WO2013099427A1 - Abc-type azo-based triblock copolymer - Google Patents

Abc-type azo-based triblock copolymer Download PDF

Info

Publication number
WO2013099427A1
WO2013099427A1 PCT/JP2012/077999 JP2012077999W WO2013099427A1 WO 2013099427 A1 WO2013099427 A1 WO 2013099427A1 JP 2012077999 W JP2012077999 W JP 2012077999W WO 2013099427 A1 WO2013099427 A1 WO 2013099427A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
segment
triblock copolymer
copolymer
Prior art date
Application number
PCT/JP2012/077999
Other languages
French (fr)
Japanese (ja)
Inventor
憲弘 吉田
Original Assignee
丸善石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸善石油化学株式会社 filed Critical 丸善石油化学株式会社
Priority to JP2013551521A priority Critical patent/JP5917568B2/en
Publication of WO2013099427A1 publication Critical patent/WO2013099427A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F295/00Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/347Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated ethers, acetals, hemiacetals, ketones or aldehydes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen

Definitions

  • the present invention relates to an ABC type azo triblock copolymer, a hydrophilicity / hydrophobicity control agent, a hydrophilicity / hydrophobicity control method, and a copolymer-fiber composite.
  • Some polymer compounds exhibit a phase transition phenomenon in response to external stimuli such as heat, pH, light, etc., and temperature sensors, separation membranes, adsorbents, drug release agents, water absorbing agents that apply this phase transition phenomenon
  • external stimuli such as heat, pH, light, etc.
  • temperature sensors separation membranes, adsorbents, drug release agents, water absorbing agents that apply this phase transition phenomenon
  • thermoresponsive polymers those that exhibit a phase transition phenomenon in response to heat are called temperature-responsive polymers, and as such polymers, living polymers of vinyl ethers containing oxyethylene chains are known. Yes. This living polymer exhibits hydrophilicity at a specific temperature or lower, and exhibits hydrophobicity when the temperature is exceeded. However, since it is an oily compound, it does not have moldability and film forming properties, and its use is greatly limited. It had been.
  • a diblock copolymer of a vinyl ether containing an oxyethylene chain and an alicyclic vinyl ether has been developed as a polymer exhibiting temperature responsiveness and having film forming properties and moldability (Patent Document 1). ).
  • the diblock copolymer has a problem that the moldability is not yet sufficient, the formed film has a surface tack, and cracks are generated by contact with water.
  • Non-Patent Document 1 a diblock copolymer of a vinyl ether containing an oxyethylene chain and a vinyl ether containing an azobenzene skeleton is known (Patent Document 2).
  • Patent Document 2 a diblock copolymer of a vinyl ether containing an oxyethylene chain and a vinyl ether containing an azobenzene skeleton is known (Patent Document 2).
  • Patent Document 2 a diblock copolymer of a vinyl ether containing an oxyethylene chain and a vinyl ether containing an azobenzene skeleton is known.
  • Patent Document 2 a diblock copolymer of a vinyl ether containing an oxyethylene chain and a vinyl ether containing an azobenzene skeleton is known (Patent Document 2).
  • polystyrene and polypropylene are particularly easily surface-modified, and the surface-modified polystyrene film is temperature responsive to hydrophilicity and hydrophobicity.
  • an object of the present invention is to provide a novel block copolymer that can exhibit temperature responsiveness even when supported on a fibrous base material, a hydrophilicity / hydrophobicity control agent containing the copolymer, and a hydrophilicity / hydrophobicity using the polymer. It is an object of the present invention to provide a control method and a copolymer-fiber composite carrying the polymer.
  • the present inventor has found that a segment A composed of repeating vinyl ether structural units (a) containing a temperature-responsive group and a repeating structural unit (b) containing an azobenzene skeleton. And an Azo-type triazo group having segments A to C bonded by an ABC sequence, and a segment C composed of repeating oxystyrene-based structural units (c). It has been found that the block copolymer can exhibit temperature responsiveness even if it is supported on a fibrous base material, and the present invention has been completed.
  • the present invention relates to a segment A composed of repeating vinyl ether structural units (a) containing a temperature-responsive group, a segment B consisting of repeating structural units (b) containing an azobenzene skeleton, and an oxystyrene structural unit ( Provided is an ABC type azo triblock copolymer (hereinafter also referred to as a triblock copolymer) characterized in that the segment C formed by repeating c) is bonded by an ABC sequence. To do. Moreover, this invention provides the hydrophilicity / hydrophobicity control agent containing the said triblock copolymer. Furthermore, the present invention provides a method for controlling hydrophilicity / hydrophobicity using the above triblock copolymer. Furthermore, the present invention provides a copolymer-fiber composite in which the above triblock copolymer is supported on a fibrous base material.
  • the triblock copolymer of the present invention Even if the triblock copolymer of the present invention is supported on a fibrous base material, it exhibits temperature responsiveness and reversibly changes its hydrophilicity / hydrophobicity, so that temperature responsiveness can be imparted to a wide range of base materials. . Therefore, according to this invention, the hydrophilicity / hydrophobicity control agent and the hydrophilicity / hydrophobicity control method which can provide temperature responsiveness to a fibrous base material can be provided. Further, the copolymer-fiber composite of the present invention has temperature responsiveness even though the base material is fibrous.
  • the ABC type azo triblock copolymer of the present invention is composed of a segment A composed of repeating vinyl ether structural units (a) containing a temperature-responsive group and a segment B consisting of repeating structural units (b) containing an azobenzene skeleton. And a segment C composed of repeating oxystyrene-based structural units (c) are bonded by an ABC sequence.
  • R 1 represents a methyl group or an ethyl group
  • k is an integer of 1 to 10.
  • the thing represented by is mentioned.
  • the critical temperature at which the hydrophilicity / hydrophobicity changes can be adjusted by appropriately changing the chain length of the side chain in such a structural unit.
  • k is an integer of 1 to 10, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 3.
  • vinyl ether monomers that induce segment A include 2-methoxyethyl vinyl ether, 2-ethoxyethyl vinyl ether, 2- (2-methoxyethoxy) ethyl vinyl ether, 2- (2-ethoxyethoxy) ethyl vinyl ether.
  • segment A is derived using one of such vinyl ether monomers. It may be one that is derived using two or more types .
  • 2-methoxyethyl vinyl ether, 2-ethoxyethyl vinyl ether, and 2- (2- (2-methoxyethoxy) ethoxy) ethyl vinyl ether are preferable from the viewpoint of improving hydrophilicity when the temperature is lowered.
  • R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 2 to 6 carbon atoms.
  • n is an integer of 1 to 5
  • p is an integer of 0 to 2.
  • Q is an integer from 0 to 3.
  • the thing represented by is mentioned.
  • the alkyl group represented by R 2 and R 3 preferably has 1 or 2 carbon atoms.
  • the alkyl group may be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an isobutyl group.
  • the haloalkyl group represented by R 2 and R 3 means a linear or branched alkyl group substituted with a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom, and is substituted.
  • a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom
  • the number and position of halogen atoms are arbitrary.
  • the carbon number of the haloalkyl group is preferably 1 or 2, and the halogen atom is preferably a fluorine atom.
  • Examples of the haloalkyl group include a trifluoromethyl group, a pentafluoroethyl group, and a 2,2,2-trifluoroethyl group.
  • the alkoxy group may be linear or branched, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, and an isobutoxy group. Can be mentioned.
  • the number of carbon atoms of the alkoxyalkyl group represented by R 2 and R 3 is preferably 2-4.
  • the alkoxyalkyl group may be linear or branched, and examples thereof include a methoxymethyl group, an ethoxymethyl group, a 2-methoxyethyl group, and a 2-ethoxyethyl group.
  • examples of the halogen atom represented by R 2 and R 3 include the same halogen atoms as those contained in the haloalkyl group.
  • n is preferably an integer of 1 to 3, particularly preferably 1.
  • P is an integer from 0 to 2
  • q is an integer from 0 to 3.
  • p 2
  • q R 3 s may be the same or different.
  • p 0 or 1 is preferable and 0 is more preferable.
  • q is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Examples of the monomer containing an azobenzene skeleton for deriving segment B include phenyl (4- (2-vinyloxyethoxy) phenyl) diazene and o-tolyl (4- (2-vinyloxyethoxy) phenyl) diazene.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 5 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group having 2 to 6 carbon atoms.
  • An alkanoyl group, an alkoxycarbonyl group, an alkoxycarbonylalkyl group or an alkylsilyl group, and m is an integer of 1 to 3.
  • the carbon number of the alkyl group represented by R 4 is preferably 1 or 2.
  • the alkyl group represented by R 4 and R 5 may be linear or branched, and examples thereof include those exemplified as the alkyl group represented by R 2 .
  • the alkoxyalkyl group having 2 to 6 carbon atoms represented by R 5 is linear, branched or cyclic (two alkyl chains together with an oxygen atom form an oxygen-containing heterocycle)
  • 2-tetrahydropyranyl group, 2-tetrahydrofuranyl group and the like can be mentioned.
  • the number of carbon atoms of the alkanoyl group represented by R 5 is preferably 2 to 6.
  • Such an alkanoyl group may be linear or branched, and examples thereof include an acetyl group, a propionyl group, and a tert-butylcarbonyl group.
  • the number of carbon atoms of the alkoxycarbonyl group represented by R 5 is preferably 2-6.
  • Such an alkoxycarbonyl group may be linear or branched, and examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a tert-butoxycarbonyl group.
  • the number of carbon atoms of the alkoxycarbonylalkyl group represented by R 5 is preferably 2-6.
  • Such an alkoxycarbonylalkyl group may be linear or branched, and examples thereof include a tert-butoxycarbonylmethyl group.
  • the number of carbon atoms of the alkylsilyl group represented by R 5 is preferably 2-6. Examples of such an alkylsilyl group include a trimethylsilyl group and a tert-butyldimethylsilyl group.
  • m is preferably 1 or 2, and more preferably 1.
  • m is 2 or 3
  • the m —OR 5 may be the same or different.
  • Examples of the oxystyrene monomer for deriving segment C include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, and o-isopropenylphenol.
  • Hydroxystyrenes such as p-methoxystyrene, m-methoxystyrene, p-ethoxystyrene, m-ethoxystyrene, p-propoxystyrene, m-propoxystyrene, p-isopropoxystyrene, m-isopropoxystyrene, p- alkoxystyrenes such as n-butoxystyrene, mn-butoxystyrene, p-isobutoxystyrene, m-isobutoxystyrene, p-tert-butoxystyrene, m-tert-butoxystyrene; p-methoxymethoxystyrene m-methoxymethoxystyrene, p- (1-ethoxyethoxy) styrene, m- (1-ethoxyethoxy
  • Alkanoyloxystyrenes such as p-acetoxystyrene, m-acetoxystyrene, p-tert-butylcarbonyloxystyrene, m-tert-butylcarbonyloxystyrene; p-tert-butoxycarbonylmethyloxystyrene M-tert-butoxycarbonyloxymethylstyrenes, alkoxycarbonylalkyloxystyrenes; p-trimethylsilyloxystyrene, m-trimethylsilyloxystyrene, p-tert-butyldimethyl Rusilyloxystyrene, m-tert-butyldimethylsilyloxystyrenes, alkylsilyloxystyrenes, etc., and segment C is derived from one of such oxystyrene monomers.
  • hydroxystyrenes and alkoxystyrenes are preferable, and p-hydroxystyrene, p-isopropenylphenol, and p-tert-butoxystyrene are particularly preferable.
  • segments A to C are bonded by an ABC sequence. With such a configuration, temperature responsiveness can be exhibited even when it is supported on a fibrous base material.
  • the content of segments A to C in the triblock copolymer of the present invention may be appropriately adjusted according to the use, but the content of segment A is preferably 70 to 99 mol%, more preferably 85. ⁇ 98 mol%.
  • the hydrophilicity when the temperature is lowered can be improved by setting such content to 70 mol% or more, while the hydrophobicity when the temperature is raised is improved by setting it to 99 mol% or less. Can do.
  • the content of segment B is preferably 1 to 20 mol%, more preferably 1 to 15 mol%, and further preferably 1 to 10 mol%.
  • the action of segment A and segment C can be enhanced, while by making it 1 mol% or more, the penetration action of segment B into the fibrous base material is enhanced. Can do.
  • the content of segment C is preferably 0.1 to 10 mol%, more preferably 0.3 to 5 mol%, and particularly preferably 0.75 to 3 mol%. Hydrophobicity when the temperature is raised can be improved by making the content 0.1 mol% or more, while hydrophilicity when the temperature is lowered by making the content 5 mol% or less. Can be made.
  • the molar ratio [B / A] of the segments A and B in the triblock copolymer is preferably 0.005 to 1, more preferably 0.01 to 0.5, from the viewpoint of temperature responsiveness. 0.025 to 0.25 is more preferable, and 0.025 to 0.15 is particularly preferable.
  • the molar ratio [C / A] of the segments A and C is preferably 0.001 to 0.1, more preferably 0.0025 to 0.05, and more preferably 0.005 to 0 from the viewpoint of temperature responsiveness. 0.025 is more preferable, and 0.0075 to 0.025 is particularly preferable.
  • content and ratio of each said segment can be measured by NMR etc.
  • the weight average molecular weight (M w ) of the triblock copolymer of the present invention is preferably in the range of 5000 to 100,000, more preferably in the range of 10,000 to 50,000. Temperature responsiveness is improved by setting the weight average molecular weight (M w ) to 5000 or more, while solubility in a solvent can be improved by setting the weight average molecular weight (M w ) to 100,000 or less.
  • the triblock copolymer of the present invention is preferably narrowly dispersed from the viewpoint of temperature responsiveness, and the molecular weight distribution (M w / M n ) is in the range of 1.0 to 2.0. preferable. Each said weight average molecular weight ( Mw ) and molecular weight distribution ( Mw / Mn ) can be measured by the method as described in the Example mentioned later.
  • examples of both ends of the triblock copolymer of the present invention include a hydrogen atom, an alkyl group, and an alkoxy group.
  • the triblock copolymer of the present invention can be produced by living cationic polymerization. According to living cationic polymerization, control of molecular weight and composition ratio is easy, and a narrowly dispersed polymer can be obtained. That is, ⁇ 1> a vinyl ether monomer that induces segment A is subjected to living cationic polymerization in the presence of a starting species, a Lewis acid, and a solvent, and ⁇ 2> an azobenzene skeleton that induces segment B in this reaction system.
  • a diblock polymer is formed by adding a monomer to be contained and subjecting it to living cationic polymerization.
  • the triblock copolymer of the present invention can be produced by adding an oxystyrene monomer that induces segment C to the reaction system in which the ⁇ 3> diblock polymer is formed, and performing living cationic polymerization. .
  • a Lewis acid or a solvent may be further added.
  • the starting species used in each of the above steps include compounds that generate protons such as water, alcohol, and protonic acids, compounds that generate carbocations such as alkyl halides, and compounds that generate protons with vinyl ether.
  • Cation supplying compounds, such as adducts, are preferable.
  • compounds that generate carbocations are preferred.
  • Examples of the compound that generates such a carbocation include 1-alkoxyethyl acetate such as 1-isobutoxyethyl acetate. What is necessary is just to determine suitably the addition amount of the said start seed
  • the Lewis acid used in each of the above steps may be any one that is generally used for living cationic polymerization.
  • organometallic halides such as Et 1.5 AlCl 1.5 ; TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 .OEt 2 , SnCl 2 , SnCl 4 , SbCl 5 , SbF 5 , WCl 6 , TaCl 5 , metal halides such as VCl 5 , FeCl 3 , ZnBr 2 , ZnCl 4 , AlCl 3 , and AlBr 3 can be preferably used.
  • the Lewis acid may be used alone or in combination.
  • the Lewis acid used in the steps ⁇ 1> and ⁇ 2> includes the following general formula (7)
  • R 6 represents a monovalent organic group
  • Y represents a halogen atom
  • the organic aluminum halide compound or aluminum halide compound represented by these is preferable.
  • the monovalent organic group represented by R 6 is not particularly limited, but an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 12 carbon atoms), an aralkyl group (preferably Includes an alkenyl group (preferably 2 to 8 carbon atoms) and an alkoxy group (preferably 1 to 8 carbon atoms).
  • Examples of the halogen atom represented by Y include a chlorine atom, a bromine atom, and a fluorine atom.
  • R is preferably in the range of 1 to 2
  • s is preferably in the range of 1 to 2.
  • Lewis acid examples include diethylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride, methylaluminum sesquichloride, ethylaluminum sesquichloride, ethylaluminum sesquibromide, isobutylaluminum sesquichloride, ethylaluminum sesquibromide, isobutyl.
  • Examples include aluminum sesquichloride, methylaluminum dichloride, ethylaluminum dichloride, ethylaluminum dibromide, ethylaluminum difluoride, isobutylaluminum dichloride, octylaluminum dichloride, ethoxyaluminum dichloride, phenylaluminum dichloride.
  • the Lewis acid used in the step ⁇ 3> is preferably a metal halogen compound or an organometallic halogen compound other than Al.
  • Such compounds include TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 .OEt 2 , SnCl 2 , SnCl 4 , SbCl 5 , SbF 5 , WCl 6 , TaCl 5 , VCl 5 , FeCl 3 , ZnBr 2 , ZrCl 4 and the like.
  • SnCl 4, FeCl 3 and the like are preferable.
  • the amount of Lewis acid used is not particularly limited, and may be set in consideration of the polymerization characteristics or polymerization concentration of each monomer used. Usually, it is used in the range of 1 to 500 mol% with respect to each monomer.
  • the solvent used in each of the above steps includes aromatic hydrocarbon solvents such as benzene, toluene and xylene; propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, and n-octane.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • Aliphatic hydrocarbon solvents such as isooctane, decane, hexadecane and isopentane; halogenated hydrocarbon solvents such as methylene chloride, ethylene chloride and carbon tetrachloride; tetrahydrofuran (THF), dioxane, diethyl ether, dibutyl ether, ethylene glycol Examples include ether solvents such as diethyl ether. These solvents may be used alone or in combination of two or more.
  • the polymerization temperature in each step is usually in the range of ⁇ 80 ° C. to 150 ° C., but is preferably in the range of ⁇ 78 ° C. to 80 ° C.
  • the polymerization time is usually in the range of 5 to 12 hours.
  • the triblock copolymer of the present invention after step ⁇ 3>, added a reaction terminator at a desired degree of polymerization to stop the polymerization reaction, and removed catalyst residues such as metal compounds as necessary. Thereafter, it can be isolated by (1) a method of distilling off volatile components from the polymer solution, or (2) a method of adding a large amount of poor solvent to precipitate and separate the polymer.
  • reaction terminator examples include compounds such as alcohols such as methanol, ethanol, and propanol; amines such as dimethylamine and diethylamine; compounds that act as end terminators such as water, aqueous ammonia, and aqueous sodium hydroxide; A compound having a function of deactivating the activity of the Lewis acid is used.
  • the catalyst residue can be removed by treating with water or an aqueous solution containing an acid such as hydrochloric acid, nitric acid or sulfuric acid; treating with an inorganic oxide such as silica gel, alumina or silica-alumina; ion exchange resin And the like.
  • a method of treating with alumina that does not cause penetration of azo groups and exhibits metal adsorption ability is preferable.
  • the triblock copolymer of the present invention obtained as described above exhibits temperature responsiveness and reversibly changes its hydrophilicity / hydrophobicity even when supported on a fibrous base material. Sex can be imparted. Moreover, it can fix
  • the temperature responsiveness refers to showing hydrophilicity (water permeability) when the temperature is lower than a predetermined temperature, and showing hydrophobicity (water repellency) when the temperature exceeds a predetermined temperature.
  • the hydrophilicity / hydrophobicity of the substrate to be applied can be controlled by utilizing its temperature responsiveness.
  • a copolymer-fiber composite having temperature responsiveness can be provided.
  • the hydrophilicity / hydrophobicity control agent and copolymer-fiber composite of the present invention are used as materials such as a temperature sensor, a separation membrane, an adsorbent, a drug release agent, a water absorbing agent, a water retention agent, a humidity control agent, and an indicator agent. Can be used.
  • the hydrophilicity / hydrophobicity control agent may contain a solvent in addition to the triblock copolymer.
  • solvents include those listed above as solvents used in the polymerization reaction, lower alcohols (preferably having 1 to 3 carbon atoms) such as methanol, ethanol, propanol and isopropanol; water, and the like. It may be included, and two or more kinds of combinations may be included.
  • the content of the triblock copolymer is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 25% by mass in the hydrophilicity / hydrophobicity control agent.
  • examples of the base material to be controlled for hydrophilicity / hydrophobicity include synthetic resins, natural resins, plant fibers, animal fibers, and inorganic fibers. Synthetic resins and inorganic fibers are preferable, and synthetic resin fibers and inorganic fibers are more preferable.
  • polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate
  • polystyrene resins such as polystyrene
  • vinyl chloride resins low density polyethylene
  • Polyolefin resins such as high-density polyethylene and polypropylene
  • polyether resins such as polyether ketone and polyether ether ketone
  • polyamide resins such as nylon and aramid
  • polycarbonate resins such as polycarbonate
  • polyimide resins such as polyimide
  • Polyurethane resins such as polytetrafluoroethylene, and the like
  • examples of the natural resin include latex and natural rubber.
  • the plant fiber include cotton, hemp, and linen.
  • the animal fiber include wool, silk, and cashmere.
  • the inorganic fiber include glass fiber. These fibers may be used alone or in combination, and may be used in combination with a synthetic resin or a natural resin.
  • the form of the substrate is not particularly limited, and examples thereof include beads, films, fibrous substrates, sheets, tubes, pipes, and composites thereof.
  • fibrous substrates are preferable, and fiber sheets are more preferable.
  • the fiber sheet include woven fabrics, knitted fabrics, and non-woven fabrics, and non-woven fabrics are preferred in that the gap between fibers is small.
  • Nonwoven fabrics and composite nonwoven fabrics manufactured by various nonwoven fabric production methods such as air-through method, heat roll method, spun lace method, needle punch method, chemical bond method, airlaid method, melt blown method, and spun bond method (for example, , Spunbond / meltblown nonwoven fabric, spunbond / meltblown / spunbond nonwoven fabric) and the like.
  • the fiber sheet may be a single layer or a laminate of multiple layers.
  • the triblock copolymer of the present invention can control the hydrophilicity / hydrophobicity of the substrate as described above, but contains an azo group having permeability to a synthetic resin or inorganic fiber, and the triblock copolymer on the surface of the synthetic resin or inorganic fiber. Since the block copolymer can be immobilized, it is particularly suitable for controlling hydrophilicity / hydrophobicity of the surface of the synthetic resin or inorganic fiber.
  • hydrophilicity / hydrophobicity control method the method which dissolves the triblock copolymer of this invention in the said solvent, and apply
  • the method of application or impregnation is not particularly limited, and examples thereof include a method in which a solution in which the triblock copolymer is dissolved is applied using a spray, a roll, a brush, a dipping method, and the like.
  • the triblock copolymer of the present invention is supported on a fibrous base material.
  • the fibrous base material refers to a base material having a fiber assembly as a main constituent component, and examples thereof include the same ones as described above.
  • the copolymer-fiber composite is preferably one in which a triblock copolymer is immobilized on the surface of the fibers constituting the fibrous base material.
  • said fibrous base material what consists of 1 or more types chosen from a synthetic resin fiber, a natural resin fiber, a vegetable fiber, an animal fiber, and an inorganic fiber is mentioned, 1 type chosen from a synthetic resin fiber and an inorganic fiber What consists of the above is preferable.
  • Examples of the synthetic resin constituting the synthetic resin fiber, the natural resin constituting the natural resin fiber, the plant fiber, the animal fiber, and the inorganic fiber include the same as those described above.
  • the synthetic resin fibers among the polyester fibers, Polyolefin fibers, polyamide fibers, polyurethane fibers, and composite fibers thereof are preferable.
  • glass fiber is preferable as the inorganic fiber.
  • the copolymer-fiber composite may contain a drug or the like, and may be a fiber base material that has been processed. For example, it may be provided with functions such as flame retardancy, antibacterial properties, deodorant properties, insect repellent properties, antifungal properties, aromatic properties, etc., and integrated with a sheet or film having these functions. It may be.
  • the production of the copolymer-fiber composite of the present invention may be carried out in the same manner as in the above hydrophilicity / hydrophobicity control method. Moreover, you may form a woven fabric, a knitted fabric, a nonwoven fabric, etc. using the fiber which fixed the triblock copolymer on the surface.
  • Example 1 Preparation of methoxyethyl vinyl ether-b-phenyl (4- (2-vinyloxyethoxy) phenyl) diazene-b-paraisopropenylphenol (hereinafter referred to as “MOVE-b-PVEPD-b-PIPP polymer”) (1)
  • the MOVE-b-PVEPD-b-PIPP polymer was synthesized according to the following synthesis route.
  • a glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container.
  • 2-methoxyethyl vinyl ether hereinafter referred to as “MOVE”) 0.71M (32.6 g), ethyl acetate 0.89M (35.3 g), 1-isobutoxyethyl acetate (hereinafter “IBEA”) referred to as) 3.56mM (0.25g)
  • IBEA 1-isobutoxyethyl acetate
  • PVEPD phenyl (4- (2-vinyloxyethoxy) phenyl) diazene
  • PIPP p- isopropenylphenol
  • Example 2 Preparation of MOVE-b-PVEPD-b-PIPP polymer (2) A glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. In this vessel, MOVE 0.69M (32.6 g), ethyl acetate 0.87M (35.2 g), IBEA 3.46 mM (0.25 g), and 270 mL of toluene were cooled, and the reaction system was cooled to a temperature of 0 ° C. the Upon reaching, polymerization was initiated by the addition of (12.9 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
  • Example 3 Preparation of MOVE-b-PVEPD-b-PIPP polymer (3) A glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. In this vessel, MOVE 1.29M (58.6 g), ethyl acetate 0.86M (31.6 g), IBEA 3.2 mM (0.23 g) and toluene 243 mL were placed, the inside of the reaction system was cooled, and the temperature was 0 ° C. the Upon reaching, polymerization was initiated by the addition of (12.0 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
  • Example 4 Preparation of ethoxyethyl vinyl ether-b-phenyl (4- (2-vinyloxyethoxy) phenyl) diazene-b-paraisopropenylphenol (hereinafter referred to as “EOVE-b-PVEPD-b-PIPP polymer”) (1)
  • EOOVE-b-PVEPD-b-PIPP polymer was synthesized according to the following synthesis route.
  • a glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container.
  • 2-ethoxyethyl vinyl ether hereinafter referred to as “EOVE”) 0.68M (37.0 g), ethyl acetate 0.85M (35.2 g), IBEA 3.4 mM (0.25 g), and toluene 270 mL placed, the reaction system was cooled, and when the temperature reached 0 ° C., was added to initiate polymerization of (12.8 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
  • EOVE 2-ethoxyethyl vinyl ether
  • Comparative Example 1 Production of methoxyethyl vinyl ether-b-phenyl (4- (2-hydroxyethoxy) phenyl) diazene (hereinafter referred to as “MOVE-b-PVEPD polymer”) A glass container with a three-way cock was prepared. After replacing the inside of the container with argon, heating was performed to remove the adsorbed water in the glass container. In this vessel, MOVE 0.66M (32.6 g), ethyl acetate 0.83M (35.2 g), IBEA 3.3 mM (0.25 g), and 270 mL of toluene were cooled, and the reaction system was cooled to a temperature of 0 ° C.
  • MOVE-b-PVEPD polymer methoxyethyl vinyl ether-b-phenyl (4- (2-hydroxyethoxy) phenyl) diazene
  • Examples 5 to 11 and Comparative Examples 3 and 4 Fabrication of Fiber Sheet A 10% by mass methanol solution and a 10% by mass aqueous solution of the polymers a to f obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were prepared, respectively. . Each block copolymer is supported by immersing polyethylene terephthalate nonwoven fabric (2 ⁇ 10 cm), glass fiber (47 ⁇ filter paper), or polyurethane nonwoven fabric (2 ⁇ 10 cm) in this prepared solution for 1 hour and thoroughly washing it. The fiber sheets of Examples 5 to 11 and Comparative Examples 3 and 4 shown in the following table were obtained. All of the obtained fiber sheets were derived from azo groups and colored pale yellow, and it was confirmed that the block copolymer was uniformly supported on the nonwoven fabric. Moreover, the stickiness and unevenness
  • Test Example 1 Water Permeability Evaluation Test 100 ⁇ L of water droplets were placed at equal intervals on the surface of the fiber sheets of Examples 5 to 11 and Comparative Examples 3 and 4, and 0 ° C., 25 ° C., and 70 at a humidity of 55%. By counting the number of water droplets after 5 minutes under the temperature condition of ° C., the water permeability and the change of the water permeability due to the temperature were confirmed. Table 1 shows the results of water permeability evaluation of each fiber sheet. For comparison, Table 1 also shows the results of a similar evaluation performed on a non-impregnated nonwoven fabric.
  • the fiber sheet in which the polymer (polymers a to d) in which the segments A to C are bonded by the sequence ABC is supported on the nonwoven fabric exhibits water permeability at a low temperature and is high. It did not show water permeability at temperature. From this result, it can be seen that the composite of the present invention has temperature responsiveness and can reversibly achieve hydrophilicity (water permeability) and hydrophobicity (water repellency) in response to thermal stimulation.
  • the fiber sheet which carried the copolymer (polymer e) which does not contain the segment C on the nonwoven fabric showed water permeability, it did not show temperature responsiveness.
  • the segment C is included, it is evaluated if the copolymer (polymer f) in which the segments A to C are bonded by the sequence BAC instead of ABC is evaluated. Water droplets were not permeated at all temperatures subjected to the above, and water permeability could not be imparted.

Abstract

Provided are: a novel block copolymer capable of manifesting temperature-responsiveness even when supported on a fibrous substrate; a hydrophobicity/hydrophilicity control agent containing the copolymer; a method for controlling hydrophobicity/hydrophilicity in which the polymer is used; and a copolymer/fiber composite in which the polymer is supported. An ABC-type azo-based triblock copolymer, characterized in that a segment (A) comprising repeating vinyl ether-based structural units (a) including a temperature-responsive group, a segment (B) comprising repeating structural units (b) including an azobenzene skeleton, and a segment (C) comprising repeating oxystyrene-based structural units (c) are bonded together in an A-B-C sequence.

Description

ABC型アゾ系トリブロック共重合体ABC type azo triblock copolymer
 本発明は、ABC型アゾ系トリブロック共重合体、親疎水性制御剤、親疎水性制御方法及び共重合体-繊維複合体に関する。 The present invention relates to an ABC type azo triblock copolymer, a hydrophilicity / hydrophobicity control agent, a hydrophilicity / hydrophobicity control method, and a copolymer-fiber composite.
 高分子化合物には、熱、pH、光等の外部刺激に感応して相転位現象を示すものがあり、この相転位現象を応用した温度センサー、分離膜、吸着剤、薬物放出剤、吸水剤、保水剤、調湿剤、インジケータ剤等の開発が活発に行われている。 Some polymer compounds exhibit a phase transition phenomenon in response to external stimuli such as heat, pH, light, etc., and temperature sensors, separation membranes, adsorbents, drug release agents, water absorbing agents that apply this phase transition phenomenon In addition, the development of water retention agents, humidity control agents, indicator agents and the like has been actively conducted.
 上述のような高分子化合物のうち熱に感応して相転移現象を示すものを、温度応答性ポリマーといい、斯様なポリマーとして、オキシエチレン鎖を含有するビニルエーテルのリビング重合体が知られている。このリビング重合体は、特定の温度以下では親水性を示し、該温度を超えると疎水性を示すものの、油状の化合物であるため成形性・製膜性を備えておらず、その用途が大きく限定されていた。 Among the above-mentioned polymer compounds, those that exhibit a phase transition phenomenon in response to heat are called temperature-responsive polymers, and as such polymers, living polymers of vinyl ethers containing oxyethylene chains are known. Yes. This living polymer exhibits hydrophilicity at a specific temperature or lower, and exhibits hydrophobicity when the temperature is exceeded. However, since it is an oily compound, it does not have moldability and film forming properties, and its use is greatly limited. It had been.
 そのため、温度応答性を発現し、且つ製膜性・成形性を備えたポリマーとして、オキシエチレン鎖を含有するビニルエーテルと脂環式ビニルエーテルとのジブロック共重合体が開発されている(特許文献1)。
 しかしながら、上記ジブロック共重合体は、成形性が未だ十分でなく、成形されたフィルムが表面タックを有し、しかも水との接触によりクラックが発生するという問題があった。
Therefore, a diblock copolymer of a vinyl ether containing an oxyethylene chain and an alicyclic vinyl ether has been developed as a polymer exhibiting temperature responsiveness and having film forming properties and moldability (Patent Document 1). ).
However, the diblock copolymer has a problem that the moldability is not yet sufficient, the formed film has a surface tack, and cracks are generated by contact with water.
 斯様な問題を解決する手段として、温度応答性ポリマーへのアゾ基の導入が検討されている。例えば、オキシエチレン鎖を含むビニルエーテルとアゾベンゼン骨格を含むビニルエーテルとのジブロック共重合体が知られている(特許文献2)。また、同様のジブロック共重合体で種々の汎用樹脂フィルムの表面修飾を行った結果、特にポリスチレン、ポリプロピレンが表面修飾されやすく、表面修飾されたポリスチレンフィルムは、親水性・疎水性に関する温度応答性を示すことが報告されている(非特許文献1)。 As a means for solving such a problem, introduction of an azo group into a temperature-responsive polymer has been studied. For example, a diblock copolymer of a vinyl ether containing an oxyethylene chain and a vinyl ether containing an azobenzene skeleton is known (Patent Document 2). In addition, as a result of surface modification of various general-purpose resin films with the same diblock copolymer, polystyrene and polypropylene are particularly easily surface-modified, and the surface-modified polystyrene film is temperature responsive to hydrophilicity and hydrophobicity. (Non-Patent Document 1).
特開2006-131805号公報JP 2006-131805 A 特開2005-154603号公報JP 2005-154603 A
 そこで、特許文献2や非特許文献1に記載のようなオキシエチレン鎖を含むビニルエーテルとアゾベンゼン骨格を含むビニルエーテルとのジブロック共重合体の温度応答性について、本発明者が検討を進めたところ、斯かるジブロック共重合体は、繊維質基材に担持させた場合に親水性・疎水性に関する温度応答性を発現しないことが判明した。
 したがって、本発明の課題は、繊維質基材に担持させたとしても温度応答性を発現可能な新規ブロック共重合体、該共重合体を含有する親疎水性制御剤、前記重合体を用いる親疎水性制御方法、及び前記重合体が担持された共重合体-繊維複合体を提供することにある。
Then, when this inventor advanced examination about the temperature responsiveness of the diblock copolymer of the vinyl ether containing an oxyethylene chain | strand and the vinyl ether containing an azobenzene skeleton like the patent document 2 and the nonpatent literature 1, It has been found that such a diblock copolymer does not exhibit temperature responsiveness related to hydrophilicity / hydrophobicity when supported on a fibrous base material.
Accordingly, an object of the present invention is to provide a novel block copolymer that can exhibit temperature responsiveness even when supported on a fibrous base material, a hydrophilicity / hydrophobicity control agent containing the copolymer, and a hydrophilicity / hydrophobicity using the polymer. It is an object of the present invention to provide a control method and a copolymer-fiber composite carrying the polymer.
 そこで、本発明者は、前記課題を解決すべく鋭意検討した結果、温度応答性基を含むビニルエーテル系構造単位(a)の繰り返しからなるセグメントA、及びアゾベンゼン骨格を含む構造単位(b)の繰り返しからなるセグメントBとともに、オキシスチレン系構造単位(c)の繰り返しからなるセグメントCとを有し、且つ、セグメントA~Cが、A-B-Cのシークエンスで結合しているABC型アゾ系トリブロック共重合体が、繊維質基材に担持させたとしても温度応答性を発現可能であることを見出し、本発明を完成した。 Therefore, as a result of intensive studies to solve the above problems, the present inventor has found that a segment A composed of repeating vinyl ether structural units (a) containing a temperature-responsive group and a repeating structural unit (b) containing an azobenzene skeleton. And an Azo-type triazo group having segments A to C bonded by an ABC sequence, and a segment C composed of repeating oxystyrene-based structural units (c). It has been found that the block copolymer can exhibit temperature responsiveness even if it is supported on a fibrous base material, and the present invention has been completed.
 すなわち、本発明は、温度応答性基を含むビニルエーテル系構造単位(a)の繰り返しからなるセグメントAと、アゾベンゼン骨格を含む構造単位(b)の繰り返しからなるセグメントBと、オキシスチレン系構造単位(c)の繰り返しからなるセグメントCとが、A-B-Cのシークエンスで結合していることを特徴とするABC型アゾ系トリブロック共重合体(以下、トリブロック共重合体とも称する)を提供するものである。
 また、本発明は、上記トリブロック共重合体を含有する親疎水性制御剤を提供するものである。
 さらに、本発明は、上記トリブロック共重合体を用いる親疎水性制御方法を提供するものである。
 さらに、本発明は、上記トリブロック共重合体が、繊維質基材に担持されている共重合体-繊維複合体を提供するものである。
That is, the present invention relates to a segment A composed of repeating vinyl ether structural units (a) containing a temperature-responsive group, a segment B consisting of repeating structural units (b) containing an azobenzene skeleton, and an oxystyrene structural unit ( Provided is an ABC type azo triblock copolymer (hereinafter also referred to as a triblock copolymer) characterized in that the segment C formed by repeating c) is bonded by an ABC sequence. To do.
Moreover, this invention provides the hydrophilicity / hydrophobicity control agent containing the said triblock copolymer.
Furthermore, the present invention provides a method for controlling hydrophilicity / hydrophobicity using the above triblock copolymer.
Furthermore, the present invention provides a copolymer-fiber composite in which the above triblock copolymer is supported on a fibrous base material.
 本発明のトリブロック共重合体は、繊維質基材に担持させたとしても温度応答性を発現し親疎水性が可逆的に変化するため、広範囲の基材に温度応答性を付与することができる。
 したがって、本発明によれば、繊維質基材に温度応答性を付与可能な親疎水性制御剤及び親疎水性制御方法を提供できる。
 また、本発明の共重合体-繊維複合体は、その基材が繊維質であるにも拘らず温度応答性を備える。
Even if the triblock copolymer of the present invention is supported on a fibrous base material, it exhibits temperature responsiveness and reversibly changes its hydrophilicity / hydrophobicity, so that temperature responsiveness can be imparted to a wide range of base materials. .
Therefore, according to this invention, the hydrophilicity / hydrophobicity control agent and the hydrophilicity / hydrophobicity control method which can provide temperature responsiveness to a fibrous base material can be provided.
Further, the copolymer-fiber composite of the present invention has temperature responsiveness even though the base material is fibrous.
 本発明のABC型アゾ系トリブロック共重合体は、温度応答性基を含むビニルエーテル系構造単位(a)の繰り返しからなるセグメントAと、アゾベンゼン骨格を含む構造単位(b)の繰り返しからなるセグメントBと、オキシスチレン系構造単位(c)の繰り返しからなるセグメントCとが、A-B-Cのシークエンスで結合していることを特徴とするものである。
 まず、斯かるトリブロック共重合体について詳細に説明する。
The ABC type azo triblock copolymer of the present invention is composed of a segment A composed of repeating vinyl ether structural units (a) containing a temperature-responsive group and a segment B consisting of repeating structural units (b) containing an azobenzene skeleton. And a segment C composed of repeating oxystyrene-based structural units (c) are bonded by an ABC sequence.
First, the triblock copolymer will be described in detail.
 <セグメントA>
 セグメントAを構成する構造単位(a)としては、例えば、次の一般式(1)
<Segment A>
As the structural unit (a) constituting the segment A, for example, the following general formula (1)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式(1)中、R1は、メチル基又はエチル基を示し、kは1~10の整数である。〕
で表されるものが挙げられる。斯かる構成単位中の側鎖の鎖長を適宜変更することにより、親疎水性が変化する臨界温度を調節できる。
[In the formula (1), R 1 represents a methyl group or an ethyl group, and k is an integer of 1 to 10. ]
The thing represented by is mentioned. The critical temperature at which the hydrophilicity / hydrophobicity changes can be adjusted by appropriately changing the chain length of the side chain in such a structural unit.
 式(1)中、kは1~10の整数であるが、1~6の整数が好ましく、1~4の整数がより好ましく、1~3の整数が特に好ましい。 In the formula (1), k is an integer of 1 to 10, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and particularly preferably an integer of 1 to 3.
 また、セグメントAを誘導するビニルエーテル系単量体としては、例えば、2-メトキシエチルビニルエーテル、2-エトキシエチルビニルエーテル、2-(2-メトキシエトキシ)エチルビニルエーテル、2-(2-エトキシエトキシ)エチルビニルエーテル、2-(2-(2-メトキシエトキシ)エトキシ)エチルビニルエーテル、2-(2-(2-エトキシエトキシ)エトキシ)エチルビニルエーテル、2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチルビニルエーテル、2-(2-(2-(2-エトキシエトキシ)エトキシ)エトキシ)エチルビニルエーテル等が挙げられ、セグメントAは、斯様なビニルエーテル系単量体のうち1種を用いて誘導されるものでもよく、2種以上を用いて誘導されるものでもよい。
 これらの中でも、温度を下げたときの親水性を向上させる観点から、2-メトキシエチルビニルエーテル、2-エトキシエチルビニルエーテル、2-(2-(2-メトキシエトキシ)エトキシ)エチルビニルエーテルが好ましい。
Examples of vinyl ether monomers that induce segment A include 2-methoxyethyl vinyl ether, 2-ethoxyethyl vinyl ether, 2- (2-methoxyethoxy) ethyl vinyl ether, 2- (2-ethoxyethoxy) ethyl vinyl ether. 2- (2- (2-methoxyethoxy) ethoxy) ethyl vinyl ether, 2- (2- (2-ethoxyethoxy) ethoxy) ethyl vinyl ether, 2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy ) Ethyl vinyl ether, 2- (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) ethyl vinyl ether, etc., and segment A is derived using one of such vinyl ether monomers. It may be one that is derived using two or more types .
Among these, 2-methoxyethyl vinyl ether, 2-ethoxyethyl vinyl ether, and 2- (2- (2-methoxyethoxy) ethoxy) ethyl vinyl ether are preferable from the viewpoint of improving hydrophilicity when the temperature is lowered.
 <セグメントB>
 セグメントBを構成する構造単位(b)としては、例えば、次の一般式(2)
<Segment B>
As the structural unit (b) constituting the segment B, for example, the following general formula (2)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式(2)中、R2及びR3は、各々独立に、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルコキシ基、炭素数2~6のアルコキシアルキル基、ハロゲン原子、水酸基、カルボキシル基、アミノ基、ニトロ基、スルホ基、スルホオキシ基又はアミノスルホニル基を示し、nは1~5の整数であり、pは0~2の整数であり、qは0~3の整数である。〕
で表されるものが挙げられる。
[In the formula (2), R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 2 to 6 carbon atoms. Represents an alkoxyalkyl group, a halogen atom, a hydroxyl group, a carboxyl group, an amino group, a nitro group, a sulfo group, a sulfooxy group, or an aminosulfonyl group, n is an integer of 1 to 5, and p is an integer of 0 to 2. Q is an integer from 0 to 3. ]
The thing represented by is mentioned.
 式(2)中、R2及びR3で示されるアルキル基の炭素数としては1又は2が好ましい。該アルキル基は直鎖状でも分岐鎖状でもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基が挙げられる。 In the formula (2), the alkyl group represented by R 2 and R 3 preferably has 1 or 2 carbon atoms. The alkyl group may be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an isobutyl group.
 また、R2及びR3で示されるハロアルキル基は、塩素原子、臭素原子、フッ素原子等のハロゲン原子が置換している直鎖状又は分岐鎖状のアルキル基を意味し、該置換しているハロゲン原子の個数及び位置は任意である。ハロアルキル基の炭素数としては1又は2が好ましく、上記ハロゲン原子としては、フッ素原子が好ましい。ハロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基が挙げられる。 The haloalkyl group represented by R 2 and R 3 means a linear or branched alkyl group substituted with a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom, and is substituted. The number and position of halogen atoms are arbitrary. The carbon number of the haloalkyl group is preferably 1 or 2, and the halogen atom is preferably a fluorine atom. Examples of the haloalkyl group include a trifluoromethyl group, a pentafluoroethyl group, and a 2,2,2-trifluoroethyl group.
 また、R2及びR3で示されるアルコキシ基の炭素数としては1又は2が好ましい。該アルコキシ基は直鎖状でも分岐鎖状でもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、イソブトキシ基等が挙げられる。
 また、R2及びR3で示されるアルコキシアルキル基の炭素数としては2~4が好ましい。該アルコキシアルキル基は直鎖状でも分岐鎖状でもよく、例えば、メトキシメチル基、エトキシメチル基、2-メトキシエチル基、2-エトキシエチル基等が挙げられる。
Moreover, as carbon number of the alkoxy group shown by R < 2 > and R < 3 >, 1 or 2 is preferable. The alkoxy group may be linear or branched, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, and an isobutoxy group. Can be mentioned.
The number of carbon atoms of the alkoxyalkyl group represented by R 2 and R 3 is preferably 2-4. The alkoxyalkyl group may be linear or branched, and examples thereof include a methoxymethyl group, an ethoxymethyl group, a 2-methoxyethyl group, and a 2-ethoxyethyl group.
 また、R2及びR3で示されるハロゲン原子としては、上記ハロアルキル基に含まれるハロゲン原子と同様のものが挙げられる。 In addition, examples of the halogen atom represented by R 2 and R 3 include the same halogen atoms as those contained in the haloalkyl group.
 また、式(2)中、nとしては、1~3の整数が好ましく、1が特に好ましい。
 また、pは0~2の整数であり、qは0~3の整数である。pが2である場合、p個のR2は同一でも異なっていてもよく、同様に、qが2又は3である場合、q個のR3は同一でも異なっていてもよい。
 また、pとしては、0又は1が好ましく、0がより好ましい。一方、qとしては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
In the formula (2), n is preferably an integer of 1 to 3, particularly preferably 1.
P is an integer from 0 to 2, and q is an integer from 0 to 3. When p is 2, p R 2 s may be the same or different. Similarly, when q is 2 or 3, q R 3 s may be the same or different.
Moreover, as p, 0 or 1 is preferable and 0 is more preferable. On the other hand, q is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 また、セグメントBを誘導するアゾベンゼン骨格を含む単量体としては、例えば、フェニル(4-(2-ビニロキシエトキシ)フェニル)ジアゼン、o-トリル(4-(2-ビニロキシエトキシ)フェニル)ジアゼン、(2-(トリフルオロメチル)フェニル)(4-(2-ビニロキシエトキシ)フェニル)ジアゼン、(2-(メトキシメチル)フェニル)(4-(2-ビニロキシエトキシ)フェニル)ジアゼン、(2-クロロフェニル)(4-(2-ビニロキシエトキシ)フェニル)ジアゼン、2-((4-(2-ビニロキシエトキシ)フェニル)ジアゼニル)フェノール、2-((4-(2-ビニロキシエトキシ)フェニル)ジアゼニル)安息香酸、2-((4-(2-ビニロキシエトキシ)フェニル)ジアゼニル)アニリン、(2-ニトロフェニル)(4-(2-ビニロキシエトキシ)フェニル)ジアゼン、2-((4-(2-ビニロキシエトキシ)フェニル)ジアゼニル)ベンゼンスルホン酸等が挙げられ、セグメントBは、斯様なアゾベンゼン骨格を含む単量体のうち1種を用いて誘導されるものでもよく、2種以上を用いて誘導されるものでもよい。
 これらの中でも、フェニル(4-(2-ビニロキシエトキシ)フェニル)ジアゼンが特に好ましい。
Examples of the monomer containing an azobenzene skeleton for deriving segment B include phenyl (4- (2-vinyloxyethoxy) phenyl) diazene and o-tolyl (4- (2-vinyloxyethoxy) phenyl) diazene. (2- (trifluoromethyl) phenyl) (4- (2-vinyloxyethoxy) phenyl) diazene, (2- (methoxymethyl) phenyl) (4- (2-vinyloxyethoxy) phenyl) diazene, (2 -Chlorophenyl) (4- (2-vinyloxyethoxy) phenyl) diazene, 2-((4- (2-vinyloxyethoxy) phenyl) diazenyl) phenol, 2-((4- (2-vinyloxyethoxy) phenyl ) Diazenyl) benzoic acid, 2-((4- (2-vinyloxyethoxy) phenyl) diazenyl) aniline, (2-ni Rophenyl) (4- (2-vinyloxyethoxy) phenyl) diazene, 2-((4- (2-vinyloxyethoxy) phenyl) diazenyl) benzenesulfonic acid and the like, and segment B includes such an azobenzene skeleton. Among these monomers, one derived from one of them may be used, or two or more may be used.
Of these, phenyl (4- (2-vinyloxyethoxy) phenyl) diazene is particularly preferable.
 <セグメントC>
 セグメントCを構成する構造単位(c)としては、例えば、次の一般式(3)
<Segment C>
As the structural unit (c) constituting the segment C, for example, the following general formula (3)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式(3)中、R4は、水素原子又は炭素数1~4のアルキル基を示し、R5は、水素原子、炭素数1~4のアルキル基、炭素数2~6のアルコキシアルキル基、アルカノイル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基又はアルキルシリル基を示し、mは1~3の整数である。〕
で表されるものが挙げられる。
[In the formula (3), R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 5 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group having 2 to 6 carbon atoms. , An alkanoyl group, an alkoxycarbonyl group, an alkoxycarbonylalkyl group or an alkylsilyl group, and m is an integer of 1 to 3. ]
The thing represented by is mentioned.
 式(3)中、R4で示されるアルキル基の炭素数としては、1又は2が好ましい。
 また、R4及びR5で示されるアルキル基は直鎖状でも分岐鎖状でもよく、R2で示されるアルキル基として例示したものと同様のものが挙げられる。
In the formula (3), the carbon number of the alkyl group represented by R 4 is preferably 1 or 2.
The alkyl group represented by R 4 and R 5 may be linear or branched, and examples thereof include those exemplified as the alkyl group represented by R 2 .
 また、R5で示される炭素数2~6のアルコキシアルキル基は、直鎖状、分岐鎖状及び環状(2つのアルキル鎖が酸素原子と一緒になって含酸素複素環を形成していることを意味する)のいずれでもよく、具体的には、R2で示されるアルコキシアルキル基として例示したものの他、2-テトラヒドロピラニル基、2-テトラヒドロフラニル基等が挙げられる。 In addition, the alkoxyalkyl group having 2 to 6 carbon atoms represented by R 5 is linear, branched or cyclic (two alkyl chains together with an oxygen atom form an oxygen-containing heterocycle) Specifically, in addition to those exemplified as the alkoxyalkyl group represented by R 2 , 2-tetrahydropyranyl group, 2-tetrahydrofuranyl group and the like can be mentioned.
 また、R5で示されるアルカノイル基の炭素数としては2~6が好ましい。斯かるアルカノイル基は直鎖状でも分岐鎖状でもよく、例えば、アセチル基、プロピオニル基、tert-ブチルカルボニル基等が挙げられる。
 また、R5で示されるアルコキシカルボニル基の炭素数としては2~6が好ましい。斯かるアルコキシカルボニル基は直鎖状でも分岐鎖状でもよく、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。
Further, the number of carbon atoms of the alkanoyl group represented by R 5 is preferably 2 to 6. Such an alkanoyl group may be linear or branched, and examples thereof include an acetyl group, a propionyl group, and a tert-butylcarbonyl group.
The number of carbon atoms of the alkoxycarbonyl group represented by R 5 is preferably 2-6. Such an alkoxycarbonyl group may be linear or branched, and examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a tert-butoxycarbonyl group.
 また、R5で示されるアルコキシカルボニルアルキル基の炭素数としては2~6が好ましい。斯かるアルコキシカルボニルアルキル基は直鎖状でも分岐鎖状でもよく、例えば、tert-ブトキシカルボニルメチル基等が挙げられる。
 また、R5で示されるアルキルシリル基の炭素数としては2~6が好ましい。斯かるアルキルシリル基としては、例えば、トリメチルシリル基、tert-ブチルジメチルシリル基等が挙げられる。
The number of carbon atoms of the alkoxycarbonylalkyl group represented by R 5 is preferably 2-6. Such an alkoxycarbonylalkyl group may be linear or branched, and examples thereof include a tert-butoxycarbonylmethyl group.
The number of carbon atoms of the alkylsilyl group represented by R 5 is preferably 2-6. Examples of such an alkylsilyl group include a trimethylsilyl group and a tert-butyldimethylsilyl group.
 また、式(3)中、mとしては、1又は2が好ましく、1がより好ましい。なお、mが2又は3である場合、m個の-OR5は同一でも異なっていてもよい。 In Formula (3), m is preferably 1 or 2, and more preferably 1. When m is 2 or 3, the m —OR 5 may be the same or different.
 また、セグメントCを誘導するオキシスチレン系単量体としては、例えば、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノール等のヒドロキシスチレン類;p-メトキシスチレン、m-メトキシスチレン、p-エトキシスチレン、m-エトキシスチレン、p-プロポキシスチレン、m-プロポキシスチレン、p-イソプロポキシスチレン、m-イソプロポキシスチレン、p-n-ブトキシスチレン、m-n-ブトキシスチレン、p-イソブトキシスチレン、m-イソブトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン等のアルコキシスチレン類;p-メトキシメトキシスチレン、m-メトキシメトキシスチレン、p-(1-エトキシエトキシ)スチレン、m-(1-エトキシエトキシ)スチレン、p-(2-テトラヒドロピラニル)オキシスチレン、m-(2-テトラヒドロピラニル)オキシスチレン等のアルコキシアルキルオキシスチレン類;p-アセトキシスチレン、m-アセトキシスチレン、p-tert-ブチルカルボニルオキシスチレン、m-tert-ブチルカルボニルオキシスチレン等のアルカノイルオキシスチレン類;p-tert-ブトキシカルボニルメチルオキシスチレン、m-tert-ブトキシカルボニルオキシメチルスチレン類のアルコキシカルボニルアルキルオキシスチレン類;p-トリメチルシリルオキシスチレン、m-トリメチルシリルオキシスチレン、p-tert-ブチルジメチルシリルオキシスチレン、m-tert-ブチルジメチルシリルオキシスチレン類のアルキルシリルオキシスチレン類等が挙げられ、セグメントCは、斯様なオキシスチレン系単量体のうち1種を用いて誘導されるものでもよく、2種以上を用いて誘導されるものでもよい。
 これらの中でも、ヒドロキシスチレン類、アルコキシスチレン類が好ましく、p-ヒドロキシスチレン、p-イソプロペニルフェノール、p-tert-ブトキシスチレンが特に好ましい。
Examples of the oxystyrene monomer for deriving segment C include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, and o-isopropenylphenol. Hydroxystyrenes such as p-methoxystyrene, m-methoxystyrene, p-ethoxystyrene, m-ethoxystyrene, p-propoxystyrene, m-propoxystyrene, p-isopropoxystyrene, m-isopropoxystyrene, p- alkoxystyrenes such as n-butoxystyrene, mn-butoxystyrene, p-isobutoxystyrene, m-isobutoxystyrene, p-tert-butoxystyrene, m-tert-butoxystyrene; p-methoxymethoxystyrene m-methoxymethoxystyrene, p- (1-ethoxyethoxy) styrene, m- (1-ethoxyethoxy) styrene, p- (2-tetrahydropyranyl) oxystyrene, m- (2-tetrahydropyranyl) oxystyrene, etc. Alkanoyloxystyrenes such as p-acetoxystyrene, m-acetoxystyrene, p-tert-butylcarbonyloxystyrene, m-tert-butylcarbonyloxystyrene; p-tert-butoxycarbonylmethyloxystyrene M-tert-butoxycarbonyloxymethylstyrenes, alkoxycarbonylalkyloxystyrenes; p-trimethylsilyloxystyrene, m-trimethylsilyloxystyrene, p-tert-butyldimethyl Rusilyloxystyrene, m-tert-butyldimethylsilyloxystyrenes, alkylsilyloxystyrenes, etc., and segment C is derived from one of such oxystyrene monomers. Alternatively, it may be derived using two or more kinds.
Among these, hydroxystyrenes and alkoxystyrenes are preferable, and p-hydroxystyrene, p-isopropenylphenol, and p-tert-butoxystyrene are particularly preferable.
 また、本発明のトリブロック共重合体は、セグメントA~Cが、A-B-Cのシークエンスで結合している。斯かる構成によって、繊維質基材に担持させた場合にも温度応答性を発現できる。 Further, in the triblock copolymer of the present invention, segments A to C are bonded by an ABC sequence. With such a configuration, temperature responsiveness can be exhibited even when it is supported on a fibrous base material.
 本発明のトリブロック共重合体中のセグメントA~Cの含有量は用途に合わせて適宜調整すればよいが、セグメントAの含有量は、好ましくは70~99モル%であり、より好ましくは85~98モル%である。斯かる含有量を70モル%以上とすることにより温度を下げたときの親水性を向上させることができ、一方、99モル%以下とすることにより温度を上げたときの疎水性を向上させることができる。 The content of segments A to C in the triblock copolymer of the present invention may be appropriately adjusted according to the use, but the content of segment A is preferably 70 to 99 mol%, more preferably 85. ~ 98 mol%. The hydrophilicity when the temperature is lowered can be improved by setting such content to 70 mol% or more, while the hydrophobicity when the temperature is raised is improved by setting it to 99 mol% or less. Can do.
 また、セグメントBの含有量は、好ましくは1~20モル%であり、より好ましくは1~15モル%であり、さらに好ましくは1~10モル%である。斯かる含有量を20モル%以下とすることによりセグメントAとセグメントCの作用を高めることができ、一方、1モル%以上とすることによりセグメントBの繊維質基材への浸透作用を高めることができる。 Further, the content of segment B is preferably 1 to 20 mol%, more preferably 1 to 15 mol%, and further preferably 1 to 10 mol%. By making such content 20 mol% or less, the action of segment A and segment C can be enhanced, while by making it 1 mol% or more, the penetration action of segment B into the fibrous base material is enhanced. Can do.
 また、セグメントCの含有量は、好ましくは0.1~10モル%であり、より好ましくは0.3~5モル%であり、特に好ましくは0.75~3モル%である。斯かる含有量を0.1モル%以上とすることにより温度を上げたときの疎水性を向上させることができ、一方、5モル%以下とすることにより温度を下げたときの親水性を向上させることができる。 Further, the content of segment C is preferably 0.1 to 10 mol%, more preferably 0.3 to 5 mol%, and particularly preferably 0.75 to 3 mol%. Hydrophobicity when the temperature is raised can be improved by making the content 0.1 mol% or more, while hydrophilicity when the temperature is lowered by making the content 5 mol% or less. Can be made.
 また、トリブロック共重合体中のセグメントA及びBのモル比〔B/A〕としては、温度応答性の観点から、0.005~1が好ましく、0.01~0.5がより好ましく、0.025~0.25がさらに好ましく、0.025~0.15が特に好ましい。
 また、セグメントA及びCのモル比〔C/A〕としては、温度応答性の観点から、0.001~0.1が好ましく、0.0025~0.05がより好ましく、0.005~0.025がさらに好ましく、0.0075~0.025が特に好ましい。
 なお、上記各セグメントの含有量や比率は、NMR等により測定可能である。
Further, the molar ratio [B / A] of the segments A and B in the triblock copolymer is preferably 0.005 to 1, more preferably 0.01 to 0.5, from the viewpoint of temperature responsiveness. 0.025 to 0.25 is more preferable, and 0.025 to 0.15 is particularly preferable.
In addition, the molar ratio [C / A] of the segments A and C is preferably 0.001 to 0.1, more preferably 0.0025 to 0.05, and more preferably 0.005 to 0 from the viewpoint of temperature responsiveness. 0.025 is more preferable, and 0.0075 to 0.025 is particularly preferable.
In addition, content and ratio of each said segment can be measured by NMR etc.
 また、本発明のトリブロック共重合体の重量平均分子量(Mw)としては、5000~100000の範囲が好ましく、10000~50000の範囲が好ましい。重量平均分子量(Mw)を5000以上とすることにより温度応答性が改善され、一方、100000以下とすることにより溶剤への溶解性を向上させることができる。
 また、本発明のトリブロック共重合体は、温度応答性の観点から、狭分散であることが好ましく、分子量分布(Mw/Mn)が1.0~2.0の範囲であることが好ましい。
 上記各重量平均分子量(Mw)や分子量分布(Mw/Mn)は、後述する実施例に記載の方法により測定可能である。
The weight average molecular weight (M w ) of the triblock copolymer of the present invention is preferably in the range of 5000 to 100,000, more preferably in the range of 10,000 to 50,000. Temperature responsiveness is improved by setting the weight average molecular weight (M w ) to 5000 or more, while solubility in a solvent can be improved by setting the weight average molecular weight (M w ) to 100,000 or less.
The triblock copolymer of the present invention is preferably narrowly dispersed from the viewpoint of temperature responsiveness, and the molecular weight distribution (M w / M n ) is in the range of 1.0 to 2.0. preferable.
Each said weight average molecular weight ( Mw ) and molecular weight distribution ( Mw / Mn ) can be measured by the method as described in the Example mentioned later.
 また、本発明のトリブロック共重合体の両末端としては、水素原子、アルキル基、アルコキシ基等が挙げられる。 In addition, examples of both ends of the triblock copolymer of the present invention include a hydrogen atom, an alkyl group, and an alkoxy group.
 次に、本発明のトリブロック共重合体の製造方法について説明する。
 本発明のトリブロック共重合体は、リビングカチオン重合により製造できる。リビングカチオン重合によれば、分子量や組成比の制御が容易であり、狭分散のポリマーが得られる。
 即ち、<1>セグメントAを誘導するビニルエーテル系単量体を、開始種、ルイス酸及び溶媒の存在下でリビングカチオン重合させ、<2>この反応系中に、セグメントBを誘導するアゾベンゼン骨格を含む単量体を添加し、これをリビングカチオン重合させることでジブロックポリマーを形成させる。次いで、<3>ジブロックポリマーが形成された反応系中に、セグメントCを誘導するオキシスチレン系単量体を添加し、リビングカチオン重合させることで、本発明のトリブロック共重合体を製造できる。なお、工程<2>及び<3>において、ルイス酸や溶媒をさらに添加してもよい。
Next, the manufacturing method of the triblock copolymer of this invention is demonstrated.
The triblock copolymer of the present invention can be produced by living cationic polymerization. According to living cationic polymerization, control of molecular weight and composition ratio is easy, and a narrowly dispersed polymer can be obtained.
That is, <1> a vinyl ether monomer that induces segment A is subjected to living cationic polymerization in the presence of a starting species, a Lewis acid, and a solvent, and <2> an azobenzene skeleton that induces segment B in this reaction system. A diblock polymer is formed by adding a monomer to be contained and subjecting it to living cationic polymerization. Next, the triblock copolymer of the present invention can be produced by adding an oxystyrene monomer that induces segment C to the reaction system in which the <3> diblock polymer is formed, and performing living cationic polymerization. . In the steps <2> and <3>, a Lewis acid or a solvent may be further added.
 工程<1>で用いるセグメントAを誘導するビニルエーテル系単量体としては、次の一般式(4) As a vinyl ether monomer for deriving segment A used in step <1>, the following general formula (4)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 〔式(4)中、各記号は前記と同義である。〕
で表されるものが挙げられる。
 また、工程<2>で用いるセグメントBを誘導するアゾベンゼン骨格を含む単量体としては、次の一般式(5)
[In formula (4), each symbol is as defined above. ]
The thing represented by is mentioned.
Moreover, as a monomer containing the azobenzene skeleton which induces segment B used in step <2>, the following general formula (5)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 〔式(5)中、各記号は前記と同義である。〕
で表されるものが挙げられる。
 また、工程<3>で用いるセグメントCを誘導するオキシスチレン系単量体としては、次の一般式(6)
[In formula (5), each symbol is as defined above. ]
The thing represented by is mentioned.
Moreover, as an oxystyrene-type monomer which derives the segment C used at process <3>, following General formula (6)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 〔式(6)中、各記号は前記と同義である。〕
で表されるものが挙げられる。
[In formula (6), each symbol is as defined above. ]
The thing represented by is mentioned.
 また、上記各工程において使用される開始種としては、水、アルコール、プロトン酸等のプロトンを生成する化合物やハロゲン化アルキル等のカルボカチオンを生成する化合物の他、ビニルエーテルとプロトンを生成する化合物との付加物等のカチオン供給化合物が挙げられ、この中でもカルボカチオンを生成する化合物が好ましい。斯様なカルボカチオンを生成する化合物としては、例えば、1-イソブトキシエチルアセテート等の1-アルコキシエチルアセテート等が挙げられる。
 上記開始種の添加量は、目的とするトリブロック共重合体の分子量に応じて適宜決定すればよい。
The starting species used in each of the above steps include compounds that generate protons such as water, alcohol, and protonic acids, compounds that generate carbocations such as alkyl halides, and compounds that generate protons with vinyl ether. Cation supplying compounds, such as adducts, are preferable. Among them, compounds that generate carbocations are preferred. Examples of the compound that generates such a carbocation include 1-alkoxyethyl acetate such as 1-isobutoxyethyl acetate.
What is necessary is just to determine suitably the addition amount of the said start seed | species according to the molecular weight of the target triblock copolymer.
 また、上記各工程において使用されるルイス酸は、リビングカチオン重合に一般的に用いられるものであればよい。具体的には、Et1.5AlCl1.5等の有機金属ハロゲン化物;TiCl4、TiBr4、BCl3、BF3、BF3・OEt2、SnCl2、SnCl4、SbCl5、SbF5、WCl6、TaCl5、VCl5、FeCl3、ZnBr2、ZnCl4、AlCl3、AlBr3等の金属ハロゲン化物を好適に使用することができる。なお、ルイス酸は、単独で使用してもよいし、複数を併用してもよい。 In addition, the Lewis acid used in each of the above steps may be any one that is generally used for living cationic polymerization. Specifically, organometallic halides such as Et 1.5 AlCl 1.5 ; TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 .OEt 2 , SnCl 2 , SnCl 4 , SbCl 5 , SbF 5 , WCl 6 , TaCl 5 , metal halides such as VCl 5 , FeCl 3 , ZnBr 2 , ZnCl 4 , AlCl 3 , and AlBr 3 can be preferably used. Note that the Lewis acid may be used alone or in combination.
 斯様なルイス酸の中でも、工程<1>及び<2>で使用するルイス酸としては、次の一般式(7) Among such Lewis acids, the Lewis acid used in the steps <1> and <2> includes the following general formula (7)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
〔式(7)中、R6は一価の有機基を示し、Yはハロゲン原子を示し、r及びsはr+s=3でかつ0≦r<3、0<s≦3の数を示す。〕
で表される有機ハロゲン化アルミニウム化合物、又はハロゲン化アルミニウム化合物が好ましい。
[In the formula (7), R 6 represents a monovalent organic group, Y represents a halogen atom, r and s represent r + s = 3, and 0 ≦ r <3 and 0 <s ≦ 3. ]
The organic aluminum halide compound or aluminum halide compound represented by these is preferable.
 式(7)中、R6で示される一価の有機基は特に限定されないが、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~12)、アラルキル基(好ましくは炭素数7~13)、アルケニル基(好ましくは炭素数2~8)、アルコキシ基(好ましくは炭素数1~8)が挙げられる。
 また、Yで示されるハロゲン原子としては、塩素原子、臭素原子、フッ素原子等が挙げられ、rは好ましくは1~2の範囲であり、sは好ましくは1~2の範囲である。
In formula (7), the monovalent organic group represented by R 6 is not particularly limited, but an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 12 carbon atoms), an aralkyl group (preferably Includes an alkenyl group (preferably 2 to 8 carbon atoms) and an alkoxy group (preferably 1 to 8 carbon atoms).
Examples of the halogen atom represented by Y include a chlorine atom, a bromine atom, and a fluorine atom. R is preferably in the range of 1 to 2, and s is preferably in the range of 1 to 2.
 上記のようなルイス酸の具体例としては、ジエチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリド、メチルアルミニウムセスキクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミド、イソブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミド、イソブチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、エチルアルミニウムジブロミド、エチルアルミニウムジフルオライド、イソブチルアルミニウムジクロリド、オクチルアルミニウムジクロリド、エトキシアルミニウムジクロリロド、フェニルアルミニウムジクロリド等が挙げられる。 Specific examples of the Lewis acid as described above include diethylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride, methylaluminum sesquichloride, ethylaluminum sesquichloride, ethylaluminum sesquibromide, isobutylaluminum sesquichloride, ethylaluminum sesquibromide, isobutyl. Examples include aluminum sesquichloride, methylaluminum dichloride, ethylaluminum dichloride, ethylaluminum dibromide, ethylaluminum difluoride, isobutylaluminum dichloride, octylaluminum dichloride, ethoxyaluminum dichloride, phenylaluminum dichloride.
 一方、工程<3>で使用するルイス酸としては、含まれる金属がAl以外の、金属ハロゲン化合物又は有機金属ハロゲン化合物が好ましい。斯様な化合物としては、TiCl4、TiBr4、BCl3、BF3、BF3・OEt2、SnCl2、SnCl4、SbCl5、SbF5、WCl6、TaCl5、VCl5、FeCl3、ZnBr2、ZrCl4等が挙げられる。この中でも、SnCl4、FeCl3等が好ましい。 On the other hand, the Lewis acid used in the step <3> is preferably a metal halogen compound or an organometallic halogen compound other than Al. Such compounds include TiCl 4 , TiBr 4 , BCl 3 , BF 3 , BF 3 .OEt 2 , SnCl 2 , SnCl 4 , SbCl 5 , SbF 5 , WCl 6 , TaCl 5 , VCl 5 , FeCl 3 , ZnBr 2 , ZrCl 4 and the like. Among this, SnCl 4, FeCl 3 and the like are preferable.
 ルイス酸の使用量は特に限定されず、使用される各単量体の重合特性あるいは重合濃度を考慮して設定すればよい。通常は各単量体に対して1~500モル%の範囲で使用される。 The amount of Lewis acid used is not particularly limited, and may be set in consideration of the polymerization characteristics or polymerization concentration of each monomer used. Usually, it is used in the range of 1 to 500 mol% with respect to each monomer.
 また、上記各工程において使用される溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;プロパン、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソオクタン、デカン、ヘキサデカン、イソペンタン等の脂肪族炭化水素系溶媒;塩化メチレン、塩化エチレン、四塩化炭素等のハロゲン化炭化水素系溶媒;テトラヒドロフラン(THF)、ジオキサン、ジエチルエーテル、ジブチルエーテル、エチレングリコールジエチルエーテル等のエーテル系溶媒が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上を組み合わせてもよい。 The solvent used in each of the above steps includes aromatic hydrocarbon solvents such as benzene, toluene and xylene; propane, n-butane, isobutane, n-pentane, n-hexane, n-heptane, and n-octane. Aliphatic hydrocarbon solvents such as isooctane, decane, hexadecane and isopentane; halogenated hydrocarbon solvents such as methylene chloride, ethylene chloride and carbon tetrachloride; tetrahydrofuran (THF), dioxane, diethyl ether, dibutyl ether, ethylene glycol Examples include ether solvents such as diethyl ether. These solvents may be used alone or in combination of two or more.
 各工程の重合温度は、通常-80℃~150℃の範囲であるが、-78℃~80℃の範囲内が好ましい。また重合時間は、通常5時間~12時間の範囲である。 The polymerization temperature in each step is usually in the range of −80 ° C. to 150 ° C., but is preferably in the range of −78 ° C. to 80 ° C. The polymerization time is usually in the range of 5 to 12 hours.
 また、本発明のトリブロック共重合体は、工程<3>の後、所望の重合度で反応停止剤を添加して重合反応を停止し、必要に応じて金属化合物等の触媒残渣を除去した後、(1)ポリマー溶液から揮発分を留去する方法、又は(2)大量の貧溶媒を添加し、ポリマーを沈殿させ分離する方法等により単離することができる。
 上記反応停止剤としては、例えば、メタノール、エタノール、プロパノール等のアルコール;ジメチルアミン、ジエチルアミン等のアミン;水、アンモニア水、水酸化ナトリウム水溶液等のように、末端停止剤として作用する化合物及び/又はルイス酸の活性を失活させる働きを有する化合物が用いられる。
 また、上記触媒残渣を除去する方法としては、水又は塩酸、硝酸、硫酸等の酸を含む水溶液で処理する方法;シリカゲル、アルミナ、シリカ-アルミナ等の無機酸化物で処理する方法;イオン交換樹脂で処理する方法等が挙げられる。なかでもアゾ基の浸透を起こさず、金属の吸着能を示すアルミナで処理する方法が好ましい。
Further, the triblock copolymer of the present invention, after step <3>, added a reaction terminator at a desired degree of polymerization to stop the polymerization reaction, and removed catalyst residues such as metal compounds as necessary. Thereafter, it can be isolated by (1) a method of distilling off volatile components from the polymer solution, or (2) a method of adding a large amount of poor solvent to precipitate and separate the polymer.
Examples of the reaction terminator include compounds such as alcohols such as methanol, ethanol, and propanol; amines such as dimethylamine and diethylamine; compounds that act as end terminators such as water, aqueous ammonia, and aqueous sodium hydroxide; A compound having a function of deactivating the activity of the Lewis acid is used.
The catalyst residue can be removed by treating with water or an aqueous solution containing an acid such as hydrochloric acid, nitric acid or sulfuric acid; treating with an inorganic oxide such as silica gel, alumina or silica-alumina; ion exchange resin And the like. Among them, a method of treating with alumina that does not cause penetration of azo groups and exhibits metal adsorption ability is preferable.
 上記のようにして得られる本発明のトリブロック共重合体は、繊維質基材に担持させたとしても温度応答性を発現し親疎水性が可逆的に変化するため、広範囲の基材に温度応答性を付与することができる。また、合成樹脂等の基材表面に固定化することができ、トリブロック共重合体が固定化された合成樹脂等の基材表面は平滑で、タックもない。ここで、本明細書において、温度応答性とは、所定の温度以下としたときに親水性(透水性)を示し、所定の温度を超えるときに疎水性(撥水性)を示すことをいう。
 なお、繊維質基材に担持させたとしても温度応答性を発現可能な理由は必ずしも明らかではないが、セグメントAの熱刺激に感応して親水性又は疎水性を付与する作用と、セグメントBの繊維質基材への浸透性を付与する作用と、セグメントCの疎水性を調整する作用とが、いずれも、セグメントシーケンスをA-B-Cとすることにより十分に発現されるためと本発明者は推察する。
The triblock copolymer of the present invention obtained as described above exhibits temperature responsiveness and reversibly changes its hydrophilicity / hydrophobicity even when supported on a fibrous base material. Sex can be imparted. Moreover, it can fix | immobilize on base-material surfaces, such as a synthetic resin, and base-material surfaces, such as a synthetic resin to which the triblock copolymer was fix | immobilized, are smooth and do not have a tack. Here, in the present specification, the temperature responsiveness refers to showing hydrophilicity (water permeability) when the temperature is lower than a predetermined temperature, and showing hydrophobicity (water repellency) when the temperature exceeds a predetermined temperature.
Although the reason why the temperature responsiveness can be expressed even if it is supported on the fibrous base material is not necessarily clear, the action of imparting hydrophilicity or hydrophobicity in response to the thermal stimulation of the segment A, and the segment B Both the effect of imparting the permeability to the fibrous base material and the effect of adjusting the hydrophobicity of the segment C are sufficiently expressed by setting the segment sequence to ABC, and the present invention. Guess.
 しがたって、本発明のトリブロック共重合体を用いることにより、その温度応答性を利用して、適用する基材の親水性・疎水性を制御することができ、本発明のトリブロック共重合体を、繊維質基材に担持することにより温度応答性を備えた共重合体-繊維複合体を提供できる。そして、本発明の親疎水性制御剤及び共重合体-繊維複合体は、例えば、温度センサー、分離膜、吸着剤、薬物放出剤、吸水剤、保水剤、調湿剤、インジケータ剤等の材料として使用することができる。 Therefore, by using the triblock copolymer of the present invention, the hydrophilicity / hydrophobicity of the substrate to be applied can be controlled by utilizing its temperature responsiveness. By supporting the coalescence on a fibrous base material, a copolymer-fiber composite having temperature responsiveness can be provided. The hydrophilicity / hydrophobicity control agent and copolymer-fiber composite of the present invention are used as materials such as a temperature sensor, a separation membrane, an adsorbent, a drug release agent, a water absorbing agent, a water retention agent, a humidity control agent, and an indicator agent. Can be used.
 また、親疎水性制御剤は、トリブロック共重合体の他に、溶剤を含んでいてもよい。斯様な溶剤としては、上記重合反応で用いる溶媒として挙げたものの他、メタノール、エタノール、プロパノール、イソプロパノール等の低級(好ましくは炭素数1~3)アルコール;水が挙げられ、1種を単独で含んでいてもよく、2種以上の組み合わせを含んでいてもよい。
 トリブロック共重合体の含有量は特に限定されないが、親疎水性制御剤中、好ましくは1~50質量%であり、より好ましくは5~25質量%である。
Further, the hydrophilicity / hydrophobicity control agent may contain a solvent in addition to the triblock copolymer. Examples of such solvents include those listed above as solvents used in the polymerization reaction, lower alcohols (preferably having 1 to 3 carbon atoms) such as methanol, ethanol, propanol and isopropanol; water, and the like. It may be included, and two or more kinds of combinations may be included.
The content of the triblock copolymer is not particularly limited, but is preferably 1 to 50% by mass, more preferably 5 to 25% by mass in the hydrophilicity / hydrophobicity control agent.
 また、親疎水性制御の対象となる基材としては、合成樹脂、天然樹脂、植物繊維、動物繊維、無機繊維が挙げられ、合成樹脂、無機繊維が好ましく、合成樹脂繊維、無機繊維がより好ましい。
 上記合成樹脂としては、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル系樹脂;ポリスチレン等のポリスチレン系樹脂;塩化ビニル系樹脂;低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリエーテルケトン、ポリエーテルエーテルケトン等のポリエーテル系樹脂;ナイロン、アラミド等のポリアミド系樹脂;ポリカーボネート等のポリカーボネート系樹脂;ポリイミド等のポリイミド系樹脂;ポリウレタン等のポリウレタン系樹脂;ポリテトラフルオロエチレン等のフッ素系樹脂等が挙げられ、上記天然樹脂としてはラテックス、天然ゴム等が挙げられる。なお、これら樹脂の複数からなる複合材料、アロイ、共重合体等であってもよい。
 また、上記植物繊維としては、木綿、麻、リンネル等が挙げられ、上記動物繊維としては、羊毛、絹、カシミヤ等が挙げられ、上記無機繊維としては、ガラス繊維等が挙げられる。これらの繊維は単独でまたは組み合わせて使用していてもよく、合成樹脂や天然樹脂と組み合わせて使用してもよい。
In addition, examples of the base material to be controlled for hydrophilicity / hydrophobicity include synthetic resins, natural resins, plant fibers, animal fibers, and inorganic fibers. Synthetic resins and inorganic fibers are preferable, and synthetic resin fibers and inorganic fibers are more preferable.
Examples of the synthetic resin include polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate; polystyrene resins such as polystyrene; vinyl chloride resins; low density polyethylene, Polyolefin resins such as high-density polyethylene and polypropylene; polyether resins such as polyether ketone and polyether ether ketone; polyamide resins such as nylon and aramid; polycarbonate resins such as polycarbonate; polyimide resins such as polyimide; Polyurethane resins such as polytetrafluoroethylene, and the like, and examples of the natural resin include latex and natural rubber. Note that it may be a composite material composed of a plurality of these resins, an alloy, a copolymer, or the like.
Examples of the plant fiber include cotton, hemp, and linen. Examples of the animal fiber include wool, silk, and cashmere. Examples of the inorganic fiber include glass fiber. These fibers may be used alone or in combination, and may be used in combination with a synthetic resin or a natural resin.
 また、基材の形態としては特に限定されず、ビーズ、フィルム、繊維質基材、シート、チューブ、パイプ又はこれらの複合物等が挙げられるが、繊維質基材が好ましく、繊維シートがより好ましい。繊維シートの形態は、織物、編物、不織布等が例示され、繊維間の空隙が小さい点で不織布が好ましい。不織布としては、エアスルー法、ヒートロール法、スパンレース法、ニードルパンチ法、ケミカルボンド法、エアレイド法、メルトブローン法、スパンボンド法等の各種の不織布製造方法で製造された不織布及び複合体不織布(例えば、スパンボンド/メルトブローン不織布、スパンボンド/メルトブローン/スパンボンド不織布)等を用いることができる。なお、繊維シートは単層であっても多層を積層したものであってもよい。
 また、本発明のトリブロック共重合体は上記のような基材の親疎水性を制御できるが、合成樹脂や無機繊維への浸透性を有するアゾ基を含み、合成樹脂や無機繊維表面に当該トリブロック共重合体を固定化することができるため、上記合成樹脂や無機繊維の表面の親疎水性制御に特に適する。
In addition, the form of the substrate is not particularly limited, and examples thereof include beads, films, fibrous substrates, sheets, tubes, pipes, and composites thereof. However, fibrous substrates are preferable, and fiber sheets are more preferable. . Examples of the fiber sheet include woven fabrics, knitted fabrics, and non-woven fabrics, and non-woven fabrics are preferred in that the gap between fibers is small. Nonwoven fabrics and composite nonwoven fabrics manufactured by various nonwoven fabric production methods such as air-through method, heat roll method, spun lace method, needle punch method, chemical bond method, airlaid method, melt blown method, and spun bond method (for example, , Spunbond / meltblown nonwoven fabric, spunbond / meltblown / spunbond nonwoven fabric) and the like. The fiber sheet may be a single layer or a laminate of multiple layers.
In addition, the triblock copolymer of the present invention can control the hydrophilicity / hydrophobicity of the substrate as described above, but contains an azo group having permeability to a synthetic resin or inorganic fiber, and the triblock copolymer on the surface of the synthetic resin or inorganic fiber. Since the block copolymer can be immobilized, it is particularly suitable for controlling hydrophilicity / hydrophobicity of the surface of the synthetic resin or inorganic fiber.
 また、親疎水性制御方法としては、本発明のトリブロック共重合体を上記溶剤に溶解させ、これを基材に塗布又は含浸する方法が挙げられる。
 塗布又は含浸の方法は特に限定されず、例えば、前記トリブロック共重合体を溶かした溶液をスプレー、ロール、刷毛等を用いて塗布する方法、ディッピングする方法などが挙げられる。
Moreover, as a hydrophilicity / hydrophobicity control method, the method which dissolves the triblock copolymer of this invention in the said solvent, and apply | coats or impregnates to a base material is mentioned.
The method of application or impregnation is not particularly limited, and examples thereof include a method in which a solution in which the triblock copolymer is dissolved is applied using a spray, a roll, a brush, a dipping method, and the like.
 また、本発明の共重合体-繊維複合体は、本発明のトリブロック共重合体が、繊維質基材に担持されているものである。繊維質基材は、繊維集合体を主たる構成成分とする基材をいい、上記と同様のものが挙げられる。共重合体-繊維複合体としては、繊維質基材を構成する繊維の表面にトリブロック共重合体が固定化されているものが好ましい。
 また、上記繊維質基材としては、合成樹脂繊維、天然樹脂繊維、植物繊維、動物繊維及び無機繊維から選ばれる1種以上からなるものが挙げられ、合成樹脂繊維及び無機繊維から選ばれる1種以上からなるものが好ましい。
 上記合成樹脂繊維を構成する合成樹脂や、天然樹脂繊維を構成する天然樹脂、上記植物繊維、動物繊維、無機繊維としては上記と同様のものが挙げられるが、合成樹脂繊維の中でも、ポリエステル繊維、ポリオレフィン繊維、ポリアミド繊維、ポリウレタン繊維、これらの複合繊維が好ましい。一方、無機繊維としては、ガラス繊維が好ましい。
In the copolymer-fiber composite of the present invention, the triblock copolymer of the present invention is supported on a fibrous base material. The fibrous base material refers to a base material having a fiber assembly as a main constituent component, and examples thereof include the same ones as described above. The copolymer-fiber composite is preferably one in which a triblock copolymer is immobilized on the surface of the fibers constituting the fibrous base material.
Moreover, as said fibrous base material, what consists of 1 or more types chosen from a synthetic resin fiber, a natural resin fiber, a vegetable fiber, an animal fiber, and an inorganic fiber is mentioned, 1 type chosen from a synthetic resin fiber and an inorganic fiber What consists of the above is preferable.
Examples of the synthetic resin constituting the synthetic resin fiber, the natural resin constituting the natural resin fiber, the plant fiber, the animal fiber, and the inorganic fiber include the same as those described above. Among the synthetic resin fibers, among the polyester fibers, Polyolefin fibers, polyamide fibers, polyurethane fibers, and composite fibers thereof are preferable. On the other hand, glass fiber is preferable as the inorganic fiber.
 また、共重合体-繊維複合体は、薬剤等を含んでいてもよく、繊維質基材に加工処理が施してあるものでもよい。例えば、難燃性、抗菌性、消臭性、防虫性、抗かび性、芳香性等の機能が付与されたものであってもよく、これらの機能を有するシート又はフィルムと接合一体化したものであってもよい。
 なお、本発明の共重合体-繊維複合体の製造は、上記親疎水性制御方法と同様にして行えばよい。また、表面にトリブロック共重合体を固定化した繊維を用いて、織物、編物、不織布等を形成してもよい。
The copolymer-fiber composite may contain a drug or the like, and may be a fiber base material that has been processed. For example, it may be provided with functions such as flame retardancy, antibacterial properties, deodorant properties, insect repellent properties, antifungal properties, aromatic properties, etc., and integrated with a sheet or film having these functions. It may be.
The production of the copolymer-fiber composite of the present invention may be carried out in the same manner as in the above hydrophilicity / hydrophobicity control method. Moreover, you may form a woven fabric, a knitted fabric, a nonwoven fabric, etc. using the fiber which fixed the triblock copolymer on the surface.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、各ブロック共重合体の物性評価は、以下の方法により行なった。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. The physical properties of each block copolymer were evaluated by the following methods.
<重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)>
 RI検出器を用いて、ゲルパーミエーションクロマトグラフィー(GPC)法により標準ポリスチレン検量線から求めた(カラム:Shodex社製KF-804L×3本、溶離液:テトラヒドロフラン)。
<Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn)>
Using a RI detector, a standard polystyrene calibration curve was obtained by gel permeation chromatography (GPC) method (column: KF-804L x 3 manufactured by Shodex, eluent: tetrahydrofuran).
実施例1:メトキシエチルビニルエーテル-b-フェニル(4-(2-ビニロキシエトキシ)フェニル)ジアゼン-b-パライソプロペニルフェノール(以下、「MOVE-b-PVEPD-b-PIPPポリマー」と称する)の製造(1) Example 1: Preparation of methoxyethyl vinyl ether-b-phenyl (4- (2-vinyloxyethoxy) phenyl) diazene-b-paraisopropenylphenol (hereinafter referred to as “MOVE-b-PVEPD-b-PIPP polymer”) (1)
 以下の合成経路に従い、MOVE-b-PVEPD-b-PIPPポリマーを合成した。 The MOVE-b-PVEPD-b-PIPP polymer was synthesized according to the following synthesis route.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 三方活栓をつけたガラス容器を準備し、容器内をアルゴン置換した後、加熱してガラス容器内の吸着水を除いた。この容器内に2-メトキシエチルビニルエーテル(以下、「MOVE」と称する)0.71M(32.6g)、酢酸エチル0.89M(35.3g)、1-イソブトキシエチルアセテート(以下、「IBEA」と称する)3.56mM(0.25g)、及びトルエン270mLを入れ、反応系内を冷却し、温度が0℃に達したところで、Et1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として13.2mM)を加えて重合を開始させた。
 MOVEの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVEポリマーは、Mw=32800、Mw/Mn=1.11の単分散ポリマーであった。
A glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. In this container, 2-methoxyethyl vinyl ether (hereinafter referred to as “MOVE”) 0.71M (32.6 g), ethyl acetate 0.89M (35.3 g), 1-isobutoxyethyl acetate (hereinafter “IBEA”) referred to as) 3.56mM (0.25g), and placed in toluene 270 mL, the reaction system was cooled, 13.2 mm When the temperature reached 0 ° C., as a toluene solution (Et 1.5 AlCl 1.5 of Et 1.5 AlCl 1.5 ) Was added to initiate the polymerization.
When the conversion of MOVE was completed, a small amount of the reaction solution was collected, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE polymer was a monodisperse polymer having Mw = 32800 and Mw / Mn = 1.11.
 次いで、フェニル(4-(2-ビニロキシエトキシ)フェニル)ジアゼン(以下、「PVEPD」と称する)のトルエン溶液(PVEPDとして0.071M(8.56g)を前記の反応系に添加し、さらにEt1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として20.2mM)を加えて反応を続けた。
 PVEPDの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVE-b-PVEPDポリマーは、Mw=35400、Mw/Mn=1.12の単分散ポリマーであった。また、このポリマーのGPCチャートからMOVEポリマー由来のピークが完全に消失していることを確認した。
Next, a toluene solution of phenyl (4- (2-vinyloxyethoxy) phenyl) diazene (hereinafter referred to as “PVEPD”) (0.071 M (8.56 g) as PVEPD) was added to the reaction system, and Et. 1.5 AlCl 1.5 in toluene solution (20.2 mM as Et 1.5 AlCl 1.5 ) was added to continue the reaction.
A small amount of the reaction solution was collected when the conversion of PVEPD was completed, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE-b-PVEPD polymer was a monodisperse polymer with Mw = 35400 and Mw / Mn = 1.12. Further, it was confirmed from the GPC chart of this polymer that the peak derived from the MOVE polymer completely disappeared.
 次いで、p-イソプロペニルフェノール(以下、「PIPP」と称する)の酢酸エチル溶液(PIPPとして7.13mM(0.43g))を前記の反応系に添加し、さらにSnCl4のトルエン溶液(SnCl4として33.7mM)を加えて反応を続けた。
 PIPPの転化が終了した時点で、反応系にナトリウムメトキシドを含むメタノール(ナトリウムメトキシドとして5M)を加えて反応を停止させ、目的とするMOVE-b-PVEPD-b-PIPPポリマー(トリブロックポリマーa)を得た。得られたトリブロックポリマーaは、Mw=37300、Mw/Mn=1.15の単分散ポリマーであった。
 次いで、前記の反応を停止させた溶液に、酸化アルミニウムを5質量%添加し、2時間攪拌した。この溶液を、セライト及び孔径1μmのフィルターに通液させ、エバポレータで減圧濃縮し、トリブロックポリマーaを精製した。精製後のトリブロックポリマーaは、Mw=38100、Mw/Mn=1.18であった。
Then, p- isopropenylphenol (hereinafter, referred to as "PIPP") was added an ethyl acetate solution of (7.13MM as PIPP (0.43 g)) to the reaction system of the further SnCl 4 toluene solution (SnCl 4 As the reaction was continued.
When the conversion of PIPP is completed, methanol containing sodium methoxide (5M as sodium methoxide) is added to the reaction system to stop the reaction, and the desired MOVE-b-PVEPD-b-PIPP polymer (triblock polymer) a) was obtained. The obtained triblock polymer a was a monodispersed polymer having Mw = 37300 and Mw / Mn = 1.15.
Subsequently, 5 mass% of aluminum oxide was added to the solution which stopped the said reaction, and it stirred for 2 hours. This solution was passed through a filter with celite and a pore size of 1 μm and concentrated under reduced pressure with an evaporator to purify the triblock polymer a. The triblock polymer a after purification had Mw = 38100 and Mw / Mn = 1.18.
実施例2:MOVE-b-PVEPD-b-PIPPポリマーの製造(2)
 三方活栓をつけたガラス容器を準備し、容器内をアルゴン置換した後、加熱してガラス容器内の吸着水を除いた。この容器内にMOVE0.69M(32.6g)、酢酸エチル0.87M(35.2g)、IBEA3.46mM(0.25g)、及びトルエン270mLを入れ、反応系内を冷却し、温度が0℃に達したところで、Et1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として12.9mM)を加えて重合を開始させた。
 MOVEの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVEポリマーは、Mw=22600、Mw/Mn=1.17の単分散ポリマーであった。
Example 2: Preparation of MOVE-b-PVEPD-b-PIPP polymer (2)
A glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. In this vessel, MOVE 0.69M (32.6 g), ethyl acetate 0.87M (35.2 g), IBEA 3.46 mM (0.25 g), and 270 mL of toluene were cooled, and the reaction system was cooled to a temperature of 0 ° C. the Upon reaching, polymerization was initiated by the addition of (12.9 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
When the conversion of MOVE was completed, a small amount of the reaction solution was collected, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE polymer was a monodisperse polymer with Mw = 22600 and Mw / Mn = 1.17.
 次いで、PVEPDのトルエン溶液(PVEPDとして0.039M(4.91g)を前記の反応系に添加し、さらにEt1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として32.6mM)を加えて反応を続けた。
 PVEPDの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVE-b-PVEPDポリマーは、Mw=24600、Mw/Mn=1.29の単分散ポリマーであった。また、このポリマーのGPCチャートからMOVEポリマー由来のピークが完全に消失していることを確認した。
Then added as a toluene solution (PVEPD of PVEPD 0.039M a (4.91 g) to the reaction system, further continue the reaction by adding 32.6 mm) as a toluene solution (Et 1.5 AlCl 1.5 of Et 1.5 AlCl 1.5 It was.
A small amount of the reaction solution was collected when the conversion of PVEPD was completed, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE-b-PVEPD polymer was a monodisperse polymer with Mw = 24600 and Mw / Mn = 1.29. Further, it was confirmed from the GPC chart of this polymer that the peak derived from the MOVE polymer completely disappeared.
 次いで、PIPPの酢酸エチル溶液(PIPPとして6.9mM(0.43g))を前記の反応系に添加し、さらにSnCl4のトルエン溶液(SnCl4として76.0mM)を加えて反応を続けた。
 PIPPの転化が終了した時点で、反応系にナトリウムメトキシドを含むメタノール(ナトリウムメトキシドとして5M)を加えて反応を停止させ、目的とするMOVE-b-PVEPD-b-PIPPポリマー(トリブロックポリマーb)を得た。得られたトリブロックポリマーbは、Mw=26700、Mw/Mn=1.29の単分散ポリマーであった。
 次いで、前記の反応を停止させた溶液に、酸化アルミニウムを5質量%添加し、2時間攪拌した。この溶液を、セライト及び孔径1μmのフィルターに通液させ、エバポレータで減圧濃縮し、トリブロックポリマーbを精製した。精製後のトリブロックポリマーbは、Mw=27400、Mw/Mn=1.27であった。
Then, ethyl acetate was added a solution of PIPP (6.9 mM as PIPP (0.43 g)) to the reaction system described above, the reaction was continued by adding further toluene solution of SnCl 4 (76.0 mm as SnCl 4).
When the conversion of PIPP is completed, methanol containing sodium methoxide (5M as sodium methoxide) is added to the reaction system to stop the reaction, and the desired MOVE-b-PVEPD-b-PIPP polymer (triblock polymer) b) was obtained. The obtained triblock polymer b was a monodispersed polymer having Mw = 26700 and Mw / Mn = 1.29.
Subsequently, 5 mass% of aluminum oxide was added to the solution which stopped the said reaction, and it stirred for 2 hours. This solution was passed through a filter of celite and a pore size of 1 μm, and concentrated under reduced pressure with an evaporator to purify the triblock polymer b. Triblock polymer b after purification was Mw = 27400 and Mw / Mn = 1.27.
実施例3:MOVE-b-PVEPD-b-PIPPポリマーの製造(3)
 三方活栓をつけたガラス容器を準備し、容器内をアルゴン置換した後、加熱してガラス容器内の吸着水を除いた。この容器内にMOVE1.29M(58.6g)、酢酸エチル0.86M(31.6g)、IBEA3.2mM(0.23g)、及びトルエン243mLを入れ、反応系内を冷却し、温度が0℃に達したところで、Et1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として12.0mM)を加えて重合を開始させた。
 MOVEの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVEポリマーは、Mw=28300、Mw/Mn=1.22の単分散ポリマーであった。
Example 3: Preparation of MOVE-b-PVEPD-b-PIPP polymer (3)
A glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. In this vessel, MOVE 1.29M (58.6 g), ethyl acetate 0.86M (31.6 g), IBEA 3.2 mM (0.23 g) and toluene 243 mL were placed, the inside of the reaction system was cooled, and the temperature was 0 ° C. the Upon reaching, polymerization was initiated by the addition of (12.0 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
When the conversion of MOVE was completed, a small amount of the reaction solution was collected, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE polymer was a monodisperse polymer with Mw = 28300 and Mw / Mn = 1.22.
 次いで、PVEPDのトルエン溶液(PVEPDとして0.064M(7.7g)を前記の反応系に添加し、さらにEt1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として18.3mM)を加えて反応を続けた。
 PVEPDの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVE-b-PVEPDポリマーは、Mw=29800、Mw/Mn=1.46の単分散ポリマーであった。また、このポリマーのGPCチャートからMOVEポリマー由来のピークが完全に消失していることを確認した。
Then added as a toluene solution (PVEPD of PVEPD 0.064M a (7.7 g) to the reaction system, further continue the reaction by adding 18.3 mm) as a toluene solution (Et 1.5 AlCl 1.5 of Et 1.5 AlCl 1.5 It was.
A small amount of the reaction solution was collected when the conversion of PVEPD was completed, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE-b-PVEPD polymer was a monodisperse polymer with Mw = 29800 and Mw / Mn = 1.46. Further, it was confirmed from the GPC chart of this polymer that the peak derived from the MOVE polymer completely disappeared.
 次いで、PIPPの酢酸エチル溶液(PIPPとして6.5mM(0.39g))を前記の反応系に添加し、さらにSnCl4のトルエン溶液(SnCl4として30.5mM)を加えて反応を続けた。
 PIPPの転化が終了した時点で、反応系にナトリウムメトキシドを含むメタノール(ナトリウムメトキシドとして5M)を加えて反応を停止させ、目的とするMOVE-b-PVEPD-b-PIPPポリマー(トリブロックポリマーc)を得た。得られたポリマーcは、Mw=33800、Mw/Mn=1.23の単分散ポリマーであった。
 次いで、前記の反応を停止させた溶液に、酸化アルミニウムを5質量%添加し、2時間攪拌した。この溶液を、セライト及び孔径1μmのフィルターに通液させ、エバポレータで減圧濃縮し、トリブロックポリマーcを精製した。精製後のトリブロックポリマーcは、Mw=34600、Mw/Mn=1.58であった。
Then, ethyl acetate was added a solution of PIPP (6.5 mM as PIPP (0.39 g)) to the reaction system described above, the reaction was continued by adding further toluene solution of SnCl 4 (30.5 mm as SnCl 4).
When the conversion of PIPP is completed, methanol containing sodium methoxide (5M as sodium methoxide) is added to the reaction system to stop the reaction, and the desired MOVE-b-PVEPD-b-PIPP polymer (triblock polymer) c) was obtained. The obtained polymer c was a monodispersed polymer having Mw = 33800 and Mw / Mn = 1.23.
Subsequently, 5 mass% of aluminum oxide was added to the solution which stopped the said reaction, and it stirred for 2 hours. This solution was passed through a filter of celite and a pore size of 1 μm, and concentrated under reduced pressure with an evaporator to purify the triblock polymer c. The purified triblock polymer c had Mw = 34600 and Mw / Mn = 1.58.
実施例4:エトキシエチルビニルエーテル-b-フェニル(4-(2-ビニロキシエトキシ)フェニル)ジアゼン-b-パライソプロペニルフェノール(以下、「EOVE-b-PVEPD-b-PIPPポリマー」と称する)の製造(1) Example 4: Preparation of ethoxyethyl vinyl ether-b-phenyl (4- (2-vinyloxyethoxy) phenyl) diazene-b-paraisopropenylphenol (hereinafter referred to as “EOVE-b-PVEPD-b-PIPP polymer”) (1)
 以下の合成経路に従い、EOVE-b-PVEPD-b-PIPPポリマーを合成した。 EOOVE-b-PVEPD-b-PIPP polymer was synthesized according to the following synthesis route.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 三方活栓をつけたガラス容器を準備し、容器内をアルゴン置換した後、加熱してガラス容器内の吸着水を除いた。この容器内に2-エトキシエチルビニルエーテル(以下、「EOVE」と称する)0.68M(37.0g)、酢酸エチル0.85M(35.2g)、IBEA3.4mM(0.25g)、及びトルエン270mLを入れ、反応系内を冷却し、温度が0℃に達したところで、Et1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として12.8mM)を加えて重合を開始させた。
 EOVEの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたEOVEポリマーは、Mw=29500、Mw/Mn=1.14の単分散ポリマーであった。
A glass container with a three-way stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. In this container, 2-ethoxyethyl vinyl ether (hereinafter referred to as “EOVE”) 0.68M (37.0 g), ethyl acetate 0.85M (35.2 g), IBEA 3.4 mM (0.25 g), and toluene 270 mL placed, the reaction system was cooled, and when the temperature reached 0 ° C., was added to initiate polymerization of (12.8 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
When the conversion of EOVE was completed, a small amount of the reaction solution was collected, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained EOVE polymer was a monodisperse polymer with Mw = 29500 and Mw / Mn = 1.14.
 次いで、PVEPDのトルエン溶液(PVEPDとして0.039M(4.9g)を前記の反応系に添加し、さらにEt1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として30.9mM)を加えて反応を続けた。
 PVEPDの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたEOVE-b-PVEPDポリマーは、Mw=31800、Mw/Mn=1.20の単分散ポリマーであった。また、このポリマーのGPCチャートからEOVEポリマー由来のピークが完全に消失していることを確認した。
Then added as a toluene solution (PVEPD of PVEPD 0.039M a (4.9 g) to the reaction system, further continue the reaction by adding 30.9mm) as a toluene solution (Et 1.5 AlCl 1.5 of Et 1.5 AlCl 1.5 It was.
A small amount of the reaction solution was collected when the conversion of PVEPD was completed, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained EOVE-b-PVEPD polymer was a monodisperse polymer with Mw = 31800 and Mw / Mn = 1.20. Further, it was confirmed from the GPC chart of this polymer that the peak derived from the EOVE polymer completely disappeared.
 次いで、PIPPの酢酸エチル溶液(PIPPとして6.8mM(0.43g))を前記の反応系に添加し、さらにSnCl4のトルエン溶液(SnCl4として76.5mM)を加えて反応を続けた。
 PIPPの転化が終了した時点で、反応系にナトリウムメトキシドを含むメタノール(ナトリウムメトキシドとして5M)を加えて反応を停止させ、目的とするEOVE-b-PVEPD-b-PIPPポリマー(トリブロックポリマーd)を得た。得られたポリマーdは、Mw=34600、Mw/Mn=1.16の単分散ポリマーであった。
 次いで、前記の反応を停止させた溶液に、酸化アルミニウムを5質量%添加し、2時間攪拌した。この溶液を、セライト及び孔径1μmのフィルターに通液させ、エバポレータで減圧濃縮し、トリブロックポリマーdを精製した。精製後のトリブロックポリマーdは、Mw=36500、Mw/Mn=1.18であった。
Then, ethyl acetate was added a solution of PIPP (6.8 mM as PIPP (0.43 g)) to the reaction system described above, the reaction was continued by adding further toluene solution of SnCl 4 (76.5mM as SnCl 4).
When the conversion of PIPP is completed, methanol containing sodium methoxide (5M as sodium methoxide) is added to the reaction system to stop the reaction, and the desired EOVE-b-PVEPD-b-PIPP polymer (triblock polymer) d) was obtained. The obtained polymer d was a monodisperse polymer with Mw = 34600 and Mw / Mn = 1.16.
Subsequently, 5 mass% of aluminum oxide was added to the solution which stopped the said reaction, and it stirred for 2 hours. This solution was passed through a filter of celite and a pore size of 1 μm and concentrated under reduced pressure with an evaporator to purify the triblock polymer d. The triblock polymer d after purification had Mw = 36500 and Mw / Mn = 1.18.
比較例1:メトキシエチルビニルエーテル-b-フェニル(4-(2-ヒドロキシエトキシ)フェニル)ジアゼン(以下、「MOVE-b-PVEPDポリマー」と称する)の製造
 三方活栓をつけたガラス容器を準備し、容器内をアルゴン置換した後、加熱してガラス容器内の吸着水を除いた。この容器内にMOVE0.66M(32.6g)、酢酸エチル0.83M(35.2g)、IBEA3.3mM(0.25g)、及びトルエン270mLを入れ、反応系内を冷却し、温度が0℃に達したところで、Et1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として12.5mM)を加えて重合を開始させた。
 MOVEの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたMOVEポリマーは、Mw=23600、Mw/Mn=1.18の単分散ポリマーであった。
Comparative Example 1: Production of methoxyethyl vinyl ether-b-phenyl (4- (2-hydroxyethoxy) phenyl) diazene (hereinafter referred to as “MOVE-b-PVEPD polymer”) A glass container with a three-way cock was prepared. After replacing the inside of the container with argon, heating was performed to remove the adsorbed water in the glass container. In this vessel, MOVE 0.66M (32.6 g), ethyl acetate 0.83M (35.2 g), IBEA 3.3 mM (0.25 g), and 270 mL of toluene were cooled, and the reaction system was cooled to a temperature of 0 ° C. the Upon reaching, polymerization was initiated by the addition of (12.5 mM as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
When the conversion of MOVE was completed, a small amount of the reaction solution was collected, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained MOVE polymer was a monodisperse polymer having Mw = 23600 and Mw / Mn = 1.18.
 次いで、PVEPDのトルエン溶液(PVEPDとして0.066M(8.56g)を前記の反応系に添加し、さらにEt1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として62.5mM)を加えて反応を続けた。
 PVEPDの転化が終了した時点で、反応系にナトリウムメトキシドを含むメタノール(ナトリウムメトキシドとして0.2M)を加えて反応を停止させ、ジブロックポリマーeを得た。得られたMOVE-b-PVEPDポリマー(ジブロックポリマーe)は、Mw=25000、Mw/Mn=1.30の単分散ポリマーであった。
 次いで、前記の反応を停止させた溶液に、酸化アルミニウムを5質量%添加し、2時間攪拌した。この溶液を、セライト及び孔径1μmのフィルターに通液させ、エバポレータで減圧濃縮し、ジブロックポリマーeを精製した。精製後のジブロックポリマーeは、Mw=24300、Mw/Mn=1.36であった。
Then added as a toluene solution (PVEPD of PVEPD 0.066 M of (8.56 g) to the reaction system, further continue the reaction by adding 62.5 mM) as a toluene solution (Et 1.5 AlCl 1.5 of Et 1.5 AlCl 1.5 It was.
When the conversion of PVEPD was completed, methanol containing sodium methoxide (0.2 M as sodium methoxide) was added to the reaction system to stop the reaction, and diblock polymer e was obtained. The obtained MOVE-b-PVEPD polymer (diblock polymer e) was a monodispersed polymer having Mw = 25000 and Mw / Mn = 1.30.
Subsequently, 5 mass% of aluminum oxide was added to the solution which stopped the said reaction, and it stirred for 2 hours. This solution was passed through a filter of celite and a pore size of 1 μm, and concentrated under reduced pressure with an evaporator to purify the diblock polymer e. Diblock polymer e after purification was Mw = 24300 and Mw / Mn = 1.36.
比較例2:フェニル(4-(2-ヒドロキシエトキシ)フェニル)ジアゼン-b-メトキシエチルビニルエーテル-b-パライソプロペニルフェノール(以下、「PVEPD-b-MOVE-b-PIPPポリマー」と称する)の製造
 三方活栓をつけたガラス容器を準備し、容器内をアルゴン置換した後、加熱してガラス容器内の吸着水を除いた。この容器内にPVEPD0.069M(8.57g)、酢酸エチル0.87M(35.3g)、IBEA3.49mM(0.25g)、及びトルエン350mLを入れ、反応系内を冷却し、温度が0℃に達したところで、Et1.5AlCl1.5のトルエン溶液(Et1.5AlCl1.5として32.7mM)を加えて重合を開始させた。
 PVEPDの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたPVEPDポリマーは、Mw=2800、Mw/Mn=1.09の単分散ポリマーであった。
Comparative Example 2: Production of phenyl (4- (2-hydroxyethoxy) phenyl) diazene-b-methoxyethyl vinyl ether-b-paraisopropenylphenol (hereinafter referred to as “PVEPD-b-MOVE-b-PIPP polymer”) A glass container with a stopcock was prepared, the inside of the container was purged with argon, and then heated to remove the adsorbed water in the glass container. PVEPD0.069M (8.57g), ethyl acetate 0.87M (35.3g), IBEA 3.49mM (0.25g), and toluene 350mL are put in this container, the inside of a reaction system is cooled, and temperature is 0 degreeC. the Upon reaching, polymerization was initiated by the addition of (32.7 mm as Et 1.5 AlCl 1.5) toluene solution of Et 1.5 AlCl 1.5.
A small amount of the reaction solution was collected when the conversion of PVEPD was completed, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained PVEPD polymer was a monodisperse polymer with Mw = 2800 and Mw / Mn = 1.09.
 次いで、MOVE0.69Mを前記の反応系に添加反応を続けた。
 MOVEの転化が終了した時点で反応溶液を少量採取し、これにナトリウムメトキシドを含むメタノールを加えて反応を停止させた。得られたPVEPD-b-MOVEポリマーは、Mw=29800、Mw/Mn=1.24の単分散ポリマーであった。また、このポリマーのGPCチャートからPVEPDポリマー由来のピークが完全に消失していることを確認した。
Next, the addition reaction of MOVE 0.69M was continued to the above reaction system.
When the conversion of MOVE was completed, a small amount of the reaction solution was collected, and methanol containing sodium methoxide was added thereto to stop the reaction. The obtained PVEPD-b-MOVE polymer was a monodisperse polymer with Mw = 29800 and Mw / Mn = 1.24. Further, it was confirmed from the GPC chart of this polymer that the peak derived from the PVEPD polymer completely disappeared.
 次いで、PIPPの酢酸エチル溶液(PIPPとして6.9mM(0.43g))を前記の反応系に添加し、さらにSnCl4のトルエン溶液(SnCl4として32.6mM)を加えて反応を続けた。
 PIPPの転化が終了した時点で、反応系にナトリウムメトキシドを含むメタノール(ナトリウムメトキシドとして5M)を加えて反応を停止させ、PVEPD-b-MOVE-b-PIPPポリマー(トリブロックポリマーf)を得た。得られたポリマーfは、Mw=33500、Mw/Mn=1.30の単分散ポリマーであった。
 次いで、前記の反応を停止させた溶液に、酸化アルミニウムを5質量%添加し、2時間攪拌した。この溶液を、セライト及び孔径1μmのフィルターに通液させ、エバポレータで減圧濃縮し、トリブロックポリマーfを精製した。精製後のトリブロックポリマーfは、Mw=34700、Mw/Mn=1.30であった。
Then, ethyl acetate was added a solution of PIPP (6.9 mM as PIPP (0.43 g)) to the reaction system described above, the reaction was continued by adding further toluene solution of SnCl 4 (32.6 mm as SnCl 4).
When the conversion of PIPP is completed, methanol containing sodium methoxide (5M as sodium methoxide) is added to the reaction system to stop the reaction, and PVEPD-b-MOVE-b-PIPP polymer (triblock polymer f) is added. Obtained. The obtained polymer f was a monodisperse polymer with Mw = 33500 and Mw / Mn = 1.30.
Subsequently, 5 mass% of aluminum oxide was added to the solution which stopped the said reaction, and it stirred for 2 hours. This solution was passed through a filter of celite and a pore size of 1 μm, and concentrated under reduced pressure with an evaporator to purify the triblock polymer f. Triblock polymer f after purification had Mw = 34700 and Mw / Mn = 1.30.
実施例5~11並びに比較例3及び4:繊維シートの作製
 実施例1~4並びに比較例1及び2で得られたポリマーa~fの10質量%メタノール溶液及び10質量%水溶液をそれぞれ調製した。この調製した溶液に、ポリエチレンテレフタレート不織布(2×10cm)、ガラスファイバー(47φろ紙)、又はポリウレタン不織布(2×10cm)を1時間浸漬し浸透させ十分洗浄することで、各ブロック共重合体が担持された、下記表に示す実施例5~11並びに比較例3及び4の繊維シートを得た。得られた繊維シートはいずれもアゾ基に由来して淡黄色に着色しており、ブロック共重合体が均一に不織布に担持していることが確認された。また、いずれの繊維シートも、ブロック共重合体に由来するべた付きや凹凸が表面に見られず、含浸前の不織布と同様の形態を保っていた。
Examples 5 to 11 and Comparative Examples 3 and 4: Fabrication of Fiber Sheet A 10% by mass methanol solution and a 10% by mass aqueous solution of the polymers a to f obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were prepared, respectively. . Each block copolymer is supported by immersing polyethylene terephthalate nonwoven fabric (2 × 10 cm), glass fiber (47φ filter paper), or polyurethane nonwoven fabric (2 × 10 cm) in this prepared solution for 1 hour and thoroughly washing it. The fiber sheets of Examples 5 to 11 and Comparative Examples 3 and 4 shown in the following table were obtained. All of the obtained fiber sheets were derived from azo groups and colored pale yellow, and it was confirmed that the block copolymer was uniformly supported on the nonwoven fabric. Moreover, the stickiness and unevenness | corrugation originating in a block copolymer were not looked at by the surface of any fiber sheet, but the form similar to the nonwoven fabric before an impregnation was maintained.
試験例1:透水性評価試験
 実施例5~11並びに比較例3及び4の繊維シートの表面に100μLの水滴を10点等間隔に配置し、湿度55%条件下、0℃、25℃及び70℃の温度条件における5分経過後の水滴の数を数えることにより透水性及び該透水性の温度による変化を確認した。
 各繊維シートの透水性評価結果を表1に示す。また、比較のため、含浸処理を行っていない不織布において同様の評価を行った結果も表1に示す。
Test Example 1: Water Permeability Evaluation Test 100 μL of water droplets were placed at equal intervals on the surface of the fiber sheets of Examples 5 to 11 and Comparative Examples 3 and 4, and 0 ° C., 25 ° C., and 70 at a humidity of 55%. By counting the number of water droplets after 5 minutes under the temperature condition of ° C., the water permeability and the change of the water permeability due to the temperature were confirmed.
Table 1 shows the results of water permeability evaluation of each fiber sheet. For comparison, Table 1 also shows the results of a similar evaluation performed on a non-impregnated nonwoven fabric.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1に示すように、セグメントA~CがA-B-Cのシークエンスで結合しているポリマー(ポリマーa~d)を不織布に担持させた繊維シートは、低い温度において透水性を示し、高い温度では透水性を示さなかった。
 この結果から、本発明の複合体は温度応答性を備え、熱刺激に応じて親水性(透水性)と疎水性(撥水性)とを可逆的に達成することが可能であることがわかる。
As shown in Table 1, the fiber sheet in which the polymer (polymers a to d) in which the segments A to C are bonded by the sequence ABC is supported on the nonwoven fabric exhibits water permeability at a low temperature and is high. It did not show water permeability at temperature.
From this result, it can be seen that the composite of the present invention has temperature responsiveness and can reversibly achieve hydrophilicity (water permeability) and hydrophobicity (water repellency) in response to thermal stimulation.
 一方、セグメントCを含まない共重合体(ポリマーe)を不織布に担持させた繊維シートは透水性を示すものの、温度応答性は示さなかった。
 また、セグメントCを含んでいたとしても、セグメントA~CがA-B-CではなくB-A-Cのシークエンスで結合している共重合体(ポリマーf)を担持させた場合は、評価を行った全ての温度において水滴を全く透過せず、透水性を付与することができなかった。
On the other hand, although the fiber sheet which carried the copolymer (polymer e) which does not contain the segment C on the nonwoven fabric showed water permeability, it did not show temperature responsiveness.
In addition, even if the segment C is included, it is evaluated if the copolymer (polymer f) in which the segments A to C are bonded by the sequence BAC instead of ABC is evaluated. Water droplets were not permeated at all temperatures subjected to the above, and water permeability could not be imparted.

Claims (9)

  1.  温度応答性基を含むビニルエーテル系構造単位(a)の繰り返しからなるセグメントAと、アゾベンゼン骨格を含む構造単位(b)の繰り返しからなるセグメントBと、オキシスチレン系構造単位(c)の繰り返しからなるセグメントCとが、A-B-Cのシークエンスで結合していることを特徴とするABC型アゾ系トリブロック共重合体。 It consists of a segment A consisting of repeating vinyl ether structural units (a) containing a temperature-responsive group, a segment B consisting of repeating structural units (b) containing an azobenzene skeleton, and a repeating oxystyrene structural unit (c). An ABC type azo triblock copolymer, wherein the segment C is bonded with the sequence ABC.
  2.  構造単位(a)が、次の一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、R1は、メチル基又はエチル基を示し、kは1~10の整数である。〕
    で表されるものであり、
    構造単位(b)が、次の一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)中、R2及びR3は、各々独立に、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルコキシ基、炭素数2~6のアルコキシアルキル基、ハロゲン原子、水酸基、カルボキシル基、アミノ基、ニトロ基、スルホ基、スルホオキシ基又はアミノスルホニル基を示し、nは1~5の整数であり、pは0~2の整数であり、qは0~3の整数である。〕
    で表されるものであり、
    構造単位(c)が、次の一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)中、R4は、水素原子又は炭素数1~4のアルキル基を示し、R5は、水素原子、炭素数1~4のアルキル基、炭素数2~6のアルコキシアルキル基、アルカノイル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基又はアルキルシリル基を示し、mは1~3の整数である。〕
    で表されるものである請求項1に記載のトリブロック共重合体。
    The structural unit (a) is represented by the following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents a methyl group or an ethyl group, and k is an integer of 1 to 10. ]
    It is represented by
    The structural unit (b) is represented by the following general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 2 to 6 carbon atoms. Represents an alkoxyalkyl group, a halogen atom, a hydroxyl group, a carboxyl group, an amino group, a nitro group, a sulfo group, a sulfooxy group, or an aminosulfonyl group, n is an integer of 1 to 5, and p is an integer of 0 to 2. Q is an integer from 0 to 3. ]
    It is represented by
    The structural unit (c) is represented by the following general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 5 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxyalkyl group having 2 to 6 carbon atoms. , An alkanoyl group, an alkoxycarbonyl group, an alkoxycarbonylalkyl group or an alkylsilyl group, and m is an integer of 1 to 3. ]
    The triblock copolymer according to claim 1, which is represented by:
  3.  セグメントBの含有量が、トリブロック共重合体中、1~20モル%である請求項1又は2に記載のトリブロック共重合体。 The triblock copolymer according to claim 1 or 2, wherein the content of segment B is 1 to 20 mol% in the triblock copolymer.
  4.  請求項1~3のいずれか1項に記載のトリブロック共重合体を含有する親疎水性制御剤。 A hydrophilicity / hydrophobicity control agent containing the triblock copolymer according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか1項に記載のトリブロック共重合体を用いる親疎水性制御方法。 A method for controlling hydrophilicity / hydrophobicity using the triblock copolymer according to any one of claims 1 to 3.
  6.  請求項1~3のいずれか1項に記載のトリブロック共重合体が、繊維質基材に担持されている共重合体-繊維複合体。 A copolymer-fiber composite in which the triblock copolymer according to any one of claims 1 to 3 is supported on a fibrous base material.
  7.  繊維質基材が、合成樹脂繊維、天然樹脂繊維、植物繊維、動物繊維及び無機繊維から選ばれる1種以上からなるものである請求項6に記載の共重合体-繊維複合体。 The copolymer-fiber composite according to claim 6, wherein the fibrous base material is one or more selected from synthetic resin fibers, natural resin fibers, plant fibers, animal fibers, and inorganic fibers.
  8.  繊維質基材が、ポリエステル繊維、ポリオレフィン繊維、ポリアミド繊維、ポリウレタン繊維及びガラス繊維から選ばれる1種以上からなるものである請求項6又は7に記載の共重合体-繊維複合体。 The copolymer-fiber composite according to claim 6 or 7, wherein the fibrous base material comprises at least one selected from polyester fiber, polyolefin fiber, polyamide fiber, polyurethane fiber and glass fiber.
  9.  繊維質基材が、織物、編物又は不織布である請求項6~8のいずれか1項に記載の共重合体-繊維複合体。 The copolymer-fiber composite according to any one of claims 6 to 8, wherein the fibrous base material is a woven fabric, a knitted fabric or a non-woven fabric.
PCT/JP2012/077999 2011-12-28 2012-10-30 Abc-type azo-based triblock copolymer WO2013099427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013551521A JP5917568B2 (en) 2011-12-28 2012-10-30 ABC type azo triblock copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-289403 2011-12-28
JP2011289403 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099427A1 true WO2013099427A1 (en) 2013-07-04

Family

ID=48696928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077999 WO2013099427A1 (en) 2011-12-28 2012-10-30 Abc-type azo-based triblock copolymer

Country Status (2)

Country Link
JP (1) JP5917568B2 (en)
WO (1) WO2013099427A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133117A1 (en) * 2013-03-01 2014-09-04 丸善石油化学株式会社 Temperature-responsive polymer
WO2015033899A1 (en) 2013-09-03 2015-03-12 丸善石油化学株式会社 Star-shaped vinyl ether polymer
JP2015117291A (en) * 2013-12-18 2015-06-25 丸善石油化学株式会社 Temperature responsive resin composition
CN106995512A (en) * 2017-04-18 2017-08-01 南通纺织丝绸产业技术研究院 A kind of close and distant convertible fabric finishing liquor of property in intelligent surface and preparation method thereof
WO2019044221A1 (en) * 2017-08-31 2019-03-07 丸善石油化学株式会社 Method for producing oxyethylene chain-containing vinyl ether polymer by radical polymerization
KR20200007943A (en) * 2017-06-26 2020-01-22 마루젠 세끼유가가꾸 가부시키가이샤 Protein adsorption inhibitor, protein adsorption prevention film and medical equipment using the same
WO2020213641A1 (en) * 2019-04-19 2020-10-22 国立研究開発法人産業技術総合研究所 Photoresponsive poly(vinyl ether) compound and optically reversible adhesive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189731A (en) * 2018-04-24 2019-10-31 日本ペイント株式会社 Pigment dispersion resin, pigment dispersion and coating composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509889A (en) * 1992-06-19 1994-11-02 エフ・ホフマン−ラ ロシュ アーゲー optical nonlinear polymer
JP2003119342A (en) * 2001-08-07 2003-04-23 Canon Inc Stimulus sensitive composition and method and apparatus for forming image by using the composition
JP2005154603A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Surface treatment agent and polymer molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509889A (en) * 1992-06-19 1994-11-02 エフ・ホフマン−ラ ロシュ アーゲー optical nonlinear polymer
JP2003119342A (en) * 2001-08-07 2003-04-23 Canon Inc Stimulus sensitive composition and method and apparatus for forming image by using the composition
JP2005154603A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Surface treatment agent and polymer molded body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014133117A1 (en) * 2013-03-01 2017-02-02 丸善石油化学株式会社 Temperature responsive polymer
WO2014133117A1 (en) * 2013-03-01 2014-09-04 丸善石油化学株式会社 Temperature-responsive polymer
JPWO2015033899A1 (en) * 2013-09-03 2017-03-02 丸善石油化学株式会社 Vinyl ether star polymer
KR20160051762A (en) 2013-09-03 2016-05-11 마루젠 세끼유가가꾸 가부시키가이샤 Star-shaped vinyl ether polymer
US20160208037A1 (en) * 2013-09-03 2016-07-21 Maruzen Petrochemical Co., Ltd. Star-shaped vinyl ether polymer
US9908960B2 (en) 2013-09-03 2018-03-06 Maruzen Petrochemical Co., Ltd. Star-shaped vinyl ether polymer
WO2015033899A1 (en) 2013-09-03 2015-03-12 丸善石油化学株式会社 Star-shaped vinyl ether polymer
JP2015117291A (en) * 2013-12-18 2015-06-25 丸善石油化学株式会社 Temperature responsive resin composition
CN106995512A (en) * 2017-04-18 2017-08-01 南通纺织丝绸产业技术研究院 A kind of close and distant convertible fabric finishing liquor of property in intelligent surface and preparation method thereof
EP3647389A4 (en) * 2017-06-26 2020-12-23 Maruzen Petrochemical Co., Ltd. Protein adsorption preventing agent, protein adsorption preventing film, and medical tool using same
KR102373743B1 (en) 2017-06-26 2022-03-11 마루젠 세끼유가가꾸 가부시키가이샤 Protein adsorption inhibitor, protein adsorption barrier, and medical devices using the same
KR20200007943A (en) * 2017-06-26 2020-01-22 마루젠 세끼유가가꾸 가부시키가이샤 Protein adsorption inhibitor, protein adsorption prevention film and medical equipment using the same
CN111065454A (en) * 2017-06-26 2020-04-24 丸善石油化学株式会社 Protein-resistant adsorbent, protein-resistant film, and medical device using same
JP2019044050A (en) * 2017-08-31 2019-03-22 国立大学法人福井大学 Method for producing oxyethylene chain-containing vinyl ether polymer by radical polymerization
JP7016072B2 (en) 2017-08-31 2022-02-04 国立大学法人福井大学 Method for Producing Oxyethylene Chain-Containing Vinyl Ether Polymer by Radical Polymerization
WO2019044221A1 (en) * 2017-08-31 2019-03-07 丸善石油化学株式会社 Method for producing oxyethylene chain-containing vinyl ether polymer by radical polymerization
US11377507B2 (en) 2017-08-31 2022-07-05 Maruzen Petrochemical Co., Ltd. Method for producing vinyl ether polymer containing oxyethylene chain by radical polymerization
WO2020213641A1 (en) * 2019-04-19 2020-10-22 国立研究開発法人産業技術総合研究所 Photoresponsive poly(vinyl ether) compound and optically reversible adhesive
JPWO2020213641A1 (en) * 2019-04-19 2021-12-09 国立研究開発法人産業技術総合研究所 Photoresponsive polyvinyl ether compounds and photoreversible adhesives
JP7129729B2 (en) 2019-04-19 2022-09-02 国立研究開発法人産業技術総合研究所 Photoresponsive polyvinyl ether compound and photoreversible adhesive

Also Published As

Publication number Publication date
JPWO2013099427A1 (en) 2015-04-30
JP5917568B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5917568B2 (en) ABC type azo triblock copolymer
Soldatov et al. Hybrid porous polymers based on cage-like organosiloxanes: synthesis, properties and applications
Xiao et al. Structural dependence of salt-responsive polyzwitterionic brushes with an anti-polyelectrolyte effect
Joo et al. One-step synthesis of cross-linked ionic polymer thin films in vapor phase and its application to an oil/water separation membrane
Li et al. A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblock azide copolymers
TWI569974B (en) Hydrophilically modified fluorinated membrane (iv)
US6793821B2 (en) Super water-repellent organic/inorganic composite membrane
TW201236741A (en) Oil-repellent waterproof air-permeable filter and method for producing same
CN102046679A (en) Improved method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
JP6193971B2 (en) Temperature responsive polymer
TW201321440A (en) Surface treating agent and use thereof
KR20100087143A (en) Fluorinated copolymer, water-proof and oil-proof agent composition, and their production methods
JP5601758B2 (en) Surface treatment agent and water / oil repellent treatment method
CN102199263B (en) Amphiphobic fluoro-containing crosslinkable block copolymer and preparation method and application thereof
JP6484556B2 (en) Vinyl ether star polymer
Zhou et al. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose
Baier et al. Diffusion of molecular and macromolecular polyolefin probes in cylindrical block copolymer structures as observed by high temperature single molecule fluorescence microscopy
TWI825185B (en) Non-fluorinated block copolymer
TWI617602B (en) Hydrophilic porous polytetrafluoroethylene membrane (i)
JP6283511B2 (en) Temperature-responsive resin composition
JP6060448B2 (en) Hydrophilic modified fluorinated membrane (II)
Ho et al. Mesoporous carbons from poly (acrylonitrile)-b-poly (ε-caprolactone) block copolymers
Martinelli et al. Polystyrene–Polyperfluorooctylethyl Acrylate Diblock Copolymers: The Effect of Dilution of the Fluorinated Mesogenic Chains on Bulk and Surface Properties
Guo et al. Reversible addition‐fragmentation chain transfer polymerization for fabrication of polymer cations‐adjustable porous materials with excellent antibacterial activity
KR102590260B1 (en) Chemically resistant fluorinated multiblock polymer structure, manufacturing method and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861871

Country of ref document: EP

Kind code of ref document: A1