WO2013099435A1 - Electron microscope and device for holding sample for electron microscope - Google Patents

Electron microscope and device for holding sample for electron microscope Download PDF

Info

Publication number
WO2013099435A1
WO2013099435A1 PCT/JP2012/078274 JP2012078274W WO2013099435A1 WO 2013099435 A1 WO2013099435 A1 WO 2013099435A1 JP 2012078274 W JP2012078274 W JP 2012078274W WO 2013099435 A1 WO2013099435 A1 WO 2013099435A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electron microscope
gas
temperature
introduction pipe
Prior art date
Application number
PCT/JP2012/078274
Other languages
French (fr)
Japanese (ja)
Inventor
矢口 紀恵
渡部 明
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2013099435A1 publication Critical patent/WO2013099435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • H01J2237/2608Details operating at elevated pressures, e.g. atmosphere with environmental specimen chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to an electron microscope and a sample holding device used for the electron microscope, and more particularly to an electron microscope capable of introducing a high-humidity gas and a sample holding device used for the electron microscope.
  • Patent Document 1 As an environment control type electron microscope to observe.
  • the sample holder is provided with a sample chamber partitioned by vacuum with a thin film for holding the sample in an airtight manner, and a passage for introducing and evacuating gas into the sample chamber, thereby maintaining the sample in a specific atmosphere.
  • a method for observing a sample in a state Disclosed is a method for observing a sample in a state.
  • Patent Document 2 discloses a microreactor used in an electron microscope in which a chamber is surrounded by a coating layer, and an inlet and an outlet are provided to supply fluid through the chamber. Discloses a microreactor provided with heating means for heating a sample present in Further, Patent Document 3 discloses a scanning electron microscope that is a low-vacuum atmosphere scanning electron microscope and includes a vapor introduction nozzle for introducing vapor.
  • the gas environment adjustment function adjusts the gas environment before being introduced into the cell in which the gas atmosphere and the vacuum are partitioned, and the actual gas environment control in the cell is not considered,
  • the introduction of water vapor is not taken into consideration, and if the temperature in the piping connecting the gas supply device to the sample or in the cell is lower than the gas temperature, dew condensation occurs in the piping for introducing the diaphragm, sample, or gas. There was a problem that.
  • Cited Document 3 because of the need to observe the state of droplets adhering to the surface of a bulk sample, the sample is cooled, the water vapor introduction nozzle is made variable, the vapor is introduced closer to the sample, and the nozzle is placed on the sample. It is disclosed that water droplets are attached and the nozzle is retracted during observation. However, this method is not suitable for observing the reaction between water vapor and the sample.
  • the object of the present invention is to accurately control the temperature and humidity of the sample atmosphere of the environment-controlled electron microscope, and to maintain the environment of the generated gas as the sample atmosphere.
  • An object of the present invention is to provide an electron microscope and a sample holder for an electron microscope capable of observing reaction with a sample.
  • the present invention has the following configuration in view of the above problems.
  • An electron source that emits a primary electron beam, an objective lens that converges the primary electron beam emitted from the electron source and irradiates the sample, a detector that detects a signal generated from the sample, and a signal from the detector
  • a gas for supplying a gas to be introduced into the sample chamber in an electron microscope comprising: a control unit that forms a sample image based on the display unit; a display unit that displays the sample image; and a sample holding unit that holds the sample.
  • An electron microscope comprising: a supply device; and a gas introduction pipe for introducing gas from the gas supply apparatus into the sample chamber, and a heater for controlling the temperature of the gas introduction pipe on the gas introduction pipe.
  • the present invention it becomes possible to control the temperature and humidity of the minute gas space of the atmospheric gas including the sample formed in the sample chamber of the electron microscope, and even if high-humidity air is introduced, no condensation occurs in the sample chamber.
  • FIG. 1 is a basic configuration diagram of an electron beam apparatus 1 according to an embodiment of the present invention.
  • the basic block diagram of the electron beam apparatus 1 which is one Example of this invention, and the sample holder 6 for electron beam apparatuses.
  • the operation explanatory view of electron beam device 1 and sample holding device 6 for electron beam devices which are one example.
  • Sectional drawing of the electron beam apparatus 1 sample chamber which is one Example.
  • the basic block diagram of the electron beam apparatus 1 which is one Example of this invention, and the sample holder 6 for electron beam apparatuses.
  • the basic block diagram of the sample holder 6 for electron beam apparatuses which is one Example of this invention.
  • FIG. 1 shows a basic configuration diagram of an electron microscope 1 according to an embodiment of the present invention.
  • the mirror body of the electron microscope 1 includes an electron gun 2, a condenser lens 3, an objective lens 4, and a projection lens 5.
  • An electron microscope sample holding device 6 is inserted between the objective lenses 4.
  • a fluorescent screen 7 is mounted below the projection lens 5, and a camera 8 is mounted below the fluorescent screen 7.
  • the camera 8 is connected to the image recording unit 9b via the image display unit 9a.
  • the image recording unit 9 b is connected to the computer 10.
  • a diaphragm 11 for differential exhaust is disposed between the condenser lens 3 and the objective lens 4.
  • the electron microscope sample chamber 12 and the observation chamber 13 are connected to different vacuum pumps 15 via valves 14, respectively.
  • a filter 16 is provided between the electron microscope sample chamber 12 and the vacuum pump 15 for trapping gas such as water vapor that adversely affects the vacuum pump 15.
  • a sample preliminary exhaust chamber 26 is connected to the electron microscope sample chamber 12, and the sample preliminary exhaust chamber 26 is connected to the vacuum pump 15 via the valve 14.
  • a filter 16 for trapping water vapor or the like is installed between the sample preliminary exhaust chamber 26 and the valve 14.
  • the tip of the electron microscope sample holding device 6 is evacuated in advance by the vacuum pump 15 in the sample preliminary exhaust chamber 26, and then the electron microscope sample chamber. 12 is inserted.
  • the electron beam 33 generated from the electron gun 2 is converged by the condenser lens 3 and irradiated onto the sample 18.
  • the electron beam 33 transmitted through the sample 18 is imaged by the objective lens 4, magnified by the projection lens 5, and projected onto the fluorescent screen 7.
  • the fluorescent plate 7 is lifted and projected onto the camera 8, and a transmission image is displayed on the image display unit 9a and recorded in the image recording unit 9b.
  • the tip of the gas introduction tube 17a is installed in the vicinity of the sample 18.
  • the gas introduction pipe 17a is connected to a gas supply device 21 via a gas pressure control valve 19 and an opening / closing valve 20 on the pipe.
  • the gas supply device 21 includes a gas storage unit 22 and a heating unit 23.
  • a heater 24 is attached to the gas introduction pipe 17 a and is connected to the computer 10 via a heating power supply 25.
  • the sample preliminary exhaust chamber 26 also has a gas introduction pipe 17 b with a heater 24, and is connected to a gas supply device 21 through a gas pressure control valve 19 and an opening / closing valve 20.
  • the heater 24 attached to the gas introduction pipe 17b is connected to the computer 10 via a heating power supply 25.
  • the sample chamber 12 is provided with a temperature / humidity detector 27 for detecting the temperature and humidity near the sample 18, and the temperature / humidity detector 27 is connected to the computer 10.
  • a sample heating heater (not shown) is provided at the tip of the electron microscope sample holding device 6, and the sample heating heater is connected to a sample heating power supply 30 via a lead wire 29.
  • the sample 18 is attached and heated so as to be in direct contact with the sample heating heater.
  • the sample heating power source 30 is connected to the computer 10.
  • the objective lens 4 and the objective lens cooling water channel 31 are connected to the computer 10 via the objective lens temperature control unit 32.
  • a temperature / humidity detector 27 is provided in the vicinity of the sample 18 and the objective lens 4, and is connected to the computer 10.
  • FIG. 3 shows a detailed configuration diagram of the sample chamber 12 of the electron microscope 1 of the present embodiment.
  • the objective lens 4 has a shape in which the electromagnetic coil 34 is covered with a magnetic material 35, and a magnetic field is concentrated in the gap portion.
  • the surface of the magnetic material 35 used for the objective lens 4 is all oxidation-resistant, so that performance is not affected even when a high-humidity gas is introduced.
  • a gas introduction pipe 17 a is provided toward the sample 18, and a heater 24 for adjusting gas temperature and humidity is provided at the tip nozzle, which is connected to a heating power supply 25.
  • the cooling water passage 31 is provided above and below the objective lens 4.
  • the flow rate and temperature of the cooling water are controlled by the objective lens temperature control unit 32.
  • the objective lens temperature control unit 32 controls the temperature and flow rate of the objective lens cooling water so that the introduced gas does not form droplets near the objective lens.
  • An objective aperture 36 is inserted immediately below the sample 18 to cut the diffracted or scattered electron beam 33 and improve the contrast.
  • a temperature / humidity detector 27 is attached to the support rod of the objective aperture 36 to monitor the temperature / humidity near the sample 18.
  • the temperature / humidity detector 27 is connected to the computer 10 and the measurement results are recorded as needed.
  • the sample heating temperature is set in the computer 10.
  • the set temperature is commanded to the sample heating power source 30 to raise the temperature of the sample heating heater of the electron microscope sample holding device 6.
  • a desired gas temperature and humidity and gas flow rate in the atmosphere near the sample 18 are input, and the gas introduced by the gas supply device 21 is set to desired conditions.
  • a computer is used so that the heater 24 of the gas introduction pipe 17a is maintained at the same temperature as the set temperature and the temperature of the objective lens 4 is also maintained at the same temperature so that the gas is ejected in the vicinity of the sample 18 while maintaining the temperature and humidity of the gas. 10 instructs the objective lens temperature control unit 32 to adjust the cooling water amount or the cooling water temperature.
  • the gas supply device 21 receives the signal and flows the gas.
  • a temperature / humidity detector is installed near the sample, and when the temperature exceeds a certain value, a cooling device that controls the cooling water temperature and water volume of the objective lens of the electron microscope and operates so as to stop the introduction of gas is provided. Is also possible.
  • a transmission image of the sample 18 in a gas atmosphere is captured by the camera 8, and the transmission image is displayed on the image display unit 9a and recorded in the image recording unit 9b.
  • the computer 10 monitors and records the sample heating temperature and the temperature and humidity in the vicinity of the sample 18 as needed in synchronization with the counter of the image recording unit 9b.
  • the gas introduced into the sample chamber 12 is exhausted by a vacuum pump 15 connected to the sample chamber 12. At that time, moisture in the gas is absorbed by the filter 16 provided in the middle of the pipe 17b, and only the dried gas is sent to the vacuum pump 15 and exhausted.
  • the transmission electron microscope capable of observing the reaction between the gas and the sample while maintaining the gas environment without the gas such as water vapor being in the form of droplets in the middle of the gas introduction pipe 17b. Can be provided.
  • FIG. 2 shows a basic configuration diagram of an electron microscope 1 and an electron microscope sample holding device 6 according to another embodiment of the present invention.
  • the electron microscope sample holding device 6 instead of providing the gas introduction tube 17a in the sample chamber 12 of the electron microscope 1, the electron microscope sample holding device 6 is provided with a heating mechanism and a gas introduction tube 17c.
  • the gas introduction pipe 17 c provided in the electron microscope sample holding device 6 is connected to a gas supply device 21 through a gas pressure control valve 19 and an opening / closing valve 20.
  • the gas supply device 21 includes a gas storage unit 22 and a gas heating unit 23.
  • a heater 24 is attached to the gas introduction pipe 17 c and is connected to the computer 10 via a heating power supply 25.
  • the tip of the gas introduction pipe 17c is installed toward the sample 18.
  • FIG. 4 shows a procedure for using the electron microscope 1 according to one embodiment of the present invention.
  • the computer 10 sets the environmental conditions of the sample 18 (heating temperature, gas flow rate, gas pressure, gas temperature and humidity).
  • the sample 18 is heated to the set temperature.
  • the gas at the flow rate set by the computer 10 in the gas supply device 21 is sent from the gas storage unit 22 to the heating unit 23, and the gas is set to the temperature and humidity set by the heating unit 23.
  • the heating power source 25 is controlled to heat the heater 24 so that the temperature of the pipe 17b to the gas inlet 17a is also the same temperature as the sample environmental conditions.
  • the cooling water temperature is set so that the temperature of the objective lens 4 is the same.
  • gas is introduced from the gas supply device 210.
  • a transmission image of the sample 18 is taken by the camera 8 and recorded by the image recording unit 9b.
  • the following conditions are set from the computer 10 to control the sample environment.
  • Sample heating temperature, gas flow rate, gas pressure, gas temperature / humidity, temperature / humidity and pressure in the vicinity of the sample 18, video counter, etc. are recorded by the computer 10 while the apparatus is operating.
  • FIG. 5 shows a basic configuration diagram of an electron microscope 1 and an electron microscope sample holding device 6 according to another embodiment of the present invention.
  • a diaphragm 37 is arranged above and below the sample heating heater 28, and the atmosphere of the sample 18 is sealed with the diaphragm 37.
  • a sample holding device 6 for an electron beam apparatus is used.
  • the electron beam 33 passage is provided with a light element diaphragm 37 that does not affect image observation, and the electron beam microscope sample chamber 12 and the sample 18 atmosphere are isolated.
  • a temperature and humidity detector 27 and a pressure detector 38 are provided in the vicinity of the sample 18 in the electron microscope sample holding device 6, and the temperature and humidity and pressure in the vicinity of the sample 18 are controlled by the computer 10. Monitor and control.
  • the sample holding device 6 for electron microscope is provided with a gas introduction pipe 17 c and is connected to a gas supply device 21 through a gas pressure control valve 19 and an opening / closing valve 20.
  • the gas supply device 21 includes a gas storage unit 22 and a heating unit 23.
  • a heater 24 is attached to the gas introduction pipe 17 c and is connected to the computer 10 via a piping heating power supply 25.
  • the temperature of the heater 24 and the objective lens 4 attached to the gas introduction pipe 17c is controlled by the computer 10 so as to become the set gas temperature. By setting the temperature of the objective lens 4 to the set gas temperature, condensation on the diaphragm 37 can be prevented.
  • an exhaust pipe is attached to the electron microscope sample holder 6 and is connected to a vacuum pump 15 through a filter 16 and a valve 14 for trapping water vapor and the like.
  • FIG. 6 shows the detailed structure of the diaphragm holding type electron microscope sample holder 6 of the present embodiment.
  • a diaphragm heater 39 is attached to the diaphragm 37 support.
  • the diaphragm heater 39 is connected to the computer 10 via the diaphragm heating power source 40.
  • the temperature of the diaphragm 37 can be set to be the same as the gas temperature set by the environment control unit 10.
  • the sample 18 can be heated by directly applying the sample 18 to the heater 30 disposed in the sample holding device 6, but a general electron microscope such as a 3 mm mesh is used instead of the heater 30.
  • a sample stage may be set.
  • the above configuration makes it possible to observe the reaction process in a high-humidity gas atmosphere with high resolution without causing condensation in the electron microscope sample chamber 12.
  • the temperature and humidity of the micro gas space of the atmospheric gas including the sample formed in the sample chamber of the electron microscope can be controlled, and no condensation occurs in the sample chamber even when high humidity air is introduced.
  • the present invention can be applied to general electron microscopes such as a scanning electron microscope and a scanning transmission electron microscope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The purpose of the present invention is to provide an electron microscope and a device for holding a sample for an electron microscope, in which the temperature and humidity of the atmosphere in the electron microscope cell can be accurately controlled. An electron microscope provided with an electron source for emitting a first electron beam, an objective lens for causing the first electron beam emitted by the electron source to converge and beaming the first electron beam onto the sample, a detector for detecting the signal generated from the sample, a control means for forming a sample image on the basis of the signal from the detector, a display means for displaying the sample image, and a sample holding means (6) for holding the sample; the electron microscope being characterized in being provided with: a gas supply device for supplying the gas to be introduced into the sample chamber; gas introduction pipes (17a, 17b) for introducing the gas from the gas supply device into the sample chamber; and a heater (24) for controlling the temperature of the gas introduction pipes (17a, 17b), the heater being located on the gas introduction pipes (17a, 17b).

Description

電子顕微鏡および電子顕微鏡用試料保持装置Electron microscope and electron microscope sample holder
 本発明は、電子顕微鏡および電子顕微鏡に用いられる試料保持装置に関し、特に高湿度ガスを導入可能な電子顕微鏡および電子顕微鏡に用いられる試料保持装置に関する。 The present invention relates to an electron microscope and a sample holding device used for the electron microscope, and more particularly to an electron microscope capable of introducing a high-humidity gas and a sample holding device used for the electron microscope.
 透過電子顕微鏡(TEM)や走査透過電子顕微鏡(STEM)などを用いて、真空中ではなく、ガス雰囲気中での物質の構造や特性の解析や、ガス雰囲気中での物質の合成プロセスをその場観察する環境制御型電子顕微鏡として、特許文献1がある。特許文献1では、試料ホルダに、試料を気密に保持するための薄膜で真空と仕切られた試料室と、前記試料室にガスを導入、排気するための通路設け、試料を特定雰囲気下に保った状態において試料を観察する方法が開示されている。また、特許文献2では、被膜層にチャンバが取り囲まれた電子顕微鏡で用いられるマイクロリアクタであって、入口及び出口が、流体をチャンバに通して供給するために設けられ、さらに、チャンバ及びチャンバの中に存在する試料を加熱するための加熱手段が設けられたマイクロリアクタが開示されている。さらに特許文献3では、低真空雰囲気型走査電子顕微鏡であって、蒸気を導入する蒸気導入ノズルを備えた走査電子顕微鏡が開示されている。 Using a transmission electron microscope (TEM), a scanning transmission electron microscope (STEM), etc., in situ analysis of the structure and characteristics of a substance in a gas atmosphere rather than in a vacuum, and the synthesis process of a substance in a gas atmosphere There exists patent document 1 as an environment control type electron microscope to observe. In Patent Document 1, the sample holder is provided with a sample chamber partitioned by vacuum with a thin film for holding the sample in an airtight manner, and a passage for introducing and evacuating gas into the sample chamber, thereby maintaining the sample in a specific atmosphere. Disclosed is a method for observing a sample in a state. Patent Document 2 discloses a microreactor used in an electron microscope in which a chamber is surrounded by a coating layer, and an inlet and an outlet are provided to supply fluid through the chamber. Discloses a microreactor provided with heating means for heating a sample present in Further, Patent Document 3 discloses a scanning electron microscope that is a low-vacuum atmosphere scanning electron microscope and includes a vapor introduction nozzle for introducing vapor.
特開2000-133186号公報JP 2000-133186 A 特表2008-512841号公報Special table 2008-512841 特開2007-294328号公報JP 2007-294328 A
 特許文献1、2において、ガス環境調節機能はガス雰囲気と真空を仕切ったセル内に導入する前のガス環境を調整するもので、セル内の実際のガス環境制御については配慮されておらず、また、水蒸気導入については考慮されておらず、ガス供給装置から試料までを接続する配管やセル内部の温度がガス温度よりも低い場合、隔膜や試料、ガスを導入するための配管中に結露してしまうという問題があった。 In Patent Documents 1 and 2, the gas environment adjustment function adjusts the gas environment before being introduced into the cell in which the gas atmosphere and the vacuum are partitioned, and the actual gas environment control in the cell is not considered, In addition, the introduction of water vapor is not taken into consideration, and if the temperature in the piping connecting the gas supply device to the sample or in the cell is lower than the gas temperature, dew condensation occurs in the piping for introducing the diaphragm, sample, or gas. There was a problem that.
 一方、引用文献3では、バルク試料の表面に、液滴付着時の状態を観察したいというニーズから、試料を冷却し、水蒸気導入ノズルを可変にして蒸気導入時にはノズルを試料に近づけ、試料上に水滴を付着させ、観察時にはノズルを退避させることが開示されている。しかし、水蒸気と試料との反応を観察したいときには、この手法は適さない。 On the other hand, in Cited Document 3, because of the need to observe the state of droplets adhering to the surface of a bulk sample, the sample is cooled, the water vapor introduction nozzle is made variable, the vapor is introduced closer to the sample, and the nozzle is placed on the sample. It is disclosed that water droplets are attached and the nozzle is retracted during observation. However, this method is not suitable for observing the reaction between water vapor and the sample.
 本発明の目的は、環境制御型電子顕微鏡の試料雰囲気の温湿度を正確に制御可能で、発生させたガスの環境を維持した状態のまま試料雰囲気とすることが可能で、高湿度のガスと試料との反応を観察することが可能な電子顕微鏡および電子顕微鏡用試料保持装置を提供することにある。 The object of the present invention is to accurately control the temperature and humidity of the sample atmosphere of the environment-controlled electron microscope, and to maintain the environment of the generated gas as the sample atmosphere. An object of the present invention is to provide an electron microscope and a sample holder for an electron microscope capable of observing reaction with a sample.
 本発明では、上記課題に鑑み以下の構成を有する。 The present invention has the following configuration in view of the above problems.
 一次電子線を放出する電子源と、前記電子源から放出される一次電子線を収束し、試料に照射する対物レンズと、試料から発生した信号を検出する検出器と、前記検出器からの信号に基づいて試料像を形成する制御手段と、前記試料像を表示する表示手段と、前記試料を保持する試料保持手段と、を備えた電子顕微鏡において、前記試料室に導入するガスを供給するガス供給装置と、前記ガス供給装置からのガスを前記試料室に導入するガス導入管を備え、前記ガス導入管上に当該ガス導入管の温度を制御するヒータを備えることを特徴とする電子顕微鏡。 An electron source that emits a primary electron beam, an objective lens that converges the primary electron beam emitted from the electron source and irradiates the sample, a detector that detects a signal generated from the sample, and a signal from the detector A gas for supplying a gas to be introduced into the sample chamber in an electron microscope comprising: a control unit that forms a sample image based on the display unit; a display unit that displays the sample image; and a sample holding unit that holds the sample. An electron microscope comprising: a supply device; and a gas introduction pipe for introducing gas from the gas supply apparatus into the sample chamber, and a heater for controlling the temperature of the gas introduction pipe on the gas introduction pipe.
 本発明によれば、電子顕微鏡の試料室に形成された試料を包含する雰囲気ガスの微小ガス空間の温湿度が制御可能となり、高湿度空気を導入しても試料室で結露することがない。 According to the present invention, it becomes possible to control the temperature and humidity of the minute gas space of the atmospheric gas including the sample formed in the sample chamber of the electron microscope, and even if high-humidity air is introduced, no condensation occurs in the sample chamber.
本発明の一実施例である電子線装置1の基本構成図。1 is a basic configuration diagram of an electron beam apparatus 1 according to an embodiment of the present invention. 本発明の一実施例である電子線装置1および電子線装置用試料保持装置6の基本構成図。The basic block diagram of the electron beam apparatus 1 which is one Example of this invention, and the sample holder 6 for electron beam apparatuses. 一実施例である電子線装置1および電子線装置用試料保持装置6の動作説明図。The operation explanatory view of electron beam device 1 and sample holding device 6 for electron beam devices which are one example. 一実施例である電子線装置1試料室の断面図。Sectional drawing of the electron beam apparatus 1 sample chamber which is one Example. 本発明の一実施例である電子線装置1および電子線装置用試料保持装置6の基本構成図。The basic block diagram of the electron beam apparatus 1 which is one Example of this invention, and the sample holder 6 for electron beam apparatuses. 本発明の一実施例である電子線装置用試料保持装置6の基本構成図。The basic block diagram of the sample holder 6 for electron beam apparatuses which is one Example of this invention.
 以下、実施例を用いて説明する。 Hereinafter, description will be made using examples.
 図1に本発明の一実施例である電子顕微鏡1の基本構成図を示す。 FIG. 1 shows a basic configuration diagram of an electron microscope 1 according to an embodiment of the present invention.
 電子顕微鏡1の鏡体は、電子銃2、コンデンサーレンズ3、対物レンズ4、投射レンズ5により構成されている。対物レンズ4の間には、電子顕微鏡用試料保持装置6が挿入される。投射レンズ5の下方には、蛍光板7が、蛍光板7の下には、カメラ8が装着されている。カメラ8は、画像表示部9aを介し画像記録部9bに接続されている。画像記録部9bはコンピュータ10に接続されている。 The mirror body of the electron microscope 1 includes an electron gun 2, a condenser lens 3, an objective lens 4, and a projection lens 5. An electron microscope sample holding device 6 is inserted between the objective lenses 4. A fluorescent screen 7 is mounted below the projection lens 5, and a camera 8 is mounted below the fluorescent screen 7. The camera 8 is connected to the image recording unit 9b via the image display unit 9a. The image recording unit 9 b is connected to the computer 10.
 コンデンサーレンズ3、対物レンズ4の間には差動排気のための絞り11が配されている。電子銃2およびコンデンサーレンズ3の間、コンデンサーレンズ3および対物レンズ4の間、電子顕微鏡試料室12、観察室13はそれぞれ、バルブ14を介して、異なる真空ポンプ15に接続されている。電子顕微鏡試料室12と真空ポンプ15の間には、水蒸気など真空ポンプ15に悪影響を与えるガスをトラップするためのフィルター16が設置されている。 A diaphragm 11 for differential exhaust is disposed between the condenser lens 3 and the objective lens 4. Between the electron gun 2 and the condenser lens 3, between the condenser lens 3 and the objective lens 4, the electron microscope sample chamber 12 and the observation chamber 13 are connected to different vacuum pumps 15 via valves 14, respectively. A filter 16 is provided between the electron microscope sample chamber 12 and the vacuum pump 15 for trapping gas such as water vapor that adversely affects the vacuum pump 15.
 電子顕微鏡試料室12には試料予備排気室26が接続されており、試料予備排気室26はバルブ14を介して真空ポンプ15に接続されている。試料予備排気室26とバルブ14の間には、水蒸気などをトラップするためのフィルター16が設置されている。 A sample preliminary exhaust chamber 26 is connected to the electron microscope sample chamber 12, and the sample preliminary exhaust chamber 26 is connected to the vacuum pump 15 via the valve 14. A filter 16 for trapping water vapor or the like is installed between the sample preliminary exhaust chamber 26 and the valve 14.
 電子顕微鏡用試料保持装置6を電子顕微鏡試料室12に挿入する際は、電子顕微鏡用試料保持装置6先端部は、予め試料予備排気室26で真空ポンプ15により排気されてから、電子顕微鏡試料室12に挿入される。 When the electron microscope sample holding device 6 is inserted into the electron microscope sample chamber 12, the tip of the electron microscope sample holding device 6 is evacuated in advance by the vacuum pump 15 in the sample preliminary exhaust chamber 26, and then the electron microscope sample chamber. 12 is inserted.
 電子銃2から発生した電子線33はコンデンサーレンズ3により収束され試料18に照射される。試料18を透過した電子線33は対物レンズ4により結像され、投射レンズ5により拡大、蛍光板7上に投影される。または、蛍光板7を持ち上げ、カメラ8に投影し、画像表示部9aに透過像が表示され、画像記録部9bに記録される。 The electron beam 33 generated from the electron gun 2 is converged by the condenser lens 3 and irradiated onto the sample 18. The electron beam 33 transmitted through the sample 18 is imaged by the objective lens 4, magnified by the projection lens 5, and projected onto the fluorescent screen 7. Alternatively, the fluorescent plate 7 is lifted and projected onto the camera 8, and a transmission image is displayed on the image display unit 9a and recorded in the image recording unit 9b.
 ここで本発明のガス導入について説明する。 Here, the gas introduction of the present invention will be described.
 電子顕微鏡試料室12にはガス導入管17a先端部が試料18近傍に設置されている。ガス導入管17aは、配管上のガス圧コントロールバルブ19、開閉バルブ20を介してガス供給装置21に接続されている。ガス供給装置21はガス貯蔵部22と加熱部23で構成される。 In the electron microscope sample chamber 12, the tip of the gas introduction tube 17a is installed in the vicinity of the sample 18. The gas introduction pipe 17a is connected to a gas supply device 21 via a gas pressure control valve 19 and an opening / closing valve 20 on the pipe. The gas supply device 21 includes a gas storage unit 22 and a heating unit 23.
 ガス導入管17aにはヒータ24が取り付けられ、加熱電源25を介してコンピュータ10に接続されている。 A heater 24 is attached to the gas introduction pipe 17 a and is connected to the computer 10 via a heating power supply 25.
 試料予備排気室26にも、試料室12同様ヒータ24つきガス導入管17bを有し、ガス圧コントロールバルブ19、開閉バルブ20を介してガス供給装置21に接続されている。ガス導入管17bに取り付けられたヒータ24は、加熱電源25を介してコンピュータ10に接続されている。これにより、電子顕微鏡試料予備排気室でも試料を高湿度ガス雰囲気で反応させることが可能となる。 Similarly to the sample chamber 12, the sample preliminary exhaust chamber 26 also has a gas introduction pipe 17 b with a heater 24, and is connected to a gas supply device 21 through a gas pressure control valve 19 and an opening / closing valve 20. The heater 24 attached to the gas introduction pipe 17b is connected to the computer 10 via a heating power supply 25. As a result, the sample can be reacted in a high-humidity gas atmosphere even in the electron microscope sample preliminary exhaust chamber.
 試料室12には試料18近傍の温度、湿度を検出するための温湿度検出器27を設け、温湿度検出器27はコンピュータ10に接続されている。また、電子顕微鏡用試料保持装置6の先端部には試料加熱用ヒータ(図示せず)を有し、試料加熱用ヒータはリード線29を介して試料加熱電源30に接続されている。試料18は試料加熱用ヒータに直接接触するように取り付けられ加熱される。試料加熱電源30はコンピュータ10に接続されている。 The sample chamber 12 is provided with a temperature / humidity detector 27 for detecting the temperature and humidity near the sample 18, and the temperature / humidity detector 27 is connected to the computer 10. In addition, a sample heating heater (not shown) is provided at the tip of the electron microscope sample holding device 6, and the sample heating heater is connected to a sample heating power supply 30 via a lead wire 29. The sample 18 is attached and heated so as to be in direct contact with the sample heating heater. The sample heating power source 30 is connected to the computer 10.
 対物レンズ4および対物レンズ冷却水路31は対物レンズ温度制御部32を介してコンピュータ10に接続されている。また、試料18と対物レンズ4の近傍には温湿度検出器27が備えられており、コンピュータ10に接続されている。 The objective lens 4 and the objective lens cooling water channel 31 are connected to the computer 10 via the objective lens temperature control unit 32. A temperature / humidity detector 27 is provided in the vicinity of the sample 18 and the objective lens 4, and is connected to the computer 10.
 図3に本実施例の電子顕微鏡1試料室12の詳細な構成図を示す。対物レンズ4は電磁コイル34を磁性材料35で覆う形状となっており、ギャップ部分に磁界を集中して発生させる。対物レンズ4に用いられている磁性材料35の表面はすべて耐酸化処理されており、高湿度のガスが導入されても性能に影響を与えないようにする。対物レンズ4中央には電子線33通路があり、試料保持装置6に取り付けられた試料18が配される。試料18に向けてガス導入管17aが設けられ先端ノズルにはガス温湿度調整のためのヒータ24が設けられ、加熱電源25に接続されている。 FIG. 3 shows a detailed configuration diagram of the sample chamber 12 of the electron microscope 1 of the present embodiment. The objective lens 4 has a shape in which the electromagnetic coil 34 is covered with a magnetic material 35, and a magnetic field is concentrated in the gap portion. The surface of the magnetic material 35 used for the objective lens 4 is all oxidation-resistant, so that performance is not affected even when a high-humidity gas is introduced. There is an electron beam 33 passage in the center of the objective lens 4, and a sample 18 attached to the sample holding device 6 is arranged. A gas introduction pipe 17 a is provided toward the sample 18, and a heater 24 for adjusting gas temperature and humidity is provided at the tip nozzle, which is connected to a heating power supply 25.
 対物レンズ4上下には冷却水通路31が設けられている。冷却水の流量や温度は対物レンズ温度制御部32で制御する。対物レンズ温度制御部32は、導入ガスが対物レンズ近傍で液滴とならないように、対物レンズ冷却水の温度や流量を制御している。試料18の直下には回折あるいは散乱した電子線33をカットし、コントラストを向上させるための対物絞り36が挿入される。対物絞り36の支持棒には温湿度検出器27が取り付けられており、試料18近傍の温湿度をモニターする。温湿度検出器27は、コンピュータ10に接続されており測定結果は随時記録される。 The cooling water passage 31 is provided above and below the objective lens 4. The flow rate and temperature of the cooling water are controlled by the objective lens temperature control unit 32. The objective lens temperature control unit 32 controls the temperature and flow rate of the objective lens cooling water so that the introduced gas does not form droplets near the objective lens. An objective aperture 36 is inserted immediately below the sample 18 to cut the diffracted or scattered electron beam 33 and improve the contrast. A temperature / humidity detector 27 is attached to the support rod of the objective aperture 36 to monitor the temperature / humidity near the sample 18. The temperature / humidity detector 27 is connected to the computer 10 and the measurement results are recorded as needed.
 次にガスフローの設定について説明する。コンピュータ10において試料加熱温度を設定する。設定した温度は試料加熱電源30に指令し電子顕微鏡用試料保持装置6の試料加熱用ヒータの温度を昇温する。さらにコンピュータ10において、試料18近傍雰囲気の所望のガス温湿度およびガス流量を入力し、ガス供給装置21で導入するガスを所望の条件に設定する。ガスの温湿度を維持した状態でガスを試料18近傍に噴出するよう、ガス導入管17aのヒータ24を設定温度と同じ温度に維持し、対物レンズ4の温度も同じ温度に維持するよう、コンピュータ10は対物レンズ温度制御部32に冷却水量あるいは冷却水温度を調整するよう指令する。同じ温度に設定できた後、ガス供給装置21ではその信号を受けてガスを流す。 Next, the gas flow setting will be described. The sample heating temperature is set in the computer 10. The set temperature is commanded to the sample heating power source 30 to raise the temperature of the sample heating heater of the electron microscope sample holding device 6. Further, in the computer 10, a desired gas temperature and humidity and gas flow rate in the atmosphere near the sample 18 are input, and the gas introduced by the gas supply device 21 is set to desired conditions. A computer is used so that the heater 24 of the gas introduction pipe 17a is maintained at the same temperature as the set temperature and the temperature of the objective lens 4 is also maintained at the same temperature so that the gas is ejected in the vicinity of the sample 18 while maintaining the temperature and humidity of the gas. 10 instructs the objective lens temperature control unit 32 to adjust the cooling water amount or the cooling water temperature. After being set to the same temperature, the gas supply device 21 receives the signal and flows the gas.
 また、試料近傍に温度、湿度検出器を設け、ある一定値以上になると、電子顕微鏡の対物レンズ冷却水温度及び水量をコントロールし、また、ガスの導入を停止するよう作動する安全装置を設けることも可能である。 In addition, a temperature / humidity detector is installed near the sample, and when the temperature exceeds a certain value, a cooling device that controls the cooling water temperature and water volume of the objective lens of the electron microscope and operates so as to stop the introduction of gas is provided. Is also possible.
 カメラ8でガス雰囲気での試料18の透過像を撮像し、画像表示部9aに透過像が表示され、画像記録部9bに記録される。コンピュータ10では画像記録部9bのカウンターと同期させて、試料加熱温度、試料18近傍の温湿度を随時モニターし記録する。 A transmission image of the sample 18 in a gas atmosphere is captured by the camera 8, and the transmission image is displayed on the image display unit 9a and recorded in the image recording unit 9b. The computer 10 monitors and records the sample heating temperature and the temperature and humidity in the vicinity of the sample 18 as needed in synchronization with the counter of the image recording unit 9b.
 試料室12に導入されたガスは試料室12に接続された真空ポンプ15で排気される。その際、ガス中の水分は配管17bの途中に設けられたフィルター16に吸収され、真空ポンプ15には乾燥したガスのみ送られ排気される。 The gas introduced into the sample chamber 12 is exhausted by a vacuum pump 15 connected to the sample chamber 12. At that time, moisture in the gas is absorbed by the filter 16 provided in the middle of the pipe 17b, and only the dried gas is sent to the vacuum pump 15 and exhausted.
 本実施例によれば、ガス導入管17bの途中で水蒸気などのガスが液滴の状態にならず、ガス環境を維持したままガスと試料との反応を観察することが可能な透過電子顕微鏡を提供できる。 According to the present embodiment, the transmission electron microscope capable of observing the reaction between the gas and the sample while maintaining the gas environment without the gas such as water vapor being in the form of droplets in the middle of the gas introduction pipe 17b. Can be provided.
 図2に本発明の別の実施例である電子顕微鏡1および電子顕微鏡用試料保持装置6の基本構成図を示す。本実施例では、電子顕微鏡1の試料室12にガス導入管17aを設けるかわりに、電子顕微鏡用試料保持装置6に加熱機構とガス導入管17cを設けている。 FIG. 2 shows a basic configuration diagram of an electron microscope 1 and an electron microscope sample holding device 6 according to another embodiment of the present invention. In this embodiment, instead of providing the gas introduction tube 17a in the sample chamber 12 of the electron microscope 1, the electron microscope sample holding device 6 is provided with a heating mechanism and a gas introduction tube 17c.
 電子顕微鏡用試料保持装置6に設けられたガス導入管17cは、ガス圧コントロールバルブ19、開閉バルブ20を介してガス供給装置21に接続されている。ガス供給装置21は、ガス貯蔵部22とガス加熱部23で構成されている。ガス導入管17cにはヒータ24が取り付けられており、加熱電源25を介して、コンピュータ10に接続されている。前記ガス導入管17cの先端は試料18に向けて設置されている。 The gas introduction pipe 17 c provided in the electron microscope sample holding device 6 is connected to a gas supply device 21 through a gas pressure control valve 19 and an opening / closing valve 20. The gas supply device 21 includes a gas storage unit 22 and a gas heating unit 23. A heater 24 is attached to the gas introduction pipe 17 c and is connected to the computer 10 via a heating power supply 25. The tip of the gas introduction pipe 17c is installed toward the sample 18.
 図4に本発明の一実施例である電子顕微鏡1の使用手順を示す。
 (1)試料18を取り付けた試料保持装置6を電子顕微鏡試料室12に挿入する。
 (2)次にコンピュータ10において試料18環境条件(加熱温度、ガス流量、ガス圧力、ガス温湿度)を設定する。
 (3)次に設定した温度まで試料18加熱する。
 (4)ガス供給装置21にてコンピュータ10で設定した流量のガスをガス貯蔵部22から加熱部23に送り、加熱部23で設定した温湿度にガスを設定する。
 (5)次にガス導入口17aまでの配管17bの温度も試料環境条件と同じ温度になるよう加熱電源25を制御しヒータ24を加熱する。同時に対物レンズ4の温度も同じ温度になるよう冷却水温度を設定する。
 (6)配管17bおよび対物レンズ4が目的の温度に到達したら、ガス供給装置210よりガスを導入する。
 (7)試料18の透過像はカメラ8で撮影され、画像記録部9bで記録される。
 (8)異なる条件でさらに観察を続ける際は、コンピュータ10から次の条件を設定し、試料環境を制御するようにする。
FIG. 4 shows a procedure for using the electron microscope 1 according to one embodiment of the present invention.
(1) Insert the sample holding device 6 to which the sample 18 is attached into the electron microscope sample chamber 12.
(2) Next, the computer 10 sets the environmental conditions of the sample 18 (heating temperature, gas flow rate, gas pressure, gas temperature and humidity).
(3) Next, the sample 18 is heated to the set temperature.
(4) The gas at the flow rate set by the computer 10 in the gas supply device 21 is sent from the gas storage unit 22 to the heating unit 23, and the gas is set to the temperature and humidity set by the heating unit 23.
(5) Next, the heating power source 25 is controlled to heat the heater 24 so that the temperature of the pipe 17b to the gas inlet 17a is also the same temperature as the sample environmental conditions. At the same time, the cooling water temperature is set so that the temperature of the objective lens 4 is the same.
(6) When the pipe 17b and the objective lens 4 reach the target temperature, gas is introduced from the gas supply device 210.
(7) A transmission image of the sample 18 is taken by the camera 8 and recorded by the image recording unit 9b.
(8) When further observation is continued under different conditions, the following conditions are set from the computer 10 to control the sample environment.
 装置稼働中の試料加熱温度、ガス流量、ガス圧力、ガス温湿度、試料18近傍の温湿度と圧力、ビデオカウンター等の条件はコンピュータ10で記録される。 Sample heating temperature, gas flow rate, gas pressure, gas temperature / humidity, temperature / humidity and pressure in the vicinity of the sample 18, video counter, etc. are recorded by the computer 10 while the apparatus is operating.
 図5に本発明の別の実施例である電子顕微鏡1および電子顕微鏡用試料保持装置6の基本構成図を示す。本実施例では、実施例1、2の開放型の電子線装置用試料保持装置6の代わりに試料加熱用ヒータ28の上下に隔膜37を配し、隔膜37で試料18雰囲気を密閉した隔膜密閉型の電子線装置用試料保持装置6を用いている。 FIG. 5 shows a basic configuration diagram of an electron microscope 1 and an electron microscope sample holding device 6 according to another embodiment of the present invention. In this embodiment, instead of the open type electron beam apparatus sample holder 6 of the first and second embodiments, a diaphragm 37 is arranged above and below the sample heating heater 28, and the atmosphere of the sample 18 is sealed with the diaphragm 37. A sample holding device 6 for an electron beam apparatus is used.
 隔膜密閉型の電子線装置用試料保持装置6では、電子線33通路には像観察に影響のない軽元素隔膜37を配し、電子線顕微鏡試料室12と試料18雰囲気を隔離する。導入するガスの温湿度を維持するために電子顕微鏡用試料保持装置6内の試料18近傍に温湿度検出器27、圧力検出器38を備え、試料18近傍の温湿度、および圧力をコンピュータ10でモニターし制御する。電子顕微鏡用試料保持装置6にはガス導入管17cが備えられており、ガス圧コントロールバルブ19、開閉バルブ20を介してガス供給装置21に接続されている。ガス供給装置21は、ガス貯蔵部22と加熱部23で構成されている。ガス導入管17cにはヒータ24が取り付けられており、配管用加熱電源25を介して、コンピュータ10に接続されている。ガス導入管17cに取り付けられたヒータ24と対物レンズ4温度は、設定したガス温度になるようにコンピュータ10で制御される。対物レンズ4の温度が設定したガス温度になるように設定されたことで、隔膜37への結露を防止することができる。 In the diaphragm-sealed type electron beam apparatus sample holder 6, the electron beam 33 passage is provided with a light element diaphragm 37 that does not affect image observation, and the electron beam microscope sample chamber 12 and the sample 18 atmosphere are isolated. In order to maintain the temperature and humidity of the introduced gas, a temperature and humidity detector 27 and a pressure detector 38 are provided in the vicinity of the sample 18 in the electron microscope sample holding device 6, and the temperature and humidity and pressure in the vicinity of the sample 18 are controlled by the computer 10. Monitor and control. The sample holding device 6 for electron microscope is provided with a gas introduction pipe 17 c and is connected to a gas supply device 21 through a gas pressure control valve 19 and an opening / closing valve 20. The gas supply device 21 includes a gas storage unit 22 and a heating unit 23. A heater 24 is attached to the gas introduction pipe 17 c and is connected to the computer 10 via a piping heating power supply 25. The temperature of the heater 24 and the objective lens 4 attached to the gas introduction pipe 17c is controlled by the computer 10 so as to become the set gas temperature. By setting the temperature of the objective lens 4 to the set gas temperature, condensation on the diaphragm 37 can be prevented.
 同様に電子顕微鏡用試料保持装置6には排気用の配管も取り付けられ、水蒸気などをトラップするためのフィルター16、バルブ14を介して真空ポンプ15に接続されている。 Similarly, an exhaust pipe is attached to the electron microscope sample holder 6 and is connected to a vacuum pump 15 through a filter 16 and a valve 14 for trapping water vapor and the like.
 図6に本実施例の隔膜密閉型の電子顕微鏡用試料保持装置6の詳細構造を示す。隔膜37部の結露防止のために対物レンズ4温度を制御する代わりに隔膜37支持部に隔膜用ヒータ39を取り付けている。隔膜用ヒータ39は隔膜用加熱電源40を介しコンピュータ10に接続されている。これにより、環境制御部10で設定したガス温度と同じに隔膜37温度を設定することが可能となる。 FIG. 6 shows the detailed structure of the diaphragm holding type electron microscope sample holder 6 of the present embodiment. Instead of controlling the temperature of the objective lens 4 to prevent dew condensation on the diaphragm 37, a diaphragm heater 39 is attached to the diaphragm 37 support. The diaphragm heater 39 is connected to the computer 10 via the diaphragm heating power source 40. As a result, the temperature of the diaphragm 37 can be set to be the same as the gas temperature set by the environment control unit 10.
 また、ここでは、試料保持装置6に配されたヒータ30に試料18を直接塗布することにより、試料18を加熱できるようにしているが、ヒータ30の代わりに3mmメッシュなどの一般的な電子顕微鏡試料台をセットできるようにしてもよい。 Here, the sample 18 can be heated by directly applying the sample 18 to the heater 30 disposed in the sample holding device 6, but a general electron microscope such as a 3 mm mesh is used instead of the heater 30. A sample stage may be set.
 上記の構成により、電子顕微鏡試料室12で結露することなく、高湿度ガス雰囲気中での反応プロセスの観察を高分解能で行うことが可能となる。 The above configuration makes it possible to observe the reaction process in a high-humidity gas atmosphere with high resolution without causing condensation in the electron microscope sample chamber 12.
 本発明によれば、電子顕微鏡の試料室に形成された試料を包含する雰囲気ガスの微小ガス空間の温湿度が制御可能となり、高湿度空気を導入しても試料室で結露することがなくなる。 According to the present invention, the temperature and humidity of the micro gas space of the atmospheric gas including the sample formed in the sample chamber of the electron microscope can be controlled, and no condensation occurs in the sample chamber even when high humidity air is introduced.
 上記実施例は、透過電子顕微鏡を用いて説明を行ったが、本発明は走査電子顕微鏡、走査透過電子顕微鏡等の電子顕微鏡全般に適用することが可能である。 Although the above embodiment has been described using a transmission electron microscope, the present invention can be applied to general electron microscopes such as a scanning electron microscope and a scanning transmission electron microscope.
1 電子顕微鏡
2 電子銃
3 コンデンサーレンズ
4 対物レンズ
5 投射レンズ
6 電子顕微鏡用試料保持装置
7 蛍光板
8 カメラ
9a 画像表示部
9b 画像記録部
10 コンピュータ
11 差動排気絞り
12 電子顕微鏡試料室
13 観察室
14 バルブ
15 真空ポンプ
16 フィルター
17a、17b、17c ガス導入管
18 試料
19 ガス圧コントロールバルブ
20 開閉バルブ
21 ガス供給装置
22 ガス貯蔵部
23 ガス加熱部
24 ヒータ
25 加熱電源
26 試料予備排気室
27 温湿度検出器
28 試料加熱用ヒータ
29 リード線
30 試料加熱電源
31 対物レンズ冷却水路
32 対物レンズ温度制御部
33 電子線
34 電磁コイル
35 磁性材料
36 対物絞り
37 隔膜
38 圧力検出器
39 隔膜用ヒータ
40 隔膜用加熱電源
DESCRIPTION OF SYMBOLS 1 Electron microscope 2 Electron gun 3 Condenser lens 4 Objective lens 5 Projection lens 6 Sample holder 7 for electron microscopes Fluorescent screen 8 Camera 9a Image display part 9b Image recording part 10 Computer 11 Differential exhaust diaphragm 12 Electron microscope sample room 13 Observation room 14 Valve 15 Vacuum pump 16 Filters 17a, 17b, 17c Gas introduction pipe 18 Sample 19 Gas pressure control valve 20 Open / close valve 21 Gas supply unit 22 Gas storage unit 23 Gas heating unit 24 Heater 25 Heating power supply 26 Sample preliminary exhaust chamber 27 Temperature / humidity detection Device 28 Heater for sample heating 29 Lead wire 30 Sample heating power source 31 Objective lens cooling water channel 32 Objective lens temperature control unit 33 Electron beam 34 Electromagnetic coil 35 Magnetic material 36 Objective diaphragm 37 Diaphragm 38 Pressure detector 39 Diaphragm heater 40 Diaphragm heating Power supply

Claims (17)

  1.  一次電子線を放出する電子源と、
     前記電子源から放出される一次電子線を収束し、試料に照射する対物レンズと、
     試料から発生した信号を検出する検出器と、
     前記検出器からの信号に基づいて試料像を形成する制御手段と、前記試料像を表示する表示手段と、前記試料を保持する試料保持手段と、
    を備えた電子顕微鏡において、
     前記試料室に導入するガスを供給するガス供給装置と、
     前記ガス供給装置からのガスを前記試料室に導入するガス導入管を備え、
     前記ガス導入管上に当該ガス導入管の温度を制御するヒータを備えることを特徴とする電子顕微鏡。
    An electron source emitting a primary electron beam;
    An objective lens that focuses the primary electron beam emitted from the electron source and irradiates the sample;
    A detector for detecting a signal generated from the sample;
    Control means for forming a sample image based on a signal from the detector; display means for displaying the sample image; sample holding means for holding the sample;
    In an electron microscope equipped with
    A gas supply device for supplying a gas to be introduced into the sample chamber;
    A gas introduction pipe for introducing gas from the gas supply device into the sample chamber;
    An electron microscope comprising a heater for controlling the temperature of the gas introduction pipe on the gas introduction pipe.
  2.  請求項1の電子顕微鏡において、
     前記ガス供給装置は、試料室に導入するガスの貯蔵部と、当該ガスの加熱部から構成されていることを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    The gas supply apparatus is constituted by a storage unit for a gas introduced into a sample chamber and a heating unit for the gas.
  3.  請求項1の電子顕微鏡において、
     前記ガス導入管の出口近傍の温度を計測する温度計を有し、
     前記ガス供給装置で生成されたガスの温度及び前記ガス導入管の出口近傍のガスの温度の情報に基づいて、前記ヒータの温度を制御することを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    A thermometer for measuring the temperature in the vicinity of the outlet of the gas introduction pipe;
    An electron microscope characterized in that the temperature of the heater is controlled based on information on the temperature of the gas generated by the gas supply device and the temperature of the gas in the vicinity of the outlet of the gas introduction pipe.
  4.  請求項1の電子顕微鏡において、
     前記対物レンズを冷却する対物レンズ冷却水の温度及び/又は流量を制御する制御部を有することを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    An electron microscope comprising: a control unit that controls the temperature and / or flow rate of objective lens cooling water that cools the objective lens.
  5.  請求項1記載の電子顕微鏡において、
     前記対物レンズに用いている磁性材料の表面を対酸化処理することを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    An electron microscope characterized by subjecting the surface of a magnetic material used for the objective lens to oxidation treatment.
  6.  請求項1記載の電子顕微鏡において、
     前記試料室を排気する排気機構を有し、前記試料室から前記排気機構の間に前記導入ガスを捕捉するトラップ機構を設けることを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    An electron microscope comprising an exhaust mechanism for exhausting the sample chamber, and a trap mechanism for capturing the introduced gas between the sample chamber and the exhaust mechanism.
  7.  請求項1記載の電子顕微鏡において、
     前記前記試料室に試料を導入する前に予め排気を行う予備排気室を有し、
     当該予備排気室に、ガスを導入するガス導入管が接続することを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    A preliminary exhaust chamber for exhausting in advance before introducing the sample into the sample chamber;
    An electron microscope characterized in that a gas introduction pipe for introducing gas is connected to the preliminary exhaust chamber.
  8.  請求項1記載の電子顕微鏡において、
     前記ガス導入管の出口近傍の温度及び湿度を計測する温湿度計を有し、
     当該温湿度計の情報に基づき、前記ガス供給装置によるガス供給を中止する安全装置を備えたことを特徴とする電子顕微鏡。
    The electron microscope according to claim 1,
    Having a temperature and humidity meter for measuring the temperature and humidity near the outlet of the gas introduction pipe,
    An electron microscope comprising a safety device for stopping gas supply by the gas supply device based on information of the thermohygrometer.
  9.  一次電子線を放出する電子源と、
     前記電子源から放出される一次電子線を収束し、試料に照射する対物レンズと、
     試料から発生した信号を検出する検出器と、
     前記検出器からの信号に基づいて試料像を形成する制御手段と、前記試料像を表示する表示手段と、前記試料を保持する試料保持手段と、
    を備えた電子顕微鏡において、
     前記試料保持手段は、前記試料近傍にガスを導入するガス導入管を備え、
     前記ガス導入管上に当該ガス導入管の温度を制御するヒータを備えること
    を特徴とする電子顕微鏡。
    An electron source emitting a primary electron beam;
    An objective lens that focuses the primary electron beam emitted from the electron source and irradiates the sample;
    A detector for detecting a signal generated from the sample;
    Control means for forming a sample image based on a signal from the detector; display means for displaying the sample image; sample holding means for holding the sample;
    In an electron microscope equipped with
    The sample holding means includes a gas introduction pipe for introducing a gas in the vicinity of the sample,
    An electron microscope comprising a heater for controlling the temperature of the gas introduction pipe on the gas introduction pipe.
  10.  請求項9記載の電子顕微鏡において、
     前記試料保持手段は、前記試料を加熱する加熱手段を有することを特徴とする電子顕微鏡。
    The electron microscope according to claim 9, wherein
    The electron microscope characterized in that the sample holding means has a heating means for heating the sample.
  11.  一次電子線を放出する電子源と、
     前記電子源から放出される一次電子線を収束し、試料に照射する対物レンズと、
     試料から発生した信号を検出する検出器と、
     前記検出器からの信号に基づいて試料像を形成する制御手段と、前記試料像を表示する表示手段と、前記試料を保持する試料保持手段と、
    を備えた電子顕微鏡において、
     前記試料保持手段は、前記試料が当該試料保持手段の内部に配置され、当該試料保持手段の外壁の電子線通過部に隔膜を備え、
     前記試料保持手段の内部にガスを導入するガス導入管を備え、
     前記ガス導入管上に当該ガス導入管の温度を制御するヒータを備えること
    を特徴とする電子顕微鏡。
    An electron source emitting a primary electron beam;
    An objective lens that focuses the primary electron beam emitted from the electron source and irradiates the sample;
    A detector for detecting a signal generated from the sample;
    Control means for forming a sample image based on a signal from the detector; display means for displaying the sample image; sample holding means for holding the sample;
    In an electron microscope equipped with
    The sample holding means is provided with a diaphragm in the electron beam passage portion of the outer wall of the sample holding means, wherein the sample is disposed inside the sample holding means,
    A gas introduction pipe for introducing gas into the sample holding means;
    An electron microscope comprising a heater for controlling the temperature of the gas introduction pipe on the gas introduction pipe.
  12.  請求項11の電子顕微鏡において、
     前記ガス導入管はガス供給装置と接続し、
     前記ガス供給装置は、試料室に導入するガスの貯蔵部と、当該ガスの加熱部から構成されていることを特徴とする電子顕微鏡。
    The electron microscope of claim 11,
    The gas introduction pipe is connected to a gas supply device;
    The gas supply apparatus is constituted by a storage unit for a gas introduced into a sample chamber and a heating unit for the gas.
  13.  請求項11の電子顕微鏡において、
     前記ガス導入管の出口近傍の温度を計測する温度計を有し、
     前記ガス供給装置で生成されたガスの温度及び前記ガス導入管の出口近傍のガスの温度の情報に基づいて、前記ヒータの温度を制御することを特徴とする電子顕微鏡。
    The electron microscope of claim 11,
    A thermometer for measuring the temperature in the vicinity of the outlet of the gas introduction pipe;
    An electron microscope characterized in that the temperature of the heater is controlled based on information on the temperature of the gas generated by the gas supply device and the temperature of the gas in the vicinity of the outlet of the gas introduction pipe.
  14.  請求項11の電子顕微鏡において、
     前記対物レンズを冷却する対物レンズ冷却水の温度及び/又は流量を制御する制御部を有することを特徴とする電子顕微鏡。
    The electron microscope of claim 11,
    An electron microscope comprising: a control unit that controls the temperature and / or flow rate of objective lens cooling water that cools the objective lens.
  15.  請求項11記載の電子顕微鏡において、
     前記対物レンズに用いている磁性材料の表面を対酸化処理することを特徴とする電子顕微鏡。
    The electron microscope according to claim 11,
    An electron microscope characterized by subjecting the surface of a magnetic material used for the objective lens to oxidation treatment.
  16.  請求項11記載の電子顕微鏡において、
     前記試料室を排気する排気機構を有し、前記試料室から前記排気機構の間に前記導入ガスを捕捉するトラップ機構を設けることを特徴とする電子顕微鏡。
    The electron microscope according to claim 11,
    An electron microscope comprising an exhaust mechanism for exhausting the sample chamber, and a trap mechanism for capturing the introduced gas between the sample chamber and the exhaust mechanism.
  17.  請求項11記載の電子顕微鏡において、
     前記試料室に試料を導入する前に予め排気を行う予備排気室を有し、
     当該予備排気室に、ガスを導入するガス導入管が接続することを特徴とする電子顕微鏡。
    The electron microscope according to claim 11,
    Having a preliminary exhaust chamber for exhausting in advance before introducing the sample into the sample chamber;
    An electron microscope characterized in that a gas introduction pipe for introducing gas is connected to the preliminary exhaust chamber.
PCT/JP2012/078274 2011-12-26 2012-11-01 Electron microscope and device for holding sample for electron microscope WO2013099435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-282626 2011-12-26
JP2011282626A JP5891030B2 (en) 2011-12-26 2011-12-26 electronic microscope

Publications (1)

Publication Number Publication Date
WO2013099435A1 true WO2013099435A1 (en) 2013-07-04

Family

ID=48696935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078274 WO2013099435A1 (en) 2011-12-26 2012-11-01 Electron microscope and device for holding sample for electron microscope

Country Status (2)

Country Link
JP (1) JP5891030B2 (en)
WO (1) WO2013099435A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558232A (en) * 2013-10-16 2014-02-05 中国科学院物理研究所 In-situ varying temperature spectral measurement device in transmission electron microscope
JP2015088337A (en) * 2013-10-30 2015-05-07 日本電子株式会社 Charged particle beam apparatus
CN105569530A (en) * 2015-12-18 2016-05-11 北京无线电计量测试研究所 Concentric conical TEM (transverse electromagnetic mode) chamber screen door

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350664A (en) * 1976-10-20 1978-05-09 Hitachi Ltd Electron lens
JPH10172496A (en) * 1996-12-13 1998-06-26 Nikon Corp Environment controlled scanning type electron microscope
JPH11238483A (en) * 1997-12-12 1999-08-31 Hitachi Ltd Charged particle beam device
JP2005190864A (en) * 2003-12-26 2005-07-14 Hitachi High-Technologies Corp Electron beam device and sample holder for electron beam device
JP2007294328A (en) * 2006-04-27 2007-11-08 Hitachi High-Technologies Corp Scanning electron microscope
JP2009199785A (en) * 2008-02-19 2009-09-03 Taiyo Yuden Co Ltd Scanning electron microscope
JP2010113843A (en) * 2008-11-04 2010-05-20 Shimadzu Corp Charged particle beam device and contamination arrester of objective lens
JP2011129441A (en) * 2009-12-21 2011-06-30 Hitachi High-Technologies Corp Cooling sample holder and cooling processing method of sample
JP2011175809A (en) * 2010-02-24 2011-09-08 Hitachi High-Technologies Corp Electron microscope, and sample holder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350664A (en) * 1976-10-20 1978-05-09 Hitachi Ltd Electron lens
JPH10172496A (en) * 1996-12-13 1998-06-26 Nikon Corp Environment controlled scanning type electron microscope
JPH11238483A (en) * 1997-12-12 1999-08-31 Hitachi Ltd Charged particle beam device
JP2005190864A (en) * 2003-12-26 2005-07-14 Hitachi High-Technologies Corp Electron beam device and sample holder for electron beam device
JP2007294328A (en) * 2006-04-27 2007-11-08 Hitachi High-Technologies Corp Scanning electron microscope
JP2009199785A (en) * 2008-02-19 2009-09-03 Taiyo Yuden Co Ltd Scanning electron microscope
JP2010113843A (en) * 2008-11-04 2010-05-20 Shimadzu Corp Charged particle beam device and contamination arrester of objective lens
JP2011129441A (en) * 2009-12-21 2011-06-30 Hitachi High-Technologies Corp Cooling sample holder and cooling processing method of sample
JP2011175809A (en) * 2010-02-24 2011-09-08 Hitachi High-Technologies Corp Electron microscope, and sample holder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558232A (en) * 2013-10-16 2014-02-05 中国科学院物理研究所 In-situ varying temperature spectral measurement device in transmission electron microscope
CN103558232B (en) * 2013-10-16 2015-10-28 中国科学院物理研究所 A kind of device in transmission electron microscope situ alternating temperature measure spectrum
JP2015088337A (en) * 2013-10-30 2015-05-07 日本電子株式会社 Charged particle beam apparatus
CN105569530A (en) * 2015-12-18 2016-05-11 北京无线电计量测试研究所 Concentric conical TEM (transverse electromagnetic mode) chamber screen door
CN105569530B (en) * 2015-12-18 2017-10-27 北京无线电计量测试研究所 A kind of concentric tapered TEM rooms shield door

Also Published As

Publication number Publication date
JP2013134814A (en) 2013-07-08
JP5891030B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5260575B2 (en) Electron microscope and sample holder
JP5124507B2 (en) Electron beam apparatus and sample holder for electron beam apparatus
JP4850654B2 (en) Charged particle beam device and sample holding device for charged particle beam device
KR101589400B1 (en) Specimen observation method
CN105612597B (en) Charged particle beam apparatus and charged particle beam apparatus sample holding meanss
JP6047508B2 (en) Charged particle beam apparatus, sample image acquisition method, and program recording medium
JP6302702B2 (en) Scanning electron microscope and image generation method
JPWO2012120726A1 (en) Electron microscope holder, electron microscope, and sample observation method
JP5891030B2 (en) electronic microscope
JP6522133B2 (en) Observation support unit, sample observation method using the same, charged particle beam apparatus
WO2014017225A1 (en) Electron microscope and electron microscope sample retaining device
US6365905B1 (en) Focused ion beam processing apparatus
JP6097863B2 (en) Charged particle beam apparatus, sample image acquisition method, and program recording medium
WO2015045477A1 (en) Sample holder and charged particle device
JP5824262B2 (en) Sample observation method and pressure measurement holder
JP2017016818A (en) Electron microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861364

Country of ref document: EP

Kind code of ref document: A1