JP2005206075A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2005206075A
JP2005206075A JP2004016094A JP2004016094A JP2005206075A JP 2005206075 A JP2005206075 A JP 2005206075A JP 2004016094 A JP2004016094 A JP 2004016094A JP 2004016094 A JP2004016094 A JP 2004016094A JP 2005206075 A JP2005206075 A JP 2005206075A
Authority
JP
Japan
Prior art keywords
vehicle
calculated
slip
change amount
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004016094A
Other languages
Japanese (ja)
Inventor
Yoshitomo Watabe
良知 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004016094A priority Critical patent/JP2005206075A/en
Publication of JP2005206075A publication Critical patent/JP2005206075A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly calculate a state quantity with respect to a skid of a vehicle even in a state where the vehicle travels on a bank, and to properly and effectively execute vehicle control based on the proper state quantity with respect to the skid. <P>SOLUTION: A slip angle β of the vehicle is calculated based on the lateral acceleration Gy of the vehicle (S20). An azimuth change amount D1 is calculated based on GPS information (S30). An angle change amount D2 in the travelling direction of the vehicle is calculated by the integration of a yaw rate Yr (S40). When the absolute value of the deviation between the change amounts D1 and D2 is at a reference value Th or less (S50), a correction coefficient A is calculated to be decreased with decrease in the absolute value of the deviation between D1 and D2 (S60). The magnitude of the slip angle β of the vehicle is corrected to be reduced to A times (S70). A spin state quantity SS is calculated based on the slip angle β of the vehicle and the differentiation value βd (S80). The vehicle behavior is controlled based on the spin state quantity SS (S90-170). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車輌の制御装置に係り、更に詳細には少なくとも車輌の横加速度に基づき車輌の横すべりに関する状態量を演算し、少なくとも車輌の横すべりに関する状態量に基づき車輌を制御する車輌の制御装置に係る。   The present invention relates to a vehicle control apparatus, and more particularly, to a vehicle control apparatus that calculates a state quantity related to a side slip of a vehicle based on at least a lateral acceleration of the vehicle and controls the vehicle based on a state quantity related to at least a side slip of the vehicle. Related.

自動車等の車輌の制御装置の一つとして、例えば下記の特許文献1に記載されている如く、車速及び操舵角に基づき車輌の基準ヨーレートを演算し、基準ヨーレートと検出ヨーレートとの偏差の大きさがその基準値を越えているときには、各車輪の制動力を制御することにより車輌の挙動を制御する挙動制御装置であって、車輌の横加速度を車速にて除算した値として推定ヨーレートを演算し、車輌が直進走行状態にあるときの検出ヨーレートと推定ヨーレートとの偏差の大きさが所定値よりも大きいときに、車輌が左右方向に路面が傾斜した走行路(バンク)を走行する状況であると判定し、挙動制御を中止するよう構成された車輌の挙動制御装置が従来より知られている。   As one of control devices for vehicles such as automobiles, for example, as described in Patent Document 1 below, the reference yaw rate of the vehicle is calculated based on the vehicle speed and the steering angle, and the magnitude of deviation between the reference yaw rate and the detected yaw rate is large. Is a behavior control device that controls the behavior of the vehicle by controlling the braking force of each wheel, and calculates the estimated yaw rate as a value obtained by dividing the lateral acceleration of the vehicle by the vehicle speed. The vehicle travels on a travel road (bank) in which the road surface is inclined in the left-right direction when the deviation between the detected yaw rate and the estimated yaw rate is greater than a predetermined value when the vehicle is running straight ahead. Therefore, a vehicle behavior control apparatus configured to stop the behavior control is known.

上述の特許文献1に記載された従来の挙動制御装置によれば、車輌がバンクを走行する状況であるときには挙動制御が中止されるので、検出される車輌の横加速度が路面の傾斜に起因して車輌の実際の横加速度と異なることにより挙動制御が不適切に実行されることを防止することができる。   According to the conventional behavior control device described in Patent Document 1 described above, since the behavior control is stopped when the vehicle is traveling in the bank, the detected lateral acceleration of the vehicle is caused by the inclination of the road surface. Thus, it is possible to prevent the behavior control from being improperly executed by being different from the actual lateral acceleration of the vehicle.

自動車等の車輌の制御装置の一つとして、例えば下記の特許文献2に記載されている如く、車輌の横加速度を車速にて除算することにより車輌の推定ヨーレートを演算し、推定ヨーレートと検出ヨーレートとの偏差である車輌のスリップ角の変化速度に基づいて車輌のヨー運動を制御する運動制御装置であって、車輌がバンク走行している場合にはそのことを容易に判定し得るよう構成された運動制御装置が知られている。   As one of control devices for vehicles such as automobiles, for example, as described in Patent Document 2 below, the estimated yaw rate of the vehicle is calculated by calculating the estimated yaw rate of the vehicle by dividing the lateral acceleration of the vehicle by the vehicle speed. Is a motion control device that controls the yaw motion of the vehicle based on the change rate of the slip angle of the vehicle, which is a deviation from the above, and is configured so that it can be easily determined when the vehicle is traveling in a bank. There are known motion control devices.

尚、下記の特許文献3及び4には、GPS(全地球測位システム)よりの情報に基づいて車輌の走行状況を判定し制御する制御装置が記載されている。
特開平10−44954号公報 特開平11−59372号公報 特開平2−245075号公報 特開2002−318274号公報
Patent Documents 3 and 4 listed below describe control devices that determine and control the traveling state of a vehicle based on information from a GPS (Global Positioning System).
JP 10-44954 A JP-A-11-59372 JP-A-2-245075 JP 2002-318274 A

上述の特許文献1に記載された従来の挙動制御装置に於いては、車輌が直進走行状態にあるときにしか車輌がバンク走行する状況にあるか否かを判定することができず、また車輌がバンク走行する状況にあると判定されると、挙動制御が中止されるため、車輌がバンク走行する状況にて挙動が悪化する場合には、車輌の挙動を安定化させることができないという問題がある。   In the conventional behavior control apparatus described in the above-mentioned Patent Document 1, it is possible to determine whether or not the vehicle is in a state of traveling in a bank only when the vehicle is in a straight traveling state. When it is determined that the vehicle is in a banking situation, the behavior control is stopped, so that if the behavior deteriorates in the situation where the vehicle is banking, there is a problem that the behavior of the vehicle cannot be stabilized. is there.

また上述の特許文献2に記載された従来の運動制御装置に於いては、推定ヨーレートと検出ヨーレートとの偏差である車輌のスリップ角の変化速度は車輌がバンク走行する場合には車輌の挙動が悪化する場合よりも小さいとの前提に立脚し、推定ヨーレートと検出ヨーレートとの偏差よりその低周波成分がフィルタにより除去されるようになっているため、車輌がゆっくりとスピン状態になるような状況に於いて車輌の挙動を効果的に安定化させることができないという問題がある。   Further, in the conventional motion control apparatus described in Patent Document 2 described above, the change speed of the slip angle of the vehicle, which is the deviation between the estimated yaw rate and the detected yaw rate, is the behavior of the vehicle when the vehicle travels in a bank. Based on the premise that it is smaller than the case of deterioration, the low frequency component is removed by the filter from the deviation between the estimated yaw rate and the detected yaw rate, so that the vehicle will slowly spin However, there is a problem that the behavior of the vehicle cannot be stabilized effectively.

尚、上述の特許文献3及び4に記載されたGPSよりの情報を利用する制御装置によれば、GPSよりの情報を有効に利用して車輌の走行状況を判定し制御することができが、これらの制御装置によっても上述の特許文献1及び2に記載された従来の制御装置に於ける上述の問題を解消することができない。   According to the control device that uses information from the GPS described in Patent Documents 3 and 4 described above, it is possible to determine and control the traveling state of the vehicle by effectively using the information from the GPS. Even with these control devices, the above-described problems in the conventional control devices described in Patent Documents 1 and 2 cannot be solved.

本発明は、従来の車輌の制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、車輌がバンク走行する状況に於いては少なくとも車輌の横加速度の検出値に基づき演算される車輌の横すべりに関する状態量には車輌のバンク走行に起因する誤差成分が含まれるが、GPSの情報に基づいて演算される車輌の方位変化量及び車輌のヨーレートの積分により演算される車輌の方向変化量には車輌のバンク走行に起因する誤差成分が含まれないことに着目し、車輌の方位変化量及び車輌の方向変化量の偏差に基づいて車輌の横すべりに関する状態量を補正することにより、車輌のバンク走行に起因する横加速度検出値の誤差成分が車輌の横すべりに関する状態量に与える影響を低減し、車輌がバンク走行する状況に於いても車輌の横すべりに関する状態量を適正に演算し、これにより適正な横すべりに関する状態量に基づいて車輌の制御を適正に且つ効果的に行うことである。   The present invention has been made in view of the above-described problems in the conventional vehicle control device, and the main problem of the present invention is that at least the lateral acceleration of the vehicle in the situation where the vehicle runs in a bank. The state quantity related to the vehicle slip calculated based on the detection value includes an error component due to the bank running of the vehicle, but it is calculated by integrating the vehicle azimuth change calculated based on the GPS information and the vehicle yaw rate. Focusing on the fact that the calculated vehicle direction change amount does not include error components due to vehicle banking, and based on the deviation of the vehicle direction change amount and the vehicle direction change amount, the state amount related to the side slip of the vehicle By correcting this, the effect of the error component of the lateral acceleration detection value caused by the bank running of the vehicle on the state quantity related to the vehicle slip is reduced, and the situation where the vehicle runs in the bank is reduced. There appropriately calculates the state quantity related to the side slip of the vehicle even, thereby is to perform properly and effectively control the vehicle based on the state quantity relating to the proper side slip.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち少なくとも車輌の横加速度に基づき車輌の横すべりに関する状態量を演算し、少なくとも車輌の横すべりに関する状態量に基づき車輌を制御する車輌の制御装置に於いて、GPSの情報に基づいて車輌の方位変化量を演算し、車輌のヨーレートの積分により車輌の方向変化量を演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、前記車輌の横すべりに関する状態量の大きさを低減補正することを特徴とする車輌の制御装置によって達成される。   According to the present invention, the above-mentioned main problem is that according to the present invention, the state quantity relating to the side slip of the vehicle is calculated based on at least the lateral acceleration of the vehicle, and the vehicle is controlled based on the state quantity relating to at least the side slip of the vehicle. In the vehicle control device, the direction change amount of the vehicle is calculated based on the GPS information, the direction change amount of the vehicle is calculated by integrating the yaw rate of the vehicle, and the deviation between the direction change amount and the direction change amount is calculated. This is achieved by a vehicle control device that reduces and corrects the magnitude of the state quantity related to the side slip of the vehicle.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記方位変化量と前記方向変化量との偏差の大きさが小さいほど、前記車輌の横すべりに関する状態量の大きさの低減量を大きくするよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1, the smaller the deviation between the azimuth change amount and the direction change amount, It is comprised so that the reduction amount of the magnitude | size of the state quantity regarding a vehicle slip may be enlarged.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして車輌の横すべり加速度Vydを演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、前記車輌の横すべり加速度Vydの大きさを低減補正するよう構成される(請求項3の構成)。   Further, according to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1 or 2, the deviation Gy−γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ. The vehicle side slip acceleration Vyd is calculated as follows, and when the magnitude of the deviation between the azimuth change amount and the direction change amount is equal to or smaller than a reference value, the vehicle side slip acceleration Vyd is reduced and corrected. (Configuration of claim 3).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして車輌の横すべり加速度Vydを演算し、横すべり加速度Vydを積分することにより車輌の横すべり速度Vyを演算し、車速Vに対する車輌の横すべり速度Vyの比Vy/Vbとして車輌のスリップ角βを演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、前記車輌のスリップ角βの大きさを低減補正するよう構成される(請求項4の構成)。   Further, according to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1 or 2, the deviation Gy−γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ. The vehicle side slip acceleration Vyd is calculated, and the vehicle side slip velocity Vy is calculated by integrating the side slip acceleration Vyd, and the vehicle slip angle β is calculated as the ratio Vy / Vb of the vehicle side slip velocity Vy to the vehicle speed V. When the magnitude of the deviation between the azimuth change amount and the directional change amount is equal to or less than a reference value, the vehicle is configured to reduce and correct the magnitude of the slip angle β of the vehicle.

一般に、車輌の横加速度の検出値は車輌のバンク走行の影響を受けるので、少なくとも車輌の横加速度に基づき演算される車輌の横すべりに関する状態量の大きさは、車輌がスピン状態になると大きくなると共に、車輌がバンク走行する状況に於いても大きくなる。これに対しGPSの情報に基づいて車輌の方位変化量と車輌のヨーレートの積分により演算される車輌の方向変化量との偏差の大きさは、車輌がスピン状態になると大きくなるが、車輌がバンク走行する状況に於いても大きくならない。   In general, since the detected value of the lateral acceleration of the vehicle is affected by the bank running of the vehicle, at least the magnitude of the state quantity related to the vehicle slip calculated based on the lateral acceleration of the vehicle becomes larger when the vehicle is in a spin state , Even when the vehicle is banking. On the other hand, the magnitude of the deviation between the vehicle direction change amount and the vehicle direction change amount calculated by integrating the vehicle yaw rate based on the GPS information increases when the vehicle is in the spin state. It doesn't grow even when driving.

従って車輌の方位変化量と車輌の方向変化量との偏差の大きさにより車輌がバンク走行する状況であるか否かを判定することができ、方位変化量と方向変化量との偏差の大きさが小さい状況に於いて車輌の横すべりに関する状態量の大きさが大きい場合には、車輌の横加速度の検出値が車輌のバンク走行の影響を受けたことが原因であると考えられるので、車輌の横すべりに関する状態量の大きさを低減することにより、車輌の横すべりに関する状態量に対する車輌のバンク走行の影響を低減することができる。   Therefore, it is possible to determine whether or not the vehicle is traveling in a bank based on the magnitude of the deviation between the direction change amount of the vehicle and the direction change amount of the vehicle, and the magnitude of the deviation between the direction change amount and the direction change amount. If the amount of state related to vehicle side slip is large in a situation where the vehicle is small, it is considered that the detection value of the vehicle's lateral acceleration is influenced by the bank running of the vehicle. By reducing the size of the state quantity related to the side slip, it is possible to reduce the influence of the bank running of the vehicle on the state quantity related to the side slip of the vehicle.

尚、車輌がスピン状態にないときには、車輌の横加速度に基づき演算される車輌の横すべりに関する状態量の大きさは大きくならないので、車輌がスピン状態になることなくバンク走行する状況に於いて車輌の横すべりに関する状態量の大きさが低減されても、車輌の横すべりに関する状態量に基づく車輌制御が悪影響を受けることはない。   When the vehicle is not in the spin state, the magnitude of the state amount related to the vehicle slip calculated based on the lateral acceleration of the vehicle does not increase. Therefore, in the situation where the vehicle runs in the bank without being in the spin state, Even if the magnitude of the state quantity relating to the side slip is reduced, the vehicle control based on the state quantity relating to the side slip of the vehicle is not adversely affected.

上記請求項1の構成によれば、少なくとも車輌の横加速度の検出値に基づき車輌の横すべりに関する状態量を演算し、少なくとも車輌の横すべりに関する状態量に基づき車輌を制御する車輌の制御装置に於いて、GPSの情報に基づいて車輌の方位変化量が演算され、車輌のヨーレートの積分により車輌の方向変化量が演算され、方位変化量と方向変化量との偏差の大きさが基準値以下であるときには、車輌の横すべりに関する状態量の大きさが低減補正されるので、車輌のバンク走行に起因する横加速度検出値の誤差成分が車輌の横すべりに関する状態量に与える影響を低減し、車輌がバンク走行する状況に於いても車輌の横すべりに関する状態量を適正な大きさに演算することができ、これにより適正な横すべりに関する状態量に基づいて車輌の制御を適正に且つ効果的に行うことができる。   According to the first aspect of the present invention, in a vehicle control apparatus that calculates a state quantity related to a vehicle side slip based on at least a detected value of the lateral acceleration of the vehicle, and controls the vehicle based on at least a state quantity related to the side slip of the vehicle. Based on the GPS information, the direction change amount of the vehicle is calculated, the direction change amount of the vehicle is calculated by integrating the yaw rate of the vehicle, and the magnitude of the deviation between the direction change amount and the direction change amount is less than the reference value In some cases, the magnitude of the state quantity related to the side slip of the vehicle is reduced and corrected, so that the influence of the error component of the lateral acceleration detection value due to the bank running of the vehicle on the state quantity related to the side slip of the vehicle is reduced, and the vehicle runs in the bank. Even in situations where the vehicle is moving, it is possible to calculate the amount of state related to the side slip of the vehicle to an appropriate size. It is possible to control the vehicle properly and effectively.

また一般に、方位変化量と方向変化量との偏差の大きさは車輌のバンク走行の影響が小さいほど小さいので、車輌の横すべりに関する状態量の大きさの低減量は方位変化量と方向変化量との偏差の大きさが小さいほど大きいことが好ましい。上記請求項2の構成によれば、方位変化量と方向変化量との偏差の大きさが小さいほど、車輌の横すべりに関する状態量の大きさの低減量が大きくされるので、車輌のバンク走行の影響の大小に応じて車輌の横すべりに関する状態量の大きさを最適に低減することができる。   In general, the magnitude of the deviation between the azimuth change amount and the directional change amount is smaller as the influence of the vehicle banking is smaller. Therefore, the reduction amount of the state quantity related to the vehicle slip is the azimuth change amount and the directional change amount. It is preferable that the smaller the deviation, the larger. According to the second aspect of the present invention, the smaller the deviation between the direction change amount and the direction change amount, the larger the reduction amount of the state quantity related to the side slip of the vehicle. The magnitude of the state quantity related to the side slip of the vehicle can be optimally reduced according to the magnitude of the influence.

また上記請求項3の構成によれば、横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして車輌の横すべり加速度Vydが演算され、方位変化量と方向変化量との偏差の大きさが基準値以下であるときには、車輌の横すべり加速度Vydの大きさが低減補正されるので、車輌がバンク走行する状況に於いても車輌の横すべり加速度Vydを適正な大きさに演算することができ、これにより適正な横すべり加速度Vydに基づいて車輌の制御を適正に且つ効果的に行うことができる。   According to the third aspect of the present invention, the lateral slip acceleration Vyd of the vehicle is calculated as the deviation Gy−γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ, and the deviation between the azimuth change amount and the direction change amount is calculated. When the magnitude is less than or equal to the reference value, the magnitude of the vehicle side slip acceleration Vyd is reduced and corrected, so that the vehicle side slip acceleration Vyd can be calculated to an appropriate magnitude even in a situation where the vehicle travels in a bank. Thus, the vehicle can be controlled appropriately and effectively based on the appropriate side-slip acceleration Vyd.

また上記請求項4の構成によれば、横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして車輌の横すべり加速度Vydが演算され、横すべり加速度Vydを積分することにより車輌の横すべり速度Vyが演算され、車速Vに対する車輌の横すべり速度Vyの比Vy/Vbとして車輌のスリップ角βが演算され、方位変化量と方向変化量との偏差の大きさが基準値以下であるときには、車輌のスリップ角βの大きさが低減補正されるので、車輌がバンク走行する状況に於いても車輌のスリップ角βを適正な大きさに演算することができ、これにより適正なスリップ角βに基づいて車輌の制御を適正に且つ効果的に行うことができる。   Further, according to the configuration of the fourth aspect, the lateral slip acceleration Vyd of the vehicle is calculated as a deviation Gy−γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ, and the lateral slip acceleration Vyd is integrated to calculate the lateral slip of the vehicle. When the speed Vy is calculated, the vehicle slip angle β is calculated as the ratio Vy / Vb of the vehicle side slip speed Vy to the vehicle speed V, and the magnitude of the deviation between the azimuth change amount and the direction change amount is less than the reference value, Since the slip angle β of the vehicle is reduced and corrected, the slip angle β of the vehicle can be calculated to an appropriate size even in a situation where the vehicle travels in a bank. Based on this, the vehicle can be controlled appropriately and effectively.

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項1又は2の構成に於いて、少なくとも車輌の横すべりに関する状態量に基づき車輌のスピン状態の程度を示すスピン状態量を演算し、スピン状態量に基づき各車輪の制駆動力を制御するよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferred aspect of the present invention, in the configuration of claim 1 or 2, a spin state quantity indicating a degree of a spin state of a vehicle is calculated based on at least a state quantity relating to a side slip of the vehicle, and a spin state quantity is calculated. (Preferred aspect 1).

本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、少なくとも車輌の横加速度に基づき車輌の横すべり速度を演算し、車輌の横すべり速度に基づき車輌のスリップ角を演算し、少なくとも車輌のスリップ角に基づきスピン状態量を演算するよう構成される(好ましい態様2)。   According to another preferred embodiment of the present invention, in the configuration of the preferred embodiment 1, the vehicle side slip speed is calculated based on at least the lateral acceleration of the vehicle, and the vehicle slip angle is calculated based on the vehicle side slip speed. The spin state quantity is calculated based on at least the slip angle of the vehicle (preferred aspect 2).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2の構成に於いて、少なくとも車輌の横加速度に基づき車輌の横すべり速度を演算し、車輌の横すべり速度に基づき車輌のスリップ角を演算し、少なくとも車輌のスリップ角に基づき各車輪のスリップ角を演算し、各車輪のスリップ角に基づき車輌を制御するよう構成される(好ましい態様3)。   According to another preferred embodiment of the present invention, in the configuration of claim 1 or 2, the vehicle slip speed is calculated based on at least the lateral acceleration of the vehicle, and the vehicle slip angle is calculated based on the vehicle slip speed. Is calculated, and at least the slip angle of each wheel is calculated based on the slip angle of the vehicle, and the vehicle is controlled based on the slip angle of each wheel (preferred aspect 3).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2の構成に於いて、少なくとも車輌の横加速度に基づき車輌の横すべり速度を演算し、車輌の横すべり速度に基づき車輌のスリップ角を演算し、車輌のスリップ角及びその変化率に基づきスピン状態量を演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、スピン状態量の大きさを低減補正することにより間接的に車輌の横すべりに関する状態量の大きさを低減補正するよう構成される(好ましい態様4)。   According to another preferred embodiment of the present invention, in the configuration of claim 1 or 2, the vehicle slip speed is calculated based on at least the lateral acceleration of the vehicle, and the vehicle slip angle is calculated based on the vehicle slip speed. When the amount of spin state is calculated based on the slip angle of the vehicle and its rate of change, and the magnitude of deviation between the direction change amount and the direction change amount is less than or equal to a reference value, the magnitude of the spin state amount is calculated. It is configured such that the magnitude of the state quantity related to the side slip of the vehicle is reduced and corrected indirectly by reducing and correcting (preferred aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2の構成に於いて、少なくとも車輌の横加速度に基づき車輌の横すべり速度を演算し、車輌の横すべり速度に基づき車輌のスリップ角を演算し、車輌のスリップ角及び車輌の横すべり速度の変化率に基づきスピン状態量を演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、スピン状態量の大きさを低減補正することにより間接的に車輌の横すべりに関する状態量の大きさを低減補正するよう構成される(好ましい態様5)。   According to another preferred embodiment of the present invention, in the configuration of claim 1 or 2, the vehicle slip speed is calculated based on at least the lateral acceleration of the vehicle, and the vehicle slip angle is calculated based on the vehicle slip speed. And calculating the spin state amount based on the change rate of the vehicle slip angle and the vehicle slip velocity, and when the deviation between the azimuth change amount and the direction change amount is less than a reference value, It is configured to indirectly reduce and correct the magnitude of the state quantity related to the side slip of the vehicle by correcting the magnitude of the quantity to be reduced (preferred aspect 5).

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.

図1は車輌の挙動制御装置として構成された本発明による車輌の制御装置の実施例1を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle control device according to the present invention configured as a vehicle behavior control device.

図1に於いて、10FL及び10FRはそれぞれ車輌12の左右の前輪を示し、10RL及び10RRはそれぞれ左右の後輪を示している。操舵輪である左右の前輪10FL及び10FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L及び18Rを介して操舵される。   In FIG. 1, 10FL and 10FR represent the left and right front wheels of the vehicle 12, respectively, and 10RL and 10RR represent the left and right rear wheels, respectively. The left and right front wheels 10FL and 10FR, which are steered wheels, are steered via tie rods 18L and 18R by a rack and pinion type power steering device 16 that is driven in response to turning of the steering wheel 14 by the driver.

各車輪の制動力は制動装置20の油圧回路22によりホイールシリンダ24FR、24FL、24RR、24RLの制動圧が制御されることによって制御されるようになっている。図には示されていないが、油圧回路22はオイルリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル26の踏み込み操作に応じて駆動されるマスタシリンダ28により制御され、また必要に応じて後に説明する如く電子制御装置30により制御される。   The braking force of each wheel is controlled by controlling the braking pressure of the wheel cylinders 24FR, 24FL, 24RR, 24RL by the hydraulic circuit 22 of the braking device 20. Although not shown in the drawing, the hydraulic circuit 22 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 26 by the driver. It is controlled by the master cylinder 28 and, if necessary, is controlled by the electronic control unit 30 as described later.

車輪10FR〜10RLにはそれぞれ対応する車輪の車輪速度(回転速度)Vwi(i=fl、fr、rl、rr)を検出する車輪速度センサ32FR〜32RLが設けられている。またステアリングホイール14が連結されたステアリングコラムには操舵角θを検出する操舵角センサ34が設けられており、車輌12にはマスタシリンダ圧力Pmを検出する圧力センサ36、車輌のヨーレートYrを検出するヨーレートセンサ38、車輌の前後加速度Gxを検出する前後加速度センサ40、車輌の横加速度Gyを検出する横加速度センサ42が設けられている。尚操舵角センサ34、ヨーレートセンサ38、横加速度センサ42は車輌の左旋回方向を正としてそれぞれ操舵角、ヨーレート、横加速度を検出する。   Wheel speed sensors 32FR to 32RL that detect wheel speeds (rotational speeds) Vwi (i = fl, fr, rl, rr) of the corresponding wheels are provided on the wheels 10FR to 10RL, respectively. The steering column connected to the steering wheel 14 is provided with a steering angle sensor 34 for detecting the steering angle θ. The vehicle 12 detects a pressure sensor 36 for detecting the master cylinder pressure Pm, and detects the yaw rate Yr of the vehicle. A yaw rate sensor 38, a longitudinal acceleration sensor 40 for detecting the longitudinal acceleration Gx of the vehicle, and a lateral acceleration sensor 42 for detecting the lateral acceleration Gy of the vehicle are provided. The steering angle sensor 34, the yaw rate sensor 38, and the lateral acceleration sensor 42 detect the steering angle, the yaw rate, and the lateral acceleration, respectively, assuming that the left turning direction of the vehicle is positive.

図示の如く、車輪速度センサ32FR〜32RLにより検出された車輪速度Vwiを示す信号、操舵角センサ34により検出された操舵角θを示す信号、圧力センサ36により検出されたマスタシリンダ圧力Pmを示す信号、ヨーレートセンサ38により検出された車輌のヨーレートYrを示す信号、前後加速度センサ40により検出された車輌の前後加速度Gxを示す信号、横加速度センサ42により検出された車輌の横加速度Gyを示す信号は電子制御装置30に入力される。尚図には詳細に示されていないが、電子制御装置30は例えばCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータを含んでいる。   As shown in the figure, a signal indicating the wheel speed Vwi detected by the wheel speed sensors 32FR to 32RL, a signal indicating the steering angle θ detected by the steering angle sensor 34, and a signal indicating the master cylinder pressure Pm detected by the pressure sensor 36. A signal indicating the vehicle yaw rate Yr detected by the yaw rate sensor 38, a signal indicating the vehicle longitudinal acceleration Gx detected by the longitudinal acceleration sensor 40, and a signal indicating the vehicle lateral acceleration Gy detected by the lateral acceleration sensor 42 are: Input to the electronic control unit 30. Although not shown in detail in the figure, the electronic control device 30 has, for example, a CPU, a ROM, a RAM, and an input / output port device, which are connected to each other via a bidirectional common bus. Includes a microcomputer.

電子制御装置30は、後述の如く図2に示されたフローチャートに従い、車輌の横加速度Gy等に基づき車輌のスリップ角βを演算し、車輌のスリップ角β等に基づき車輌のスピン状態の指標値としてのスピン状態量SSを演算し、また車輌のヨーレートYr等に基づき車輌のドリフトアウト状態の指標値としてのドリフトアウト状態量DSを演算し、スピン状態量SS及びドリフトアウト状態量DSに基づき車輌の挙動を安定化させるための各車輪の目標スリップ率を演算し、各車輪のスリップ率が目標スリップ率になるよう制動力を制御し、これにより車輌にスピン抑制方向又はドリフトアウト抑制方向のヨーモーメントを与えると共に車輌を減速させて車輌の挙動を安定化させる。   The electronic control unit 30 calculates the vehicle slip angle β based on the vehicle lateral acceleration Gy and the like according to the flowchart shown in FIG. 2 as will be described later, and the vehicle spin state index value based on the vehicle slip angle β and the like. And the drift state quantity DS as an index value of the vehicle drift-out state is calculated based on the yaw rate Yr of the vehicle, and the vehicle is calculated based on the spin state quantity SS and the drift-out state quantity DS. The target slip ratio of each wheel for stabilizing the behavior of the vehicle is calculated, and the braking force is controlled so that the slip ratio of each wheel becomes the target slip ratio. A moment is applied and the vehicle is decelerated to stabilize the behavior of the vehicle.

特に電子制御装置30は、後述の如く図2に示されたフローチャートに従い、GPS情報に基づき所定の時間Tcに亘る車輌の方位変化量D1を演算すると共に、所定の時間Tcに亘るヨーレートYrの積分により車輌の進行方向の角度変化量D2を演算し、方位変化量D1と角度変化量D2との偏差の絶対値が基準値Th以下であるときには、方位変化量D1と角度変化量D2との偏差の絶対値に基づき該絶対値が小さいほど小さくなるよう補正係数Aを演算し、車輌のスリップ角βをA倍に低減補正する。   In particular, the electronic control unit 30 calculates the vehicle orientation change amount D1 over a predetermined time Tc based on the GPS information and integrates the yaw rate Yr over the predetermined time Tc according to the flowchart shown in FIG. Is used to calculate the angle change amount D2 in the traveling direction of the vehicle, and when the absolute value of the deviation between the direction change amount D1 and the angle change amount D2 is less than or equal to the reference value Th, the deviation between the direction change amount D1 and the angle change amount D2 Based on the absolute value, the correction coefficient A is calculated so that the smaller the absolute value is, the lower the vehicle slip angle β is corrected by A times.

次に図2に示されたフローチャートを参照して実施例に於ける挙動制御ルーチンについて説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。   Next, a behavior control routine in the embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals.

まずステップ10に於いては各車輪の車輪速度Vwiを示す信号等の読み込みが行われ、ステップ20に於いては車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車速Vが演算され、横加速度Gyと車速V及びヨーレートYrの積VYrとの偏差Gy−V・Yrとして下記の式1に従って横加速度の偏差、即ち車輌の横すべり加速度Vydが演算され、横すべり加速度Vydが積分されることにより車輌の横すべり速度Vyが演算され、更に車輌の前後速度Vx(=車体速度V)に対する車輌の横すべり速度Vyの比Vy/Vxとして下記の式2に従って車輌のスリップ角βが演算される。
Vyd=Gy−V・Yr ……(1)
β=Vy/Vx ……(2)
First, at step 10, a signal indicating the wheel speed Vwi of each wheel is read, and at step 20, the vehicle speed V is calculated based on the wheel speed Vwi in a manner known in the art. As the deviation Gy−V · Yr of the lateral acceleration Gy and the product VYr of the vehicle speed V and the yaw rate Yr, the lateral acceleration deviation, that is, the lateral slip acceleration Vyd of the vehicle is calculated according to the following equation 1, and the lateral slip acceleration Vyd is integrated. Thus, the side slip speed Vy of the vehicle is calculated, and the vehicle slip angle β is calculated according to the following equation 2 as the ratio Vy / Vx of the vehicle side slip speed Vy to the vehicle longitudinal speed Vx (= vehicle speed V).
Vyd = Gy−V · Yr (1)
β = Vy / Vx (2)

ステップ30に於いては例えば特開平5−18772号公報に記載されている如く、GPS情報に基づき所定の時間Tcに亘る車輌の方位変化量D1が演算され、ステップ40に於いては所定の時間Tcに亘るヨーレートYrの積分により車輌の進行方向の角度変化量D2が演算される。   In step 30, for example, as described in Japanese Patent Laid-Open No. 5-18772, a vehicle direction change amount D1 over a predetermined time Tc is calculated based on GPS information. In step 40, a predetermined time is calculated. An angular change amount D2 in the traveling direction of the vehicle is calculated by integrating the yaw rate Yr over Tc.

ステップ50に於いては車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Th以下であるか否かの判別、即ち車輌がスピン状態にはなく安定な走行状態にあるか否かの判別が行われ、否定判別が行われたときにはそのままステップ80へ進み、肯定判別が行われたときにはステップ60へ進む。   In step 50, it is determined whether or not the absolute value of the deviation between the direction change amount D1 of the vehicle and the angle change amount D2 of the traveling direction of the vehicle is equal to or less than the reference value Th, that is, the vehicle is not in a spin state and is stable. When the negative determination is made, the process proceeds to step 80, and when the positive determination is made, the process proceeds to step 60.

ステップ60に於いては車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値に基づき図3に示されたグラフに対応するマップより補正係数Aが演算され、ステップ70に於いては車輌のスリップ角βがA倍に低減補正される。尚、補正係数Aは方位変化量D1と角度変化量D2との偏差の絶対値が小さいほど小さくなるよう、0よりも大きく1以下の値に演算される。また図3に於いて仮想線にて示されている如く、車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Thを越えているときには、ステップ50に於いて否定判別が行われることにより、補正係数Aは標準値である1に設定されたここと等価な処理が行われる。   In step 60, a correction coefficient A is calculated from the map corresponding to the graph shown in FIG. 3 based on the absolute value of the deviation between the vehicle direction change amount D1 and the vehicle direction change angle angle D2. In 70, the vehicle slip angle β is corrected to be reduced by A times. The correction coefficient A is calculated to a value greater than 0 and less than 1 so that the smaller the absolute value of the deviation between the azimuth change amount D1 and the angle change amount D2, the smaller. When the absolute value of the deviation between the azimuth change amount D1 of the vehicle and the angular change amount D2 in the traveling direction of the vehicle exceeds the reference value Th as shown by the phantom line in FIG. When the negative determination is made in this step, the correction coefficient A is set to a standard value of 1, and processing equivalent to this is performed.

ステップ80に於いてはK1及びK2をそれぞれ正の定数として車輌のスリップ角β及びその微分値βdの線形和K1・β+K2・βdとしてスピン量SVが下記の式3に従って演算されると共に、ヨーレートYrの符号に基づき車輌の旋回方向が判定され、スピン状態量SSが車輌の左旋回時にはSVとして、車輌の右旋回時には−SVとして演算され、演算結果が負の値のときにはスピン状態量は0とされる。尚スピン量SVは車輌のスリップ角β及び横すべり加速度Vydの線形和として下記の式4に従って演算されてもよい。
SV=K1・β+K2・βd ……(3)
SV=K1・β+K2・Vyd ……(4)
In step 80, the spin amount SV is calculated as the linear sum K1.beta. + K2.beta.d of the vehicle slip angle .beta. And its differential value .beta.d with K1 and K2 as positive constants, respectively, and the yaw rate Yr. The spin direction amount SS is calculated as SV when the vehicle turns left, and -SV when the vehicle turns right, and the spin state amount is 0 when the calculation result is a negative value. It is said. The spin amount SV may be calculated according to the following equation 4 as the linear sum of the vehicle slip angle β and the side-slip acceleration Vyd.
SV = K1 · β + K2 · βd (3)
SV = K1 · β + K2 · Vyd (4)

ステップ90に於いてはKhをスタビリティファクタとし、Hをホイールベースとし、Rgをステアリングギヤ比として下記の式5に従って目標ヨーレートYrcが演算されると共に、Tを時定数としsをラプラス演算子として下記の式6に従って基準ヨーレートYrtが演算される。尚目標ヨーレートYrcは動的なヨーレートを考慮すべく車輌の横加速度Gyを加味して演算されてもよい。
Yrc=V・θ/(1+Kh・V2)・H/Rg ……(5)
Yrt=Yrc/(1+T・s) ……(6)
In step 90, Kh is a stability factor, H is a wheel base, Rg is a steering gear ratio, a target yaw rate Yrc is calculated according to the following equation 5, T is a time constant, and s is a Laplace operator. A reference yaw rate Yrt is calculated according to the following equation (6). The target yaw rate Yrc may be calculated in consideration of the lateral acceleration Gy of the vehicle so as to take into account the dynamic yaw rate.
Yrc = V · θ / (1 + Kh · V 2 ) · H / Rg (5)
Yrt = Yrc / (1 + T · s) (6)

ステップ100に於いては下記の式7に従ってドリフトバリューDVが演算されると共に、ヨーレートYrの符号に基づき車輌の旋回方向が判定され、ドリフトアウト状態量DSが車輌の左旋回時にはDVとして、車輌の右旋回時には−DVとして演算され、演算結果が負の値のときにはドリフトアウト状態量は0とされる。尚ドリフトバリューDVは下記の式8に従って演算されてもよい。
DV=(Yrt−Yr) ……(7)
DV=H・(Yrt−Yr)/V ……(8)
In step 100, the drift value DV is calculated according to the following equation 7, the turning direction of the vehicle is determined based on the sign of the yaw rate Yr, and the drift-out state quantity DS is set as DV when the vehicle turns left. When turning right, it is calculated as -DV, and when the calculation result is a negative value, the drift-out state quantity is zero. The drift value DV may be calculated according to Equation 8 below.
DV = (Yrt−Yr) (7)
DV = H · (Yrt−Yr) / V (8)

ステップ110に於いてはスピン状態量SSに基づき図4に示されたグラフに対応するマップより旋回外側前輪の目標スリップ率Rssfoが演算され、ステップ120に於いてはドリフトアウト状態量DSに基づき図5に示されたグラフに対応するマップより車輌全体の目標スリップ率Rsallが演算される。   In step 110, the target slip ratio Rssfo of the front wheel outside the turn is calculated from the map corresponding to the graph shown in FIG. 4 based on the spin state quantity SS. In step 120, the target slip ratio Rssfo is calculated based on the drift-out state quantity DS. The target slip ratio Rsall of the entire vehicle is calculated from the map corresponding to the graph shown in FIG.

ステップ130に於いてはKfiを旋回内側前後輪のうちの前輪に対する配分比(0.5≦Kfi<1)として、下記の式9に従って旋回外側前輪、旋回内側前輪、旋回外側後輪、旋回内側後輪の目標スリップ率Rsfo、Rsfi、Rsro、Rsriが演算される。
Rsfo=Rssfo
Rsfi=Kfi・Rsall
Rsro=0
Rsri=(1−Kfi)・Rsall ……(9)
In step 130, the distribution ratio (0.5 ≦ Kfi <1) with respect to the front wheels among the front and rear wheels on the turning inner side is set as Kfi, and the turning outer front wheel, the turning inner front wheel, the turning outer rear wheel, and the turning inner side according to the following formula 9. The rear wheel target slip ratios Rsfo, Rsfi, Rsro, Rsri are calculated.
Rsfo = Rssfo
Rsfi = Kfi ・ Rsall
Rsro = 0
Rsri = (1-Kfi) ・ Rsall ...... (9)

ステップ140に於いてはヨーレートYrの符号に基づき車輌の旋回方向が判定されることにより旋回内外輪が特定され、その特定結果に基づき各車輪の最終目標スリップ率Rsi(i=fr、fl、rr、rl)が演算される。即ち最終目標スリップ率Rsiが車輌の左旋回の場合及び右旋回の場合についてそれぞれ下記の式10及び式11に従って求められる。   In step 140, the turning direction of the vehicle is determined based on the sign of the yaw rate Yr to identify the turning inner and outer wheels, and the final target slip ratio Rsi (i = fr, fl, rr) of each wheel is determined based on the identification result. , Rl) is calculated. That is, the final target slip ratio Rsi is obtained according to the following equations 10 and 11 for the case where the vehicle turns left and right, respectively.

Rsfr=Rsfo
Rsfl=Rsfi
Rsrr=Rsro
Rsrl=Rsri ……(10)
Rsfr=Rsfi
Rsfl=Rsfo
Rsrr=Rsri
Rsrl=Rsro ……(11)
Rsfr = Rsfo
Rsfl = Rsfi
Rsrr = Rsro
Rsrl = Rsri (10)
Rsfr = Rsfi
Rsfl = Rsfo
Rsrr = Rsri
Rsrl = Rsro (11)

ステップ150に於いては何れかの最終目標スリップ率Rsiが正であるか否か(全てのRsiが0ではないか否か)の判別、即ち挙動制御が必要であるか否かの判別が行われ、肯定判別が行われたときにはステップ170へ進み、否定判別が行われたときにはステップ160に於いて各弁装置等が非制御位置に設定され、挙動制御が実行されることなくステップ10へ戻る。   In step 150, it is determined whether any final target slip ratio Rsi is positive (whether all Rsi are not 0), that is, whether behavior control is necessary. If an affirmative determination is made, the process proceeds to step 170. If a negative determination is made, in step 160, each valve device or the like is set to a non-control position, and the process returns to step 10 without performing behavior control. .

ステップ170に於いては各車輪のスリップ率がステップ140に於いて設定された最終目標スリップ率Rsiになるよう制動力が制御されることにより挙動制御が実行され、しかる後ステップ10へ戻る。   In step 170, the behavior is controlled by controlling the braking force so that the slip ratio of each wheel becomes the final target slip ratio Rsi set in step 140, and then the process returns to step 10.

かくして図示の実施形態によれば、車輌の旋回挙動が安定な状態にあるときには、ステップ150に於いて否定判別が行われることによりステップ160に於いて各弁装置等が非制御位置に設定された後ステップ10へ戻り、従ってこの場合にはステップ170による挙動制御は実行されず、これにより各車輪の制動圧は運転者によるブレーキペダル26の踏込み量に応じて制御される。   Thus, according to the illustrated embodiment, when the turning behavior of the vehicle is in a stable state, a negative determination is made in step 150, whereby each valve device or the like is set to the non-control position in step 160. After that, the process returns to Step 10, and in this case, the behavior control in Step 170 is not executed, whereby the braking pressure of each wheel is controlled in accordance with the depression amount of the brake pedal 26 by the driver.

また車輌の旋回挙動が不安定な状態にあるときには、ステップ150に於いて肯定判別が行われることによりステップ170に於いてスピン状態量SS及びドリフトアウト状態量DSの両方に基づき各車輪の制動力が制御されることにより挙動制御が実行され、これにより車輌の挙動がスピン状態及びドリフトアウト状態の何れである場合にもそれらの不安定な挙動が低減される。   Further, when the turning behavior of the vehicle is in an unstable state, an affirmative determination is made in step 150, so that the braking force of each wheel is determined in step 170 based on both the spin state quantity SS and the drift-out state quantity DS. When the vehicle is in the spin state or the drift-out state, the unstable behavior is reduced.

この場合、ステップ30に於いてGPS情報に基づき所定の時間Tcに亘る車輌の方位変化量D1が演算され、ステップ40に於いて所定の時間Tcに亘るヨーレートYrの積分により車輌の進行方向の角度変化量D2が演算され、ステップ50及び60に於いて車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Th以下であるときには車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値に基づき該絶対値が小さいほど小さくなるよう補正係数Aが演算され、ステップ70に於いて車輌のスリップ角βがA倍に低減補正される。   In this case, in step 30, the direction change D1 of the vehicle over a predetermined time Tc is calculated based on the GPS information. In step 40, the angle of the vehicle traveling direction is obtained by integrating the yaw rate Yr over the predetermined time Tc. The change amount D2 is calculated, and when the absolute value of the deviation between the vehicle direction change amount D1 and the vehicle direction change angle angle D2 is less than or equal to the reference value Th in steps 50 and 60, the vehicle direction change amount D1. And a correction coefficient A is calculated so that the smaller the absolute value is, the smaller the absolute value is, and the slip angle β of the vehicle is reduced to A times in step 70. Is done.

上述の如く、スリップ角βは上記式2に従って演算され、上記式2に於ける車輌の横すべり速度Vyは上記式1に従って演算される横すべり加速度Vydが積分されることにより求められるが、上記式1の関係は車輌が水平な路面にて旋回する場合に成立し、車輌がバンク路にて旋回する場合には路面の傾斜に起因して車輌の横加速度Gyの検出値が車輌の実際の旋回横加速度とは異なる値になるので、上記式1の関係は成立しない。   As described above, the slip angle β is calculated according to the above equation 2, and the side slip velocity Vy of the vehicle in the above equation 2 is obtained by integrating the side slip acceleration Vyd calculated according to the above equation 1. This relationship is established when the vehicle turns on a horizontal road surface, and when the vehicle turns on a bank road, the detected value of the lateral acceleration Gy of the vehicle is caused by the inclination of the road surface. Since the value is different from the acceleration, the relationship of Equation 1 is not established.

そのため車輌がバンク路にて旋回する場合には、車輌に過大な横すべりが発生しておらず、車輌の実際のスリップ角βが過大ではないにも拘らず、スリップ角βが過大な値に演算され、これに起因して車輌の挙動が不必要に制御されることがある。   Therefore, when the vehicle turns on a bank road, the vehicle does not have an excessive slip, and the slip angle β is calculated to an excessive value even though the actual slip angle β of the vehicle is not excessive. As a result, the behavior of the vehicle may be unnecessarily controlled.

これに対し図示の実施例1によれば、車輌がバンク路にて旋回する場合には、車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Th以下であると判別され、車輌のスリップ角βがA倍に低減補正されるので、車輌が過大なスピン状態になっていないにも拘らず見かけ上スピン状態量SSが過大になってスピン制御が不必要に或いは不適切に実行されることを確実に防止することができる。   On the other hand, according to the illustrated first embodiment, when the vehicle turns on the bank road, the absolute value of the deviation between the azimuth change amount D1 of the vehicle and the angular change amount D2 of the traveling direction of the vehicle is the reference value Th. Since the vehicle slip angle β is corrected to be reduced by A times, the spin state amount SS apparently becomes excessive and the spin control is performed even though the vehicle is not in an excessive spin state. Unnecessary or inappropriate execution can be surely prevented.

例えば図6は車輌が水平な路面に於いて安定的に旋回する場合(A)、車輌が水平な路面に於いて限界状態にて旋回する場合(B)、車輌がバンク路に於いて安定的に旋回する場合(C)について、車輌の実際のスリップ角β、車輌の横すべり加速度Vydの絶対値、偏差D1−D2の絶対値を比較して示す説明図である。   For example, FIG. 6 shows that when the vehicle turns stably on a horizontal road surface (A), when the vehicle turns in a limit state on a horizontal road surface (B), the vehicle is stable on a bank road. FIG. 8 is an explanatory diagram comparing the actual slip angle β of the vehicle, the absolute value of the vehicle slip acceleration Vyd, and the absolute value of the deviation D1-D2 for the case of turning (C).

車輌が水平な路面に於いて安定的に旋回する場合(A)には、車輌の横すべり加速度Vydの絶対値及び車輌の実際のスリップ角βの大きさは小さく、偏差D1−D2の絶対値も小さく、車輌が水平な路面に於いて限界状態にて旋回する場合(B)には、車輌の横すべり加速度Vydの絶対値及び車輌の実際のスリップ角βの大きさは大きく、偏差D1−D2の絶対値も大きくなるが、車輌がバンク路に於いて安定的に旋回する場合(C)には、車輌の横すべり加速度Vydの絶対値は大きく、車輌の実際のスリップ角βの大きさ及び偏差D1−D2の絶対値は小さくなる。   When the vehicle turns stably on a horizontal road surface (A), the absolute value of the vehicle slip acceleration Vyd and the actual slip angle β of the vehicle are small, and the absolute value of the deviation D1-D2 is also When the vehicle is small and turns in a limit state on a horizontal road surface (B), the absolute value of the vehicle slip acceleration Vyd and the actual slip angle β of the vehicle are large, and the deviation D1-D2 is Although the absolute value also increases, when the vehicle turns stably on the bank road (C), the absolute value of the vehicle slip acceleration Vyd is large and the actual slip angle β of the vehicle and the deviation D1 The absolute value of -D2 becomes smaller.

従って図示の実施例1によれば、車輌がバンク路に於いて安定的に旋回する場合(C)には、偏差D1−D2の絶対値か小さくなり、挙動制御に使用される車輌のスリップ角βの大きさを低減補正によって確実に車輌の実際のスリップ角βの大きさに近づけることができる。   Therefore, according to the illustrated embodiment 1, when the vehicle turns stably on the bank road (C), the absolute value of the deviation D1-D2 becomes small, and the slip angle of the vehicle used for behavior control is reduced. By reducing the magnitude of β, the actual slip angle β of the vehicle can be reliably brought close to the magnitude.

図7は車輌の挙動制御装置として構成された本発明による車輌の制御装置の実施例2に於ける挙動制御ルーチンの要部を示すフローチャートである。尚図7に於いて、図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。   FIG. 7 is a flowchart showing a main part of a behavior control routine in the second embodiment of the vehicle control device according to the present invention configured as a vehicle behavior control device. In FIG. 7, the same steps as those shown in FIG. 2 are assigned the same step numbers as those shown in FIG.

この実施例2に於いては、上述の実施例1に於けるステップ20は実行されず、ステップ50に於いて肯定判別が行われると、即ち車輌がスピン状態にはなく安定な走行状態にあると判別されると、ステップ55に於いて車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値に基づき図9に示されたグラフに対応するマップより係数K1及びK2が演算され、ステップ75に於いて車輌のスリップ角βが上記式3に従って演算される。   In the second embodiment, step 20 in the first embodiment is not executed, and if a positive determination is made in step 50, that is, the vehicle is not in a spin state and is in a stable running state. Is determined in step 55 based on the absolute value of the deviation between the vehicle orientation change amount D1 and the vehicle travel direction angle change amount D2 from the map corresponding to the graph shown in FIG. K2 is calculated, and in step 75, the vehicle slip angle β is calculated according to Equation 3 above.

尚ステップ55に於いて、係数K1及びK2は方位変化量D1と角度変化量D2との偏差の絶対値が小さいほど小さくなるよう正の値に演算される。また図9に於いて仮想線にて示されている如く、車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Thを越えているときには、ステップ50に於いて否定判別が行われることにより、係数K1及びK2はそれぞれ標準値K1n及びK2n(それぞれ正の定)に設定される。更にこの実施例の他のステップは上述の実施例1の場合と同様に実行される。   In step 55, the coefficients K1 and K2 are calculated to be positive values so that the smaller the absolute value of the deviation between the azimuth change amount D1 and the angle change amount D2, the smaller. If the absolute value of the deviation between the azimuth change amount D1 of the vehicle and the angular change amount D2 in the traveling direction of the vehicle exceeds the reference value Th as shown by the phantom line in FIG. As a result of the negative determination, the coefficients K1 and K2 are set to standard values K1n and K2n (respectively positive constants). Further, the other steps of this embodiment are executed in the same manner as in the first embodiment.

かくして図示の実施例2によれば、上述の実施例1の場合と同様、車輌がバンク路にて旋回する場合には、車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Th以下であると判別され、係数K1及びK2が低減補正されることによってスピン状態量SSが低減補正されるので、車輌が過大なスピン状態になっていないにも拘らず見かけ上スピン状態量SSが過大になってスピン制御が不必要に或いは不適切に実行されることを確実に防止することができる。   Thus, according to the second embodiment shown in the figure, when the vehicle turns on the bank road as in the first embodiment, the difference between the direction change D1 of the vehicle and the angle change amount D2 in the traveling direction of the vehicle. Since the absolute value of the deviation is determined to be equal to or less than the reference value Th, and the coefficients K1 and K2 are reduced and corrected, the spin state quantity SS is reduced and corrected, so that the vehicle is not in an excessive spin state. Apparently, it is possible to reliably prevent spin control from being performed unnecessarily or inappropriately due to an excessively large spin state amount SS.

また図示の実施例2によれば、係数K1及びK2は偏差D1−D2の絶対値が基準値Th以下である場合に低減補正され、これによりスピン制御量が低減されるが、車輌の挙動制御自体が中止される訳ではなく、また車輌がバンク路に於いて旋回する状況にてスピン状態になった場合には、偏差D1−D2の絶対値が比較的大きい値になり、係数K1及びK2は低減補正されず或いは係数K1及びK2の低減補正量は小さいので、上述の実施例1の場合と同様、車輌のバンク走行時のスピン状態を効果的に抑制し低減することができる。   Further, according to the illustrated embodiment 2, the coefficients K1 and K2 are reduced and corrected when the absolute value of the deviation D1-D2 is equal to or less than the reference value Th, thereby reducing the spin control amount. When the vehicle is in a spin state when the vehicle is turning on the bank road, the absolute value of the deviation D1-D2 becomes a relatively large value, and the coefficients K1 and K2 Since the reduction correction amount of the coefficients K1 and K2 is small, the spin state when the vehicle is traveling in the bank can be effectively suppressed and reduced as in the case of the first embodiment.

図8は車輌の挙動制御装置として構成された本発明による車輌の制御装置の実施例2に於ける挙動制御ルーチンの要部を示すフローチャートである。尚図8に於いて、図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。   FIG. 8 is a flowchart showing a main part of the behavior control routine in the second embodiment of the vehicle control device according to the present invention configured as a vehicle behavior control device. In FIG. 8, the same step number as the step number shown in FIG. 2 is assigned to the same step as the step shown in FIG.

この実施例3に於いては、ステップ60に於いて上述の実施例1の場合と同様、方位変化量D1と角度変化量D2との偏差の絶対値が小さいほど小さくなるよう補正係数Aが演算され、ステップ65に於いて車輌の横すべり加速度VydがA倍に低減補正され、しかる後横すべり加速度Vydが積分されることにより演算された車輌の横すべり速度Vyに基づき車輌の前後速度Vx(=車速V)に対する車輌の横すべり速度Vyの比Vy/Vxとして上記式2に従って車輌のスリップ角βが演算される。尚他のステップは上述の実施例2の場合と同様に実行される。   In the third embodiment, the correction coefficient A is calculated in step 60 so that the smaller the absolute value of the deviation between the azimuth change amount D1 and the angle change amount D2 is, the smaller the absolute value of the deviation between the azimuth change amount D1 and the angle change amount D2 is. In step 65, the lateral slip acceleration Vyd of the vehicle is corrected to be reduced by A, and then the lateral slip velocity Vy calculated by integration of the lateral slip acceleration Vyd is calculated. The vehicle slip angle β is calculated according to the above equation 2 as the ratio Vy / Vx of the vehicle's side slip velocity Vy. The other steps are executed in the same manner as in the second embodiment.

かくして図示の実施例2によれば、上述の実施例1及び2の場合と同様、車輌がバンク路にて旋回する場合には、車輌の方位変化量D1と車輌の進行方向の角度変化量D2との偏差の絶対値が基準値Th以下であると判別され、車輌の横すべり加速度Vydが低減補正されることによってスピン状態量SSが低減補正されるので、車輌が過大なスピン状態になっていないにも拘らず見かけ上スピン状態量SSが過大になってスピン制御が不必要に或いは不適切に実行されることを確実に防止することができる。   Thus, according to the illustrated second embodiment, as in the first and second embodiments described above, when the vehicle turns on the bank road, the directional change amount D1 of the vehicle and the angular change amount D2 of the traveling direction of the vehicle. The absolute value of the deviation is determined to be less than or equal to the reference value Th, and the vehicle side slip acceleration Vyd is reduced and corrected to reduce the spin state amount SS, so the vehicle is not in an excessively spin state. Nevertheless, it is possible to reliably prevent the spin state amount SS from seemingly becoming excessive and causing spin control to be executed unnecessarily or inappropriately.

尚図示の実施例1乃至3によれば、スピン状態量SSの低減補正量は偏差D1−D2の絶対値が小さいほど大きくなるよう偏差D1−D2の絶対値に応じて可変制御されるので、偏差D1−D2の絶対値の如何に拘らずスピン状態量SSが一定量低減補正される場合に比して、車輌のバンク走行の影響の大小に応じてスピン状態量SSの大きさを最適に低減することができる。   According to the first to third embodiments shown in the figure, the reduction correction amount of the spin state amount SS is variably controlled in accordance with the absolute value of the deviation D1-D2, so that the smaller the absolute value of the deviation D1-D2 is, Compared to the case where the spin state amount SS is corrected to be reduced by a certain amount regardless of the absolute value of the deviation D1-D2, the magnitude of the spin state amount SS is optimized according to the influence of the bank running of the vehicle. Can be reduced.

また図示の実施例1乃至3によれば、車輌のスリップ角βの大きさ、係数K1及びK2、車輌の横すべり加速度Vydは偏差D1−D2の絶対値が基準値Th以下である場合に低減補正され、これによりスピン状態量SSが低減されるが、車輌の挙動制御自体が中止される訳ではなく、また車輌がバンク路に於いて旋回する状況にてスピン状態になった場合には、偏差D1−D2の絶対値が比較的大きい値になり、スピン状態量SSは低減補正されず或いはスピン状態量SSの低減補正量は小さいので、車輌のバンク走行時のスピン状態を効果的に抑制し低減することができる。   Further, according to the first to third embodiments shown in the drawings, the magnitude of the slip angle β of the vehicle, the coefficients K1 and K2, and the lateral slip acceleration Vyd of the vehicle are reduced when the absolute value of the deviation D1-D2 is less than the reference value Th. As a result, the amount of spin state SS is reduced, but the behavior control of the vehicle itself is not stopped, and if the vehicle is in a spin state while turning on the bank road, Since the absolute value of D1-D2 becomes a relatively large value and the spin state amount SS is not reduced or corrected, or the reduction correction amount of the spin state amount SS is small, the spin state during the bank running of the vehicle is effectively suppressed. Can be reduced.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の各実施例1〜3に於いては、偏差D1−D2の絶対値が基準値Th以下である場合に車輌のスリップ角βの大きさ、係数K1及びK2、車輌の横すべり加速度Vydがそれぞれ低減補正され、これによりスピン状態量SSが低減されるようになっているが、スピン状態量SS自体が低減補正されるよう修正されてもよい。   For example, in each of the above-described first to third embodiments, when the absolute value of the deviation D1-D2 is equal to or smaller than the reference value Th, the magnitude of the vehicle slip angle β, the coefficients K1 and K2, and the vehicle slip acceleration Vyd are as follows. The spin state amount SS is reduced by the respective reduction corrections. However, the spin state amount SS itself may be corrected to be reduced and corrected.

また上述の各実施例に於いては、ステップ50に於ける判別の基準値Thは定数であるが、車速Vが高いほど車輌の横加速度Gyの誤差成分が適正な車輌の挙動制御に与える影響が大きくなるので、基準値Thは車速Vが高いほど小さくなるよう車速Vに応じて可変設定されるよう修正されてもよい。   In each of the above-described embodiments, the reference value Th for determination in step 50 is a constant. However, as the vehicle speed V increases, the error component of the lateral acceleration Gy of the vehicle has an effect on the appropriate vehicle behavior control. Therefore, the reference value Th may be modified so as to be variably set according to the vehicle speed V so as to decrease as the vehicle speed V increases.

また上述の各実施例に於いては、車輌の挙動が悪化しているときには、所定の車輪の制動力が制御されることにより車輌の挙動が安定化されるようになっているが、車輌挙動の安定化は車輪の制動力及び駆動力が制御されることにより達成されるよう修正されてもよい。   In each of the above-described embodiments, when the behavior of the vehicle is deteriorated, the behavior of the vehicle is stabilized by controlling the braking force of a predetermined wheel. May be modified to be achieved by controlling the braking and driving forces of the wheels.

また上述の各実施例に於いては、スピン状態量SS及びドリフトアウト状態量DSが演算され、これらに基づき各車輪の目標スリップ率が演算されるようになっているが、ドリフトアウト状態量DSの演算が省略され、各車輪の目標スリップ率がスピン状態量SSのみに基づいて演算され、車輌のスピンのみが制御されるよう修正されてもよく、また各車輪の制動力はそれらの目標制動圧が演算され、各車輪の制動圧が目標制動圧に制御されるよう修正されてもよい。   In each of the above-described embodiments, the spin state quantity SS and the drift-out state quantity DS are calculated, and based on these, the target slip ratio of each wheel is calculated. May be modified so that the target slip ratio of each wheel is calculated based only on the spin state amount SS and only the spin of the vehicle is controlled, and the braking force of each wheel is adjusted to the target braking force. The pressure may be calculated and modified so that the braking pressure of each wheel is controlled to the target braking pressure.

またスピン量SVが車輌のスリップ角β及び横すべり加速度Vydの線形和として上記式4に従って演算される場合には、偏差D1−D2の絶対値が基準値Th以下である場合に横すべり加速度Vydの大きさがA倍に低減補正され、低減補正後の横すべり加速度Vydに基づいてスピン量SVが演算されるよう修正されてもよい。   Further, when the spin amount SV is calculated as the linear sum of the vehicle slip angle β and the side slip acceleration Vyd according to the above equation 4, the magnitude of the side slip acceleration Vyd is large when the absolute value of the deviation D1-D2 is less than or equal to the reference value Th. May be corrected so that the spin amount SV is calculated based on the side-slip acceleration Vyd after the reduction correction.

更に上述の各実施例に於いては、車輌の横すべりに関する状態量としての車輌のスリップ角βに基づき車輌の挙動が制御されるようになっているが、車輌の制御は挙動制御に限定されるものではなく、例えば車輌のスリップ角βに基づき各車輪のスリップ角が演算され、車輌の横すべりに関する状態量としての車輌のスリップ率βに基づき車輌の制御が行われる場合の如く、車輌の制御は車輌の横すべりに関する状態量としての車輌の横すべり加速度Vyd又は横すべり速度Vy又はスリップ角β又はスピン状態量SSを使用する任意の制御であってよい。   Further, in each of the above-described embodiments, the behavior of the vehicle is controlled based on the vehicle slip angle β as a state quantity related to the side slip of the vehicle, but the vehicle control is limited to the behavior control. For example, the vehicle control is performed as in the case where the slip angle of each wheel is calculated based on the vehicle slip angle β and the vehicle is controlled based on the vehicle slip rate β as a state quantity related to the side slip of the vehicle. The control may be any control using the vehicle side-slip acceleration Vyd or the side-slip velocity Vy, the slip angle β, or the spin state amount SS as the state quantity relating to the side-slip of the vehicle.

車輌の挙動制御装置として構成された本発明による車輌の制御装置の実施例1を示す概略構成図である。It is a schematic block diagram which shows Example 1 of the control apparatus of the vehicle by this invention comprised as a vehicle behavior control apparatus. 実施例1に於ける挙動制御ルーチンを示すフローチャートである。3 is a flowchart illustrating a behavior control routine in the first embodiment. GPS情報に基づき演算される車輌の方位変化量D1とヨーレートYrの積分により演算される車輌の進行方向の角度変化量D2との偏差の絶対値と、補正係数Aとの間の関係を示すグラフである。A graph showing the relationship between the absolute value of the deviation between the vehicle direction change D1 calculated based on the GPS information and the vehicle angle change D2 calculated by integrating the yaw rate Yr and the correction coefficient A It is. スピン状態量SSと旋回外側前輪の目標スリップ率Rssfoとの間の関係を示すグラフである。It is a graph which shows the relationship between spin state amount SS and the target slip ratio Rssfo of a turning outer front wheel. ドリフトアウト状態量DSと車輌全体の目標スリップ率Rsllとの間の関係を示すグラフである。It is a graph which shows the relationship between drift-out state quantity DS and the target slip ratio Rsll of the whole vehicle. 車輌が水平な路面に於いて安定的に旋回する場合(A)、車輌が水平な路面に於いて限界状態にて旋回する場合(B)、車輌がバンク路に於いて安定的に旋回する場合(C)について、車輌の実際のスリップ角β、車輌の横すべり加速度Vydの絶対値、偏差D1−D2の絶対値を比較して示す説明図である。When the vehicle turns stably on a horizontal road surface (A), when the vehicle turns in a limit state on a horizontal road surface (B), or when the vehicle turns stably on a bank road FIG. 6C is an explanatory diagram comparing the actual slip angle β of the vehicle, the absolute value of the vehicle side slip acceleration Vyd, and the absolute value of the deviation D1-D2 for (C). 実施例2に於ける挙動制御ルーチンの要部を示すフローチャートである。10 is a flowchart showing a main part of a behavior control routine in Embodiment 2. 実施例3に於ける挙動制御ルーチンの要部を示すフローチャートである。10 is a flowchart showing a main part of a behavior control routine in Embodiment 3. GPS情報に基づき演算される車輌の方位変化量D1とヨーレートYrの積分により演算される車輌の進行方向の角度変化量D2との偏差の絶対値と、係数K1及びK2との間の関係を示すグラフである。The relationship between the absolute value of the deviation between the vehicle direction change D1 calculated based on the GPS information and the vehicle angle change D2 calculated by integrating the yaw rate Yr and the coefficients K1 and K2 is shown. It is a graph.

符号の説明Explanation of symbols

10FR〜10RL 車輪
20 制動装置
28 マスタシリンダ
30 電子制御装置
32FR〜32RL 車輪速度センサ
34 操舵角センサ
36 圧力センサ
38 ヨーレートセンサ
40 前後加速度センサ
42 横加速度センサ
10FR to 10RL Wheel 20 Braking device 28 Master cylinder 30 Electronic controller 32FR to 32RL Wheel speed sensor 34 Steering angle sensor 36 Pressure sensor 38 Yaw rate sensor 40 Longitudinal acceleration sensor 42 Lateral acceleration sensor

Claims (4)

少なくとも車輌の横加速度の検出値に基づき車輌の横すべりに関する状態量を演算し、少なくとも車輌の横すべりに関する状態量に基づき車輌を制御する車輌の制御装置に於いて、GPSの情報に基づいて車輌の方位変化量を演算し、車輌のヨーレートの積分により車輌の方向変化量を演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、前記車輌の横すべりに関する状態量の大きさを低減補正することを特徴とする車輌の制御装置。   At least a state quantity related to the vehicle's side slip is calculated based on the detected value of the vehicle's lateral acceleration, and the vehicle control device controls the vehicle based on at least the state quantity related to the vehicle's side slip. When the amount of change is calculated, the direction change amount of the vehicle is calculated by integrating the yaw rate of the vehicle, and the magnitude of deviation between the direction change amount and the direction change amount is equal to or less than a reference value, the state related to the side slip of the vehicle A control apparatus for a vehicle, wherein the amount of quantity is corrected to be reduced. 前記方位変化量と前記方向変化量との偏差の大きさが小さいほど、前記車輌の横すべりに関する状態量の大きさの低減量を大きくすることを特徴とする請求項1に記載の車輌の制御装置。   2. The vehicle control device according to claim 1, wherein the amount of reduction in the state quantity related to the side slip of the vehicle is increased as the deviation between the direction change amount and the direction change amount is smaller. . 横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして車輌の横すべり加速度Vydを演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、前記車輌の横すべり加速度Vydの大きさを低減補正することを特徴とする請求項1又は2に記載の車輌の制御装置。   When the lateral slip acceleration Vyd of the vehicle is calculated as a deviation Gy−γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ, and the magnitude of the deviation between the azimuth change amount and the direction change amount is less than a reference value The vehicle control device according to claim 1, wherein the vehicle side slip acceleration Vyd is reduced and corrected. 横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして車輌の横すべり加速度Vydを演算し、横すべり加速度Vydを積分することにより車輌の横すべり速度Vyを演算し、車速Vに対する車輌の横すべり速度Vyの比Vy/Vbとして車輌のスリップ角βを演算し、前記方位変化量と前記方向変化量との偏差の大きさが基準値以下であるときには、前記車輌のスリップ角βの大きさを低減補正することを特徴とする請求項1又は2に記載の車輌の制御装置。
The vehicle side slip acceleration Vyd is calculated as a deviation Gy-γV of the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ, and the vehicle side slip velocity Vy is calculated by integrating the side slip acceleration Vyd. When the slip angle β of the vehicle is calculated as a ratio Vy / Vb of the side slip velocity Vy, and the magnitude of the deviation between the azimuth change amount and the direction change amount is equal to or less than a reference value, the magnitude of the slip angle β of the vehicle The vehicle control device according to claim 1, wherein the vehicle is reduced and corrected.
JP2004016094A 2004-01-23 2004-01-23 Vehicle control device Withdrawn JP2005206075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016094A JP2005206075A (en) 2004-01-23 2004-01-23 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016094A JP2005206075A (en) 2004-01-23 2004-01-23 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2005206075A true JP2005206075A (en) 2005-08-04

Family

ID=34901354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016094A Withdrawn JP2005206075A (en) 2004-01-23 2004-01-23 Vehicle control device

Country Status (1)

Country Link
JP (1) JP2005206075A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093991A1 (en) * 2007-10-08 2009-04-09 Gm Global Technology Operations, Inc. System and method for detection of spun vehicle
JP2009120082A (en) * 2007-11-16 2009-06-04 Honda Motor Co Ltd Vehicle behavior control device
WO2010015903A1 (en) 2008-08-07 2010-02-11 Toyota Jidosha Kabushiki Kaisha Vehicle behavior control apparatus and vehicle behavior control method
JP2011207308A (en) * 2010-03-29 2011-10-20 Honda Motor Co Ltd Motion control device of vehicle
WO2019054188A1 (en) * 2017-09-12 2019-03-21 日立オートモティブシステムズ株式会社 Vehicle movement state estimating device, vehicle movement state estimating system, vehicle movement controller, and method for estimating vehicle movement state

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093991A1 (en) * 2007-10-08 2009-04-09 Gm Global Technology Operations, Inc. System and method for detection of spun vehicle
US8412435B2 (en) * 2007-10-08 2013-04-02 Gm Global Technology Operations, Llc System and method for detection of spun vehicle
JP2009120082A (en) * 2007-11-16 2009-06-04 Honda Motor Co Ltd Vehicle behavior control device
WO2010015903A1 (en) 2008-08-07 2010-02-11 Toyota Jidosha Kabushiki Kaisha Vehicle behavior control apparatus and vehicle behavior control method
US8825334B2 (en) 2008-08-07 2014-09-02 Toyota Jidosha Kabushiki Kaisha Vehicle behavior control apparatus and vehicle behavior control method
JP2011207308A (en) * 2010-03-29 2011-10-20 Honda Motor Co Ltd Motion control device of vehicle
WO2019054188A1 (en) * 2017-09-12 2019-03-21 日立オートモティブシステムズ株式会社 Vehicle movement state estimating device, vehicle movement state estimating system, vehicle movement controller, and method for estimating vehicle movement state

Similar Documents

Publication Publication Date Title
KR100791826B1 (en) Apparatus for controlling behavior of vehicle
JP3198993B2 (en) Vehicle behavior control device
JP4029856B2 (en) Vehicle behavior control device
JP4151389B2 (en) Vehicle behavior control device
US9365196B2 (en) Method for operating a wheel slip control apparatus with compensated wheel speeds
US8670905B2 (en) Vehicle stability control method and system
JP3546830B2 (en) Vehicle roll behavior control device
US11548487B2 (en) Lane departure prevention system of vehicle
EP2799822B1 (en) Method and device for estimating loading state of vehicle
JP3317205B2 (en) Vehicle behavior control device
CN102574527B (en) Device for estimating turning characteristic of vehicle
JP2004155241A (en) Brake control device for vehicle
KR19980079488A (en) Vehicle behavior control
KR20140050395A (en) Control method for lane keeping assist of vehicle and apparatus for lane keeping assist implementing the same
JP4172361B2 (en) Control device for electric power steering device
JP3705077B2 (en) Vehicle motion control device
JP2005206075A (en) Vehicle control device
JP2002302059A (en) Traveling controller of vehicle
JP2008179365A (en) Behavior control device for vehicle
JP2004026074A (en) Device for estimating turning characteristic of vehicle
JP4635578B2 (en) Vehicle behavior control device
JP2002274410A (en) Traveling control device for vehicle
JP2005193847A (en) Behavior control device for vehicle
JP4263508B2 (en) Vehicle behavior control device
JP3304776B2 (en) Vehicle wheel grip determination device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061220