, wherein an area of the second layer is smaller than an area of the first layer.
  8.  前記絶縁膜の表面粗さRaは100nm以下である、請求項1~7のいずれか一項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 7, wherein a surface roughness Ra of the insulating film is 100 nm or less.
  9.  液晶表示装置と、
     請求項1~8のいずれか一項に記載のタッチパネルとを備える、タッチパネル付き表示装置。
    A liquid crystal display device;
    A display device with a touch panel, comprising the touch panel according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載のタッチパネルの製造方法であって、
     無機材料膜を成膜する工程と、
     前記無機材料膜上に第1有機材料膜を形成する工程と、
     前記第1有機材料膜をマスクとして、前記無機材料膜をエッチングして前記無機配線保護膜を形成する工程とを含む、タッチパネルの製造方法。
    A touch panel manufacturing method according to any one of claims 1 to 8,
    Forming an inorganic material film;
    Forming a first organic material film on the inorganic material film;
    And a step of forming the inorganic wiring protective film by etching the inorganic material film using the first organic material film as a mask.
  11.  前記無機配線保護膜の形成後に、前記第1有機材料膜を除去する工程をさらに含む、請求項10に記載のタッチパネルの製造方法。 The touch panel manufacturing method according to claim 10, further comprising a step of removing the first organic material film after the inorganic wiring protective film is formed.
  12.  前記第1有機材料膜を除去後に、第2有機材料膜を形成する工程をさらに含む、請求項11に記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to claim 11, further comprising a step of forming a second organic material film after removing the first organic material film.
  13.  前記無機配線保護膜を形成後に、前記第1有機材料膜の面積を縮小させる工程をさらに含む、請求項10に記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to claim 10, further comprising a step of reducing an area of the first organic material film after forming the inorganic wiring protective film.
  14.  前記第1有機材料膜の面積を縮小させる工程後、前記第1有機材料膜をオゾン水に接触させる工程をさらに含む、請求項13に記載のタッチパネルの製造方法。 The method for manufacturing a touch panel according to claim 13, further comprising a step of bringing the first organic material film into contact with ozone water after the step of reducing the area of the first organic material film.
PCT/JP2012/083153 2011-12-28 2012-12-20 Touch panel, display device with touch panel, and method for producing touch panel WO2013099777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-288112 2011-12-28
JP2011288112 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099777A1 true WO2013099777A1 (en) 2013-07-04

Family

ID=48697266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083153 WO2013099777A1 (en) 2011-12-28 2012-12-20 Touch panel, display device with touch panel, and method for producing touch panel

Country Status (1)

Country Link
WO (1) WO2013099777A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008934A1 (en) * 2013-07-16 2015-01-22 Lg Innotek Co., Ltd. Touch window
JP2015153400A (en) * 2014-02-19 2015-08-24 アルプス電気株式会社 Method for manufacturing input device
CN109582184A (en) * 2017-09-29 2019-04-05 麦克赛尔控股株式会社 Coating composition, conductive film, touch panel and manufacturing method
CN111857397A (en) * 2019-04-25 2020-10-30 纬创资通股份有限公司 Touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266621A1 (en) * 2008-04-25 2009-10-29 Apple Inc. Reliability Metal Traces
JP2011165191A (en) * 2010-02-12 2011-08-25 Plansee Metall Gmbh Touch sensor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266621A1 (en) * 2008-04-25 2009-10-29 Apple Inc. Reliability Metal Traces
JP2011165191A (en) * 2010-02-12 2011-08-25 Plansee Metall Gmbh Touch sensor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008934A1 (en) * 2013-07-16 2015-01-22 Lg Innotek Co., Ltd. Touch window
US9830013B2 (en) 2013-07-16 2017-11-28 Lg Innotek Co., Ltd. Touch window
JP2015153400A (en) * 2014-02-19 2015-08-24 アルプス電気株式会社 Method for manufacturing input device
CN109582184A (en) * 2017-09-29 2019-04-05 麦克赛尔控股株式会社 Coating composition, conductive film, touch panel and manufacturing method
JP2019067037A (en) * 2017-09-29 2019-04-25 マクセルホールディングス株式会社 Coating composition, conductive film and touch panel and manufacturing method
JP7096656B2 (en) 2017-09-29 2022-07-06 マクセル株式会社 Coating composition, conductive film, touch panel and manufacturing method
CN111857397A (en) * 2019-04-25 2020-10-30 纬创资通股份有限公司 Touch panel
CN111857397B (en) * 2019-04-25 2024-04-05 纬创资通股份有限公司 Touch panel

Similar Documents

Publication Publication Date Title
JP5717880B2 (en) Touch panel and display device with touch panel
WO2013105566A1 (en) Touch panel, and display apparatus provided with touch panel
WO2014007157A1 (en) Touch panel and display apparatus provided with touch panel
US9658708B2 (en) Touch panel and touch panel-equipped display device
US9209203B2 (en) Active matrix substrate and method for manufacturing the same
JP6238712B2 (en) Thin film transistor substrate and manufacturing method thereof
TWI578074B (en) Thin film transistor substrate and display device
US8928122B2 (en) Wiring structure, thin film transistor array substrate including the same, and display device
US20150177879A1 (en) Touch panel and method of manufacturing touch panel
WO2012132953A1 (en) Display device
US9261746B2 (en) Liquid crystal display device and manufacturing method of liquid crystal display device
US9182844B2 (en) Touch panel, display device provided with touch panel, and method for manufacturing touch panel
US9383878B2 (en) Touch panel and touch panel equipped display device
US8772781B2 (en) Wiring structure, thin film transistor array substrate including the same, and display device
US9627585B2 (en) Wiring structure, thin film transistor array substrate including the same, and display device
WO2013099777A1 (en) Touch panel, display device with touch panel, and method for producing touch panel
JP2014106437A (en) Liquid crystal display panel and manufacturing method thereof
JP2007093859A (en) Liquid crystal device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP