WO2013098944A1 - Method and device for estimating loading state of vehicle - Google Patents

Method and device for estimating loading state of vehicle Download PDF

Info

Publication number
WO2013098944A1
WO2013098944A1 PCT/JP2011/080229 JP2011080229W WO2013098944A1 WO 2013098944 A1 WO2013098944 A1 WO 2013098944A1 JP 2011080229 W JP2011080229 W JP 2011080229W WO 2013098944 A1 WO2013098944 A1 WO 2013098944A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lateral acceleration
yaw rate
stability factor
relationship
Prior art date
Application number
PCT/JP2011/080229
Other languages
French (fr)
Japanese (ja)
Inventor
智孝 浅野
武美 村山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11878681.3A priority Critical patent/EP2799822B1/en
Priority to US14/368,847 priority patent/US9823111B2/en
Priority to CN201180075909.8A priority patent/CN104011514B/en
Priority to PCT/JP2011/080229 priority patent/WO2013098944A1/en
Priority to JP2013551081A priority patent/JP5858051B2/en
Publication of WO2013098944A1 publication Critical patent/WO2013098944A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2240/00Monitoring, detecting wheel/tire behaviour; counteracting thereof
    • B60T2240/06Wheel load; Wheel lift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1307Load distribution on each wheel suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/086Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles wherein the vehicle mass is dynamically estimated

Definitions

  • the present invention relates to a method and an apparatus for estimating a loading state of a vehicle, and more particularly, a method and an estimation method for a loading state of a vehicle by using a relationship between the loading state of the vehicle and the stability factor and lateral acceleration of the vehicle.
  • a method and an estimation method for a loading state of a vehicle by using a relationship between the loading state of the vehicle and the stability factor and lateral acceleration of the vehicle.
  • a method and apparatus for estimating the loading state of a vehicle are already known.
  • Patent Document 1 the relationship between the steering angle and the yaw rate with respect to the steering angular velocity is obtained in advance, the phase difference between the steering angle and the yaw rate with respect to the detected steering angular velocity, and the relationship obtained in advance.
  • a method and apparatus for estimating the loading state of a vehicle based on it is described.
  • the conventional loading state estimation method and apparatus described in Patent Document 1 utilizes the fact that the turning response of the vehicle to steering varies depending on the loading state of the vehicle.
  • the phase difference between the steering angle and the yaw rate is large in a situation where the magnitude of the steering angular velocity is large, but becomes smaller as the magnitude of the steering angular velocity becomes smaller, and is substantially 0 when the magnitude of the steering angular velocity is minute. is there. Therefore, the conventional loading state estimation method and apparatus have a problem that the loading state of the vehicle cannot be estimated in a situation where the steering angular velocity is small or in a steady turning state.
  • a main object of the present invention is to provide an improved vehicle loading state estimation method and apparatus capable of estimating the loading state of a vehicle in a wider range of vehicle traveling conditions than before.
  • the relationship among various loading states, vehicle stability factors, and vehicle lateral acceleration is obtained in advance as a reference relationship, stored in the storage means, information on the vehicle lateral acceleration is obtained, and turning
  • the estimated value of the stability factor of the vehicle is calculated based on the traveling data of the vehicle of the vehicle, and the estimated value of the stability factor calculated and the traveling data of the vehicle used for the calculation of the estimated value
  • a vehicle loading state estimation method is provided, wherein the vehicle loading state is estimated based on a relationship with a lateral acceleration and a reference relationship.
  • the storage means for storing the relationship among the various loading states obtained in advance, the stability factor of the vehicle, and the lateral acceleration of the vehicle as a reference relationship, and the means for acquiring the lateral acceleration information of the vehicle
  • a stability factor estimating means for calculating an estimated value of the stability factor of the vehicle based on the traveling data of the vehicle at the time of turning, and the estimated value of the stability factor calculated by the stability factor estimating means and the What is claimed is: 1.
  • a vehicle loading state estimating device for estimating a loading state of a vehicle based on a relationship between a vehicle running data provided for calculation of an estimated value and a lateral acceleration of the vehicle at the same time and a reference relationship. Provided.
  • relationships among various loading states, vehicle stability factors, and vehicle lateral acceleration are obtained in advance, and the relationships are stored in the storage means as reference relationships. Then, an estimated value of the stability factor of the vehicle is calculated based on the traveling data of the vehicle at the time of turning by the stability factor estimating means. Further, the loading state of the vehicle is estimated on the basis of the relationship between the estimated value of the stability factor, the vehicle travel data provided for the calculation of the estimated value, the lateral acceleration of the vehicle at the same time, and the reference relationship. Therefore, if the loading state of the vehicle is different from the loading state when the standard relationship is obtained, the relationship between the estimated stability factor and the lateral acceleration of the vehicle is different from the standard relationship. The vehicle loading state can be estimated based on the actual relationship to the relationship.
  • the relationship between various loading states, vehicle stability factors, and vehicle lateral acceleration is previously obtained as a reference relationship for a plurality of vehicle weight categories and stored in the storage means.
  • Information on the vehicle calculate an estimate of the stability factor of the vehicle based on the running data of the vehicle at the turn, obtain information on the weight of the vehicle, and determine the vehicle weight category and the reference based on the vehicle weight.
  • the relationship is determined, based on the calculated stability factor estimated value, the vehicle travel data provided for the calculation of the estimated value, the lateral acceleration of the vehicle at the same time, and the determined reference relationship
  • a vehicle loading state estimation method is provided, which estimates a vehicle loading state.
  • storage means for storing, as a reference relationship, a relationship between various loading states, vehicle stability factors, and vehicle lateral acceleration, which are determined in advance for a plurality of vehicle weight categories, Means for acquiring acceleration information, stability factor estimating means for calculating an estimated value of the stability factor of the vehicle based on travel data of the vehicle at the time of turning, and means for acquiring information on the weight of the vehicle
  • the relationship between the vehicle weight category and the reference is determined based on the vehicle weight, and the stability factor estimated value calculated by the stability factor estimating means is the same as the vehicle running data provided for the calculation of the estimated value.
  • a vehicle loading state estimation device is provided that estimates a loading state of a vehicle based on a relationship with a lateral acceleration of the vehicle at a predetermined time and a determined reference relationship It is.
  • the reference relationship is obtained in advance for a plurality of vehicle weight categories. Based on the weight of the vehicle, the relationship between the vehicle weight category and the reference is determined, and the loading state of the vehicle is estimated based on the relationship between the estimated stability factor and the lateral acceleration of the vehicle and the determined reference relationship. The Therefore, even when the vehicle loading state is different from the standard loading state and the vehicle weight is relatively different from the standard weight, the vehicle loading state can be reliably estimated.
  • an index value of deviation between the transient yaw rate of the vehicle and the actual yaw rate of the vehicle, which is in a first order lag relationship with the reference yaw rate of the vehicle is defined as a yaw rate deviation index value
  • a component below the first predetermined frequency is defined as a yaw rate deviation index value
  • the stability factor of the vehicle may be estimated based on the relationship between the lateral acceleration of the removed vehicle and the yaw rate deviation index value from which the component equal to or lower than the second predetermined frequency is removed.
  • the stability factor of the vehicle can be estimated even in a situation where the steering angular velocity is small, so that the loading state of the vehicle can be reliably ensured even in a situation where the steering angular velocity is small. Can be estimated.
  • a stationary detection error such as an error caused by the zero point offset of the detecting means for detecting the lateral acceleration of the vehicle can be obtained. Can be removed.
  • stationary detection errors such as errors caused by the zero point offset of the detection means for detecting the state quantity of the vehicle are removed. be able to.
  • the mass and yaw moment of the vehicle are M and I, respectively, and the distances between the center of gravity 102 of the vehicle and the front and rear axles are Lf and Lr, respectively.
  • the cornering forces of the front wheel 100f and the rear wheel 100r are Ff and Fr, respectively, and the cornering powers of the front wheel and the rear wheel are Kf and Kr, respectively.
  • the actual steering angle of the front wheel 100f is ⁇
  • the slip angles of the front and rear wheels are ⁇ f and ⁇ r, respectively
  • the slip angle of the vehicle body is ⁇ .
  • the lateral acceleration of the vehicle is Gy
  • the vehicle yaw rate is ⁇
  • the vehicle speed is V
  • the vehicle yaw angular velocity (differential value of the yaw rate ⁇ ) is ⁇ d.
  • the following formulas 1 to 6 are established depending on the balance of the force and moment of the vehicle.
  • the Laplace operator is converted to Laplace with the Laplace operator as s, and the yaw rate ⁇ is arranged, so that the following Equations 8 to 10 are established.
  • a normative yaw rate ⁇ (s) is required.
  • Kh in the above equation 9 is a stability factor
  • Tp in the above equation 10 is a coefficient relating to the vehicle speed V of the first-order lag system having a time constant depending on the vehicle speed, that is, the “steering response time constant coefficient” in this specification. It is a coefficient to call.
  • These values are parameters that characterize the steering response related to the yaw motion of the vehicle, and indicate the turning characteristics of the vehicle.
  • the above equation 8 is an equation for calculating the yaw rate ⁇ of the vehicle from the actual steering angle ⁇ of the front wheels, the vehicle speed V, and the lateral acceleration Gy.
  • the transient yaw rate ⁇ tr is a value of a first-order lag with respect to the steady standard yaw rate ⁇ t expressed by the following equation 11.
  • the transient yaw rate ⁇ tr may be calculated according to the following equation 12 corresponding to the above equation 8.
  • the deviation ⁇ t between the steady normative yaw rate ⁇ t and the detected yaw rate ⁇ during steady turning of the vehicle is expressed by the following equation 13 where the design value and true value of the stability factor are Khde and Khre, respectively.
  • the steering wheel deviation ⁇ t of the front wheel is expressed by the following expression 14.
  • This deviation ⁇ t of the steering angle of the front wheels is one of index values of deviation between the steady standard yaw rate ⁇ t and the detected yaw rate ⁇ , and does not depend on the vehicle speed.
  • ⁇ t (Khre ⁇ Khde) GyL (14)
  • the deviation ⁇ t of the steering angle of the front wheels can be calculated according to the equation 14 as an index value of the deviation between the steady standard yaw rate and the actual yaw rate ⁇ .
  • Equation 14 the relationship between the lateral acceleration Gy and the front wheel rudder angle deviation ⁇ t, in other words, the gradient (Khre-Khde) L of the relationship between the lateral acceleration Gy and the front wheel rudder angle deviation ⁇ t in the orthogonal coordinate system.
  • the stability factor estimated value Khp can be obtained according to the following equation 15 by obtaining the value by least square method or the like.
  • Khp Khde + gradient / L (15)
  • the sensor zero point offset errors for the vehicle yaw rate ⁇ , lateral acceleration Gy, and front wheel steering angle ⁇ are ⁇ 0, Gy0, and ⁇ 0, respectively
  • the detected values of the vehicle yaw rate, lateral acceleration, and front wheel steering angle are ⁇ + ⁇ 0, Gy + Gy0 and ⁇ + ⁇ 0. Therefore, the deviation ⁇ t between the steady reference yaw rate ⁇ t and the detected yaw rate at the time of steady turning of the vehicle is expressed by the following equation (16).
  • ⁇ 0 ⁇ KhdeGy0L in the above equation 17 is a constant, but ⁇ 0L / V changes according to the vehicle speed V. Therefore, the intercept of the vertical axis of the graph shown in FIG. Therefore, when the detected value of the yaw rate ⁇ of the vehicle includes an error of the sensor zero offset, the relationship of the deviation ⁇ t of the steering angle of the front wheels to the lateral acceleration Gy changes depending on the vehicle speed, so the stability factor is accurately set. Cannot be estimated.
  • the lateral acceleration of the vehicle from which the component below the first predetermined frequency is removed is Gyft
  • the deviation of the steering angle of the front wheel from which the component below the second predetermined frequency is removed is ⁇ tft. If the first and second predetermined frequencies are sufficiently higher than the change speed of ⁇ 0 L / V accompanying the change in the vehicle speed V, the error Gy0 is not included in Gyft, and the errors ⁇ 0, ⁇ 0 are also included in ⁇ tft. The error due to is not included. Therefore, the following expression 18 corresponding to the above expression 14 is established.
  • the relationship between the lateral acceleration Gyft of the vehicle expressed by the following equation 18 and the deviation ⁇ tft of the steering angle of the front wheels is as shown in FIG. 15, and the straight line of equation 18 passes through the origin regardless of the vehicle speed V.
  • ⁇ tft (Khre ⁇ Khde) GyftL (18)
  • the relationship of the deviation ⁇ tft of the front wheel steering angle to the lateral acceleration Gyft in other words, the gradient (Khre ⁇ Khde) L of the relationship between the lateral acceleration Gyft and the deviation ⁇ tft of the front wheel steering angle in the orthogonal coordinate system is obtained.
  • the estimated value of the stability factor may be calculated according to the above equation 15 using the ratio of the steering angle deviation ⁇ tft of the front wheels to the lateral acceleration Gyft as a gradient.
  • 16 to 18 are graphs showing the time series waveform X, the time series waveform Y, and the Lissajous waveform of X and Y.
  • 16 shows a case where there is no phase difference between the two time series waveforms X and Y
  • FIG. 17 shows a case where the phase of the time series waveform Y is delayed from the phase of the time series waveform X
  • FIG. The case where the phase of the series waveform Y is ahead of the phase of the time series waveform X is shown.
  • a thick one-dot chain line indicates a Lissajous waveform of the integrated value of X and the integrated value of Y.
  • the estimated value of the stability factor may be calculated according to the above equation 15 using the ratio of the integrated value ⁇ tfta of the steering angle deviation ⁇ tft of the front wheels to the integrated value Gyfta of the lateral acceleration Gyft as a gradient.
  • first-order lag filter processing is performed on the steering wheel deviation ⁇ tft and its integrated value ⁇ tfta, and the lateral acceleration Gyft
  • a first-order lag filtering process is performed on the integrated value Gyfta.
  • the gradient is calculated in the same manner as in the case of steady turning of the vehicle based on the value after the first-order lag filtering process, Can be calculated.
  • the vehicle is an automobile
  • various loading states are the standard state for two passengers, the front loading state where the front loading amount is larger than the standard state, and the rear loading amount larger than the standard state Side loading conditions may be included.
  • the dead zone threshold of the vehicle travel control may be changed according to the estimated loading state of the vehicle.
  • the vehicle weight information may be estimated based on the relationship between the acceleration / deceleration operation amount of the driver and the vehicle acceleration / deceleration.
  • the means for acquiring the vehicle lateral acceleration information may detect the vehicle lateral acceleration.
  • the means for acquiring the vehicle lateral acceleration information may acquire the vehicle lateral acceleration information as the product of the vehicle yaw rate and the vehicle speed.
  • the vehicle sta- tus is determined based on the relationship between the lateral acceleration of the vehicle from which the component below the first predetermined frequency is removed and the yaw rate deviation index value from which the component below the second predetermined frequency is removed.
  • the ability factor may be estimated.
  • the component below the first predetermined frequency may be removed from the lateral acceleration of the vehicle by the high-pass filter processing, and the component below the second predetermined frequency may be removed from the yaw rate deviation index value by the high-pass filter processing.
  • the first and second predetermined frequencies may be the same frequency.
  • the vehicle speed is set to V
  • the vehicle wheelbase is set to L
  • the deviation between the vehicle's transient yaw rate and the vehicle's actual yaw rate is multiplied by L / V.
  • a value obtained by converting the deviation from the actual yaw rate into the deviation of the steering angle of the front wheels may be calculated.
  • 1 is a schematic configuration diagram showing a first embodiment of a vehicle loading state estimation method and apparatus according to the present invention. It is a flowchart which shows the loading condition estimation routine in 1st embodiment. It is a flowchart which shows the estimation calculation routine of the stability factor Kh in 1st embodiment. 6 is a flowchart showing a loading state estimation routine in a second embodiment of a vehicle loading state estimation method and apparatus according to the present invention. It is a graph which shows the relationship of the reference
  • FIG. 6 is a graph showing two time-series waveforms X, Y, and a Lissajous waveform of X and Y when the phase of the time-series waveform Y is ahead of the phase of the time-series waveform X.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle loading state estimation method and apparatus according to the present invention.
  • reference numeral 50 denotes an overall loading state estimation device for the vehicle 10.
  • the vehicle 10 has left and right front wheels 12FL and 12FR and left and right rear wheels 12RL and 12RR.
  • the left and right front wheels 12FL and 12FR which are steered wheels, are steered via tie rods 18L and 18R by a rack and pinion type power steering device 16 that is driven in response to steering of the steering wheel 14 by the driver.
  • the braking force of each wheel is controlled by controlling the braking pressure of the wheel cylinders 24FR, 24FL, 24RR, 24RL by the hydraulic circuit 22 of the braking device 20.
  • the hydraulic circuit 22 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 26 by the driver. It is controlled by the master cylinder 28 and, if necessary, is controlled by the electronic control unit 30 as described later.
  • the master cylinder 28 is provided with a pressure sensor 32 for detecting the master cylinder pressure Pm, that is, the pressure in the master cylinder, and the steering column connected with the steering wheel 14 is provided with a steering angle sensor 34 for detecting the steering angle ⁇ . ing.
  • a signal indicating the master cylinder pressure Pm detected by the pressure sensor 32 and a signal indicating the steering angle ⁇ detected by the steering angle sensor 34 are input to the electronic control unit 30.
  • the vehicle 10 includes a yaw rate sensor 36 for detecting the actual yaw rate ⁇ of the vehicle, a longitudinal acceleration sensor 38 for detecting the longitudinal acceleration Gx of the vehicle, a lateral acceleration sensor 40 for detecting the lateral acceleration Gy of the vehicle, and a vehicle speed for detecting the vehicle speed V. 42 is provided.
  • a signal indicating the actual yaw rate ⁇ detected by the yaw rate sensor 36 is also input to the electronic control unit 30.
  • the steering angle sensor 34, the yaw rate sensor 36, and the lateral acceleration sensor 40 detect the steering angle, the actual yaw rate, and the lateral acceleration, respectively, with the left turning direction of the vehicle being positive.
  • the electronic control unit 30 includes, for example, a CPU, a ROM 30A, an EEPROM, a RAM, a buffer memory, and an input / output port device, which are connected to each other by a bidirectional common bus.
  • a microcomputer with a general configuration.
  • the EEPROM stores an estimated value of the stability factor Kh and the like.
  • the estimated value of the stability factor Kh and the like are appropriately calculated by being calculated based on the running data of the vehicle when the vehicle is in a turning state, as will be described in detail later. Updated.
  • ROM 30A stores a stability factor Kh used for calculation of the standard yaw rate ⁇ t and default values Kh00 and Tp00 of the steering response time constant coefficient Tp. These default values are set for each vehicle when the vehicle is shipped. Further, as shown in FIG. 5, the ROM 30A functions as a storage unit that stores a relationship between various previously obtained loading conditions, stability factor Kh, and absolute value of the lateral acceleration Gy of the vehicle as a map.
  • a signal indicating the accelerator opening Acc is input to the engine control device 44 from an accelerator opening sensor 48 provided on the accelerator pedal 46.
  • the engine control device 44 controls the output of the engine (not shown) based on the accelerator opening degree Acc, and exchanges signals with the electronic control device 30 as necessary.
  • the engine control device 44 may also be constituted by a single microcomputer including a CPU, a ROM, a RAM, an input / output port device and a drive circuit, for example.
  • the electronic control unit 30 estimates the loading state of the vehicle according to the flowchart shown in FIG. In particular, in the first embodiment, the electronic control unit 30 calculates the estimated value of the stability factor Kh of the vehicle, and shows the estimated value of the stability factor Kh and the absolute value of the lateral acceleration Gy of the vehicle in FIG.
  • the loading state of the vehicle is estimated based on the displayed map.
  • the control start threshold of the vehicle running control such as the vehicle rollover suppression control is set to a value for the high loading state. Correct it.
  • the electronic control unit 30 calculates a steady-state standard yaw rate ⁇ t based on turning traveling data such as a steering angle.
  • the electronic control unit 30 calculates a primary yaw transient yaw rate ⁇ tr by performing a first-order lag filter operation using the steering response time constant coefficient Tp with respect to the steady standard yaw rate ⁇ t. Further, the electronic control unit 30 calculates a front wheel rudder angle deviation converted value ⁇ of the yaw rate deviation in which the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ of the vehicle is replaced with the deviation of the rudder angle of the front wheels.
  • the electronic control unit 30 calculates the lateral acceleration Gyft of the vehicle after the first-order lag filtering process by performing a first-order lag filter operation on the lateral acceleration Gy of the vehicle by the steering response time constant coefficient Tp.
  • the electronic control unit 30 then calculates the vehicle lateral acceleration Gyftbpf and yaw rate deviation front wheel steering angle deviation converted value ⁇ bpf after the bandpass filter processing based on the vehicle lateral acceleration Gyft and the yaw rate deviation front wheel steering angle deviation converted value ⁇ . To do.
  • the electronic control unit 30 calculates the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle, and calculates the ratio ⁇ a / ⁇ Gya of the integrated values. Further, the electronic control unit 30 calculates the estimated value of the stability factor Kh as the sum of the initial value of the stability factor Kh used for the calculation of the steady-state normative yaw rate ⁇ t and the correction amount based on the ratio ⁇ a / ⁇ Gya of the integrated values. To do. The electronic control unit 30 stores the estimated value of the stability factor Kh and the lateral acceleration Gy of the vehicle used for the calculation in the EEPROM when a preset condition is satisfied.
  • the control according to the flowchart shown in FIG. 2 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals. The same applies to the second embodiment described later.
  • control is started from step 10, and in step 20, a signal indicating the vehicle lateral acceleration Gy detected by each sensor is read.
  • step 30 it is determined whether or not a preset loading condition estimation permission condition is satisfied.
  • the control returns to step 20, and when an affirmative determination is made, the control proceeds to step 60.
  • the permission condition for loading state estimation is satisfied.
  • step 60 it is determined in which region of the map the odd combination of the estimated stability factor Kh and the lateral acceleration Gy of the vehicle stored in the EEPROM belongs to the graph shown in FIG. By doing so, the loading state of the vehicle is estimated. In this case, when a combination belongs to a plurality of areas, it may be estimated to a loading state with a larger number of combinations.
  • step 70 it is determined whether the vehicle is in a loaded state based on the estimation result in step 60.
  • the loaded state is the rear stack (the center of gravity is behind the standard position), the center stack (the center of gravity is substantially the same as the standard position), the front stack (the center of gravity It is also determined whether the position is a position closer to the front than the position in the standard state.
  • a negative determination is made, that is, when it is determined that the vehicle is in a non-loading state, the control returns to step 20, and when an affirmative determination is made, the control proceeds to step 80.
  • step 80 the threshold value of the vehicle traveling control is corrected according to whether the estimated loading state of the vehicle is a post-loading state, a center-loading state, or a pre-loading state.
  • the constants and coefficients of the equation for calculating the control amount of the travel control may be modified according to which of the loading states.
  • step 120 a signal indicating the steering angle .theta. Detected by each sensor is read.
  • step 130 high frequency noise is removed from the steering angle .theta. Read in step 120. Therefore, a low-pass filter process is performed.
  • step 140 the vehicle speed V is calculated based on the wheel speed Vwi, the steering angle ⁇ of the front wheels is calculated based on the steering angle ⁇ , and the steady standard yaw rate ⁇ t is calculated according to the above equation 11.
  • step 150 the steering response time constant coefficient Tp is set to a default value Tp00 that is preset at the time of shipment of the vehicle.
  • the steering response time constant coefficient Tp may be set to the estimated value.
  • step 160 a first-order lag filter calculation is performed using the steering response time constant coefficient Tp in accordance with the above equation 12, whereby a transient yaw rate ⁇ tr based on the reference yaw rate ⁇ t calculated in step 140 is calculated.
  • step 170 the first-order lag filter operation is performed on the lateral acceleration Gy of the vehicle by the steering response time constant coefficient Tp according to the following equation 19, thereby calculating the lateral acceleration Gyft of the vehicle after the first-order lag filter processing. Is done.
  • step 180 the front wheel rudder angle deviation converted value ⁇ of the yaw rate deviation in which the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ is replaced with the deviation of the front wheel rudder angle is calculated according to the following equation 20.
  • step 190 the zero point of the sensor is calculated with respect to the lateral acceleration Gyft of the vehicle after the first-order lag filtering process calculated in step 170 and the front wheel steering angle deviation converted value ⁇ of the yaw rate deviation calculated in step 180.
  • a high-pass filter process for removing the influence of the offset is performed.
  • the high-pass filter process in this case may be a primary high-pass filter process in which a value smaller than the cut-off frequency of the low-pass filter process in step 130 is set as the cut-off frequency.
  • the front wheel steering angle deviation converted value ⁇ of the lateral acceleration Gyft and yaw rate deviation of the vehicle after the first-order lag filter process is performed by performing the high pass filter process.
  • the front wheel steering angle deviation converted value ⁇ of the lateral acceleration Gyft and yaw rate deviation of the vehicle subjected to the high-pass filter processing in step 190 is converted into the front wheel steering angle deviation converted value of the vehicle lateral acceleration Gyftbpf and yaw rate deviation after the band pass filter processing, respectively.
  • ⁇ bpf Expressed as ⁇ bpf.
  • step 200 it is determined whether or not the vehicle is in a turning state. If a negative determination is made, the control returns to step 120. If an affirmative determination is made, the control proceeds to step 210. In this case, whether or not the vehicle is turning is determined whether or not the absolute value of the lateral acceleration Gy of the vehicle is greater than or equal to the reference value in a situation where the vehicle is traveling at a vehicle speed greater than or equal to the reference value. The determination is made by determining whether the absolute value of the actual yaw rate ⁇ of the vehicle is greater than or equal to a reference value and whether the absolute value of the product of the yaw rate ⁇ of the vehicle and the vehicle speed V is greater than or equal to the reference value. Good.
  • step 210 the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation after the current bandpass filter processing calculated in step 230 of the previous cycle and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are obtained. A determination is made as to whether adjustment is necessary. When a negative determination is made, control proceeds to step 230, and when an affirmative determination is made, control proceeds to step 220.
  • (A1) or (A2) is established, it may be determined that the integrated values ⁇ a and ⁇ Gya need to be adjusted.
  • (A2) is a determination condition when the steering response time constant coefficient Tp is estimated and the steering response time constant coefficient Tp is set to the estimated value in step 50.
  • (A1) The absolute value of the deviation ⁇ Kh between the stability factor Kh when the integrated values ⁇ a and ⁇ Gya were adjusted last time and the current stability factor Kh estimated in step 250 of the previous cycle is the stability factor. The standard value for deviation is exceeded.
  • a preset lower limit value of the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation after the bandpass filter processing is set to ⁇ amin (positive constant), and the vehicle after the bandpass filter processing is processed.
  • the adjustment gain Gaj is calculated according to the following equation 21 with the preset lower limit value of the integrated value ⁇ Gya of the lateral acceleration Gyftbpf as ⁇ Gyamin (positive constant).
  • MIN means that the minimum value in the parentheses is selected
  • MAX means that the maximum value in the parentheses is selected. This is the same for other similar equations.
  • step 220 an integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the adjusted yaw rate deviation and an integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are calculated according to the following equations 22 and 23.
  • ⁇ a current ⁇ a ⁇ Gaj (22)
  • ⁇ Gya Current ⁇ Gya ⁇ Gaj (23)
  • step 230 when the lateral acceleration Gyftbpf of the vehicle is a positive value, the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are respectively expressed by the following equations 24 and 24: 25 is calculated.
  • ⁇ a current ⁇ a + ⁇ bpf (24)
  • ⁇ Gya Current ⁇ Gya + Gyftbpf (25)
  • the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are calculated according to the following equations 26 and 27, respectively.
  • ⁇ a current ⁇ a ⁇ bpf (26)
  • ⁇ Gya Current ⁇ Gya ⁇ Gyftbpf (27)
  • step 240 the integrated value ratio ⁇ a / ⁇ Gya is calculated by dividing the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation by the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle.
  • step 250 the estimated value of the stability factor Kh is calculated according to the following equation 28 in which the stability factor design value Khde in the equation 15 is set to the initial value Kh0 of the stability factor.
  • Kh Kh0 + ( ⁇ a / ⁇ Gya) / L (28)
  • step 260 it is determined whether or not it is permitted to store the estimated value of the stability factor Kh in the EEPROM by determining whether or not a preset permission condition is satisfied. .
  • a negative determination the control returns to step 120.
  • step 270 the estimated value of the stability factor Kh is stored in the EEPROM, and thereby the stability factor stored in the EEPROM.
  • the estimated value of Kh is updated. Further, the lateral acceleration Gy of the vehicle used for the calculation is stored in the EEPROM together with the estimated value of the stability factor Kh for each preset cycle.
  • the stability factor Kh is determined in step 60.
  • the loading state of the vehicle is estimated based on the estimated value and the lateral acceleration Gy of the vehicle.
  • the relationship between the vehicle stability factor Kh and the lateral acceleration Gy can be used to reliably estimate the loading state of the vehicle.
  • the stability factor Kh of the vehicle is estimated, and the lateral acceleration Gy of the vehicle at the same time as the traveling data of the vehicle provided for the estimation is calculated together with the estimated value of the stability factor Kh.
  • the stability factor Kh of the vehicle is estimated, and the lateral acceleration Gy of the vehicle at the same time as the traveling data of the vehicle provided for the estimation is calculated together with the estimated value of the stability factor Kh.
  • the threshold value of the vehicle traveling control is determined depending on whether the estimated loading state of the vehicle is a post-loading state, a center-loading state, or a pre-loading state. Will be corrected. Therefore, it is possible to appropriately control the start timing of the vehicle traveling control in accordance with the loading state of the vehicle as compared with the case where the loading state of the vehicle is not estimated.
  • FIG. 4 is a flowchart showing a loading state estimation routine in the second embodiment of the vehicle loading state estimation method and apparatus according to the present invention.
  • the same steps as those shown in FIG. 2 are assigned the same step numbers as those shown in FIG.
  • step 30 when an affirmative determination is made in step 30, the weight W of the vehicle is estimated in step 40, and the value is stored in the EEPROM. Since the weight of the vehicle does not change during the traveling of the vehicle, this step may be skipped when the weight W of the vehicle has already been estimated after the start of traveling.
  • the weight W of the vehicle may be estimated as follows. First, the longitudinal acceleration of the vehicle based on the driver's braking / driving is estimated. That is, the estimated longitudinal acceleration Gxh of the vehicle is calculated based on the master cylinder pressure Pm indicating the amount of braking operation of the driver during braking, and the estimated longitudinal acceleration of the vehicle based on the accelerator opening Acc indicating the amount of driving operation of the driver during driving. Gxh is calculated. Then, based on the deviation between the estimated longitudinal acceleration Gxh and the longitudinal acceleration Gx detected by the longitudinal acceleration sensor 38, the weight W of the vehicle is estimated.
  • the weight W of the vehicle estimated in step 40 is the value of the small weight section that is equal to or smaller than the reference value W0 (positive constant) or the value of the large weight section that is larger than the reference value W0. Is decided. Further, when the vehicle weight W is the value of the small weight class, the loading state estimation map is determined to be the map for the small weight class shown in FIG. 6, and when the vehicle weight W is the value of the large weight class. The map for estimating the loading state is determined to be the map for heavy weight classification shown in FIG. Note that the number of weight categories and maps of the vehicle may be three or more.
  • step 60 the loading state of the vehicle is estimated in the same manner as in step 60 of the first embodiment using the map determined in step 50, and then the first embodiment.
  • Step 70 is executed in the same manner as in.
  • step 80 the vehicle running control threshold is corrected in accordance with whether the vehicle loading state is a rear loading state, a central loading state, or a previous loading state, and the vehicle weight W.
  • the constants and coefficients of the equation for calculating the control amount of the travel control may be modified according to the loaded state and the weight W of the vehicle.
  • the relationship between the vehicle stability factor Kh and the lateral acceleration Gy also changes. This makes it possible to reliably estimate the loading state of the vehicle.
  • the weight W of the vehicle is estimated, and a map for estimating the loading state is determined based on the weight W of the vehicle. Therefore, the loading state of the vehicle can be properly estimated even in the case of a vehicle in which the loading load such as the number of passengers in the vehicle and the loaded luggage fluctuates relatively large.
  • the estimated loading state of the vehicle is a post-loading state, a center-loading state, a pre-loading state, and the weight W of the vehicle.
  • the threshold value for the travel control is corrected. Accordingly, it is possible to appropriately control the start timing of the vehicle travel control in accordance with the vehicle weight as compared with the case where the vehicle weight is not taken into consideration.
  • the estimated value of the stability factor Kh is calculated according to the routine shown in FIG. 3, so even when the steering angular velocity is small or in a steady turning situation.
  • the stability factor Kh of the vehicle can be estimated. Therefore, it is possible to reliably estimate the loading state of the vehicle even when the steering angular velocity is small or in a steady turning situation.
  • the estimated value of the stability factor Kh is calculated according to the flowchart shown in FIG.
  • step 140 the steady standard yaw rate ⁇ t is calculated, and in step 160, the transient yaw rate ⁇ tr is calculated based on the steady standard yaw rate ⁇ t. Further, in step 170, the lateral acceleration Gyft of the vehicle after the first-order lag filtering is calculated, and in step 180, the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ is replaced with the deviation of the steering angle of the front wheels.
  • the front wheel rudder angle deviation converted value ⁇ is calculated.
  • step 190 the high-pass filter processing is performed on the vehicle lateral acceleration Gyft and the front wheel rudder angle deviation converted value ⁇ of the yaw rate deviation, thereby calculating the actual yaw rate ⁇ bpf after the band-pass filter processing.
  • the front wheel rudder angle of the yaw rate deviation index value after the band pass filter processing is obtained as a value obtained by replacing the magnitude of the deviation between the actual yaw rate ⁇ bpf after the band pass filter processing and the transient yaw rate ⁇ trbpf with the magnitude of the steering wheel deviation of the front wheels.
  • a deviation converted value ⁇ bpf is calculated.
  • step 230 the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are calculated. Also, in step 240, the integrated value ratio ⁇ a / ⁇ Gya is calculated by dividing the integrated value ⁇ a of the yaw rate deviation converted into the front wheel steering angle deviation ⁇ bpf by the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle.
  • the estimated value of the stability factor Kh is obtained as the sum of the initial value Kh0 of the stability factor Kh used for the calculation of the steady-state standard yaw rate ⁇ t and the correction amount based on the ratio ⁇ a / ⁇ Gya of the integrated values. Calculated.
  • the initial value of the stability factor used for the calculation of the steady-state standard yaw rate ⁇ t of the vehicle is set so that the transient yaw rate ⁇ tr of the vehicle approaches the true yaw rate.
  • the estimated value of the stability factor Kh can be calculated as a value corrected on the basis of the relationship. Therefore, the estimated value of the stability factor is corrected so that the estimated value of the stability factor approaches the true stability factor, and thereby the estimated value of the stability factor can be obtained as a value close to the true stability factor.
  • the steady-state normative yaw rate ⁇ t is calculated based on the steering angle ⁇ and the like subjected to the low-pass filter processing in step 130.
  • the vehicle's lateral acceleration Gyft and yaw rate deviation front wheel rudder angle deviation converted value ⁇ are subjected to high-pass filter processing, so that the vehicle's lateral acceleration Gyftbpf and yaw rate deviation front wheel rudder after band pass filter processing are performed.
  • An angular deviation converted value ⁇ bpf is calculated.
  • step 230 an integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and an integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are calculated, and in step 240, a ratio ⁇ a / ⁇ Gya of the integrated values is calculated as a ratio therebetween. Is calculated.
  • the number of high-pass filter processes can be reduced as compared with the case where the high-pass filter process is performed on the steering angle ⁇ , the lateral acceleration Gy, and the actual yaw rate ⁇ used for the calculation of the steady-state standard yaw rate ⁇ t.
  • the calculation load of the electronic control unit 30 can be reduced.
  • bandpass filter processing may be performed on the front wheel steering angle deviation converted value ⁇ of the vehicle lateral acceleration Gy and yaw rate deviation without performing lowpass filter processing on the steering angle ⁇ or the like.
  • the stability factor Kh can be accurately estimated while effectively removing high-frequency noise, and the number of operations required for the filter processing can be reduced as compared with the above-described embodiments. As a result, the calculation load of the electronic control unit 30 can be reduced.
  • the steady state reference yaw rate ⁇ t is calculated based on the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle after the bandpass filter process and the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation.
  • the ratio ⁇ a / ⁇ Gya for calculating the correction amount of the stability factor Kh provided to the initial value Kh0 is calculated.
  • the lateral acceleration of the vehicle is obtained. It is possible to reduce the possibility that the stability factor Kh is estimated inaccurately due to the instantaneous fluctuation of the front wheel steering angle deviation converted value ⁇ bpf of Gyftbpf or yaw rate deviation.
  • the integrated value ⁇ a is an integrated value of the front wheel steering angle deviation converted value ⁇ of the yaw rate deviation in which the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ is replaced with the deviation of the steering angle of the front wheels. . Therefore, the stability factor Kh can be estimated without being affected by the vehicle speed V. Therefore, the stability factor Kh can be accurately estimated as compared with the case where the integrated value of the yaw rate deviation index value is, for example, the integrated value of the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ . Further, it avoids the complexity of estimating the stability factor Kh for each vehicle speed V and changing the stability factor Kh used for the calculation of the target yaw rate ⁇ tt according to the vehicle speed V. Can be reduced.
  • step 210 whether or not it is necessary to adjust the integrated value ⁇ a of the front wheel rudder angle deviation converted value ⁇ bpf and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle in step 210.
  • a determination is made.
  • an adjustment gain Gaj of 1 or less is calculated at step 220.
  • step 230 the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation after being adjusted by the adjustment gain Gaj and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are calculated.
  • the stability factor Kh when the previous integrated values ⁇ a and ⁇ Gya are adjusted and the current stability factor Kh estimated in step 250 of the previous cycle are calculated.
  • the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle are estimated as the stability factor Kh. It is possible to reliably prevent adverse effects.
  • the adjustment gain Gaj is calculated according to the equation 21 based on the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle. Is done. Accordingly, the adjustment gain Gaj can be variably set according to the magnitude of the integrated value ⁇ a of the front wheel steering angle deviation converted value ⁇ bpf of the yaw rate deviation and the integrated value ⁇ Gya of the lateral acceleration Gyftbpf of the vehicle.
  • the possibility that the estimation error of the stability factor may increase due to the adjustment gain Gaj being too large can be reduced as compared with the case where the adjustment gain Gaj is constant. It is possible to reduce the possibility that the S / N ratio for estimating the stability factor is lowered due to being too small.
  • step 280 it is determined in step 280 whether or not the storage of the estimated value of the stability factor Kh is permitted, and when an affirmative determination is made, step 290 is performed.
  • the estimated value of the stability factor Kh is stored in the EEPROM. Therefore, the estimated value of the stability factor Kh can be stored in the EEPROM when the estimated value of the stability factor Kh substantially matches the actual stability factor. In other words, until the estimated value of the stability factor Kh substantially matches the actual stability factor, the estimation of the stability factor Kh is repeated without storing the estimated value of the stability factor Kh unnecessarily in the EEPROM. Thus, the estimated value of the stability factor Kh can be gradually brought closer to the actual stability factor.
  • step 200 it is determined in step 200 whether or not the vehicle is in a turning traveling state, and when an affirmative determination is made, step 210 and subsequent steps are executed. Therefore, in a situation where the vehicle is not in a turning state and the stability factor Kh cannot be accurately estimated, it is possible to prevent the step 210 and subsequent steps from being performed unnecessarily and the stability factor Kh from being estimated incorrectly. can do. [First modification]
  • FIG. 8 is a flowchart showing a main part of the routine for estimating the stability factor Kh in the first modification example in which the first and second embodiments are partially modified.
  • steps corresponding to the steps shown in FIG. 3 are assigned the same step numbers as those shown in FIG. The same applies to the flowchart of FIG.
  • step 180 when step 180 is completed, the number of reciprocating steering operations performed by the driver per unit time is calculated as the steering frequency fs in step 182. Further, the cut-off frequency fhc is calculated from the map corresponding to the graph shown in FIG. 9 based on the steering frequency fs so that the cut-off frequency fhc of the high-pass filter processing in step 190 becomes smaller as the steering frequency fs becomes lower. .
  • the cutoff frequency is set to the cutoff frequency fhc calculated in step 82.
  • the cut-off frequency fhc of the high-pass filter process in step 190 is constant. Therefore, when the cutoff frequency fhc is set to a high value so that the influence of the zero offset of the sensor is surely removed, the stability factor Kh is estimated in a situation where the number of reciprocating steering operations per unit time is small. There is a risk that you will not be able to. Conversely, if the cut-off frequency fhc is set to a low value, the influence of the zero offset of the sensor cannot be effectively removed in a situation where the number of reciprocating steerings by the driver per unit time is large. There is.
  • the cutoff frequency fhc is variably set according to the steering frequency fs so that the cutoff frequency fhc becomes smaller as the steering frequency fs becomes lower. Therefore, in the situation where the number of reciprocating steerings by the driver per unit time is large, the effect of the zero offset of the sensor is effectively removed, while in the situation where the number of reciprocating steerings by the driver per unit time is small. It is possible to prevent the ability factor Kh from being estimated.
  • the cut-off frequency fhc is calculated from the map based on the steering frequency fs, but may be calculated as a function of the steering frequency fs.
  • FIG. 10 is a flowchart showing the main part of the routine for estimating the stability factor Kh in the second modification example in which the first and second embodiments are partially modified.
  • step 180 when step 180 is completed, the number of reciprocating steering operations by the driver per unit time is calculated as the steering frequency fs in step 184. Further, the lower the steering frequency fs, the lower the cut-off frequency fhc of the high-pass filter process, and the higher the absolute value of the longitudinal acceleration Gx of the vehicle, the higher the cut-off frequency fhc of the high-pass filter process. Based on the absolute value of the longitudinal acceleration Gx, the cutoff frequency fhc is calculated from a map corresponding to the graph shown in FIG.
  • the cutoff frequency is set to the cutoff frequency fhc calculated in step 184.
  • the error of the steering angle ⁇ of the front wheels caused by the zero point offset of the steering angle sensor 34 is ⁇ 0
  • the error of the vehicle lateral acceleration Gy caused by the zero point offset of the lateral acceleration sensor 40 is Gy0.
  • An error in the yaw rate ⁇ of the vehicle due to the zero point offset of the yaw rate sensor 36 is assumed to be ⁇ 0. Considering these errors, the deviation ⁇ t of the steering angle of the front wheels is expressed by the above equation 17.
  • the influence of the zero point offset of the sensor is the second to fourth terms of the above equation 17, that is, ⁇ 0 ⁇ KhdeGy0L ⁇ 0L / V. Therefore, the greater the change in the vehicle speed V, that is, the magnitude of the longitudinal acceleration Gx of the vehicle, the greater the influence of the zero offset of the sensor on the change in the steady-state standard yaw rate ⁇ t, and conversely the smaller the magnitude of the longitudinal acceleration Gx of the vehicle. Therefore, the influence of the zero offset of the sensor on the change in the steady-state standard yaw rate ⁇ t is reduced.
  • the cutoff frequency fhc is also based on the absolute value of the longitudinal acceleration Gx of the vehicle so that the higher the absolute value of the longitudinal acceleration Gx of the vehicle is, the higher the cutoff frequency fhc of the high-pass filter processing is.
  • Variable setting Therefore, it is possible to obtain the same operational effects as those of the first modification described above, and to effectively eliminate the influence of the zero offset of the sensor regardless of the change in the vehicle speed V.
  • the cut-off frequency fhc is calculated from the map based on the steering frequency fs and the absolute value of the longitudinal acceleration Gx of the vehicle, but is calculated as a function of the absolute value of the steering frequency fs and the longitudinal acceleration Gx of the vehicle. Also good. [Third modification]
  • FIG. 12 is a flowchart showing the main part of the routine for estimating the stability factor Kh in the third modified example in which the first and second embodiments are partially modified.
  • step 205 is executed prior to step 210.
  • step 205 it is determined whether or not the vehicle is in a state where the stability factor Kh can be estimated with high reliability. If a negative determination is made, the control returns to step 20 and an affirmative determination is made. If so, control proceeds to step 210.
  • the condition of B1 takes into consideration that noise is superimposed on the actual yaw rate ⁇ on rough roads and that the grip state of the tire with respect to the road surface tends to fluctuate.
  • the condition of B2 is based on the fact that the calculation of the steady standard yaw rate ⁇ t according to the above equation 11 is premised on that there is no influence of the braking force.
  • the first and second embodiments or the first and second embodiments in which it is not determined whether or not the vehicle is in a state where the stability factor Kh can be estimated with high reliability.
  • the stability factor Kh can be estimated with higher accuracy than in the second modification example.
  • the means for acquiring the lateral acceleration Gy information of the vehicle is the lateral acceleration sensor 40, but the lateral acceleration sensor itself forms part of the vehicle travel control device.
  • the means for acquiring the vehicle lateral acceleration information may be the electronic control device 30 itself that acquires the lateral acceleration Gy information by communication from the travel control device.
  • the lateral acceleration Gy of the vehicle is a value detected by the lateral acceleration sensor 40, but the product of the yaw rate ⁇ detected by the yaw rate sensor 36 and the vehicle speed V detected by the vehicle speed sensor 42 is substituted for the lateral acceleration Gy of the vehicle. May be.
  • the estimated longitudinal acceleration Gxh of the vehicle is calculated based on the master cylinder pressure Pm or the accelerator opening Acc, and based on the deviation between the estimated longitudinal acceleration Gxh and the longitudinal acceleration Gx of the vehicle.
  • the weight W of the vehicle is estimated.
  • the vehicle weight W may be estimated by an arbitrary method. For example, in the case of a vehicle including a load sensor or a vehicle height sensor in the suspension, the vehicle weight W may be estimated based on the detection results.
  • the front wheel rudder angle deviation converted value of the yaw rate deviation obtained by replacing the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ with the deviation of the rudder angle of the front wheels in step 180. Is calculated.
  • the deviation between the transient yaw rate ⁇ tr and the actual yaw rate ⁇ is subjected to the high-pass filter processing, whereby the yaw rate deviation ⁇ bpf after the band-pass filter processing is calculated.
  • the ratio of the integrated value ⁇ a of the yaw rate deviation ⁇ bpf to ⁇ Gya may be calculated, and the estimated value of the stability factor Kh may be calculated according to the following equation 29 based on the integrated value ratio ⁇ bpf / ⁇ Gya.
  • Kh Kh0 + ( ⁇ bpf / ⁇ Gya) / V (29)
  • the estimated value of the stability factor Kh is calculated according to the equation 29, it is preferable that a plurality of vehicle speed ranges are set and the estimated value of the stability factor Kh is calculated for each vehicle speed range. It is also preferable that the degree of convergence of the estimated value of the stability factor Kh is also calculated for each vehicle speed range, whereby the dead zone of the vehicle motion control is variably set for each vehicle speed range. Furthermore, it is preferable that the stability factor Kh used for calculating the target yaw rate in the vehicle motion control is also set to a value estimated for each vehicle speed range.
  • the adjustment gain Gaj is within the range of 1 or less, and the first adjustment gain ( ⁇ amin /
  • one of the first and second adjustment gains may be omitted, and the other of the first and second adjustment gains may be corrected to be the adjustment gain Gaj.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The relationships between various predetermined loading states and the stability factor (Kh) of a vehicle and lateral acceleration (Gy) of the vehicle are stored in a storage device (30A) as reference relationships (i.e., a map). Information regarding the lateral acceleration (Gy) of the vehicle is acquired using a lateral acceleration sensor (40). Estimated values for the stability factor (Kh) of the vehicle are computed on the basis of vehicle driving data when turning. The loading state of the vehicle is estimated on the basis of whether the estimated values for the stability factor that were computed, the vehicle driving data provided for the estimated value computation, and the lateral acceleration of the vehicle of the same time are in an area of any of the reference relationships.

Description

車両の積載状態推定方法及び装置Vehicle loading state estimation method and apparatus
 本発明は、車両の積載状態を推定する方法及び装置に係り、更に詳細には車両の積載状態と車両のスタビリティファクタ及び横加速度との関係を利用して車両の積載状態を推定する方法及び装置に係る。 The present invention relates to a method and an apparatus for estimating a loading state of a vehicle, and more particularly, a method and an estimation method for a loading state of a vehicle by using a relationship between the loading state of the vehicle and the stability factor and lateral acceleration of the vehicle. Related to the device.
 車両の積載状態を推定する方法や装置は既に知られている。例えば下記の特許文献1には、操舵角速度に対する操舵角とヨーレートとの位相差の関係が予め求められ、検出された操舵角速度に対する操舵角とヨーレートとの位相差の関係及び予め求められた関係に基づいて車両の積載状態を推定する方法及び装置が記載されている。 A method and apparatus for estimating the loading state of a vehicle are already known. For example, in Patent Document 1 below, the relationship between the steering angle and the yaw rate with respect to the steering angular velocity is obtained in advance, the phase difference between the steering angle and the yaw rate with respect to the detected steering angular velocity, and the relationship obtained in advance. A method and apparatus for estimating the loading state of a vehicle based on it is described.
特開2011-013023号公報JP 2011-013023 A
〔発明が解決しようとする課題〕
 上記特許文献1に記載された従来の積載状態推定方法及び装置は、車両の積載状態によって操舵に対する車両の旋回応答が異なることを利用するものである。操舵角とヨーレートとの位相差は操舵角速度の大きさが大きい状況に於いては大きいが、操舵角速度の大きさが小さくなるほど小さくなり、操舵角速度の大きさが微小であるときには実質的に0である。そのため従来の積載状態推定方法及び装置に於いては、操舵角速度の大きさが小さい状況や定常旋回状況に於いては車両の積載状態を推定することができないという問題がある。
[Problems to be Solved by the Invention]
The conventional loading state estimation method and apparatus described in Patent Document 1 utilizes the fact that the turning response of the vehicle to steering varies depending on the loading state of the vehicle. The phase difference between the steering angle and the yaw rate is large in a situation where the magnitude of the steering angular velocity is large, but becomes smaller as the magnitude of the steering angular velocity becomes smaller, and is substantially 0 when the magnitude of the steering angular velocity is minute. is there. Therefore, the conventional loading state estimation method and apparatus have a problem that the loading state of the vehicle cannot be estimated in a situation where the steering angular velocity is small or in a steady turning state.
 本発明の主要な目的は、従来よりも幅広い車両の走行状況に於いて車両の積載状態を推定することができるよう改善された車両の積載状態推定方法及び装置を提供することである。
〔課題を解決するための手段及び発明の効果〕
A main object of the present invention is to provide an improved vehicle loading state estimation method and apparatus capable of estimating the loading state of a vehicle in a wider range of vehicle traveling conditions than before.
[Means for Solving the Problems and Effects of the Invention]
 本発明によれば、種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として予め求めて記憶手段に記憶させ、車両の横加速度の情報を取得し、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算し、演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定方法が提供される。 According to the present invention, the relationship among various loading states, vehicle stability factors, and vehicle lateral acceleration is obtained in advance as a reference relationship, stored in the storage means, information on the vehicle lateral acceleration is obtained, and turning The estimated value of the stability factor of the vehicle is calculated based on the traveling data of the vehicle of the vehicle, and the estimated value of the stability factor calculated and the traveling data of the vehicle used for the calculation of the estimated value A vehicle loading state estimation method is provided, wherein the vehicle loading state is estimated based on a relationship with a lateral acceleration and a reference relationship.
 また本発明によれば、予め求められた種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として記憶する記憶手段と、車両の横加速度の情報を取得する手段と、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算するスタビリティファクタ推定手段とを有し、スタビリティファクタ推定手段により演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定装置が提供される。 Further, according to the present invention, the storage means for storing the relationship among the various loading states obtained in advance, the stability factor of the vehicle, and the lateral acceleration of the vehicle as a reference relationship, and the means for acquiring the lateral acceleration information of the vehicle And a stability factor estimating means for calculating an estimated value of the stability factor of the vehicle based on the traveling data of the vehicle at the time of turning, and the estimated value of the stability factor calculated by the stability factor estimating means and the What is claimed is: 1. A vehicle loading state estimating device for estimating a loading state of a vehicle based on a relationship between a vehicle running data provided for calculation of an estimated value and a lateral acceleration of the vehicle at the same time and a reference relationship. Provided.
 これらの構成によれば、種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係が予め求められ、その関係が基準の関係として記憶手段に記憶される。そしてスタビリティファクタ推定手段により旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値が演算される。更にスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び基準の関係に基づいて車両の積載状態が推定される。よって車両の積載状態が基準の関係を求めたときの積載状態とは異なる状況になると、スタビリティファクタの推定値と車両の横加速度との関係が基準の関係とは異なる関係になるので、基準の関係に対する実際の関係に基づいて車両の積載状態を推定することができる。 According to these configurations, relationships among various loading states, vehicle stability factors, and vehicle lateral acceleration are obtained in advance, and the relationships are stored in the storage means as reference relationships. Then, an estimated value of the stability factor of the vehicle is calculated based on the traveling data of the vehicle at the time of turning by the stability factor estimating means. Further, the loading state of the vehicle is estimated on the basis of the relationship between the estimated value of the stability factor, the vehicle travel data provided for the calculation of the estimated value, the lateral acceleration of the vehicle at the same time, and the reference relationship. Therefore, if the loading state of the vehicle is different from the loading state when the standard relationship is obtained, the relationship between the estimated stability factor and the lateral acceleration of the vehicle is different from the standard relationship. The vehicle loading state can be estimated based on the actual relationship to the relationship.
 また本発明によれば、複数の車両の重量区分について種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として予め求めて記憶手段に記憶させ、車両の横加速度の情報を取得し、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算し、車両の重量の情報を取得し、車両の重量に基づいて車両の重量区分及び基準の関係を決定し、演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び決定された基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定方法が提供される。 According to the present invention, the relationship between various loading states, vehicle stability factors, and vehicle lateral acceleration is previously obtained as a reference relationship for a plurality of vehicle weight categories and stored in the storage means. Information on the vehicle, calculate an estimate of the stability factor of the vehicle based on the running data of the vehicle at the turn, obtain information on the weight of the vehicle, and determine the vehicle weight category and the reference based on the vehicle weight. The relationship is determined, based on the calculated stability factor estimated value, the vehicle travel data provided for the calculation of the estimated value, the lateral acceleration of the vehicle at the same time, and the determined reference relationship A vehicle loading state estimation method is provided, which estimates a vehicle loading state.
 また本発明によれば、複数の車両の重量区分について予め求められた種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として記憶する記憶手段と、車両の横加速度の情報を取得する手段と、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算するスタビリティファクタ推定手段と、車両の重量の情報を取得する手段とを有し、車両の重量に基づいて車両の重量区分及び基準の関係を決定し、スタビリティファクタ推定手段により演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び決定された基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定装置が提供される。 Further, according to the present invention, storage means for storing, as a reference relationship, a relationship between various loading states, vehicle stability factors, and vehicle lateral acceleration, which are determined in advance for a plurality of vehicle weight categories, Means for acquiring acceleration information, stability factor estimating means for calculating an estimated value of the stability factor of the vehicle based on travel data of the vehicle at the time of turning, and means for acquiring information on the weight of the vehicle The relationship between the vehicle weight category and the reference is determined based on the vehicle weight, and the stability factor estimated value calculated by the stability factor estimating means is the same as the vehicle running data provided for the calculation of the estimated value. A vehicle loading state estimation device is provided that estimates a loading state of a vehicle based on a relationship with a lateral acceleration of the vehicle at a predetermined time and a determined reference relationship It is.
 これらの構成によれば、基準の関係は複数の車両の重量区分について予め求められる。そして車両の重量に基づいて車両の重量区分及び基準の関係が決定され、スタビリティファクタの推定値と車両の横加速度との関係及び決定された基準の関係に基づいて車両の積載状態が推定される。よって車両の積載状態が標準の積載状態とは異なると共に車両の重量も標準の重量と比較的大きく異なる状況になっても、車両の積載状態を確実に推定することができる。 According to these configurations, the reference relationship is obtained in advance for a plurality of vehicle weight categories. Based on the weight of the vehicle, the relationship between the vehicle weight category and the reference is determined, and the loading state of the vehicle is estimated based on the relationship between the estimated stability factor and the lateral acceleration of the vehicle and the determined reference relationship. The Therefore, even when the vehicle loading state is different from the standard loading state and the vehicle weight is relatively different from the standard weight, the vehicle loading state can be reliably estimated.
 また操舵角速度の大きさが小さく、たとえ0に近い値であっても、車両が旋回すれば横加速度が発生する。また車両の横加速度が0に近い値であっても車両の積載状態によって車両のスタビリティファクタは異なる値になる。よって車両の積載状態が変化すれば、上記関係は基準の関係とは異なるものになる。 Also, even if the steering angular velocity is small, even if it is a value close to 0, lateral acceleration is generated if the vehicle turns. Even if the lateral acceleration of the vehicle is a value close to 0, the stability factor of the vehicle varies depending on the loading state of the vehicle. Therefore, if the loading state of the vehicle changes, the above relationship becomes different from the reference relationship.
 従って上記四つの構成によれば、操舵角速度の大きさが小さい状況や定常旋回状況に於いても、基準の関係の場合の車両の積載状態を基準にして車両の積載状態を確実に推定することができる。 Therefore, according to the above four configurations, it is possible to reliably estimate the loading state of the vehicle based on the loading state of the vehicle in the case of a reference relationship even in a situation where the magnitude of the steering angular velocity is small or in a steady turning situation. Can do.
 上記構成に於いて、種々の積載状態のうちの何れであるかが推定されるようになっていてよい。 In the above configuration, it may be estimated which of the various loading states.
 この構成によれば、基準の関係を求めるときの種々の積載状態のうちの何れであるかを推定することができる。 According to this configuration, it is possible to estimate which of the various loading states when obtaining the reference relationship.
 また上記構成に於いて、車両の規範ヨーレートに対し一次遅れの関係にある車両の過渡ヨーレートと車両の実ヨーレートとの偏差の指標値をヨーレート偏差指標値として、第一の所定周波数以下の成分が除去された車両の横加速度と、第二の所定周波数以下の成分が除去されたヨーレート偏差指標値との関係に基づいて車両のスタビリティファクタを推定するようになっていてよい。 Further, in the above configuration, an index value of deviation between the transient yaw rate of the vehicle and the actual yaw rate of the vehicle, which is in a first order lag relationship with the reference yaw rate of the vehicle, is defined as a yaw rate deviation index value, and a component below the first predetermined frequency is The stability factor of the vehicle may be estimated based on the relationship between the lateral acceleration of the removed vehicle and the yaw rate deviation index value from which the component equal to or lower than the second predetermined frequency is removed.
 この構成によれば、操舵角速度の大きさが小さい状況に於いても車両のスタビリティファクタを推定することができるので、操舵角速度の大きさが小さい状況に於いても車両の積載状態を確実に推定することができる。 According to this configuration, the stability factor of the vehicle can be estimated even in a situation where the steering angular velocity is small, so that the loading state of the vehicle can be reliably ensured even in a situation where the steering angular velocity is small. Can be estimated.
 またこの構成によれば、車両の横加速度の検出値より所定周波数以下の成分を除去することにより、車両の横加速度を検出する検出手段の零点オフセットに起因する誤差の如き定常的な検出誤差を除去することができる。同様にヨーレート偏差指標値を演算するための値より所定周波数以下の成分を除去することにより、車両の状態量を検出する検出手段の零点オフセットに起因する誤差の如き定常的な検出誤差を除去することができる。 Further, according to this configuration, by removing a component having a predetermined frequency or less from the detected value of the lateral acceleration of the vehicle, a stationary detection error such as an error caused by the zero point offset of the detecting means for detecting the lateral acceleration of the vehicle can be obtained. Can be removed. Similarly, by removing components below a predetermined frequency from the value for calculating the yaw rate deviation index value, stationary detection errors such as errors caused by the zero point offset of the detection means for detecting the state quantity of the vehicle are removed. be able to.
 図13に示された車両の二輪モデルに於いて、車両の質量及びヨー慣性モーメントをそれぞれM及びIとし、車両の重心102と前輪車軸及び後輪車軸との間の距離をそれぞれLf及びLrとし、車両のホイールベースをL(=Lf+Lr)とする。また前輪100f及び後輪100rのコーナリングフォースをそれぞれFf及びFrとし、前輪及び後輪のコーナリングパワーをそれぞれKf及びKrとする。また前輪100fの実舵角をδとし、前輪及び後輪のスリップ角をそれぞれβf及びβrとし、車体のスリップ角をβとする。更に車両の横加速度をGyとし、車両のヨーレートをγとし、車速をVとし、車両のヨー加角速度(ヨーレートγの微分値)をγdとする。車両の力及びモーメントの釣合い等により下記の式1~6が成立する。 In the two-wheel model of the vehicle shown in FIG. 13, the mass and yaw moment of the vehicle are M and I, respectively, and the distances between the center of gravity 102 of the vehicle and the front and rear axles are Lf and Lr, respectively. The wheel base of the vehicle is L (= Lf + Lr). Further, the cornering forces of the front wheel 100f and the rear wheel 100r are Ff and Fr, respectively, and the cornering powers of the front wheel and the rear wheel are Kf and Kr, respectively. The actual steering angle of the front wheel 100f is δ, the slip angles of the front and rear wheels are βf and βr, respectively, and the slip angle of the vehicle body is β. Further, the lateral acceleration of the vehicle is Gy, the vehicle yaw rate is γ, the vehicle speed is V, and the vehicle yaw angular velocity (differential value of the yaw rate γ) is γd. The following formulas 1 to 6 are established depending on the balance of the force and moment of the vehicle.
  MGy=Ff+Fr  ……(1)
  Iγd=LfFf-LrFr  ……(2)
  Ff=-Kfβf  ……(3)
  Fr=-Krβr  ……(4)
  βf=β+(Lf/V)γ-δ  ……(5)
  βr=β-(Lr/V)γ  ……(6)
MGy = Ff + Fr (1)
Iγd = LfFf−LrFr (2)
Ff = -Kfβf (3)
Fr = -Krβr (4)
βf = β + (Lf / V) γ−δ (5)
βr = β- (Lr / V) γ (6)
 上記式1~6より下記の式7が成立する。
Figure JPOXMLDOC01-appb-M000001
From the above formulas 1 to 6, the following formula 7 is established.
Figure JPOXMLDOC01-appb-M000001
 車速Vが実質的に一定であると仮定し、ラプラス演算子をsとして上記式7をラプラス変換し、ヨーレートγについて整理することにより、下記の式8~10が成立し、よってこれらの式により規範ヨーレートγ(s)が求められる。
Figure JPOXMLDOC01-appb-M000002
Assuming that the vehicle speed V is substantially constant, the Laplace operator is converted to Laplace with the Laplace operator as s, and the yaw rate γ is arranged, so that the following Equations 8 to 10 are established. A normative yaw rate γ (s) is required.
Figure JPOXMLDOC01-appb-M000002
 上記式9のKhはスタビリティファクタであり、上記式10のTpは車速依存の時定数をもつ一次遅れ系の車速Vにかかる係数、即ち本明細書に於いて「操舵応答時定数係数」と呼ぶ係数である。これらの値は車両のヨー運動に関する操舵応答を特徴付けるパラメータであり、車両の旋回特性を示す。また上記式8は前輪の実舵角δ、車速V、横加速度Gyより車両のヨーレートγを演算する式である。この線形化モデルより演算されるヨーレートを過渡ヨーレートγtrとすると、過渡ヨーレートγtrは下記の式11にて表される定常規範ヨーレートγtに対する一次遅れの値である。
Figure JPOXMLDOC01-appb-M000003
Kh in the above equation 9 is a stability factor, and Tp in the above equation 10 is a coefficient relating to the vehicle speed V of the first-order lag system having a time constant depending on the vehicle speed, that is, the “steering response time constant coefficient” in this specification. It is a coefficient to call. These values are parameters that characterize the steering response related to the yaw motion of the vehicle, and indicate the turning characteristics of the vehicle. The above equation 8 is an equation for calculating the yaw rate γ of the vehicle from the actual steering angle δ of the front wheels, the vehicle speed V, and the lateral acceleration Gy. Assuming that the yaw rate calculated from this linearized model is the transient yaw rate γtr, the transient yaw rate γtr is a value of a first-order lag with respect to the steady standard yaw rate γt expressed by the following equation 11.
Figure JPOXMLDOC01-appb-M000003
 よって上記構成に於いて、過渡ヨーレートγtrは上記式8に対応する下記の式12に従って演算されてよい。
Figure JPOXMLDOC01-appb-M000004
Therefore, in the above configuration, the transient yaw rate γtr may be calculated according to the following equation 12 corresponding to the above equation 8.
Figure JPOXMLDOC01-appb-M000004
 車両の定常旋回時に於ける定常規範ヨーレートγtと検出ヨーレートγとの偏差Δγtは、スタビリティファクタの設計値及び真の値をそれぞれKhde及びKhreとして、下記の式13により表わされる。
Figure JPOXMLDOC01-appb-M000005
The deviation Δγt between the steady normative yaw rate γt and the detected yaw rate γ during steady turning of the vehicle is expressed by the following equation 13 where the design value and true value of the stability factor are Khde and Khre, respectively.
Figure JPOXMLDOC01-appb-M000005
 上記式13の両辺にL/Vを掛けてヨーレート偏差Δγtを前輪の舵角の偏差Δδtに換算すると、前輪の舵角の偏差Δδtは下記の式14により表わされる。この前輪の舵角の偏差Δδtは定常規範ヨーレートγtと検出ヨーレートγとの偏差の指標値の一つであり、車速に依存しない。
  Δδt=(Khre-Khde)GyL  ……(14)
When the yaw rate deviation Δγt is converted into the steering wheel deviation Δδt by multiplying both sides of the above expression 13 by L / V, the steering wheel deviation Δδt of the front wheel is expressed by the following expression 14. This deviation Δδt of the steering angle of the front wheels is one of index values of deviation between the steady standard yaw rate γt and the detected yaw rate γ, and does not depend on the vehicle speed.
Δδt = (Khre−Khde) GyL (14)
 よって定常規範ヨーレートと実ヨーレートγとの偏差の指標値として、式14に従って前輪の舵角の偏差Δδtを演算することができる。 Therefore, the deviation Δδt of the steering angle of the front wheels can be calculated according to the equation 14 as an index value of the deviation between the steady standard yaw rate and the actual yaw rate γ.
 式14より、横加速度Gyに対する前輪の舵角の偏差Δδtの関係、換言すれば横加速度Gy及び前輪の舵角の偏差Δδtの直交座標系に於ける両者の関係の勾配(Khre-Khde)Lを最小二乗法等により求めることにより、下記の式15に従ってスタビリティファクタの推定値Khpを求めることができることが解る。
  Khp=Khde+勾配/L  ……(15)
From Equation 14, the relationship between the lateral acceleration Gy and the front wheel rudder angle deviation Δδt, in other words, the gradient (Khre-Khde) L of the relationship between the lateral acceleration Gy and the front wheel rudder angle deviation Δδt in the orthogonal coordinate system. It can be understood that the stability factor estimated value Khp can be obtained according to the following equation 15 by obtaining the value by least square method or the like.
Khp = Khde + gradient / L (15)
 また車両のヨーレートγ、横加速度Gy、前輪の舵角δについてセンサの零点オフセットの誤差をそれぞれγ0、Gy0、δ0とすると、車両のヨーレート、横加速度、前輪の舵角の検出値はそれぞれγ+γ0、Gy+Gy0、δ+δ0である。よって車両の定常旋回時に於ける定常規範ヨーレートγtと検出ヨーレートとの偏差Δγtは下記の式16により表わされる。
Figure JPOXMLDOC01-appb-M000006
Also, if the sensor zero point offset errors for the vehicle yaw rate γ, lateral acceleration Gy, and front wheel steering angle δ are γ0, Gy0, and δ0, respectively, the detected values of the vehicle yaw rate, lateral acceleration, and front wheel steering angle are γ + γ0, Gy + Gy0 and δ + δ0. Therefore, the deviation Δγt between the steady reference yaw rate γt and the detected yaw rate at the time of steady turning of the vehicle is expressed by the following equation (16).
Figure JPOXMLDOC01-appb-M000006
 上記式16の両辺にL/Vを掛けてヨーレート偏差Δγtを前輪の舵角の偏差Δδtに換算すると、前輪の舵角の偏差Δδtは下記の式17により表わされる。下記の式17により表わされる車両の横加速度Gyと前輪の舵角の偏差Δδtとの関係は、図15に示される通りである。
Figure JPOXMLDOC01-appb-M000007
When the yaw rate deviation Δγt is converted into the steering wheel deviation Δδt by multiplying both sides of the above equation 16 by L / V, the steering wheel deviation Δδt of the front wheel is expressed by the following equation 17. The relationship between the lateral acceleration Gy of the vehicle and the deviation Δδt of the rudder angle of the front wheels expressed by the following equation 17 is as shown in FIG.
Figure JPOXMLDOC01-appb-M000007
 上記式17に於けるδ0-KhdeGy0Lは定数であるが、γ0L/Vは車速Vに応じて変化する。よって図14に示されたグラフの縦軸の切片が車速Vによって変化する。従って車両のヨーレートγの検出値にセンサの零点オフセットの誤差が含まれている場合には、横加速度Gyに対する前輪の舵角の偏差Δδtの関係が車速によって変化するため、スタビリティファクタを精度よく推定することができない。 Δ0−KhdeGy0L in the above equation 17 is a constant, but γ0L / V changes according to the vehicle speed V. Therefore, the intercept of the vertical axis of the graph shown in FIG. Therefore, when the detected value of the yaw rate γ of the vehicle includes an error of the sensor zero offset, the relationship of the deviation Δδt of the steering angle of the front wheels to the lateral acceleration Gy changes depending on the vehicle speed, so the stability factor is accurately set. Cannot be estimated.
 またスタビリティファクタの推定精度を高くするためには、車速毎にスタビリティファクタを推定する等の対策が必要である。従ってスタビリティファクタの推定に必要なヨーレートγ等のデータが膨大になり、旋回特性推定装置の演算負荷が過大になると共に、スタビリティファクタの推定に長い時間を要するという問題がある。 Also, in order to increase the accuracy of stability factor estimation, measures such as estimating the stability factor for each vehicle speed are required. Therefore, there is a problem that the data such as the yaw rate γ necessary for the stability factor estimation becomes enormous, the calculation load of the turning characteristic estimation device becomes excessive, and it takes a long time to estimate the stability factor.
 ここで第一の所定周波数以下の成分が除去された車両の横加速度をGyftとし、第二の所定周波数以下の成分が除去された前輪の舵角の偏差をΔδtftとする。第一及び第二の所定周波数が車速Vに変化に伴うγ0L/Vの変化速度よりも十分に高い値であれば、Gyftには誤差Gy0は含まれておらず、Δδtftにも誤差γ0、δ0に起因する誤差は含まれていない。従って上記式14に対応する下記の式18が成立する。下記の式18により表わされる車両の横加速度Gyftと前輪の舵角の偏差Δδtftとの関係は、図15に示される通りであり、式18の直線は車速Vに関係なく原点を通る。
  Δδtft=(Khre-Khde)GyftL  ……(18)
Here, the lateral acceleration of the vehicle from which the component below the first predetermined frequency is removed is Gyft, and the deviation of the steering angle of the front wheel from which the component below the second predetermined frequency is removed is Δδtft. If the first and second predetermined frequencies are sufficiently higher than the change speed of γ0 L / V accompanying the change in the vehicle speed V, the error Gy0 is not included in Gyft, and the errors γ0, δ0 are also included in Δδtft. The error due to is not included. Therefore, the following expression 18 corresponding to the above expression 14 is established. The relationship between the lateral acceleration Gyft of the vehicle expressed by the following equation 18 and the deviation Δδtft of the steering angle of the front wheels is as shown in FIG. 15, and the straight line of equation 18 passes through the origin regardless of the vehicle speed V.
Δδtft = (Khre−Khde) GyftL (18)
 よって横加速度Gyftに対する前輪の舵角の偏差Δδtftの関係、換言すれば横加速度Gyft及び前輪の舵角の偏差Δδtftの直交座標系に於ける両者の関係の勾配(Khre-Khde)Lを求め、上記式15に従ってスタビリティファクタの推定値Khpを求めることにより、センサの零点オフセットの誤差の影響を受けることなくスタビリティファクタの推定値Khpを求めることができる。 Therefore, the relationship of the deviation Δδtft of the front wheel steering angle to the lateral acceleration Gyft, in other words, the gradient (Khre−Khde) L of the relationship between the lateral acceleration Gyft and the deviation Δδtft of the front wheel steering angle in the orthogonal coordinate system is obtained. By determining the estimated value Khp of the stability factor according to the above equation 15, the estimated value Khp of the stability factor can be determined without being affected by the error of the zero offset of the sensor.
 よって上記構成に於いて、横加速度Gyftに対する前輪の舵角の偏差Δδtftの比を勾配として上記式15に従ってスタビリティファクタの推定値が演算されてよい。 Therefore, in the above configuration, the estimated value of the stability factor may be calculated according to the above equation 15 using the ratio of the steering angle deviation Δδtft of the front wheels to the lateral acceleration Gyft as a gradient.
 図16乃至図18は時系列波形X、時系列波形Y、及びXとYとのリサージュ波形を示すグラフである。特に図16は二つの時系列波形X及びYに位相差がない場合を示し、図17は時系列波形Yの位相が時系列波形Xの位相よりも遅れている場合を示し、図18は時系列波形Yの位相が時系列波形Xの位相よりも進んでいる場合を示している。特に図17及び18に於いて、太い一点鎖線はXの積算値とYの積算値とのリサージュ波形を示している。 16 to 18 are graphs showing the time series waveform X, the time series waveform Y, and the Lissajous waveform of X and Y. 16 shows a case where there is no phase difference between the two time series waveforms X and Y, FIG. 17 shows a case where the phase of the time series waveform Y is delayed from the phase of the time series waveform X, and FIG. The case where the phase of the series waveform Y is ahead of the phase of the time series waveform X is shown. In particular, in FIGS. 17 and 18, a thick one-dot chain line indicates a Lissajous waveform of the integrated value of X and the integrated value of Y.
 図16乃至図18より、Xの積算値に対するYの積算値の比によれば、二つの時系列波形X及びYに位相差がある場合にもその影響を低減して比Y/Xを求めることができることが解る。 From FIG. 16 to FIG. 18, according to the ratio of the integrated value of Y to the integrated value of X, even when there is a phase difference between the two time series waveforms X and Y, the influence is reduced to obtain the ratio Y / X. I understand that I can do it.
 よって上記構成に於いて、横加速度Gyftの積算値Gyftaに対する前輪の舵角の偏差Δδtftの積算値Δδtftaの比を勾配として、上記式15に従ってスタビリティファクタの推定値が演算されてよい。 Therefore, in the above configuration, the estimated value of the stability factor may be calculated according to the above equation 15 using the ratio of the integrated value Δδtfta of the steering angle deviation Δδtft of the front wheels to the integrated value Gyfta of the lateral acceleration Gyft as a gradient.
 尚以上に於いては車両の定常旋回時について説明したが、車両の過渡旋回時については前輪の舵角の偏差Δδtft及びその積算値Δδtftaに対し一次遅れのフィルタ処理が行われると共に、横加速度Gyft及びその積算値Gyftaに対し一次遅れのフィルタ処理が行われる。その場合一次遅れのフィルタ処理の時定数を同一にすることにより、一次遅れのフィルタ処理後の値に基づいて車両の定常旋回時の場合と同様に勾配を演算し、上記式15に従ってスタビリティファクタの推定値を演算することができる。 In the above description, the case of steady turning of the vehicle has been described. However, in the case of transient turning of the vehicle, first-order lag filter processing is performed on the steering wheel deviation Δδtft and its integrated value Δδtfta, and the lateral acceleration Gyft A first-order lag filtering process is performed on the integrated value Gyfta. In this case, by making the time constant of the first-order lag filtering process the same, the gradient is calculated in the same manner as in the case of steady turning of the vehicle based on the value after the first-order lag filtering process, Can be calculated.
 上記構成に於いて、車両は自動車であり、種々の積載状態は2名乗車の標準状態、標準状態よりも前側の積載量が多い前側積載状態、標準状態よりも後側の積載量が多い後側積載状態を含んでいてよい。 In the above configuration, the vehicle is an automobile, and various loading states are the standard state for two passengers, the front loading state where the front loading amount is larger than the standard state, and the rear loading amount larger than the standard state Side loading conditions may be included.
 また上記構成に於いて、推定された車両の積載状態に応じて車両の走行制御の不感帯の閾値が変更されてよい。 Further, in the above configuration, the dead zone threshold of the vehicle travel control may be changed according to the estimated loading state of the vehicle.
 また上記構成に於いて、車両の重量の情報を取得する手段は運転者の加減速操作量と車両の加減速度との関係に基づいて車両の重量が推定されてよい。 In the above-described configuration, the vehicle weight information may be estimated based on the relationship between the acceleration / deceleration operation amount of the driver and the vehicle acceleration / deceleration.
 また上記構成に於いて、車両の横加速度の情報を取得する手段は車両の横加速度を検出するようになっていてよい。 In the above configuration, the means for acquiring the vehicle lateral acceleration information may detect the vehicle lateral acceleration.
 また上記構成に於いて、車両の横加速度の情報を取得する手段は車両のヨーレートと車速との積として車両の横加速度の情報を取得するようになっていてよい。 In the above configuration, the means for acquiring the vehicle lateral acceleration information may acquire the vehicle lateral acceleration information as the product of the vehicle yaw rate and the vehicle speed.
 また上記構成に於いて、第一の所定周波数以下の成分が除去された車両の横加速度と、第二の所定周波数以下の成分が除去されたヨーレート偏差指標値との関係に基づいて車両のスタビリティファクタが推定されるようになっていてよい。 Further, in the above configuration, the vehicle sta- tus is determined based on the relationship between the lateral acceleration of the vehicle from which the component below the first predetermined frequency is removed and the yaw rate deviation index value from which the component below the second predetermined frequency is removed. The ability factor may be estimated.
 また上記構成に於いて、ハイパスフィルタ処理によって車両の横加速度より第一の所定周波数以下の成分が除去され、ハイパスフィルタ処理によってヨーレート偏差指標値より第二の所定周波数以下の成分が除去されてよい。 Further, in the above configuration, the component below the first predetermined frequency may be removed from the lateral acceleration of the vehicle by the high-pass filter processing, and the component below the second predetermined frequency may be removed from the yaw rate deviation index value by the high-pass filter processing. .
 また上記構成に於いて、第一及び第二の所定周波数は同一の周波数であってよい。 In the above configuration, the first and second predetermined frequencies may be the same frequency.
 また上記構成に於いて、車速をVとし、車両のホイールベースをLとして、車両の過渡ヨーレートと車両の実ヨーレートとの偏差にL/Vが乗算されることにより、車両の過渡ヨーレートと車両の実ヨーレートとの偏差を前輪の舵角の偏差に換算した値が演算されてよい。 In the above configuration, the vehicle speed is set to V, the vehicle wheelbase is set to L, and the deviation between the vehicle's transient yaw rate and the vehicle's actual yaw rate is multiplied by L / V. A value obtained by converting the deviation from the actual yaw rate into the deviation of the steering angle of the front wheels may be calculated.
本発明による車両の積載状態推定方法及び装置の第一の実施形態を示す概略構成図である。1 is a schematic configuration diagram showing a first embodiment of a vehicle loading state estimation method and apparatus according to the present invention. 第一の実施形態に於ける積載状態推定ルーチンを示すフローチャートである。It is a flowchart which shows the loading condition estimation routine in 1st embodiment. 第一の実施形態に於けるスタビリティファクタKhの推定演算ルーチンを示すフローチャートである。It is a flowchart which shows the estimation calculation routine of the stability factor Kh in 1st embodiment. 本発明による車両の積載状態推定方法及び装置の第二の実施形態に於ける積載状態推定ルーチンを示すフローチャートである。6 is a flowchart showing a loading state estimation routine in a second embodiment of a vehicle loading state estimation method and apparatus according to the present invention. 予め求められた種々の積載状態と車両のスタビリティファクタKhと車両の横加速度Gyとの関係を基準の関係を示すグラフである。It is a graph which shows the relationship of the reference | standard for the relationship between the various loading states calculated | required previously, the stability factor Kh of a vehicle, and the lateral acceleration Gy of a vehicle. 車両の小重量区分について予め求められた種々の積載状態と車両のスタビリティファクタKhと車両の横加速度Gyとの関係を基準の関係を示すグラフである。It is a graph which shows the reference | standard relationship about the relationship between the various loading states calculated | required previously about the small weight classification of the vehicle, the stability factor Kh of a vehicle, and the lateral acceleration Gy of a vehicle. 車両の大重量区分について予め求められた種々の積載状態と車両のスタビリティファクタKhと車両の横加速度Gyとの関係を基準の関係を示すグラフである。It is a graph which shows the relationship of the reference | standard for the various loading states previously calculated | required about the heavy weight classification | category of the vehicle, the relationship between the vehicle stability factor Kh, and the vehicle lateral acceleration Gy. 第一の修正例に於けるスタビリティファクタKhの推定演算ルーチンの要部を示すフローチャートである。It is a flowchart which shows the principal part of the estimation calculation routine of the stability factor Kh in a 1st modification. 操舵周波数fsとハイパスフィルタ処理のカットオフ周波数fhcとの関係を示すグラフである。It is a graph which shows the relationship between the steering frequency fs and the cutoff frequency fhc of a high-pass filter process. 第二の修正例に於けるスタビリティファクタKhの推定演算ルーチンの要部を示すフローチャートである。It is a flowchart which shows the principal part of the estimation calculation routine of the stability factor Kh in a 2nd modification. 操舵周波数fsとハイパスフィルタ処理のカットオフ周波数fhcと車両の前後加速度Gxの絶対値との関係を示すグラフである。It is a graph which shows the relationship between the steering frequency fs, the cutoff frequency fhc of a high-pass filter process, and the absolute value of the longitudinal acceleration Gx of a vehicle. 第三の修正例に於けるスタビリティファクタKhの推定演算ルーチンの要部を示すフローチャートである。It is a flowchart which shows the principal part of the estimation calculation routine of the stability factor Kh in a 3rd modification. スタビリティファクタを推定するための車両の二輪モデルを示す説明図である。It is explanatory drawing which shows the two-wheel model of the vehicle for estimating a stability factor. 車両の横加速度Gyと前輪の舵角の偏差Δδtとの関係を示すグラフである。It is a graph which shows the relationship between lateral acceleration Gy of a vehicle, and deviation (delta) t of the steering angle of a front wheel. 第一の所定周波数以下の成分が除去された車両の横加速度Gyftと第二の所定周波数以下の成分が除去された前輪の舵角の偏差Δδtftとの関係を示すグラフである。It is a graph which shows the relationship between lateral acceleration Gyft of the vehicle from which the component below the 1st predetermined frequency was removed, and deviation (delta) tft of the steering angle of the front wheel from which the component below the 2nd predetermined frequency was removed. 二つの時系列波形X及びYに位相差がない場合について、二つの時系列波形X、Y、及びXとYとのリサージュ波形を示すグラフである。It is a graph which shows the Lissajous waveform of two time series waveforms X and Y, and X and Y about the case where there is no phase difference in two time series waveforms X and Y. 時系列波形Yの位相が時系列波形Xの位相よりも遅れている場合について、二つの時系列波形X、Y、及びXとYとのリサージュ波形を示すグラフである。7 is a graph showing two time series waveforms X, Y and a Lissajous waveform of X and Y when the phase of the time series waveform Y is delayed from the phase of the time series waveform X. 時系列波形Yの位相が時系列波形Xの位相よりも進んでいる場合について、二つの時系列波形X、Y、及びXとYとのリサージュ波形を示すグラフである。6 is a graph showing two time-series waveforms X, Y, and a Lissajous waveform of X and Y when the phase of the time-series waveform Y is ahead of the phase of the time-series waveform X.
 以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。
[第一の実施形態]
The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.
[First embodiment]
 図1は本発明による車両の積載状態推定方法及び装置の第一の実施形態を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle loading state estimation method and apparatus according to the present invention.
 図1に於いて、50は車両10の積載状態推定装置を全体的に示している。車両10は左右の前輪12FL及び12FR及び左右の後輪12RL及び12RRを有している。操舵輪である左右の前輪12FL及び12FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L及び18Rを介して操舵される。 In FIG. 1, reference numeral 50 denotes an overall loading state estimation device for the vehicle 10. The vehicle 10 has left and right front wheels 12FL and 12FR and left and right rear wheels 12RL and 12RR. The left and right front wheels 12FL and 12FR, which are steered wheels, are steered via tie rods 18L and 18R by a rack and pinion type power steering device 16 that is driven in response to steering of the steering wheel 14 by the driver.
 各車輪の制動力は制動装置20の油圧回路22によりホイールシリンダ24FR、24FL、24RR、24RLの制動圧が制御されることによって制御されるようになっている。図には示されていないが、油圧回路22はオイルリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル26の踏み込み操作に応じて駆動されるマスタシリンダ28により制御され、また必要に応じて後に説明する如く電子制御装置30により制御される。 The braking force of each wheel is controlled by controlling the braking pressure of the wheel cylinders 24FR, 24FL, 24RR, 24RL by the hydraulic circuit 22 of the braking device 20. Although not shown in the drawing, the hydraulic circuit 22 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 26 by the driver. It is controlled by the master cylinder 28 and, if necessary, is controlled by the electronic control unit 30 as described later.
 マスタシリンダ28にはマスタシリンダ圧力Pm、即ちマスタシリンダ内の圧力を検出する圧力センサ32が設けられ、ステアリングホイール14が連結されたステアリングコラムには操舵角θを検出する操舵角センサ34が設けられている。圧力センサ32により検出されたマスタシリンダ圧力Pmを示す信号及び操舵角センサ34により検出された操舵角θを示す信号は電子制御装置30に入力される。 The master cylinder 28 is provided with a pressure sensor 32 for detecting the master cylinder pressure Pm, that is, the pressure in the master cylinder, and the steering column connected with the steering wheel 14 is provided with a steering angle sensor 34 for detecting the steering angle θ. ing. A signal indicating the master cylinder pressure Pm detected by the pressure sensor 32 and a signal indicating the steering angle θ detected by the steering angle sensor 34 are input to the electronic control unit 30.
 また車両10にはそれぞれ車両の実ヨーレートγを検出するヨーレートセンサ36、車両の前後加速度Gxを検出する前後加速度センサ38、車両の横加速度Gyを検出する横加速度センサ40、車速Vを検出する車速42が設けられている。ヨーレートセンサ36により検出された実ヨーレートγを示す信号等も電子制御装置30に入力される。尚操舵角センサ34、ヨーレートセンサ36及び横加速度センサ40は車両の左旋回方向を正としてそれぞれ操舵角、実ヨーレート及び横加速度を検出する。 The vehicle 10 includes a yaw rate sensor 36 for detecting the actual yaw rate γ of the vehicle, a longitudinal acceleration sensor 38 for detecting the longitudinal acceleration Gx of the vehicle, a lateral acceleration sensor 40 for detecting the lateral acceleration Gy of the vehicle, and a vehicle speed for detecting the vehicle speed V. 42 is provided. A signal indicating the actual yaw rate γ detected by the yaw rate sensor 36 is also input to the electronic control unit 30. The steering angle sensor 34, the yaw rate sensor 36, and the lateral acceleration sensor 40 detect the steering angle, the actual yaw rate, and the lateral acceleration, respectively, with the left turning direction of the vehicle being positive.
 尚図には詳細に示されていないが、電子制御装置30は例えばCPUとROM30AとEEPROMとRAMとバッファメモリと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータを含んでいる。EEPROMはスタビリティファクタKhの推定値等を記憶し、スタビリティファクタKhの推定値等は後に詳細に説明する如く車両が旋回状態にあるときの車両の走行データに基づいて演算されることによって適宜更新される。 Although not shown in detail in the figure, the electronic control unit 30 includes, for example, a CPU, a ROM 30A, an EEPROM, a RAM, a buffer memory, and an input / output port device, which are connected to each other by a bidirectional common bus. Includes a microcomputer with a general configuration. The EEPROM stores an estimated value of the stability factor Kh and the like. The estimated value of the stability factor Kh and the like are appropriately calculated by being calculated based on the running data of the vehicle when the vehicle is in a turning state, as will be described in detail later. Updated.
 ROM30Aは規範ヨーレートγtの演算に使用されるスタビリティファクタKh及び操舵応答時定数係数Tpのデフォルト値Kh00及びTp00を記憶している。これらのデフォルト値は車両の出荷時に車両毎に設定される。またROM30Aは、図5に示されている如く、予め求められた種々の積載状況とスタビリティファクタKhと車両の横加速度Gyの絶対値との関係をマップとして記憶する記憶手段として機能する。 ROM 30A stores a stability factor Kh used for calculation of the standard yaw rate γt and default values Kh00 and Tp00 of the steering response time constant coefficient Tp. These default values are set for each vehicle when the vehicle is shipped. Further, as shown in FIG. 5, the ROM 30A functions as a storage unit that stores a relationship between various previously obtained loading conditions, stability factor Kh, and absolute value of the lateral acceleration Gy of the vehicle as a map.
 また図1に示されている如くエンジン制御装置44にはアクセルペダル46に設けられたアクセル開度センサ48よりアクセル開度Accを示す信号が入力される。エンジン制御装置44はアクセル開度Accに基づいてエンジン(図示せず)の出力を制御し、また必要に応じて電子制御装置30との間にて信号の授受を行う。尚エンジン制御装置44も例えばCPU、ROM、RAM、入出力ポート装置を含む一つのマイクロコンピュータ及び駆動回路にて構成されていてよい。 As shown in FIG. 1, a signal indicating the accelerator opening Acc is input to the engine control device 44 from an accelerator opening sensor 48 provided on the accelerator pedal 46. The engine control device 44 controls the output of the engine (not shown) based on the accelerator opening degree Acc, and exchanges signals with the electronic control device 30 as necessary. The engine control device 44 may also be constituted by a single microcomputer including a CPU, a ROM, a RAM, an input / output port device and a drive circuit, for example.
 電子制御装置30は、後述の如く図2に示されたフローチャートに従って車両の積載状態を推定する。特に第一の実施形態に於いては、電子制御装置30は、車両のスタビリティファクタKhの推定値を演算し、スタビリティファクタKhの推定値及び車両の横加速度Gyの絶対値と図5に示されたマップとに基づいて車両の積載状態を推定する。そして電子制御装置30は、車両が2人乗車の標準状態よりも高い積載状態にあると判定したときには、車両の転覆抑制制御の如き車両の走行制御の制御開始閾値を高積載状態用の値に修正する。 The electronic control unit 30 estimates the loading state of the vehicle according to the flowchart shown in FIG. In particular, in the first embodiment, the electronic control unit 30 calculates the estimated value of the stability factor Kh of the vehicle, and shows the estimated value of the stability factor Kh and the absolute value of the lateral acceleration Gy of the vehicle in FIG. The loading state of the vehicle is estimated based on the displayed map. When the electronic control unit 30 determines that the vehicle is in a loading state higher than the standard state for two-seater riding, the control start threshold of the vehicle running control such as the vehicle rollover suppression control is set to a value for the high loading state. Correct it.
 特に電子制御装置30は、図3に示されたフローチャートに従い、車両が旋回を開始すると、操舵角の如き旋回走行データに基づいて定常規範ヨーレートγtを演算する。そして電子制御装置30は、定常規範ヨーレートγtに対し操舵応答時定数係数Tpによる一次遅れのフィルタ演算を行うことにより、一次遅れの過渡ヨーレートγtrを演算する。また電子制御装置30は、過渡ヨーレートγtrと車両の実ヨーレートγとの偏差を前輪の舵角の偏差に置き換えたヨーレート偏差の前輪舵角偏差換算値Δδを演算する。 Particularly, when the vehicle starts turning according to the flowchart shown in FIG. 3, the electronic control unit 30 calculates a steady-state standard yaw rate γt based on turning traveling data such as a steering angle. The electronic control unit 30 calculates a primary yaw transient yaw rate γtr by performing a first-order lag filter operation using the steering response time constant coefficient Tp with respect to the steady standard yaw rate γt. Further, the electronic control unit 30 calculates a front wheel rudder angle deviation converted value Δδ of the yaw rate deviation in which the deviation between the transient yaw rate γtr and the actual yaw rate γ of the vehicle is replaced with the deviation of the rudder angle of the front wheels.
 また電子制御装置30は、車両の横加速度Gyに対し操舵応答時定数係数Tpによる一次遅れのフィルタ演算を行うことにより、一次遅れのフィルタ処理後の車両の横加速度Gyftを演算する。そして電子制御装置30は、車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδに基づき、バンドパスフィルタ処理後の車両の横加速度Gyftbpf及びヨーレート偏差の前輪舵角偏差換算値Δδbpfを演算する。 Further, the electronic control unit 30 calculates the lateral acceleration Gyft of the vehicle after the first-order lag filtering process by performing a first-order lag filter operation on the lateral acceleration Gy of the vehicle by the steering response time constant coefficient Tp. The electronic control unit 30 then calculates the vehicle lateral acceleration Gyftbpf and yaw rate deviation front wheel steering angle deviation converted value Δδbpf after the bandpass filter processing based on the vehicle lateral acceleration Gyft and the yaw rate deviation front wheel steering angle deviation converted value Δδ. To do.
 また電子制御装置30は、ヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaを演算し、積算値の比Δδa/ΔGyaを演算する。また電子制御装置30は、定常規範ヨーレートγtの演算に供されたスタビリティファクタKhの初期値と、積算値の比Δδa/ΔGyaに基づく修正量との和としてスタビリティファクタKhの推定値を演算する。そして電子制御装置30は、予め設定された条件が成立しているときにスタビリティファクタKhの推定値及びその演算に供された車両の横加速度GyをEEPROMに記憶する。 The electronic control unit 30 calculates the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle, and calculates the ratio Δδa / ΔGya of the integrated values. Further, the electronic control unit 30 calculates the estimated value of the stability factor Kh as the sum of the initial value of the stability factor Kh used for the calculation of the steady-state normative yaw rate γt and the correction amount based on the ratio Δδa / ΔGya of the integrated values. To do. The electronic control unit 30 stores the estimated value of the stability factor Kh and the lateral acceleration Gy of the vehicle used for the calculation in the EEPROM when a preset condition is satisfied.
 次に図2に示されたフローチャートを参照して第一の実施形態に於ける車両の積載状態推定ルーチンについて説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。このことは後述の第二の実施形態についても同様である。 Next, the vehicle loading state estimation routine in the first embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals. The same applies to the second embodiment described later.
 まずステップ10より制御が開始され、ステップ20に於いては各センサにより検出された車両の横加速度Gyを示す信号等の読み込みが行われる。 First, control is started from step 10, and in step 20, a signal indicating the vehicle lateral acceleration Gy detected by each sensor is read.
 ステップ30に於いては予め設定された積載状態推定の許可条件が成立しているか否かの判別が行われる。そして否定判別が行われたときには制御はステップ20へ戻り、肯定判別が行われたときには制御はステップ60へ進む。この場合例えば車速Vが基準値以上であり、車両が加減速状態になく、車輪のスリップが発生していない場合に積載状態推定の許可条件が成立していると判定されてよい。 In step 30, it is determined whether or not a preset loading condition estimation permission condition is satisfied. When a negative determination is made, the control returns to step 20, and when an affirmative determination is made, the control proceeds to step 60. In this case, for example, when the vehicle speed V is equal to or higher than the reference value, the vehicle is not in an acceleration / deceleration state, and no wheel slip occurs, it may be determined that the permission condition for loading state estimation is satisfied.
 ステップ60に於いてはEEPROMに記憶されているスタビリティファクタKhの推定値及び車両の横加速度Gyの奇数の組合せが図5に示されたグラフに対応するマップの何れの領域に属するかが判定されることにより、車両の積載状態が推定される。この場合組合せが複数の領域に属する場合には、属する組合せの数が多い方の積載状態に推定されてよい。 In step 60, it is determined in which region of the map the odd combination of the estimated stability factor Kh and the lateral acceleration Gy of the vehicle stored in the EEPROM belongs to the graph shown in FIG. By doing so, the loading state of the vehicle is estimated. In this case, when a combination belongs to a plurality of areas, it may be estimated to a loading state with a larger number of combinations.
 ステップ70に於いてはステップ60に於ける推定結果に基づいて車両が積載状態にあるか否かの判別が行われる。車両が積載状態にある場合には、積載状態が後積み(重心が標準状態の位置よりも後寄り)、中央積み(重心が標準状態の位置と実質的に同一の位置)、前積み(重心が標準状態の位置よりも前寄り)の何れであるかについても判別される。そして否定判別、即ち車両が非積載状態にあるとの判別が行われたときには制御はステップ20へ戻り、肯定判別が行われたときには制御はステップ80へ進む。 In step 70, it is determined whether the vehicle is in a loaded state based on the estimation result in step 60. When the vehicle is in the loaded state, the loaded state is the rear stack (the center of gravity is behind the standard position), the center stack (the center of gravity is substantially the same as the standard position), the front stack (the center of gravity It is also determined whether the position is a position closer to the front than the position in the standard state. When a negative determination is made, that is, when it is determined that the vehicle is in a non-loading state, the control returns to step 20, and when an affirmative determination is made, the control proceeds to step 80.
 ステップ80に於いては推定された車両の積載状態が後積みの積載状態、中央積みの積載状態、前積みの積載状態の何れであるかに応じて車両の走行制御の閾値が修正される。この場合積載状態が何れであるかに応じて走行制御の制御量を演算するための式の定数や係数も修正されてもよい。 In step 80, the threshold value of the vehicle traveling control is corrected according to whether the estimated loading state of the vehicle is a post-loading state, a center-loading state, or a pre-loading state. In this case, the constants and coefficients of the equation for calculating the control amount of the travel control may be modified according to which of the loading states.
 次に図3に示されたフローチャートを参照して第一の実施形態に於けるスタビリティファクタKhの推定演算ルーチンについて説明する。 Next, the routine for estimating the stability factor Kh in the first embodiment will be described with reference to the flowchart shown in FIG.
 ステップ120に於いては各センサにより検出された操舵角θを示す信号等の読み込みが行われ、ステップ130に於いてはステップ120に於いて読み込まれた操舵角θ等に対し高周波ノイズを除去するためのローパスフィルタ処理が行われる。 In step 120, a signal indicating the steering angle .theta. Detected by each sensor is read. In step 130, high frequency noise is removed from the steering angle .theta. Read in step 120. Therefore, a low-pass filter process is performed.
 ステップ140に於いては車輪速度Vwiに基づいて車速Vが演算され、操舵角θに基づいて前輪の舵角δが演算されると共に、上記式11に従って定常規範ヨーレートγtが演算される。 In step 140, the vehicle speed V is calculated based on the wheel speed Vwi, the steering angle δ of the front wheels is calculated based on the steering angle θ, and the steady standard yaw rate γt is calculated according to the above equation 11.
 ステップ150に於いては操舵応答時定数係数Tpが車両の出荷時に予め設定されているデフォルト値Tp00に設定される。尚車両の走行データに基づいて操舵応答時定数係数Tpが推定される場合には、操舵応答時定数係数Tpはその推定された値に設定されてよい。 In step 150, the steering response time constant coefficient Tp is set to a default value Tp00 that is preset at the time of shipment of the vehicle. When the steering response time constant coefficient Tp is estimated based on the travel data of the vehicle, the steering response time constant coefficient Tp may be set to the estimated value.
 ステップ160に於いては上記式12に従って操舵応答時定数係数Tpによる一次遅れのフィルタ演算が行われることにより、ステップ140にて演算された規範ヨーレートγtに基づく過渡ヨーレートγtrが演算される。 In step 160, a first-order lag filter calculation is performed using the steering response time constant coefficient Tp in accordance with the above equation 12, whereby a transient yaw rate γtr based on the reference yaw rate γt calculated in step 140 is calculated.
 ステップ170に於いては車両の横加速度Gyに対し下記の式19に従って操舵応答時定数係数Tpによる一次遅れのフィルタ演算が行われることにより、一次遅れのフィルタ処理後の車両の横加速度Gyftが演算される。
Figure JPOXMLDOC01-appb-M000008
In step 170, the first-order lag filter operation is performed on the lateral acceleration Gy of the vehicle by the steering response time constant coefficient Tp according to the following equation 19, thereby calculating the lateral acceleration Gyft of the vehicle after the first-order lag filter processing. Is done.
Figure JPOXMLDOC01-appb-M000008
 ステップ180に於いては過渡ヨーレートγtrと実ヨーレートγとの偏差が前輪の舵角の偏差に置き換えられたヨーレート偏差の前輪舵角偏差換算値Δδが下記の式20に従って演算される。
Figure JPOXMLDOC01-appb-M000009
In step 180, the front wheel rudder angle deviation converted value Δδ of the yaw rate deviation in which the deviation between the transient yaw rate γtr and the actual yaw rate γ is replaced with the deviation of the front wheel rudder angle is calculated according to the following equation 20.
Figure JPOXMLDOC01-appb-M000009
 ステップ190に於いてはステップ170に於いて演算された一次遅れのフィルタ処理後の車両の横加速度Gyft及びステップ180に於いて演算されたヨーレート偏差の前輪舵角偏差換算値Δδに対しセンサの零点オフセットの影響を除去するためのハイパスフィルタ処理が行われる。この場合のハイパスフィルタ処理はステップ130に於けるローパスフィルタ処理のカットオフ周波数よりも小さい値をカットオフ周波数とする一次のハイパスフィルタ処理であってよい。 In step 190, the zero point of the sensor is calculated with respect to the lateral acceleration Gyft of the vehicle after the first-order lag filtering process calculated in step 170 and the front wheel steering angle deviation converted value Δδ of the yaw rate deviation calculated in step 180. A high-pass filter process for removing the influence of the offset is performed. The high-pass filter process in this case may be a primary high-pass filter process in which a value smaller than the cut-off frequency of the low-pass filter process in step 130 is set as the cut-off frequency.
 上述の如くステップ130に於いてローパスフィルタ処理が行われているので、上記ハイパスフィルタ処理が行われることにより一次遅れのフィルタ処理後の車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδに対しバンドパスフィルタ処理が行われることと同様の結果が得られる。よってステップ190に於いてハイパスフィルタ処理された車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδをそれぞれバンドパスフィルタ処理後の車両の横加速度Gyftbpf及びヨーレート偏差の前輪舵角偏差換算値Δδbpfと表記する。 As described above, since the low pass filter process is performed in step 130, the front wheel steering angle deviation converted value Δδ of the lateral acceleration Gyft and yaw rate deviation of the vehicle after the first-order lag filter process is performed by performing the high pass filter process. The same result as that obtained when the band pass filter processing is performed is obtained. Therefore, the front wheel steering angle deviation converted value Δδ of the lateral acceleration Gyft and yaw rate deviation of the vehicle subjected to the high-pass filter processing in step 190 is converted into the front wheel steering angle deviation converted value of the vehicle lateral acceleration Gyftbpf and yaw rate deviation after the band pass filter processing, respectively. Expressed as Δδbpf.
 ステップ200に於いては車両が旋回走行状態にあるか否かの判別が行われ、否定判別が行われたときには制御はステップ120へ戻り、肯定判別が行われたときには制御はステップ210へ進む。この場合車両が旋回走行状態にあるか否かの判別は、車両が基準値以上の車速にて走行している状況にて、車両の横加速度Gyの絶対値が基準値以上であるか否か、車両の実ヨーレートγの絶対値が基準値以上であるか否か、車両のヨーレートγと車速Vとの積の絶対値が基準値以上であるか否かの何れかの判別により行われてよい。 In step 200, it is determined whether or not the vehicle is in a turning state. If a negative determination is made, the control returns to step 120. If an affirmative determination is made, the control proceeds to step 210. In this case, whether or not the vehicle is turning is determined whether or not the absolute value of the lateral acceleration Gy of the vehicle is greater than or equal to the reference value in a situation where the vehicle is traveling at a vehicle speed greater than or equal to the reference value. The determination is made by determining whether the absolute value of the actual yaw rate γ of the vehicle is greater than or equal to a reference value and whether the absolute value of the product of the yaw rate γ of the vehicle and the vehicle speed V is greater than or equal to the reference value. Good.
 ステップ210に於いては前サイクルのステップ230に於いて演算された現在のバンドパスフィルタ処理後のヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaを調整する必要があるか否かの判別が行われる。否定判別が行われたときには制御はステップ230へ進み、肯定判別が行われたときには制御はステップ220へ進む。 In step 210, the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation after the current bandpass filter processing calculated in step 230 of the previous cycle and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are obtained. A determination is made as to whether adjustment is necessary. When a negative determination is made, control proceeds to step 230, and when an affirmative determination is made, control proceeds to step 220.
 この場合下記の(A1)又は(A2)が成立するときに、積算値Δδa及びΔGyaを調整する必要があると判定されてよい。尚(A2)は操舵応答時定数係数Tpが推定され、ステップ50に於いて操舵応答時定数係数Tpが推定された値に設定される場合の判定条件である。
(A1)積算値Δδa及びΔGyaが前回調整されたときのスタビリティファクタKhと、前サイクルのステップ250に於いて推定された現在のスタビリティファクタKhとの偏差ΔKhの絶対値がスタビリティファクタの偏差についての基準値を越えている。
(A2)積算値Δδa及びΔGyaが前回調整されたときの操舵応答時定数係数Tpと、現サイクルのステップ150に於いて設定された現在の操舵応答時定数係数Tpとの偏差ΔTpの絶対値が操舵応答時定数係数の偏差についての基準値を越えている。
In this case, when the following (A1) or (A2) is established, it may be determined that the integrated values Δδa and ΔGya need to be adjusted. (A2) is a determination condition when the steering response time constant coefficient Tp is estimated and the steering response time constant coefficient Tp is set to the estimated value in step 50.
(A1) The absolute value of the deviation ΔKh between the stability factor Kh when the integrated values Δδa and ΔGya were adjusted last time and the current stability factor Kh estimated in step 250 of the previous cycle is the stability factor. The standard value for deviation is exceeded.
(A2) The absolute value of the deviation ΔTp between the steering response time constant coefficient Tp when the integrated values Δδa and ΔGya were adjusted last time and the current steering response time constant coefficient Tp set in step 150 of the current cycle is The reference value for deviation of the steering response time constant coefficient is exceeded.
 ステップ220に於いてはバンドパスフィルタ処理後のヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδaの予め設定された下限値をΔδamin(正の定数)とし、バンドパスフィルタ処理後の車両の横加速度Gyftbpfの積算値ΔGyaの予め設定された下限値をΔGyamin(正の定数)として、下記の式21に従って調整ゲインGajが演算される。尚下記の式21のMINは括弧内の値の最小値を選択することを意味し、MAXは括弧内の値の最大値を選択することを意味する。このことは同様の他の式についても同一である。
Figure JPOXMLDOC01-appb-M000010
In step 220, a preset lower limit value of the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation after the bandpass filter processing is set to Δδamin (positive constant), and the vehicle after the bandpass filter processing is processed. The adjustment gain Gaj is calculated according to the following equation 21 with the preset lower limit value of the integrated value ΔGya of the lateral acceleration Gyftbpf as ΔGyamin (positive constant). In the following equation 21, MIN means that the minimum value in the parentheses is selected, and MAX means that the maximum value in the parentheses is selected. This is the same for other similar equations.
Figure JPOXMLDOC01-appb-M000010
 またステップ220に於いては下記の式22及び23に従って調整後のヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaが演算される。
 Δδa=現在のΔδa×Gaj ……(22)
 ΔGya=現在のΔGya×Gaj ……(23)
In step 220, an integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the adjusted yaw rate deviation and an integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are calculated according to the following equations 22 and 23.
Δδa = current Δδa × Gaj (22)
ΔGya = Current ΔGya × Gaj (23)
 ステップ230に於いては車両の横加速度Gyftbpfが正の値であるときには、ヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaがそれぞれ下記の式24及び25に従って演算される。
 Δδa=現在のΔδa+Δδbpf ……(24)
 ΔGya=現在のΔGya+Gyftbpf ……(25)
In step 230, when the lateral acceleration Gyftbpf of the vehicle is a positive value, the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are respectively expressed by the following equations 24 and 24: 25 is calculated.
Δδa = current Δδa + Δδbpf (24)
ΔGya = Current ΔGya + Gyftbpf (25)
 また車両の横加速度Gyftbpfが正の値ではないときには、ヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaがそれぞれ下記の式26及び27に従って演算される。
 Δδa=現在のΔδa-Δδbpf ……(26)
 ΔGya=現在のΔGya-Gyftbpf ……(27)
When the lateral acceleration Gyftbpf of the vehicle is not a positive value, the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are calculated according to the following equations 26 and 27, respectively. .
Δδa = current Δδa−Δδbpf (26)
ΔGya = Current ΔGya−Gyftbpf (27)
 ステップ240に於いてはヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδaを車両の横加速度Gyftbpfの積算値ΔGyaにて除算することにより、積算値の比Δδa/ΔGyaが演算される。 In step 240, the integrated value ratio Δδa / ΔGya is calculated by dividing the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation by the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle.
 ステップ250に於いては上記式15に於けるスタビリティファクタの設計値Khdeがスタビリティファクタの初期値Kh0とされた下記の式28に従ってスタビリティファクタKhの推定値が演算される。
 Kh=Kh0+(Δδa/ΔGya)/L ……(28)
In step 250, the estimated value of the stability factor Kh is calculated according to the following equation 28 in which the stability factor design value Khde in the equation 15 is set to the initial value Kh0 of the stability factor.
Kh = Kh0 + (Δδa / ΔGya) / L (28)
 ステップ260に於いては予め設定された許可条件が成立しているか否かの判別により、EEPROMへのスタビリティファクタKhの推定値の記憶が許可される状況であるか否かの判別が行われる。否定判別が行われたときには制御はステップ120へ戻り、肯定判別が行われたときにはステップ270に於いてスタビリティファクタKhの推定値がEEPROMに記憶され、これによりEEPROMに記憶されているスタビリティファクタKhの推定値が更新される。また予め設定されたサイクル毎にスタビリティファクタKhの推定値と共にその演算に供された車両の横加速度GyがEEPROMに記憶される。 In step 260, it is determined whether or not it is permitted to store the estimated value of the stability factor Kh in the EEPROM by determining whether or not a preset permission condition is satisfied. . When a negative determination is made, the control returns to step 120. When an affirmative determination is made, in step 270, the estimated value of the stability factor Kh is stored in the EEPROM, and thereby the stability factor stored in the EEPROM. The estimated value of Kh is updated. Further, the lateral acceleration Gy of the vehicle used for the calculation is stored in the EEPROM together with the estimated value of the stability factor Kh for each preset cycle.
 上述の如く構成された第一の実施形態の作動に於いては、ステップ30に於いて積載状態推定の許可条件が成立していると判定されると、ステップ60に於いてスタビリティファクタKhの推定値及び車両の横加速度Gyに基づいて車両の積載状態が推定される。 In the operation of the first embodiment configured as described above, if it is determined in step 30 that the condition for permitting the loading state estimation is satisfied, the stability factor Kh is determined in step 60. The loading state of the vehicle is estimated based on the estimated value and the lateral acceleration Gy of the vehicle.
 従って車両の積載状態が標準状態より変化すると、車両のスタビリティファクタKhと横加速度Gyとの関係も変化することを利用して、車両の積載状態を確実に推定することができる。 Therefore, when the loading state of the vehicle changes from the standard state, the relationship between the vehicle stability factor Kh and the lateral acceleration Gy can be used to reliably estimate the loading state of the vehicle.
 また第一の実施形態によれば、車両のスタビリティファクタKhを推定すると共に、その推定に供された車両の走行データと同一の時刻の車両の横加速度GyをスタビリティファクタKhの推定値と共に記憶すればよい。従って車両の重量Wが推定される後述の第二の実施形態の場合に比して、簡便に車両の積載状態を推定することができる。 Further, according to the first embodiment, the stability factor Kh of the vehicle is estimated, and the lateral acceleration Gy of the vehicle at the same time as the traveling data of the vehicle provided for the estimation is calculated together with the estimated value of the stability factor Kh. Just remember. Accordingly, it is possible to easily estimate the loading state of the vehicle as compared with the case of the second embodiment described later in which the weight W of the vehicle is estimated.
 また第一の実施形態によれば、推定された車両の積載状態が後積みの積載状態、中央積みの積載状態、前積みの積載状態の何れであるかに応じて車両の走行制御の閾値が修正される。従って車両の積載状態が推定されない場合に比して車両の走行制御の開始タイミングを車両の積載状態に応じて適正に制御することができる。
[第二の実施形態]
Further, according to the first embodiment, the threshold value of the vehicle traveling control is determined depending on whether the estimated loading state of the vehicle is a post-loading state, a center-loading state, or a pre-loading state. Will be corrected. Therefore, it is possible to appropriately control the start timing of the vehicle traveling control in accordance with the loading state of the vehicle as compared with the case where the loading state of the vehicle is not estimated.
[Second Embodiment]
 図4は本発明による車両の積載状態推定方法及び装置の第二の実施形態に於ける積載状態推定ルーチンを示すフローチャートである。尚図4に於いて図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。 FIG. 4 is a flowchart showing a loading state estimation routine in the second embodiment of the vehicle loading state estimation method and apparatus according to the present invention. In FIG. 4, the same steps as those shown in FIG. 2 are assigned the same step numbers as those shown in FIG.
 この第二の実施形態に於いては、ステップ30に於いて肯定判別が行われたときには、ステップ40に於いて車両の重量Wが推定され、その値がEEPROMに記憶される。尚車両の走行中に車両の重量が変化することはないので、走行開始後に既に車両の重量Wが推定されているときには、このステップがスキップされてよい。 In the second embodiment, when an affirmative determination is made in step 30, the weight W of the vehicle is estimated in step 40, and the value is stored in the EEPROM. Since the weight of the vehicle does not change during the traveling of the vehicle, this step may be skipped when the weight W of the vehicle has already been estimated after the start of traveling.
 この場合車両の重量Wは以下の如く推定されてよい。まず運転者の制駆動に基づく車両の前後加速度が推定される。即ち制動時には運転者の制動操作量を示すマスタシリンダ圧力Pmに基づいて車両の推定前後加速度Gxhが演算され、駆動時には運転者の駆動操作量を示すアクセル開度Accに基づいて車両の推定前後加速度Gxhが演算される。そして推定前後加速度Gxhと前後加速度センサ38により検出された前後加速度Gxとの偏差に基づいて車両の重量Wが推定される。 In this case, the weight W of the vehicle may be estimated as follows. First, the longitudinal acceleration of the vehicle based on the driver's braking / driving is estimated. That is, the estimated longitudinal acceleration Gxh of the vehicle is calculated based on the master cylinder pressure Pm indicating the amount of braking operation of the driver during braking, and the estimated longitudinal acceleration of the vehicle based on the accelerator opening Acc indicating the amount of driving operation of the driver during driving. Gxh is calculated. Then, based on the deviation between the estimated longitudinal acceleration Gxh and the longitudinal acceleration Gx detected by the longitudinal acceleration sensor 38, the weight W of the vehicle is estimated.
 ステップ50に於いてはステップ40に於いて推定された車両の重量Wが基準値W0(正の定数)以下の小重量区分の値であるか基準値W0よりも大きい大重量区分の値であるかが決定される。また車両の重量Wが小重量区分の値であるときには積載状態推定用のマップが図6に示された小重量区分用のマップに決定され、車両の重量Wが大重量区分の値であるときには積載状態推定用のマップが図7に示された大重量区分用のマップに決定される。尚車両の重量区分及びマップの数は3以上であってもよい。 In step 50, the weight W of the vehicle estimated in step 40 is the value of the small weight section that is equal to or smaller than the reference value W0 (positive constant) or the value of the large weight section that is larger than the reference value W0. Is decided. Further, when the vehicle weight W is the value of the small weight class, the loading state estimation map is determined to be the map for the small weight class shown in FIG. 6, and when the vehicle weight W is the value of the large weight class. The map for estimating the loading state is determined to be the map for heavy weight classification shown in FIG. Note that the number of weight categories and maps of the vehicle may be three or more.
 ステップ60に於いてはステップ50に於いて決定されたマップを使用して第一の実施形態のステップ60の場合と同様の要領にて車両の積載状態が推定され、しかる後第一の実施形態の場合と同様の要領にてステップ70が実行される。 In step 60, the loading state of the vehicle is estimated in the same manner as in step 60 of the first embodiment using the map determined in step 50, and then the first embodiment. Step 70 is executed in the same manner as in.
 ステップ80に於いては車両の積載状態が後積みの積載状態、中央積みの積載状態、前積みの積載状態の何れであるか及び車両の重量Wに応じて車両の走行制御の閾値が修正される。この場合積載状態が何れであるか及び車両の重量Wに応じて走行制御の制御量を演算するための式の定数や係数も修正されてもよい。 In step 80, the vehicle running control threshold is corrected in accordance with whether the vehicle loading state is a rear loading state, a central loading state, or a previous loading state, and the vehicle weight W. The In this case, the constants and coefficients of the equation for calculating the control amount of the travel control may be modified according to the loaded state and the weight W of the vehicle.
 かくして第二の実施形態によれば、上述の第一の実施形態の場合と同様に、車両の積載状態が標準状態より変化すると、車両のスタビリティファクタKhと横加速度Gyとの関係も変化することを利用して、車両の積載状態を確実に推定することができる。 Thus, according to the second embodiment, as in the case of the first embodiment described above, when the vehicle loading state changes from the standard state, the relationship between the vehicle stability factor Kh and the lateral acceleration Gy also changes. This makes it possible to reliably estimate the loading state of the vehicle.
 また第二の実施形態によれば、車両の重量Wが推定され、車両の重量Wに基づいて積載状態推定用のマップが決定される。従って車両の乗員数や積載荷物の如き積載荷重が比較的大きく変動する車両の場合にも車両の積載状態を適正に推定することができる。 Further, according to the second embodiment, the weight W of the vehicle is estimated, and a map for estimating the loading state is determined based on the weight W of the vehicle. Therefore, the loading state of the vehicle can be properly estimated even in the case of a vehicle in which the loading load such as the number of passengers in the vehicle and the loaded luggage fluctuates relatively large.
 また第二の実施形態によれば、推定された車両の積載状態が後積みの積載状態、中央積みの積載状態、前積みの積載状態の何れであるか及び車両の重量Wに応じて車両の走行制御の閾値が修正される。従って車両の重量が考慮されない場合に比して車両の走行制御の開始タイミングを車両の重量に応じて適正に制御することができる。 In addition, according to the second embodiment, the estimated loading state of the vehicle is a post-loading state, a center-loading state, a pre-loading state, and the weight W of the vehicle. The threshold value for the travel control is corrected. Accordingly, it is possible to appropriately control the start timing of the vehicle travel control in accordance with the vehicle weight as compared with the case where the vehicle weight is not taken into consideration.
 特に第一及び第二の実施形態によれば、スタビリティファクタKhの推定値は図3に示されたルーチンに従って演算されるので、操舵角速度の大きさが小さい場合や定常旋回状況に於いても車両のスタビリティファクタKhを推定することができる。従って操舵角速度の大きさが小さい場合や定常旋回状況に於いても車両の積載状態を確実に推定することができる。 In particular, according to the first and second embodiments, the estimated value of the stability factor Kh is calculated according to the routine shown in FIG. 3, so even when the steering angular velocity is small or in a steady turning situation. The stability factor Kh of the vehicle can be estimated. Therefore, it is possible to reliably estimate the loading state of the vehicle even when the steering angular velocity is small or in a steady turning situation.
 尚上述の如く構成された第一及び第二の実施形態の作動に於いては、図3に示されたフローチャートに従ってスタビリティファクタKhの推定値が演算される。 In the operation of the first and second embodiments configured as described above, the estimated value of the stability factor Kh is calculated according to the flowchart shown in FIG.
 即ちステップ140に於いて定常規範ヨーレートγtが演算され、ステップ160に於いて定常規範ヨーレートγtに基づき過渡ヨーレートγtrが演算される。またステップ170に於いて一次遅れのフィルタ処理後の車両の横加速度Gyftが演算され、ステップ180に於いて過渡ヨーレートγtrと実ヨーレートγとの偏差が前輪の舵角の偏差に置き換えられたヨーレート偏差の前輪舵角偏差換算値Δδが演算される。 That is, in step 140, the steady standard yaw rate γt is calculated, and in step 160, the transient yaw rate γtr is calculated based on the steady standard yaw rate γt. Further, in step 170, the lateral acceleration Gyft of the vehicle after the first-order lag filtering is calculated, and in step 180, the deviation between the transient yaw rate γtr and the actual yaw rate γ is replaced with the deviation of the steering angle of the front wheels. The front wheel rudder angle deviation converted value Δδ is calculated.
 ステップ190に於いて車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδに対しハイパスフィルタ処理が行われることにより、バンドパスフィルタ処理後の実ヨーレートγbpfが演算される。そしてバンドパスフィルタ処理後の実ヨーレートγbpfと過渡ヨーレートγtrbpfとの偏差の大きさが前輪の舵角の偏差の大きさに置き換えられた値としてバンドパスフィルタ処理後のヨーレート偏差指標値の前輪舵角偏差換算値Δδbpfが演算される。 In step 190, the high-pass filter processing is performed on the vehicle lateral acceleration Gyft and the front wheel rudder angle deviation converted value Δδ of the yaw rate deviation, thereby calculating the actual yaw rate γbpf after the band-pass filter processing. The front wheel rudder angle of the yaw rate deviation index value after the band pass filter processing is obtained as a value obtained by replacing the magnitude of the deviation between the actual yaw rate γbpf after the band pass filter processing and the transient yaw rate γ trbpf with the magnitude of the steering wheel deviation of the front wheels. A deviation converted value Δδbpf is calculated.
 そしてステップ230に於いてヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaが演算される。またステップ240に於いてヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδaを車両の横加速度Gyftbpfの積算値ΔGyaにて除算することにより、積算値の比Δδa/ΔGyaが演算される。 In step 230, the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are calculated. Also, in step 240, the integrated value ratio Δδa / ΔGya is calculated by dividing the integrated value Δδa of the yaw rate deviation converted into the front wheel steering angle deviation Δδbpf by the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle.
 更にステップ250に於いて定常規範ヨーレートγtの演算に供されたスタビリティファクタKhの初期値Kh0と、積算値の比Δδa/ΔGyaに基づく修正量との和として、スタビリティファクタKhの推定値が演算される。 Further, in step 250, the estimated value of the stability factor Kh is obtained as the sum of the initial value Kh0 of the stability factor Kh used for the calculation of the steady-state standard yaw rate γt and the correction amount based on the ratio Δδa / ΔGya of the integrated values. Calculated.
 かくして上述の各実施形態によれば、車両の過渡ヨーレートγtrが真のヨーレートに近づくよう、車両の定常規範ヨーレートγtの演算に供されたスタビリティファクタの初期値をヨーレートの偏差と車両の横加速度との関係に基づいて修正した値としてスタビリティファクタKhの推定値を演算することができる。よってスタビリティファクタの推定値が真のスタビリティファクタに近づくようスタビリティファクタの推定値を修正し、これにより真のスタビリティファクタに近い値としてスタビリティファクタの推定値を求めることができる。 Thus, according to each of the above-described embodiments, the initial value of the stability factor used for the calculation of the steady-state standard yaw rate γt of the vehicle is set so that the transient yaw rate γtr of the vehicle approaches the true yaw rate. The estimated value of the stability factor Kh can be calculated as a value corrected on the basis of the relationship. Therefore, the estimated value of the stability factor is corrected so that the estimated value of the stability factor approaches the true stability factor, and thereby the estimated value of the stability factor can be obtained as a value close to the true stability factor.
 特に上述の各実施形態によれば、ステップ130にてローパスフィルタ処理された操舵角θ等に基づいて定常規範ヨーレートγtが演算される。そしてステップ190に於いて車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδに対しハイパスフィルタ処理が行われることにより、バンドパスフィルタ処理後の車両の横加速度Gyftbpf及びヨーレート偏差の前輪舵角偏差換算値Δδbpfが演算される。更にステップ230に於いてヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaが演算され、ステップ240に於いてそれらの比として積算値の比Δδa/ΔGyaが演算される。 In particular, according to each of the above-described embodiments, the steady-state normative yaw rate γt is calculated based on the steering angle θ and the like subjected to the low-pass filter processing in step 130. In step 190, the vehicle's lateral acceleration Gyft and yaw rate deviation front wheel rudder angle deviation converted value Δδ are subjected to high-pass filter processing, so that the vehicle's lateral acceleration Gyftbpf and yaw rate deviation front wheel rudder after band pass filter processing are performed. An angular deviation converted value Δδbpf is calculated. Further, in step 230, an integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and an integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are calculated, and in step 240, a ratio Δδa / ΔGya of the integrated values is calculated as a ratio therebetween. Is calculated.
 従って検出される操舵角θ等に含まれる高周波ノイズを除去することができるだけでなく、ヨーレートセンサ36等の零点オフセットの影響を除去することができる。よってセンサの零点オフセットの影響を排除して車両の横加速度Gyftbpf及びヨーレート偏差の前輪舵角偏差換算値Δδbpfを演算することができるので、ハイパスフィルタ処理が行われない場合に比してスタビリティファクタKhを正確に推定することができる。また定常規範ヨーレートγtの演算に供される操舵角θ、横加速度Gy及び実ヨーレートγに対しハイパスフィルタ処理が行われる場合に比して、ハイパスフィルタ処理の回数を低減することができ、これにより電子制御装置30の演算負荷を低減することができる。 Therefore, not only the high-frequency noise included in the detected steering angle θ etc. can be removed, but also the influence of the zero point offset of the yaw rate sensor 36 etc. can be eliminated. Therefore, it is possible to calculate the lateral acceleration Gyftbpf of the vehicle and the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation by eliminating the influence of the zero offset of the sensor, so that the stability factor is compared with the case where the high-pass filter processing is not performed. Kh can be estimated accurately. In addition, the number of high-pass filter processes can be reduced as compared with the case where the high-pass filter process is performed on the steering angle θ, the lateral acceleration Gy, and the actual yaw rate γ used for the calculation of the steady-state standard yaw rate γt. The calculation load of the electronic control unit 30 can be reduced.
 尚、操舵角θ等に対しローパスフィルタ処理されることなく車両の横加速度Gy及びヨーレート偏差の前輪舵角偏差換算値Δδに対しバンドパスフィルタ処理が行われてもよい。その場合には高周波ノイズを効果的に除去しつつ、スタビリティファクタKhを正確に推定することができると共に、上述の各実施形態の場合に比してフィルタ処理に要する演算の回数を低減することができ、これにより電子制御装置30の演算負荷を低減することができる。 It should be noted that bandpass filter processing may be performed on the front wheel steering angle deviation converted value Δδ of the vehicle lateral acceleration Gy and yaw rate deviation without performing lowpass filter processing on the steering angle θ or the like. In this case, the stability factor Kh can be accurately estimated while effectively removing high-frequency noise, and the number of operations required for the filter processing can be reduced as compared with the above-described embodiments. As a result, the calculation load of the electronic control unit 30 can be reduced.
 また上述の各実施形態によれば、バンドパスフィルタ処理後の車両の横加速度Gyftbpfの積算値ΔGya及びヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδaに基づいて、定常規範ヨーレートγtの演算に供されたスタビリティファクタKhの初期値Kh0に対する修正量を演算するための比Δδa/ΔGyaが演算される。 Further, according to each of the embodiments described above, the steady state reference yaw rate γt is calculated based on the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle after the bandpass filter process and the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation. The ratio Δδa / ΔGya for calculating the correction amount of the stability factor Kh provided to the initial value Kh0 is calculated.
 従ってバンドパスフィルタ処理後の車両の横加速度Gyftbpf及びヨーレート偏差の前輪舵角偏差換算値Δδbpfに基づいて修正量を演算するための比Δδbpf/ΔGyftbpfが求められる場合に比して、車両の横加速度Gyftbpf若しくはヨーレート偏差の前輪舵角偏差換算値Δδbpfの瞬間的な変動に起因してスタビリティファクタKhが不正確に推定される虞れを低減することができる。 Therefore, compared with the case where the ratio Δδbpf / ΔGyftbpf for calculating the correction amount is obtained based on the lateral acceleration Gyftbpf of the vehicle after the bandpass filter processing and the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation, the lateral acceleration of the vehicle is obtained. It is possible to reduce the possibility that the stability factor Kh is estimated inaccurately due to the instantaneous fluctuation of the front wheel steering angle deviation converted value Δδbpf of Gyftbpf or yaw rate deviation.
 また上述の各実施形態によれば、積算値Δδaは過渡ヨーレートγtrと実ヨーレートγとの偏差が前輪の舵角の偏差に置き換えられたヨーレート偏差の前輪舵角偏差換算値Δδの積算値である。従って車速Vの影響を受けることなくスタビリティファクタKhを推定することができる。よってヨーレート偏差指標値の積算値が例えば過渡ヨーレートγtrと実ヨーレートγとの偏差の積算値である場合に比して、スタビリティファクタKhを正確に推定することができる。また車速V毎にスタビリティファクタKhを推定したり、目標ヨーレートγttの演算に供されるスタビリティファクタKhを車速Vによって変更したりする煩雑さを回避し、必要な演算回数や記憶手段の容量を低減することができる。 Further, according to the above-described embodiments, the integrated value Δδa is an integrated value of the front wheel steering angle deviation converted value Δδ of the yaw rate deviation in which the deviation between the transient yaw rate γtr and the actual yaw rate γ is replaced with the deviation of the steering angle of the front wheels. . Therefore, the stability factor Kh can be estimated without being affected by the vehicle speed V. Therefore, the stability factor Kh can be accurately estimated as compared with the case where the integrated value of the yaw rate deviation index value is, for example, the integrated value of the deviation between the transient yaw rate γtr and the actual yaw rate γ. Further, it avoids the complexity of estimating the stability factor Kh for each vehicle speed V and changing the stability factor Kh used for the calculation of the target yaw rate γtt according to the vehicle speed V. Can be reduced.
 また上述の各実施形態によれば、ステップ210に於いてはヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaを調整する必要があるか否かの判別が行われる。肯定判別が行われたときにはステップ220に於いて1以下の調整ゲインGajが演算される。そしてステップ230に於いて調整ゲインGajにて調整された後のヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaが演算される。 Further, according to each of the above-described embodiments, whether or not it is necessary to adjust the integrated value Δδa of the front wheel rudder angle deviation converted value Δδbpf and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle in step 210. A determination is made. When a positive determination is made, an adjustment gain Gaj of 1 or less is calculated at step 220. In step 230, the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation after being adjusted by the adjustment gain Gaj and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are calculated.
 従って例えば車両の積載状況が大きく変化することにより、前回積算値Δδa及びΔGyaが調整されたときのスタビリティファクタKhと、前サイクルのステップ250に於いて推定された現在のスタビリティファクタKhとの偏差ΔKhの大きさが大きくなったような状況に於いて、それ以前のヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaがスタビリティファクタKhの推定に悪影響を及ぼすことを確実に防止することができる。 Therefore, for example, when the loading state of the vehicle largely changes, the stability factor Kh when the previous integrated values Δδa and ΔGya are adjusted and the current stability factor Kh estimated in step 250 of the previous cycle are calculated. In a situation where the magnitude of the deviation ΔKh is increased, the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle are estimated as the stability factor Kh. It is possible to reliably prevent adverse effects.
 また上述の各実施形態によれば、ステップ220に於いてヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδa及び車両の横加速度Gyftbpfの積算値ΔGyaに基づいて式21に従って調整ゲインGajが演算される。従ってヨーレート偏差の前輪舵角偏差換算値Δδbpfの積算値Δδaの大きさ及び車両の横加速度Gyftbpfの積算値ΔGyaの大きさに応じて調整ゲインGajを可変設定することができる。よって調整ゲインGajが一定である場合に比して、調整ゲインGajが大きすぎることに起因してスタビリティファクタの推定誤差が大きくなる虞れを低減することができると共に、逆に調整ゲインGajが小さすぎることに起因してスタビリティファクタの推定のS/N比が低下する虞れを低減することができる。 Further, according to each of the above-described embodiments, in step 220, the adjustment gain Gaj is calculated according to the equation 21 based on the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle. Is done. Accordingly, the adjustment gain Gaj can be variably set according to the magnitude of the integrated value Δδa of the front wheel steering angle deviation converted value Δδbpf of the yaw rate deviation and the integrated value ΔGya of the lateral acceleration Gyftbpf of the vehicle. Therefore, the possibility that the estimation error of the stability factor may increase due to the adjustment gain Gaj being too large can be reduced as compared with the case where the adjustment gain Gaj is constant. It is possible to reduce the possibility that the S / N ratio for estimating the stability factor is lowered due to being too small.
 また上述の各実施形態によれば、ステップ280に於いてスタビリティファクタKhの推定値の記憶が許可される状況であるか否かの判別が行われ、肯定判別が行われたときにステップ290に於いてスタビリティファクタKhの推定値がEEPROMに記憶される。従ってスタビリティファクタKhの推定値が実際のスタビリティファクタに実質的に一致した段階でスタビリティファクタKhの推定値をEEPROMに記憶することができる。換言すれば、スタビリティファクタKhの推定値が実質的に実際のスタビリティファクタに一致するまで、スタビリティファクタKhの推定値をEEPROMに不必要に記憶することなくスタビリティファクタKhの推定を繰り返してスタビリティファクタKhの推定値を漸次実際のスタビリティファクタに近づけることができる。 Further, according to each of the above-described embodiments, it is determined in step 280 whether or not the storage of the estimated value of the stability factor Kh is permitted, and when an affirmative determination is made, step 290 is performed. At this time, the estimated value of the stability factor Kh is stored in the EEPROM. Therefore, the estimated value of the stability factor Kh can be stored in the EEPROM when the estimated value of the stability factor Kh substantially matches the actual stability factor. In other words, until the estimated value of the stability factor Kh substantially matches the actual stability factor, the estimation of the stability factor Kh is repeated without storing the estimated value of the stability factor Kh unnecessarily in the EEPROM. Thus, the estimated value of the stability factor Kh can be gradually brought closer to the actual stability factor.
 また上述の各実施形態によれば、ステップ200に於いて車両が旋回走行状態にあるか否かの判別が行われ、肯定判別が行われたときにステップ210以降が実行される。従って車両が旋回走行状態にはなく、スタビリティファクタKhの正確な推定ができない状況に於いてステップ210以降が不必要に実行されること及びスタビリティファクタKhが不正確に推定されることを防止することができる。
[第一の修正例]
Further, according to each of the above-described embodiments, it is determined in step 200 whether or not the vehicle is in a turning traveling state, and when an affirmative determination is made, step 210 and subsequent steps are executed. Therefore, in a situation where the vehicle is not in a turning state and the stability factor Kh cannot be accurately estimated, it is possible to prevent the step 210 and subsequent steps from being performed unnecessarily and the stability factor Kh from being estimated incorrectly. can do.
[First modification]
 図8は第一及び第二の実施形態を一部修正する第一の修正例に於けるスタビリティファクタKhの推定演算ルーチンの要部を示すフローチャートである。尚図9に於いて、図3に示されたステップに対応するステップには図3に於いて付されたステップ番号と同一のステップ番号が付されており、このことは後述の他の修正例のフローチャートについても同様である。 FIG. 8 is a flowchart showing a main part of the routine for estimating the stability factor Kh in the first modification example in which the first and second embodiments are partially modified. In FIG. 9, steps corresponding to the steps shown in FIG. 3 are assigned the same step numbers as those shown in FIG. The same applies to the flowchart of FIG.
 この第一の修正例に於いては、ステップ180が完了すると、ステップ182に於いて単位時間当たりの運転者による往復操舵の回数が操舵周波数fsとして演算される。また操舵周波数fsが低いほどステップ190に於けるハイパスフィルタ処理のカットオフ周波数fhcが小さくなるよう、操舵周波数fsに基づき図9に示されたグラフに対応するマップよりカットオフ周波数fhcが演算される。 In this first modification, when step 180 is completed, the number of reciprocating steering operations performed by the driver per unit time is calculated as the steering frequency fs in step 182. Further, the cut-off frequency fhc is calculated from the map corresponding to the graph shown in FIG. 9 based on the steering frequency fs so that the cut-off frequency fhc of the high-pass filter processing in step 190 becomes smaller as the steering frequency fs becomes lower. .
 そしてステップ190に於ける車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδのハイパスフィルタ処理に於いては、カットオフ周波数がステップ82に於いて演算されたカットオフ周波数fhcに設定される。 In the high-pass filter processing of the vehicle lateral acceleration Gyft and the front wheel rudder angle deviation converted value Δδ in step 190, the cutoff frequency is set to the cutoff frequency fhc calculated in step 82. The
 上述の第一及び第二の実施形態に於いては、ステップ190に於けるハイパスフィルタ処理のカットオフ周波数fhcは一定である。従ってセンサの零点オフセットの影響が確実に除去されるようカットオフ周波数fhcが高い値に設定されると、単位時間当たりの運転者による往復操舵の回数が少ない状況に於いてスタビリティファクタKhを推定することができなくなる虞れがある。逆にカットオフ周波数fhcが低い値に設定されると、単位時間当たりの運転者による往復操舵の回数が多い状況に於いてセンサの零点オフセットの影響を効果的に除去することができなくなる虞れがある。 In the first and second embodiments described above, the cut-off frequency fhc of the high-pass filter process in step 190 is constant. Therefore, when the cutoff frequency fhc is set to a high value so that the influence of the zero offset of the sensor is surely removed, the stability factor Kh is estimated in a situation where the number of reciprocating steering operations per unit time is small. There is a risk that you will not be able to. Conversely, if the cut-off frequency fhc is set to a low value, the influence of the zero offset of the sensor cannot be effectively removed in a situation where the number of reciprocating steerings by the driver per unit time is large. There is.
 これに対し第一の修正例によれば、操舵周波数fsが低いほどカットオフ周波数fhcが小さくなるよう、操舵周波数fsに応じてカットオフ周波数fhcが可変設定される。従って単位時間当たりの運転者による往復操舵の回数が多い状況に於いてセンサの零点オフセットの影響を効果的に除去しつつ、単位時間当たりの運転者による往復操舵の回数が少ない状況に於いてスタビリティファクタKhを推定することができなくなることを防止することができる。 On the other hand, according to the first modified example, the cutoff frequency fhc is variably set according to the steering frequency fs so that the cutoff frequency fhc becomes smaller as the steering frequency fs becomes lower. Therefore, in the situation where the number of reciprocating steerings by the driver per unit time is large, the effect of the zero offset of the sensor is effectively removed, while in the situation where the number of reciprocating steerings by the driver per unit time is small. It is possible to prevent the ability factor Kh from being estimated.
 尚カットオフ周波数fhcは操舵周波数fsに基づきマップより演算されるようになっているが、操舵周波数fsの関数として演算されてもよい。
[第二の修正例]
The cut-off frequency fhc is calculated from the map based on the steering frequency fs, but may be calculated as a function of the steering frequency fs.
[Second modification]
 図10は第一及び第二の実施形態を一部修正する第二の修正例に於けるスタビリティファクタKhの推定演算ルーチンの要部を示すフローチャートである。 FIG. 10 is a flowchart showing the main part of the routine for estimating the stability factor Kh in the second modification example in which the first and second embodiments are partially modified.
 この第二の修正例に於いては、ステップ180が完了すると、ステップ184に於いて単位時間当たりの運転者による往復操舵の回数が操舵周波数fsとして演算される。また操舵周波数fsが低いほどハイパスフィルタ処理のカットオフ周波数fhcが小さくなると共に、車両の前後加速度Gxの絶対値が大きいほどハイパスフィルタ処理のカットオフ周波数fhcが大きくなるよう、操舵周波数fs及び車両の前後加速度Gxの絶対値に基づき図11に示されたグラフに対応するマップよりカットオフ周波数fhcが演算される。 In the second modified example, when step 180 is completed, the number of reciprocating steering operations by the driver per unit time is calculated as the steering frequency fs in step 184. Further, the lower the steering frequency fs, the lower the cut-off frequency fhc of the high-pass filter process, and the higher the absolute value of the longitudinal acceleration Gx of the vehicle, the higher the cut-off frequency fhc of the high-pass filter process. Based on the absolute value of the longitudinal acceleration Gx, the cutoff frequency fhc is calculated from a map corresponding to the graph shown in FIG.
 そしてステップ190に於ける車両の横加速度Gyft及びヨーレート偏差の前輪舵角偏差換算値Δδのハイパスフィルタ処理に於いては、カットオフ周波数がステップ184に於いて演算されたカットオフ周波数fhcに設定される。 Then, in the high-pass filter processing of the vehicle lateral acceleration Gyft and the front wheel rudder angle deviation converted value Δδ in step 190, the cutoff frequency is set to the cutoff frequency fhc calculated in step 184. The
 操舵角センサ34の零点オフセットに起因する前輪の舵角δの誤差をδ0とし、横加速度センサ40の零点オフセットに起因する車両の横加速度Gyの誤差をGy0とする。またヨーレートセンサ36の零点オフセットに起因する車両のヨーレートγの誤差をγ0とする。これらの誤差を考慮すると、前輪の舵角の偏差Δδtは上記式17にて表される。 The error of the steering angle δ of the front wheels caused by the zero point offset of the steering angle sensor 34 is δ0, and the error of the vehicle lateral acceleration Gy caused by the zero point offset of the lateral acceleration sensor 40 is Gy0. An error in the yaw rate γ of the vehicle due to the zero point offset of the yaw rate sensor 36 is assumed to be γ0. Considering these errors, the deviation Δδt of the steering angle of the front wheels is expressed by the above equation 17.
 よってセンサの零点オフセットの影響は上記式17の第2項乃至第4項、即ちδ0-KhdeGy0L-γ0L/Vである。従って車速Vの変化、即ち車両の前後加速度Gxの大きさが大きいほど、定常規範ヨーレートγtの変化に与えるセンサの零点オフセットの影響が大きくなり、逆に車両の前後加速度Gxの大きさが小さいほど、定常規範ヨーレートγtの変化に与えるセンサの零点オフセットの影響が小さくなる。 Therefore, the influence of the zero point offset of the sensor is the second to fourth terms of the above equation 17, that is, δ0−KhdeGy0L−γ0L / V. Therefore, the greater the change in the vehicle speed V, that is, the magnitude of the longitudinal acceleration Gx of the vehicle, the greater the influence of the zero offset of the sensor on the change in the steady-state standard yaw rate γt, and conversely the smaller the magnitude of the longitudinal acceleration Gx of the vehicle. Therefore, the influence of the zero offset of the sensor on the change in the steady-state standard yaw rate γt is reduced.
 第二の修正例によれば、車両の前後加速度Gxの絶対値が大きいほどハイパスフィルタ処理のカットオフ周波数fhcが大きくなるよう、車両の前後加速度Gxの絶対値にも基づいてカットオフ周波数fhcが可変設定される。従って上述の第一の修正例と同様の作用効果が得られると共に、車速Vの変化に拘らずセンサの零点オフセットの影響を効果的に除去することができる。 According to the second modification, the cutoff frequency fhc is also based on the absolute value of the longitudinal acceleration Gx of the vehicle so that the higher the absolute value of the longitudinal acceleration Gx of the vehicle is, the higher the cutoff frequency fhc of the high-pass filter processing is. Variable setting. Therefore, it is possible to obtain the same operational effects as those of the first modification described above, and to effectively eliminate the influence of the zero offset of the sensor regardless of the change in the vehicle speed V.
 尚カットオフ周波数fhcは操舵周波数fs及び車両の前後加速度Gxの絶対値に基づきマップより演算されるようになっているが、操舵周波数fs及び車両の前後加速度Gxの絶対値の関数として演算されてもよい。
[第三の修正例]
The cut-off frequency fhc is calculated from the map based on the steering frequency fs and the absolute value of the longitudinal acceleration Gx of the vehicle, but is calculated as a function of the absolute value of the steering frequency fs and the longitudinal acceleration Gx of the vehicle. Also good.
[Third modification]
 図12は第一及び第二の実施形態を一部修正する第三の修正例に於けるスタビリティファクタKhの推定演算ルーチンの要部を示すフローチャートである。 FIG. 12 is a flowchart showing the main part of the routine for estimating the stability factor Kh in the third modified example in which the first and second embodiments are partially modified.
 この第三の修正例に於いては、ステップ200に於いて車両が旋回走行状態にあると判定されると、ステップ210に先立ってステップ205が実行される。ステップ205に於いては車両が高い信頼性にてスタビリティファクタKhを推定し得る状況にあるか否かの判別が行われ、否定判別が行われたときには制御はステップ20へ戻り、肯定判別が行われたときには制御はステップ210へ進む。 In this third modification, if it is determined in step 200 that the vehicle is in a turning state, step 205 is executed prior to step 210. In step 205, it is determined whether or not the vehicle is in a state where the stability factor Kh can be estimated with high reliability. If a negative determination is made, the control returns to step 20 and an affirmative determination is made. If so, control proceeds to step 210.
 この場合下記の(B1)及び(B2)が成立するときに、車両が高い信頼性にてスタビリティファクタKhを推定し得る状況にあると判定されてよい。
(B1)走行路が悪路ではない。
(B2)制動中ではない。
In this case, when the following (B1) and (B2) are established, it may be determined that the vehicle is in a situation where the stability factor Kh can be estimated with high reliability.
(B1) The traveling road is not a bad road.
(B2) Not braking.
 尚B1の条件は、悪路に於いては実ヨーレートγにノイズが畳重すること、路面に対するタイヤのグリップ状態が変動し易いことを考慮したものである。またB2の条件は、上記式11による定常規範ヨーレートγtの演算に於いては制動力の影響がないことが前提となっていることを考慮したものである。 The condition of B1 takes into consideration that noise is superimposed on the actual yaw rate γ on rough roads and that the grip state of the tire with respect to the road surface tends to fluctuate. The condition of B2 is based on the fact that the calculation of the steady standard yaw rate γt according to the above equation 11 is premised on that there is no influence of the braking force.
 従って第三の修正例によれば、車両が高い信頼性にてスタビリティファクタKhを推定し得る状況にあるか否かの判別が行われない第一及び第二の実施形態や第一及び第二の修正例の場合に比して、スタビリティファクタKhを精度よく推定することができる。 Therefore, according to the third modified example, the first and second embodiments or the first and second embodiments in which it is not determined whether or not the vehicle is in a state where the stability factor Kh can be estimated with high reliability. The stability factor Kh can be estimated with higher accuracy than in the second modification example.
 以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。 Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
 例えば上述の各実施形態及び各修正例に於いては、車両の横加速度Gyの情報を取得する手段は横加速度センサ40であるが、横加速度センサ自体は車両の走行制御装置の一部をなし、車両の横加速度の情報を取得する手段は走行制御装置より通信により横加速度Gyの情報を取得する電子制御装置30自体であってもよい。 For example, in each of the above-described embodiments and modifications, the means for acquiring the lateral acceleration Gy information of the vehicle is the lateral acceleration sensor 40, but the lateral acceleration sensor itself forms part of the vehicle travel control device. The means for acquiring the vehicle lateral acceleration information may be the electronic control device 30 itself that acquires the lateral acceleration Gy information by communication from the travel control device.
 また車両の横加速度Gyは横加速度センサ40により検出された値であるが、ヨーレートセンサ36により検出されたヨーレートγと車速センサ42により検出された車速Vとの積が車両の横加速度Gyとして代用されてもよい。 The lateral acceleration Gy of the vehicle is a value detected by the lateral acceleration sensor 40, but the product of the yaw rate γ detected by the yaw rate sensor 36 and the vehicle speed V detected by the vehicle speed sensor 42 is substituted for the lateral acceleration Gy of the vehicle. May be.
 また上述の第二の実施形態に於いては、マスタシリンダ圧力Pm又はアクセル開度Accに基づいて車両の推定前後加速度Gxhが演算され、推定前後加速度Gxhと車両の前後加速度Gxとの偏差に基づいて車両の重量Wが推定される。しかし車両の重量Wは任意の方法により推定されてよく、例えばサスペンションに荷重センサや車高センサを備えた車両の場合には、それらの検出結果に基づいて車両の重量Wが推定されてよい。 In the second embodiment described above, the estimated longitudinal acceleration Gxh of the vehicle is calculated based on the master cylinder pressure Pm or the accelerator opening Acc, and based on the deviation between the estimated longitudinal acceleration Gxh and the longitudinal acceleration Gx of the vehicle. Thus, the weight W of the vehicle is estimated. However, the vehicle weight W may be estimated by an arbitrary method. For example, in the case of a vehicle including a load sensor or a vehicle height sensor in the suspension, the vehicle weight W may be estimated based on the detection results.
 また上述の各実施形態及び各修正例に於いては、ステップ180に於いて過渡ヨーレートγtrと実ヨーレートγとの偏差が前輪の舵角の偏差に置き換えられたヨーレート偏差の前輪舵角偏差換算値が演算されるようになっている。しかし過渡ヨーレートγtrと実ヨーレートγとの偏差がハイパスフィルタ処理されることによりバンドパスフィルタ処理後のヨーレート偏差Δγbpfが演算され、積算値の比Δδa/ΔGyaに代えて車両の横加速度Gyftbpfの積算値ΔGyaに対するヨーレート偏差Δγbpfの積算値Δγaの比が演算され、積算値の比Δγbpf/ΔGyaに基づいて下記の式29に従ってスタビリティファクタKhの推定値が演算されてもよい。
 Kh=Kh0+(Δγbpf/ΔGya)/V ……(29)
In each of the above-described embodiments and modifications, the front wheel rudder angle deviation converted value of the yaw rate deviation obtained by replacing the deviation between the transient yaw rate γtr and the actual yaw rate γ with the deviation of the rudder angle of the front wheels in step 180. Is calculated. However, the deviation between the transient yaw rate γtr and the actual yaw rate γ is subjected to the high-pass filter processing, whereby the yaw rate deviation Δγbpf after the band-pass filter processing is calculated. The ratio of the integrated value Δγa of the yaw rate deviation Δγbpf to ΔGya may be calculated, and the estimated value of the stability factor Kh may be calculated according to the following equation 29 based on the integrated value ratio Δγbpf / ΔGya.
Kh = Kh0 + (Δγbpf / ΔGya) / V (29)
 また式29に従ってスタビリティファクタKhの推定値が演算される場合には、複数の車速域が設定され、各車速域毎にスタビリティファクタKhの推定値が演算されることが好ましい。またスタビリティファクタKhの推定値の収束度も各車速域毎に演算され、これにより各車速域毎に車両の運動制御の不感帯が可変設定されることが好ましい。更に車両の運動制御に於ける目標ヨーレートの演算に供されるスタビリティファクタKhも各車速域毎に推定された値に設定されることが好ましい。 Further, when the estimated value of the stability factor Kh is calculated according to the equation 29, it is preferable that a plurality of vehicle speed ranges are set and the estimated value of the stability factor Kh is calculated for each vehicle speed range. It is also preferable that the degree of convergence of the estimated value of the stability factor Kh is also calculated for each vehicle speed range, whereby the dead zone of the vehicle motion control is variably set for each vehicle speed range. Furthermore, it is preferable that the stability factor Kh used for calculating the target yaw rate in the vehicle motion control is also set to a value estimated for each vehicle speed range.
 また上述の各実施形態及び各修正例に於いては、調整ゲインGajは1以下の範囲内にて第一の調整ゲイン(Δδamin/|現在のΔδa|)及び第二の調整ゲイン(ΔGyamin/|現在のΔGya|)のうちの大きい方に設定されるようになっている。しかし第一及び第二の調整ゲインの一方が省略され、第一及び第二の調整ゲインの他方が調整ゲインGajとされるよう修正されてもよい。 In each of the above-described embodiments and modifications, the adjustment gain Gaj is within the range of 1 or less, and the first adjustment gain (Δδamin / | current Δδa |) and the second adjustment gain (ΔGyamin / | The larger one of the current ΔGya |) is set. However, one of the first and second adjustment gains may be omitted, and the other of the first and second adjustment gains may be corrected to be the adjustment gain Gaj.

Claims (8)

  1.  種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として予め求めて記憶手段に記憶させ、車両の横加速度の情報を取得し、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算し、演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び前記基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定方法。 The relationship between various loading states, vehicle stability factors, and vehicle lateral acceleration is obtained in advance as a reference relationship and stored in the storage means to obtain vehicle lateral acceleration information. An estimated value of the stability factor of the vehicle based on the relationship between the calculated estimated value of the stability factor and the lateral acceleration of the vehicle at the same time as the traveling data of the vehicle used for the calculation of the estimated value, and A vehicle loading state estimation method, wherein the vehicle loading state is estimated based on the reference relationship.
  2.  複数の車両の重量区分について種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として予め求めて記憶手段に記憶させ、車両の横加速度の情報を取得し、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算し、車両の重量の情報を取得し、車両の重量に基づいて車両の重量区分及び基準の関係を決定し、演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び前記決定された基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定方法。 The relationship between various loading states, vehicle stability factors and vehicle lateral acceleration for a plurality of vehicle weight categories is obtained in advance as a reference relationship and stored in the storage means to obtain vehicle lateral acceleration information and turn Calculates the vehicle stability data based on the vehicle running data at the time, obtains vehicle weight information, and determines the vehicle weight category and reference relationship based on the vehicle weight. The vehicle loading state is estimated based on the relationship between the estimated stability factor value, the vehicle travel data provided for the calculation of the estimated value, the lateral acceleration of the vehicle at the same time, and the determined reference relationship. A vehicle loading state estimation method characterized by:
  3.  前記種々の積載状態のうちの何れであるかを推定することを特徴とする請求項1又は2に記載の車両の積載状態推定方法。 The vehicle loading state estimation method according to claim 1 or 2, characterized in that it is estimated which of the various loading states.
  4.  車両の規範ヨーレートに対し一次遅れの関係にある車両の過渡ヨーレートと車両の実ヨーレートとの偏差の指標値をヨーレート偏差指標値として、第一の所定周波数以下の成分が除去された車両の横加速度と、第二の所定周波数以下の成分が除去されたヨーレート偏差指標値との関係に基づいて車両のスタビリティファクタを推定することを特徴とする請求項1乃至3の何れか一つに記載の車両の積載状態推定方法。 The lateral acceleration of the vehicle from which the component below the first predetermined frequency is removed using the index value of the deviation between the transient yaw rate of the vehicle and the actual yaw rate of the vehicle, which is in a first order lag relationship with the standard yaw rate of the vehicle, as the yaw rate deviation index value 4. The vehicle stability factor is estimated based on a relationship between the yaw rate deviation index value from which a component having a frequency equal to or lower than the second predetermined frequency has been removed. 5. Vehicle loading state estimation method.
  5.  予め求められた種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として記憶する記憶手段と、車両の横加速度の情報を取得する手段と、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算するスタビリティファクタ推定手段とを有し、前記スタビリティファクタ推定手段により演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び前記基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定装置。 Storage means for storing, as a reference relationship, relationships among various loading states, vehicle stability factors, and vehicle lateral accelerations obtained in advance; means for acquiring vehicle lateral acceleration information; Stability factor estimating means for calculating an estimated value of the stability factor of the vehicle based on the travel data, and the stability factor estimated value calculated by the stability factor estimating means and the calculation of the estimated value. A vehicle loading state estimation device that estimates a loading state of a vehicle on the basis of a relationship between the vehicle traveling data and the lateral acceleration of the vehicle at the same time and the reference relationship.
  6.  複数の車両の重量区分について予め求められた種々の積載状態と車両のスタビリティファクタと車両の横加速度との関係を基準の関係として記憶する記憶手段と、車両の横加速度の情報を取得する手段と、旋回時の車両の走行データに基づいて車両のスタビリティファクタの推定値を演算するスタビリティファクタ推定手段と、車両の重量の情報を取得する手段とを有し、車両の重量に基づいて車両の重量区分及び基準の関係を決定し、前記スタビリティファクタ推定手段により演算されたスタビリティファクタの推定値と該推定値の演算に供された車両の走行データと同一の時刻の車両の横加速度との関係及び前記決定された基準の関係に基づいて車両の積載状態を推定することを特徴とする車両の積載状態推定装置。 Storage means for storing, as a reference relationship, various loading states obtained in advance for a plurality of vehicle weight categories, vehicle stability factors, and vehicle lateral acceleration, and means for acquiring vehicle lateral acceleration information And a stability factor estimating means for calculating an estimated value of the stability factor of the vehicle based on the running data of the vehicle at the time of turning, and a means for acquiring information on the weight of the vehicle, and based on the weight of the vehicle The relationship between the vehicle weight category and the standard is determined, and the estimated value of the stability factor calculated by the stability factor estimating means and the side of the vehicle at the same time as the running data of the vehicle used for the calculation of the estimated value are determined. A vehicle loading state estimation device that estimates a loading state of a vehicle based on a relationship with acceleration and a relationship between the determined reference.
  7.  前記積載状態推定装置は前記種々の積載状態のうちの何れであるかを推定することを特徴とする請求項5又は6に記載の車両の積載状態推定装置。 The vehicle loading state estimation device according to claim 5 or 6, wherein the loading state estimation device estimates which one of the various loading states.
  8.  前記スタビリティファクタ推定手段は、車両の規範ヨーレートに対し一次遅れの関係にある車両の過渡ヨーレートと車両の実ヨーレートとの偏差の指標値をヨーレート偏差指標値として、第一の所定周波数以下の成分が除去された車両の横加速度と、第二の所定周波数以下の成分が除去されたヨーレート偏差指標値との関係に基づいて車両のスタビリティファクタを推定することを特徴とする請求項5乃至7の何れか一つに記載の車両の積載状態推定装置。 The stability factor estimating means uses a yaw rate deviation index value as an index value of a deviation between a vehicle transient yaw rate and a vehicle actual yaw rate that is in a first-order lag relationship with a standard yaw rate of the vehicle, and a component that is equal to or lower than a first predetermined frequency. 8. The vehicle stability factor is estimated based on a relationship between a lateral acceleration of the vehicle from which the noise is removed and a yaw rate deviation index value from which a component equal to or lower than the second predetermined frequency is removed. The vehicle loading state estimation device according to any one of the above.
PCT/JP2011/080229 2011-12-27 2011-12-27 Method and device for estimating loading state of vehicle WO2013098944A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11878681.3A EP2799822B1 (en) 2011-12-27 2011-12-27 Method and device for estimating loading state of vehicle
US14/368,847 US9823111B2 (en) 2011-12-27 2011-12-27 Method and device for estimating loading state of vehicle
CN201180075909.8A CN104011514B (en) 2011-12-27 2011-12-27 The loading condition presuming method of vehicle and device
PCT/JP2011/080229 WO2013098944A1 (en) 2011-12-27 2011-12-27 Method and device for estimating loading state of vehicle
JP2013551081A JP5858051B2 (en) 2011-12-27 2011-12-27 Vehicle loading state estimation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080229 WO2013098944A1 (en) 2011-12-27 2011-12-27 Method and device for estimating loading state of vehicle

Publications (1)

Publication Number Publication Date
WO2013098944A1 true WO2013098944A1 (en) 2013-07-04

Family

ID=48696513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080229 WO2013098944A1 (en) 2011-12-27 2011-12-27 Method and device for estimating loading state of vehicle

Country Status (5)

Country Link
US (1) US9823111B2 (en)
EP (1) EP2799822B1 (en)
JP (1) JP5858051B2 (en)
CN (1) CN104011514B (en)
WO (1) WO2013098944A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376400A (en) * 2018-09-28 2019-02-22 湖北文理学院 Crash proof seat energy absorber key parameter determines method and device
US11010229B2 (en) 2017-05-29 2021-05-18 Mitsubishi Electric Corporation Abnormality determination apparatus, abnormality determination method, and computer readable medium

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001541B1 (en) * 2013-01-31 2016-02-05 Michelin & Cie METHOD FOR CHARACTERIZING THE BEHAVIOR OF A VEHICLE AND APPLICATION FOR CHOOSING THE TIRES OF THE VEHICLE
JP6349942B2 (en) * 2014-05-12 2018-07-04 株式会社デンソー Driving assistance device
KR101836290B1 (en) * 2016-11-07 2018-04-19 현대자동차 주식회사 Vehicle weight estimation apparatus and method
JP6465461B1 (en) 2017-08-31 2019-02-06 マツダ株式会社 Wheel load estimation method for four-wheel drive vehicles
SG11201811002UA (en) * 2017-10-12 2019-05-30 Beijing Didi Infinity Technology & Development Co Ltd Systems and methods for braking control
CN112512900B (en) * 2018-07-31 2022-09-20 三菱电机株式会社 Steering control device
CN110146149B (en) * 2019-05-10 2021-09-21 湖南海量信息科技股份有限公司 Vehicle overload detection system
CN112477877B (en) * 2019-09-11 2022-03-04 北汽福田汽车股份有限公司 Method and device for acquiring vehicle load, storage medium and vehicle
CN110645952A (en) * 2019-09-24 2020-01-03 江苏中宏讯达科技有限公司 Vehicle spring deformation sensor and acquisition method
JP2022051361A (en) * 2020-09-18 2022-03-31 株式会社東芝 Semiconductor device
CN112124324B (en) * 2020-09-29 2022-05-31 北京主线科技有限公司 Vehicle quality identification method and vehicle quality and accelerator opening relation generation method
CN113602350B (en) * 2021-09-01 2022-07-15 国汽智控(北京)科技有限公司 Method, device and equipment for dynamically calibrating deviation angle of front wheel of vehicle and storage medium
CN114954495B (en) * 2022-07-29 2022-11-15 所托(杭州)汽车智能设备有限公司 Commercial vehicle mass estimation method, electronic device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082288A1 (en) * 2009-01-13 2010-07-22 トヨタ自動車株式会社 Vehicle condition estimating device
JP2011013023A (en) 2009-06-30 2011-01-20 Advics Co Ltd Load weight detector and load weight detection method
WO2011036820A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Device for estimating turning characteristic of vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624929B2 (en) * 1997-09-12 2005-03-02 三菱ふそうトラック・バス株式会社 Stability factor derivation method and target yaw rate setting method for rear two-axle vehicle
JP3129259B2 (en) * 1997-10-31 2001-01-29 株式会社豊田自動織機製作所 Axle swing control method and axle swing control device for industrial vehicle
DE10160059A1 (en) * 2000-12-30 2002-08-01 Bosch Gmbh Robert Accurate determination of motor vehicle loading from measurements of the normal force component acting between a wheel contact surface and the driving surface
US6937928B2 (en) * 2003-03-04 2005-08-30 Continental Teves, Inc. Stability control system having loading information
DE10310942B4 (en) * 2003-03-13 2007-02-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Steering device for vehicles with a freely steerable by lateral forces pair of wheels
JP2004291895A (en) * 2003-03-28 2004-10-21 Nissan Diesel Motor Co Ltd Rollover prevention device of vehicle
US7873454B2 (en) * 2006-05-03 2011-01-18 Eaton Corporation Method of identifying predictive lateral load transfer ratio for vehicle rollover prevention and warning systems
US8260535B2 (en) * 2007-09-28 2012-09-04 Bombardier Recreational Products Inc. Load sensor for a vehicle electronic stability system
JP5083455B2 (en) * 2009-03-06 2012-11-28 トヨタ自動車株式会社 Vehicle state determination device and vehicle state determination method
EP2394876B1 (en) * 2009-03-30 2014-10-15 Honda Motor Co., Ltd. Device for estimating state quantity of skid motion of vehicle
US20120022760A1 (en) * 2009-04-10 2012-01-26 Toyota Jidosha Kabushiki Kaisha Weight-related physical quantity estimating system and control device for vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082288A1 (en) * 2009-01-13 2010-07-22 トヨタ自動車株式会社 Vehicle condition estimating device
JP2011013023A (en) 2009-06-30 2011-01-20 Advics Co Ltd Load weight detector and load weight detection method
WO2011036820A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Device for estimating turning characteristic of vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799822A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11010229B2 (en) 2017-05-29 2021-05-18 Mitsubishi Electric Corporation Abnormality determination apparatus, abnormality determination method, and computer readable medium
CN109376400A (en) * 2018-09-28 2019-02-22 湖北文理学院 Crash proof seat energy absorber key parameter determines method and device
CN109376400B (en) * 2018-09-28 2023-07-11 湖北文理学院 Method and device for determining key parameters of crash-resistant seat energy absorber

Also Published As

Publication number Publication date
EP2799822A1 (en) 2014-11-05
EP2799822B1 (en) 2021-05-26
CN104011514B (en) 2015-12-09
EP2799822A4 (en) 2017-05-03
US20140365171A1 (en) 2014-12-11
JP5858051B2 (en) 2016-02-10
JPWO2013098944A1 (en) 2015-04-30
CN104011514A (en) 2014-08-27
US9823111B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
JP5858051B2 (en) Vehicle loading state estimation method and apparatus
JP5024456B2 (en) Vehicle turning characteristic estimation device
JP5041069B2 (en) Vehicle turning characteristic estimation device
JP4151389B2 (en) Vehicle behavior control device
JP6056954B2 (en) Vehicle running motion control device
US9031746B2 (en) Vehicle control device
CN102165300B (en) Method and device for determining center of gravity of motor vehicle
JP2004026073A (en) Device for estimating turning characteristic of vehicle
EP2692605A1 (en) Vehicle driving force control device
JPH09226556A (en) Vehicle motion control device
WO2014136188A1 (en) Method for calculating reference motion state amount of vehicle
WO2013088580A1 (en) Stability factor estimation device for vehicle
JP2008179365A (en) Behavior control device for vehicle
JP3282449B2 (en) Vehicle skidding state quantity detection device
JP2013132938A (en) Stability factor estimation device for vehicle
JP2004026074A (en) Device for estimating turning characteristic of vehicle
JP2013129316A (en) Motion control device of vehicle
JP2002173012A (en) Behavior control device for vehicle
JP2013129351A (en) Vehicle stability factor estimating device
JP4228792B2 (en) Vehicle turning characteristic estimation device
JP2005206075A (en) Vehicle control device
JP2005008067A (en) Device for estimating turning characteristic of vehicle
JP2000283994A (en) Lateral acceleration correcting unit for vehicle, and skid angle arithmetic unit provided with same
JP2001225733A (en) Travelling control device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551081

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14368847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011878681

Country of ref document: EP