WO2013099204A1 - Wiring board and manufacturing method therefor - Google Patents

Wiring board and manufacturing method therefor Download PDF

Info

Publication number
WO2013099204A1
WO2013099204A1 PCT/JP2012/008234 JP2012008234W WO2013099204A1 WO 2013099204 A1 WO2013099204 A1 WO 2013099204A1 JP 2012008234 W JP2012008234 W JP 2012008234W WO 2013099204 A1 WO2013099204 A1 WO 2013099204A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
metal
metal region
less
board according
Prior art date
Application number
PCT/JP2012/008234
Other languages
French (fr)
Japanese (ja)
Inventor
亮人 岩崎
中村 禎志
檜森 剛司
本城 和彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012128574A external-priority patent/JP5099272B1/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/988,499 priority Critical patent/US20140124250A1/en
Priority to JP2013520910A priority patent/JP5333701B1/en
Priority to CN2012800068253A priority patent/CN103348778A/en
Publication of WO2013099204A1 publication Critical patent/WO2013099204A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder

Definitions

  • the present invention relates to a wiring board for connecting wirings formed on both surfaces of an electrically insulating base material by via-hole conductors and a manufacturing method thereof.
  • a wiring board for connecting wirings formed at both ends of an electrically insulating substrate by via-hole conductors in which holes formed in the electrically insulating substrate are filled with a conductive paste.
  • a via-hole conductor is known in which metal particles containing copper (Cu) are filled instead of the conductive paste and the metal particles are fixed with an intermetallic compound. Specifically, by heating a conductive paste containing tin (Sn) -bismuth (Bi) -based metal particles and copper particles at a predetermined temperature, tin (Sn) -copper (Cu) is formed around the copper particles.
  • Via hole conductors in which alloys are formed are known.
  • FIG. 14 is a schematic cross-sectional view of a via-hole conductor of a conventional wiring board.
  • 15A and 16A are views showing SEM photographs of a conventional via-hole conductor.
  • FIG. 15B is a schematic diagram of FIG. 15A.
  • FIG. 16B is a schematic diagram of FIG. 16A.
  • the magnification of FIG. 15A is 3000 times, and the magnification of FIG. 16A is 6000 times.
  • the via-hole conductor 2 is in contact with the wiring 1 formed on the surface of the wiring board.
  • the via-hole conductor 2 has a metal part 11 and a resin part 12.
  • the metal portion 11 is mainly composed of a first metal region 8 having a plurality of copper (Cu) -containing particles 3, a second metal region 9 made of tin (Sn) -copper (Cu) alloy, and the like, and bismuth (Bi). And a third metal region 10.
  • Patent Document 1 is known.
  • the wiring board of the present invention includes an electrically insulating base material having an incompressible member and a thermosetting member, a first wiring and a second wiring formed with the electrically insulating base material interposed therebetween, and electrical insulation.
  • the via-hole conductor has a resin portion and a metal portion.
  • the metal portion includes a first metal region mainly composed of copper (Cu), a second metal region mainly composed of tin (Sn) -copper (Cu) alloy, and a first metal region mainly composed of bismuth (Bi). 3 metal regions.
  • the second metal region is larger than the first metal region and larger than the third metal region.
  • FIG. 1A is a schematic cross-sectional view of a wiring board according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of the vicinity of the via-hole conductor in the embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a method for manufacturing a wiring board in an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention.
  • FIG. 2C is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention.
  • FIG. 2D is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention.
  • FIG. 1A is a schematic cross-sectional view of a wiring board according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of the vicinity of the via-hole conductor in the embodiment of the present invention.
  • FIG. 2A is a cross
  • FIG. 3A is a cross-sectional view showing a method for manufacturing a wiring board in an embodiment of the present invention.
  • FIG. 3B is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention.
  • FIG. 3C is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention.
  • FIG. 4A is a cross-sectional view showing a method for manufacturing a multilayer wiring board in accordance with the exemplary embodiment of the present invention.
  • FIG. 4B is a cross-sectional view showing the method for manufacturing the multilayer wiring board in the embodiment of the present invention.
  • FIG. 4C is a cross-sectional view showing the method for manufacturing the multilayer wiring board in the embodiment of the present invention.
  • FIG. 5A is a schematic cross-sectional view of the vicinity of the via-hole conductor before the via paste is compressed.
  • FIG. 5B is a schematic cross-sectional view of the vicinity of the via-hole conductor after the via paste is compressed.
  • FIG. 6 is a schematic diagram showing the state of via paste when a member having compressibility is used.
  • FIG. 7 is a schematic view showing a state of via paste when an incompressible member is used.
  • FIG. 8 is a schematic diagram showing a state of via paste when an incompressible member is used.
  • FIG. 9A is a schematic diagram showing the state of the via paste before the alloying reaction.
  • FIG. 9B is a schematic diagram showing a state of the via-hole conductor after the alloying reaction.
  • FIG. 10 is a triangular diagram showing a metal composition in the via paste in the embodiment of the present invention.
  • FIG. 11A is a diagram showing an SEM photograph of the via-hole conductor in the embodiment of the present invention.
  • FIG. 11B is a schematic diagram of FIG. 11A.
  • FIG. 12A is a diagram showing an SEM photograph of the via-hole conductor in the embodiment of the present invention.
  • FIG. 12B is a schematic diagram of FIG. 12A.
  • FIG. 13 is a diagram showing an analysis result by X-ray diffraction of the via-hole conductor in the embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view of a via-hole conductor of a conventional wiring board.
  • FIG. 11A is a diagram showing an SEM photograph of the via-hole conductor in the embodiment of the present invention.
  • FIG. 11B is a schematic diagram of FIG. 11A.
  • FIG. 12A is a diagram showing an SEM photograph of the via-hole
  • FIG. 15A is a view showing an SEM photograph of a conventional via-hole conductor.
  • FIG. 15B is a schematic diagram of FIG. 15A.
  • FIG. 16A is a view showing an SEM photograph of a conventional via-hole conductor.
  • FIG. 16B is a schematic diagram of FIG. 16A.
  • the conventional via hole conductor 2 has a large volume fraction of the resin portion 12 occupying the via hole conductor 2 and a small volume fraction of the metal portion 11. Therefore, the via resistance (the resistance value of the entire via hole conductor 2) may be high.
  • FIG. 1A is a schematic cross-sectional view of a multilayer wiring board according to an embodiment of the present invention.
  • a plurality of wirings 120 formed inside the electrically insulating base material 130 are electrically connected via via-hole conductors 140 to constitute a multilayer wiring board 110.
  • FIG. 1B is a schematic cross-sectional view of the vicinity of the via-hole conductor 140 in the embodiment of the present invention.
  • the multilayer wiring board 110 includes an electrically insulating base material 130 having an incompressible member 220 and a thermosetting adhesive layer (thermosetting member) 210, a first wiring 120a, a second wiring 120b, and a via-hole conductor. 140.
  • the first wiring 120a and the second wiring 120b are formed with the electrically insulating base material 130 interposed therebetween.
  • the via-hole conductor 140 penetrates the electrically insulating base material 130 and electrically connects the first wiring 120a and the second wiring 120b.
  • the electrically insulating substrate 130 has an incompressible member 220 such as a heat resistant film, and a thermosetting adhesive layer (thermosetting member) 210 formed on both surfaces of the incompressible member 220.
  • a first wiring 120 a and a second wiring 120 b obtained by patterning a metal foil 150 such as a copper foil into a predetermined shape are bonded to the incompressible member 220 through a thermosetting adhesive layer 210.
  • the thermosetting adhesive layer 210 may be formed only on one surface of the incompressible member 220.
  • the via-hole conductor 140 has a metal part 190 and a resin part 200.
  • the metal portion 190 has a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of a tin-copper alloy, and a third metal region 180 mainly composed of bismuth. Second metal region 170 is larger than first metal region 160 and larger than third metal region 180.
  • Resin portion 200 is an epoxy resin or the like. Epoxy resins are excellent in reliability.
  • the resin portion 200 is mainly a cured product of the resin added to the via paste, but a part of the thermosetting resin constituting the thermosetting adhesive layer 210 may be mixed therein.
  • the size (or volume fraction or weight fraction) of the second metal region 170 is larger than the size (or volume fraction or weight fraction) of the first metal region 160. Furthermore, the size (or volume fraction or weight fraction) of the second metal region 170 is larger than the size (or volume fraction or weight fraction) of the third metal region 180.
  • the plurality of wirings 120 are electrically connected with the second metal region 170 as a main component. it can. Furthermore, the first metal region 160 and the third metal region 180 can be scattered in the second metal region 170 without being in contact with each other (or scattered in a small islet state).
  • the second metal region 170 has an intermetallic compound Cu 6 Sn 5 and an intermetallic compound Cu 3 Sn, and the ratio of Cu 6 Sn 5 / Cu 3 Sn is 0.001 or more and 0.100 or less.
  • the ratio of Cu 6 Sn 5 / Cu 3 Sn is preferably 0.100 or less. It is more desirable to set it to 0.001 or more and 0.100 or less.
  • the reaction time is finite, and the reaction time is practically 10 hours or less at the longest. Therefore, in such a finite reaction time, the ratio of Cu 6 Sn 5 / Cu 3 Sn is unlikely to be completely zero, and it is difficult to quantitatively analyze Cu 6 Sn 5 that will remain slightly. Become.
  • the ratio of Cu 6 Sn 5 / Cu 3 Sn is 0 or more and 0.100 or less (note that 0 is below the detection limit of the measuring device or could not be detected by the measuring device). Including cases). Note that when the measurement accuracy of the measurement device is sufficiently high, the ratio of Cu 6 Sn 5 / Cu 3 Sn may be 0.001 or more and 0.100 or less.
  • the ratio of Cu 6 Sn 5 / Cu 3 Sn is preferably 0.001 or more and 0.100 or less is the result of evaluation using an XRD (X-ray diffractometer).
  • XRD X-ray diffractometer
  • an elemental analyzer for example, XMA, EPMA, etc.
  • the ratio of Cu 6 Sn 5 / Cu 3 Sn is preferably 0.001 or more and 0.100 or less.
  • XRD is a kind of mass analysis and EPMA is a kind of cross-sectional analysis, but there is substantially no difference. From the above, when measuring the ratio of Cu 6 Sn 5 / Cu 3 Sn in the fine via portion (or via paste portion), select one of XRD, XMA, EPMA, or a similar device for evaluation. That's fine.
  • the electrically insulating substrate 130 has an incompressible member 220 such as a heat resistant film and a thermosetting adhesive layer 210 formed on at least one surface thereof.
  • a member using a woven fabric or a nonwoven fabric in which a plurality of fibers are entangled with each other as a core material, whether glass fiber or resin fiber, has compressibility. This is because a through-hole is formed in a core material using a woven fabric or non-woven fabric, and when this through-hole is filled with a conductive paste and pressed, it is pressed against metal particles contained in the conductive paste. This is because the through hole is deformed or widened.
  • a member using a film as a core material since a member using a film as a core material has no space inside, it has incompressibility. This is because a through-hole is formed in a core material using a film, and when the through-hole is filled with a conductive paste and pressed, the diameter of the through-hole does not substantially change.
  • the tip of the woven fabric or nonwoven fabric made of glass fiber around the hole may melt and harden, Even in this case, the core material has compressibility.
  • the reason for this is that the presence of glass fiber melted and integrated with a laser or the like is limited only to the periphery of the hole, and the glass fiber in the other part (that is, the part slightly away from the through hole formed by the laser) This is because they are only intertwined with each other. Moreover, it is because all the glass fibers exposed around the hole do not melt and become one.
  • the entangled portions of the fibers may be fixed. Even in this case, the member having the nonwoven fabric as the core material has compressibility.
  • the incompressible member 220 has excellent incompressibility because it does not have a bubble portion or the like for expressing compressibility inside.
  • the via paste By using an incompressible member, the via paste can be compressed at a high pressure. As a result, a via-hole conductor 140 having a metal part 190 of 74.0 vol% or more and 99.5 vol% or less and a resin part 200 of 0.5 vol% or more and 26.0 vol% or less can be produced.
  • the via resistance means a resistance value of the entire via-hole conductor 140.
  • connection resistance between the wiring 120 and the via-hole conductor 140 is reduced by increasing the contact area between the wiring 120 and the via-hole conductor 140. Therefore, it is preferable to reduce the volume fraction of the resin part 200 at the interface part between the wiring 120 and the via-hole conductor 140.
  • the specific resistance of the via-hole conductor 140 can be set to 1.00 ⁇ 10 ⁇ 7 ⁇ ⁇ m or more and 5.00 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less, so that the via resistance is stable. Turn into.
  • the resin part 200 which comprises the via-hole conductor 140 consists of hardened
  • the curable resin is not particularly limited, specifically, for example, it is preferable to use a cured product of an epoxy resin that is excellent in heat resistance and has a low linear expansion coefficient.
  • FIGS. 3A to 3C are cross-sectional views showing a method for manufacturing the wiring substrate 600.
  • FIG. 4A to 4C are cross-sectional views showing a method for manufacturing the multilayer wiring board 111.
  • the uncured base material 230 (base material) has an incompressible member 220 having a thickness of 55 ⁇ m or less, and an uncured thermosetting adhesive layer 210 formed on both surfaces of the incompressible member 220.
  • protective films 240 are bonded to both surfaces of the uncured base material 230.
  • the incompressible member 220 can obtain sufficient insulation even when the thickness is 50 ⁇ m or less, 30 ⁇ m or less, 15 ⁇ m or less, and even 6 ⁇ m or less.
  • the incompressible member 220 for example, a polyimide film, a liquid crystal polymer film, a polyether ether ketone film, or the like is used.
  • a polyimide film is particularly preferable, but is not particularly limited as long as it is a resin sheet that can withstand the soldering temperature.
  • thermosetting adhesive layer 210 an uncured adhesive layer made of an epoxy resin or the like is used.
  • the thickness of one side of the thermosetting adhesive layer is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 10 ⁇ m or less.
  • the protective film for example, a resin film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) is used.
  • the thickness of the resin film is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less. By setting it as such thickness, the protrusion part which consists of via paste of sufficient height can be exposed by peeling of a protective film so that it may mention later.
  • the surface tackiness (or adhesive force) of the uncured substrate 230 or the thermosetting adhesive layer 210 on the surface of the uncured substrate 230 is used.
  • a method of directly bonding is used.
  • a through-hole 250 is formed by perforating the uncured base material 230 on which the protective film 240 is disposed from the outside of the protective film 240.
  • various methods such as drilling using a drill as well as non-contact processing methods such as a carbon dioxide laser and a YAG laser are used.
  • the diameter of the through hole is 10 ⁇ m or more and 500 ⁇ m or less, and further 50 ⁇ m or more, 300 ⁇ m or less, 80 ⁇ m or more, 120 ⁇ m or less.
  • the via paste 260 includes copper particles 290, Sn—Bi solder particles 300 containing Sn and Bi, and a thermosetting resin component (organic component) 310 such as an epoxy resin (see FIG. 5A).
  • the filling method of the via paste 260 is not particularly limited, for example, a method such as screen printing is used.
  • a part of the via paste 260 is protruded from the through hole 250 (see FIG. 2B) as a protruding portion 270.
  • a substrate 500 is manufactured.
  • the height h of the protrusion 270 depends on the thickness of the protective film, it is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less. If the protruding portion 270 is too high, the paste may overflow around the through-hole 250 on the surface of the uncured base material 230 in the pressurizing step described later, and the surface smoothness may be lost. In addition, when the protruding portion 270 is too low, pressure may not be sufficiently applied to the via paste filled in the pressurizing process described later.
  • the metal foil 150 is placed on the uncured base material 230 and pressed in the direction indicated by the arrow 280. At the time of pressurization, a force is applied to the protruding portion 270 via the metal foil 150, so that the via paste 260 filled in the through hole 250 is compressed with a high pressure.
  • the incompressible member 220 is used as a part of the uncured base material 230, the diameter of the through hole 250 does not widen and is strong against the via paste 260 at the time of pressurization (further heating) indicated by an arrow 280. Pressure is applied. As a result, the distance between the copper particles and the Sn—Bi particles contained in the via paste 260 is reduced, and they are in close contact with each other. Therefore, the ratio of the resin part in the via paste 260 is reduced. In other words, the ratio of the metal part in the via paste 260 increases.
  • the metal portion 190 has a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of tin-copper alloy, and a third metal region 180 mainly composed of bismuth. (See FIG. 1B).
  • the size (or volume% or weight%) of the second metal region 170 is made larger than the size (or volume% or weight%) of the first metal region 160. Further, the size (or volume% or weight%) of the second metal region 170 is made larger than the size (or volume% or weight%) of the third metal region 180. As a result, the reliability of the via-hole conductor 140 increases and the strength increases.
  • the reliability of the via-hole conductor 140 can be improved by interposing the first metal region 160 and the third metal region 180 in the second metal region 170 without being in contact with each other.
  • the second metal region 170 includes an intermetallic compound Cu 6 Sn 5 and an intermetallic compound Cu 3 Sn, and a ratio of Cu 6 Sn 5 / Cu 3 Sn is set to 0.001 or more and 0.100 or less. The reliability of the via-hole conductor 140 can be improved.
  • the pressurizing conditions are not particularly limited, it is preferable to set the mold temperature from room temperature (20 ° C.) to a temperature below the melting point of the Sn—Bi solder particles. Moreover, in this pressurization process, in order to advance hardening of the thermosetting contact bonding layer 210, you may use the heating press heated to the temperature required in order to advance hardening.
  • a photoresist film is formed on the surface of the metal foil 150. Then, the photoresist film is exposed through a photomask. Thereafter, development and rinsing are performed, and a photoresist film is selectively formed on the surface of the metal foil 150. Then, the metal foil 150 not covered with the photoresist film is removed by etching. Thereafter, the photoresist film is removed. In this way, the wiring 120a (first wiring) and the wiring 120b (second wiring) are formed, and the wiring substrate 600 is obtained.
  • a liquid resist or a dry film may be used for the formation of the photoresist film.
  • 4A to 4C are cross-sectional views illustrating a method for further multilayering the wiring board 600 manufactured in FIG. 3C.
  • the substrate 500 (see FIG. 2D) having the protrusions 270 is disposed on both sides of the wiring substrate 600 manufactured in FIG. 3C.
  • a laminated body as shown to FIG. 4B is obtained by pinching
  • the metal foil 150 is patterned to form an upper layer wiring 121a and a lower layer wiring 121b, thereby forming the multilayer wiring substrate 111.
  • the multilayer wiring board 111 in which the upper wiring 121a and the lower wiring 121b are connected via the via-hole conductor 140 is obtained.
  • a multilayer wiring board 110 to which a plurality of wirings as shown in FIG. 1A are connected is obtained.
  • FIGS. 5A and 5B are schematic cross-sectional views before and after compression around the through hole 250 of the uncured base material 230 filled with the via paste 260.
  • FIG. 5A shows before compression
  • FIG. 5B shows after compression.
  • FIG. 5A corresponds to an enlarged view of the via paste 260 in FIG. 3A.
  • the average particle diameter of the copper particles 290 is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the tap density (JIS X 2512) of the copper particles 290 is reduced, so that the via paste having the copper particles 290 in the through holes 250 (see FIG. 2B) is high. It tends to be difficult to fill and expensive.
  • the average particle diameter of the copper particles 290 is too large, when the via-hole conductor 140 having a diameter as small as 100 ⁇ m or less, more preferably 80 ⁇ m or less is to be formed, it tends to be difficult to fill.
  • the particle shape of the copper particles 290 for example, a spherical shape, a flat shape, a polygonal shape, a scale shape, a flake shape, or a shape having protrusions on the surface is used, but the particle shape is not limited thereto. Moreover, a primary particle may be sufficient and the secondary particle may be formed.
  • the Sn-Bi solder particles 300 mean solder particles 300 containing Sn and Bi.
  • the Bi content in the Sn—Bi solder particles 300 is preferably 10% or more and 58% or less, more preferably 20% or more and 58% or less.
  • the melting point (eutectic point) is preferably 75 ° C. or higher and 160 ° C. or lower, more preferably 135 ° C. or higher and 150 ° C. or lower.
  • Sn—Bi solder particles 300 two or more types of particles having different compositions may be used in combination. Among these, Sn-58Bi solder particles 300, which are lead-free solder having a low eutectic point of 138 ° C., are particularly preferable from the viewpoint of the environment.
  • the average particle size of the Sn—Bi solder particles 300 is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 2 ⁇ m or more and 15 ⁇ m or less.
  • the average particle size of the Sn—Bi solder particles is too small, the specific surface area becomes large and the ratio of the oxide film on the surface becomes large, so that it becomes difficult to melt.
  • the via paste 260 to the through hole 250 is difficult to fill.
  • thermosetting resin component 310 for example, glycidyl ether type epoxy resin, alicyclic epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, or other modified epoxy resins are used.
  • the thermosetting resin component 310 may contain a curing agent.
  • curing agent is not specifically limited, It is preferable to use the hardening
  • a curing agent acts as a curing catalyst for the epoxy resin and reduces the contact resistance at the time of bonding by reducing the copper film and the oxide film present on the surface of the Sn—Bi solder particles 300.
  • an amine compound having a boiling point higher than the melting point of the Sn—Bi solder particles is preferable because the contact resistance during bonding is reduced.
  • Examples of such amine compounds include 2-methylaminoethanol, N, N-diethylethanolamine, N, N-dibutylethanolamine, N-methylethanolamine, N-methyldiethanolamine, N-ethylethanolamine, N -Butylethanolamine, diisopropanolamine, N, N-diethylisopropanolamine, 2,2'-dimethylaminoethanol, triethanolamine and the like.
  • Via paste 260 is obtained by mixing copper particles 290, Sn—Bi solder particles 300 containing Sn and Bi, and a thermosetting resin component 310 such as an epoxy resin. Specifically, for example, it is obtained by adding copper particles and Sn—Bi solder particles to a resin varnish containing an epoxy resin, a curing agent and a predetermined amount of an organic solvent, and mixing them with a planetary mixer or the like.
  • the ratio of the thermosetting resin component 310 in the via paste 260 is 0.3% by mass or more and 30% by mass or less, and more preferably 3% by mass or more and 20% by mass or less in order to obtain a low resistance value. In addition, it is preferable from the viewpoint of securing sufficient workability.
  • the weight ratio of Cu, Sn, and Bi in the paste is shown in a triangular diagram as shown in FIG. , A, B, C, and D are preferably included so as to be in a region surrounded by a quadrangle having apexes.
  • the content ratio of the copper particles 290 with respect to the total amount of the copper particles 290 and the Sn-58Bi solder particles 300 is: It is preferable that they are 22 mass% or more and 80 mass% or less, Furthermore, they are 40 mass% or more and 80 mass% or less.
  • the protruding portion 270 protruding from the through hole 250 formed in the uncured base material 230 is pressed through the metal foil 150 as indicated by an arrow 280a.
  • the via paste 260 filled in the through hole 250 (see FIG. 2B) is compressed.
  • a considerable portion of the thermosetting resin component 310 in the via paste 260 is pushed out of the through hole 250 as indicated by an arrow 280b.
  • the copper particles 290 and the Sn—Bi solder particles 300 are alloyed by heating, and the metal portion after alloying becomes 74 vol% or more, 80 vol% or more, and further 90 vol% or more in the via-hole conductor.
  • the incompressible member 220 When the via paste 260 is filled, pressurized, and heated, the incompressible member 220 is formed so that the through hole 250 (see FIG. 2B) is less likely to spread or deform under pressure from the via paste 260. Is used.
  • FIG. 6 is a schematic diagram showing the state of via paste when a member having compressibility is used as the electrically insulating substrate.
  • the compressible member 340 for example, a prepreg in which glass fiber, aramid fiber, or the like is used as the core material 320 and the core material 320 is impregnated with a semi-cured resin 330 made of epoxy resin or the like is used.
  • the prepreg exhibits compressibility due to the presence of a gap between the fibers of the core material, a gap between the core material and the semi-cured resin, or voids (for example, air bubbles) contained in the semi-cured resin. That is, the cured product of prepreg is incompressible, but prepreg has compressibility.
  • the resin in a semi-cured state softens and fills the gaps between the fibers of the core material, the core material and the resin, or the voids contained in the resin (for example, air bubbles). It is.
  • the compressible member 340 Since the compressible member 340 has bubbles (or voids) or the like inside, when compressed, its thickness is compressed by about 10% to 30%.
  • a compressive member 340 When a compressive member 340 is formed with a through-hole serving as a via, filled with via paste, provided with a protrusion, and then pressurized, the diameter (or cross-sectional area) of the pressurized through-hole is Compared to 10% to 20%.
  • an arrow 280c indicates a state in which the diameter of the through hole 250 is increased (or the diameter of the through hole 250 is expanded or deformed) when the via paste 260 is compressed and compressed as indicated by an arrow 280a. ing.
  • volume fraction when the sphere is irregularly placed in the container is about 64% at maximum as “random fine packing” (for example, Nature 435, 7195 (May 2008), Song et al.).
  • the filling density (and the volume fraction) of the copper particles 290 and the solder particles 300 contained in the via paste 260 is increased. From the viewpoint of random fine packing, it is difficult to increase the volume fraction. Therefore, even if the protrusions 270 are pressurized and compressed to such an extent that the copper particles 290 and the solder particles 300 are deformed and brought into surface contact with each other, the thermosetting remaining in the gaps between the plurality of copper particles 290 and the plurality of solder particles 300 It is difficult to drive the conductive resin component 310 out of the via paste 260.
  • the via paste 260 may not be sufficiently compressed even when a high pressure is applied.
  • an incompressible member for example, a film base material
  • a through hole to be a via is formed in the thermosetting adhesive layer incompressible member
  • a via paste is filled, a protrusion is provided, and then pressurization is performed.
  • the diameter (or cross-sectional area) of the through hole after pressurization hardly changes compared with that before pressurization.
  • the amount of change is suppressed to less than 3%.
  • the via paste can be sufficiently compressed without using special equipment. This is because in the case of an incompressible member, even if the through hole cuts a part of the incompressible member, the incompressible member is hardly unwound or spreads.
  • the via paste 260 may not be sufficiently compressed even when a high pressure is applied using the protrusions 270.
  • FIG 7 and 8 are schematic views showing the state of the via paste when an incompressible member is used.
  • thermosetting resin component 310 in the via paste 260 By using an incompressible member 220 such as a heat-resistant film as the uncured base material 230, the flow component of the thermosetting resin component 310 in the via paste 260 (for example, an insulating component such as an organic component) is transferred to the via-hole conductor 140. Can be kicked out of. As a result, the volume fraction of the thermosetting resin component 310 in the via paste 260 can be reduced.
  • the diameter of the through hole 250 (see FIG. 2B) hardly expands even when a pressure as indicated by an arrow 280 a is applied to the via paste 260.
  • the pressure indicated by the arrow 280a increases, the copper particles 290 and the solder particles 300 contained in the via paste 260 come into surface contact with each other over a wider area while deforming each other. Therefore, the volume fraction of the metal part 190 in the via-hole conductor 140 can be higher than 70 vol%, more preferably 80 vol% or higher and 90 vol% or higher.
  • the hardness of the copper particles 290 and the solder particles 300 be different in order to bring the copper particles 290 and the solder particles 300 into surface contact with each other over a wider area while deforming each other.
  • the slip (or slip) between the powders can be reduced.
  • the solder particles 300 are deformed while maintaining a state of being sandwiched between the plurality of copper particles 290, and the flow components (for example, Insulating components such as organic components) can be driven out of the via-hole conductor 140.
  • the volume fraction of the thermosetting resin component 310 in the via paste 260 can be further reduced.
  • the via paste 260 when the via paste 260 is pressurized and compressed from the outside of the metal foil 150 as indicated by an arrow 280a, the fluid component in the via paste 260, that is, the thermosetting resin component 310 is not It flows out to the thermosetting adhesive layer 210 provided on the surface of the compressible member 220. As a result, as shown in FIG. 8, the filling rate of the copper particles 290 and the solder particles 300 in the via paste 260 is increased. 7 and 8, the state in which the copper particles 290 and the solder particles 300 are compressed, deformed, and brought into surface contact with each other is not shown. Further, the protruding portion 270 formed by the via paste 260 formed on the metal foil 150 is not shown.
  • the pressure (arrow 280 c) due to the thermosetting resin component 310 in the via paste 260 exceeds the pressure (arrow 280 d) from the thermosetting adhesive layer 210, and the thermosetting resin component 310 is in the through hole 250. It shows how it flows out.
  • the thermosetting resin component 310 in the via paste 260 can be discharged out of the via paste 260, and the volume fraction of the thermosetting resin component 310 in the via paste 260. Can be greatly reduced.
  • the volume fraction of metal components such as copper particles 290 and solder particles 300 in the via paste 260 is increased by the amount of the thermosetting resin component 310 contained in the via paste 260.
  • the volume fraction of the metal portion 190 in the via-hole conductor 140 can be increased to 74 vol% or more.
  • the via paste 260 can be highly compressed according to the protrusion of the via paste 260.
  • the difference in diameter (or cross-sectional area) of the through-holes before and after pressurization is preferably less than 3%, and more preferably less than 2%.
  • the volume fraction of the metal part 190 after alloying composed of the copper particles 290 and the solder particles 300 can be set to 74.0 vol% or more and 99.5 vol% or less.
  • the volume fraction of the resin part 200 which is a part excluding the metal part 190, can be reduced to 0.5 vol% or more and 26.0 vol% or less.
  • the resin portion 200 may be a resin portion included in the via-hole conductor 140, and may not be the thermosetting resin component 310 included in the via paste 260.
  • the thermosetting resin component 310 and the thermosetting adhesive layer 210 in the via paste 260 may be compatible with each other or may be melted together.
  • the via paste 260 is filled in the through-holes 250 formed in the incompressible member 220 and the thermosetting adhesive layer 210 and is pressurized, whereby the content of the thermosetting resin component 310 in the via paste ( Alternatively, the volume fraction) can be further reduced. Therefore, the filling rate (or volume fraction) of copper particles 290, solder particles 300, etc. in via paste 260 can be increased. As a result, the contact area between the copper particles 290 and the solder particles 300 increases, the alloying reaction is promoted, and the proportion of the metal portion in the via-hole conductor 140 can be increased.
  • thermosetting resin component 310 Next, how the alloying reaction between copper particles and solder particles is promoted by reducing the volume fraction of the thermosetting resin component 310 will be described.
  • FIG. 9A is a schematic diagram showing the state of the via paste before the alloying reaction.
  • FIG. 9B is a schematic diagram showing a state of the via-hole conductor after the alloying reaction.
  • the copper particles 290 and the solder particles 300 are compressed with each other and packed with high density as indicated by an arrow 280. At this time, it is desirable that the copper particles 290 and the solder particles 300 are deformed and in surface contact with each other. As the area where the copper particles 290 and the solder particles 300 are in contact with each other is wider, the alloying reaction between the copper particles 290 and the solder particles 300 (and the intermetallic compound formation reaction) proceeds more uniformly in a shorter time. .
  • the volume fraction of the thermosetting resin component 310 contained in the via paste 260 is 0.5 vol% or more and 26 vol% or less (further 20 vol% or less, and further 10 vol% or less).
  • the metal paste 150 is pressure-bonded to the uncured base material 230, and a predetermined pressure is applied to the protruding portion 270 of the via paste 260 through the metal foil 150, whereby the via paste 260 is pressurized and compressed.
  • the copper particles 290 or the copper particles 290 and the solder particles 300 can be in surface contact with each other, and the alloying reaction is promoted.
  • Projections 270 are formed on the upper and lower surfaces of the via paste 260 in FIG. 9A. Further, the upper and lower surfaces of the via-hole conductor 140 in FIG. 9B are flat with no protrusions. Thus, it is desirable that the upper and lower surfaces of the via paste 260 become flat after the alloying reaction. Conventionally, when an incompressible member is used, the protruding portion of the via-hole conductor may remain even after the alloying reaction, making it difficult to mount the component. However, by making the alloying reaction proceed very fast as in the present embodiment, the volume fraction of the metal portion 190 in the via-hole conductor 140 can be made 74.0 vol% or more and the via-hole conductor can be made flat. .
  • the volume fraction of the resin portion 200 in the via-hole conductor 140 can be set to 26.0 vol% or less.
  • the height of the protrusion 270 (h in FIG. 2D) is desirably 2 ⁇ m or more, more preferably 5 ⁇ m or more, or 0.5 times or more of the thickness of the metal foil 150.
  • copper is used even when an incompressible member is used for the electrically insulating base material 130.
  • the volume fraction in the via paste 260 such as the particles 290 and the solder particles 300 may not be 74 vol% or more.
  • the particle diameters of the copper particles 290 and the solder particles 300 may be different from each other, or the copper particles 290 having different particle diameters may be mixed.
  • the specific surface area of the powder is increased and the viscosity of the via paste 260 is increased.
  • the viscosity of the via paste 260 increases and affects the filling property to the through holes 250.
  • the copper particles 290 and the solder particles 300 have the same particle size.
  • FIG. 9B shows a state after the copper particles 290 deformed and in surface contact with each other and the solder particles 300 undergo an alloying reaction (and further an intermetallic compound formation reaction).
  • the via-hole conductor 140 has a metal portion 190 and a resin portion 200.
  • the metal portion 190 has a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of a tin-copper alloy, and a third metal region 180 mainly composed of bismuth.
  • the metal part 190 and the resin part 200 constitute a via-hole conductor 140.
  • the resin portion 200 is a cured resin including an epoxy resin.
  • Second metal region 170 has a larger cross-sectional area, volume fraction, or weight fraction than first metal region 160. Furthermore, the second metal region 170 has a larger cross-sectional area, volume fraction, or weight fraction than the third metal region 180.
  • the metal foils 150 forming the plurality of wirings 120 are electrically connected via the second metal region 170.
  • the first metal region 160 and the third metal region 180 are scattered in the second metal region 170 without being in contact with each other, so that the reliability of the via-hole conductor 140 is increased.
  • the second metal region 170 includes an intermetallic compound Cu 6 Sn 5 and an intermetallic compound Cu 3 Sn, and a ratio of Cu 6 Sn 5 / Cu 3 Sn is set to 0.001 or more and 0.100 or less. The reliability of the via-hole conductor 140 is increased.
  • the height of the protruding portion 270 of the metal foil 150 after alloying can be lowered by continuing the pressure compression indicated by the arrow 280.
  • the volume fraction of the resin portion 200 occupying the via-hole conductor 140 can be reduced, and the variation in the thickness of the multilayer wiring board 110 can be reduced.
  • the planarity and smoothness of the multilayer wiring board 110 can be improved, the mounting property of a bare chip such as a semiconductor chip is improved.
  • the second metal region 170 includes the intermetallic compound Cu 6 Sn 5 and the intermetallic compound Cu 3 Sn.
  • the ratio of Cu 6 Sn 5 / Cu 3 Sn to 0.001 or more and 0.100 or less, for example, generation of voids 5a (see FIG. 14) such as Kirkendyl voids can be suppressed.
  • the contact area between the copper particles 290 and the solder particles 300 is wide.
  • the volume fraction of the thermosetting resin component 310 in the via paste 260 is 26 vol% or less (more 20 vol% or less, and further 10 vol% or less). Is desirable.
  • the ratio of Cu 6 Sn 5 / Cu 3 Sn can be suppressed to 0.100.
  • the density of the copper particles 290 and the Sn—Bi solder particles 300 filled in the through holes 250 is increased.
  • the compressed via paste 260 is heated to a Sn-Bi solder particle 300 temperature range from the eutectic temperature of the Sn-Bi solder particles 300 to a temperature not higher than the eutectic temperature by 10 ° C. It is useful to melt a part of the Bi-based solder particles 300 and subsequently heat it to a temperature range of 20 ° C. to 300 ° C. higher than the eutectic temperature.
  • the growth of the second metal region 170 can be promoted by such pressurization and heating. Furthermore, it is preferable to carry out these in one step with continuous pressure bonding and heating. By performing the process in one continuous process, the formation reaction of each metal region can be further stabilized, and the structure of the via itself can be stabilized.
  • the via paste 260 is gradually heated to a temperature equal to or higher than the eutectic temperature of the Sn—Bi solder particles 300.
  • a part of the Sn—Bi solder particles 300 melts at a composition ratio that melts at that temperature.
  • a second metal region 170 mainly composed of tin or a tin-copper alloy is formed on or around the copper particles 290.
  • the surface contact portion where the copper particles 290 are in surface contact may also be changed to a part of the second metal region 170.
  • the total weight ratio of the first metal region 160 and the second metal region 170 to the entire via-hole conductor 140 is preferably in the range of 20% to 90%.
  • the via resistance may increase or a predetermined compressed state may not be obtained.
  • it may be technically difficult to exceed 90%.
  • the Sn-Bi solder particles 300 start to partially melt.
  • the composition of the solder to be melted is determined by the temperature, and Sn that is difficult to melt at the temperature at the time of heating remains as an Sn solid phase body.
  • the copper particles 290 come into contact with the molten solder and the surface is wetted with the molten Sn—Bi-based solder, Cu and Sn interdiffusion proceeds at the interface of the wet portion, and the Sn—Cu compound layer Etc. are formed. In this way, the proportion of the second metal region 170 in the via-hole conductor 140 can be made larger than that of the first metal region 160 and larger than that of the third metal region 180.
  • Sn in the molten solder decreases due to the further progress of the formation of the Sn—Cu compound layer and the like and the mutual diffusion. Since the decreased Sn in the molten solder is compensated from the Sn solid layer, the molten state continues to be maintained. Further, when Sn decreases and the ratio of Sn and Bi becomes larger than that of Sn-58Bi, Bi begins to segregate, and the third metal region 180 is formed as a solid phase body containing bismuth as a main component.
  • the melting point of Sn—Bi solder is 140 ° C. or lower, which is lower than the general solder reflow temperature when electronic components are surface-mounted. Therefore, when only Sn—Bi solder is used as a via hole conductor of a circuit board as a single unit, the via resistance may fluctuate due to remelting of the solder of the via hole conductor during solder reflow.
  • FIG. 10 is a triangular diagram showing an example of the metal composition in the via paste of this embodiment.
  • the metal composition in the via paste of the present embodiment is represented by the weight composition ratio (Cu: Sn: Bi) of Cu, Sn, and Bi as A (0.37: 0.567: 0.063), B (0.22: 0.3276: 0.4524), C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01) It is desirable that the region be surrounded by a quadrangle as a vertex.
  • C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01), E (0.733: 0.240: 0.027), F It is desirable that the region be surrounded by a quadrangle having (0.564: 0.183: 0.253) as a vertex.
  • the via resistance can be reduced by making the area surrounded by a quadrangle.
  • the intermetallic compound Cu 6 Sn 5 and the intermetallic compound Cu 3 Sn are included, and the ratio of Cu 6 Sn 5 / Cu 3 Sn can be easily set to 0.100 or less.
  • the composition of the Sn—Bi solder particles 300 is higher than that of the eutectic Sn—Bi solder composition (Bi 58% or less, Sn 42% or more). .
  • a part of the solder composition melts in a temperature range of 10 ° C. or higher from the eutectic temperature of the Sn—Bi solder particles, while Sn that does not melt remains.
  • the remaining Sn diffuses and reacts on the copper particle surface.
  • the Sn concentration decreases from the Sn—Bi solder particles 300, so that the remaining Sn melts.
  • the third metal region 180 is formed as a solid phase body mainly composed of. And by making the 3rd metal area
  • the temperature at which the compressed via paste 260 is heated is not less than the eutectic temperature of the Sn—Bi solder particles 300 and is not particularly limited as long as it does not decompose the components of the uncured base material 230.
  • the Sn-58Bi solder particles 300 are first heated to a temperature range of 139 ° C. to 149 ° C. It is preferable to further heat gradually to a temperature range of about 159 ° C. to 230 ° C.
  • the thermosetting resin component contained in the via paste 260 is cured by appropriately selecting the temperature.
  • Resin sheet (uncured base material 230): polyimide film (non-compressible member 220 of length 500 mm ⁇ width 500 mm, thickness 10 ⁇ m to 50 ⁇ m) ), An uncured epoxy resin layer (thermosetting adhesive layer 210) having a thickness of 10 ⁇ m is formed.
  • Protective film (protective film 240): PET sheet having a thickness of 25 ⁇ m
  • Copper foil (metal foil 150): thickness of 25 ⁇ m
  • a via paste was prepared by blending the metal components of the copper particles and Sn-Bi solder particles described in (Table 1), the epoxy resin and the resin component of the curing agent, and mixing them with a planetary mixer. ing.
  • the blending ratio of the resin component is 10 parts by weight of epoxy resin and 2 parts by weight of curing agent with respect to 100 parts by weight of the total of copper particles and Sn—Bi solder particles.
  • a protective film is bonded to both surfaces of the resin sheet. Then, 100 holes having a diameter of 150 ⁇ m are drilled by laser from the outside of the resin sheet to which the protective film is bonded.
  • the resistance value of 100 via-hole conductors formed on the obtained wiring board is measured by the 4-terminal method. Then, 100 initial resistance values and maximum resistance values are obtained. As the initial resistance value, A is 2 m ⁇ or less and B is 2 m ⁇ or more. Further, as the maximum resistance value, A is less than 3 m ⁇ , and B is greater than 3 m ⁇ .
  • the initial resistance value (initial average resistance value) is calculated by forming a daisy chain including 100 vias, measuring the total resistance value of 100 vias, and dividing this by 100.
  • the maximum resistance value is the maximum value among the average resistance values of the daisy chains formed by forming 100 daisy chains including 100 vias.
  • Table 1 the resistance value (m ⁇ ) and the specific resistance value ( ⁇ ⁇ m) are described.
  • FIG. 10 shows a triangular diagram of each composition of the examples and comparative examples shown in (Table 1).
  • Examples 1 to 17 are indicated by E1 to E17
  • Comparative Examples 1 to 9 are indicated by C1 to C9.
  • white circle indicates the composition of the example
  • black circle indicates the composition of comparative example 1 (C1) in which the Bi amount relative to the Sn amount is smaller than the metal composition of the example.
  • “white triangle” is a composition of Comparative Example 7 (C7) in which the Bi amount relative to the Sn amount is larger than the metal composition of the example, and “white square” is a comparison in which the Sn amount relative to the Cu amount is larger than the metal composition of the example.
  • Comparative examples 3, 5, and 8 (C3, C5) in which the composition of Examples 2, 4, 6, and 9 (C2, C4, C6, and C9), “black triangle” has a smaller amount of Sn relative to the amount of Cu than the metal composition of the example , C8).
  • the composition of the example in which A evaluation can be obtained for all the determinations of the initial resistance value, the maximum resistance value, and the connection reliability is that the weight ratio (Cu: Sn: Bi) in the triangular diagram is A (0. 37: 0.567: 0.063), B (0.22: 0.3276: 0.4524), C (0.79: 0.09: 0.12), D (0.89: 0.10) : 0.01) is a range of a region surrounded by a quadrangle.
  • point A indicates Example 2 (E2)
  • point B indicates Example 12 (E12)
  • point C indicates Example 9 (E9)
  • point D indicates Example 13 (E13).
  • the weight ratio (Cu: Sn: Bi) in the triangular diagram is changed to C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01), E ( 0.733: 0.240: 0.027) and F (0.564: 0.183: 0.253) as a region surrounded by a quadrangle, the weight of Cu having a lower resistance value
  • the resistance of via holes is reduced.
  • the alloying reaction of Cu and Sn all eliminates Sn-Bi remelting and realizes a highly reliable printed wiring board.
  • Comparative Example 7 in the region having a composition with a large amount of Bi with respect to the amount of Sn plotted by the “white triangle” in FIG. 10, the amount of bismuth precipitated in the via increases.
  • the volume resistivity of Bi is 78 ⁇ ⁇ cm, the volume resistivity of Cu (1.69 ⁇ ⁇ cm), the volume resistivity of Sn (12.8 ⁇ ⁇ cm), and the volume of the compound of Cu and Sn. It is remarkably larger than the resistivity (Cu 3 Sn: 17.5 ⁇ ⁇ cm, Cu 6 Sn 5 : 8.9 ⁇ ⁇ cm). Therefore, in consideration of the volume resistivity of these metal materials, it is expected that the volume resistivity increases as the amount of Bi with respect to the amount of Sn increases. Furthermore, there is a possibility that the resistance value may change or the connection reliability may be lowered depending on the presence state or the dotted state of bismuth.
  • Comparative Examples 3, 5, and 8 (C3, C5, and C8) of the regions having a small Sn amount with respect to the Cu amount plotted by the “black triangle” in FIG. Since the number of Sn—Cu compound layers formed to reinforce the surface contact portion between the particles is reduced, the connection reliability is lowered.
  • FIG. 11A and FIG. 12A are electron microscopes of cross sections of via-hole conductors of a multilayer wiring board obtained using the paste according to Example 16 (E16) (copper particles: Sn-28Bi solder weight ratio is 70:30). It is a figure which shows a SEM photograph. Moreover, FIG. 11B and FIG. 12B are those schematic diagrams. 11A and 11B are 3000 times, and FIGS. 12A and 12B are 6000 times.
  • the via-hole conductor 140 includes a resin portion 200 and a metal portion 190.
  • the resin portion 200 is a resin portion containing an epoxy resin.
  • the metal portion 190 includes a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of a tin-copper alloy, and a third metal region 180 mainly composed of bismuth. Yes.
  • the size of the second metal region 170 (and also one or more of its volume or weight and cross-sectional area) is larger than the first metal region 160 and larger than the third metal region 180.
  • the plurality of wirings 120 are electrically connected via the second metal region 170.
  • the first metal region 160 and the third metal region 180 are interspersed in the second metal region 170 without being in contact with each other, so that the alloying reaction (and the intermetallic compound formation reaction) can be performed. It can be performed uniformly without unevenness.
  • FIG. 13 is a graph showing an example of an analysis result by X-ray diffraction (XRD) of a via-hole conductor.
  • Peak I is Cu (copper).
  • Peak II is Bi (bismuth).
  • Peak III is tin (Sn).
  • Peak IV is the intermetallic compound Cu 3 Sn.
  • Peak V is the intermetallic compound Cu 6 Sn 5 .
  • FIG. 13 evaluates the influence of the heating temperature (curing temperature) during pressurization on the via-hole conductor, and shows the measurement results at heating temperatures of 25 ° C., 150 ° C., 175 ° C., and 200 ° C.
  • the X axis is 2 ⁇ (unit is degree), and the Y axis is intensity (unit is arbitrary).
  • the sample used for the measurement produced the pellet which consists of via paste, and changed the processing temperature of this pellet.
  • RINT-2000 manufactured by Rigaku Corporation is used for X-ray diffraction.
  • the reliability of the via-hole conductor is increased by making the intermetallic compound not Cu 6 Sn 5 but more stable Cu 3 Sn.
  • an alloying reaction or intermetallic compounding reaction in which the intermetallic compound is Cu 3 Sn which is more stable than Cu 6 Sn 5 can be performed.
  • the thickness of the heat resistant film as the incompressible member 220 is desirably 3 ⁇ m or more and 55 ⁇ m or less, more preferably 50 ⁇ m or less, and further 35 ⁇ m or less.
  • the thickness of the heat resistant film is less than 3 ⁇ m, the film strength is lowered and the compression effect of the via paste 260 may not be obtained. Since a heat-resistant film exceeding 55 ⁇ m is special and expensive, it is better to use a heat-resistant film having a thickness of 55 ⁇ m or less.
  • the thickness of the thermosetting adhesive layer 210 provided on the surface of the incompressible member 220 is desirably 1 ⁇ m or more and 15 ⁇ m or less on one side. When it is less than 1 ⁇ m, a predetermined adhesion strength may not be obtained. If it exceeds 15 ⁇ m, the compression effect of the via paste 260 may not be obtained. In addition, it is useful that the thickness of the incompressible member 220 is thicker than the thickness of the thermosetting adhesive layer 210 on one side.
  • the volume fraction of the metal portion 190 occupying in the via-hole conductor 140 may be increased only to about 60 vol% or more and 70 vol% or less.
  • the via hole conductor 140 occupies it.
  • the volume fraction of the metal part 190 becomes 80 vol% or more and 82 vol% or less.
  • the thickness of the incompressible member 220 is 40 ⁇ m (when the thermosetting adhesive layer 210 having a thickness of 10 ⁇ m is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 60 ⁇ m), the metal portion occupied in the via-hole conductor 140 The volume fraction of 190 is 83 vol% or more and 85 vol% or less.
  • the metal portion occupying the via-hole conductor 140 The volume fraction of 190 is 89 vol% or more and 91 vol% or less.
  • the metal portion occupying the via-hole conductor 140 becomes 87 vol% or more and 95 vol% or less.
  • the thickness of the incompressible member 220 is 10 ⁇ m (when the thermosetting adhesive layer 210 having a thickness of 10 ⁇ m is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 30 ⁇ m), the metal portion occupied in the via-hole conductor 140 The volume fraction of 190 becomes 98 vol% or more and 99.5 vol% or less.
  • the thinner the incompressible member 220 is, the more effective, but the thickness is appropriately selected according to the diameter and density of the via-hole conductor 140, the application, and the like.
  • the wiring board of this embodiment is effective for cost reduction, downsizing, high functionality, and high reliability, and is therefore used for mobile phones and the like.

Abstract

A wiring board comprises: an electrically insulated base material comprising a non-compressed member and a thermosetting member; a first wiring and a second wiring that are formed with the electrically insulated base material interposed therebetween; and via-hole conductors that penetrate the electrically insulated base material, and electrically connect the first wiring and the second wiring. The via-hole conductors comprise resin sections and metal sections. The metal sections comprise first metal sections the main ingredient of which is Cu, second metal sections the main ingredient of which is Sn-Cu alloy, and third metal sections the main ingredient of which is Bi. The second metal section is larger than the first metal section, and larger than the third metal section.

Description

配線基板とその製造方法Wiring board and manufacturing method thereof
 本発明は、電気絶縁性基材の両面に形成された配線をビアホール導体により接続する配線基板とその製造方法に関する。 The present invention relates to a wiring board for connecting wirings formed on both surfaces of an electrically insulating base material by via-hole conductors and a manufacturing method thereof.
 電気絶縁性基材に形成された孔に導電性ペーストを充填したビアホール導体により電気絶縁性基材の両端に形成された配線を接続する配線基板が知られている。また、導電性ペーストの代わりに、銅(Cu)を含有する金属粒子を充填し、金属粒子同士を金属間化合物で固定したビアホール導体が知られている。具体的には、錫(Sn)- ビスマス(Bi)系の金属粒子と銅粒子を含む導電ペーストを、所定の温度で加熱することにより、銅粒子の周辺に錫(Sn)- 銅(Cu)合金を形成したビアホール導体が知られている。 There is known a wiring board for connecting wirings formed at both ends of an electrically insulating substrate by via-hole conductors in which holes formed in the electrically insulating substrate are filled with a conductive paste. Also, a via-hole conductor is known in which metal particles containing copper (Cu) are filled instead of the conductive paste and the metal particles are fixed with an intermetallic compound. Specifically, by heating a conductive paste containing tin (Sn) -bismuth (Bi) -based metal particles and copper particles at a predetermined temperature, tin (Sn) -copper (Cu) is formed around the copper particles. Via hole conductors in which alloys are formed are known.
 図14は、従来の配線基板のビアホール導体の断面模式図である。図15A、図16Aは、従来のビアホール導体のSEM写真を示す図である。図15Bは、図15Aの模式図である。図16Bは、図16Aの模式図である。図15Aの倍率は3000倍、図16Aの倍率は6000倍である。 FIG. 14 is a schematic cross-sectional view of a via-hole conductor of a conventional wiring board. 15A and 16A are views showing SEM photographs of a conventional via-hole conductor. FIG. 15B is a schematic diagram of FIG. 15A. FIG. 16B is a schematic diagram of FIG. 16A. The magnification of FIG. 15A is 3000 times, and the magnification of FIG. 16A is 6000 times.
 配線基板表面に形成された配線1にビアホール導体2が接している。ビアホール導体2は、金属部分11と、樹脂部分12を有している。金属部分11は、複数の銅(Cu)含有粒子3を有する第1金属領域8と、錫(Sn)- 銅(Cu)合金等からなる第2金属領域9と、ビスマス(Bi)を主成分とする第3金属領域10とを有している。なお、この発明に関連する先行技術文献としては、例えば、特許文献1が知られている。 The via-hole conductor 2 is in contact with the wiring 1 formed on the surface of the wiring board. The via-hole conductor 2 has a metal part 11 and a resin part 12. The metal portion 11 is mainly composed of a first metal region 8 having a plurality of copper (Cu) -containing particles 3, a second metal region 9 made of tin (Sn) -copper (Cu) alloy, and the like, and bismuth (Bi). And a third metal region 10. As a prior art document related to the present invention, for example, Patent Document 1 is known.
特許第4713682号公報Japanese Patent No. 4713682
 本発明の配線基板は、非圧縮性部材と熱硬化性部材とを有する電気絶縁性基材と、電気絶縁性基材を挟んで形成された第1の配線と第2の配線と、電気絶縁性基材を貫通し、第1の配線と第2の配線を電気的に接続するビアホール導体と、を有している。ビアホール導体は、樹脂部分と、金属部分とを有している。金属部分は、銅(Cu)を主成分とする第1金属領域と、錫(Sn)-銅(Cu)合金を主成分とする第2金属領域と、ビスマス(Bi)を主成分とする第3金属領域とを有している。第2金属領域は第1金属領域より大きく、かつ第3金属領域より大きい。 The wiring board of the present invention includes an electrically insulating base material having an incompressible member and a thermosetting member, a first wiring and a second wiring formed with the electrically insulating base material interposed therebetween, and electrical insulation. A via-hole conductor that penetrates the conductive substrate and electrically connects the first wiring and the second wiring. The via-hole conductor has a resin portion and a metal portion. The metal portion includes a first metal region mainly composed of copper (Cu), a second metal region mainly composed of tin (Sn) -copper (Cu) alloy, and a first metal region mainly composed of bismuth (Bi). 3 metal regions. The second metal region is larger than the first metal region and larger than the third metal region.
図1Aは、本発明の実施の形態における配線基板の断面模式図である。FIG. 1A is a schematic cross-sectional view of a wiring board according to an embodiment of the present invention. 図1Bは、本発明の実施の形態におけるビアホール導体付近の断面模式図である。FIG. 1B is a schematic cross-sectional view of the vicinity of the via-hole conductor in the embodiment of the present invention. 図2Aは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 2A is a cross-sectional view showing a method for manufacturing a wiring board in an embodiment of the present invention. 図2Bは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 2B is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention. 図2Cは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 2C is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention. 図2Dは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 2D is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention. 図3Aは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 3A is a cross-sectional view showing a method for manufacturing a wiring board in an embodiment of the present invention. 図3Bは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 3B is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention. 図3Cは、本発明の実施の形態における配線基板の製造方法を示す断面図である。FIG. 3C is a cross-sectional view showing the method for manufacturing the wiring board in the embodiment of the present invention. 図4Aは、本発明の実施の形態における多層配線基板の製造方法を示す断面図である。FIG. 4A is a cross-sectional view showing a method for manufacturing a multilayer wiring board in accordance with the exemplary embodiment of the present invention. 図4Bは、本発明の実施の形態における多層配線基板の製造方法を示す断面図である。FIG. 4B is a cross-sectional view showing the method for manufacturing the multilayer wiring board in the embodiment of the present invention. 図4Cは、本発明の実施の形態における多層配線基板の製造方法を示す断面図である。FIG. 4C is a cross-sectional view showing the method for manufacturing the multilayer wiring board in the embodiment of the present invention. 図5Aは、ビアペーストが圧縮される前のビアホール導体付近の断面模式図である。FIG. 5A is a schematic cross-sectional view of the vicinity of the via-hole conductor before the via paste is compressed. 図5Bは、ビアペーストが圧縮された後のビアホール導体付近の断面模式図である。FIG. 5B is a schematic cross-sectional view of the vicinity of the via-hole conductor after the via paste is compressed. 図6は、圧縮性を有する部材を用いた場合のビアペーストの状態を示す模式図である。FIG. 6 is a schematic diagram showing the state of via paste when a member having compressibility is used. 図7は、非圧縮性部材を用いた場合のビアペーストの状態を示す模式図である。FIG. 7 is a schematic view showing a state of via paste when an incompressible member is used. 図8は、非圧縮性部材を用いた場合のビアペーストの状態を示す模式図である。FIG. 8 is a schematic diagram showing a state of via paste when an incompressible member is used. 図9Aは、合金化反応前のビアペーストの状態を示す模式図である。FIG. 9A is a schematic diagram showing the state of the via paste before the alloying reaction. 図9Bは、合金化反応後のビアホール導体の状態を示す模式図である。FIG. 9B is a schematic diagram showing a state of the via-hole conductor after the alloying reaction. 図10は、本発明の実施の形態におけるビアペースト中の金属組成を示す三角図である。FIG. 10 is a triangular diagram showing a metal composition in the via paste in the embodiment of the present invention. 図11Aは、本発明の実施の形態におけるビアホール導体のSEM写真を示す図である。FIG. 11A is a diagram showing an SEM photograph of the via-hole conductor in the embodiment of the present invention. 図11Bは、図11Aの模式図である。FIG. 11B is a schematic diagram of FIG. 11A. 図12Aは、本発明の実施の形態におけるビアホール導体のSEM写真を示す図である。FIG. 12A is a diagram showing an SEM photograph of the via-hole conductor in the embodiment of the present invention. 図12Bは、図12Aの模式図である。FIG. 12B is a schematic diagram of FIG. 12A. 図13は、本発明の実施の形態におけるビアホール導体のX線回折による分析結果を示す図である。FIG. 13 is a diagram showing an analysis result by X-ray diffraction of the via-hole conductor in the embodiment of the present invention. 図14は、従来の配線基板のビアホール導体の断面模式図である。FIG. 14 is a schematic cross-sectional view of a via-hole conductor of a conventional wiring board. 図15Aは、従来のビアホール導体のSEM写真を示す図である。FIG. 15A is a view showing an SEM photograph of a conventional via-hole conductor. 図15Bは、図15Aの模式図である。FIG. 15B is a schematic diagram of FIG. 15A. 図16Aは、従来のビアホール導体のSEM写真を示す図である。FIG. 16A is a view showing an SEM photograph of a conventional via-hole conductor. 図16Bは、図16Aの模式図である。FIG. 16B is a schematic diagram of FIG. 16A.
 従来のビアホール導体2は、リフロー処理などにおいて熱衝撃を受けた場合、Sn-Bi系金属粒子にCuが拡散してCuSn、CuSn等の金属間化合物が生成される。その際に、図14に示すように、ビアホール導体2中にボイド5aやクラック5bが発生する場合がある。また、CuSnがCuSnに変化する際に、カーケンダイルボイド等が発生する場合がある。さらに、ボイド5aの存在により、CuとSnとの界面に形成されたCuSnが、加熱によりCuSnに変化する際に、ビアホール導体2に内部応力が発生する場合がある。 When the conventional via-hole conductor 2 is subjected to thermal shock during reflow processing or the like, Cu diffuses into the Sn—Bi-based metal particles, and intermetallic compounds such as Cu 3 Sn and Cu 6 Sn 5 are generated. At that time, as shown in FIG. 14, voids 5 a and cracks 5 b may be generated in the via-hole conductor 2. Further, when Cu 6 Sn 5 changes to Cu 3 Sn, Kirkendyl voids or the like may occur. Furthermore, due to the presence of the void 5a, internal stress may be generated in the via-hole conductor 2 when Cu 6 Sn 5 formed at the interface between Cu and Sn changes to Cu 3 Sn by heating.
 また、従来のビアホール導体2は、ビアホール導体2に占める樹脂部分12の体積分率が大きく、金属部分11の体積分率が小さい。そのため、ビア抵抗(ビアホール導体2全体の抵抗値)が高い場合がある。 Further, the conventional via hole conductor 2 has a large volume fraction of the resin portion 12 occupying the via hole conductor 2 and a small volume fraction of the metal portion 11. Therefore, the via resistance (the resistance value of the entire via hole conductor 2) may be high.
 以下に本実施の形態の多層配線基板の構造について説明する。 Hereinafter, the structure of the multilayer wiring board of the present embodiment will be described.
 図1Aは、本発明の実施の形態における多層配線基板の断面模式図である。電気絶縁性基材130の内部に形成された複数の配線120が、ビアホール導体140を介して電気的に接続され、多層配線基板110が構成されている。 FIG. 1A is a schematic cross-sectional view of a multilayer wiring board according to an embodiment of the present invention. A plurality of wirings 120 formed inside the electrically insulating base material 130 are electrically connected via via-hole conductors 140 to constitute a multilayer wiring board 110.
 図1Bは、本発明の実施の形態におけるビアホール導体140付近の断面模式図である。多層配線基板110は、非圧縮性部材220と熱硬化性接着層(熱硬化性部材)210とを有する電気絶縁性基材130と、第1の配線120aと第2の配線120bと、ビアホール導体140と、を有している。第1の配線120aと第2の配線120bは、電気絶縁性基材130を挟んで形成されている。ビアホール導体140は、電気絶縁性基材130を貫通し、第1の配線120aと第2の配線120bを電気的に接続している。 FIG. 1B is a schematic cross-sectional view of the vicinity of the via-hole conductor 140 in the embodiment of the present invention. The multilayer wiring board 110 includes an electrically insulating base material 130 having an incompressible member 220 and a thermosetting adhesive layer (thermosetting member) 210, a first wiring 120a, a second wiring 120b, and a via-hole conductor. 140. The first wiring 120a and the second wiring 120b are formed with the electrically insulating base material 130 interposed therebetween. The via-hole conductor 140 penetrates the electrically insulating base material 130 and electrically connects the first wiring 120a and the second wiring 120b.
 電気絶縁性基材130は、耐熱フィルムなどの非圧縮性部材220と、非圧縮性部材220の両面に形成された熱硬化性接着層(熱硬化性部材)210と、を有している。銅箔等の金属箔150を所定形状にパターニングした第1の配線120aおよび第2の配線120bが、熱硬化性接着層210を介して、非圧縮性部材220に接着されている。なお、熱硬化性接着層210は非圧縮性部材220の一面だけに形成されていてもよい。 The electrically insulating substrate 130 has an incompressible member 220 such as a heat resistant film, and a thermosetting adhesive layer (thermosetting member) 210 formed on both surfaces of the incompressible member 220. A first wiring 120 a and a second wiring 120 b obtained by patterning a metal foil 150 such as a copper foil into a predetermined shape are bonded to the incompressible member 220 through a thermosetting adhesive layer 210. The thermosetting adhesive layer 210 may be formed only on one surface of the incompressible member 220.
 ビアホール導体140は金属部分190と、樹脂部分200とを有している。金属部分190は、銅を主体とする第1金属領域160と、錫-銅合金を主体とする第2金属領域170と、ビスマスを主成分とする第3金属領域180とを有している。第2金属領域170は、第1金属領域160より大きく、かつ第3金属領域180より大きい。 The via-hole conductor 140 has a metal part 190 and a resin part 200. The metal portion 190 has a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of a tin-copper alloy, and a third metal region 180 mainly composed of bismuth. Second metal region 170 is larger than first metal region 160 and larger than third metal region 180.
 樹脂部分200は、エポキシ樹脂などである。エポキシ樹脂は、信頼性に優れている。なお樹脂部分200は、主にビアペースト中に添加した樹脂の硬化物であるが、熱硬化性接着層210を構成する熱硬化性樹脂の一部が混入していても良い。 Resin portion 200 is an epoxy resin or the like. Epoxy resins are excellent in reliability. The resin portion 200 is mainly a cured product of the resin added to the via paste, but a part of the thermosetting resin constituting the thermosetting adhesive layer 210 may be mixed therein.
 第2金属領域170の大きさ(あるいは体積分率または重量分率)は、第1金属領域160の大きさ(あるいは体積分率または重量分率)より大きい。さらに、第2金属領域170の大きさ(あるいは体積分率または重量分率)は、第3金属領域180の大きさ(あるいは体積分率あるいは重量分率)より大きい。 The size (or volume fraction or weight fraction) of the second metal region 170 is larger than the size (or volume fraction or weight fraction) of the first metal region 160. Furthermore, the size (or volume fraction or weight fraction) of the second metal region 170 is larger than the size (or volume fraction or weight fraction) of the third metal region 180.
 第2金属領域170の大きさを第1金属領域160より大きく、かつ第3金属領域180の大きさより大きくすることで、複数の配線120間を、第2金属領域170を主体として電気的に接続できる。更に、第2金属領域170の中に、第1金属領域160と第3金属領域180を、互いに接することなく点在(あるいは離れ小島状態で点在)できる。 By making the size of the second metal region 170 larger than the size of the first metal region 160 and larger than the size of the third metal region 180, the plurality of wirings 120 are electrically connected with the second metal region 170 as a main component. it can. Furthermore, the first metal region 160 and the third metal region 180 can be scattered in the second metal region 170 without being in contact with each other (or scattered in a small islet state).
 また第2金属領域170は、金属間化合物CuSnと金属間化合物CuSnを有し、CuSn/CuSnの比は0.001以上、0.100以下である。CuSnの量を減らすことで、多層配線基板110の中に残留するCuSnが、半田リフロー等の加熱処理工程において、CuSnに変化することを防止できる。その結果、カーケンダイルボイド等の発生が抑制される。 The second metal region 170 has an intermetallic compound Cu 6 Sn 5 and an intermetallic compound Cu 3 Sn, and the ratio of Cu 6 Sn 5 / Cu 3 Sn is 0.001 or more and 0.100 or less. By reducing the amount of Cu 6 Sn 5, Cu 6 Sn 5 remaining in the multilayer wiring board 110, in the heat treatment step such as a solder reflow it can be prevented from being changed to Cu 3 Sn. As a result, the generation of Kirkendall voids and the like is suppressed.
 なおCuSn/CuSnの比は0.100以下が望ましい。0.001以上、0.100以下とすることがさらに望ましい。反応時間は有限であり、またその反応時間は長くても10時間以内とすることが実用的である。そのためこうした有限の反応時間の中で、CuSn/CuSnの比が、完全に0となるとは考えにくく、また極僅かに残留するであろうCuSnの定量分析も困難となる。 The ratio of Cu 6 Sn 5 / Cu 3 Sn is preferably 0.100 or less. It is more desirable to set it to 0.001 or more and 0.100 or less. The reaction time is finite, and the reaction time is practically 10 hours or less at the longest. Therefore, in such a finite reaction time, the ratio of Cu 6 Sn 5 / Cu 3 Sn is unlikely to be completely zero, and it is difficult to quantitatively analyze Cu 6 Sn 5 that will remain slightly. Become.
 以上のように通常の測定装置を用いた場合、CuSnが検出されない(例えば、測定装置の検出限界の関係で、検出量が0となる)場合が考えられる。そのため通常の測定装置を用いた場合は、CuSn/CuSnの比は、0以上0.100以下(なお0は、測定装置での検出限界以下、あるいは測定装置で検出できなかった場合を含む)である。なお測定装置の測定精度が充分に高い場合、CuSn/CuSnの比を、0.001以上0.100以下としてもよい。 As described above, when a normal measuring device is used, Cu 6 Sn 5 may not be detected (for example, the detection amount becomes 0 due to the detection limit of the measuring device). Therefore, when a normal measuring device is used, the ratio of Cu 6 Sn 5 / Cu 3 Sn is 0 or more and 0.100 or less (note that 0 is below the detection limit of the measuring device or could not be detected by the measuring device). Including cases). Note that when the measurement accuracy of the measurement device is sufficiently high, the ratio of Cu 6 Sn 5 / Cu 3 Sn may be 0.001 or more and 0.100 or less.
 なお、CuSn/CuSnの比が、0.001以上、0.100以下が望ましいとしたのは、XRD(X線回折装置)を用いて評価した結果である。しかしながら、実際の配線基板を構成している微細なビア部分(あるいはビアペースト部分)だけを取り出して、XRD装置にかけて分析することは困難である。そのため、一般的な評価装置、例えば、SEM装置に取り付けた蛍光X線を用いた元素分析装置(例えば、XMA、EPMA等)を測定装置として用いてもよい。またこのような元素分析装置(例えば、XMA、EPMA等)を用いた場合であっても、CuSn/CuSnの比は、0.001以上、0.100以下が望ましい。なおXRDは一種の質量分析となり、EPMAは一種の断面分析となるが、実質的には差は無い。以上より、微細なビア部分(あるいはビアペースト部分)の、CuSn/CuSnの比の測定においては、XRD、XMA、EPMAあるいはこれらに類した適当な装置を一つ選んで評価すればよい。 The reason why the ratio of Cu 6 Sn 5 / Cu 3 Sn is preferably 0.001 or more and 0.100 or less is the result of evaluation using an XRD (X-ray diffractometer). However, it is difficult to extract only a fine via portion (or via paste portion) constituting an actual wiring board and analyze it by using an XRD apparatus. Therefore, a general evaluation apparatus, for example, an elemental analysis apparatus (for example, XMA, EPMA, etc.) using fluorescent X-rays attached to an SEM apparatus may be used as the measurement apparatus. Even when such an elemental analyzer (for example, XMA, EPMA, etc.) is used, the ratio of Cu 6 Sn 5 / Cu 3 Sn is preferably 0.001 or more and 0.100 or less. XRD is a kind of mass analysis and EPMA is a kind of cross-sectional analysis, but there is substantially no difference. From the above, when measuring the ratio of Cu 6 Sn 5 / Cu 3 Sn in the fine via portion (or via paste portion), select one of XRD, XMA, EPMA, or a similar device for evaluation. That's fine.
 なお、電気絶縁性基材130は、例えば耐熱フィルムなどの非圧縮性部材220と、その少なくとも一面に形成された熱硬化性接着層210を有している。 The electrically insulating substrate 130 has an incompressible member 220 such as a heat resistant film and a thermosetting adhesive layer 210 formed on at least one surface thereof.
 なお本実施の形態において圧縮性(compressibility)、非圧縮性(incompressibility)の定義は、芯材の構成によって行うことが実用的である。すなわちガラス繊維であろうが樹脂繊維であろうが、芯材として複数の繊維が互いに絡み合ってなる織布や不織布を用いた部材は、圧縮性を有する。これは織布あるいは不織布を用いた芯材には、貫通孔が形成され、この貫通孔に導電性ペーストが充填され、加圧された場合、導電性ペーストに含まれている金属粒子等に押されて、貫通孔が変形したり広がったりするためである。 In this embodiment, it is practical to define the definition of compressibility and incompressibility depending on the configuration of the core material. That is, a member using a woven fabric or a nonwoven fabric in which a plurality of fibers are entangled with each other as a core material, whether glass fiber or resin fiber, has compressibility. This is because a through-hole is formed in a core material using a woven fabric or non-woven fabric, and when this through-hole is filled with a conductive paste and pressed, it is pressed against metal particles contained in the conductive paste. This is because the through hole is deformed or widened.
 一方、芯材としてフィルムを用いた部材は、内部に空間を有さないため、非圧縮性を有している。これはフィルムを用いた芯材に、貫通孔が形成され、この貫通孔に導電性ペーストが充填され、加圧された場合、貫通孔の直径が実質的に変化しないためである。 On the other hand, since a member using a film as a core material has no space inside, it has incompressibility. This is because a through-hole is formed in a core material using a film, and when the through-hole is filled with a conductive paste and pressed, the diameter of the through-hole does not substantially change.
 なおガラス繊維を用いた織布あるいは不織布を芯材とした場合、レーザー等で貫通孔を形成した場合、孔の周囲のガラス繊維からなる織布あるいは不織布の先端が溶けて固まる場合もあるが、この場合であっても芯材は圧縮性を有している。この理由はレーザー等で熔解して一体化したガラス繊維の存在は、孔の周囲だけに限られており、それ以外の部分(すなわちレーザーで形成された貫通孔から少し離れた部分)のガラス繊維は互いに絡み合っているだけに過ぎないためである。また孔の周囲に露出したガラス繊維の全てが溶解して一つになることがないためである。 In addition, when a woven fabric or nonwoven fabric using glass fiber is used as a core material, when a through hole is formed with a laser or the like, the tip of the woven fabric or nonwoven fabric made of glass fiber around the hole may melt and harden, Even in this case, the core material has compressibility. The reason for this is that the presence of glass fiber melted and integrated with a laser or the like is limited only to the periphery of the hole, and the glass fiber in the other part (that is, the part slightly away from the through hole formed by the laser) This is because they are only intertwined with each other. Moreover, it is because all the glass fibers exposed around the hole do not melt and become one.
 またガラス繊維を用いた不織布の場合、繊維同士の絡み合い部分が固定されている場合があるが、この場合であっても、不織布を芯材とする部材は圧縮性を有している。 In the case of a nonwoven fabric using glass fibers, the entangled portions of the fibers may be fixed. Even in this case, the member having the nonwoven fabric as the core material has compressibility.
 非圧縮性部材220は、圧縮性を発現させるための気泡部分等を内部に有さないため、優れた非圧縮性を有する。 The incompressible member 220 has excellent incompressibility because it does not have a bubble portion or the like for expressing compressibility inside.
 非圧縮性部材を用いることで、ビアペーストを高い圧力で圧縮できる。その結果、74.0vol%以上、99.5vol%以下の金属部分190と、0.5vol%以上、26.0vol%以下の樹脂部分200を有するビアホール導体140とを作製できる。 By using an incompressible member, the via paste can be compressed at a high pressure. As a result, a via-hole conductor 140 having a metal part 190 of 74.0 vol% or more and 99.5 vol% or less and a resin part 200 of 0.5 vol% or more and 26.0 vol% or less can be produced.
 ビアホール導体140の中の絶縁成分である樹脂部分200の体積分率(vol%)を低下させることにより、金属部分190の体積分率(vol%)が増加し、ビア抵抗が低減する。ここでビア抵抗とは、ビアホール導体140全体の抵抗値を意味する。ビア部分の機械的な強度を高めるためにも、ビアホール導体140の中の金属部分190の体積分率を多くすることが好ましい。 By reducing the volume fraction (vol%) of the resin portion 200 that is an insulating component in the via-hole conductor 140, the volume fraction (vol%) of the metal portion 190 increases and the via resistance decreases. Here, the via resistance means a resistance value of the entire via-hole conductor 140. In order to increase the mechanical strength of the via portion, it is preferable to increase the volume fraction of the metal portion 190 in the via-hole conductor 140.
 更に、配線120とビアホール導体140との接触面積を増加させることにより、配線120と、ビアホール導体140との接続抵抗が小さくなる。そのため、配線120とビアホール導体140との界面部分の樹脂部分200の体積分率を低下することが好ましい。 Furthermore, the connection resistance between the wiring 120 and the via-hole conductor 140 is reduced by increasing the contact area between the wiring 120 and the via-hole conductor 140. Therefore, it is preferable to reduce the volume fraction of the resin part 200 at the interface part between the wiring 120 and the via-hole conductor 140.
 本実施の形態の構成によって、ビアホール導体140の比抵抗を、1.00×10-7Ω・m以上、5.00×10-7Ω・m以下にすることができるので、ビア抵抗が安定化する。 With the configuration of this embodiment, the specific resistance of the via-hole conductor 140 can be set to 1.00 × 10 −7 Ω · m or more and 5.00 × 10 −7 Ω · m or less, so that the via resistance is stable. Turn into.
 さらに本実施の形態では、銅-錫間の合金化反応がほぼ完全に完了している。 Furthermore, in this embodiment, the alloying reaction between copper and tin is almost completely completed.
 なお、ビアホール導体140を構成する樹脂部分200は、硬化性樹脂の硬化物からなる。硬化性樹脂は特に限定されないが、具体的には、例えば、耐熱性に優れ、また、線膨張率が低いエポキシ樹脂の硬化物を用いるのが好ましい。 In addition, the resin part 200 which comprises the via-hole conductor 140 consists of hardened | cured material of curable resin. Although the curable resin is not particularly limited, specifically, for example, it is preferable to use a cured product of an epoxy resin that is excellent in heat resistance and has a low linear expansion coefficient.
 配線基板600および多層配線基板111の製造方法の一例を以下に説明する。図2A~図2D、図3A~図3Cは、配線基板600の製造方法を示す断面図である。図4A~図4Cは、多層配線基板111の製造方法を示す断面図である。 An example of a method for manufacturing the wiring board 600 and the multilayer wiring board 111 will be described below. 2A to 2D and FIGS. 3A to 3C are cross-sectional views showing a method for manufacturing the wiring substrate 600. FIG. 4A to 4C are cross-sectional views showing a method for manufacturing the multilayer wiring board 111. FIG.
 未硬化基材230(基材)は、厚み55μm以下の非圧縮性部材220と、非圧縮性部材220の両面に形成された未硬化状態の熱硬化性接着層210とを有している。 The uncured base material 230 (base material) has an incompressible member 220 having a thickness of 55 μm or less, and an uncured thermosetting adhesive layer 210 formed on both surfaces of the incompressible member 220.
 はじめに、図2Aに示すように、未硬化基材230の両表面に保護フィルム240が貼り合わされる。非圧縮性部材220は、厚み50μm以下、30μm以下、15μm以下、さらには6μm以下の厚みでも充分な絶縁性が得られる。 First, as shown in FIG. 2A, protective films 240 are bonded to both surfaces of the uncured base material 230. The incompressible member 220 can obtain sufficient insulation even when the thickness is 50 μm or less, 30 μm or less, 15 μm or less, and even 6 μm or less.
 非圧縮性部材220としては、例えば、ポリイミドフィルム、液晶ポリマーフィルム、ポリエーテルエーテルケトンフィルム等が用いられる。これらの中では、ポリイミドフィルムが特に好ましいが、半田付けの温度に耐える樹脂シートであれば、特に限定されない。 As the incompressible member 220, for example, a polyimide film, a liquid crystal polymer film, a polyether ether ketone film, or the like is used. Among these, a polyimide film is particularly preferable, but is not particularly limited as long as it is a resin sheet that can withstand the soldering temperature.
 熱硬化性接着層210としては、エポキシ樹脂等からなる未硬化の接着層が用いられる。また、多層配線基板を薄くするために、熱硬化性接着層の片面あたりの厚みは、1μm以上、30μm以下、さらには5μm以上、10μm以下であることが好ましい。 As the thermosetting adhesive layer 210, an uncured adhesive layer made of an epoxy resin or the like is used. In order to reduce the thickness of the multilayer wiring board, the thickness of one side of the thermosetting adhesive layer is preferably 1 μm or more and 30 μm or less, more preferably 5 μm or more and 10 μm or less.
 保護フィルムとしては、例えば、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)等の樹脂フィルムが用いられる。樹脂フィルムの厚みは0.5μm以上、50μm以下、さらには、1μm以上、30μm以下が好ましい。このような厚みにすることにより、後述するように、保護フィルムの剥離により、充分な高さのビアペーストからなる突出部を表出できる。 As the protective film, for example, a resin film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) is used. The thickness of the resin film is preferably 0.5 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less. By setting it as such thickness, the protrusion part which consists of via paste of sufficient height can be exposed by peeling of a protective film so that it may mention later.
 未硬化基材230に保護フィルム240を貼り合わせる方法としては、例えば、未硬化基材230、あるいは未硬化基材230表面の熱硬化性接着層210の表面タック性(あるいは接着力)を用いて、直接貼り合わせる方法が用いられる。 As a method of bonding the protective film 240 to the uncured substrate 230, for example, the surface tackiness (or adhesive force) of the uncured substrate 230 or the thermosetting adhesive layer 210 on the surface of the uncured substrate 230 is used. A method of directly bonding is used.
 次に、図2Bに示すように、保護フィルム240が配された未硬化基材230に保護フィルム240の外側から穿孔することにより、貫通孔250を形成する。穿孔には、炭酸ガスレーザー、YAGレーザー等の非接触による加工方法の他、ドリルを用いた穴あけ等の各種方法が用いられる。貫通孔の直径としては10μm以上、500μm以下、さらには50μm以上、300μm以下、80μm以上、120μm以下などである。 Next, as shown in FIG. 2B, a through-hole 250 is formed by perforating the uncured base material 230 on which the protective film 240 is disposed from the outside of the protective film 240. For the drilling, various methods such as drilling using a drill as well as non-contact processing methods such as a carbon dioxide laser and a YAG laser are used. The diameter of the through hole is 10 μm or more and 500 μm or less, and further 50 μm or more, 300 μm or less, 80 μm or more, 120 μm or less.
 次に、図2Cに示すように、貫通孔250の中にビアペースト260を充填する。ビアペースト260は、銅粒子290と、SnとBiとを含有するSn-Bi系の半田粒子300と、エポキシ樹脂等の熱硬化性樹脂成分(有機成分)310を有する(図5A参照)。 Next, as shown in FIG. 2C, the via paste 260 is filled into the through hole 250. The via paste 260 includes copper particles 290, Sn—Bi solder particles 300 containing Sn and Bi, and a thermosetting resin component (organic component) 310 such as an epoxy resin (see FIG. 5A).
 ビアペースト260の充填方法は特に限定されないが、例えば、スクリーン印刷などの方法が用いられる。 Although the filling method of the via paste 260 is not particularly limited, for example, a method such as screen printing is used.
 次に、図2Dに示すように、未硬化基材230の表面から保護フィルム240を剥離することにより、ビアペースト260の一部を、貫通孔250(図2B参照)から突出部270として突出させ、基板500を作製する。突出部270の高さhは、保護フィルムの厚みにもよるが、例えば、0.5μm以上、50μm以下、さらには、1μm以上、30μm以下であることが好ましい。突出部270が高すぎる場合には、後述する加圧工程において未硬化基材230の表面の、貫通孔250の周囲にペーストが溢れて表面平滑性を失わせる場合がある。また、突出部270が低すぎる場合には、後述する加圧工程において充填されたビアペーストに圧力が充分にかからなくなる場合がある。 Next, as shown in FIG. 2D, by peeling off the protective film 240 from the surface of the uncured base material 230, a part of the via paste 260 is protruded from the through hole 250 (see FIG. 2B) as a protruding portion 270. A substrate 500 is manufactured. Although the height h of the protrusion 270 depends on the thickness of the protective film, it is preferably 0.5 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less. If the protruding portion 270 is too high, the paste may overflow around the through-hole 250 on the surface of the uncured base material 230 in the pressurizing step described later, and the surface smoothness may be lost. In addition, when the protruding portion 270 is too low, pressure may not be sufficiently applied to the via paste filled in the pressurizing process described later.
 次に、図3Aに示すように、未硬化基材230の上に金属箔150を配置し、矢印280で示す方向に加圧する。加圧時に、金属箔150を介して突出部270に力が掛かるために、貫通孔250に充填されたビアペースト260が高い圧力で圧縮される。 Next, as shown in FIG. 3A, the metal foil 150 is placed on the uncured base material 230 and pressed in the direction indicated by the arrow 280. At the time of pressurization, a force is applied to the protruding portion 270 via the metal foil 150, so that the via paste 260 filled in the through hole 250 is compressed with a high pressure.
 未硬化基材230の一部として、非圧縮性部材220を用いているため、矢印280で示す加圧時(更には加熱時)に、貫通孔250の直径が広がらず、ビアペースト260に強い圧力が加えられる。その結果、ビアペースト260中に含まれる銅粒子や、Sn-Bi粒子の間隔が狭められ、互いに密着する。そのために、ビアペースト260中の樹脂部分の比率が低減する。言い換えれば、ビアペースト260中の金属部分の比率が増加する。 Since the incompressible member 220 is used as a part of the uncured base material 230, the diameter of the through hole 250 does not widen and is strong against the via paste 260 at the time of pressurization (further heating) indicated by an arrow 280. Pressure is applied. As a result, the distance between the copper particles and the Sn—Bi particles contained in the via paste 260 is reduced, and they are in close contact with each other. Therefore, the ratio of the resin part in the via paste 260 is reduced. In other words, the ratio of the metal part in the via paste 260 increases.
 そして、圧縮状態を保ったままで加熱することで、合金化反応を起こし、金属部分190と、樹脂部分200(図1B参照)が形成される。また、熱硬化性樹脂成分310は、熱硬化により樹脂部分200となり、ビアホール導体140が形成される(図1B参照)。上記の工程により、図3Bに示すように、未硬化基材230は、電気絶縁性基材130になる。ここで金属部分190は、銅を主成分とする第1金属領域160と、錫-銅合金を主成分とする第2金属領域170と、ビスマスを主成分とする第3金属領域180とを有する(図1B参照)。 Then, by heating while maintaining the compressed state, an alloying reaction occurs, and a metal portion 190 and a resin portion 200 (see FIG. 1B) are formed. Moreover, the thermosetting resin component 310 becomes the resin part 200 by thermosetting, and the via-hole conductor 140 is formed (see FIG. 1B). Through the above steps, the uncured base material 230 becomes the electrically insulating base material 130 as shown in FIG. 3B. Here, the metal portion 190 has a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of tin-copper alloy, and a third metal region 180 mainly composed of bismuth. (See FIG. 1B).
 なおこの合金化反応時において、第2金属領域170の大きさ(あるいは体積%または重量%)を第1金属領域160の大きさ(あるいは体積%または重量%)より大きくする。さらに第2金属領域170の大きさ(あるいは体積%または重量%)を第3金属領域180の大きさ(あるいは体積%または重量%)より大きくする。この結果、ビアホール導体140の、信頼性が高まり、強度が高まる。 In this alloying reaction, the size (or volume% or weight%) of the second metal region 170 is made larger than the size (or volume% or weight%) of the first metal region 160. Further, the size (or volume% or weight%) of the second metal region 170 is made larger than the size (or volume% or weight%) of the third metal region 180. As a result, the reliability of the via-hole conductor 140 increases and the strength increases.
 また第2金属領域170の中に、第1金属領域160と、第3金属領域180を、互いに接触することなく点在させることにより、ビアホール導体140の信頼性を高められる。 In addition, the reliability of the via-hole conductor 140 can be improved by interposing the first metal region 160 and the third metal region 180 in the second metal region 170 without being in contact with each other.
 また第2金属領域170は、金属間化合物CuSnと金属間化合物CuSnを含み、CuSn/CuSnの比を0.001以上、0.100以下とすることで、ビアホール導体140の信頼性を高められる。 The second metal region 170 includes an intermetallic compound Cu 6 Sn 5 and an intermetallic compound Cu 3 Sn, and a ratio of Cu 6 Sn 5 / Cu 3 Sn is set to 0.001 or more and 0.100 or less. The reliability of the via-hole conductor 140 can be improved.
 加圧条件は特に限定されないが、常温(20℃)からSn-Bi系半田粒子の融点未満の温度に金型温度を設定することが好ましい。また、本加圧工程において、熱硬化性接着層210の硬化を進行させるために、硬化を進行させるのに必要な温度に加熱した加熱プレスを用いてもよい。 Although the pressurizing conditions are not particularly limited, it is preferable to set the mold temperature from room temperature (20 ° C.) to a temperature below the melting point of the Sn—Bi solder particles. Moreover, in this pressurization process, in order to advance hardening of the thermosetting contact bonding layer 210, you may use the heating press heated to the temperature required in order to advance hardening.
 次に、金属箔150の表面にフォトレジスト膜を形成する。そして、フォトマスクを介してフォトレジスト膜を露光する。その後、現像、リンスを行い、フォトレジスト膜を金属箔150の表面に選択的に形成する。そして、フォトレジスト膜が覆われていない金属箔150をエッチングにより除去する。その後、フォトレジスト膜を除去する。このようにして、配線120a(第1の配線)、配線120b(第2の配線)が形成され、配線基板600が得られる。フォトレジスト膜の形成には、液状のレジストを用いてもドライフィルムを用いてもよい。 Next, a photoresist film is formed on the surface of the metal foil 150. Then, the photoresist film is exposed through a photomask. Thereafter, development and rinsing are performed, and a photoresist film is selectively formed on the surface of the metal foil 150. Then, the metal foil 150 not covered with the photoresist film is removed by etching. Thereafter, the photoresist film is removed. In this way, the wiring 120a (first wiring) and the wiring 120b (second wiring) are formed, and the wiring substrate 600 is obtained. For the formation of the photoresist film, a liquid resist or a dry film may be used.
 図4A~図4Cは、図3Cで作製した配線基板600を、更に多層化する方法を説明する断面図である。 4A to 4C are cross-sectional views illustrating a method for further multilayering the wiring board 600 manufactured in FIG. 3C.
 図4Aに示すように、突出部270を有する基板500(図2D参照)を、図3Cで作製した配線基板600の両側に配置する。そして金属箔150を介して、プレス金型(図示せず)に挟み込み、加圧及び加熱することで、図4Bに示すような積層体が得られる。その後、図4Cに示すように、金属箔150をパターニングし、上層の配線121aと下層の配線121bとし、多層配線基板111が構成される。 As shown in FIG. 4A, the substrate 500 (see FIG. 2D) having the protrusions 270 is disposed on both sides of the wiring substrate 600 manufactured in FIG. 3C. And a laminated body as shown to FIG. 4B is obtained by pinching | interposing into a press metal mold | die (not shown) through the metal foil 150, and pressurizing and heating. Thereafter, as shown in FIG. 4C, the metal foil 150 is patterned to form an upper layer wiring 121a and a lower layer wiring 121b, thereby forming the multilayer wiring substrate 111.
 以上の工程により、上層の配線121aと下層の配線121bとをビアホール導体140を介して接続した多層配線基板111が得られる。多層配線基板111をさらに多層化することにより、図1Aに示すような複数の配線が接続された多層配線基板110が得られる。 Through the above steps, the multilayer wiring board 111 in which the upper wiring 121a and the lower wiring 121b are connected via the via-hole conductor 140 is obtained. By further multilayering the multilayer wiring board 111, a multilayer wiring board 110 to which a plurality of wirings as shown in FIG. 1A are connected is obtained.
 次に、図5A、図5Bを参照しながら、ビアペースト260中に含まれる有機成分を、ビアペースト260から外に排出する様子を説明する。ビアペースト260中に含まれる有機成分の割合が低減することにより、金属成分の割合が増加する。その結果、合金化反応、更には金属間化合物の形成反応が短時間で完了する。 Next, the manner in which the organic components contained in the via paste 260 are discharged from the via paste 260 will be described with reference to FIGS. 5A and 5B. As the proportion of the organic component contained in the via paste 260 decreases, the proportion of the metal component increases. As a result, the alloying reaction and further the intermetallic compound formation reaction are completed in a short time.
 図5A、図5Bは、ビアペースト260が充填された未硬化基材230の貫通孔250周辺の圧縮前後の断面模式図である。図5Aは圧縮前、図5Bは圧縮後を示している。図5Aは、図3Aにおけるビアペースト260の拡大図に相当する。 FIGS. 5A and 5B are schematic cross-sectional views before and after compression around the through hole 250 of the uncured base material 230 filled with the via paste 260. FIG. 5A shows before compression, and FIG. 5B shows after compression. FIG. 5A corresponds to an enlarged view of the via paste 260 in FIG. 3A.
 銅粒子290の平均粒径は、0.1μm以上、20μm以下、さらには、1μm以上、10μm以下の範囲であることが好ましい。銅粒子290の平均粒径が小さすぎる場合には、銅粒子290のタップ密度(JIS X 2512)が小さくなるため、貫通孔250(図2B参照)の中に銅粒子290を有するビアペーストを高充填しにくくなり、また、高価である傾向がある。一方、銅粒子290の平均粒径が大きすぎる場合には、直径が100μm以下、更には80μm以下と直径の小さいビアホール導体140を形成しようとした場合に、充填しにくくなる傾向がある。 The average particle diameter of the copper particles 290 is preferably 0.1 μm or more and 20 μm or less, and more preferably 1 μm or more and 10 μm or less. When the average particle size of the copper particles 290 is too small, the tap density (JIS X 2512) of the copper particles 290 is reduced, so that the via paste having the copper particles 290 in the through holes 250 (see FIG. 2B) is high. It tends to be difficult to fill and expensive. On the other hand, when the average particle diameter of the copper particles 290 is too large, when the via-hole conductor 140 having a diameter as small as 100 μm or less, more preferably 80 μm or less is to be formed, it tends to be difficult to fill.
 銅粒子290の粒子形状は、例えば、球状、扁平状、多角状、鱗片状、フレーク状、あるいは表面に突起を有するような形状等が用いられるが、粒子形状は、これらに限定されない。また、一次粒子でもよいし、二次粒子を形成していてもよい。 As the particle shape of the copper particles 290, for example, a spherical shape, a flat shape, a polygonal shape, a scale shape, a flake shape, or a shape having protrusions on the surface is used, but the particle shape is not limited thereto. Moreover, a primary particle may be sufficient and the secondary particle may be formed.
 Sn-Bi系の半田粒子300とは、SnとBiとを含有する半田粒子300を意味する。 The Sn-Bi solder particles 300 mean solder particles 300 containing Sn and Bi.
 また、半田粒子300に、インジウム(In)、銀(Ag)、亜鉛(Zn)等を添加することにより、濡れ性、流動性等を改善してもよい。Sn-Bi系の半田粒子300中のBiの含有割合としては、10%以上、58%以下、さらには20%以上、58%以下であることが好ましい。また、融点(共晶点)は、75℃以上、160℃以下、さらには135℃以上、150℃以下であることが好ましい。なお、Sn-Bi系の半田粒子300としては、組成の異なる種類の粒子を2種以上組み合わせて用いてもよい。これらの中では、共晶点が138℃と低い、鉛フリー半田である、Sn-58Bi系の半田粒子300が環境面から特に好ましい。 Further, by adding indium (In), silver (Ag), zinc (Zn) or the like to the solder particles 300, wettability, fluidity, and the like may be improved. The Bi content in the Sn—Bi solder particles 300 is preferably 10% or more and 58% or less, more preferably 20% or more and 58% or less. The melting point (eutectic point) is preferably 75 ° C. or higher and 160 ° C. or lower, more preferably 135 ° C. or higher and 150 ° C. or lower. As the Sn—Bi solder particles 300, two or more types of particles having different compositions may be used in combination. Among these, Sn-58Bi solder particles 300, which are lead-free solder having a low eutectic point of 138 ° C., are particularly preferable from the viewpoint of the environment.
 Sn-Bi系の半田粒子300の平均粒径は0.1μm以上、20μm以下、さらには、2μm以上、15μm以下であることが好ましい。Sn-Bi系半田粒子の平均粒径が小さすぎる場合には、比表面積が大きくなり表面の酸化皮膜の割合が大きくなるため溶融しにくくなる。一方、Sn-Bi系半田粒子の平均粒径が大きすぎる場合には、貫通孔250ヘのビアペースト260が充填性しにくくなる。 The average particle size of the Sn—Bi solder particles 300 is preferably 0.1 μm or more and 20 μm or less, more preferably 2 μm or more and 15 μm or less. When the average particle size of the Sn—Bi solder particles is too small, the specific surface area becomes large and the ratio of the oxide film on the surface becomes large, so that it becomes difficult to melt. On the other hand, when the average particle size of the Sn—Bi solder particles is too large, the via paste 260 to the through hole 250 is difficult to fill.
 熱硬化性樹脂成分310としては、例えば、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、またはその他変性エポキシ樹脂などが用いられる。 As the thermosetting resin component 310, for example, glycidyl ether type epoxy resin, alicyclic epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, or other modified epoxy resins are used.
 また、熱硬化性樹脂成分310に硬化剤が含まれていてもよい。硬化剤の種類は特に限定されないが、分子中に少なくとも1つ以上の水酸基を持つアミン化合物を含有する硬化剤を用いることが好ましい。このような硬化剤は、エポキシ樹脂の硬化触媒として作用するとともに、銅粒子、及びSn-Bi系の半田粒子300の表面に存在する酸化皮膜を還元することにより、接合時の接触抵抗を低減させる。特にSn-Bi系半田粒子の融点よりも高い沸点を有するアミン化合物は、接合時の接触抵抗を低減させるので好ましい。 Moreover, the thermosetting resin component 310 may contain a curing agent. Although the kind of hardening | curing agent is not specifically limited, It is preferable to use the hardening | curing agent containing the amine compound which has at least 1 or more hydroxyl group in a molecule | numerator. Such a curing agent acts as a curing catalyst for the epoxy resin and reduces the contact resistance at the time of bonding by reducing the copper film and the oxide film present on the surface of the Sn—Bi solder particles 300. . In particular, an amine compound having a boiling point higher than the melting point of the Sn—Bi solder particles is preferable because the contact resistance during bonding is reduced.
 このようなアミン化合物としては、例えば、2-メチルアミノエタノール、N、N-ジエチルエタノールアミン、N、N-ジブチルエタノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルエタノールアミン、N-ブチルエタノールアミン、ジイソプロパノールアミン、N、N-ジエチルイソプロパノールアミン、2、2’-ジメチルアミノエタノール、トリエタノールアミン等がある。 Examples of such amine compounds include 2-methylaminoethanol, N, N-diethylethanolamine, N, N-dibutylethanolamine, N-methylethanolamine, N-methyldiethanolamine, N-ethylethanolamine, N -Butylethanolamine, diisopropanolamine, N, N-diethylisopropanolamine, 2,2'-dimethylaminoethanol, triethanolamine and the like.
 ビアペースト260は、銅粒子290と、SnとBiとを含有するSn-Bi系半田粒子300と、エポキシ樹脂等の熱硬化性樹脂成分310とを混合することにより得られる。具体的には、例えば、エポキシ樹脂と硬化剤と所定量の有機溶媒を含有する樹脂ワニスに、銅粒子及びSn-Bi系半田粒子を添加し、プラネタリーミキサー等で混合することにより得られる。 Via paste 260 is obtained by mixing copper particles 290, Sn—Bi solder particles 300 containing Sn and Bi, and a thermosetting resin component 310 such as an epoxy resin. Specifically, for example, it is obtained by adding copper particles and Sn—Bi solder particles to a resin varnish containing an epoxy resin, a curing agent and a predetermined amount of an organic solvent, and mixing them with a planetary mixer or the like.
 熱硬化性樹脂成分310のビアペースト260中の割合としては、0.3質量%以上、30質量%以下、さらには3質量%以上、20質量%以下の範囲であることが低い抵抗値を得るとともに、充分な加工性を確保する点から好ましい。 The ratio of the thermosetting resin component 310 in the via paste 260 is 0.3% by mass or more and 30% by mass or less, and more preferably 3% by mass or more and 20% by mass or less in order to obtain a low resistance value. In addition, it is preferable from the viewpoint of securing sufficient workability.
 また、ビアペースト260中の銅粒子290とSn-Bi系の半田粒子300との配合割合としては、ペースト中のCu、Sn及びBiの重量比を、後述する図10に示すような三角図において、A、B、C、Dを頂点とする四角形で囲まれるような領域の範囲になるように含有させることが好ましい。例えば、Sn-Bi系の半田粒子300としてSn-58Bi系の半田粒子300を用いた場合には、銅粒子290及びSn-58Bi系の半田粒子300の合計量に対する銅粒子290の含有割合は、22質量%以上、80質量%以下、さらには、40質量%以上、80質量%以下であることが好ましい。 In addition, as a mixing ratio of the copper particles 290 in the via paste 260 and the Sn—Bi solder particles 300, the weight ratio of Cu, Sn, and Bi in the paste is shown in a triangular diagram as shown in FIG. , A, B, C, and D are preferably included so as to be in a region surrounded by a quadrangle having apexes. For example, when the Sn-58Bi solder particles 300 are used as the Sn-Bi solder particles 300, the content ratio of the copper particles 290 with respect to the total amount of the copper particles 290 and the Sn-58Bi solder particles 300 is: It is preferable that they are 22 mass% or more and 80 mass% or less, Furthermore, they are 40 mass% or more and 80 mass% or less.
 図5Aに示すように、未硬化基材230に形成された貫通孔250から突出した突出部270を、金属箔150を介して矢印280aのように押圧する。すると、図5Bに示すように、貫通孔250(図2B参照)に充填されたビアペースト260が圧縮される。なお、このときビアペースト260の中の熱硬化性樹脂成分310のかなりの部分が、矢印280bに示すように貫通孔250から外に押し出される。その後、加熱により銅粒子290及びSn-Bi系の半田粒子300は合金化され、合金化後の金属部分は、ビアホール導体中において、74vol%以上、80vol%以上、更には90vol%以上になる。 As shown in FIG. 5A, the protruding portion 270 protruding from the through hole 250 formed in the uncured base material 230 is pressed through the metal foil 150 as indicated by an arrow 280a. Then, as shown in FIG. 5B, the via paste 260 filled in the through hole 250 (see FIG. 2B) is compressed. At this time, a considerable portion of the thermosetting resin component 310 in the via paste 260 is pushed out of the through hole 250 as indicated by an arrow 280b. Thereafter, the copper particles 290 and the Sn—Bi solder particles 300 are alloyed by heating, and the metal portion after alloying becomes 74 vol% or more, 80 vol% or more, and further 90 vol% or more in the via-hole conductor.
 ビアペースト260を充填し、加圧、加熱する際に、貫通孔250(図2B参照)が、ビアペースト260からの圧力に負けて広がったり、変形したりしにくいように、非圧縮性部材220を用いている。 When the via paste 260 is filled, pressurized, and heated, the incompressible member 220 is formed so that the through hole 250 (see FIG. 2B) is less likely to spread or deform under pressure from the via paste 260. Is used.
 次に図6~図8を用いて、ビアペースト260中の有機成分を減らすメカニズムについて説明する。 Next, a mechanism for reducing organic components in the via paste 260 will be described with reference to FIGS.
 図6は、電気絶縁性基材として、圧縮性を有する部材を用いた場合のビアペーストの状態を示す模式図である。圧縮性部材340としては、例えば、ガラス繊維やアラミド繊維等を芯材320とし、芯材320にエポキシ樹脂等からなる半硬化樹脂330を含浸させたプリプレグが用いられる。プリプレグは、芯材の繊維間、あるいは芯材と半硬化樹脂との隙間、あるいは半硬化樹脂中に含まれる空隙等(例えば、空気の泡等)の存在によって、圧縮性が発現する。すなわち、プリプレグの硬化物は、非圧縮性であるが、プリプレグは、圧縮性を有している。これはプリプレグを加熱圧縮する際、半硬化状態の樹脂が軟化し、芯材の繊維間、芯材と樹脂との隙間、あるいは樹脂中に含まれる空隙(例えば、空気の泡等)を埋めるからである。 FIG. 6 is a schematic diagram showing the state of via paste when a member having compressibility is used as the electrically insulating substrate. As the compressible member 340, for example, a prepreg in which glass fiber, aramid fiber, or the like is used as the core material 320 and the core material 320 is impregnated with a semi-cured resin 330 made of epoxy resin or the like is used. The prepreg exhibits compressibility due to the presence of a gap between the fibers of the core material, a gap between the core material and the semi-cured resin, or voids (for example, air bubbles) contained in the semi-cured resin. That is, the cured product of prepreg is incompressible, but prepreg has compressibility. This is because when the prepreg is heated and compressed, the resin in a semi-cured state softens and fills the gaps between the fibers of the core material, the core material and the resin, or the voids contained in the resin (for example, air bubbles). It is.
 圧縮性部材340は、内部に気泡(あるいはボイド)等を有するために、加圧したときに、その厚みが10%~30%程度圧縮される。 Since the compressible member 340 has bubbles (or voids) or the like inside, when compressed, its thickness is compressed by about 10% to 30%.
 圧縮性部材340にビアとなる貫通孔を形成し、ビアペーストを充填し、突出部を設けた後、加圧すると、加圧後の貫通孔の直径(あるいは断面積)は、加圧前に比べて10%~20%程度大きくなる。 When a compressive member 340 is formed with a through-hole serving as a via, filled with via paste, provided with a protrusion, and then pressurized, the diameter (or cross-sectional area) of the pressurized through-hole is Compared to 10% to 20%.
 これは貫通孔の形成時に、ガラス繊維の一部が切断されるためである。すなわち、織布あるいは不織布を芯材とするプリプレグを用いた場合、充分な加圧、圧縮が行えない場合がある。 This is because part of the glass fiber is cut when the through hole is formed. That is, when a prepreg having a woven fabric or a nonwoven fabric as a core material is used, there are cases where sufficient pressure and compression cannot be performed.
 図6において、矢印280cは、ビアペースト260が矢印280aのように加圧圧縮されることで、貫通孔250の直径が増加する(あるいは貫通孔250の直径が広がる、あるいは変形する)様子を示している。 In FIG. 6, an arrow 280c indicates a state in which the diameter of the through hole 250 is increased (or the diameter of the through hole 250 is expanded or deformed) when the via paste 260 is compressed and compressed as indicated by an arrow 280a. ing.
 図6に示すような圧縮性部材340を用いた場合、図6の矢印280aに示すような圧力がビアペースト260に加えられ、矢印280cに示す圧力により貫通孔250(図2B参照)の直径が、ビアペースト260の突出部270の体積相当分だけ大きく広がってしまう。そのため、矢印280aで示す圧力を増加しても、ビアペースト260を加圧圧縮することが難しくなる。その結果、ビアペースト260中の熱硬化性樹脂成分310を、未硬化基材230(図5A参照)中に、移動させることが難しくなる。そのため、ビアペースト260中の熱硬化性樹脂成分310の体積分率の割合は、矢印280aによる加圧前と、加圧後では、殆ど変化しない。 When the compressible member 340 as shown in FIG. 6 is used, a pressure as shown by an arrow 280a in FIG. 6 is applied to the via paste 260, and the diameter of the through hole 250 (see FIG. 2B) is increased by the pressure shown by the arrow 280c. The via paste 260 expands by a volume corresponding to the volume of the protruding portion 270. Therefore, even if the pressure indicated by the arrow 280a is increased, it is difficult to compress and compress the via paste 260. As a result, it becomes difficult to move the thermosetting resin component 310 in the via paste 260 into the uncured substrate 230 (see FIG. 5A). Therefore, the ratio of the volume fraction of the thermosetting resin component 310 in the via paste 260 hardly changes before and after pressurization with the arrow 280a.
 なお、球体を容器に不規則に入れた場合の体積分率は、『ランダム細密充填』として、最大で約64%であることが知られている(例えば、Nature 435、7195 (May 2008)、Song氏他)。 It is known that the volume fraction when the sphere is irregularly placed in the container is about 64% at maximum as “random fine packing” (for example, Nature 435, 7195 (May 2008), Song et al.).
 このように、電気絶縁性基材に、圧縮性部材340を用いた場合、ビアペースト260中に含まれる、銅粒子290や半田粒子300の充填密度(更には体積分率)を高めようとしても、ランダム細密充填の点から、体積分率を高くすることが難しい。そのため、銅粒子290や半田粒子300が、互いに変形して面接触する程度に、突出部270を加圧圧縮しても、複数の銅粒子290や複数の半田粒子300の隙間に残った熱硬化性樹脂成分310を、ビアペースト260の外に追い出すことは難しい。 As described above, when the compressible member 340 is used as the electrically insulating base material, the filling density (and the volume fraction) of the copper particles 290 and the solder particles 300 contained in the via paste 260 is increased. From the viewpoint of random fine packing, it is difficult to increase the volume fraction. Therefore, even if the protrusions 270 are pressurized and compressed to such an extent that the copper particles 290 and the solder particles 300 are deformed and brought into surface contact with each other, the thermosetting remaining in the gaps between the plurality of copper particles 290 and the plurality of solder particles 300 It is difficult to drive the conductive resin component 310 out of the via paste 260.
 その結果、図14~図16Bで示すような状態になり、圧力を増加させても、ビアホール導体140中における金属部分190の体積分率を、70vol%より高くすることは困難である。 As a result, the state shown in FIGS. 14 to 16B is obtained, and even if the pressure is increased, it is difficult to make the volume fraction of the metal portion 190 in the via-hole conductor 140 higher than 70 vol%.
 以上のように、圧縮性部材340は、ビアペースト260からの圧力により、貫通孔250の直径が広がったり、あるいは変形したりする。そのため、高い圧力をかけても、ビアペースト260が十分圧縮されない場合がある。 As described above, in the compressible member 340, the diameter of the through hole 250 is expanded or deformed by the pressure from the via paste 260. Therefore, the via paste 260 may not be sufficiently compressed even when a high pressure is applied.
 一方、非圧縮性部材(例えばフィルム基材)を用いた場合、熱硬化性接着層非圧縮性部材にビアとなる貫通孔を形成し、ビアペーストを充填し、突出部を設けた後加圧しても、加圧後の貫通孔の直径(あるいは断面積)は、加圧前に比べてほとんど変化しない。あるいはその変化量は3%未満に抑制される。そして、ビアペーストの充填前後で貫通孔の直径や断面積が変化しない分、特殊な設備を用いずとも、ビアペーストを充分に加圧圧縮できる。これは非圧縮性部材の場合、非圧縮性部材の一部を貫通孔が切断しても、非圧縮性部材が解けたり、広がることが殆どないためである。 On the other hand, when an incompressible member (for example, a film base material) is used, a through hole to be a via is formed in the thermosetting adhesive layer incompressible member, a via paste is filled, a protrusion is provided, and then pressurization is performed. However, the diameter (or cross-sectional area) of the through hole after pressurization hardly changes compared with that before pressurization. Alternatively, the amount of change is suppressed to less than 3%. And since the diameter and cross-sectional area of the through hole do not change before and after filling the via paste, the via paste can be sufficiently compressed without using special equipment. This is because in the case of an incompressible member, even if the through hole cuts a part of the incompressible member, the incompressible member is hardly unwound or spreads.
 ただし、ポリイミドフィルムのような耐熱フィルムを用いた場合でも、その厚みが70μmと厚い場合は、突出部270を利用して高い圧力をかけても、ビアペースト260が十分に圧縮されない場合がある。 However, even when a heat-resistant film such as a polyimide film is used, if the thickness is as thick as 70 μm, the via paste 260 may not be sufficiently compressed even when a high pressure is applied using the protrusions 270.
 図7、図8は、非圧縮性部材を用いた場合のビアペーストの状態を示す模式図である。 7 and 8 are schematic views showing the state of the via paste when an incompressible member is used.
 未硬化基材230に、耐熱フィルムなどの非圧縮性部材220を用いることで、ビアペースト260中の熱硬化性樹脂成分310の流動成分(例えば、有機成分等の絶縁成分)を、ビアホール導体140の外に追い出すことができる。その結果、ビアペースト260中の熱硬化性樹脂成分310の体積分率を低減できる。 By using an incompressible member 220 such as a heat-resistant film as the uncured base material 230, the flow component of the thermosetting resin component 310 in the via paste 260 (for example, an insulating component such as an organic component) is transferred to the via-hole conductor 140. Can be kicked out of. As a result, the volume fraction of the thermosetting resin component 310 in the via paste 260 can be reduced.
 図7、図8に示すように、矢印280aに示すような圧力が、ビアペースト260に加えられた場合であっても、貫通孔250(図2B参照)の直径が、殆ど広がらない。その結果、矢印280aで示す圧力を増加すればするほど、ビアペースト260中に含まれる、銅粒子290と半田粒子300とが互いに変形しながらより広い面積で互いに面接触するようになる。そのため、ビアホール導体140中における金属部分190の体積分率を、70vol%より高く、更には80vol%以上、90vol%以上にできる。 As shown in FIGS. 7 and 8, the diameter of the through hole 250 (see FIG. 2B) hardly expands even when a pressure as indicated by an arrow 280 a is applied to the via paste 260. As a result, as the pressure indicated by the arrow 280a increases, the copper particles 290 and the solder particles 300 contained in the via paste 260 come into surface contact with each other over a wider area while deforming each other. Therefore, the volume fraction of the metal part 190 in the via-hole conductor 140 can be higher than 70 vol%, more preferably 80 vol% or higher and 90 vol% or higher.
 なお銅粒子290と半田粒子300とを、互いに変形しながらより広い面積で互いに面接触させるため、銅粒子290と、半田粒子300との硬度を異ならせるのが好ましい。例えば、銅粒子290の硬度に比べ、半田粒子300の硬度を低くすることで、互いの粉体同士のすべり(あるいはスリップ)を低減できる。その結果、図7、図8に示す加圧圧縮時に、半田粒子300が複数の銅粒子290に挟まれた状態を保ったまま変形することになり、ビアペースト260の中の流動成分(例えば、有機成分等の絶縁成分)を、ビアホール導体140の外に追い出せる。その結果、ビアペースト260中の熱硬化性樹脂成分310の体積分率を更に低減できる。 Note that it is preferable that the hardness of the copper particles 290 and the solder particles 300 be different in order to bring the copper particles 290 and the solder particles 300 into surface contact with each other over a wider area while deforming each other. For example, by reducing the hardness of the solder particles 300 as compared with the hardness of the copper particles 290, the slip (or slip) between the powders can be reduced. As a result, during the pressure compression shown in FIGS. 7 and 8, the solder particles 300 are deformed while maintaining a state of being sandwiched between the plurality of copper particles 290, and the flow components (for example, Insulating components such as organic components) can be driven out of the via-hole conductor 140. As a result, the volume fraction of the thermosetting resin component 310 in the via paste 260 can be further reduced.
 上述した図7に示すように、金属箔150の外から、矢印280aに示すように、ビアペースト260を加圧圧縮すると、ビアペースト260中の流動成分、すなわち熱硬化性樹脂成分310が、非圧縮性部材220の表面に設けられた熱硬化性接着層210に流れ出す。その結果、図8に示すように、ビアペースト260中の銅粒子290や半田粒子300の充填率が高くなる。なお図7、図8では、銅粒子290や半田粒子300が互いに圧縮され、変形し、面接触した様子は図示していない。また、金属箔150に形成された、ビアペースト260による突出部270も図示していない。 As shown in FIG. 7 described above, when the via paste 260 is pressurized and compressed from the outside of the metal foil 150 as indicated by an arrow 280a, the fluid component in the via paste 260, that is, the thermosetting resin component 310 is not It flows out to the thermosetting adhesive layer 210 provided on the surface of the compressible member 220. As a result, as shown in FIG. 8, the filling rate of the copper particles 290 and the solder particles 300 in the via paste 260 is increased. 7 and 8, the state in which the copper particles 290 and the solder particles 300 are compressed, deformed, and brought into surface contact with each other is not shown. Further, the protruding portion 270 formed by the via paste 260 formed on the metal foil 150 is not shown.
 図8は、ビアペースト260中の熱硬化性樹脂成分310による圧力(矢印280c)が、熱硬化性接着層210からの圧力(矢印280d)を上回り、熱硬化性樹脂成分310が貫通孔250の外に流れ出す様子を示す。非圧縮性部材220を用いることにより、ビアペースト260中の熱硬化性樹脂成分310を、ビアペースト260の外に排出することができ、ビアペースト260中の熱硬化性樹脂成分310の体積分率を大幅に低減することができる。そしてビアペースト260中に含まれる熱硬化性樹脂成分310が少なくなった分だけ、ビアペースト260中の銅粒子290や半田粒子300等の金属成分の体積分率が増加する。その結果、ビアホール導体140(図1B、図9B参照)中における金属部分190の体積分率を74vol%以上に高められる。 In FIG. 8, the pressure (arrow 280 c) due to the thermosetting resin component 310 in the via paste 260 exceeds the pressure (arrow 280 d) from the thermosetting adhesive layer 210, and the thermosetting resin component 310 is in the through hole 250. It shows how it flows out. By using the incompressible member 220, the thermosetting resin component 310 in the via paste 260 can be discharged out of the via paste 260, and the volume fraction of the thermosetting resin component 310 in the via paste 260. Can be greatly reduced. The volume fraction of metal components such as copper particles 290 and solder particles 300 in the via paste 260 is increased by the amount of the thermosetting resin component 310 contained in the via paste 260. As a result, the volume fraction of the metal portion 190 in the via-hole conductor 140 (see FIGS. 1B and 9B) can be increased to 74 vol% or more.
 すなわち、非圧縮性基材を未硬化基材230に使用することで、圧縮の前後で貫通孔250の直径が殆ど変わらないため、ビアペースト260の突出に応じて、ビアペースト260を高圧縮できる。 That is, by using an incompressible base material for the uncured base material 230, the diameter of the through hole 250 is hardly changed before and after the compression, so that the via paste 260 can be highly compressed according to the protrusion of the via paste 260. .
 なお、加圧前後における貫通孔の直径(あるいは断面積)の差は3%未満、更には2%未満であることが好ましい。 Note that the difference in diameter (or cross-sectional area) of the through-holes before and after pressurization is preferably less than 3%, and more preferably less than 2%.
 このように本実施の形態では、銅粒子290や半田粒子300からなる合金化後の金属部分190の体積分率を、74.0vol%以上、99.5vol%以下にできる。また複数の配線同士を電気的に接続するビアホール導体140中において、金属部分190を除く部分である、樹脂部分200の体積分率を、0.5vol%以上26.0vol%以下まで減らすことができる。なおここで樹脂部分200とは、ビアホール導体140の中に含まれる樹脂部分であれば良く、ビアペースト260中に含まれる熱硬化性樹脂成分310でなくても構わない。また、ビアペースト260中の熱硬化性樹脂成分310と、熱硬化性接着層210とが、互いに相溶し、あるいは溶け合っていても良い。 Thus, in the present embodiment, the volume fraction of the metal part 190 after alloying composed of the copper particles 290 and the solder particles 300 can be set to 74.0 vol% or more and 99.5 vol% or less. Further, in the via-hole conductor 140 that electrically connects a plurality of wirings, the volume fraction of the resin part 200, which is a part excluding the metal part 190, can be reduced to 0.5 vol% or more and 26.0 vol% or less. . Here, the resin portion 200 may be a resin portion included in the via-hole conductor 140, and may not be the thermosetting resin component 310 included in the via paste 260. Further, the thermosetting resin component 310 and the thermosetting adhesive layer 210 in the via paste 260 may be compatible with each other or may be melted together.
 このように、ビアペースト260を、非圧縮性部材220と熱硬化性接着層210に形成した貫通孔250に充填し、加圧することで、ビアペースト中の熱硬化性樹脂成分310の含有率(あるいは体積分率)を更に低減できる。そのため、ビアペースト260中の銅粒子290や半田粒子300等の充填率(あるいは体積分率)を増加することができる。その結果、銅粒子290と、半田粒子300との接触面積が増加し、合金化反応が促進され、ビアホール導体140中の金属部分の割合を多くできる。 In this way, the via paste 260 is filled in the through-holes 250 formed in the incompressible member 220 and the thermosetting adhesive layer 210 and is pressurized, whereby the content of the thermosetting resin component 310 in the via paste ( Alternatively, the volume fraction) can be further reduced. Therefore, the filling rate (or volume fraction) of copper particles 290, solder particles 300, etc. in via paste 260 can be increased. As a result, the contact area between the copper particles 290 and the solder particles 300 increases, the alloying reaction is promoted, and the proportion of the metal portion in the via-hole conductor 140 can be increased.
 次に、熱硬化性樹脂成分310の体積分率を少なくすることにより、銅粒子と半田粒子との合金化反応が、促進する様子を説明する。 Next, how the alloying reaction between copper particles and solder particles is promoted by reducing the volume fraction of the thermosetting resin component 310 will be described.
 図9Aは、合金化反応前のビアペーストの状態を示す模式図である。図9Bは、合金化反応後のビアホール導体の状態を示す模式図である。 FIG. 9A is a schematic diagram showing the state of the via paste before the alloying reaction. FIG. 9B is a schematic diagram showing a state of the via-hole conductor after the alloying reaction.
 図9Aにおいて、銅粒子290と、半田粒子300とは、矢印280に示すように互いに圧縮され高密度に詰まっている。このとき銅粒子290と半田粒子300とが、互いに変形し面接触していることが望ましい。銅粒子290と半田粒子300が接触している面積が広いほど、銅粒子290と半田粒子300との合金化反応(更には金属間化合物の形成反応)が、短時間に、かつ均一に進行する。 9A, the copper particles 290 and the solder particles 300 are compressed with each other and packed with high density as indicated by an arrow 280. At this time, it is desirable that the copper particles 290 and the solder particles 300 are deformed and in surface contact with each other. As the area where the copper particles 290 and the solder particles 300 are in contact with each other is wider, the alloying reaction between the copper particles 290 and the solder particles 300 (and the intermetallic compound formation reaction) proceeds more uniformly in a shorter time. .
 なお、ビアペースト260中に含まれる熱硬化性樹脂成分310の体積分率は、0.5vol%以上、26vol%以下(更には20vol%以下、更には10vol%以下)となっている。 In addition, the volume fraction of the thermosetting resin component 310 contained in the via paste 260 is 0.5 vol% or more and 26 vol% or less (further 20 vol% or less, and further 10 vol% or less).
 図9Aに示すように、金属箔150を未硬化基材230に圧着し、金属箔150を介してビアペースト260の突出部270に所定圧力を加えることにより、ビアペースト260を加圧し圧縮する。こうすることで銅粒子290同士や、銅粒子290と半田粒子300同士を互いに面接触でき、合金化反応が促進される。 As shown in FIG. 9A, the metal paste 150 is pressure-bonded to the uncured base material 230, and a predetermined pressure is applied to the protruding portion 270 of the via paste 260 through the metal foil 150, whereby the via paste 260 is pressurized and compressed. By doing so, the copper particles 290 or the copper particles 290 and the solder particles 300 can be in surface contact with each other, and the alloying reaction is promoted.
 図9Aのビアペースト260の上下面には突出部270が形成されている。また、図9Bのビアホール導体140の上下面は突出部が存在せず、平坦になっている。このように、合金化反応後、ビアペースト260の上下面が平坦になることが望ましい。従来、非圧縮性の部材を用いると、合金化反応後もビアホール導体の突出部が残る場合があり、部品が実装しにくくなる。しかし、本実施の形態のように、合金化反応を極めて速く進行させることで、ビアホール導体140中の金属部分190の体積分率を、74.0vol%以上とするとともに、ビアホール導体を平坦にできる。また、ビアホール導体140中の樹脂部分200の体積分率を、26.0vol%以下にできる。なお、突出部270の高さ(図2Dのh)は、2μm以上、更には5μm以上、あるいは金属箔150の厚みの0.5倍以上が望ましい。突出部270の大きさが、2μmより小さい場合、あるいは金属箔150の厚みの0.5倍より小さい場合、電気絶縁性基材130に非圧縮性の部材を用いた場合であっても、銅粒子290や半田粒子300等の、ビアペースト260中の体積分率を74vol%以上にできない場合がある。 Projections 270 are formed on the upper and lower surfaces of the via paste 260 in FIG. 9A. Further, the upper and lower surfaces of the via-hole conductor 140 in FIG. 9B are flat with no protrusions. Thus, it is desirable that the upper and lower surfaces of the via paste 260 become flat after the alloying reaction. Conventionally, when an incompressible member is used, the protruding portion of the via-hole conductor may remain even after the alloying reaction, making it difficult to mount the component. However, by making the alloying reaction proceed very fast as in the present embodiment, the volume fraction of the metal portion 190 in the via-hole conductor 140 can be made 74.0 vol% or more and the via-hole conductor can be made flat. . Further, the volume fraction of the resin portion 200 in the via-hole conductor 140 can be set to 26.0 vol% or less. The height of the protrusion 270 (h in FIG. 2D) is desirably 2 μm or more, more preferably 5 μm or more, or 0.5 times or more of the thickness of the metal foil 150. When the size of the protrusion 270 is smaller than 2 μm, or smaller than 0.5 times the thickness of the metal foil 150, copper is used even when an incompressible member is used for the electrically insulating base material 130. The volume fraction in the via paste 260 such as the particles 290 and the solder particles 300 may not be 74 vol% or more.
 なお銅粒子290と半田粒子300の粒径を互いに異ならせても良く、異なる粒径の銅粒子290を混合しても良い。しかし、このような場合、粉の比表面積が増加し、ビアペースト260の粘度が高くなる。その結果、ビアペースト260中の、銅粒子290と半田粒子300との合計の体積分率を高くできたとしても、ビアペースト260の粘度が上昇し、貫通孔250への充填性に影響を与える場合がある。よって銅粒子290と半田粒子300の粒径は同じ程度である方が好ましい。 Note that the particle diameters of the copper particles 290 and the solder particles 300 may be different from each other, or the copper particles 290 having different particle diameters may be mixed. However, in such a case, the specific surface area of the powder is increased and the viscosity of the via paste 260 is increased. As a result, even if the total volume fraction of the copper particles 290 and the solder particles 300 in the via paste 260 can be increased, the viscosity of the via paste 260 increases and affects the filling property to the through holes 250. There is a case. Therefore, it is preferable that the copper particles 290 and the solder particles 300 have the same particle size.
 なお銅粒子290と、半田粒子300とを互いに変形させ面接触させるには、銅粒子290同士、あるいは半田粒子300と銅粒子290とが互いに塑性変形するまで、加圧圧縮することが望ましい。 In order to deform and bring the copper particles 290 and the solder particles 300 into surface contact with each other, it is desirable to compress and compress the copper particles 290 or until the solder particles 300 and the copper particles 290 are plastically deformed.
 図9A、図9Bの矢印280に示すように、圧着状態を維持した状態で、所定の温度で加熱し、Sn-Bi系の半田粒子300の一部を溶融させるのが好ましい。加圧工程において、加熱することで、加圧工程や加熱工程のトータル時間を短縮することができ、生産性が高まる。 As shown by arrows 280 in FIGS. 9A and 9B, it is preferable that a part of the Sn—Bi solder particles 300 is melted by heating at a predetermined temperature while maintaining the crimped state. By heating in the pressurizing process, the total time of the pressurizing process and the heating process can be shortened, and productivity is increased.
 図9Bは、互いに変形し面接触している銅粒子290と、半田粒子300とが、合金化反応(更には金属間化合物の形成反応)した後の状態を示している。ビアホール導体140は金属部分190と、樹脂部分200とを有している。金属部分190は、銅を主体とする第1金属領域160と、錫-銅合金を主体とする第2金属領域170と、ビスマスを主成分とする第3金属領域180とを有している。金属部分190と、樹脂部分200とが、ビアホール導体140を構成している。 FIG. 9B shows a state after the copper particles 290 deformed and in surface contact with each other and the solder particles 300 undergo an alloying reaction (and further an intermetallic compound formation reaction). The via-hole conductor 140 has a metal portion 190 and a resin portion 200. The metal portion 190 has a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of a tin-copper alloy, and a third metal region 180 mainly composed of bismuth. The metal part 190 and the resin part 200 constitute a via-hole conductor 140.
 このようにして、図9Bに示すように、ビアホール導体140が形成される。樹脂部分200は、エポキシ樹脂を含む硬化済樹脂である。そして第2金属領域170は、第1金属領域160より、断面積やその体積分率、あるいは重量分率が大きい。さらに第2金属領域170は、第3金属領域180より、断面積やその体積分率、あるいは重量分率が大きい。 In this way, the via-hole conductor 140 is formed as shown in FIG. 9B. The resin portion 200 is a cured resin including an epoxy resin. Second metal region 170 has a larger cross-sectional area, volume fraction, or weight fraction than first metal region 160. Furthermore, the second metal region 170 has a larger cross-sectional area, volume fraction, or weight fraction than the third metal region 180.
 また複数の配線120を形成する金属箔150同士が、第2金属領域170を介して電気的に接続されている。そして第2金属領域170の中に、第1金属領域160と、第3金属領域180が、互いに接触することなく点在することで、ビアホール導体140の信頼性が高まる。更に第2金属領域170は、金属間化合物CuSnと金属間化合物CuSnを含み、CuSn/CuSnの比を0.001以上、0.100以下とすることで、ビアホール導体140の信頼性が高まる。 In addition, the metal foils 150 forming the plurality of wirings 120 are electrically connected via the second metal region 170. The first metal region 160 and the third metal region 180 are scattered in the second metal region 170 without being in contact with each other, so that the reliability of the via-hole conductor 140 is increased. Furthermore, the second metal region 170 includes an intermetallic compound Cu 6 Sn 5 and an intermetallic compound Cu 3 Sn, and a ratio of Cu 6 Sn 5 / Cu 3 Sn is set to 0.001 or more and 0.100 or less. The reliability of the via-hole conductor 140 is increased.
 また合金化反応を起こしている間も、矢印280で示す加圧圧縮を続けることで、合金化後の金属箔150における突出部270の高さを低くすることができる。合金化反応前の突出部270の高さを、合金化反応後に低くすることで、ビアホール導体140に占める樹脂部分200の体積分率を低減でき、多層配線基板110の厚みのバラツキを低減できる。また多層配線基板110の平面性や平滑性を向上できるため、半導体チップ等のベアチップ実装性が高まる。 Also, while the alloying reaction is taking place, the height of the protruding portion 270 of the metal foil 150 after alloying can be lowered by continuing the pressure compression indicated by the arrow 280. By reducing the height of the protruding portion 270 before the alloying reaction after the alloying reaction, the volume fraction of the resin portion 200 occupying the via-hole conductor 140 can be reduced, and the variation in the thickness of the multilayer wiring board 110 can be reduced. Moreover, since the planarity and smoothness of the multilayer wiring board 110 can be improved, the mounting property of a bare chip such as a semiconductor chip is improved.
 なお、銅粒子290と半田粒子300とが反応して形成されたビアホール導体140において、第2金属領域170は、金属間化合物CuSnと金属間化合物CuSnを含む。ここで、CuSn/CuSnの比を0.001以上、0.100以下に抑えることで、例えば、カーケンダイルボイド等のボイド5a(図14参照)の発生を抑制できる。 In the via-hole conductor 140 formed by the reaction between the copper particles 290 and the solder particles 300, the second metal region 170 includes the intermetallic compound Cu 6 Sn 5 and the intermetallic compound Cu 3 Sn. Here, by suppressing the ratio of Cu 6 Sn 5 / Cu 3 Sn to 0.001 or more and 0.100 or less, for example, generation of voids 5a (see FIG. 14) such as Kirkendyl voids can be suppressed.
 CuSn/CuSnの比を0.001以上、0.100以下とするために、銅粒子290と半田粒子300との接触面積は広い方が望ましい。合金化反応(あるいは金属間化合物の形成反応)を行なう時点において、ビアペースト260中の熱硬化性樹脂成分310の体積分率は、26vol%以下(更には20vol%以下、更には10vol%以下)が望ましい。熱硬化性樹脂成分310の体積分率が少ないほど、銅粒子290と半田粒子300との接触面積が大きくなり、合金化反応が均一となる。その結果、金属間化合物CuSnと金属間化合物CuSnを含む第2金属領域において、CuSn/CuSnの比を0.100以下に抑えることができる。 In order for the ratio of Cu 6 Sn 5 / Cu 3 Sn to be 0.001 or more and 0.100 or less, it is desirable that the contact area between the copper particles 290 and the solder particles 300 is wide. At the time of performing the alloying reaction (or intermetallic compound formation reaction), the volume fraction of the thermosetting resin component 310 in the via paste 260 is 26 vol% or less (more 20 vol% or less, and further 10 vol% or less). Is desirable. The smaller the volume fraction of the thermosetting resin component 310 is, the larger the contact area between the copper particles 290 and the solder particles 300 becomes, and the alloying reaction becomes uniform. As a result, in the second metal region including the intermetallic compound Cu 6 Sn 5 intermetallic compound Cu 3 Sn, the ratio of Cu 6 Sn 5 / Cu 3 Sn can be suppressed to 0.100.
 以上のように、未硬化基材230として、非圧縮性を有する部材を用いることで、貫通孔250に充填された銅粒子290及びSn-Bi系の半田粒子300の密度が高くなる。 As described above, by using an incompressible member as the uncured base material 230, the density of the copper particles 290 and the Sn—Bi solder particles 300 filled in the through holes 250 is increased.
 また圧縮を維持した状態のままで、圧縮されたビアペースト260を加熱してSn-Bi系の半田粒子300の共晶温度以上、共晶温度から10℃高い温度以下の温度の範囲でSn-Bi系の半田粒子300の一部分を溶融させ、引き続き、さらに共晶温度から20℃高い温度以上、300℃以下の温度の範囲に加熱することが有用である。こうした加圧、加熱によって、第2金属領域170の成長を促進できる。更にこれらを連続した圧着や加熱を伴う1つの工程で行うことが好ましい。連続した1つの工程で行うことで、各金属領域の形成反応をより安定化でき、ビア自体の構造を安定化できる。 In addition, while maintaining the compression, the compressed via paste 260 is heated to a Sn-Bi solder particle 300 temperature range from the eutectic temperature of the Sn-Bi solder particles 300 to a temperature not higher than the eutectic temperature by 10 ° C. It is useful to melt a part of the Bi-based solder particles 300 and subsequently heat it to a temperature range of 20 ° C. to 300 ° C. higher than the eutectic temperature. The growth of the second metal region 170 can be promoted by such pressurization and heating. Furthermore, it is preferable to carry out these in one step with continuous pressure bonding and heating. By performing the process in one continuous process, the formation reaction of each metal region can be further stabilized, and the structure of the via itself can be stabilized.
 例えば、図9Aにおいて、銅粒子290や半田粒子300の、ビアペースト260中に占める体積分率が、74vol%以上になるように高圧縮しておく。そして、この状態で、ビアペースト260をSn-Bi系の半田粒子300の共晶温度以上の温度にまで徐々に加熱していく。この加熱によりSn-Bi系の半田粒子300の一部がその温度において溶融する組成割合で溶融する。そして、銅粒子290の表面や周囲に錫、錫-銅合金を主成分とする第2金属領域170が形成される。この場合において、銅粒子290同士が面接触している面接触部も、第2金属領域170の一部に変化しても良い。銅粒子290と溶融したSn-Bi系の半田粒子300とが、互いに変形した状態で面接触することで、Sn-Bi系の半田粒子300中のSnと銅粒子290中のCuとが反応して、CuSnやCuSnを含むSn-Cuの化合物層(金属間化合物)や錫-銅合金を主成分とする第2金属領域170が形成される。一方、Sn-Bi系の半田粒子300は内部のSn相からSnを補われながら溶融状態を維持し続け、さらに残されたBiが析出することにより、Biを主成分とする第3金属領域180が形成される。その結果、図9Bに示すような構造を有するビアホール導体140が得られる。 For example, in FIG. 9A, high compression is performed so that the volume fraction of the copper particles 290 and the solder particles 300 in the via paste 260 becomes 74 vol% or more. In this state, the via paste 260 is gradually heated to a temperature equal to or higher than the eutectic temperature of the Sn—Bi solder particles 300. By this heating, a part of the Sn—Bi solder particles 300 melts at a composition ratio that melts at that temperature. Then, a second metal region 170 mainly composed of tin or a tin-copper alloy is formed on or around the copper particles 290. In this case, the surface contact portion where the copper particles 290 are in surface contact may also be changed to a part of the second metal region 170. When the copper particles 290 and the molten Sn—Bi solder particles 300 are in surface contact with each other in a deformed state, Sn in the Sn—Bi solder particles 300 reacts with Cu in the copper particles 290. Thus, a Sn—Cu compound layer (intermetallic compound) containing Cu 6 Sn 5 or Cu 3 Sn and a second metal region 170 mainly composed of a tin-copper alloy are formed. On the other hand, the Sn—Bi-based solder particles 300 continue to maintain a molten state while being supplemented with Sn from the internal Sn phase, and the remaining Bi precipitates, whereby the third metal region 180 containing Bi as a main component is obtained. Is formed. As a result, a via-hole conductor 140 having a structure as shown in FIG. 9B is obtained.
 なお、図9Bにおいて、ビアホール導体140全体に対する第1金属領域160と、第2金属領域170との合計の重量割合は20%以上、90%以下の範囲とすることが望ましい。合計の重量割合が20%未満の場合、ビア抵抗が増加したり、所定の圧縮状態が得られない場合がある。また90%を超えるようにすることは、技術的に難しい場合がある。 In FIG. 9B, the total weight ratio of the first metal region 160 and the second metal region 170 to the entire via-hole conductor 140 is preferably in the range of 20% to 90%. When the total weight ratio is less than 20%, the via resistance may increase or a predetermined compressed state may not be obtained. Moreover, it may be technically difficult to exceed 90%.
 そしてこの状態で加熱して、Sn-Bi系の半田粒子300の共晶温度以上に達するとSn-Bi系の半田粒子300が部分的に溶融しはじめる。溶融する半田の組成は温度で決まり、加熱時の温度で溶融しにくいSnはSn固相体として残留する。また、溶融した半田に銅粒子290が接触してその表面が溶融したSn-Bi系半田で濡れたとき、その濡れた部分の界面でCuとSnの相互拡散が進んでSn-Cuの化合物層等が形成される。このようにして、ビアホール導体140に占める第2金属領域170の割合を第1金属領域160より大きく、かつ第3金属領域180より大きくできる。 Then, when heating is performed in this state and the eutectic temperature of the Sn-Bi solder particles 300 is reached, the Sn-Bi solder particles 300 start to partially melt. The composition of the solder to be melted is determined by the temperature, and Sn that is difficult to melt at the temperature at the time of heating remains as an Sn solid phase body. Further, when the copper particles 290 come into contact with the molten solder and the surface is wetted with the molten Sn—Bi-based solder, Cu and Sn interdiffusion proceeds at the interface of the wet portion, and the Sn—Cu compound layer Etc. are formed. In this way, the proportion of the second metal region 170 in the via-hole conductor 140 can be made larger than that of the first metal region 160 and larger than that of the third metal region 180.
 一方、Sn-Cuの化合物層等の形成や、相互拡散がさらに進行することにより、溶融した半田の中のSnは減少する。溶融した半田の中の減少したSnはSn固体層から補填されるために溶融状態は維持し続けられる。さらにSnが減少し、SnとBiの比率がSn-58BiよりもBiが多くなるとBiが偏析しはじめ、ビスマスを主成分とする固相体として第3金属領域180が析出して形成される。 On the other hand, Sn in the molten solder decreases due to the further progress of the formation of the Sn—Cu compound layer and the like and the mutual diffusion. Since the decreased Sn in the molten solder is compensated from the Sn solid layer, the molten state continues to be maintained. Further, when Sn decreases and the ratio of Sn and Bi becomes larger than that of Sn-58Bi, Bi begins to segregate, and the third metal region 180 is formed as a solid phase body containing bismuth as a main component.
 なお、よく知られている比較的低温域で溶融する半田材料としては、Sn-Pb系半田、Sn-In系半田、Sn-Bi系半田などがある。これらの材料のうち、Inは高価であり、Pbは環境負荷が高いとされている。一方、Sn-Bi系半田の融点は、電子部品を表面実装する際の一般的な半田リフロー温度よりも低い140℃以下である。従って、Sn-Bi系半田のみを回路基板のビアホール導体として単体で用いた場合には、半田リフロー時にビアホール導体の半田が再溶融することによりビア抵抗が変動してしまう場合がある。 Note that well-known solder materials that melt at a relatively low temperature range include Sn—Pb solder, Sn—In solder, and Sn—Bi solder. Of these materials, In is expensive and Pb is considered to have a high environmental load. On the other hand, the melting point of Sn—Bi solder is 140 ° C. or lower, which is lower than the general solder reflow temperature when electronic components are surface-mounted. Therefore, when only Sn—Bi solder is used as a via hole conductor of a circuit board as a single unit, the via resistance may fluctuate due to remelting of the solder of the via hole conductor during solder reflow.
 図10は、本実施形態のビアペースト中の金属組成の一例を示す三角図である。本実施形態のビアペースト中の金属組成は、図10に示すように、Cu、Sn及びBiの重量組成比(Cu:Sn:Bi)を三角図において、A(0.37:0.567:0.063)、B(0.22:0.3276:0.4524)、C(0.79:0.09:0.12)、D(0.89:0.10:0.01)を頂点とする四角形で囲まれる領域とすることが望ましい。 FIG. 10 is a triangular diagram showing an example of the metal composition in the via paste of this embodiment. As shown in FIG. 10, the metal composition in the via paste of the present embodiment is represented by the weight composition ratio (Cu: Sn: Bi) of Cu, Sn, and Bi as A (0.37: 0.567: 0.063), B (0.22: 0.3276: 0.4524), C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01) It is desirable that the region be surrounded by a quadrangle as a vertex.
 更に望ましくは、C(0.79:0.09:0.12)、D(0.89:0.10:0.01)、E(0.733:0.240:0.027)、F(0.564:0.183:0.253)を頂点とする四角形で囲まれる領域とすることが望ましい。C(0.79:0.09:0.12)、D(0.89:0.10:0.01)、E(0.733:0.240:0.027)、F(0.564:0.183:0.253)を頂点とする四角形で囲まれる領域とすることで、ビア抵抗を小さくできる。また第2金属領域において、金属間化合物CuSnと金属間化合物CuSnを含み、CuSn/CuSnの比を0.100以下とすることが容易となる。 More desirably, C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01), E (0.733: 0.240: 0.027), F It is desirable that the region be surrounded by a quadrangle having (0.564: 0.183: 0.253) as a vertex. C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01), E (0.733: 0.240: 0.027), F (0.564) : 0.183: 0.253), the via resistance can be reduced by making the area surrounded by a quadrangle. In the second metal region, the intermetallic compound Cu 6 Sn 5 and the intermetallic compound Cu 3 Sn are included, and the ratio of Cu 6 Sn 5 / Cu 3 Sn can be easily set to 0.100 or less.
 なおこうした金属組成のビアペーストを用いた場合には、Sn-Bi系の半田粒子300の組成が共晶のSn-Bi系半田組成(Bi58%以下、Sn42%以上)よりもSn組成が多くなる。このようなビアペーストを用いることにより、Sn-Bi系半田粒子の共晶温度から10℃高い温度以下の温度の範囲で半田組成中の一部が溶融する一方、溶融しないSnが残留する。しかし残留したSnは、銅粒子表面へ拡散・反応する。その結果、Sn-Bi系の半田粒子300からSn濃度が減少することで、残留したSnが溶融する。一方で、加熱し続けて温度が上昇することによってもSnは溶融し、半田組成中の溶融しきれなかったSnはなくなり、さらに加熱を続けることにより銅粒子表面との反応が進むことにより、ビスマスを主成分とする固相体として第3金属領域180が析出して形成される。そして、このように第3金属領域180を析出させて存在させることにより、半田リフロー時にビアホール導体の半田が再溶融しにくくなる。さらにSn組成の多いSn-Bi組成の半田粒子300を用いることによって、ビア中に残るBi相を少なくすることができるため、抵抗値の安定化を図ることができるとともに、半田リフロー後でも、抵抗値の変動が起こりにくくなる。 When a via paste having such a metal composition is used, the composition of the Sn—Bi solder particles 300 is higher than that of the eutectic Sn—Bi solder composition (Bi 58% or less, Sn 42% or more). . By using such a via paste, a part of the solder composition melts in a temperature range of 10 ° C. or higher from the eutectic temperature of the Sn—Bi solder particles, while Sn that does not melt remains. However, the remaining Sn diffuses and reacts on the copper particle surface. As a result, the Sn concentration decreases from the Sn—Bi solder particles 300, so that the remaining Sn melts. On the other hand, Sn is melted even when the temperature rises by continuing to heat, and Sn that could not be melted in the solder composition disappears. Further, by continuing the heating, the reaction with the surface of the copper particles proceeds, whereby bismuth. The third metal region 180 is formed as a solid phase body mainly composed of. And by making the 3rd metal area | region 180 precipitate and exist in this way, it becomes difficult to remelt the solder of a via-hole conductor at the time of solder reflow. Further, by using the Sn-Bi composition solder particles 300 having a large Sn composition, the Bi phase remaining in the via can be reduced, so that the resistance value can be stabilized and the resistance can be improved even after the solder reflow. Value fluctuations are less likely to occur.
 圧縮後のビアペースト260を加熱する温度は、Sn-Bi系の半田粒子300の共晶温度以上の温度であり、未硬化基材230の構成成分を分解しないような温度範囲であれば特に限定されない。具体的には、Sn-Bi系半田粒子として共晶温度139℃のSn-58Bi半田粒子を用いる場合には、はじめに139℃以上、149℃以下の範囲に加熱することによりSn-58Bi半田粒子300の一部分を溶融させたあと、さらに159℃以上、230℃以下程度の温度範囲に徐々に加熱することが好ましい。なお、温度を適切に選択することにより、ビアペースト260中に含まれる熱硬化性樹脂成分が硬化される。 The temperature at which the compressed via paste 260 is heated is not less than the eutectic temperature of the Sn—Bi solder particles 300 and is not particularly limited as long as it does not decompose the components of the uncured base material 230. Not. Specifically, when Sn-58Bi solder particles having a eutectic temperature of 139 ° C. are used as the Sn—Bi based solder particles, the Sn-58Bi solder particles 300 are first heated to a temperature range of 139 ° C. to 149 ° C. It is preferable to further heat gradually to a temperature range of about 159 ° C. to 230 ° C. In addition, the thermosetting resin component contained in the via paste 260 is cured by appropriately selecting the temperature.
 次に、本実施の形態を実施例を用いて具体的に説明する。なお、本実施の形態の範囲は本実施例の内容により限定されるものではない。はじめに、本実施例で用いた原材料を以下に説明する。 Next, the present embodiment will be specifically described using examples. Note that the scope of this embodiment is not limited by the contents of this example. First, the raw materials used in this example will be described below.
・銅粒子(銅粒子290):平均粒子径5μmの三井金属(株)製1100Y
・Sn-Bi系半田粒子(半田粒子300):組成別に(表1)に示す半田組成になるように配合して溶融させたものをアトマイズ法にて粉状化し、平均粒子径5μmに分球したものを使用している。
・エポキシ樹脂(熱硬化性樹脂成分310):ジャパンエポキシレジン(株)製jeR871
・硬化剤:2-メチルアミノエタノール、沸点160℃、日本乳化剤(株)製
・樹脂シート(未硬化基材230):縦500mm×横500mm、厚み10μm~50μmのポリイミドフィルム(非圧縮性部材220)の両表面に厚み10μmの未硬化エポキシ樹脂層(熱硬化性接着層210)が形成されている。
・保護フィルム(保護フィルム240):厚み25μmのPET製シート
・銅箔(金属箔150):厚み25μm
Copper particles (copper particles 290): 1100Y manufactured by Mitsui Kinzoku Co., Ltd. having an average particle diameter of 5 μm
-Sn-Bi solder particles (solder particles 300): Powdered by the composition and melted so as to have the solder composition shown in (Table 1) by composition, and spheroidized to an average particle size of 5 μm I use what I did.
Epoxy resin (thermosetting resin component 310): Japan Epoxy Resin Co., Ltd. jeR871
Curing agent: 2-methylaminoethanol, boiling point 160 ° C., manufactured by Nippon Emulsifier Co., Ltd. Resin sheet (uncured base material 230): polyimide film (non-compressible member 220 of length 500 mm × width 500 mm, thickness 10 μm to 50 μm) ), An uncured epoxy resin layer (thermosetting adhesive layer 210) having a thickness of 10 μm is formed.
Protective film (protective film 240): PET sheet having a thickness of 25 μm Copper foil (metal foil 150): thickness of 25 μm
 (ビアペーストの作製)
 (表1)に記載した配合割合の銅粒子及びSn-Bi系半田粒子の金属成分とエポキシ樹脂及び硬化剤の樹脂成分とを配合し、プラネタリーミキサーで混合することにより、ビアペーストを作製している。なお、樹脂成分の配合割合は、銅粒子及びSn-Bi系半田粒子の合計100重量部に対して、エポキシ樹脂10重量部、硬化剤2重量部としている。
(Preparation of via paste)
A via paste was prepared by blending the metal components of the copper particles and Sn-Bi solder particles described in (Table 1), the epoxy resin and the resin component of the curing agent, and mixing them with a planetary mixer. ing. The blending ratio of the resin component is 10 parts by weight of epoxy resin and 2 parts by weight of curing agent with respect to 100 parts by weight of the total of copper particles and Sn—Bi solder particles.
 (多層配線基板の製造)
 樹脂シートの両表面に保護フィルムを貼り合わせる。そして、保護フィルムを貼り合わせた樹脂シートの外側からレーザーにより直径150μmの孔を100個穿孔する。
(Manufacture of multilayer wiring boards)
A protective film is bonded to both surfaces of the resin sheet. Then, 100 holes having a diameter of 150 μm are drilled by laser from the outside of the resin sheet to which the protective film is bonded.
 次に、調製されたビアペーストを貫通孔に充填する。そして、両表面の保護フィルムを剥離することにより、貫通孔からビアペーストの一部が突出した突出部を形成する。 Next, fill the through hole with the prepared via paste. And the protrusion part which a part of via paste protruded from the through-hole is formed by peeling the protective film of both surfaces.
 次に、樹脂シートの両表面に、突出部を覆うようにして銅箔を配置する。そして、加熱プレス機の下の金型の上に離形紙を設置し、銅箔が配置された樹脂シートとの積層体し、3MPaの圧力を加える。そして、積層体を常温25℃から最高温度220℃まで60分で昇温して220℃を60分間キープしたのち、60分間かけて常温まで冷却する。このようにして配線基板を得る。 Next, copper foil is disposed on both surfaces of the resin sheet so as to cover the protruding portions. And a release paper is installed on the metal mold | die under a heating press machine, a laminated body with the resin sheet by which copper foil is arrange | positioned, and a pressure of 3 MPa is applied. The laminated body is heated from room temperature 25 ° C. to the maximum temperature 220 ° C. in 60 minutes, kept at 220 ° C. for 60 minutes, and then cooled to room temperature over 60 minutes. In this way, a wiring board is obtained.
 (評価)
 〈抵抗値試験〉
 得られた配線基板に形成された100個のビアホール導体の抵抗値を4端子法により測定する。そして、100個の初期抵抗値と最大抵抗値を求める。なお、初期抵抗値としては2mΩ以下のものをA、2mΩを超えていたものをBとしている。また、最大抵抗値としては3mΩ未満の場合をA、3mΩより大きい場合をBとしている。
(Evaluation)
<Resistance test>
The resistance value of 100 via-hole conductors formed on the obtained wiring board is measured by the 4-terminal method. Then, 100 initial resistance values and maximum resistance values are obtained. As the initial resistance value, A is 2 mΩ or less and B is 2 mΩ or more. Further, as the maximum resistance value, A is less than 3 mΩ, and B is greater than 3 mΩ.
 ここで、初期抵抗値(初期の平均抵抗値)は、100個のビアを含むデイジーチェーンを形成し、100個のビアの合計の抵抗値を測定し、これを100で割って算出している。また、最大抵抗値は、100個のビアを含むデイジーチェーンを100個形成し、それぞれのデイジーチェーンの平均抵抗値のうちの最大の値である。なお、(表1)では、抵抗値(mΩ)と、比抵抗値(Ω・m)を記述している。 Here, the initial resistance value (initial average resistance value) is calculated by forming a daisy chain including 100 vias, measuring the total resistance value of 100 vias, and dividing this by 100. . The maximum resistance value is the maximum value among the average resistance values of the daisy chains formed by forming 100 daisy chains including 100 vias. In Table 1, the resistance value (mΩ) and the specific resistance value (Ω · m) are described.
 〈接続信頼性〉
 初期抵抗値を測定した配線基板に対して、500サイクルのヒートサイクル試験を行い、初期抵抗値に対する変化率が10%以下のものをA、10%を超えたものをBとしている。
<Connection reliability>
A heat cycle test of 500 cycles was performed on the wiring substrate whose initial resistance value was measured, and A having a rate of change of 10% or less with respect to the initial resistance value was A and exceeding B was 10%.
 結果を(表1)に示す。また、(表1)に示した実施例及び比較例の各組成の三角図を図10に示す。(表1)および図10において、実施例1~17をE1~E17、比較例1~9をC1~C9で示している。なお、図10の三角図において、「白丸」が実施例の組成、「黒丸」が実施例の金属組成よりもSn量に対するBi量が少ない比較例1(C1)の組成を示している。また、「白三角」が実施例の金属組成よりもSn量に対するBi量が多い比較例7(C7)の組成、「白四角」が実施例の金属組成よりもCu量に対するSn量が多い比較例2、4、6、9(C2、C4、C6、C9)の組成、「黒三角」が実施例の金属組成よりもCu量に対するSn量が少ない比較例3、5、8(C3、C5、C8)の組成を示している。 The results are shown in (Table 1). Further, FIG. 10 shows a triangular diagram of each composition of the examples and comparative examples shown in (Table 1). In Table 1 and FIG. 10, Examples 1 to 17 are indicated by E1 to E17, and Comparative Examples 1 to 9 are indicated by C1 to C9. In the triangular diagram of FIG. 10, “white circle” indicates the composition of the example, and “black circle” indicates the composition of comparative example 1 (C1) in which the Bi amount relative to the Sn amount is smaller than the metal composition of the example. In addition, “white triangle” is a composition of Comparative Example 7 (C7) in which the Bi amount relative to the Sn amount is larger than the metal composition of the example, and “white square” is a comparison in which the Sn amount relative to the Cu amount is larger than the metal composition of the example. Comparative examples 3, 5, and 8 (C3, C5) in which the composition of Examples 2, 4, 6, and 9 (C2, C4, C6, and C9), “black triangle” has a smaller amount of Sn relative to the amount of Cu than the metal composition of the example , C8).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図10より、初期抵抗値、最大抵抗値、及び接続信頼性の全ての判定についてA評価を得られる実施例の組成は三角図中の重量比率(Cu:Sn:Bi)が、A(0.37:0.567:0.063)、B(0.22:0.3276:0.4524)、C(0.79:0.09:0.12)、D(0.89:0.10:0.01)を頂点とする四角形で囲まれる領域の範囲であることがわかる。ここで、点Aは実施例2(E2)、点Bは実施例12(E12)、点Cは実施例9(E9)、点Dは実施例13(E13)を示している。 From FIG. 10, the composition of the example in which A evaluation can be obtained for all the determinations of the initial resistance value, the maximum resistance value, and the connection reliability is that the weight ratio (Cu: Sn: Bi) in the triangular diagram is A (0. 37: 0.567: 0.063), B (0.22: 0.3276: 0.4524), C (0.79: 0.09: 0.12), D (0.89: 0.10) : 0.01) is a range of a region surrounded by a quadrangle. Here, point A indicates Example 2 (E2), point B indicates Example 12 (E12), point C indicates Example 9 (E9), and point D indicates Example 13 (E13).
 更に、C(0.79:0.09:0.12)、D(0.89:0.10:0.01)、E(0.733:0.240:0.027)、F(0.564:0.183:0.253)を頂点とする四角形は、初期抵抗値、最大抵抗値、及び接続信頼性の全ての判定についてA評価が得られている。ここで、点Eは実施例14(E14)、点Fは実施例17(E17)を示している。このように、三角図中の重量比率(Cu:Sn:Bi)をC(0.79:0.09:0.12)、D(0.89:0.10:0.01)、E(0.733:0.240:0.027)、F(0.564:0.183:0.253)を頂点とする四角形で囲まれる領域とすることで、より低抵抗値であるCuの重量比率を多くし、ビアホールの低抵抗化を実現している。さらに、CuとSnを全て合金化反応させることで、Sn-Biの再溶融化をなくし、信頼性の高いプリント配線基板を実現している。 Furthermore, C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01), E (0.733: 0.240: 0.027), F (0 .564: 0.183: 0.253), the A evaluation is obtained for all the determinations of the initial resistance value, the maximum resistance value, and the connection reliability. Here, the point E represents Example 14 (E14), and the point F represents Example 17 (E17). Thus, the weight ratio (Cu: Sn: Bi) in the triangular diagram is changed to C (0.79: 0.09: 0.12), D (0.89: 0.10: 0.01), E ( 0.733: 0.240: 0.027) and F (0.564: 0.183: 0.253) as a region surrounded by a quadrangle, the weight of Cu having a lower resistance value By increasing the ratio, the resistance of via holes is reduced. Furthermore, the alloying reaction of Cu and Sn all eliminates Sn-Bi remelting and realizes a highly reliable printed wiring board.
 また、図10の「白三角」でプロットしたSn量に対するBi量が多い組成の領域の比較例7(C7)では、ビア中に析出するビスマス量が多くなる。Biの体積抵抗率(Volume Resistivity)は78μΩ・cmであり、Cuの体積抵抗率(1.69μΩ・cm)、Snの体積抵抗率(12.8μΩ・cm)や、CuとSnの化合物の体積抵抗率(CuSn:17.5μΩ・cm、CuSn:8.9μΩ・cm)に比べて著しく大きい。そのため、これら金属材料の体積抵抗率を考慮すると、Sn量に対するBi量が増加するほど、その体積抵抗率が高くなることが予想される。更にビスマスの存在状態あるいは点在状態により抵抗値が変わったり、接続信頼性が低下する可能性が考えられる。 Further, in Comparative Example 7 (C7) in the region having a composition with a large amount of Bi with respect to the amount of Sn plotted by the “white triangle” in FIG. 10, the amount of bismuth precipitated in the via increases. The volume resistivity of Bi is 78 μΩ · cm, the volume resistivity of Cu (1.69 μΩ · cm), the volume resistivity of Sn (12.8 μΩ · cm), and the volume of the compound of Cu and Sn. It is remarkably larger than the resistivity (Cu 3 Sn: 17.5 μΩ · cm, Cu 6 Sn 5 : 8.9 μΩ · cm). Therefore, in consideration of the volume resistivity of these metal materials, it is expected that the volume resistivity increases as the amount of Bi with respect to the amount of Sn increases. Furthermore, there is a possibility that the resistance value may change or the connection reliability may be lowered depending on the presence state or the dotted state of bismuth.
 また、図10の「白四角」でプロットしたCu量に対するSn量が多い組成の領域の比較例2、4、6、9(C2、C4、C6、C9)の領域では圧縮による銅粒子の面接触部の形成が不充分である。また相互拡散後に銅粒子同士の接触部にSn-Cuの化合物層が形成されてしまうために、初期抵抗値及び最大抵抗値が高くなっている。 Further, in the regions of Comparative Examples 2, 4, 6, and 9 (C2, C4, C6, and C9) in the region of the composition having a large Sn amount with respect to the Cu amount plotted by the “white square” in FIG. The contact portion is not sufficiently formed. Further, since the Sn—Cu compound layer is formed at the contact portion between the copper particles after mutual diffusion, the initial resistance value and the maximum resistance value are high.
 また、図10の「黒丸」でプロットしたSn量に対するBi量が少ない組成の領域の比較例1(C1)の組成では、Bi量が少ないことによりSn-Bi系半田粒子の共晶温度である140℃付近で溶融する半田の量が少なくなる。そのために、銅粒子同士の面接触部を補強するSn-Cuの化合物層が充分に形成されなくなり、接続信頼性が低下する。すなわち、Sn-5Bi半田粒子を用いた比較例1(C1)の場合には、銅粒子同士の面接触部は形成されたために初期抵抗値及び最大抵抗値は低いが、Bi量が少なかったために半田粒子が溶融しにくくなって、面接触部を補強するSn-Cuの化合物層を形成するCuとSnとの反応が充分に進行しなかったと考えられる。 Further, in the composition of Comparative Example 1 (C1) in the region of the composition having a small amount of Bi with respect to the amount of Sn plotted by “black circle” in FIG. 10, the eutectic temperature of the Sn—Bi based solder particles due to the small amount of Bi. The amount of solder that melts around 140 ° C. is reduced. Therefore, the Sn—Cu compound layer that reinforces the surface contact portion between the copper particles is not sufficiently formed, and the connection reliability is lowered. That is, in the case of Comparative Example 1 (C1) using Sn-5Bi solder particles, since the surface contact portion between the copper particles was formed, the initial resistance value and the maximum resistance value were low, but the amount of Bi was small. It is considered that the reaction between Cu and Sn forming the Sn—Cu compound layer that reinforces the surface contact portion did not sufficiently proceed because the solder particles were difficult to melt.
 また、図10の「黒三角」でプロットしたCu量に対するSn量が少ない組成の領域の比較例3、5、8(C3、C5、C8)では、銅粒子に対するSn量が少ないために、銅粒子同士の面接触部を補強するために形成されるSn-Cuの化合物層が少なくなるために接続信頼性が低下する。 Further, in Comparative Examples 3, 5, and 8 (C3, C5, and C8) of the regions having a small Sn amount with respect to the Cu amount plotted by the “black triangle” in FIG. Since the number of Sn—Cu compound layers formed to reinforce the surface contact portion between the particles is reduced, the connection reliability is lowered.
 図11A、図12Aは、実施例16(E16)に係るペースト(銅粒子:Sn-28Bi半田の重量比率が70:30)を用いて得られた多層配線基板のビアホール導体の断面の電子顕微鏡(SEM)写真を示す図である。また図11B、図12Bは、それらの模式図である。なお、図11A、図11Bの倍率は3000倍、図12A、図12Bの倍率は6000倍である。 FIG. 11A and FIG. 12A are electron microscopes of cross sections of via-hole conductors of a multilayer wiring board obtained using the paste according to Example 16 (E16) (copper particles: Sn-28Bi solder weight ratio is 70:30). It is a figure which shows a SEM photograph. Moreover, FIG. 11B and FIG. 12B are those schematic diagrams. 11A and 11B are 3000 times, and FIGS. 12A and 12B are 6000 times.
 図11A~図12Bより、本実施の形態のビアホール導体は、金属充填率が非常に高いことが判る。ビアホール導体140は、樹脂部分200と、金属部分190とを含んでいる。なお樹脂部分200はエポキシ樹脂を含む樹脂部分である。また金属部分190は、銅を主成分とする第1金属領域160と、錫-銅合金を主成分とする第2金属領域170と、ビスマスを主成分とする第3金属領域180とを含んでいる。そして、第2金属領域170の大きさは(更には体積もしくは重さ、断面積の一つ以上は)、第1金属領域160より大きく、かつ第3金属領域180より大きい。この構成により、複数の配線120が、第2金属領域170を介して電気的に接続される。また第2金属領域170の中に、第1金属領域160と、第3金属領域180を、互いに接触することなく点在させることで、合金化反応(更には金属間化合物の生成反応)を、ムラ無く均一に行なえる。 11A to 12B that the via hole conductor of the present embodiment has a very high metal filling rate. The via-hole conductor 140 includes a resin portion 200 and a metal portion 190. The resin portion 200 is a resin portion containing an epoxy resin. The metal portion 190 includes a first metal region 160 mainly composed of copper, a second metal region 170 mainly composed of a tin-copper alloy, and a third metal region 180 mainly composed of bismuth. Yes. In addition, the size of the second metal region 170 (and also one or more of its volume or weight and cross-sectional area) is larger than the first metal region 160 and larger than the third metal region 180. With this configuration, the plurality of wirings 120 are electrically connected via the second metal region 170. In addition, the first metal region 160 and the third metal region 180 are interspersed in the second metal region 170 without being in contact with each other, so that the alloying reaction (and the intermetallic compound formation reaction) can be performed. It can be performed uniformly without unevenness.
 図13は、ビアホール導体のX線回折(X-Ray Diffraction:XRD)による分析結果の一例を示すグラフである。ピークIはCu(銅)である。ピークIIはBi(ビスマス)である。ピークIIIは錫(Sn)である。ピークIVは、金属間化合物CuSnである。ピークVは、金属間化合物CuSnである。 FIG. 13 is a graph showing an example of an analysis result by X-ray diffraction (XRD) of a via-hole conductor. Peak I is Cu (copper). Peak II is Bi (bismuth). Peak III is tin (Sn). Peak IV is the intermetallic compound Cu 3 Sn. Peak V is the intermetallic compound Cu 6 Sn 5 .
 図13は、ビアホール導体に対する加圧時の加熱温度(硬化温度)の影響を評価したものであり、加熱温度が25℃、150℃、175℃、200℃における測定結果である。なお図13においてX軸は2θ(単位は度)、Y軸は強度(単位は任意)である。 FIG. 13 evaluates the influence of the heating temperature (curing temperature) during pressurization on the via-hole conductor, and shows the measurement results at heating temperatures of 25 ° C., 150 ° C., 175 ° C., and 200 ° C. In FIG. 13, the X axis is 2θ (unit is degree), and the Y axis is intensity (unit is arbitrary).
 なお測定に用いた試料は、ビアペーストからなるペレットを作製し、このペレットの処理温度を変化させている。X線回折には、株式会社リガク製のRINT-2000を用いている。 In addition, the sample used for the measurement produced the pellet which consists of via paste, and changed the processing temperature of this pellet. For X-ray diffraction, RINT-2000 manufactured by Rigaku Corporation is used.
 図13のX線回折のグラフより、温度が25℃の場合は、CuのピークI、BiのピークII、SnのピークIIIは検出されるが、CuSnのピークIVや、CuSnのピークVは検出されていない。 From the X-ray diffraction graph of FIG. 13, when the temperature is 25 ° C., the Cu peak I, the Bi peak II, and the Sn peak III are detected, but the Cu 3 Sn peak IV and the Cu 6 Sn 5 No peak V was detected.
 温度が150℃の場合、CuのピークI、BiのピークII、SnのピークIIIに加えて、僅かであるがCuSnのピークVが現れている。 When the temperature is 150 ° C., a peak V of Cu 6 Sn 5 appears in addition to the peak I of Cu, the peak II of Bi, and the peak III of Sn.
 温度が175℃の場合、CuのピークI、BiのピークII、CuSnのピークVに加え、CuSnのピークIVが現れている。またSnのピークIIIは殆ど無くなっている。以上より、Cu粒子と、Sn-Biの半田粒子との合金化反応、更には金属間化合物の形成反応が、均一に進んでいることが判る。 When the temperature is 175 ° C., a peak IV of Cu 3 Sn appears in addition to a peak I of Cu, a peak II of Bi, and a peak V of Cu 6 Sn 5 . In addition, the Sn peak III almost disappears. From the above, it can be seen that the alloying reaction between the Cu particles and the Sn—Bi solder particles, and further the formation reaction of the intermetallic compound proceeded uniformly.
 図13のサンプル温度が200℃のグラフでは、CuのピークI、BiのピークII、CuSnのピークIVは検出されるが、SnのピークIIIや、CuSnのピークVは消滅している。以上より、Cu粒子と、Sn-Biの半田粒子との合金化反応、更には金属間化合物の形成反応が進み、CuとSn-Bi半田粒子との合金化反応、更には金属間化合物の反応は、CuSnのピークIVの生成で安定化したことが判る。 In the graph of FIG. 13 where the sample temperature is 200 ° C., Cu peak I, Bi peak II, and Cu 3 Sn peak IV are detected, but Sn peak III and Cu 6 Sn 5 peak V disappear. ing. From the above, the alloying reaction between Cu particles and Sn—Bi solder particles, and further the formation reaction of intermetallic compounds, the alloying reaction between Cu and Sn—Bi solder particles, and further the reaction of intermetallic compounds Is stabilized by the formation of a Cu 3 Sn peak IV.
 以上のように、本実施の形態では、金属間化合物をCuSnではなくて、より安定したCuSnにすることで、ビアホール導体の信頼性が高まる。言い換えれば、本実施の形態では、金属間化合物をCuSnより安定したCuSnとする合金化反応(あるいは金属間化合物化反応)を行なえる。 As described above, in the present embodiment, the reliability of the via-hole conductor is increased by making the intermetallic compound not Cu 6 Sn 5 but more stable Cu 3 Sn. In other words, in this embodiment, an alloying reaction (or intermetallic compounding reaction) in which the intermetallic compound is Cu 3 Sn which is more stable than Cu 6 Sn 5 can be performed.
 なお非圧縮性部材220である耐熱フィルムの厚みは、3μm以上、55μm以下、更には50μm以下、更には35μm以下が望ましい。なお耐熱フィルムの厚みが3μm未満の場合、フィルム強度が低下し、ビアペースト260の圧縮効果が得られない場合がある。55μmを超える耐熱フィルムは、特殊で高価になるので、55μm以下の厚みの耐熱フィルムを用いた方が良い。 The thickness of the heat resistant film as the incompressible member 220 is desirably 3 μm or more and 55 μm or less, more preferably 50 μm or less, and further 35 μm or less. In addition, when the thickness of the heat resistant film is less than 3 μm, the film strength is lowered and the compression effect of the via paste 260 may not be obtained. Since a heat-resistant film exceeding 55 μm is special and expensive, it is better to use a heat-resistant film having a thickness of 55 μm or less.
 また非圧縮性部材220の表面に設ける熱硬化性接着層210の厚みは、片側で1μm以上、15μm以下が望ましい。1μm未満の場合、所定の密着強度が得られない場合がある。また15μmを超えると、ビアペースト260の圧縮効果が得られない場合がある。なお、非圧縮性部材220の厚みの方が、片側の熱硬化性接着層210の厚みより厚い方が有用である。 The thickness of the thermosetting adhesive layer 210 provided on the surface of the incompressible member 220 is desirably 1 μm or more and 15 μm or less on one side. When it is less than 1 μm, a predetermined adhesion strength may not be obtained. If it exceeds 15 μm, the compression effect of the via paste 260 may not be obtained. In addition, it is useful that the thickness of the incompressible member 220 is thicker than the thickness of the thermosetting adhesive layer 210 on one side.
 非圧縮性部材220の厚みが75μmの場合、ビアホール導体140中に占める金属部分190の体積分率を60vol%以上、70vol%以下程度までしか増加させることができない場合がある。 When the thickness of the incompressible member 220 is 75 μm, the volume fraction of the metal portion 190 occupying in the via-hole conductor 140 may be increased only to about 60 vol% or more and 70 vol% or less.
 例えば、非圧縮性部材220の厚みが50μm(両面にそれぞれ厚み10μmの熱硬化性接着層210を形成すると、電気絶縁性基材130の厚みは70μmである)の場合、ビアホール導体140中に占める金属部分190の体積分率は、80vol%以上、82vol%以下になる。 For example, when the thickness of the incompressible member 220 is 50 μm (when the thermosetting adhesive layer 210 having a thickness of 10 μm is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 70 μm), the via hole conductor 140 occupies it. The volume fraction of the metal part 190 becomes 80 vol% or more and 82 vol% or less.
 非圧縮性部材220の厚みを40μm(両面にそれぞれ厚み10μmの熱硬化性接着層210を形成すると、電気絶縁性基材130の厚みは60μmである)の場合、ビアホール導体140中に占める金属部分190の体積分率は、83vol%以上、85vol%以下になる。 In the case where the thickness of the incompressible member 220 is 40 μm (when the thermosetting adhesive layer 210 having a thickness of 10 μm is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 60 μm), the metal portion occupied in the via-hole conductor 140 The volume fraction of 190 is 83 vol% or more and 85 vol% or less.
 非圧縮性部材220の厚みを30μm(両面にそれぞれ厚み10μmの熱硬化性接着層210を形成すると、電気絶縁性基材130の厚みは50μmである)の場合、ビアホール導体140中に占める金属部分190の体積分率は、89vol%以上、91vol%以下になる。 When the thickness of the incompressible member 220 is 30 μm (when the thermosetting adhesive layer 210 having a thickness of 10 μm is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 50 μm), the metal portion occupying the via-hole conductor 140 The volume fraction of 190 is 89 vol% or more and 91 vol% or less.
 非圧縮性部材220の厚みを20μm(両面にそれぞれ厚み10μmの熱硬化性接着層210を形成すると、電気絶縁性基材130の厚みは40μmである)の場合、ビアホール導体140中に占める金属部分190の体積分率は、87vol%以上、95vol%以下になる。 When the thickness of the incompressible member 220 is 20 μm (when the thermosetting adhesive layer 210 having a thickness of 10 μm is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 40 μm), the metal portion occupying the via-hole conductor 140 The volume fraction of 190 becomes 87 vol% or more and 95 vol% or less.
 非圧縮性部材220の厚みを10μm(両面にそれぞれ厚み10μmの熱硬化性接着層210を形成すると、電気絶縁性基材130の厚みは30μmである)の場合、ビアホール導体140中に占める金属部分190の体積分率は、98vol%以上、99.5vol%以下になる。 When the thickness of the incompressible member 220 is 10 μm (when the thermosetting adhesive layer 210 having a thickness of 10 μm is formed on both surfaces, the thickness of the electrically insulating substrate 130 is 30 μm), the metal portion occupied in the via-hole conductor 140 The volume fraction of 190 becomes 98 vol% or more and 99.5 vol% or less.
 以上のように、非圧縮性部材220の厚みは薄ければ薄いほど、効果的ではあるが、その厚みは、ビアホール導体140の直径や密度、用途等に応じて適宜選択される。 As described above, the thinner the incompressible member 220 is, the more effective, but the thickness is appropriately selected according to the diameter and density of the via-hole conductor 140, the application, and the like.
 以上より、非圧縮性部材220を用いることにより、ビアホール導体140中に占める金属部分190の体積分率が増加することがわかる。 From the above, it can be seen that by using the incompressible member 220, the volume fraction of the metal portion 190 occupying in the via-hole conductor 140 increases.
 本実施の形態の配線基板は、低コスト化、小型化、高機能化、高信頼性化に対して効果があるため、携帯電話等に用いられる。 The wiring board of this embodiment is effective for cost reduction, downsizing, high functionality, and high reliability, and is therefore used for mobile phones and the like.
 110,111  多層配線基板
 120,120a,120b,121a,121b  配線
 130  電気絶縁性基材
 140  ビアホール導体
 150  金属箔
 160  第1金属領域
 170  第2金属領域
 180  第3金属領域
 190  金属部分
 200  樹脂部分
 210  熱硬化性接着層
 220  非圧縮性部材
 230  未硬化基材
 240  保護フィルム
 250  貫通孔
 260  ビアペースト
 270  突出部
 280,280a,280b,280c,280d  矢印
 290  銅粒子
 300  半田粒子
 310  熱硬化性樹脂成分
 320  芯材
 330  半硬化樹脂
 340  圧縮性部材
 500  基板
 600  配線基板
110,111 Multilayer wiring board 120,120a, 120b, 121a, 121b Wiring 130 Electrical insulating base 140 Via hole conductor 150 Metal foil 160 First metal region 170 Second metal region 180 Third metal region 190 Metal portion 200 Resin portion 210 Thermosetting adhesive layer 220 Incompressible member 230 Uncured base material 240 Protective film 250 Through hole 260 Via paste 270 Protrusion 280, 280a, 280b, 280c, 280d Arrow 290 Copper particle 300 Solder particle 310 Thermosetting resin component 320 Core material 330 Semi-cured resin 340 Compressible member 500 Substrate 600 Wiring substrate

Claims (19)

  1. 非圧縮性部材と熱硬化性部材とを有する電気絶縁性基材と、
    前記電気絶縁性基材を挟んで形成された第1の配線と第2の配線と、
    前記電気絶縁性基材を貫通し、前記第1の配線と前記第2の配線を電気的に接続するビアホール導体と、を有し、
    前記ビアホール導体は、樹脂部分と、金属部分とを有し、
      前記金属部分は、Cuを主成分とする第1金属領域と、
     Sn-Cu合金を主成分とする第2金属領域と、
     Biを主成分とする第3金属領域とを有し、
    前記第2金属領域は、前記第1金属領域より大きく、かつ前記第3金属領域より大きい
    配線基板。
    An electrically insulating substrate having an incompressible member and a thermosetting member;
    A first wiring and a second wiring formed across the electrically insulating substrate;
    A via-hole conductor that penetrates the electrically insulating substrate and electrically connects the first wiring and the second wiring;
    The via-hole conductor has a resin portion and a metal portion,
    The metal portion includes a first metal region mainly composed of Cu,
    A second metal region mainly composed of Sn-Cu alloy;
    A third metal region mainly composed of Bi,
    The wiring board is larger than the first metal region and larger than the third metal region.
  2. 前記第2金属領域は、前記第1金属領域と前記第3金属領域を覆っている
    請求項1記載の配線基板。
    The wiring board according to claim 1, wherein the second metal region covers the first metal region and the third metal region.
  3. 前記第1金属領域と前記第3金属領域は、互いに接触することなく存在している
    請求項1記載の配線基板。
    The wiring board according to claim 1, wherein the first metal region and the third metal region exist without contacting each other.
  4. 前記第2金属領域はCuSnとCuSnとを有し、CuSn/CuSnの比が0.001以上、0.100以下である
    請求項1記載の配線基板。
    2. The wiring board according to claim 1, wherein the second metal region has Cu 6 Sn 5 and Cu 3 Sn, and a ratio of Cu 6 Sn 5 / Cu 3 Sn is 0.001 or more and 0.100 or less.
  5. 前記金属部分の中のCu、Sn及びBiの重量組成比Cu:Sn:Biが、三角図において、A(0.37:0.567:0.063)、B(0.22:0.3276:0.4524)、C(0.79:0.09:0.12)、D(0.89:0.10:0.01)を頂点とする四角形で囲まれる領域内にある
    請求項1に記載の配線基板。
    The weight composition ratio Cu: Sn: Bi of Cu, Sn and Bi in the metal part is represented by A (0.37: 0.567: 0.063), B (0.22: 0.3276) in the triangular diagram. : 0.4524), C (0.79: 0.09: 0.12), and D (0.89: 0.10: 0.01) are in the region surrounded by a quadrangle. Wiring board as described in.
  6. 前記ビアホール導体において、前記金属部分は、74.0vol%以上、99.5vol%以下である
    請求項1記載の配線基板。
    The wiring board according to claim 1, wherein in the via-hole conductor, the metal portion is 74.0 vol% or more and 99.5 vol% or less.
  7. 前記ビアホール導体において、前記樹脂部分は、0.5vol%以上、26.0vol%以下である
    請求項1記載の配線基板。
    The wiring board according to claim 1, wherein in the via-hole conductor, the resin portion is 0.5 vol% or more and 26.0 vol% or less.
  8. 前記ビアホール導体全体に対する、前記第1金属領域と前記第2金属領域との合計の重量割合が20%以上、90%以下である
    請求項1に記載の配線基板。
    The wiring board according to claim 1, wherein a total weight ratio of the first metal region and the second metal region to the entire via-hole conductor is 20% or more and 90% or less.
  9. 前記樹脂部分はエポキシ樹脂の硬化物を有する
    請求項1に記載の配線基板。
    The wiring board according to claim 1, wherein the resin portion has a cured product of an epoxy resin.
  10. 前記ビアホール導体の比抵抗が1.00×10-7Ω・m以上、5.00×10-7Ω・m以下である
    請求項1に記載の配線基板。
    2. The wiring board according to claim 1, wherein a specific resistance of the via-hole conductor is 1.00 × 10 −7 Ω · m or more and 5.00 × 10 −7 Ω · m or less.
  11. 前記非圧縮性部材は、内部に空間を有さないフィルムである
    請求項1に記載の配線基板。
    The wiring board according to claim 1, wherein the incompressible member is a film having no space inside.
  12. 前記非圧縮性部材の厚みは、3μm以上、55μm以下である
    請求項1に記載の配線基板。
    The wiring board according to claim 1, wherein a thickness of the incompressible member is 3 μm or more and 55 μm or less.
  13. 前記熱硬化性部材は、エポキシ樹脂である
    請求項1に記載の配線基板。
    The wiring board according to claim 1, wherein the thermosetting member is an epoxy resin.
  14. 前記熱硬化性部材の厚みは、1μm以上、15μm以下である
    請求項1に記載の配線基板。
    The wiring board according to claim 1, wherein the thermosetting member has a thickness of 1 μm or more and 15 μm or less.
  15. 非圧縮性部材と未硬化の熱硬化性部材とを有する基材の両側に保護フィルムを付与するステップと、
    前記保護フィルムで被覆された前記基材に、前記保護フィルムの外側から穿孔することにより、貫通孔を形成するステップと、
    前記貫通孔に、銅粒子と、錫とビスマスを含有する半田粒子と、樹脂と、を有するビアペーストを充填するステップと、
    前記保護フィルムを剥離することにより、前記貫通孔から前記ビアペーストの一部が突出した突出部を形成するステップと、
    前記突出部を覆うように、前記基材の表面に金属箔を配置するステップと、
    前記金属箔から前記ビアペーストに圧力を加えることにより、前記樹脂の一部を前記基材に流動させるステップと、
    前記ビアペーストを加熱することにより前記樹脂を硬化させ、
     樹脂部分と、
     Cuを主成分とする第1金属領域と、
     Sn-Cu合金を主成分とする第2金属領域と、
     Biを主成分とする第3金属領域とを有し、
      前記第2金属領域が、前記第1金属領域より大きく、かつ前記第3金属領域より大きい、
      金属部分と、
      を有するビアホール導体を形成すると共に、
    前記基材を加熱することにより、前記熱硬化性部材を硬化させる
      ステップと、
    前記金属箔をパターニングすることにより配線を形成するステップと、
    を備えた
    配線基板の製造方法。
    Providing a protective film on both sides of a substrate having an incompressible member and an uncured thermosetting member;
    Forming a through hole in the base material coated with the protective film by perforating from the outside of the protective film;
    Filling the through hole with a via paste having copper particles, solder particles containing tin and bismuth, and a resin;
    Peeling the protective film to form a protruding portion from which the via paste protrudes from the through hole; and
    Arranging a metal foil on the surface of the base material so as to cover the protruding portion;
    Flowing a part of the resin to the base material by applying pressure to the via paste from the metal foil;
    Curing the resin by heating the via paste,
    A resin part;
    A first metal region mainly composed of Cu;
    A second metal region mainly composed of Sn-Cu alloy;
    A third metal region mainly composed of Bi,
    The second metal region is larger than the first metal region and larger than the third metal region;
    A metal part,
    Forming a via-hole conductor having
    Curing the thermosetting member by heating the substrate; and
    Forming a wiring by patterning the metal foil;
    A method of manufacturing a wiring board comprising:
  16. 前記非圧縮性部材は、内部に空間を有さないフィルムである
    請求項15記載の配線基板の製造方法。
    The method for manufacturing a wiring board according to claim 15, wherein the incompressible member is a film having no space inside.
  17. 前記非圧縮性部材の厚みは、3μm以上、55μm以下である
    請求項15に記載の配線基板の製造方法。
    The method for manufacturing a wiring board according to claim 15, wherein a thickness of the incompressible member is 3 μm or more and 55 μm or less.
  18. 前記熱硬化性部材は、エポキシ樹脂である
    請求項15に記載の配線基板の製造方法。
    The method for manufacturing a wiring board according to claim 15, wherein the thermosetting member is an epoxy resin.
  19. 前記熱硬化性部材の厚みは、1μm以上、15μm以下である
    請求項15に記載の配線基板の製造方法。
    The method for manufacturing a wiring board according to claim 15, wherein a thickness of the thermosetting member is 1 μm or more and 15 μm or less.
PCT/JP2012/008234 2011-12-26 2012-12-25 Wiring board and manufacturing method therefor WO2013099204A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/988,499 US20140124250A1 (en) 2011-12-26 2012-12-25 Wiring board and method for manufacturing same
JP2013520910A JP5333701B1 (en) 2011-12-26 2012-12-25 Wiring board and manufacturing method thereof
CN2012800068253A CN103348778A (en) 2011-12-26 2012-12-25 Wiring board and manufacturing method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011283189 2011-12-26
JP2011-283189 2011-12-26
JP2012128574A JP5099272B1 (en) 2011-12-26 2012-06-06 Multilayer wiring board and manufacturing method thereof
JP2012-128574 2012-06-06
JP2012210809A JP2013153131A (en) 2011-12-26 2012-09-25 Multilayer wiring board and method of manufacturing the same
JP2012-210809 2012-09-25

Publications (1)

Publication Number Publication Date
WO2013099204A1 true WO2013099204A1 (en) 2013-07-04

Family

ID=48696745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008234 WO2013099204A1 (en) 2011-12-26 2012-12-25 Wiring board and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2013099204A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044590A (en) * 1999-07-30 2001-02-16 Kyocera Corp Wiring board
JP2006287019A (en) * 2005-04-01 2006-10-19 Hitachi Metals Ltd Substrate with through-electrode and its manufacturing method
JP2011176220A (en) * 2010-02-25 2011-09-08 Panasonic Corp Wiring board, method of manufacturing wiring board, and via paste
JP2011199250A (en) * 2010-02-25 2011-10-06 Panasonic Corp Multilayer wiring substrate, and method for producing multilayer wiring substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044590A (en) * 1999-07-30 2001-02-16 Kyocera Corp Wiring board
JP2006287019A (en) * 2005-04-01 2006-10-19 Hitachi Metals Ltd Substrate with through-electrode and its manufacturing method
JP2011176220A (en) * 2010-02-25 2011-09-08 Panasonic Corp Wiring board, method of manufacturing wiring board, and via paste
JP2011199250A (en) * 2010-02-25 2011-10-06 Panasonic Corp Multilayer wiring substrate, and method for producing multilayer wiring substrate

Similar Documents

Publication Publication Date Title
JP5333701B1 (en) Wiring board and manufacturing method thereof
JP5333702B1 (en) Flexible wiring board, manufacturing method thereof, mounted product using the same, and flexible multilayer wiring board
JP4795488B1 (en) WIRING BOARD, WIRING BOARD MANUFACTURING METHOD, AND VIA PASTE
JP5382270B1 (en) Wiring board and manufacturing method thereof
JP4859999B1 (en) Multilayer wiring substrate, multilayer wiring substrate manufacturing method, and via paste
JP4713682B1 (en) Multilayer wiring board and method for manufacturing multilayer wiring board
TWI432103B (en) A wiring substrate, a method for manufacturing a wiring substrate, and a through-hole paste
JP4917668B1 (en) Multilayer wiring board and method for manufacturing multilayer wiring board
JP2015032807A (en) Alloy via paste and method of manufacturing wiring board using alloy via paste
JP6835051B2 (en) Circuit boards and component mounting boards, and their manufacturing methods
JP2015032806A (en) Alloy via paste and method of manufacturing wiring board using alloy via paste
WO2013099204A1 (en) Wiring board and manufacturing method therefor
JP2013145815A (en) Multilayer wiring board and manufacturing method therefor
JP2012138417A (en) Multilayer wiring board and manufacturing method of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013520910

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13988499

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863508

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12863508

Country of ref document: EP

Kind code of ref document: A1