WO2013098953A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2013098953A1
WO2013098953A1 PCT/JP2011/080253 JP2011080253W WO2013098953A1 WO 2013098953 A1 WO2013098953 A1 WO 2013098953A1 JP 2011080253 W JP2011080253 W JP 2011080253W WO 2013098953 A1 WO2013098953 A1 WO 2013098953A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
ratio
information
amount
Prior art date
Application number
PCT/JP2011/080253
Other languages
French (fr)
Japanese (ja)
Inventor
森田 晃司
崇博 塚越
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/080253 priority Critical patent/WO2013098953A1/en
Publication of WO2013098953A1 publication Critical patent/WO2013098953A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • F02D19/088Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control device for an internal combustion engine, and in particular, includes a port injection valve that injects fuel into an intake port and an in-cylinder injection valve that injects fuel into a cylinder, and changes an injection ratio by both injection valves.
  • the present invention relates to a control apparatus for a possible internal combustion engine.
  • an internal combustion engine for automobiles, it is possible to use multiple types of fuel, for example, hydrocarbon fuels such as gasoline and alcohol (ethanol, methanol, etc.), or a mixture of these.
  • hydrocarbon fuels such as gasoline and alcohol (ethanol, methanol, etc.)
  • alcohol ethanol, methanol, etc.
  • control according to the alcohol concentration of the fuel used is required. Specifically, since the calorific value per unit volume differs greatly between alcohol and gasoline, air-fuel ratio control according to the alcohol concentration of the fuel is required.
  • the alcohol concentration of the fuel used is not always known and is not always constant. Since there are a plurality of types of commercially available alcohol-mixed fuels having different alcohol concentrations, fuel with an alcohol concentration different from the fuel in the fuel tank may be added by refueling. For this reason, in an internal combustion engine in which use of an alcohol-mixed fuel is assumed, a means for knowing the alcohol concentration of the fuel used is required.
  • an alcohol concentration sensor is conventionally used as the above means.
  • Japanese Patent Laid-Open No. 2010-24996 discloses a fuel injection control device including an alcohol concentration sensor.
  • the engine of this device is a dual-injection internal combustion engine provided with a port injector and an in-cylinder injector, and can separately inject fuel into the port and the cylinder. It has become.
  • An alcohol sensor is provided in the middle of the fuel supply system for supplying fuel to each injector. The alcohol sensor detects the alcohol concentration of the fuel passing through the fuel supply system. The detected alcohol concentration is used for calculating the correction amount of the fuel injection amount in the air-fuel ratio control.
  • the present invention has been made to solve the above-described problems.
  • an internal combustion engine including a port injection valve for injecting fuel into an intake port and an in-cylinder injection valve for injecting fuel into a cylinder
  • a first invention includes a port injection valve that injects fuel into an intake port and a cylinder injection valve that injects fuel into a cylinder, and the exhaust air-fuel ratio of the internal combustion engine is a target.
  • a control device for an internal combustion engine that performs air-fuel ratio control for controlling a fuel injection amount injected from the port injection valve and the in-cylinder injection valve so as to be an air-fuel ratio, Means for obtaining an injection ratio between a fuel injection amount from the port injection valve and a fuel injection amount from the in-cylinder injection valve; Means for acquiring a change amount of the load when the load of the internal combustion engine changes; Transient A / F information acquisition means for detecting a temporary fluctuation of the exhaust air-fuel ratio that occurs when the load of the internal combustion engine changes, and acquiring information related to the peak value as transient A / F information; Steady A / F information means for obtaining information related to the correction amount of the air-fuel ratio immediately before the load of the internal combustion engine changes as steady A
  • the changing means is The amount of change in load, transient A / F information, steady A / F information, and injection ratio of port injection fuel injected from the port injection valve and in-cylinder injection fuel injected from the in-cylinder injection valve A decision model that correlates alcohol concentration; By applying the change amount of the load, the corresponding transient A / F information, the steady A / F information, and the injection ratio at that time to the determination model, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are respectively determined.
  • the second means applies the change amount of the load, the steady A / F information, and the injection ratio at that time to the determination model, so that the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal.
  • the transient A / F information is specified as the transient A / F reference information, the load change amount, the transient A / F reference information, the steady A / F information, and the alcohol concentration of the port injection fuel and the in-cylinder injection fuel at that time Is applied to the determination model to specify the injection ratio at the next fuel injection.
  • the steady-state A / F information acquisition means acquires, as the transient A / F information, a difference amount between the peak value and a peak value under the same condition when using gasoline fuel having an alcohol concentration of 0%. It is characterized by that.
  • the steady-state A / F information acquisition means obtains the difference amount between the correction amount of the air-fuel ratio and the correction amount of the air-fuel ratio under the same condition when using gasoline fuel having an alcohol concentration of 0%. / F information is obtained.
  • a sixth invention is any one of the first to fifth inventions, Determining means for determining an abnormality of the port injection valve or the in-cylinder injection valve based on a load change amount, transient A / F information corresponding thereto, steady A / F information, and an injection ratio at that time; Furthermore, it is characterized by providing.
  • a seventh invention is the sixth invention, wherein When the ratio of the transient A / F information to the steady A / F information is greater than a predetermined upper limit value determined based on the load change amount and the injection ratio at that time, It is characterized by determining occurrence of clogging failure of the in-cylinder injection valve.
  • the eighth invention is the sixth or seventh invention, wherein When the ratio of the transient A / F information to the steady A / F information is smaller than a predetermined lower limit value determined based on the load change amount and the injection ratio at that time, It is characterized by determining the occurrence of clogging failure of the port injection valve.
  • the next fuel injection is performed.
  • An injection ratio is determined.
  • the port adhesion amount of the port injection fuel injected from the port injection valve tends to increase as the alcohol concentration increases.
  • the peak value generated during the transient operation tends to increase as the alcohol concentration of the port-injected fuel increases.
  • the air-fuel ratio correction amount of the internal combustion engine tends to increase as fuel with a high alcohol concentration is injected. For this reason, the air-fuel ratio correction amount during steady operation tends to increase as the alcohol concentration of the fuel increases.
  • information related to the alcohol concentration of the port-injected fuel and the in-cylinder-injected fuel can be obtained by using the relationship of the above information. Therefore, according to the present invention, it is possible to effectively suppress the deterioration of emission and the deterioration of drivability by changing the next injection ratio based on the information.
  • the port changes to the combustion state specified by the load fluctuation amount, information related to the corresponding peak value, information related to the air-fuel ratio correction amount immediately before the load fluctuation, and the injection ratio.
  • Determination models in which the alcohol concentrations of the injected fuel and the in-cylinder injected fuel are associated with each other are prepared in advance. Then, the actually obtained load fluctuation amount, the corresponding transient A / F information, the steady A / F information, and the injection ratio are applied to the determination model. Therefore, according to the present invention, it is possible to accurately determine the alcohol concentration of the port injected fuel and the in-cylinder injected fuel, and therefore, by using the determined concentration information, it is possible to effectively reduce the emission and the drivability. It is possible to specify the injection ratio that can be suppressed.
  • the third invention when the load change amount, the steady A / F information, and the injection ratio at that time are applied to the determination model, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal.
  • Transient A / F information (transient A / F reference information) is specified.
  • the injection ratio is specified. Therefore, according to the present invention, even when the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are different, the combustion state equivalent to the combustion state when the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal. Therefore, it is possible to effectively determine the deterioration of emission and the deterioration of drivability.
  • the peak value in the temporary fluctuation of the air-fuel ratio that occurs at the time when the load changes and the peak value under the same condition when using gasoline fuel (E0) with an alcohol concentration of 0% The difference amount is acquired as transient A / F information. It is difficult to superimpose the influence of the engine characteristic on the difference value of the peak value based on E0. For this reason, according to the present invention, a common determination model can be used in a wide range of engine configurations.
  • the load fluctuation amount, information related to the corresponding peak value (transient A / F information), and information related to the air-fuel ratio correction amount immediately before the load fluctuation (steady A / F information) Based on the injection ratio, it is determined whether or not a failure has occurred in the port injection valve or the in-cylinder injection valve.
  • information related to the alcohol concentration of the port injection fuel and the in-cylinder injection fuel can be obtained.
  • this information indicates an abnormal value, it is considered that fuel is not correctly injected due to a failure of the port injection valve or the in-cylinder injection valve. Therefore, according to the present invention, it is possible to accurately determine whether or not a failure of the port injection valve or the in-cylinder injection valve has occurred by using the above information.
  • the seventh aspect when the ratio of the transient A / F information to the steady A / F information is larger than the predetermined upper limit value, it is determined that a clogging failure of the in-cylinder injection valve has occurred.
  • the ratio of the transient A / F information to the steady A / F information is large, it is presumed that the alcohol concentration of the port-injected fuel is higher than that of the in-cylinder-injected fuel. If it exceeds the maximum value, it can be inferred that the amount of in-cylinder injected fuel is abnormally reduced. For this reason, according to this invention, generation
  • the ratio of the transient A / F information to the steady A / F information is smaller than the predetermined lower limit value, it is determined that a port injection valve clogging failure has occurred.
  • the ratio of the transient A / F information to the steady A / F information is small, it is presumed that the alcohol concentration of the port injection fuel is lower than that of the in-cylinder injection fuel. If it is too small, it can be inferred that the injection amount of the port injection fuel is abnormally reduced. For this reason, according to this invention, generation
  • Embodiment 1 is a diagram showing a schematic configuration of an internal combustion engine to which a control device as Embodiment 1 of the present invention is applied. It is a figure for demonstrating the relationship between the alcohol concentration of a fuel, and the A / F correction amount at the time of steady operation. It is a figure which shows the behavior of the exhaust air fuel ratio which arises with the change of the opening degree of a throttle when the injection ratio of port injection and in-cylinder injection is made constant. It is an example of the map which prescribed
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine (hereinafter simply referred to as an engine) to which a control device as Embodiment 1 of the present invention is applied.
  • the engine shown in FIG. 1 is a spark ignition type 4-stroke reciprocating engine.
  • the engine includes a cylinder block 6 in which a piston 8 is disposed, and a cylinder head 4 assembled to the cylinder block 6.
  • a space from the upper surface of the piston 8 to the cylinder head 4 forms a combustion chamber 10, and an intake port 18 and an exhaust port 20 are formed in the cylinder head 4 so as to communicate with the combustion chamber 10.
  • An intake valve 12 for controlling the communication state between the intake port 18 and the combustion chamber 10 is provided at a connection portion between the intake port 18 and the combustion chamber 10, and an exhaust gas is provided at a connection portion between the exhaust port 20 and the combustion chamber 10.
  • An exhaust valve 14 for controlling the communication state between the port 20 and the combustion chamber 10 is provided.
  • a spark plug 16 is attached to the cylinder head 4 so as to protrude from the top of the combustion chamber 10 into the combustion chamber 10.
  • An intake passage 30 for introducing air into the combustion chamber 10 is connected to the intake port 18 of the cylinder head 4.
  • An air cleaner 32 is provided at the upstream end of the intake passage 30, and air is taken into the intake passage 30 via the air cleaner 32.
  • An air flow meter 56 that outputs a signal corresponding to the intake amount of air is disposed downstream of the air cleaner 32.
  • the downstream portion of the intake passage 30 branches for each cylinder (for each intake port 18), and a surge tank 34 is provided at the branch point.
  • a throttle 36 is disposed upstream of the surge tank 34 in the intake passage 30.
  • the throttle 36 is provided with a throttle sensor 54 that outputs a signal corresponding to its opening.
  • the exhaust port 20 of the cylinder head 4 is connected to an exhaust passage 40 for discharging combustion gas generated by combustion in the combustion chamber 10 as exhaust gas.
  • a catalyst 42 for purifying exhaust gas is provided in the exhaust passage 40.
  • An air-fuel ratio sensor 58 that outputs a signal corresponding to the air-fuel ratio of the exhaust gas is disposed upstream of the catalyst 42 in the exhaust passage 40.
  • the engine of this embodiment is configured as a dual injection system having two injection valves 38 and 70 for each cylinder.
  • One injection valve 38 is a port injection valve provided in the vicinity of the intake port 18 in the intake passage 30, and injects fuel into the intake port 18.
  • the other injection valve 70 is an in-cylinder injection valve provided so as to face the inside of the combustion chamber 10 to the cylinder head 4, and directly injects fuel into the combustion chamber 10.
  • the injection ratio between the fuel injection amount from the port injection valve 38 (port injection amount) and the fuel injection amount from the in-cylinder injection valve 70 (in-cylinder injection amount) is arbitrarily set. Can do.
  • the engine of this Embodiment can use alcohol mixed fuel, the fuel injected from each injection valve 38 and 70 is not restricted to gasoline, Alcohol mixed gasoline and 100% alcohol are injected. Sometimes.
  • the engine of this embodiment includes an ECU (Electronic Control Unit) 50 as a control device.
  • ECU Electronic Control Unit
  • various actuators such as the port injection valve 38, the in-cylinder injection valve 70, the throttle 36, and the spark plug 16 are connected.
  • Various sensors such as a crank angle sensor 52 that outputs a signal corresponding to the rotation angle of the crankshaft 24 are connected to the input side of the ECU 50 in addition to the air flow meter 56, the throttle sensor 54, and the air-fuel ratio sensor 58 described above. ing.
  • the ECU 50 operates each actuator provided in the engine according to a predetermined control program based on the output of each sensor provided in the engine.
  • the engine of the present embodiment is an engine that can use alcohol mixed fuel. Therefore, the fuel injected from each of the injection valves 38 and 70 is not limited to gasoline, but alcohol mixed gasoline or 100% Alcohol may be injected. However, since a fuel tank (not shown) is common between the injection valves 38 and 70, the fuel injected from the two injection valves 38 and 70 is usually the same type, and fuels with different alcohol concentrations are injected separately. There is no. Therefore, even when alcohol mixed fuel is used, the air-fuel ratio of the exhaust gas can be controlled to the target air-fuel ratio by performing the above-described air-fuel ratio control.
  • the engine of the present embodiment is characterized in that the alcohol concentration of the fuel injected from the two injectors 38 and 70 is determined, respectively, and the fuel injection amount of each injector 38 and 70 is controlled to an appropriate amount.
  • the alcohol concentration determination method performed by the ECU 50 and the appropriate control of the fuel injection amount using the determined alcohol concentration will be described in detail.
  • FIG. 2 is a diagram for explaining the relationship between the alcohol concentration of fuel and the air-fuel ratio (A / F) correction amount during steady operation.
  • the alcohol concentration represents the fuel alcohol concentration in the combustion chamber 10
  • the A / F correction amount represents the feedback correction amount (fuel amount) in the air-fuel ratio control during steady operation.
  • the amount of fuel adhering to the intake port 18 is in a stable parallel state, and the air-fuel ratio of the exhaust gas is controlled to the target air-fuel ratio by air-fuel ratio control. Show.
  • the amount of deviation of the A / F correction amount from the E0 reference value when the gasoline fuel (E0) with 0% alcohol is used as the E0 reference value during steady operation.
  • the steady A / F deviation amount it can be seen that the steady A / F deviation amount increases as the alcohol concentration increases. This is because the calorific value per unit volume of alcohol is smaller than that of gasoline fuel, so in order to generate the same torque as when gasoline fuel is used using alcohol fuel, the fuel injection amount must be increased. Depending on what you need to do. This indicates that the steady A / F deviation amount has a certain relationship with the fuel alcohol concentration in the combustion chamber 10, that is, the alcohol concentration of the cylinder injection fuel, the alcohol concentration of the port injection fuel, and the injection ratio. I mean.
  • FIG. 3 is a diagram showing the behavior of the exhaust air-fuel ratio that occurs with a change in the opening of the throttle 36 when the injection ratio of port injection and in-cylinder injection is constant. From this figure, when the throttle 36 is operated to the open side, the exhaust air-fuel ratio temporarily shifts to the lean side, and conversely, when the throttle 36 is operated to the close side, the exhaust air-fuel ratio temporarily shifts to the rich side. I understand that. The temporary fluctuation of the exhaust air-fuel ratio during such transient operation is caused by the fuel injected from the port injection valve 38 once adhering to the intake port 18, and the adhering fuel is vaporized and sucked into the combustion chamber 10. This takes a considerable amount of time.
  • the fuel injection amount from each injection valve 38, 70 is increased in accordance with the increase in engine load.
  • a part of the fuel injected from the port injection valve 38 to the intake port 18 is sucked into the combustion chamber 10 together with the air in the intake port 18, but most of it is temporarily attached to the intake port 18. .
  • the amount of fuel sucked into the combustion chamber 10 from the intake port 18 increases with a delay in the amount of air, and the air-fuel ratio of the air-fuel mixture in the combustion chamber 10, that is, the exhaust air-fuel ratio is temporarily lean. It will shift to.
  • the first factor is the amount of change in engine load. Since the fuel injection amount is increased / decreased in accordance with a change in the engine load, the increase / decrease amount of the fuel injection amount increases with a large change in the engine load.
  • the second factor is the injection ratio between port injection and in-cylinder injection. If the total fuel injection amount is the same, the amount of fuel adhering to the intake port 18 is determined by the injection ratio of port injection and in-cylinder injection. As the ratio of the fuel amount adhering to the port to the required fuel amount (the fuel amount determined from the target air-fuel ratio and the in-cylinder intake air amount) increases, the delay of the fuel amount sucked into the combustion chamber 10 with respect to the air amount becomes more significant. Become. Therefore, when the engine load is increased and the total fuel injection amount is increased, the larger the ratio of the port-attached fuel amount to the required fuel amount, that is, the higher the port injection ratio in the injection ratio, the shorter the fuel amount.
  • the third factor is the alcohol concentration of the port injection fuel injected from the port injection valve 38.
  • the higher the alcohol concentration of the fuel the harder the fuel adhering to the intake port 18 is vaporized, and the longer the response delay from when the fuel injection amount of the port injection valve 38 is changed until the change in the fuel amount flowing into the combustion chamber 10 appears. .
  • the higher the alcohol concentration of the fuel the more the temporary shortage of the in-cylinder fuel amount with respect to the in-cylinder air amount becomes more prominent, and the peak value of the deviation of the exhaust air-fuel ratio to the lean side Becomes bigger.
  • the higher the fuel alcohol concentration the more the temporary excess of the fuel amount with respect to the intake air amount becomes more prominent, and the peak value of the deviation of the exhaust air / fuel ratio to the rich side becomes larger.
  • the peak value of fluctuation when using gasoline fuel (E0) with 0% alcohol is defined as the E0 reference value
  • the shift amount of the peak value from the E0 reference value is defined as the transient A / F shift amount
  • the transient A / F Similar to the peak value, the amount of / F deviation increases as the fuel alcohol concentration increases.
  • the peak value of the fluctuation of the exhaust air / fuel ratio is determined by the above three factors. This means that there is a certain relationship among the transient A / F deviation amount, the engine load change amount, the injection ratio, and the fuel alcohol concentration of the port injection fuel.
  • the steady A / F deviation amount and the transient A / F deviation amount have a certain relationship with the alcohol concentration of the fuel used. These relationships will be described in more detail below.
  • the steady A / F deviation amount depends on the alcohol concentration of the port injected fuel and the alcohol concentration of the in-cylinder injected fuel. For this reason, the steady A / F deviation amount when the injection ratio is constant changes according to the change in the alcohol concentration of the port-injected fuel, but the degree of change is somewhat limited.
  • the transient A / F deviation amount is dominated by the alcohol concentration of the port injection fuel and hardly depends on the alcohol concentration of the in-cylinder injection fuel. For this reason, when the alcohol concentration of the port-injected fuel changes, the transient A / F deviation amount is greatly affected and changes. That is, as the alcohol concentration of the port injection fuel is higher than that of the in-cylinder injection fuel, the transient A / F deviation amount becomes relatively larger than the steady A / F deviation amount. As the concentration is lower than the alcohol concentration of the in-cylinder injected fuel, it tends to be relatively small with respect to the steady A / F deviation amount.
  • FIG. 4 is an example of a map that defines the relationship between the steady A / F deviation amount and the transient A / F deviation amount and the alcohol concentration of the fuel currently used in the engine at a predetermined injection ratio and load change. It is.
  • the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are respectively associated with the operating points on the map specified by the steady A / F deviation amount and the transient A / F deviation amount.
  • the ratio of the transient A / F deviation amount to the steady A / F deviation amount is larger, the alcohol concentration of the port injection fuel becomes higher than that of the in-cylinder injection fuel.
  • the ratio of the transient A / F deviation amount to the / F deviation amount is smaller, the alcohol concentration of the port injection fuel is related to be lower than that of the in-cylinder injection fuel. Therefore, by storing a map as shown in FIG. 4 for each engine load change amount and each injection ratio, it is possible to accurately determine the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel, respectively. Become.
  • the steady A / F deviation does not change greatly, but the transient A / F deviation changes according to the injection ratio. More specifically, if the various conditions (port injection fuel alcohol concentration, in-cylinder fuel alcohol concentration, engine load change amount) are set to the same conditions, and the injection ratio is changed, the current fuel alcohol concentration is activated. The point (white circle in FIG. 4) changes while keeping the steady A / F deviation amount substantially constant. Therefore, a plurality of injection ratios for the current operating point of fuel alcohol concentration (white circle in FIG. 4) to become the operating point (black circle in FIG. 4) at which the alcohol concentration of the port-injected fuel and in-cylinder injected fuel are equal. By specifying from these maps, it is possible to form combustion conditions equivalent to the case where the fuel alcohol concentrations of these injection valves are equal.
  • FIG. 5 is a flowchart of a routine executed by the ECU 50. Note that the routine shown in FIG. 5 may be repeatedly executed while the engine is in operation, or a predetermined period after refueling or when there is a difference in alcohol concentration between the port injection fuel and the cylinder injection fuel. It may be executed only during a certain period.
  • the currently set injection ratio of port injection and in-cylinder injection is acquired (step 100).
  • the amount of change is acquired (step 102). Specifically, the ECU 50 calculates the engine load from the opening of the throttle 36, the engine speed, the output value of the air flow meter 56, and the like.
  • the amount of change in engine load acquired is the amount of change in engine load per unit time ( ⁇ engine load / sec).
  • step 104 it is determined whether or not the engine load change amount is smaller than a predetermined value.
  • ⁇ predetermined value it is determined that the engine is in steady operation.
  • the process proceeds to the next step, and the steady A / F deviation amount is detected (step 106).
  • the current A / F correction amount in the air-fuel ratio control and the A / F correction amount under the same condition when using gasoline fuel (E0) with 0% alcohol (reference A / F correction) Amount) is acquired.
  • a value obtained by subtracting the reference A / F correction amount from the current A / F correction amount is calculated as the steady A / F deviation amount.
  • step 104 if
  • the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are determined (step 110).
  • it corresponds to the injection ratio acquired in step 100 from the map group constituting the determination model of the fuel alcohol concentration and the engine load change amount during transient operation acquired in step 102.
  • a map (map as shown in FIG. 4) is selected.
  • the steady A / F deviation amount acquired in step 106 and the transient A / F deviation amount acquired in step 108 are applied to the selected map. Thereby, the alcohol concentration of the in-cylinder injected fuel and the port injected fuel currently used in the engine is accurately determined.
  • the injection ratio is specified so that the in-cylinder combustion conditions are equivalent to those in the case where the fuel alcohol concentrations are equal (Ste 112). If the injection division ratio is changed, the steady A / F deviation amount does not change greatly, but the transient A / F deviation amount changes according to the injection division ratio. Therefore, specifically, here, the operating point of the current fuel alcohol concentration (white circle in FIG. 4) is the operating point (black circle in FIG. 4) at which the alcohol concentrations of the cylinder injection fuel and the port injection fuel are equal. The map at the position is selected, and the injection ratio associated with the map is specified. Next, the injection ratio currently used in the engine is changed to the injection ratio acquired in step 112 (step 114).
  • the in-cylinder injection fuel and the port injection fuel that are currently used are utilized by utilizing the relationship between the steady A / F deviation amount and the transient A / F deviation amount.
  • the alcohol concentration can be accurately determined.
  • even if the alcohol concentrations of the in-cylinder injected fuel and the port injected fuel are different by changing the injection ratio, these fuel alcohol concentrations It is possible to form a combustion condition equivalent to the case where is equal. As a result, a situation in which the exhaust air-fuel ratio becomes rough can be suppressed, so that it is possible to effectively suppress the deterioration of emission and the deterioration of drivability.
  • the steady A / F deviation amount and the transient A / F deviation amount based on the case where gasoline fuel (E0) that is 0% alcohol is used are used.
  • the A / F correction amount and A / F fluctuation peak value during operation may be used as they are.
  • the steady A / F deviation amount and the transient A / F deviation amount are based on the case where gasoline fuel (E0) is used, so a common model should be used even if the engine characteristics are different. It is effective in that
  • the alcohol concentration of the port-injected fuel and the in-cylinder-injected fuel is determined using the amount of change in engine load, steady A / F deviation, transient A / F deviation, and injection ratio. Is determined from the map, and the injection ratio is specified from the map using the determined alcohol concentration.
  • the injection ratio need not necessarily be specified by a map.
  • the optimum fuel injection ratio may be specified by estimating the fuel adhesion amount from the determined alcohol concentration and the operating conditions.
  • the transient A / F deviation amount is the “transient A / F information” in the first invention
  • the steady A / F deviation amount is the “steady A / F deviation” in the first invention.
  • F information respectively.
  • the ECU 50 executes the process of step 100, so that the “injection ratio acquisition means” in the first aspect of the invention executes the process of step 102.
  • the “load change amount acquisition means” in the first invention executes the process in step 106, so that the “steady A / F information acquisition means” in the first invention performs the process in step 108.
  • the “transient A / F information acquisition means” in the first invention realizes the “changing means” in the first invention by executing the processing of step 114 above. .
  • the ECU 50 executes the process of step 110, so that the “first means” in the second aspect of the invention executes the process of step 112.
  • the “second means” in the second invention is realized.
  • FIG. 6 Features of Embodiment 2
  • FIG. 7 a second embodiment of the present invention will be described with reference to FIG. 6 and FIG.
  • the second embodiment can be realized by executing a routine shown in FIG. 7 to be described later using the system shown in FIG.
  • the alcohol concentration of the port-injected fuel and the in-cylinder-injected fuel is mapped using the change amount of the engine load, the steady A / F deviation amount, the transient A / F deviation amount, and the injection ratio. It is decided to judge from.
  • the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are associated with the operating points on the map specified by the steady A / F deviation amount and the transient A / F deviation amount, respectively. It has been.
  • the ratio of the transient A / F deviation amount to the steady A / F deviation amount is larger, the alcohol concentration of the port injection fuel becomes higher than that of the in-cylinder injection fuel.
  • the ratio of the transient A / F deviation amount to the / F deviation amount is smaller, the alcohol concentration of the port injection fuel is related to be lower than that of the in-cylinder injection fuel.
  • FIG. 6 is an example of a map that defines the relationship between the steady A / F deviation amount and the transient A / F deviation amount and the alcohol concentration of the fuel currently used in the engine at a predetermined injection ratio and load change. is there.
  • the A region in this map is a region that belongs when the steady A / F displacement amount corresponding to the transient A / F displacement amount is unexpectedly small, and belongs to the region in the normal control range. Absent. Therefore, when the current operating condition belongs to the A region, it can be determined that the in-cylinder injected fuel has not reached the required amount, that is, the in-cylinder injection valve 70 is clogged.
  • the region B in the figure is a region that belongs when the transient A / F shift amount corresponding to the steady A / F shift amount is unexpectedly small, and belongs to the region in the normal control range. There is no. Therefore, when the current operating condition belongs to the B region, it can be determined that the port injection fuel has not reached the required amount, that is, the port injection valve 38 is clogged.
  • FIG. 7 is a flowchart of a routine in which the ECU 50 determines whether or not a clogging abnormality has occurred in the port injection valve 38 and the in-cylinder injection valve 70. Note that the routine shown in FIG. 7 is repeatedly executed during operation of the engine.
  • the currently set injection ratio of port injection and in-cylinder injection is acquired (step 200).
  • the amount of change is acquired (step 202).
  • ⁇ predetermined value is established, the steady A / F deviation amount is detected (step 206).
  • ⁇ predetermined value is not established, a transient A / F deviation amount is detected (step 208).
  • steps 200 to 208 specifically, the same processing as the processing in steps 100 to 108 is executed.
  • step 210 it is determined whether or not the operating point on the map belongs to a predetermined area A (step 210). Specifically, the map corresponding to the injection ratio acquired in step 200 and the change amount of the engine load during the transient operation acquired in step 202 from the map group constituting the determination model (FIG. 6). Is selected). Then, the steady A / F deviation amount acquired in step 206 and the transient A / F deviation amount acquired in step 208 are applied to the selected map. Then, it is determined whether or not the applied operating point on the map belongs to the A region.
  • the A area is stored in advance on the map as an area where the steady A / F deviation amount corresponding to the transient A / F deviation amount is unexpectedly small.
  • step 210 determines whether or not the operating point on the map belongs to the area A.
  • the process proceeds to the next step, and whether or not the operating point on the map belongs to the predetermined area B is determined.
  • a determination is made (step 214). Specifically, the operating point on the map is applied by the same processing as in step 210, and it is determined whether or not this operating point belongs to the B region.
  • the B area is stored in advance on the map as an area where the transient A / F deviation amount corresponding to the steady A / F deviation amount is unexpectedly small.
  • step 216 when it is determined that the operating point on the map belongs to the region B, it is determined that the injection amount from the port injection valve 38 has decreased, the process proceeds to the next step, and the port injection valve 38 It is determined that there is a clogging abnormality (step 216).
  • step 214 if it is determined in step 214 that the operating point on the map does not belong to the B region, it is determined that there is no clogging abnormality in the port injection valve 38 and the in-cylinder injection valve 70, and the next step Then, it is determined that these injection valves are normal (step 218).
  • the port injection valve 38 and the in-cylinder injection valve that are currently used by utilizing the relationship between the steady A / F deviation amount and the transient A / F deviation amount.
  • the presence / absence of abnormality due to clogging of 70 can be accurately determined.
  • the steady A / F deviation amount and the transient A / F deviation amount based on the case where gasoline fuel (E0) that is 0% alcohol is used are used.
  • the A / F correction amount and A / F fluctuation peak value during operation may be used as they are.
  • the steady A / F deviation amount and the transient A / F deviation amount are based on the case where gasoline fuel (E0) is used, so a common model should be used even if the engine characteristics are different. It is effective in that
  • the transient A / F deviation amount is “transient A / F information” in the first invention
  • the steady A / F deviation amount is “steady A / F information” in the first invention. "F information” respectively.
  • the ECU 50 executes the process of step 200, so that the “injection ratio acquisition unit” in the first aspect of the invention executes the process of step 202.
  • the “load change amount acquisition means” in the first invention executes the process in step 206, so that the “steady A / F information acquisition means” in the first invention performs the process in step 208.
  • the “transient A / F information acquisition means” in the first invention is realized.
  • the ECU 50 executes the process of step 210, and the “determination means” in the sixth or seventh invention executes the process of step 214.
  • the “determination means” in the sixth or eighth invention is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The objective of the present invention is to achieve excellent combustion in an internal combustion engine equipped with a port injection valve and an in-cylinder injection valve, even when there is a difference in the alcohol concentration of the fuel injected from these injection valves. The injection ratio that is currently set for the port injection and the in-cylinder injection is obtained. In addition, the A/F correction amount (the steady A/F deviation amount) of an E0 standard during steady operation is obtained. When the engine load changes, the amount of that change is obtained, and the temporary variation in the exhaust air-fuel ratio in conjunction with that change in the engine load is detected, and the peak value (the transient A/F deviation amount) of the E0 standard for that variation is obtained. Then, the respective alcohol concentrations for the port injection fuel and the in-cylinder injection fuel currently being used for the engine are determined by applying the steady A/F deviation amount, the amount of change in the engine load, the transient A/F deviation amount corresponding thereto, and the injection ratio, to a determination model. Using the fuel alcohol concentrations thus determined, the injection ratio is changed appropriately to achieve excellent combustion.

Description

内燃機関の制御装置Control device for internal combustion engine
 この発明は、内燃機関の制御装置に係り、特に、吸気ポートに燃料を噴射するポート噴射弁と、筒内に燃料を噴射する筒内噴射弁とを備え、両噴射弁による噴分け比率を変更可能な内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine, and in particular, includes a port injection valve that injects fuel into an intake port and an in-cylinder injection valve that injects fuel into a cylinder, and changes an injection ratio by both injection valves. The present invention relates to a control apparatus for a possible internal combustion engine.
 自動車用の内燃機関(4ストロークレシプロエンジン)として、複数種類の燃料、例えばガソリン等の炭化水素系燃料とアルコール(エタノールやメタノール等)とをそれぞれ使用可能な、或いは、それらの混合燃料を使用可能な内燃機関が知られている。そのような内燃機関では、使用されている燃料のアルコール濃度に応じた制御が必要とされる。具体的には、アルコールとガソリンとでは単位体積あたりの発熱量が大きく異なるため、燃料のアルコール濃度に応じた空燃比制御が必要となる。 As an internal combustion engine (4-stroke reciprocating engine) for automobiles, it is possible to use multiple types of fuel, for example, hydrocarbon fuels such as gasoline and alcohol (ethanol, methanol, etc.), or a mixture of these. There are known internal combustion engines. In such an internal combustion engine, control according to the alcohol concentration of the fuel used is required. Specifically, since the calorific value per unit volume differs greatly between alcohol and gasoline, air-fuel ratio control according to the alcohol concentration of the fuel is required.
 ところが、使用される燃料のアルコール濃度は必ずしも既知ではなく、また、常に一定であるとは限らない。市販されているアルコール混合燃料にはアルコール濃度の異なるものが複数種類あるため、燃料タンク内の燃料とは異なるアルコール濃度の燃料が給油により足される場合もある。このため、アルコール混合燃料の使用が想定される内燃機関では、使用されている燃料のアルコール濃度を知るための手段が必要となる。 However, the alcohol concentration of the fuel used is not always known and is not always constant. Since there are a plurality of types of commercially available alcohol-mixed fuels having different alcohol concentrations, fuel with an alcohol concentration different from the fuel in the fuel tank may be added by refueling. For this reason, in an internal combustion engine in which use of an alcohol-mixed fuel is assumed, a means for knowing the alcohol concentration of the fuel used is required.
 ところで、上記の手段として従来一般に使用されているのがアルコール濃度センサである。例えば、特開2010-24996号公報には、アルコール濃度センサを備える燃料噴射制御装置が開示されている。具体的には、この装置のエンジンは、ポート噴射用インジェクタと筒内噴射用インジェクタとが設けられたデュアル噴射式の内燃機関であって、ポートと筒内とに燃料を噴き分けることが可能になっている。また、各インジェクタに燃料を供給するための燃料供給系の途中には、アルコールセンサが設けられている。アルコールセンサは燃料供給系を通過する燃料のアルコール濃度を検出する。検出されたアルコール濃度は、空燃比制御における燃料噴射量の補正量の算出に利用される。 Incidentally, an alcohol concentration sensor is conventionally used as the above means. For example, Japanese Patent Laid-Open No. 2010-24996 discloses a fuel injection control device including an alcohol concentration sensor. Specifically, the engine of this device is a dual-injection internal combustion engine provided with a port injector and an in-cylinder injector, and can separately inject fuel into the port and the cylinder. It has become. An alcohol sensor is provided in the middle of the fuel supply system for supplying fuel to each injector. The alcohol sensor detects the alcohol concentration of the fuel passing through the fuel supply system. The detected alcohol concentration is used for calculating the correction amount of the fuel injection amount in the air-fuel ratio control.
日本特開2010-24996号公報Japanese Unexamined Patent Publication No. 2010-24996
 しかしながら、上述した従来の技術のようにポート噴射弁と筒内噴射弁とを共に備えるタイプの内燃機関の場合、各燃料噴射弁からの燃料噴射量や燃料タンクから各燃料噴射弁までの燃料配管長がそれぞれ異なる。このため、異なるアルコール濃度の燃料が燃料タンク内に給油されたときに、新たな燃料が各燃料噴射弁に到達するタイミングが一致せず、その結果、各燃料噴射弁から噴射される燃料のアルコール濃度が異なる濃度となってしまう。上記従来の技術では、燃料タンクの直近の燃料配管にアルコール濃度センサを備える構成のため、各燃料噴射弁から噴射される燃料のアルコール濃度を個別に検出することができない。このため、各燃料噴射弁から噴射される燃料のアルコール濃度が異なる濃度となる状況が発生した場合に、空燃比補正を精度よく行うことができず、エミッションの悪化やドライバビリティの悪化を招くおそれがある。 However, in the case of an internal combustion engine of a type that includes both a port injection valve and an in-cylinder injection valve as in the prior art described above, the fuel injection amount from each fuel injection valve and the fuel piping from the fuel tank to each fuel injection valve Each length is different. For this reason, when fuels having different alcohol concentrations are supplied into the fuel tank, the timing at which new fuel reaches each fuel injection valve does not match, and as a result, the alcohol of fuel injected from each fuel injection valve The density will be different. In the above conventional technique, since the alcohol concentration sensor is provided in the fuel pipe nearest to the fuel tank, the alcohol concentration of the fuel injected from each fuel injection valve cannot be detected individually. For this reason, when a situation occurs in which the alcohol concentration of the fuel injected from each fuel injection valve becomes a different concentration, the air-fuel ratio correction cannot be performed accurately, which may lead to deterioration of emission and drivability. There is.
 この発明は、上述のような課題を解決するためになされたもので、吸気ポートに燃料を噴射するポート噴射弁と、筒内に燃料を噴射する筒内噴射弁とを備える内燃機関において、ポート噴射弁から噴射される燃料のアルコール濃度と筒内噴射弁から噴射される燃料のアルコール濃度とが異なる場合であっても、良好な燃焼を実現することのできる内燃機関の制御装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. In an internal combustion engine including a port injection valve for injecting fuel into an intake port and an in-cylinder injection valve for injecting fuel into a cylinder, To provide a control device for an internal combustion engine capable of realizing good combustion even when the alcohol concentration of fuel injected from an injection valve is different from the alcohol concentration of fuel injected from a cylinder injection valve With the goal.
 第1の発明は、上記の目的を達成するため、吸気ポートに燃料を噴射するポート噴射弁と、筒内に燃料を噴射する筒内噴射弁とを備え、前記内燃機関の排気空燃比が目標空燃比となるように前記ポート噴射弁および前記筒内噴射弁から噴射される燃料噴射量を制御する空燃比制御を行う内燃機関の制御装置であって、
 前記ポート噴射弁からの燃料噴射量と前記筒内噴射弁からの燃料噴射量との噴分け比率を取得する手段と、
 前記内燃機関の負荷が変化した場合に、負荷の変化量を取得する手段と、
 前記内燃機関の負荷が変化した場合に生じる排気空燃比の一時的な変動を検出し、そのピーク値に関連する情報を過渡A/F情報として取得する過渡A/F情報取得手段と、
 前記内燃機関の負荷が変化する直前における空燃比の補正量に関連する情報を定常A/F情報として取得する定常A/F情報手段と、
 負荷の変化量、それに対応する過渡A/F情報、定常A/F情報、及び、そのときの噴分け比率に基づいて、次回の燃料噴射時の噴分け比率を変更する変更手段と、
 を備えることを特徴としている。
In order to achieve the above object, a first invention includes a port injection valve that injects fuel into an intake port and a cylinder injection valve that injects fuel into a cylinder, and the exhaust air-fuel ratio of the internal combustion engine is a target. A control device for an internal combustion engine that performs air-fuel ratio control for controlling a fuel injection amount injected from the port injection valve and the in-cylinder injection valve so as to be an air-fuel ratio,
Means for obtaining an injection ratio between a fuel injection amount from the port injection valve and a fuel injection amount from the in-cylinder injection valve;
Means for acquiring a change amount of the load when the load of the internal combustion engine changes;
Transient A / F information acquisition means for detecting a temporary fluctuation of the exhaust air-fuel ratio that occurs when the load of the internal combustion engine changes, and acquiring information related to the peak value as transient A / F information;
Steady A / F information means for obtaining information related to the correction amount of the air-fuel ratio immediately before the load of the internal combustion engine changes as steady A / F information;
Change means for changing the injection ratio at the next fuel injection based on the load change amount, the corresponding transient A / F information, the steady A / F information, and the injection ratio at that time;
It is characterized by having.
 第2の発明は、第1の発明において、
 前記変更手段は、
 負荷の変化量、過渡A/F情報、定常A/F情報、及び、噴分け比率に、前記ポート噴射弁から噴射されるポート噴射燃料および前記筒内噴射弁から噴射される筒内噴射燃料のアルコール濃度を関連付けた判定モデルと、
 負荷の変化量、それに対応する過渡A/F情報、定常A/F情報、及び、そのときの噴分け比率を前記判定モデルに当てはめることで、ポート噴射燃料および筒内噴射燃料のアルコール濃度をそれぞれ判定する第1の手段と、
 ポート噴射燃料および筒内噴射燃料のアルコール濃度に基づいて、次回の燃料噴射時の噴分け比率を特定する第2の手段と、
 を含むことを特徴としている。
According to a second invention, in the first invention,
The changing means is
The amount of change in load, transient A / F information, steady A / F information, and injection ratio of port injection fuel injected from the port injection valve and in-cylinder injection fuel injected from the in-cylinder injection valve A decision model that correlates alcohol concentration;
By applying the change amount of the load, the corresponding transient A / F information, the steady A / F information, and the injection ratio at that time to the determination model, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are respectively determined. A first means for determining;
A second means for specifying an injection ratio at the next fuel injection based on the alcohol concentration of the port injection fuel and the in-cylinder injection fuel;
It is characterized by including.
 第3の発明は、第2の発明において、
 前記第2の手段は、負荷の変化量、定常A/F情報、及び、そのときの噴分け比率を前記判定モデルに当てはめることで、ポート噴射燃料および筒内噴射燃料のアルコール濃度が等しい場合の過渡A/F情報を過渡A/F基準情報として特定し、負荷の変化量、過渡A/F基準情報、定常A/F情報、及び、そのときのポート噴射燃料および筒内噴射燃料のアルコール濃度を前記判定モデルに当てはめることで、次回の燃料噴射時の噴分け比率を特定することを特徴としている。
According to a third invention, in the second invention,
The second means applies the change amount of the load, the steady A / F information, and the injection ratio at that time to the determination model, so that the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal. The transient A / F information is specified as the transient A / F reference information, the load change amount, the transient A / F reference information, the steady A / F information, and the alcohol concentration of the port injection fuel and the in-cylinder injection fuel at that time Is applied to the determination model to specify the injection ratio at the next fuel injection.
 第4の発明は、第2または第3の発明において、
 前記定常時A/F情報取得手段は、前記ピーク値と、アルコール濃度0%のガソリン燃料を用いた場合の同条件でのピーク値との差分量を、前記過渡時A/F情報として取得することを特徴としている。
4th invention is 2nd or 3rd invention,
The steady-state A / F information acquisition means acquires, as the transient A / F information, a difference amount between the peak value and a peak value under the same condition when using gasoline fuel having an alcohol concentration of 0%. It is characterized by that.
 第5の発明は、第2乃至第4の何れか1つの発明において、
 前記定常時A/F情報取得手段は、前記空燃比の補正量と、アルコール濃度0%のガソリン燃料を用いた場合の同条件での空燃比の補正量との差分量を、前記定常時A/F情報として取得することを特徴としている。
According to a fifth invention, in any one of the second to fourth inventions,
The steady-state A / F information acquisition means obtains the difference amount between the correction amount of the air-fuel ratio and the correction amount of the air-fuel ratio under the same condition when using gasoline fuel having an alcohol concentration of 0%. / F information is obtained.
 第6の発明は、第1乃至第5の何れか1つの発明において、
 負荷の変化量、それに対応する過渡A/F情報、定常A/F情報、及び、そのときの噴分け比率に基づいて、前記ポート噴射弁或いは前記筒内噴射弁の異常を判定する判定手段を更に備えることを特徴としている。
A sixth invention is any one of the first to fifth inventions,
Determining means for determining an abnormality of the port injection valve or the in-cylinder injection valve based on a load change amount, transient A / F information corresponding thereto, steady A / F information, and an injection ratio at that time; Furthermore, it is characterized by providing.
 第7の発明は、第6の発明において、
 前記判定手段は、定常A/F情報に対する過渡A/F情報の比率が、負荷の変化量、及び、そのときの噴分け比率に基づいて定められた所定の上限値よりも大きい場合に、前記筒内噴射弁の詰まり故障の発生を判定することを特徴としている。
A seventh invention is the sixth invention, wherein
When the ratio of the transient A / F information to the steady A / F information is greater than a predetermined upper limit value determined based on the load change amount and the injection ratio at that time, It is characterized by determining occurrence of clogging failure of the in-cylinder injection valve.
 第8の発明は、第6または第7の発明において、
 前記判定手段は、定常A/F情報に対する過渡A/F情報の比率が、負荷の変化量、及び、そのときの噴分け比率に基づいて定められた所定の下限値よりも小さい場合に、前記ポート噴射弁の詰まり故障の発生を判定することを特徴としている。
The eighth invention is the sixth or seventh invention, wherein
When the ratio of the transient A / F information to the steady A / F information is smaller than a predetermined lower limit value determined based on the load change amount and the injection ratio at that time, It is characterized by determining the occurrence of clogging failure of the port injection valve.
 第1の発明によれば、負荷の変動量、それに対応するピーク値に関連する情報、負荷の変動直前の空燃比補正量に関連する情報、及び噴分け比率に基づいて、次回の燃料噴射の噴分け比率が判定される。ここで、ポート噴射弁から噴射されるポート噴射燃料のポート付着量は、アルコール濃度の高い燃料ほど増大する傾向にある。このため、過渡運転時に生じるピーク値は、ポート噴射燃料のアルコール濃度が高いほど大きくなる傾向にある。また、内燃機関の空燃比補正量は、アルコール濃度の高い燃料が噴射されるほど増大する傾向にある。このため、定常運転時の空燃比補正量は、燃料のアルコール濃度が高いほど大きくなる傾向にある。つまり、本発明によれば、上記の情報の関係を用いることにより、ポート噴射燃料および筒内噴射燃料のアルコール濃度に関連する情報を得ることができる。したがって、本発明によれば、当該情報に基づいて次回の噴分け比率を変更することにより、エミッションの悪化やドライバビリティの悪化を有効に抑制することが可能となる。 According to the first aspect of the present invention, based on the load fluctuation amount, information related to the corresponding peak value, information related to the air-fuel ratio correction amount immediately before the load change, and the injection ratio, the next fuel injection is performed. An injection ratio is determined. Here, the port adhesion amount of the port injection fuel injected from the port injection valve tends to increase as the alcohol concentration increases. For this reason, the peak value generated during the transient operation tends to increase as the alcohol concentration of the port-injected fuel increases. Further, the air-fuel ratio correction amount of the internal combustion engine tends to increase as fuel with a high alcohol concentration is injected. For this reason, the air-fuel ratio correction amount during steady operation tends to increase as the alcohol concentration of the fuel increases. That is, according to the present invention, information related to the alcohol concentration of the port-injected fuel and the in-cylinder-injected fuel can be obtained by using the relationship of the above information. Therefore, according to the present invention, it is possible to effectively suppress the deterioration of emission and the deterioration of drivability by changing the next injection ratio based on the information.
 第2の発明によれば、負荷の変動量、それに対応するピーク値に関連する情報、負荷の変動直前の空燃比補正量に関連する情報、及び噴分け比率によって特定される燃焼状態に、ポート噴射燃料および筒内噴射燃料のアルコール濃度がそれぞれ関連付けられた判定モデルが予め用意されている。そして、実際に取得された負荷の変動量、それに対応する過渡A/F情報、定常A/F情報、及び噴分け比率は、当該判定モデルに当てはめられる。このため、本発明によれば、ポート噴射燃料および筒内噴射燃料のアルコール濃度を精度よく判定することができるので、判定した濃度情報を用いることにより、エミッションの悪化やドライバビリティの悪化を有効に抑制しうる噴分け比率を特定することが可能となる。 According to the second aspect of the invention, the port changes to the combustion state specified by the load fluctuation amount, information related to the corresponding peak value, information related to the air-fuel ratio correction amount immediately before the load fluctuation, and the injection ratio. Determination models in which the alcohol concentrations of the injected fuel and the in-cylinder injected fuel are associated with each other are prepared in advance. Then, the actually obtained load fluctuation amount, the corresponding transient A / F information, the steady A / F information, and the injection ratio are applied to the determination model. Therefore, according to the present invention, it is possible to accurately determine the alcohol concentration of the port injected fuel and the in-cylinder injected fuel, and therefore, by using the determined concentration information, it is possible to effectively reduce the emission and the drivability. It is possible to specify the injection ratio that can be suppressed.
 第3の発明によれば、負荷の変化量、定常A/F情報、及び、そのときの噴分け比率を前記判定モデルに当てはめることで、ポート噴射燃料および筒内噴射燃料のアルコール濃度が等しい場合の過渡A/F情報(過渡A/F基準情報)が特定される。そして、負荷の変化量、過渡A/F基準情報、定常A/F情報、及び、そのときのポート噴射燃料および筒内噴射燃料のアルコール濃度を判定モデルに当てはめることにより、次回の燃料噴射時の噴分け比率が特定される。このため、本発明によれば、ポート噴射燃料および筒内噴射燃料のアルコール濃度が異なる場合であっても、ポート噴射燃料および筒内噴射燃料のアルコール濃度が等しい場合の燃焼状態と同等の燃焼状態を形成するための噴分け比率を特定することができるので、エミッションの悪化やドライバビリティの悪化を有効に抑制することが可能となる。 According to the third invention, when the load change amount, the steady A / F information, and the injection ratio at that time are applied to the determination model, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal. Transient A / F information (transient A / F reference information) is specified. Then, by applying the load change amount, transient A / F reference information, steady A / F information, and the alcohol concentration of the port injection fuel and in-cylinder injection fuel at that time to the determination model, The injection ratio is specified. Therefore, according to the present invention, even when the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are different, the combustion state equivalent to the combustion state when the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal. Therefore, it is possible to effectively determine the deterioration of emission and the deterioration of drivability.
 第4の発明によれば、負荷が変化する過渡時に生じる空燃比の一時的な変動におけるピーク値と、アルコール濃度0%のガソリン燃料(E0)を用いた場合の同条件でのピーク値との差分量が過渡A/F情報として取得される。E0を基準としたピーク値の差分量には、機関特性の影響が重畳し難い。このため、本発明によれば、幅広い機関構成において、共通の判定モデルを使用することができる。 According to the fourth aspect of the present invention, the peak value in the temporary fluctuation of the air-fuel ratio that occurs at the time when the load changes and the peak value under the same condition when using gasoline fuel (E0) with an alcohol concentration of 0% The difference amount is acquired as transient A / F information. It is difficult to superimpose the influence of the engine characteristic on the difference value of the peak value based on E0. For this reason, according to the present invention, a common determination model can be used in a wide range of engine configurations.
 第5の発明によれば、負荷が変化する直前の定常時における空燃比補正量と、アルコール濃度0%のガソリン燃料(E0)を用いた場合の同条件での空燃比補正量との差分量が定常A/F情報として取得される。E0を基準とした空燃比補正量の差分量には、機関特性の影響が重畳し難い。このため、本発明によれば、幅広い機関構成において、共通のモデルを使用することができる。 According to the fifth aspect of the present invention, the difference between the air-fuel ratio correction amount in the steady state immediately before the load changes and the air-fuel ratio correction amount under the same condition when using gasoline fuel (E0) with an alcohol concentration of 0%. Is acquired as steady A / F information. It is difficult to superimpose the influence of engine characteristics on the difference amount of the air-fuel ratio correction amount based on E0. For this reason, according to the present invention, a common model can be used in a wide range of engine configurations.
 第6の発明によれば、負荷の変動量、それに対応するピーク値に関連する情報(過渡A/F情報)、負荷の変動直前の空燃比補正量に関連する情報(定常A/F情報)、及び噴分け比率に基づいて、ポート噴射弁或いは筒内噴射弁の故障発生有無が判定される。上記の情報の関係を用いることにより、ポート噴射燃料および筒内噴射燃料のアルコール濃度に関連した情報を得ることができる。この情報が異常値を示している場合には、ポート噴射弁或いは筒内噴射弁の故障によって正しく燃料が噴射されていないことが考えられる。このため、本発明によれば、上記情報を用いることにより、ポート噴射弁或いは筒内噴射弁の故障の発生有無を精度よく判定することができる。 According to the sixth aspect of the invention, the load fluctuation amount, information related to the corresponding peak value (transient A / F information), and information related to the air-fuel ratio correction amount immediately before the load fluctuation (steady A / F information) Based on the injection ratio, it is determined whether or not a failure has occurred in the port injection valve or the in-cylinder injection valve. By using the relationship of the above information, information related to the alcohol concentration of the port injection fuel and the in-cylinder injection fuel can be obtained. When this information indicates an abnormal value, it is considered that fuel is not correctly injected due to a failure of the port injection valve or the in-cylinder injection valve. Therefore, according to the present invention, it is possible to accurately determine whether or not a failure of the port injection valve or the in-cylinder injection valve has occurred by using the above information.
 第7の発明によれば、定常A/F情報に対する過渡A/F情報の比率が所定の上限値よりも大きい場合に、筒内噴射弁の詰まり故障の発生が判定される。定常A/F情報に対する過渡A/F情報の比率が大きい場合には、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも高いことが推認されるが、係る比率が想定される限度を越えて大きい場合には、筒内噴射燃料の噴射量が異常に低下していることが推認できる。このため、本発明によれば、筒内噴射弁の詰まり故障の発生を精度よく判定することができる。 According to the seventh aspect, when the ratio of the transient A / F information to the steady A / F information is larger than the predetermined upper limit value, it is determined that a clogging failure of the in-cylinder injection valve has occurred. When the ratio of the transient A / F information to the steady A / F information is large, it is presumed that the alcohol concentration of the port-injected fuel is higher than that of the in-cylinder-injected fuel. If it exceeds the maximum value, it can be inferred that the amount of in-cylinder injected fuel is abnormally reduced. For this reason, according to this invention, generation | occurrence | production of the clogging failure of a cylinder injection valve can be determined with sufficient precision.
 第8の発明によれば、定常A/F情報に対する過渡A/F情報の比率が所定の下限値よりも小さい場合に、ポート噴射弁の詰まり故障の発生が判定される。定常A/F情報に対する過渡A/F情報の比率が小さい場合には、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも低いことが推認されるが、係る比率が想定される限度を越えて小さい場合には、ポート噴射燃料の噴射量が異常に低下していることが推認できる。このため、本発明によれば、ポート噴射弁の詰まり故障の発生を精度よく判定することができる。 According to the eighth aspect, when the ratio of the transient A / F information to the steady A / F information is smaller than the predetermined lower limit value, it is determined that a port injection valve clogging failure has occurred. When the ratio of the transient A / F information to the steady A / F information is small, it is presumed that the alcohol concentration of the port injection fuel is lower than that of the in-cylinder injection fuel. If it is too small, it can be inferred that the injection amount of the port injection fuel is abnormally reduced. For this reason, according to this invention, generation | occurrence | production of the clogging failure of a port injection valve can be determined accurately.
本発明の実施の形態1としての制御装置が適用される内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine to which a control device as Embodiment 1 of the present invention is applied. 燃料のアルコール濃度と定常運転時のA/F補正量との関係を説明するための図である。It is a figure for demonstrating the relationship between the alcohol concentration of a fuel, and the A / F correction amount at the time of steady operation. ポート噴射と筒内噴射との噴分け比率を一定としたときの、スロットルの開度の変化に伴い生じる排気空燃比の挙動を示す図である。It is a figure which shows the behavior of the exhaust air fuel ratio which arises with the change of the opening degree of a throttle when the injection ratio of port injection and in-cylinder injection is made constant. 所定の噴分け比率および負荷変化における、定常A/Fズレ量および過渡A/Fズレ量と現在エンジンで使用されている燃料のアルコール濃度との関係を規定したマップの一例である。It is an example of the map which prescribed | regulated the relationship between the steady A / F deviation | shift amount and transient A / F deviation | shift amount, and the alcohol concentration of the fuel currently used with an engine in a predetermined injection ratio and load change. 本発明の実施の形態1において実行されるルーチンのフローチャートである。It is a flowchart of the routine performed in Embodiment 1 of the present invention. 所定の噴分け比率および負荷変化における、定常A/Fズレ量および過渡A/Fズレ量と現在エンジンで使用されている燃料のアルコール濃度との関係を規定したマップの一例である。It is an example of the map which prescribed | regulated the relationship between the steady A / F deviation | shift amount and transient A / F deviation | shift amount, and the alcohol concentration of the fuel currently used with an engine in a predetermined injection ratio and load change. 本発明の実施の形態2において実行されるルーチンのフローチャートである。It is a flowchart of the routine performed in Embodiment 2 of this invention.
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. The present invention is not limited to the following embodiments.
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態1としての制御装置が適用される内燃機関(以下、単にエンジンという)の概略構成を示す図である。図1に示すエンジンは、火花点火式の4ストロークレシプロエンジンである。このエンジンは、内部にピストン8が配置されたシリンダブロック6と、シリンダブロック6に組み付けられたシリンダヘッド4を備えている。ピストン8の上面からシリンダヘッド4までの空間は燃焼室10を形成し、この燃焼室10に連通するように吸気ポート18と排気ポート20がシリンダヘッド4に形成されている。吸気ポート18と燃焼室10との接続部には、吸気ポート18と燃焼室10との連通状態を制御する吸気バルブ12が設けられ、排気ポート20と燃焼室10との接続部には、排気ポート20と燃焼室10との連通状態を制御する排気バルブ14が設けられている。また、シリンダヘッド4には、燃焼室10の頂部から燃焼室10内に突出するように点火プラグ16が取り付けられている。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine (hereinafter simply referred to as an engine) to which a control device as Embodiment 1 of the present invention is applied. The engine shown in FIG. 1 is a spark ignition type 4-stroke reciprocating engine. The engine includes a cylinder block 6 in which a piston 8 is disposed, and a cylinder head 4 assembled to the cylinder block 6. A space from the upper surface of the piston 8 to the cylinder head 4 forms a combustion chamber 10, and an intake port 18 and an exhaust port 20 are formed in the cylinder head 4 so as to communicate with the combustion chamber 10. An intake valve 12 for controlling the communication state between the intake port 18 and the combustion chamber 10 is provided at a connection portion between the intake port 18 and the combustion chamber 10, and an exhaust gas is provided at a connection portion between the exhaust port 20 and the combustion chamber 10. An exhaust valve 14 for controlling the communication state between the port 20 and the combustion chamber 10 is provided. A spark plug 16 is attached to the cylinder head 4 so as to protrude from the top of the combustion chamber 10 into the combustion chamber 10.
 シリンダヘッド4の吸気ポート18には、空気を燃焼室10内に導入するための吸気通路30が接続されている。吸気通路30の上流端にはエアクリーナ32が設けられ、空気はエアクリーナ32を介して吸気通路30内に取り込まれる。エアクリーナ32の下流には、空気の吸入量に応じた信号を出力するエアフローメータ56が配置されている。吸気通路30の下流部は気筒毎(吸気ポート18毎)に分岐し、その分岐点にはサージタンク34が設けられている。吸気通路30のサージタンク34の上流にはスロットル36が配置されている。スロットル36には、その開度に応じた信号を出力するスロットルセンサ54が付設されている。 An intake passage 30 for introducing air into the combustion chamber 10 is connected to the intake port 18 of the cylinder head 4. An air cleaner 32 is provided at the upstream end of the intake passage 30, and air is taken into the intake passage 30 via the air cleaner 32. An air flow meter 56 that outputs a signal corresponding to the intake amount of air is disposed downstream of the air cleaner 32. The downstream portion of the intake passage 30 branches for each cylinder (for each intake port 18), and a surge tank 34 is provided at the branch point. A throttle 36 is disposed upstream of the surge tank 34 in the intake passage 30. The throttle 36 is provided with a throttle sensor 54 that outputs a signal corresponding to its opening.
 また、シリンダヘッド4の排気ポート20には、燃焼室10内での燃焼により生成された燃焼ガスを排気ガスとして排出するための排気通路40が接続されている。排気通路40には、排気ガスを浄化するための触媒42が設けられている。排気通路40における触媒42の上流には、排気ガスの空燃比に応じた信号を出力する空燃比センサ58が配置されている。 Further, the exhaust port 20 of the cylinder head 4 is connected to an exhaust passage 40 for discharging combustion gas generated by combustion in the combustion chamber 10 as exhaust gas. A catalyst 42 for purifying exhaust gas is provided in the exhaust passage 40. An air-fuel ratio sensor 58 that outputs a signal corresponding to the air-fuel ratio of the exhaust gas is disposed upstream of the catalyst 42 in the exhaust passage 40.
 本実施形態のエンジンは、各気筒に2つの噴射弁38,70を備えるデュアルインジェクションシステムとして構成されている。一方の噴射弁38は吸気通路30の吸気ポート18の近傍に設けられたポート噴射弁であり、吸気ポート18内に燃料を噴射するようになっている。他方の噴射弁70はシリンダヘッド4に燃焼室10内を臨むように設けられた筒内噴射弁であり、燃焼室10内に燃料を直接噴射するようになっている。このようなデュアルインジェクションシステムでは、ポート噴射弁38からの燃料噴射量(ポート噴射量)と筒内噴射弁70からの燃料噴射量(筒内噴射量)との噴分け比率を任意に設定することができる。なお、本実施の形態のエンジンはアルコール混合燃料を使用可能なエンジンであるので、各噴射弁38,70から噴射される燃料はガソリンに限らず、アルコール混合ガソリンや100%のアルコールが噴射されることがある。 The engine of this embodiment is configured as a dual injection system having two injection valves 38 and 70 for each cylinder. One injection valve 38 is a port injection valve provided in the vicinity of the intake port 18 in the intake passage 30, and injects fuel into the intake port 18. The other injection valve 70 is an in-cylinder injection valve provided so as to face the inside of the combustion chamber 10 to the cylinder head 4, and directly injects fuel into the combustion chamber 10. In such a dual injection system, the injection ratio between the fuel injection amount from the port injection valve 38 (port injection amount) and the fuel injection amount from the in-cylinder injection valve 70 (in-cylinder injection amount) is arbitrarily set. Can do. In addition, since the engine of this Embodiment can use alcohol mixed fuel, the fuel injected from each injection valve 38 and 70 is not restricted to gasoline, Alcohol mixed gasoline and 100% alcohol are injected. Sometimes.
 本実施形態のエンジンは、その制御装置としてECU(Electronic Control Unit)50を備えている。ECU50の出力側には、前述のポート噴射弁38、筒内噴射弁70、スロットル36、点火プラグ16等の種々のアクチュエータが接続されている。ECU50の入力側には、前述のエアフローメータ56、スロットルセンサ54、空燃比センサ58の他、クランク軸24の回転角度に応じた信号を出力するクランク角センサ52等の種々のセンサ類が接続されている。ECU50は、エンジンが備える各センサの出力に基づき、所定の制御プログラムにしたがってエンジンが備える各アクチュエータを動作させるようになっている。 The engine of this embodiment includes an ECU (Electronic Control Unit) 50 as a control device. To the output side of the ECU 50, various actuators such as the port injection valve 38, the in-cylinder injection valve 70, the throttle 36, and the spark plug 16 are connected. Various sensors such as a crank angle sensor 52 that outputs a signal corresponding to the rotation angle of the crankshaft 24 are connected to the input side of the ECU 50 in addition to the air flow meter 56, the throttle sensor 54, and the air-fuel ratio sensor 58 described above. ing. The ECU 50 operates each actuator provided in the engine according to a predetermined control program based on the output of each sensor provided in the engine.
[実施の形態1の動作]
 次に、図2乃至図4を参照して、本実施の形態1の制御装置の動作について説明する。本実施の形態のエンジンでは、空燃比センサ58の検出信号を用いた空燃比のフィードバック制御が行われる。具体的には、空燃比センサ58によって検出される排気ガスの空燃比が目標空燃比(例えば、理論空燃比)となるように、燃料噴射量が増減補正される。
[Operation of Embodiment 1]
Next, the operation of the control device according to the first embodiment will be described with reference to FIGS. In the engine of the present embodiment, feedback control of the air / fuel ratio is performed using the detection signal of the air / fuel ratio sensor 58. Specifically, the fuel injection amount is increased or decreased so that the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 58 becomes the target air-fuel ratio (for example, the theoretical air-fuel ratio).
 ここで、上述したとおり、本実施の形態のエンジンはアルコール混合燃料を使用可能なエンジンであるので、各噴射弁38,70から噴射される燃料はガソリンに限らず、アルコール混合ガソリンや100%のアルコールが噴射されることがある。ただし、燃料タンク(図示せず)は噴射弁38,70間で共通であるので、二つの噴射弁38,70から噴射される燃料は通常同種であり、アルコール濃度の異なる燃料が噴き分けられることはない。したがって、アルコール混合燃料を使用した場合であっても、上述した空燃比制御を行うことにより、排気ガスの空燃比を目標空燃比に制御することができる。 Here, as described above, the engine of the present embodiment is an engine that can use alcohol mixed fuel. Therefore, the fuel injected from each of the injection valves 38 and 70 is not limited to gasoline, but alcohol mixed gasoline or 100% Alcohol may be injected. However, since a fuel tank (not shown) is common between the injection valves 38 and 70, the fuel injected from the two injection valves 38 and 70 is usually the same type, and fuels with different alcohol concentrations are injected separately. There is no. Therefore, even when alcohol mixed fuel is used, the air-fuel ratio of the exhaust gas can be controlled to the target air-fuel ratio by performing the above-described air-fuel ratio control.
 しかしながら、二つの噴射弁38,70から異種の燃料が噴射される例外的な場合も存在する。例えば、現在使用されている燃料と異なるアルコール濃度の燃料を給油した直後である。給油直後は新たな濃度の燃料が燃料配管を介して各噴射弁38,70へ到達するが、この到達タイミングが同時になるとは限らないからである。これは、燃料タンクから各噴射弁38,70までの配管長が異なることや、各噴射弁38,70からの燃料噴射量が異なることによる。したがって、給油された異なる濃度の燃料が各噴射弁38,70の何れか一方のみに到達している期間においては、二つの噴射弁38,70から噴射される燃料は異なる濃度となり、アルコール濃度の異なる燃料が噴き分けられることとなる。この場合、上述した空燃比制御において、排気ガスの空燃比が目標空燃比に収束するまでに時間を要し、この間のエミッションの悪化やドライバビリティの悪化が懸念される。 However, there is an exceptional case in which different types of fuel are injected from the two injection valves 38 and 70. For example, immediately after refueling a fuel having a different alcohol concentration from the fuel currently used. This is because immediately after refueling, a new concentration of fuel reaches the injection valves 38 and 70 via the fuel pipe, but this arrival timing is not always the same. This is because the pipe lengths from the fuel tank to the injection valves 38 and 70 are different, and the fuel injection amounts from the injection valves 38 and 70 are different. Therefore, during the period in which the fuel of different concentrations supplied reaches only one of the injectors 38 and 70, the fuel injected from the two injectors 38 and 70 has different concentrations, and the alcohol concentration Different fuels will be sprayed. In this case, in the above-described air-fuel ratio control, it takes time until the air-fuel ratio of the exhaust gas converges to the target air-fuel ratio, and there is a concern that emission and drivability deteriorate during this time.
 そこで、本実施の形態のエンジンでは、二つの噴射弁38,70から噴射される燃料のアルコール濃度をそれぞれ判定し、各噴射弁38,70の燃料噴射量を適正量に制御することに特徴を有している。以下、ECU50が実施するアルコール濃度の判定方法、及び判定されたアルコール濃度を用いた燃料噴射量の適正制御について詳しく説明する。 Therefore, the engine of the present embodiment is characterized in that the alcohol concentration of the fuel injected from the two injectors 38 and 70 is determined, respectively, and the fuel injection amount of each injector 38 and 70 is controlled to an appropriate amount. Have. Hereinafter, the alcohol concentration determination method performed by the ECU 50 and the appropriate control of the fuel injection amount using the determined alcohol concentration will be described in detail.
 図2は、燃料のアルコール濃度と定常運転時の空燃比(A/F)補正量との関係を説明するための図である。尚、この図におけるアルコール濃度は燃焼室10内における燃料アルコール濃度を、A/F補正量は定常運転時の空燃比制御におけるフィードバック補正量(燃料量)をそれぞれ示している。また、ここでいう定常運転時は、吸気ポート18に付着している付着燃料の量が安定した並行状態にあり、排気ガスの空燃比が空燃比制御によって目標空燃比に制御されている状態を示している。 FIG. 2 is a diagram for explaining the relationship between the alcohol concentration of fuel and the air-fuel ratio (A / F) correction amount during steady operation. In this figure, the alcohol concentration represents the fuel alcohol concentration in the combustion chamber 10, and the A / F correction amount represents the feedback correction amount (fuel amount) in the air-fuel ratio control during steady operation. Further, during steady operation here, the amount of fuel adhering to the intake port 18 is in a stable parallel state, and the air-fuel ratio of the exhaust gas is controlled to the target air-fuel ratio by air-fuel ratio control. Show.
 この図に示すとおり、定常運転時において、アルコール0%のガソリン燃料(E0)を使用した場合のA/F補正量をE0基準値として、A/F補正量の当該E0基準値からのズレ量を定常A/Fズレ量と定義すると、定常A/Fズレ量はアルコール濃度が高くなるほど大きな値となることが分かる。これは、アルコールの単位体積当たりの発熱量がガソリン燃料のそれに比して小さいため、アルコール燃料を使用してガソリン燃料を使用した場合と同等のトルクを発生させるためには、燃料噴射量を増量する必要があることによる。このことは、定常A/Fズレ量が、燃焼室10内における燃料アルコール濃度、すなわち、筒内噴射燃料のアルコール濃度、ポート噴射燃料のアルコール濃度、および噴分け比率と一定の関係があることを意味している。 As shown in this figure, the amount of deviation of the A / F correction amount from the E0 reference value when the gasoline fuel (E0) with 0% alcohol is used as the E0 reference value during steady operation. Is defined as the steady A / F deviation amount, it can be seen that the steady A / F deviation amount increases as the alcohol concentration increases. This is because the calorific value per unit volume of alcohol is smaller than that of gasoline fuel, so in order to generate the same torque as when gasoline fuel is used using alcohol fuel, the fuel injection amount must be increased. Depending on what you need to do. This indicates that the steady A / F deviation amount has a certain relationship with the fuel alcohol concentration in the combustion chamber 10, that is, the alcohol concentration of the cylinder injection fuel, the alcohol concentration of the port injection fuel, and the injection ratio. I mean.
 図3は、ポート噴射と筒内噴射との噴分け比率を一定としたときの、スロットル36の開度の変化に伴い生じる排気空燃比の挙動を示す図である。この図からは、スロットル36が開き側に操作されると排気空燃比は一時的にリーン側にずれ、逆にスロットル36が閉じ側に操作されると排気空燃比は一時的にリッチ側にずれることが分かる。このような過渡運転時における排気空燃比の一時的な変動は、ポート噴射弁38から噴射された燃料が一旦吸気ポート18に付着し、その付着燃料が気化して燃焼室10内に吸入されるまでには相当の時間を要することによる。 FIG. 3 is a diagram showing the behavior of the exhaust air-fuel ratio that occurs with a change in the opening of the throttle 36 when the injection ratio of port injection and in-cylinder injection is constant. From this figure, when the throttle 36 is operated to the open side, the exhaust air-fuel ratio temporarily shifts to the lean side, and conversely, when the throttle 36 is operated to the close side, the exhaust air-fuel ratio temporarily shifts to the rich side. I understand that. The temporary fluctuation of the exhaust air-fuel ratio during such transient operation is caused by the fuel injected from the port injection valve 38 once adhering to the intake port 18, and the adhering fuel is vaporized and sucked into the combustion chamber 10. This takes a considerable amount of time.
 例えば、スロットル36が開かれた場合は、エンジン負荷の増大に合わせて各噴射弁38,70からの燃料噴射量が増量される。このとき、ポート噴射弁38から吸気ポート18に噴射された燃料は、その一部は吸気ポート18内の空気とともにそのまま燃焼室10内に吸入されるものの、その多くは吸気ポート18に一旦付着する。このため、吸気ポート18から燃焼室10内に吸入される燃料量は空気量に遅れて増大することになり、燃焼室10内の混合気の空燃比、要するに排気空燃比は一時的にリーン側にずれることになる。一方、スロットル36が閉じられた場合は、エンジン負荷の減少に合わせて各噴射弁38,70からの燃料噴射量が減量されるものの、燃焼室10内に吸入される燃料量は空気量に遅れて減少するため、排気空燃比は一時的にリッチ側にずれることになる。 For example, when the throttle 36 is opened, the fuel injection amount from each injection valve 38, 70 is increased in accordance with the increase in engine load. At this time, a part of the fuel injected from the port injection valve 38 to the intake port 18 is sucked into the combustion chamber 10 together with the air in the intake port 18, but most of it is temporarily attached to the intake port 18. . For this reason, the amount of fuel sucked into the combustion chamber 10 from the intake port 18 increases with a delay in the amount of air, and the air-fuel ratio of the air-fuel mixture in the combustion chamber 10, that is, the exhaust air-fuel ratio is temporarily lean. It will shift to. On the other hand, when the throttle 36 is closed, the fuel injection amount from each of the injection valves 38 and 70 is reduced in accordance with the decrease in the engine load, but the fuel amount sucked into the combustion chamber 10 is delayed with respect to the air amount. As a result, the exhaust air-fuel ratio temporarily shifts to the rich side.
 ここで、スロットル36の操作に伴って生じる排気空燃比の一時的な変動の大きさに着目する。排気空燃比の変動の大きさ、すなわち、変動のピーク値(図中に矢印で示す)を決定する要因には、次の3つを挙げることができる。まず一つ目の要因は、エンジン負荷の変化量である。燃料噴射量はエンジン負荷の変化に応じて増減されるため、エンジン負荷の変化が大きければ燃料噴射量の増減量も大きくなり、結果、変動のピーク値も大きくなる。 Here, attention is paid to the magnitude of the temporary fluctuation of the exhaust air-fuel ratio that occurs as the throttle 36 is operated. There are the following three factors that determine the magnitude of the fluctuation of the exhaust air-fuel ratio, that is, the peak value of the fluctuation (indicated by an arrow in the figure). The first factor is the amount of change in engine load. Since the fuel injection amount is increased / decreased in accordance with a change in the engine load, the increase / decrease amount of the fuel injection amount increases with a large change in the engine load.
 二つ目の要因は、ポート噴射と筒内噴射との噴分け比率である。総燃料噴射量が同じであれば、ポート噴射と筒内噴射との噴分け比率によって吸気ポート18の付着燃料量が決まる。そして、必要燃料量(目標空燃比と筒内吸入空気量とから決まる燃料量)に対するポート付着燃料量の割合が大きいほど、燃焼室10内に吸入される燃料量の空気量に対する遅れは顕著になる。したがって、エンジン負荷が増加して総燃料噴射量が増大されたときには、必要燃料量に対するポート付着燃料量の割合が大きいほど、すなわち、噴分け比率においてポート噴射の比率が高いほど、燃料量の不足が顕著になって排気空燃比のリーン側へのずれのピーク値は大きくなる。逆に、エンジン負荷が減少して総燃料噴射量が減量されたときには、必要燃料量に対するポート付着燃料量の割合が大きいほど、すなわち、噴分け比率においてポート噴射の比率が高いほど、燃料量の過剰が顕著になって排気空燃比のリッチ側へのずれのピーク値は大きくなる。 The second factor is the injection ratio between port injection and in-cylinder injection. If the total fuel injection amount is the same, the amount of fuel adhering to the intake port 18 is determined by the injection ratio of port injection and in-cylinder injection. As the ratio of the fuel amount adhering to the port to the required fuel amount (the fuel amount determined from the target air-fuel ratio and the in-cylinder intake air amount) increases, the delay of the fuel amount sucked into the combustion chamber 10 with respect to the air amount becomes more significant. Become. Therefore, when the engine load is increased and the total fuel injection amount is increased, the larger the ratio of the port-attached fuel amount to the required fuel amount, that is, the higher the port injection ratio in the injection ratio, the shorter the fuel amount. Becomes prominent, and the peak value of the deviation of the exhaust air-fuel ratio toward the lean side increases. Conversely, when the engine load is reduced and the total fuel injection amount is reduced, the larger the ratio of the port-attached fuel amount to the required fuel amount, that is, the higher the port injection ratio in the injection ratio, the more the fuel amount. Excessiveness becomes remarkable, and the peak value of the deviation of the exhaust air-fuel ratio to the rich side becomes large.
 三つ目の要因は、ポート噴射弁38から噴射されるポート噴射燃料のアルコール濃度である。燃料のアルコール濃度が高いほど吸気ポート18の付着燃料は気化し難く、ポート噴射弁38の燃料噴射量を変化させてから燃焼室10に流入する燃料量に変化が現れるまでの応答遅れは大きくなる。このため、エンジン負荷が増大したときに、燃料のアルコール濃度が高いほど筒内空気量に対する筒内燃料量の一時的な不足が顕著になって、排気空燃比のリーン側へのずれのピーク値は大きくなる。また、エンジン負荷が減少したときには、燃料アルコール濃度が高いほど吸入空気量に対する燃料量の一時的な過剰が顕著になって、排気空燃比のリッチ側へのずれのピーク値は大きくなる。尚、アルコール0%のガソリン燃料(E0)を使用した場合の変動のピーク値をE0基準値として、ピーク値の当該E0基準値からのズレ量を過渡A/Fズレ量と定義すると、過渡A/Fズレ量はピーク値と同様に、燃料アルコール濃度が高くなるほど大きな値となる。 The third factor is the alcohol concentration of the port injection fuel injected from the port injection valve 38. The higher the alcohol concentration of the fuel, the harder the fuel adhering to the intake port 18 is vaporized, and the longer the response delay from when the fuel injection amount of the port injection valve 38 is changed until the change in the fuel amount flowing into the combustion chamber 10 appears. . For this reason, when the engine load increases, the higher the alcohol concentration of the fuel, the more the temporary shortage of the in-cylinder fuel amount with respect to the in-cylinder air amount becomes more prominent, and the peak value of the deviation of the exhaust air-fuel ratio to the lean side Becomes bigger. Further, when the engine load decreases, the higher the fuel alcohol concentration, the more the temporary excess of the fuel amount with respect to the intake air amount becomes more prominent, and the peak value of the deviation of the exhaust air / fuel ratio to the rich side becomes larger. If the peak value of fluctuation when using gasoline fuel (E0) with 0% alcohol is defined as the E0 reference value, and the shift amount of the peak value from the E0 reference value is defined as the transient A / F shift amount, the transient A / F Similar to the peak value, the amount of / F deviation increases as the fuel alcohol concentration increases.
 以上の三つの要因によって排気空燃比の変動のピーク値が決まる。このことは、過渡A/Fズレ量、エンジン負荷の変化量、噴分け比率、及び、ポート噴射燃料の燃料アルコール濃度の間に一定の関係が有ることを意味している。 The peak value of the fluctuation of the exhaust air / fuel ratio is determined by the above three factors. This means that there is a certain relationship among the transient A / F deviation amount, the engine load change amount, the injection ratio, and the fuel alcohol concentration of the port injection fuel.
 このように、定常A/Fズレ量および過渡A/Fズレ量は、それぞれ使用燃料のアルコール濃度と一定の関係を有している。これら関係について、以下更に詳しく説明する。先ず、例えば、現在の使用燃料と異なるアルコール濃度の燃料が給油されたことにより、ポート噴射燃料のアルコール濃度が変化した場合を考察する。上述したとおり、定常A/Fズレ量は、ポート噴射燃料のアルコール濃度と筒内噴射燃料の双方のアルコール濃度に依存している。このため、噴分け比率を一定としたときの定常A/Fズレ量は、ポート噴射燃料のアルコール濃度の変化に応じて変化するが、その変化度合はやや限定的となる。これに対して、過渡A/Fズレ量は、ポート噴射燃料のアルコール濃度が支配的であって、筒内噴射燃料のアルコール濃度には殆ど依存していない。このため、ポート噴射燃料のアルコール濃度が変化すると、過渡A/Fズレ量はその影響を大きく受けて変化することとなる。つまり、過渡A/Fズレ量は、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも高いほど、定常A/Fズレ量に対して相対的に大きくなり、また、ポート噴射燃料のアルコール濃度が筒内噴射燃料のアルコール濃度よりも低いほど、定常A/Fズレ量に対して相対的に小さくなる傾向となる。 Thus, the steady A / F deviation amount and the transient A / F deviation amount have a certain relationship with the alcohol concentration of the fuel used. These relationships will be described in more detail below. First, for example, consider a case where the alcohol concentration of the port-injected fuel changes due to fuel having a different alcohol concentration from the currently used fuel. As described above, the steady A / F deviation amount depends on the alcohol concentration of the port injected fuel and the alcohol concentration of the in-cylinder injected fuel. For this reason, the steady A / F deviation amount when the injection ratio is constant changes according to the change in the alcohol concentration of the port-injected fuel, but the degree of change is somewhat limited. On the other hand, the transient A / F deviation amount is dominated by the alcohol concentration of the port injection fuel and hardly depends on the alcohol concentration of the in-cylinder injection fuel. For this reason, when the alcohol concentration of the port-injected fuel changes, the transient A / F deviation amount is greatly affected and changes. That is, as the alcohol concentration of the port injection fuel is higher than that of the in-cylinder injection fuel, the transient A / F deviation amount becomes relatively larger than the steady A / F deviation amount. As the concentration is lower than the alcohol concentration of the in-cylinder injected fuel, it tends to be relatively small with respect to the steady A / F deviation amount.
 したがって、この一定の関係を関数やマップ等によってモデル化すれば、エンジン負荷の変化量、それに対応する過渡A/Fズレ量、定常A/Fズレ量、及び、そのときの噴分け比率をそれぞれ特定することによって、現在使用されている燃料のアルコール濃度を判定することが可能となる。図4は、所定の噴分け比率および負荷変化における、定常A/Fズレ量および過渡A/Fズレ量と、現在エンジンで使用されている使用燃料のアルコール濃度との関係を規定したマップの一例である。この図に示すマップでは、定常A/Fズレ量と過渡A/Fズレ量とで特定されるマップ上の作動点にポート噴射燃料および筒内噴射燃料のアルコール濃度がそれぞれ関連付けられている。具体的には、このマップでは、定常A/Fズレ量に対する過渡A/Fズレ量の割合が大きいほど、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも高くなり、逆に定常A/Fズレ量に対する過渡A/Fズレ量の割合が小さいほど、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも低くなるように関連付けられている。したがって、図4に示すようなマップをエンジン負荷の変化量毎および噴分け比率毎に記憶しておくことで、ポート噴射燃料および筒内噴射燃料のアルコール濃度をそれぞれ精度よく判定することが可能となる。 Therefore, if this fixed relationship is modeled by a function, a map, or the like, the amount of change in engine load, the amount of transient A / F deviation, the amount of steady A / F deviation, and the injection ratio at that time are respectively shown. By specifying, it is possible to determine the alcohol concentration of the currently used fuel. FIG. 4 is an example of a map that defines the relationship between the steady A / F deviation amount and the transient A / F deviation amount and the alcohol concentration of the fuel currently used in the engine at a predetermined injection ratio and load change. It is. In the map shown in this figure, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are respectively associated with the operating points on the map specified by the steady A / F deviation amount and the transient A / F deviation amount. Specifically, in this map, as the ratio of the transient A / F deviation amount to the steady A / F deviation amount is larger, the alcohol concentration of the port injection fuel becomes higher than that of the in-cylinder injection fuel. As the ratio of the transient A / F deviation amount to the / F deviation amount is smaller, the alcohol concentration of the port injection fuel is related to be lower than that of the in-cylinder injection fuel. Therefore, by storing a map as shown in FIG. 4 for each engine load change amount and each injection ratio, it is possible to accurately determine the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel, respectively. Become.
 次に、判定されたアルコール濃度を用いた燃料噴射量の適正制御について説明する。上述した方法によれば、ポート噴射燃料および筒内噴射燃料のアルコール濃度をそれぞれ精度よく判定することが可能となる。その結果、判定されたポート噴射燃料および筒内噴射燃料のアルコール濃度が異なる濃度である場合においては、上述した空燃比制御において、排気ガスの空燃比が目標空燃比に収束するまでに時間を要し、この間のエミッションの悪化やドライバビリティの悪化が懸念される。 Next, the proper control of the fuel injection amount using the determined alcohol concentration will be described. According to the method described above, it is possible to accurately determine the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel. As a result, when the determined alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are different, it takes time until the air-fuel ratio of the exhaust gas converges to the target air-fuel ratio in the air-fuel ratio control described above. However, there is concern about the worsening of emissions and drivability during this period.
 ここで、ポート噴射燃料と筒内噴射燃料のアルコール濃度が等しい条件では、空燃比制御によって良好な燃焼が実現されている。そこで、本実施の形態のエンジンでは、判定されたポート噴射燃料および筒内噴射燃料のアルコール濃度が異なる場合に、噴分け比率に変更することにより、これらの噴射燃料のアルコール濃度が等しい場合の燃焼条件と同等の条件を形成することとする。 Here, under the condition where the alcohol concentration of the port injection fuel and the in-cylinder injection fuel are equal, good combustion is realized by the air-fuel ratio control. Therefore, in the engine of the present embodiment, when the determined alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are different, the combustion is performed when the alcohol concentrations of these injected fuels are equal by changing to the injection ratio. A condition equivalent to the condition is formed.
 噴分け比率を変更することとすると、定常A/Fズレ量は大きく変化しないものの、過渡A/Fズレ量は噴分け比率に応じて変化する。より具体的には、各種条件(ポート噴射燃料アルコール濃度、筒内噴射燃料アルコール濃度、エンジン負荷の変化量)を同条件とした上で、噴分け比率を変更すると、現在の燃料アルコール濃度の作動点(図4中の白丸)は、定常A/Fズレ量を略一定に保ちつつ推移することとなる。そこで、現在の燃料アルコール濃度の作動点(図4中の白丸)がポート噴射燃料と筒内噴射燃料のアルコール濃度が等しくなる作動点(図4中の黒丸)となるための噴分け比率を複数のマップの中から特定することにより、これらの噴射弁の燃料アルコール濃度が等しい場合と同等の燃焼条件を形成することが可能となる。 If the injection ratio is changed, the steady A / F deviation does not change greatly, but the transient A / F deviation changes according to the injection ratio. More specifically, if the various conditions (port injection fuel alcohol concentration, in-cylinder fuel alcohol concentration, engine load change amount) are set to the same conditions, and the injection ratio is changed, the current fuel alcohol concentration is activated. The point (white circle in FIG. 4) changes while keeping the steady A / F deviation amount substantially constant. Therefore, a plurality of injection ratios for the current operating point of fuel alcohol concentration (white circle in FIG. 4) to become the operating point (black circle in FIG. 4) at which the alcohol concentration of the port-injected fuel and in-cylinder injected fuel are equal. By specifying from these maps, it is possible to form combustion conditions equivalent to the case where the fuel alcohol concentrations of these injection valves are equal.
[実施の形態1における具体的処理]
 次に、図5を参照して、本実施の形態において実行する処理の具体的内容について説明する。図5は、ECU50が実行するルーチンのフローチャートである。尚、図5に示すルーチンは、エンジンの運転中に繰り返し実行されるものとしてもよいし、また、給油後の所定期間やポート噴射燃料と筒内噴射燃料との間にアルコール濃度差が生じている期間のみに実行されるものとしてもよい。
[Specific Processing in Embodiment 1]
Next, with reference to FIG. 5, the specific content of the process performed in this Embodiment is demonstrated. FIG. 5 is a flowchart of a routine executed by the ECU 50. Note that the routine shown in FIG. 5 may be repeatedly executed while the engine is in operation, or a predetermined period after refueling or when there is a difference in alcohol concentration between the port injection fuel and the cylinder injection fuel. It may be executed only during a certain period.
 図5に示すルーチンでは、現在設定されているポート噴射と筒内噴射との噴分け比率が取得される(ステップ100)。 In the routine shown in FIG. 5, the currently set injection ratio of port injection and in-cylinder injection is acquired (step 100).
 次に、エンジン負荷の変化が検出された場合に、その変化量が取得される(ステップ102)。ここでは、具体的には、ECU50は、エンジン負荷をスロットル36の開度、エンジン回転数、エアフローメータ56の出力値などから計算する。取得されるエンジン負荷の変化量は、単位時間当たりのエンジン負荷の変化量(Δエンジン負荷/sec)とされる。 Next, when a change in engine load is detected, the amount of change is acquired (step 102). Specifically, the ECU 50 calculates the engine load from the opening of the throttle 36, the engine speed, the output value of the air flow meter 56, and the like. The amount of change in engine load acquired is the amount of change in engine load per unit time (Δengine load / sec).
 次に、エンジン負荷の変化量が所定値よりも小さいか否かが判定される(ステップ104)。その結果、|Δエンジン負荷/sec|<所定値の成立が認められた場合には、エンジンの定常運転時であると判断される。この場合、次のステップに移行し、定常A/Fズレ量が検出される(ステップ106)。ここでは、具体的には、空燃比制御における現在のA/F補正量、およびアルコール0%のガソリン燃料(E0)を使用した場合の同条件でのA/F補正量(基準A/F補正量)が取得される。そして、現在のA/F補正量から基準A/F補正量を減算した値が、定常A/Fズレ量として算出される。本ステップ106の処理が実行されると、上記ステップ100に戻る。つまり、エンジンの定常運転時には、上記ステップ100~106の処理が繰り返し実行される。 Next, it is determined whether or not the engine load change amount is smaller than a predetermined value (step 104). As a result, when | Δengine load / sec | <predetermined value is established, it is determined that the engine is in steady operation. In this case, the process proceeds to the next step, and the steady A / F deviation amount is detected (step 106). Here, specifically, the current A / F correction amount in the air-fuel ratio control and the A / F correction amount under the same condition when using gasoline fuel (E0) with 0% alcohol (reference A / F correction) Amount) is acquired. Then, a value obtained by subtracting the reference A / F correction amount from the current A / F correction amount is calculated as the steady A / F deviation amount. When the process of step 106 is executed, the process returns to step 100 described above. That is, during the steady operation of the engine, the processing of steps 100 to 106 is repeatedly executed.
 一方、上記ステップ104において、|Δエンジン負荷/sec|<所定値の成立が認められない場合には、エンジンの過渡運転時であると判断される。この場合、次のステップに移行し、過渡A/Fズレ量が検出される(ステップ108)。ここでは、具体的には、エンジン負荷の変化に伴って生じた排気空燃比の変動のピーク値、およびアルコール0%のガソリン燃料(E0)を使用した場合の同条件でのピーク値(基準ピーク値)が取得される。そして、現在のピーク値から基準ピーク値を減算した値が、過渡A/Fズレ量として算出される。 On the other hand, in step 104, if | Δengine load / sec | <predetermined value is not established, it is determined that the engine is in a transient operation. In this case, the process proceeds to the next step, and a transient A / F deviation amount is detected (step 108). Here, specifically, the peak value of the fluctuation of the exhaust air / fuel ratio caused by the change of the engine load and the peak value under the same condition when using gasoline fuel (E0) with 0% alcohol (reference peak) Value). Then, a value obtained by subtracting the reference peak value from the current peak value is calculated as the transient A / F deviation amount.
 次に、ポート噴射燃料および筒内噴射燃料のアルコール濃度が判定される(ステップ110)。ここでは、具体的には、燃料アルコール濃度の判定モデルを構成するマップ群の中から上記ステップ100で取得した噴分け比率および上記ステップ102で取得した過渡運転時のエンジン負荷の変化量に対応するマップ(図4に示すようなマップ)が選択される。そして、選択したマップに上記ステップ106で取得した定常A/Fズレ量と、上記ステップ108で取得した過渡A/Fズレ量とが当てはめられる。これにより、エンジンで現在使用されている筒内噴射燃料およびポート噴射燃料のアルコール濃度が精度よく判定される。 Next, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are determined (step 110). Here, specifically, it corresponds to the injection ratio acquired in step 100 from the map group constituting the determination model of the fuel alcohol concentration and the engine load change amount during transient operation acquired in step 102. A map (map as shown in FIG. 4) is selected. Then, the steady A / F deviation amount acquired in step 106 and the transient A / F deviation amount acquired in step 108 are applied to the selected map. Thereby, the alcohol concentration of the in-cylinder injected fuel and the port injected fuel currently used in the engine is accurately determined.
 次に、現在使用されている筒内噴射燃料およびポート噴射燃料のアルコール濃度において、筒内の燃焼条件がこれらの燃料アルコール濃度が等しい場合のそれと同等となるための噴分け比率が特定される(ステップ112)。噴分け比率を変更することとすると、定常A/Fズレ量は大きく変化しないものの、過渡A/Fズレ量は噴分け比率に応じて変化する。したがって、ここでは、具体的には、現在の燃料アルコール濃度(図4中の白丸)の作動点が、筒内噴射燃料およびポート噴射燃料のアルコール濃度が等しくなる作動点(図4中の黒丸)の位置となるマップが選択され、係るマップに対応付けられた噴分け比率が特定される。次に、エンジンで現在使用されている噴分け比率が、上記ステップ112で取得された噴分け比率に変更される(ステップ114)。 Next, in the in-cylinder injected fuel and the port-injected fuel, the injection ratio is specified so that the in-cylinder combustion conditions are equivalent to those in the case where the fuel alcohol concentrations are equal ( Step 112). If the injection division ratio is changed, the steady A / F deviation amount does not change greatly, but the transient A / F deviation amount changes according to the injection division ratio. Therefore, specifically, here, the operating point of the current fuel alcohol concentration (white circle in FIG. 4) is the operating point (black circle in FIG. 4) at which the alcohol concentrations of the cylinder injection fuel and the port injection fuel are equal. The map at the position is selected, and the injection ratio associated with the map is specified. Next, the injection ratio currently used in the engine is changed to the injection ratio acquired in step 112 (step 114).
 以上説明したとおり、本実施の形態のエンジンによれば、定常A/Fズレ量と過渡A/Fズレ量との関係を利用して、現在使用されている筒内噴射燃料およびポート噴射燃料のアルコール濃度を精度よく判定することができる。また、本実施の形態のエンジンによれば、噴分け比率を変更することにより、現在使用されている筒内噴射燃料およびポート噴射燃料のアルコール濃度が異なる場合であっても、これらの燃料アルコール濃度が等しい場合と同等の燃焼条件を形成することができる。これにより、排気空燃比が荒れる事態を抑制することができるので、エミッションの悪化やドライバビリティの悪化を有効に抑制することが可能となる。 As described above, according to the engine of the present embodiment, the in-cylinder injection fuel and the port injection fuel that are currently used are utilized by utilizing the relationship between the steady A / F deviation amount and the transient A / F deviation amount. The alcohol concentration can be accurately determined. Further, according to the engine of the present embodiment, even if the alcohol concentrations of the in-cylinder injected fuel and the port injected fuel are different by changing the injection ratio, these fuel alcohol concentrations It is possible to form a combustion condition equivalent to the case where is equal. As a result, a situation in which the exhaust air-fuel ratio becomes rough can be suppressed, so that it is possible to effectively suppress the deterioration of emission and the deterioration of drivability.
 ところで、上述した実施の形態1においては、アルコール0%であるガソリン燃料(E0)が使用された場合を基準とした定常A/Fズレ量および過渡A/Fズレ量を用いているが、定常運転時のA/F補正量やA/F変動ピーク値をそのまま用いることとしてもよい。但し、定常A/Fズレ量および過渡A/Fズレ量は、ガソリン燃料(E0)が使用された場合を基準としているため、エンジン特性が異なる場合であっても、共通のモデルを使用することができる点で有効である。 In the first embodiment described above, the steady A / F deviation amount and the transient A / F deviation amount based on the case where gasoline fuel (E0) that is 0% alcohol is used are used. The A / F correction amount and A / F fluctuation peak value during operation may be used as they are. However, the steady A / F deviation amount and the transient A / F deviation amount are based on the case where gasoline fuel (E0) is used, so a common model should be used even if the engine characteristics are different. It is effective in that
 また、上述した実施の形態1においては、エンジン負荷の変化量、定常A/Fズレ量、過渡A/Fズレ量、及び噴分け比率を用いて、ポート噴射燃料および筒内噴射燃料のアルコール濃度をマップから判定し、判定されたアルコール濃度を用いて噴分け比率をマップから特定することとしている。しかしながら、噴分け比率は必ずしもマップにより特定する必要はなく、例えば、判定されたアルコール濃度及び運転条件から燃料付着量を推定し、最適な噴分け比率を特定こととしてもよい。また、ポート噴射燃料および筒内噴射燃料のアルコール濃度については、必ずしも濃度そのものの値を判定する必要はなく、例えばポート噴射燃料および筒内噴射燃料のアルコール濃度に起因した燃焼状態に関する情報をマップから判定した上で、かかる情報を用いて噴分け比率を特定することとしてもよい。 In the first embodiment described above, the alcohol concentration of the port-injected fuel and the in-cylinder-injected fuel is determined using the amount of change in engine load, steady A / F deviation, transient A / F deviation, and injection ratio. Is determined from the map, and the injection ratio is specified from the map using the determined alcohol concentration. However, the injection ratio need not necessarily be specified by a map. For example, the optimum fuel injection ratio may be specified by estimating the fuel adhesion amount from the determined alcohol concentration and the operating conditions. Moreover, it is not always necessary to determine the values of the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel. For example, information on the combustion state caused by the alcohol concentration of the port injection fuel and the in-cylinder injection fuel is obtained from the map. After the determination, the injection ratio may be specified using such information.
 尚、上述した実施の形態1においては、過渡A/Fズレ量が前記第1の発明における「過渡A/F情報」に、定常A/Fズレ量が前記第1の発明における「定常A/F情報」に、それぞれ相当している。また、上述した実施の形態1においては、ECU50が、上記ステップ100の処理を実行することにより、前記第1の発明における「噴分け比率取得手段」が、上記ステップ102の処理を実行することにより、前記第1の発明における「負荷変化量取得手段」が、上記ステップ106の処理を実行することにより、前記第1の発明における「定常A/F情報取得手段」が、上記ステップ108の処理を実行することにより、前記第1の発明における「過渡A/F情報取得手段」が、上記ステップ114の処理を実行することにより、前記第1の発明における「変更手段」が、それぞれ実現されている。 In the first embodiment described above, the transient A / F deviation amount is the “transient A / F information” in the first invention, and the steady A / F deviation amount is the “steady A / F deviation” in the first invention. "F information" respectively. In the first embodiment described above, the ECU 50 executes the process of step 100, so that the “injection ratio acquisition means” in the first aspect of the invention executes the process of step 102. The “load change amount acquisition means” in the first invention executes the process in step 106, so that the “steady A / F information acquisition means” in the first invention performs the process in step 108. By executing, the “transient A / F information acquisition means” in the first invention realizes the “changing means” in the first invention by executing the processing of step 114 above. .
 また、上述した実施の形態1においては、ECU50が、上記ステップ110の処理を実行することにより、前記第2の発明における「第1の手段」が、上記ステップ112の処理を実行することにより、前記第2の発明における「第2の手段」が、それぞれ実現されている。 Further, in the first embodiment described above, the ECU 50 executes the process of step 110, so that the “first means” in the second aspect of the invention executes the process of step 112. Each of the “second means” in the second invention is realized.
実施の形態2.
[実施の形態2の特徴]
 次に、図6および図7を参照して、本発明の実施の形態2について説明する。本実施の形態2は、図1に示すシステムを用いて、後述する図7に示すルーチンを実行することにより実現することができる。
Embodiment 2. FIG.
[Features of Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIG. 6 and FIG. The second embodiment can be realized by executing a routine shown in FIG. 7 to be described later using the system shown in FIG.
 上述した実施の形態1においては、エンジン負荷の変化量、定常A/Fズレ量、過渡A/Fズレ量、及び噴分け比率を用いて、ポート噴射燃料および筒内噴射燃料のアルコール濃度をマップから判定することとしている。ここで、上述したとおり、このマップでは、定常A/Fズレ量と過渡A/Fズレ量とで特定されるマップ上の作動点に、ポート噴射燃料および筒内噴射燃料のアルコール濃度がそれぞれ関連付けられている。そして、このマップでは、定常A/Fズレ量に対する過渡A/Fズレ量の割合が大きいほど、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも高くなるように、また逆に定常A/Fズレ量に対する過渡A/Fズレ量の割合が小さいほど、ポート噴射燃料のアルコール濃度が筒内噴射燃料のそれよりも低くなるように関連付けられている。 In the first embodiment described above, the alcohol concentration of the port-injected fuel and the in-cylinder-injected fuel is mapped using the change amount of the engine load, the steady A / F deviation amount, the transient A / F deviation amount, and the injection ratio. It is decided to judge from. Here, as described above, in this map, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are associated with the operating points on the map specified by the steady A / F deviation amount and the transient A / F deviation amount, respectively. It has been. In this map, as the ratio of the transient A / F deviation amount to the steady A / F deviation amount is larger, the alcohol concentration of the port injection fuel becomes higher than that of the in-cylinder injection fuel. As the ratio of the transient A / F deviation amount to the / F deviation amount is smaller, the alcohol concentration of the port injection fuel is related to be lower than that of the in-cylinder injection fuel.
 但し、このマップには、現実的に想定されない領域が存在する。図6は、所定の噴分け比率および負荷変化における、定常A/Fズレ量および過渡A/Fズレ量と、現在エンジンで使用されている燃料のアルコール濃度との関係を規定したマップの一例である。このマップ中のA領域は、過渡A/Fズレ量に対応する定常A/Fズレ量が想定外に小さい場合に属することとなる領域であって、通常の制御範囲において係る領域に属することはない。このため、現在の運転条件がA領域に属する場合には、筒内噴射燃料が要求量に達していない、すなわち筒内噴射弁70に詰まり異常が発生していると判断することができる。 However, there are areas that are not actually assumed in this map. FIG. 6 is an example of a map that defines the relationship between the steady A / F deviation amount and the transient A / F deviation amount and the alcohol concentration of the fuel currently used in the engine at a predetermined injection ratio and load change. is there. The A region in this map is a region that belongs when the steady A / F displacement amount corresponding to the transient A / F displacement amount is unexpectedly small, and belongs to the region in the normal control range. Absent. Therefore, when the current operating condition belongs to the A region, it can be determined that the in-cylinder injected fuel has not reached the required amount, that is, the in-cylinder injection valve 70 is clogged.
 また、図中のB領域は、定常A/Fズレ量に対応する過渡A/Fズレ量が想定外に小さい場合に属することとなる領域であって、通常の制御範囲において係る領域に属することはない。このため、現在の運転条件がB領域に属する場合には、ポート噴射燃料が要求量に達していない、すなわちポート噴射弁38に詰まり異常が発生していると判断することができる。 Further, the region B in the figure is a region that belongs when the transient A / F shift amount corresponding to the steady A / F shift amount is unexpectedly small, and belongs to the region in the normal control range. There is no. Therefore, when the current operating condition belongs to the B region, it can be determined that the port injection fuel has not reached the required amount, that is, the port injection valve 38 is clogged.
 したがって、現在の運転条件が上記A領域或いはB領域に属するか否かを判断することにより、筒内噴射弁70或いはポート噴射弁38の詰まり異常の発生有無を精度よく判定することが可能となる。 Therefore, by determining whether or not the current operating condition belongs to the A region or the B region, it is possible to accurately determine whether or not the in-cylinder injection valve 70 or the port injection valve 38 is clogged. .
[実施の形態2における具体的処理]
 次に、図7を参照して、本実施の形態において実行する処理の具体的内容について説明する。図7は、ECU50がポート噴射弁38および筒内噴射弁70の詰まり異常の発生有無を判定するルーチンのフローチャートである。尚、図7に示すルーチンは、エンジンの運転中に繰り返し実行されるものとする。
[Specific Processing in Second Embodiment]
Next, with reference to FIG. 7, the specific content of the process performed in this Embodiment is demonstrated. FIG. 7 is a flowchart of a routine in which the ECU 50 determines whether or not a clogging abnormality has occurred in the port injection valve 38 and the in-cylinder injection valve 70. Note that the routine shown in FIG. 7 is repeatedly executed during operation of the engine.
 図7に示すルーチンでは、現在設定されているポート噴射と筒内噴射との噴分け比率が取得される(ステップ200)。次に、エンジン負荷の変化が検出された場合に、その変化量が取得される(ステップ202)。次に、エンジン負荷の変化量が所定値よりも小さいか否かが判定される(ステップ204)。その結果、|Δエンジン負荷/sec|<所定値の成立が認められた場合には、定常A/Fズレ量が検出される(ステップ206)。 一方、上記ステップ204において、|Δエンジン負荷/sec|<所定値の成立が認められない場合には、過渡A/Fズレ量が検出される(ステップ208)。上記ステップ200~208では、具体的には、上記ステップ100~108の処理と同様の処理が実行される。 In the routine shown in FIG. 7, the currently set injection ratio of port injection and in-cylinder injection is acquired (step 200). Next, when a change in engine load is detected, the amount of change is acquired (step 202). Next, it is determined whether or not the change amount of the engine load is smaller than a predetermined value (step 204). As a result, when it is recognized that | Δengine load / sec | <predetermined value is established, the steady A / F deviation amount is detected (step 206). On the other hand, in the above step 204, when | Δengine load / sec | <predetermined value is not established, a transient A / F deviation amount is detected (step 208). In steps 200 to 208, specifically, the same processing as the processing in steps 100 to 108 is executed.
 次に、マップ上の作動点が所定のA領域に属するか否かが判定される(ステップ210)。ここでは、具体的には、判定モデルを構成するマップ群の中から上記ステップ200で取得した噴分け比率および上記ステップ202で取得した過渡運転時のエンジン負荷の変化量に対応するマップ(図6に示すようなマップ)が選択される。そして、選択したマップに上記ステップ206で取得した定常A/Fズレ量と、上記ステップ208で取得した過渡A/Fズレ量とが当てはめられる。そして、この当てはめられたマップ上の作動点がA領域に属するか否かが判定される。尚、A領域は、過渡A/Fズレ量に対応する定常A/Fズレ量が想定外に小さい領域として、予めマップ上に記憶されている。その結果、マップ上の作動点がA領域に属すると判定された場合には、筒内噴射弁70からの噴射量が低下していると判断されて、次のステップに移行し、筒内噴射弁70の詰まり異常があると判定される(ステップ212)。 Next, it is determined whether or not the operating point on the map belongs to a predetermined area A (step 210). Specifically, the map corresponding to the injection ratio acquired in step 200 and the change amount of the engine load during the transient operation acquired in step 202 from the map group constituting the determination model (FIG. 6). Is selected). Then, the steady A / F deviation amount acquired in step 206 and the transient A / F deviation amount acquired in step 208 are applied to the selected map. Then, it is determined whether or not the applied operating point on the map belongs to the A region. The A area is stored in advance on the map as an area where the steady A / F deviation amount corresponding to the transient A / F deviation amount is unexpectedly small. As a result, when it is determined that the operating point on the map belongs to the A region, it is determined that the injection amount from the in-cylinder injection valve 70 is decreased, and the process proceeds to the next step, and the in-cylinder injection is performed. It is determined that there is a clogging abnormality of the valve 70 (step 212).
 一方、上記ステップ210において、マップ上の作動点がA領域に属していないと判定された場合には、次のステップに移行し、マップ上の作動点が所定のB領域に属するか否かが判定される(ステップ214)。ここでは、具体的には、上記ステップ210と同様の処理によってマップ上の作動点が当てはめられ、この作動点がB領域に属するか否かが判定される。尚、B領域は、定常A/Fズレ量に対応する過渡A/Fズレ量が想定外に小さい領域として、予めマップ上に記憶されている。その結果、マップ上の作動点がB領域に属すると判定された場合には、ポート噴射弁38からの噴射量が低下していると判断されて、次のステップに移行し、ポート噴射弁38の詰まり異常があると判定される(ステップ216)。 On the other hand, if it is determined in step 210 that the operating point on the map does not belong to the area A, the process proceeds to the next step, and whether or not the operating point on the map belongs to the predetermined area B is determined. A determination is made (step 214). Specifically, the operating point on the map is applied by the same processing as in step 210, and it is determined whether or not this operating point belongs to the B region. The B area is stored in advance on the map as an area where the transient A / F deviation amount corresponding to the steady A / F deviation amount is unexpectedly small. As a result, when it is determined that the operating point on the map belongs to the region B, it is determined that the injection amount from the port injection valve 38 has decreased, the process proceeds to the next step, and the port injection valve 38 It is determined that there is a clogging abnormality (step 216).
 一方、上記ステップ214において、マップ上の作動点がB領域に属していないと判定された場合には、ポート噴射弁38および筒内噴射弁70に詰まり異常がないと判断されて、次のステップに移行し、これらの噴射弁が正常であると判定される(ステップ218)。 On the other hand, if it is determined in step 214 that the operating point on the map does not belong to the B region, it is determined that there is no clogging abnormality in the port injection valve 38 and the in-cylinder injection valve 70, and the next step Then, it is determined that these injection valves are normal (step 218).
 以上説明したとおり、本実施の形態のエンジンによれば、定常A/Fズレ量と過渡A/Fズレ量との関係を利用して、現在使用されているポート噴射弁38および筒内噴射弁70の詰まりによる異常有無を精度よく判定することができる。 As described above, according to the engine of the present embodiment, the port injection valve 38 and the in-cylinder injection valve that are currently used by utilizing the relationship between the steady A / F deviation amount and the transient A / F deviation amount. The presence / absence of abnormality due to clogging of 70 can be accurately determined.
 ところで、上述した実施の形態2においては、アルコール0%であるガソリン燃料(E0)が使用された場合を基準とした定常A/Fズレ量および過渡A/Fズレ量を用いているが、定常運転時のA/F補正量やA/F変動ピーク値をそのまま用いることとしてもよい。但し、定常A/Fズレ量および過渡A/Fズレ量は、ガソリン燃料(E0)が使用された場合を基準としているため、エンジン特性が異なる場合であっても、共通のモデルを使用することができる点で有効である。 By the way, in Embodiment 2 described above, the steady A / F deviation amount and the transient A / F deviation amount based on the case where gasoline fuel (E0) that is 0% alcohol is used are used. The A / F correction amount and A / F fluctuation peak value during operation may be used as they are. However, the steady A / F deviation amount and the transient A / F deviation amount are based on the case where gasoline fuel (E0) is used, so a common model should be used even if the engine characteristics are different. It is effective in that
 また、上述した実施の形態2においては、ポート噴射弁38および筒内噴射弁70の詰まりによる故障有無の判定のみを実行することとしているが、上述した実施の形態1におけるアルコール濃度の判定および噴分け比率の変更動作を上記故障有無の判定動作に併せて実行することとしてもよい。 In the second embodiment described above, only the determination of the presence / absence of a failure due to clogging of the port injection valve 38 and the in-cylinder injection valve 70 is executed, but the determination of alcohol concentration and the injection in the first embodiment described above are performed. The dividing ratio changing operation may be executed together with the above-described failure presence / absence determining operation.
 尚、上述した実施の形態2においては、過渡A/Fズレ量が前記第1の発明における「過渡A/F情報」に、定常A/Fズレ量が前記第1の発明における「定常A/F情報」に、それぞれ相当している。また、上述した実施の形態2においては、ECU50が、上記ステップ200の処理を実行することにより、前記第1の発明における「噴分け比率取得手段」が、上記ステップ202の処理を実行することにより、前記第1の発明における「負荷変化量取得手段」が、上記ステップ206の処理を実行することにより、前記第1の発明における「定常A/F情報取得手段」が、上記ステップ208の処理を実行することにより、前記第1の発明における「過渡A/F情報取得手段」が、それぞれ実現されている。 In the second embodiment described above, the transient A / F deviation amount is “transient A / F information” in the first invention, and the steady A / F deviation amount is “steady A / F information” in the first invention. "F information" respectively. In the second embodiment described above, the ECU 50 executes the process of step 200, so that the “injection ratio acquisition unit” in the first aspect of the invention executes the process of step 202. The “load change amount acquisition means” in the first invention executes the process in step 206, so that the “steady A / F information acquisition means” in the first invention performs the process in step 208. By executing, the “transient A / F information acquisition means” in the first invention is realized.
 また、上述した実施の形態2においては、ECU50が、上記ステップ210の処理を実行することにより、前記第6或いは第7の発明における「判定手段」が、上記ステップ214の処理を実行することにより、前記第6或いは第8の発明における「判定手段」が、それぞれ実現されている。 In the second embodiment described above, the ECU 50 executes the process of step 210, and the “determination means” in the sixth or seventh invention executes the process of step 214. The “determination means” in the sixth or eighth invention is realized.
10 燃焼室
36 スロットル
18 吸気ポート
38 ポート噴射弁
50 ECU(Electronic Control Unit)
58 空燃比センサ
70 筒内噴射弁
10 Combustion chamber 36 Throttle 18 Intake port 38 Port injection valve 50 ECU (Electronic Control Unit)
58 Air-fuel ratio sensor 70 In-cylinder injection valve

Claims (8)

  1.  吸気ポートに燃料を噴射するポート噴射弁と、筒内に燃料を噴射する筒内噴射弁とを備え、前記内燃機関の排気空燃比が目標空燃比となるように前記ポート噴射弁および前記筒内噴射弁から噴射される燃料噴射量を制御する空燃比制御を行う内燃機関の制御装置であって、
     前記ポート噴射弁からの燃料噴射量と前記筒内噴射弁からの燃料噴射量との噴分け比率を取得する手段と、
     前記内燃機関の負荷が変化した場合に、負荷の変化量を取得する手段と、
     前記内燃機関の負荷が変化した場合に生じる排気空燃比の一時的な変動を検出し、そのピーク値に関連する情報を過渡A/F情報として取得する過渡A/F情報取得手段と、
     前記内燃機関の負荷が変化する直前における空燃比の補正量に関連する情報を定常A/F情報として取得する定常A/F情報手段と、
     負荷の変化量、それに対応する過渡A/F情報、定常A/F情報、及び、そのときの噴分け比率に基づいて、次回の燃料噴射時の噴分け比率を変更する変更手段と、
     を備えることを特徴とする内燃機関の制御装置。
    A port injection valve for injecting fuel into the intake port; and an in-cylinder injection valve for injecting fuel into the cylinder; and the port injection valve and the cylinder in the cylinder so that the exhaust air-fuel ratio of the internal combustion engine becomes a target air-fuel ratio A control device for an internal combustion engine that performs air-fuel ratio control for controlling a fuel injection amount injected from an injection valve,
    Means for obtaining an injection ratio between a fuel injection amount from the port injection valve and a fuel injection amount from the in-cylinder injection valve;
    Means for acquiring a change amount of the load when the load of the internal combustion engine changes;
    Transient A / F information acquisition means for detecting a temporary fluctuation of the exhaust air-fuel ratio that occurs when the load of the internal combustion engine changes, and acquiring information related to the peak value as transient A / F information;
    Steady A / F information means for obtaining information related to the correction amount of the air-fuel ratio immediately before the load of the internal combustion engine changes as steady A / F information;
    Change means for changing the injection ratio at the next fuel injection based on the load change amount, the corresponding transient A / F information, the steady A / F information, and the injection ratio at that time;
    A control device for an internal combustion engine, comprising:
  2.  前記変更手段は、
     負荷の変化量、過渡A/F情報、定常A/F情報、及び、噴分け比率に、前記ポート噴射弁から噴射されるポート噴射燃料および前記筒内噴射弁から噴射される筒内噴射燃料のアルコール濃度を関連付けた判定モデルと、
     負荷の変化量、それに対応する過渡A/F情報、定常A/F情報、及び、そのときの噴分け比率を前記判定モデルに当てはめることで、ポート噴射燃料および筒内噴射燃料のアルコール濃度をそれぞれ判定する第1の手段と、
     ポート噴射燃料および筒内噴射燃料のアルコール濃度に基づいて、次回の燃料噴射時の噴分け比率を特定する第2の手段と、
     を含むことを特徴とする請求項1記載の内燃機関の制御装置。
    The changing means is
    The amount of change in load, transient A / F information, steady A / F information, and injection ratio of port injection fuel injected from the port injection valve and in-cylinder injection fuel injected from the in-cylinder injection valve A decision model that correlates alcohol concentration;
    By applying the change amount of the load, the corresponding transient A / F information, the steady A / F information, and the injection ratio at that time to the determination model, the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are respectively determined. A first means for determining;
    A second means for specifying an injection ratio at the next fuel injection based on the alcohol concentration of the port injection fuel and the in-cylinder injection fuel;
    The control apparatus for an internal combustion engine according to claim 1, comprising:
  3.  前記第2の手段は、負荷の変化量、定常A/F情報、及び、そのときの噴分け比率を前記判定モデルに当てはめることで、ポート噴射燃料および筒内噴射燃料のアルコール濃度が等しい場合の過渡A/F情報を過渡A/F基準情報として特定し、負荷の変化量、過渡A/F基準情報、定常A/F情報、及び、そのときのポート噴射燃料および筒内噴射燃料のアルコール濃度を前記判定モデルに当てはめることで、次回の燃料噴射時の噴分け比率を特定することを特徴とする請求項2記載の内燃機関の制御装置。 The second means applies the change amount of the load, the steady A / F information, and the injection ratio at that time to the determination model, so that the alcohol concentrations of the port injection fuel and the in-cylinder injection fuel are equal. The transient A / F information is specified as the transient A / F reference information, the load change amount, the transient A / F reference information, the steady A / F information, and the alcohol concentration of the port injection fuel and the in-cylinder injection fuel at that time 3. The control device for an internal combustion engine according to claim 2, wherein the injection ratio is determined at the next fuel injection by applying to the determination model.
  4.  前記定常時A/F情報取得手段は、前記ピーク値と、アルコール濃度0%のガソリン燃料を用いた場合の同条件でのピーク値との差分量を、前記過渡時A/F情報として取得することを特徴とする請求項2または3記載の内燃機関の制御装置。 The steady-state A / F information acquisition means acquires, as the transient A / F information, a difference amount between the peak value and a peak value under the same condition when using gasoline fuel having an alcohol concentration of 0%. 4. The control device for an internal combustion engine according to claim 2, wherein the control device is an internal combustion engine.
  5.  前記定常時A/F情報取得手段は、前記空燃比の補正量と、アルコール濃度0%のガソリン燃料を用いた場合の同条件での空燃比の補正量との差分量を、前記定常時A/F情報として取得することを特徴とする請求項2乃至4の何れか1項記載の内燃機関の制御装置。 The steady-state A / F information acquisition means obtains the difference amount between the correction amount of the air-fuel ratio and the correction amount of the air-fuel ratio under the same condition when using gasoline fuel having an alcohol concentration of 0%. 5. The control device for an internal combustion engine according to claim 2, wherein the control device is acquired as / F information.
  6.  負荷の変化量、それに対応する過渡A/F情報、定常A/F情報、及び、そのときの噴分け比率に基づいて、前記ポート噴射弁或いは前記筒内噴射弁の異常を判定する判定手段を更に備えることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の制御装置。 Determining means for determining an abnormality of the port injection valve or the in-cylinder injection valve based on a load change amount, transient A / F information corresponding thereto, steady A / F information, and an injection ratio at that time; The control device for an internal combustion engine according to any one of claims 1 to 5, further comprising:
  7.  前記判定手段は、定常A/F情報に対する過渡A/F情報の比率が、負荷の変化量、及び、そのときの噴分け比率に基づいて定められた所定の上限値よりも大きい場合に、前記筒内噴射弁の詰まり故障の発生を判定することを特徴とする請求項6記載の内燃機関の制御装置。 When the ratio of the transient A / F information to the steady A / F information is greater than a predetermined upper limit value determined based on the load change amount and the injection ratio at that time, 7. The control apparatus for an internal combustion engine according to claim 6, wherein occurrence of clogging failure of the in-cylinder injection valve is determined.
  8.  前記判定手段は、定常A/F情報に対する過渡A/F情報の比率が、負荷の変化量、及び、そのときの噴分け比率に基づいて定められた所定の下限値よりも小さい場合に、前記ポート噴射弁の詰まり故障の発生を判定することを特徴とする請求項6または7記載の内燃機関の制御装置。 When the ratio of the transient A / F information to the steady A / F information is smaller than a predetermined lower limit value determined based on the load change amount and the injection ratio at that time, 8. The control apparatus for an internal combustion engine according to claim 6, wherein occurrence of clogging failure of the port injection valve is determined.
PCT/JP2011/080253 2011-12-27 2011-12-27 Control device for internal combustion engine WO2013098953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080253 WO2013098953A1 (en) 2011-12-27 2011-12-27 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080253 WO2013098953A1 (en) 2011-12-27 2011-12-27 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013098953A1 true WO2013098953A1 (en) 2013-07-04

Family

ID=48696520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080253 WO2013098953A1 (en) 2011-12-27 2011-12-27 Control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2013098953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107061035A (en) * 2015-12-16 2017-08-18 罗伯特·博世有限公司 Fuel Injection System and Method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121364A (en) * 2007-11-15 2009-06-04 Toyota Motor Corp Fuel injection control device
JP2011144706A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Fuel alcohol concentration determining device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121364A (en) * 2007-11-15 2009-06-04 Toyota Motor Corp Fuel injection control device
JP2011144706A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Fuel alcohol concentration determining device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107061035A (en) * 2015-12-16 2017-08-18 罗伯特·博世有限公司 Fuel Injection System and Method
CN107061035B (en) * 2015-12-16 2022-05-17 罗伯特·博世有限公司 Fuel injection system and method

Similar Documents

Publication Publication Date Title
US7933710B2 (en) Abnormality diagnosis device of internal combustion engine
JP4315196B2 (en) Control device for internal combustion engine
JP4667346B2 (en) Control device for internal combustion engine
US20140114552A1 (en) Combined fueling strategy for gaseous fuel
WO2010095262A1 (en) Fuel property judgmental device for internal-combustion engine
US10352254B2 (en) Internal combustion engine control device
WO2011089694A1 (en) Control device for internal combustion engine
US7100572B2 (en) Fuel injection system and fuel injecting method for internal combustion engine
JP5867372B2 (en) Control device for internal combustion engine
WO2012098661A1 (en) Control device for internal combustion engine
JP5338686B2 (en) Fuel alcohol concentration determination device for internal combustion engine
JP5273310B2 (en) Control device for internal combustion engine
JP2009121364A (en) Fuel injection control device
WO2013098953A1 (en) Control device for internal combustion engine
US7363889B2 (en) Control device for multicylinder internal combustion engine
US8387445B2 (en) Method and apparatus for determining the ethanol proportion of the fuel in a motor vehicle
JP5593794B2 (en) Control device for internal combustion engine
JP2014034943A (en) Control device for internal combustion engine
JP2009203924A (en) Control device of internal combustion engine
JP4853503B2 (en) Control device for internal combustion engine
US7556016B2 (en) Method and device for operating an internal combustion engine
JP4766060B2 (en) Control device for internal combustion engine
JP2016217330A (en) Fuel injection controller of internal combustion engine
JP2018031340A (en) Fuel property determination device and combustion control device for engine
JP6428379B2 (en) Fuel property estimation device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11879038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11879038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11879038

Country of ref document: EP

Kind code of ref document: A1