JP5824262B2 - Sample observation method and pressure measurement holder - Google Patents

Sample observation method and pressure measurement holder Download PDF

Info

Publication number
JP5824262B2
JP5824262B2 JP2011151594A JP2011151594A JP5824262B2 JP 5824262 B2 JP5824262 B2 JP 5824262B2 JP 2011151594 A JP2011151594 A JP 2011151594A JP 2011151594 A JP2011151594 A JP 2011151594A JP 5824262 B2 JP5824262 B2 JP 5824262B2
Authority
JP
Japan
Prior art keywords
sample
pressure
gas atmosphere
gas
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011151594A
Other languages
Japanese (ja)
Other versions
JP2013020747A (en
Inventor
幸二 守谷
幸二 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2011151594A priority Critical patent/JP5824262B2/en
Publication of JP2013020747A publication Critical patent/JP2013020747A/en
Application granted granted Critical
Publication of JP5824262B2 publication Critical patent/JP5824262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はガス雰囲気中にて試料を観察する事が出来る様にした電子顕微鏡による試料観察方法、試料観察方法に用いる圧力測定用ホルダ及び電子顕微鏡に関する。   The present invention relates to a sample observation method using an electron microscope capable of observing a sample in a gas atmosphere, a pressure measurement holder used in the sample observation method, and an electron microscope.

電子顕微鏡において、試料を雰囲気ガス中に置き、その状態で試料と雰囲気ガスとの反応過程をその場で動的に観察をする事(この様な観察を「その場観察」と称す)が要求されることがある。   In an electron microscope, it is necessary to place a sample in an atmospheric gas and observe the reaction process between the sample and the atmospheric gas dynamically in that state (this type of observation is called “in-situ observation”). May be.

図1はその場観察が可能な電子顕微鏡の一概略例を示している。   FIG. 1 shows a schematic example of an electron microscope capable of in-situ observation.

図中1は電子銃、2は電子銃から放出された電子ビームEBを集束する集束レンズである。   In the figure, reference numeral 1 denotes an electron gun, and 2 denotes a focusing lens that focuses an electron beam EB emitted from the electron gun.

3は上磁極3Aと下磁極3Bを備え、両磁極間にガス雰囲気試料収納ブロック4が配置される様に成した対物レンズで、ガス雰囲気試料収納ブロック内にセットされた試料に電子ビームEBを細く絞って照射するものである。なお、ガス雰囲気試料収納ブロック4が配置される対物レンズ3の上磁極3Aと下磁極3Bとの間の空間を試料室5と称している。   An objective lens 3 includes an upper magnetic pole 3A and a lower magnetic pole 3B, and a gas atmosphere sample storage block 4 is disposed between both magnetic poles. An electron beam EB is applied to a sample set in the gas atmosphere sample storage block. The light is squeezed finely. A space between the upper magnetic pole 3A and the lower magnetic pole 3B of the objective lens 3 in which the gas atmosphere sample storage block 4 is disposed is referred to as a sample chamber 5.

6、7は、ガス雰囲気試料収納ブロック4内にセットされた試料を透過し、対物レンズ3により集束された電子ビームを蛍光板8上に試料の透過像として拡大投影するための中間レンズ6、投射レンズ7である。   Reference numerals 6 and 7 denote an intermediate lens 6 for transmitting the sample set in the gas atmosphere sample storage block 4 and enlarging and projecting the electron beam focused by the objective lens 3 on the fluorescent plate 8 as a transmission image of the sample. This is the lens 7.

9は蛍光板8の下方に設置されたカメラ(例えばCCDカメラ)で、蛍光板を蛍光板退避手段(図示せず)により電子ビーム光軸上から退避させることにより、拡大像を検出する事が出来る様になっている。   Reference numeral 9 denotes a camera (for example, a CCD camera) installed below the fluorescent plate 8 so that an enlarged image can be detected by retracting the fluorescent plate from the optical axis of the electron beam by a fluorescent plate retracting means (not shown). It has become.

10はAD変換器11を介したカメラ9からの出力信号が送られる制御装置で、電子顕微鏡を構成する各手段の制御及び各種演算処理等を行うものである。   Reference numeral 10 denotes a control device to which an output signal from the camera 9 is sent via the AD converter 11, and performs control of various means constituting the electron microscope, various arithmetic processes, and the like.

なお、図中12は表示装置で、制御装置10からの指令に基づいて画面上に試料像等を表示するもの、13はマウスやキーボード等の入力装置である。   In the figure, reference numeral 12 denotes a display device that displays a sample image or the like on the screen based on a command from the control device 10, and 13 denotes an input device such as a mouse or a keyboard.

図2はガス雰囲気試料収納ブロック4の詳細とガス雰囲気試料収納ブロックに繋がる周辺部分を示している。   FIG. 2 shows details of the gas atmosphere sample storage block 4 and a peripheral portion connected to the gas atmosphere sample storage block.

図2において、14はゴニオメータ15を支持する様に鏡筒Cの一部に取り付けられた円筒形状のゴニオメータ支持体で、ゴニオメータ支持体には、ゴニオメータ支持体の先端部側空間Saに繋がる排気管16が接続されている。   In FIG. 2, reference numeral 14 denotes a cylindrical goniometer support attached to a part of the lens barrel C so as to support the goniometer 15, and the goniometer support includes an exhaust pipe connected to the tip end side space Sa of the goniometer support. 16 is connected.

この排気管の端部には真空ポンプ17が繋がっており、排気管の中間部には圧力計G1と開閉バルブV1が取付けられている。   A vacuum pump 17 is connected to the end of the exhaust pipe, and a pressure gauge G1 and an opening / closing valve V1 are attached to an intermediate part of the exhaust pipe.

18はその先端部に試料保持体19が取付られた試料ホルダで、ゴニオメータ15に装着されており、詳細には示されていないが、試料保持体19にセットされた試料Sはゴニオメータによって、紙面に平行なX-Z方向、紙面に垂直なY方向及びX軸の周りに回動(傾斜)可能になっている。なお、試料ホルダの中間部外周にはリング状の溝が切られており、溝にはOリング20がはめ込まれている。   Reference numeral 18 denotes a sample holder having a sample holder 19 attached to the tip thereof. The sample holder 18 is attached to the goniometer 15. Although not shown in detail, the sample S set on the sample holder 19 is printed on the paper surface by the goniometer. Can be rotated (tilted) around the XZ direction parallel to the Y direction, the Y direction perpendicular to the paper surface, and the X axis. A ring-shaped groove is cut on the outer periphery of the intermediate portion of the sample holder, and an O-ring 20 is fitted in the groove.

21は先端面に当たる部分が吹き抜けた有底円筒状のガス雰囲気容器で、外周の径がゴニオメータ支持体14の先端部の内径より僅かに小さく成っており、ガス雰囲気容器の先端部がゴニオメータ支持体14の先端部にはめ込まれた状態に成っている。なお、ガス雰囲気容器先端部の外周部にはリング状の溝が形成されており、溝にはOリング22がはめ込まれている。   Reference numeral 21 denotes a bottomed cylindrical gas atmosphere container in which a portion corresponding to the front end surface is blown out. 14 is in a state of being fitted into the tip portion. A ring-shaped groove is formed on the outer peripheral portion of the front end of the gas atmosphere container, and an O-ring 22 is fitted in the groove.

ガス雰囲気容器の上壁OW中央部と底壁BW中央部には、各々の中心が電子光学軸Oと一致する様に電子ビーム通過孔Ha,Hbが開けられている。   Electron beam passage holes Ha and Hb are formed in the center portion of the upper wall OW and the center portion of the bottom wall BW of the gas atmosphere container so that the centers thereof coincide with the electron optical axis O.

また、ガス雰囲気容器の上壁OW内部には一端が電子ビーム通過孔Haに繋がり、他端が側壁SWに設けられた排気管23cに繋がる排気管23aが、下壁BW内部には一端が電子ビーム通過孔Hbに繋がり、他端が側壁SWに設けられた排気管23cに繋がる排気管23bがそれぞれ設けられている。なお、排気管23cには排気管24を介して開閉バルブV3と真空ポンプ25が繋がれている。   Further, an exhaust pipe 23a is connected to the electron beam passage hole Ha at one end inside the upper wall OW of the gas atmosphere container, and an exhaust pipe 23a is connected to the exhaust pipe 23c provided at the side wall SW. An exhaust pipe 23b connected to the beam passage hole Hb and the other end connected to an exhaust pipe 23c provided on the side wall SW is provided. Note that an open / close valve V3 and a vacuum pump 25 are connected to the exhaust pipe 23c through an exhaust pipe 24.

さらに、ガス雰囲気容器上壁OWの電子ビーム通過孔Ha内の上部と下部にはそれぞれオリフィス板Oa、Obが互いに平行に取り付けられ、ガス雰囲気容器下壁BWの電子ビーム通過孔Hb内の上部と下部にはそれぞれオリフィス板Oc,Odが互いに平行に取り付けられている。このような構成にすることにより、電子ビーム通過口Ha,Hb内に、試料室5内の空間とガス雰囲気容器21内の空間を圧力的に隔離する空間部Da,Db(以後、これらの空間を差圧空間と称す)がそれぞれ形成される。   Further, orifice plates Oa and Ob are respectively attached in parallel to the upper and lower portions in the electron beam passage hole Ha on the upper wall OW of the gas atmosphere container, and the upper portion in the electron beam passage hole Hb on the lower wall BW of the gas atmosphere container. Orifice plates Oc and Od are attached to the lower part in parallel. By adopting such a configuration, space portions Da and Db (hereinafter referred to as these spaces) for isolating the space in the sample chamber 5 and the space in the gas atmosphere vessel 21 in the electron beam passages Ha and Hb in a pressure manner. Are referred to as differential pressure spaces).

さらにまた、ガス雰囲気容器側壁SWには、鏡筒Cとガス雰囲気容器側壁を突き抜けるようにガス供給管26が取付けられている。   Furthermore, a gas supply pipe 26 is attached to the gas atmosphere container side wall SW so as to penetrate the lens barrel C and the gas atmosphere container side wall.

ガス供給管の一方側(ガス雰囲気容器21側)には、その先端が試料Sに対向する様にノズルNが取り付けられ、ガス供給管26の他方側には、開閉バルブV2、ガス流量調整装置28、ガスボンベ29がこの順に繋がっており、ガスボンベ29からの反応ガスがガス調整装置28で流量調整され、開閉バルブV2を介してノズルN先端から放出されるようになっている。なお、ガス供給管26の、開閉バルブV2とノズルNの中間部辺りに圧力計G2が取付けられている。   A nozzle N is attached to one side (gas atmosphere container 21 side) of the gas supply pipe so that the tip of the gas supply pipe faces the sample S. On the other side of the gas supply pipe 26, an open / close valve V2 and a gas flow rate adjusting device are provided. 28 and the gas cylinder 29 are connected in this order, and the flow rate of the reaction gas from the gas cylinder 29 is adjusted by the gas adjusting device 28 and discharged from the tip of the nozzle N via the open / close valve V2. In addition, a pressure gauge G2 is attached to the gas supply pipe 26 around an intermediate portion between the opening / closing valve V2 and the nozzle N.

図2において、G3は試料室5内の圧力を検出するための圧力計である。   In FIG. 2, G3 is a pressure gauge for detecting the pressure in the sample chamber 5.

このような構成を有する電子顕微鏡装置において、試料Sを試料保持体19にセットし、試料保持体を支持している試料ホルダ18をゴニオメータ14に装着する。   In the electron microscope apparatus having such a configuration, the sample S is set on the sample holder 19, and the sample holder 18 supporting the sample holder is attached to the goniometer 14.

そして、ゴニオメータを操作して、試料SをX,Y,Z軸方向に移動且つX軸周りに回動させ、試料が所定の観察が行えるように配置させる。   Then, the goniometer is operated to move the sample S in the X, Y, and Z axis directions and rotate around the X axis so that the sample can be observed in a predetermined manner.

次に、試料室5内を真空ポンプ(図示せず)により、所定の高真空度に達するまで排気する。   Next, the sample chamber 5 is evacuated by a vacuum pump (not shown) until a predetermined high degree of vacuum is reached.

同時に、バルブV1を開き、真空ポンプ17でガス雰囲気容器21内を、バルブV3を開き、真空ポンプ25で差圧空間Da,Dbを所定の圧力に達するまで排気する。   At the same time, the valve V1 is opened, the inside of the gas atmosphere container 21 is opened by the vacuum pump 17, the valve V3 is opened, and the differential pressure spaces Da and Db are exhausted by the vacuum pump 25 until a predetermined pressure is reached.

この状態において、電子銃1から電子ビームEBを発生させる。電子銃より放出された電子ビームEBは、集束レンズ2により集束され、対物レンズ3により細く絞られ、ガス雰囲気容器21上壁部の電子ビーム通過孔Ha内の差圧空間Daを通過して試料S上のSpの位置に照射される。   In this state, an electron beam EB is generated from the electron gun 1. The electron beam EB emitted from the electron gun is focused by the focusing lens 2, narrowed down by the objective lens 3, and passes through the differential pressure space Da in the electron beam passage hole Ha on the upper wall portion of the gas atmosphere container 21. The position of Sp on S is irradiated.

そして、試料を透過した電子は、ガス雰囲気容器21下壁部の電子ビーム通過孔Hb内の差圧空間Dbを通過し、中間レンズ6及び投射レンズ7によって蛍光板8上、あるいは、カメラ9上に試料に拡大された試料の投影像が投影される。   And the electron which permeate | transmitted the sample passes the differential pressure space Db in the electron beam passage hole Hb of the gas atmosphere container 21 lower wall part, and on the fluorescent plate 8 or the camera 9 by the intermediate lens 6 and the projection lens 7. An enlarged projection image of the sample is projected onto the sample.

さて、試料と反応ガスの反応過程を観察する場合には、開閉バルブV2を開き、ガスボンベ29からの反応ガス流量をガス量調整装置28で調整し、ガス供給管26を通じてノズルNにガスを送る。   When observing the reaction process between the sample and the reaction gas, the open / close valve V2 is opened, the reaction gas flow rate from the gas cylinder 29 is adjusted by the gas amount adjusting device 28, and the gas is sent to the nozzle N through the gas supply pipe 26. .

すると、ノズル先端よりガス雰囲気容器21内に配置されている試料Sに反応ガスが吹き付けられると、試料と反応ガスとの反応が始まる。   Then, when the reaction gas is sprayed from the nozzle tip to the sample S arranged in the gas atmosphere container 21, the reaction between the sample and the reaction gas starts.

この時、ガス雰囲気容器21内は反応ガスの供給により圧力が上昇し低真空状態となるが、ガス雰囲気容器21内の空間と高真空状態の試料室5内の空間とは差圧空間Da,Dbの形成により、ガス雰囲気容器21内の反応ガスが試料室5内に漏れることはない。   At this time, the pressure in the gas atmosphere container 21 rises due to the supply of the reaction gas and becomes a low vacuum state, but the space in the gas atmosphere container 21 and the space in the sample chamber 5 in the high vacuum state have a differential pressure space Da, Due to the formation of Db, the reaction gas in the gas atmosphere container 21 does not leak into the sample chamber 5.

この状態で、電子銃1からの電子ビームEBをガス雰囲気容器21上壁部の電子ビーム通過孔Ha内の差圧空間Daを通過させて反応ガスとの反応を起こしている試料Sに照射し、試料Sを透過した電子をガス雰囲気容器21下壁部の電子ビーム通過孔Hb内の差圧空間Dbを通過させ、中間レンズ6及び投射レンズ7によって蛍光板8上、あるいは、カメラ9上に試料の透過像を投影する。   In this state, the electron beam EB from the electron gun 1 is passed through the differential pressure space Da in the electron beam passage hole Ha on the upper wall portion of the gas atmosphere container 21 to irradiate the sample S that has reacted with the reaction gas. The electrons that have passed through the sample S are allowed to pass through the differential pressure space Db in the electron beam passage hole Hb in the lower wall portion of the gas atmosphere container 21, and the sample is placed on the fluorescent plate 8 or the camera 9 by the intermediate lens 6 and the projection lens 7. A transmission image of is projected.

尚、特に説明しなかったが、通常、試料Sと反応ガスとの反応を促進するために、別途、試料加熱手段を設けて試料を加熱するようにしている。   Although not specifically described, normally, in order to promote the reaction between the sample S and the reaction gas, a sample heating means is separately provided to heat the sample.

特開2009−259760号公報JP 2009-259760 A

さて、試料と反応ガスとの反応過程を観察する場合、反応が起こった際の試料観察装置でのガス圧力は、重要なパラメータである。
従来においては、ガス雰囲気容器21内の圧力が試料観察位置でのガス圧力と等しいものと仮定し、そのガス雰囲気容器21の圧力として圧力計G1による測定値を採用していた。
When observing the reaction process between the sample and the reaction gas, the gas pressure in the sample observation device when the reaction occurs is an important parameter.
Conventionally, it is assumed that the pressure in the gas atmosphere container 21 is equal to the gas pressure at the sample observation position, and the measured value by the pressure gauge G1 is adopted as the pressure of the gas atmosphere container 21.

しかし、反応ガスを大量にガス雰囲気容器21内に流し続ける場合には、容器内の圧力は均一になるため上記の過程が成り立つが、試料に近接して配置したノズルから少量のガスを試料の観察位置に吹き付けるような場合には、成立しないと考えられる。   However, when a large amount of reaction gas continues to flow into the gas atmosphere container 21, the above process is established because the pressure in the container becomes uniform. However, a small amount of gas is supplied to the sample from a nozzle arranged close to the sample. It is considered that it does not hold when spraying on the observation position.

すなわち、ノズルから噴出したガスは、試料観察位置に向かって進むが、すぐに圧力差による体積膨張が起き、拡散してしまう。   That is, the gas ejected from the nozzle proceeds toward the sample observation position, but immediately expands due to a pressure difference and diffuses.

このことから、試料観察位置から5mm、10mm離れただけでもその場所の圧力は、試料観察位置の圧力よりも大幅に低い値となってしまい、ましてや、ガス雰囲気容器21内の圧力測定値は、試料観察位置での圧力とはかけ離れたものとならざるを得ない。   From this, even if it is 5 mm or 10 mm away from the sample observation position, the pressure at that location becomes a value significantly lower than the pressure at the sample observation position. Moreover, the pressure measurement value in the gas atmosphere container 21 is It must be far from the pressure at the sample observation position.

加えて、圧力計G1は、ガス雰囲気容器21内とゴニオメータ支持体14の先端部空間Saに通じている排気管16の途中に設けられており、ガス雰囲気容器21に直接取り付けられているわけではないので、圧力計G1の圧力値、ガス雰囲気容器21内の圧力値も正確に表していない。   In addition, the pressure gauge G1 is provided in the middle of the exhaust pipe 16 communicating with the inside of the gas atmosphere container 21 and the tip space Sa of the goniometer support 14, and is not directly attached to the gas atmosphere container 21. Therefore, neither the pressure value of the pressure gauge G1 nor the pressure value in the gas atmosphere container 21 is accurately represented.

本発明は、このような問題を解決するためになされたもので、新規な試料観察方法および圧力測定用ホルダを提供することを目的とする。 The present invention has been made to solve such problems, and an object thereof is to provide a novel sample observation method and pressure measurement Hol da.

電子光学軸上に電子ビーム通過孔が開けられており、その内部にガス供給系からガスが供給されるガス雰囲気容器と、先端部に試料を保持し,該試料を真空外から前記ガス雰囲気容器内に導入する試料ホルダとを備えた電子顕微鏡における試料観察方法であって、前記試料ホルダを前記ガス雰囲気容器内に導入する前に、圧力測定用素子が取付られた圧力測定用ホルダを該ガス雰囲気容器内に導入し、該圧力測定用素子が検出する該ガス雰囲気容器内の圧力が所定の圧力に成る様に該ガス雰囲気容器内を前記ガス供給系により調整した際のガスの流量設定値を記録し、次に、前記圧力測定用ホルダに代えて前記試料ホルダを前記ガス雰囲気容器内に導入し、前記記録したガスの流量設定値に基づいて前記ガス雰囲気容器内の圧力を調整し、電子ビーム発生手段からの電子ビームを前記試料に照射し、該試料を透過した電子ビームに基づく試料像を得る様にした。
An electron beam passage hole is formed on the electron optical axis, a gas atmosphere container in which gas is supplied from a gas supply system, a sample is held at the tip, and the sample is removed from the vacuum from the gas atmosphere container. a sample observation method in an electron microscope equipped with a sample holder for introducing within, the sample holder prior to introduction into the gas atmosphere in the container, the pressure measurement holder for pressure measurement element are only attached The gas flow rate when the gas supply system is adjusted by the gas supply system so that the pressure in the gas atmosphere container introduced into the gas atmosphere container and the pressure in the gas atmosphere container detected by the pressure measuring element becomes a predetermined pressure. Record the set value, then introduce the sample holder into the gas atmosphere container instead of the pressure measurement holder, and adjust the pressure in the gas atmosphere container based on the recorded gas flow rate set value and, Irradiating an electron beam from a child beam generating means to said sample, was set to obtain a sample image based on electron beam transmitted through the sample.

本発明によれば、試料観察位置のガス圧力を目標とするガス圧にすることが出来るので、試料観察位置のガス圧力を所望の圧力にした状態での試料観察を行うことが可能に成る。   According to the present invention, since the gas pressure at the sample observation position can be set to the target gas pressure, it is possible to perform sample observation in a state where the gas pressure at the sample observation position is set to a desired pressure.

その場観察が可能な電子顕微鏡の一概略例を示している。An example of an electron microscope capable of in-situ observation is shown. 図1の一部詳細を示したものである。FIG. 2 shows a part of the details of FIG. 本発明の試料観察方法を実施するための装置例を示したものである。An example of an apparatus for carrying out the sample observation method of the present invention is shown. 圧力センサとして熱電対型圧力計を用いた例を示す図である。It is a figure which shows the example which used the thermocouple type pressure gauge as a pressure sensor.

図3は、本発明の試料観察方法を実施するための装置例を示したものであり、図2に示すものと基本構成は同一で、試料ホルダ18のかわりに圧力測定用ホルダ30をゴニオメータ15に装着した状態を表している。 FIG. 3 shows an example of an apparatus for carrying out the sample observation method of the present invention. The basic configuration is the same as that shown in FIG. 2, and the pressure measurement holder 30 is replaced with the goniometer 15 instead of the sample holder 18. It shows the state of wearing.

図3に示す圧力測定用ホルダ30は、通常の試料ホルダの先端にリード線33を介して圧力センサチップ31を取り付けた構造を有している。   The pressure measurement holder 30 shown in FIG. 3 has a structure in which a pressure sensor chip 31 is attached to the tip of a normal sample holder via a lead wire 33.

リード線33は、密封封止して真空と大気間の圧力を保持するためのハーメチックシール34を経由し、圧力測定用ホルダ30外部に取り出されたリード線35に繋がれており、リード線35には圧力計36が接続されている。   The lead wire 33 is connected to a lead wire 35 taken out to the outside of the pressure measurement holder 30 through a hermetic seal 34 for hermetically sealing and maintaining the pressure between the vacuum and the atmosphere. Is connected to a pressure gauge 36.

なお、圧力測定用ホルダ30本体の中間部外周にはリング状の溝が切られており、この溝には真空シール用のOリング20がはめ込まれている。   A ring-shaped groove is cut in the outer periphery of the intermediate portion of the pressure measurement holder 30 main body, and an O-ring 20 for vacuum sealing is fitted in this groove.

本発明の実施の形態を説明するに当たり、以下に、実施形態の試料観察方法をステップに分けて説明する。
(ステップ1)
まず、ガス雰囲気容器21及び試料室5内がリークされ、大気圧の状態から、図3に示す様に圧力測定用ホルダ30をゴニオメータ15に装着する。
圧力測定用ホルダ30を装着することにより、圧力測定用ホルダ30の先端に取付けられている圧力測定用素子31は、ガス雰囲気容器21内の図2における試料と電子線光軸が交わる位置Sp、すなわち観察の際、試料が電子線に照射される位置に配置される。
(ステップ2)
次に、圧力測定用ホルダ30を装着した状態で、ガス雰囲気容器21内を排気して圧力が安定した後、圧力測定素子31を使ってガス雰囲気容器内の試料が配置されるべき位置の圧力(試料観察位置圧力)を検出しながら、ガス供給系のガス流量を調整することにより試料位置圧力が目標の圧力となるようにする操作を行う。
すなわち、試料室5内を大気圧の状態から、真空ポンプ(図示せず)により排気を開始すると同時に、開閉バルブV1、V3を開き、真空ポンプ17によるガス雰囲気容器21内の、真空ポンプ25による差圧空間Da,Dbの排気をそれぞれ開始する。
そして、各真空ポンプにより試料室5、ガス雰囲気容器21、差圧空間Da,Dbの圧力が安定状態になるまで排気する。例えば、ガス導入前の安定状態において、試料室5に配置された圧力計G3の圧力値がP3a、ガス雰囲気容器21とV1間に設置した圧力計G1の圧力値がP1a、試料と電子線光軸が交わる位置Spに設置した圧力測定用素子31の圧力値がPsaをそれぞれ示すものとする。
次に、開閉バルブV2を開き、ガスボンベ29からのガス流量をガス量調整装置28で調整してガス供給管26を通じてノズルNにガスを送る。
この時、試料観察位置圧力の目標値がPsbとすると、オペレータは、圧力測定用素子31が検出する圧力値がPsbになるように、圧力測定用素子31で圧力をチェックしながら、ガス流量調整装置28のガス量を調整する。
(ステップ3)
ガス流量調整装置28で流量調整し、圧力測定素子31で測定する圧力値がPsbの値に安定して維持されるようになった時、試料室5に接続する圧力計G3の圧力値P3b、ガス雰囲気容器21を排気するための真空ポンプに繋がる排気管に設けられた圧力計G1の圧力値P1b、およびガス雰囲気容器内にガスを供給するためのガス供給系に繋がるガス供給管に設けられた流量計の流量設定値F1を記録(記憶)する。
In describing the embodiment of the present invention, the sample observation method of the embodiment will be described below in steps.
(Step 1)
First, the gas atmosphere container 21 and the sample chamber 5 are leaked, and the pressure measurement holder 30 is attached to the goniometer 15 as shown in FIG.
By mounting the pressure measuring holder 30, the pressure measuring element 31 attached to the tip of the pressure measuring holder 30 is positioned at the position Sp where the sample in FIG. That is, at the time of observation, the sample is placed at a position where the electron beam is irradiated.
(Step 2)
Next, with the pressure measurement holder 30 attached, after the gas atmosphere container 21 is evacuated and the pressure is stabilized, the pressure at the position where the sample in the gas atmosphere container should be placed using the pressure measurement element 31. While detecting (sample observation position pressure), an operation is performed to adjust the gas flow rate of the gas supply system so that the sample position pressure becomes the target pressure.
That is, the sample chamber 5 is evacuated from the atmospheric pressure by a vacuum pump (not shown), and at the same time, the open / close valves V1 and V3 are opened, and the vacuum pump 17 in the gas atmosphere container 21 by the vacuum pump 17 is opened. Exhaust of the differential pressure spaces Da and Db is started.
Then, each vacuum pump is evacuated until the pressure in the sample chamber 5, the gas atmosphere container 21, and the differential pressure spaces Da and Db becomes stable. For example, in a stable state before gas introduction, the pressure value of the pressure gauge G3 disposed in the sample chamber 5 is P3a, the pressure value of the pressure gauge G1 installed between the gas atmosphere container 21 and V1 is P1a, the sample and electron beam light It is assumed that the pressure value of the pressure measuring element 31 installed at the position Sp where the axes intersect each indicates Psa.
Next, the opening / closing valve V2 is opened, the gas flow rate from the gas cylinder 29 is adjusted by the gas amount adjusting device 28, and the gas is sent to the nozzle N through the gas supply pipe 26.
At this time, if the target value of the sample observation position pressure is Psb, the operator adjusts the gas flow rate while checking the pressure with the pressure measuring element 31 so that the pressure value detected by the pressure measuring element 31 becomes Psb. The gas amount of the device 28 is adjusted.
(Step 3)
When the flow rate is adjusted by the gas flow rate adjusting device 28 and the pressure value measured by the pressure measuring element 31 is stably maintained at the value of Psb, the pressure value P3b of the pressure gauge G3 connected to the sample chamber 5; A pressure value P1b of a pressure gauge G1 provided in an exhaust pipe connected to a vacuum pump for exhausting the gas atmosphere container 21 and a gas supply pipe connected to a gas supply system for supplying gas into the gas atmosphere container. Record (store) the flow rate set value F1 of the flowmeter.

通常、P3b,P1bは、ガス導入前の値P3a、P1aよりもガス導入の分高くなる。   Normally, P3b and P1b are higher by the amount of gas introduced than the values P3a and P1a before the gas introduction.

以上のステップ1〜3により、試料観察位置圧力を目標の圧力値にする条件設定が終了する。
(ステップ4)
次に以下のような手順で圧力測定用ホルダを取り外し観察すべき試料をセットした試料ホルダをゴニオメータに装着する。
開閉バルブV1,V2,V3を閉じ、その後、試料室5からガス雰囲気容器21内をリークし、ガス雰囲気容器21内の圧力が大気圧に到達した後、ゴニオメータ15から圧力測定用ホルダ30を取外し、代わりに、ゴニオメータ15に観察すべき試料Sをセットした試料ホルダ18を装着する(図2に示す状態)。
(ステップ5)
次に以下のような手順でガス雰囲気容器内を排気し、ガス供給バルブを開けて試料観察を行うガス雰囲気状態にする。
試料ホルダ18を装着後、試料室5内を大気圧の状態から、真空ポンプ(図示せず)により排気を開始すると同時に、開閉バルブV1とV3を開き、真空ポンプ17でガス雰囲気容器21内を、真空ポンプ25で差圧空間Da,Dbの排気を開始する。
そして、ステップ2と同様に、各真空ポンプにより試料室5、ガス雰囲気容器21、差圧空間Da,Dbの真空圧力の圧力が安定するまで排気する。すなわち、各排気ポンプは、試料室5に配置された圧力計G3の圧力値がP3a、ガス雰囲気容器21とV1間に設置した圧力計G1の圧力値がP1aに達するまで排気する。
Through the above steps 1 to 3, the condition setting for setting the sample observation position pressure to the target pressure value is completed.
(Step 4)
Next, the pressure measurement holder is removed in the following procedure, and the sample holder on which the sample to be observed is set is attached to the goniometer.
The on-off valves V1, V2, and V3 are closed, and then the gas atmosphere container 21 leaks from the sample chamber 5, and after the pressure in the gas atmosphere container 21 reaches atmospheric pressure, the pressure measurement holder 30 is removed from the goniometer 15. Instead, the sample holder 18 on which the sample S to be observed is set is mounted on the goniometer 15 (the state shown in FIG. 2).
(Step 5)
Next, the inside of the gas atmosphere container is evacuated by the following procedure, and the gas supply valve is opened to make a gas atmosphere state in which the sample is observed.
After mounting the sample holder 18, the sample chamber 5 is started to be evacuated from a state of atmospheric pressure by a vacuum pump (not shown), and at the same time, the open / close valves V 1 and V 3 are opened and the inside of the gas atmosphere container 21 is opened by the vacuum pump 17. Then, the vacuum pump 25 starts exhausting the differential pressure spaces Da and Db.
Then, as in step 2, the vacuum pumps are evacuated until the vacuum pressure in the sample chamber 5, the gas atmosphere container 21, and the differential pressure spaces Da and Db is stabilized. That is, each exhaust pump exhausts until the pressure value of the pressure gauge G3 arranged in the sample chamber 5 reaches P3a and the pressure value of the pressure gauge G1 installed between the gas atmosphere container 21 and V1 reaches P1a.

次に、開閉バルブV2を開き、ガスボンベ29からのガス流量を調整するガス量調整装置28を前回調整した流量設定値F1のまま、ガス供給管26を通じてノズルNに反応ガスを送る。   Next, the on-off valve V2 is opened, and the reaction gas is sent to the nozzle N through the gas supply pipe 26 while the flow rate setting value F1 adjusted last time by the gas amount adjusting device 28 for adjusting the gas flow rate from the gas cylinder 29 is maintained.

ノズルN先端と試料の観察位置との位置関係は、ステップ3におけるノズルNと圧力測定素子31との位置関係と同一であり、そこに先に調整したままの設定値F1で反応ガスが試料に向けて噴出するので、試料の観察位置の圧力は、ステップ3で設定したのと同じPsbとなる。
(ステップ6)
以上で試料観察位置圧力がPsbに設定されたので、試料観察を行う。すなわち、電子銃1からの電子ビームEBをガス雰囲気容器21上壁部の電子ビーム通過孔Ha内の差圧空間Daを通過させてガスとの反応を起こしている試料Sに照射し、試料Sを透過した電子をガス雰囲気容器21下壁部の電子ビーム通過孔Hb内の差圧空間Dbを通過させ、中間レンズ6及び投射レンズ7によって蛍光板8上、或いは、カメラ9上に試料の透過像を投影する。
The positional relationship between the tip of the nozzle N and the observation position of the sample is the same as the positional relationship between the nozzle N and the pressure measuring element 31 in step 3, and the reaction gas is applied to the sample at the set value F1 that has been previously adjusted. The pressure at the observation position of the sample is the same Psb as set in step 3.
(Step 6)
Since the sample observation position pressure is set to Psb as described above, sample observation is performed. That is, the electron beam EB from the electron gun 1 is passed through the differential pressure space Da in the electron beam passage hole Ha in the upper wall portion of the gas atmosphere container 21 to irradiate the sample S that is reacting with the gas. Is transmitted through the differential pressure space Db in the electron beam passage hole Hb in the lower wall portion of the gas atmosphere container 21, and the transmission image of the sample is transferred onto the fluorescent screen 8 or the camera 9 by the intermediate lens 6 and the projection lens 7. Project.

以上の手順により、試料観察位置圧力を目標値Psbに設定し、試料Sと反応ガスが反応する過程を観察することができる。   By the above procedure, the sample observation position pressure is set to the target value Psb, and the process in which the sample S reacts with the reaction gas can be observed.

ステップ5において流量F1で反応ガスの導入を開始してからステップ6における観察に移るタイミングは、適当な待ち時間を設定するだけでも良いが、圧力計G1の測定値が先にステップ3において記憶した圧力値P1bに一致あるいは、略等しくなった時点としても良い。   The timing at which the introduction of the reaction gas at the flow rate F1 in Step 5 is started and the observation is shifted to the observation in Step 6 may be set to an appropriate waiting time, but the measured value of the pressure gauge G1 is stored in Step 3 first. It may be a point in time when the pressure value P1b coincides with or substantially equals.

更に、圧力計G3の測定値も参照し、圧力計G1,G3の測定値が前記記憶したP1b、P3bの各圧力値に到達した状態とみなしても良い。   Further, the measured value of the pressure gauge G3 may be referred to and the measured values of the pressure gauges G1 and G3 may be regarded as reaching the stored pressure values of P1b and P3b.

ところで、前記例において、圧力測定に使用する圧力測定用素子としては、例えば気体分子の熱伝導現象を利用した熱電対型圧力計を採用してもよい。   By the way, in the said example, as a pressure measurement element used for a pressure measurement, you may employ | adopt the thermocouple type pressure gauge using the heat conduction phenomenon of a gas molecule, for example.

この熱電対型圧力計とは、一定電流で加熱したヒータ線の温度が、気体分子の熱伝導により変化することに基づき、ヒータ線の温度を、ヒータ線に接続した熱電対で測定し、ヒータ線の温度を圧力値に換算することにより、圧力値を測るものである。
図4にこのような熱電対型圧力計を組み込んだ圧力測定ホルダ38を示す。圧力測定ホルダ38は、図2に示す試料ホルダ挿入時の試料と電子線光軸の交わる位置(試料観察位置)Spに、圧力測定ホルダ本体39bの先端のサポート39a上の端子41aと41bの間に張架されたヒータ線40が配置され、ヒータ線40上に熱電対43a,43bが接続される。そして、端子41a,42bに接続されたリード線および熱電対42a,42bが、ハーメチックシール44を介して、圧力測定ホルダ本体39b内部に接続されたリード線45a,45b,46a,46bにつながれている。リード線45a,45bは、定電流供給電源47に、リード線46a,46bは、電圧計48に接続される。
このような構成で、ヒータ線40の温度は、ヒータ線40の発熱量を一定に保つようにヒータ線40に定電流を供給し、周囲の圧力に依存して周囲の気体が奪う熱量の変化に伴い変化する。
そして、ヒータ線40の温度を熱電対で検出し、熱電対の起電力を電圧計48で検出し、圧力表示計49で電圧値を圧力値に換算してヒータ線40近傍の圧力値を表示する。
このように、圧力測定ホルダに装着する圧力センサは、試料観察位置の圧力が測定でき、かつ圧力ホルダ先端に配置できるサイズのものであれば、圧力センサの方式は限定されない。
This thermocouple type pressure gauge is based on the fact that the temperature of the heater wire heated at a constant current changes due to the thermal conduction of gas molecules, and the temperature of the heater wire is measured with a thermocouple connected to the heater wire. The pressure value is measured by converting the temperature of the wire into a pressure value.
FIG. 4 shows a pressure measurement holder 38 incorporating such a thermocouple pressure gauge. The pressure measurement holder 38 is positioned between the terminals 41a and 41b on the support 39a at the tip of the pressure measurement holder main body 39b at the position (sample observation position) Sp where the sample and the electron beam optical axis intersect when the sample holder is inserted as shown in FIG. The heater wire 40 stretched between the thermocouples 43 a and 43 b is connected to the heater wire 40. The lead wires connected to the terminals 41a and 42b and the thermocouples 42a and 42b are connected to the lead wires 45a, 45b, 46a and 46b connected to the inside of the pressure measurement holder main body 39b via the hermetic seal 44. . The lead wires 45 a and 45 b are connected to a constant current supply power source 47, and the lead wires 46 a and 46 b are connected to a voltmeter 48.
With such a configuration, the temperature of the heater wire 40 is such that a constant current is supplied to the heater wire 40 so that the amount of heat generated by the heater wire 40 is kept constant, and the amount of heat taken by the surrounding gas depends on the ambient pressure. It changes with.
Then, the temperature of the heater wire 40 is detected by a thermocouple, the electromotive force of the thermocouple is detected by a voltmeter 48, and the pressure value is converted into a pressure value by a pressure indicator 49 to display a pressure value near the heater wire 40. To do.
Thus, the pressure sensor system is not limited as long as the pressure sensor attached to the pressure measurement holder is of a size that can measure the pressure at the sample observation position and can be disposed at the tip of the pressure holder.

1:電子銃、 EB:電子ビーム、 2:集束レンズ、 3:対物レンズ、 3A:上磁極、 3B:下磁極、 4:ガス雰囲気試料収納ブロック、 5:試料室、 6:中間レンズ、 7:投射レンズ、 8:蛍光板、 9:カメラ、 10:制御装置、 11:AD変換器、 12:表示装置、 13:入力装置、 14:ゴニオメータ、
15:ゴニオメータ支持体、 Sa:空間、 16:排気管、
17:真空ポンプ、 18:試料ホルダ、 C:鏡筒、 S:試料、 19:試料保持体、 20:Oリング、 21:ガス雰囲気容器、
22:Oリング、 23a,23b,23c:排気管、
24:排気管、 25:真空ポンプ、 OW:上壁、 BW:下壁、 SW:側壁、 O:電子光学軸、 Ha,Hb:電子ビーム通過孔、 Oa,Ob,Oc,Od:オリフィス板、 Da,Db:差圧空間、 26:ガス導入管、 28:ガス流量調整装置、 29:ガスボンベ、
V1,V2,V3:開閉バルブ、 N:ノズル、
G1,G2,G3:圧力計、 30:圧力測定ホルダ、
31、圧力測定素子、 33,35:リード線、
34:ハーメチックシール、 36:圧力計、 38:圧力測定ホルダ、 40:ヒータ、 43a,43b:熱電対、 47:定電流供給源、 48:電圧計、 49:圧力表示計
1: electron gun, EB: electron beam, 2: focusing lens, 3: objective lens, 3A: upper magnetic pole, 3B: lower magnetic pole, 4: gas atmosphere sample storage block, 5: sample chamber, 6: intermediate lens, 7: Projection lens, 8: fluorescent screen, 9: camera, 10: control device, 11: AD converter, 12: display device, 13: input device, 14: goniometer,
15: Goniometer support, Sa: space, 16: exhaust pipe,
17: vacuum pump, 18: sample holder, C: lens barrel, S: sample, 19: sample holder, 20: O-ring, 21: gas atmosphere container,
22: O-ring, 23a, 23b, 23c: exhaust pipe,
24: Exhaust pipe, 25: Vacuum pump, OW: Upper wall, BW: Lower wall, SW: Side wall, O: Electron optical axis, Ha, Hb: Electron beam passage hole, Oa, Ob, Oc, Od: Orifice plate, Da, Db: differential pressure space, 26: gas introduction pipe, 28: gas flow rate adjusting device, 29: gas cylinder,
V1, V2, V3: Open / close valve, N: Nozzle,
G1, G2, G3: pressure gauge, 30: pressure measurement holder,
31, pressure measuring element 33, 35: lead wire,
34: Hermetic seal, 36: Pressure gauge, 38: Pressure measurement holder, 40: Heater, 43a, 43b: Thermocouple, 47: Constant current supply source, 48: Voltmeter, 49: Pressure indicator

Claims (3)

電子光学軸上に電子ビーム通過孔が開けられており、その内部にガス供給系からガスが供給されるガス雰囲気容器と、先端部に試料を保持し,該試料を真空外から前記ガス雰囲気容器内に導入する試料ホルダとを備えた電子顕微鏡における試料観察方法であって、前記試料ホルダを前記ガス雰囲気容器内に導入する前に、圧力測定用素子が取付られた圧力測定用ホルダを該ガス雰囲気容器内に導入し、該圧力測定用素子が検出する該ガス雰囲気容器内の圧力が所定の圧力に成る様に該ガス雰囲気容器内を前記ガス供給系により調整した際のガスの流量設定値を記録し、次に、前記圧力測定用ホルダに代えて前記試料ホルダを前記ガス雰囲気容器内に導入し、前記記録したガスの流量設定値に基づいて前記ガス雰囲気容器内の圧力を調整し、電子ビーム発生手段からの電子ビームを前記試料に照射し、該試料を透過した電子ビームに基づく試料像を観察する様にした試料観察方法。 An electron beam passage hole is formed on the electron optical axis, a gas atmosphere container in which gas is supplied from a gas supply system, a sample is held at the tip, and the sample is removed from the vacuum from the gas atmosphere container. a sample observation method in an electron microscope equipped with a sample holder for introducing within, the sample holder prior to introduction into the gas atmosphere in the container, the pressure measurement holder for pressure measurement element are only attached The gas flow rate when the gas supply system is adjusted by the gas supply system so that the pressure in the gas atmosphere container introduced into the gas atmosphere container and the pressure in the gas atmosphere container detected by the pressure measuring element becomes a predetermined pressure. Record the set value, then introduce the sample holder into the gas atmosphere container instead of the pressure measurement holder, and adjust the pressure in the gas atmosphere container based on the recorded gas flow rate set value and, Child beam was irradiated with an electron beam from the generator means to the sample, the sample observation method was as observing a sample image based on the electron beam transmitted through the sample. 前記ガス雰囲気容器内排気するための真空ポンプに繋がる排気管に設けられた圧力計が測定した圧力値を記憶し、次に、前記圧力測定用ホルダに代えて前記試料ホルダを前記ガス雰囲気容器内に導入し、前記圧力計が前記記憶した圧力値に到達していることを確認してから観察することを特徴とする請求項1記載の試料観察方法。 Stores a pressure value measured by a pressure gauge provided in an exhaust pipe connected to a vacuum pump for exhausting the inside of the gas atmosphere container, and then replaces the pressure measuring holder with the sample holder as the gas atmosphere container. The sample observation method according to claim 1, wherein the observation is performed after the pressure gauge is introduced and the pressure gauge is confirmed to have reached the stored pressure value. 試料を保持した試料ホルダと差し替えて試料室に挿入可能な圧力測定ホルダであって、挿入した時に圧力センサが試料の配置される位置と略同一位置に配置されるように圧力センサを先端に保持した圧力測定用ホルダ。   This is a pressure measurement holder that can be inserted into the sample chamber by replacing the sample holder that holds the sample, and when inserted, the pressure sensor is held at the tip so that it is located at approximately the same position as the sample is placed. Holder for pressure measurement.
JP2011151594A 2011-07-08 2011-07-08 Sample observation method and pressure measurement holder Active JP5824262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151594A JP5824262B2 (en) 2011-07-08 2011-07-08 Sample observation method and pressure measurement holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151594A JP5824262B2 (en) 2011-07-08 2011-07-08 Sample observation method and pressure measurement holder

Publications (2)

Publication Number Publication Date
JP2013020747A JP2013020747A (en) 2013-01-31
JP5824262B2 true JP5824262B2 (en) 2015-11-25

Family

ID=47692022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151594A Active JP5824262B2 (en) 2011-07-08 2011-07-08 Sample observation method and pressure measurement holder

Country Status (1)

Country Link
JP (1) JP5824262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364167B2 (en) 2013-09-30 2018-07-25 株式会社日立ハイテクノロジーズ Environmentally controlled charged particle observation system
JP6207344B2 (en) * 2013-10-30 2017-10-04 日本電子株式会社 Charged particle beam equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187735A (en) * 2001-12-18 2003-07-04 Jeol Ltd Sample holder
JP4850654B2 (en) * 2006-10-23 2012-01-11 株式会社日立ハイテクノロジーズ Charged particle beam device and sample holding device for charged particle beam device
JP2008130251A (en) * 2006-11-16 2008-06-05 Tokyo Seimitsu Co Ltd Focusing state-detecting member, scanning electron microscope, focusing condition adjustment method, focus adjustment method, and focus depth measurement method
JP5124507B2 (en) * 2009-02-16 2013-01-23 株式会社日立ハイテクノロジーズ Electron beam apparatus and sample holder for electron beam apparatus

Also Published As

Publication number Publication date
JP2013020747A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US8878144B2 (en) Electron microscope and sample holder
WO2010092747A1 (en) Electron beam device and sample holding device for electron beam device
US10068745B2 (en) Charged particle beam device and sample holder for charged particle beam device
US9658246B2 (en) Method of studying a sample in an ETEM
JP4850654B2 (en) Charged particle beam device and sample holding device for charged particle beam device
JP5824262B2 (en) Sample observation method and pressure measurement holder
JP6169334B2 (en) Electron microscope and electron microscope sample holder
JP6817098B2 (en) Sample transfer device and electron microscope
US9318300B2 (en) Charged particle beam instrument
JP5891030B2 (en) electronic microscope
US9721752B2 (en) Sample holder and charged particle device
JP2009259760A (en) Testpiece device of electron microscope
JP6045312B2 (en) Sample holder and electron microscope
JP6531188B2 (en) Transmission electron microscope
JP7407689B2 (en) Sample holder and charged particle beam device equipped with the same
WO2015064691A1 (en) Charged particle beam device
JP2014146486A (en) Charged particle beam device
JP2021068643A (en) Sample holder, charged particle beam device, and gas flow rate control device
WO2018207309A1 (en) Sample holder, electron microscope
JPH05128988A (en) Electron beam device
JP2012138233A (en) Evacuation method and device for sample holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150