WO2013098904A1 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
WO2013098904A1
WO2013098904A1 PCT/JP2011/007367 JP2011007367W WO2013098904A1 WO 2013098904 A1 WO2013098904 A1 WO 2013098904A1 JP 2011007367 W JP2011007367 W JP 2011007367W WO 2013098904 A1 WO2013098904 A1 WO 2013098904A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
power
charge
charging
Prior art date
Application number
PCT/JP2011/007367
Other languages
French (fr)
Japanese (ja)
Inventor
沖 良二
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/007367 priority Critical patent/WO2013098904A1/en
Publication of WO2013098904A1 publication Critical patent/WO2013098904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power storage system including a power storage device that outputs driving power of an auxiliary machine and a power storage device that outputs energy used for traveling of a vehicle.
  • the system described in Patent Document 1 includes a battery that drives a 14V load and a battery that drives a 42V load, in addition to the high voltage battery (200V system) that outputs the running energy of the vehicle.
  • a nickel metal hydride battery or a lithium ion battery is used as the high-voltage battery or the 42V battery, and a lead storage battery is used as the 14V battery.
  • JP 2008-110700 A JP 2003-348774 A Japanese Patent Laid-Open No. 10-290532 JP 2000-035467 A
  • a low-voltage battery such as a 14V battery described in Patent Document 1 is difficult to discharge in order to ensure system operation. This may cause a memory effect in the low voltage battery. Even if the memory effect occurs, it is difficult to eliminate the memory effect.
  • the power storage system includes a first power storage device and a second power storage device.
  • the first power storage device outputs the traveling energy of the vehicle, and the second power storage device outputs the driving power of the auxiliary equipment mounted on the vehicle.
  • the DC / DC converter converts an output voltage from the second power storage device to the first power storage device, and converts an output voltage from the first power storage device to the second power storage device.
  • the controller performs a charging / discharging process of charging the second power storage device by discharging the first power storage device after charging the first power storage device by discharging the second power storage device via the DC / DC converter.
  • the memory effect can be suppressed from occurring in the second power storage device by positively discharging the second power storage device.
  • power loss can be prevented by temporarily storing the output power of the second power storage device in the first power storage device and returning the power stored in the first power storage device to the second power storage device.
  • the occurrence of the memory effect can be suppressed, but the discharge power may be wasted only by discharging the second power storage device.
  • the charge / discharge process can be performed. Thereby, the memory effect can be eliminated. On the other hand, it is also possible to perform the charge / discharge process without determining that the memory effect has occurred.
  • the charge / discharge process can be performed.
  • the amount of power that can charge the first power storage device is the amount of power when charging the first power storage device from the current charging state to the fully charged state. If the amount of charge power of the first power storage device is higher than the threshold, the amount of power when discharging the second power storage device can be secured, and the memory effect can be easily eliminated by discharging the second power storage device. it can.
  • a charge / discharge process can be performed.
  • the second power storage device may not output drive power to the auxiliary machine. In this state, the second power storage device can be positively discharged, and the above-described charge / discharge treatment can be performed.
  • the power from the external power source can be supplied to the first power storage device.
  • a slight power loss may occur depending on the conversion efficiency of the DC / DC converter.
  • the power from the external power supply can be used to compensate for the loss power.
  • a charger can be used. The charger can incorporate the above-described DC / DC converter.
  • the second power storage device In the charging / discharging process, the second power storage device can be charged until the amount of power when charging the second power storage device reaches the amount of power when discharging the second power storage device. Thereby, the SOC (State (of Charge) of the second power storage device can be returned to the state before the second power storage device is discharged.
  • SOC State (of Charge)
  • the charge / discharge characteristics of the second power storage device can be acquired. If the charge / discharge process is performed a plurality of times, a plurality of charge / discharge characteristics can be acquired. By comparing these charge / discharge characteristics, it is possible to confirm whether or not the memory effect is eliminated in the second power storage device.
  • the nominal voltage of the second power storage device is lower than the nominal voltage of the first power storage device.
  • the DC / DC converter can perform a boosting process when supplying power from the second power storage device to the first power storage device. Further, the DC / DC converter can perform a step-down process when supplying power from the first power storage device to the second power storage device.
  • a nickel metal hydride battery or a lithium ion battery can be used as the second power storage device.
  • the second invention of the present application is a control method for controlling charging / discharging between the first power storage device that outputs the running energy of the vehicle and the second power storage device that outputs the driving power of the auxiliary device mounted on the vehicle. First, the output voltage from the second power storage device to the first power storage device is converted, and the first power storage device is charged by discharging the second power storage device. Next, after charging the first power storage device, the output voltage from the first power storage device to the second power storage device is converted, and the second power storage device is charged by discharging the first power storage device. Also in the second invention of the present application, the same effect as that of the first invention of the present application can be obtained.
  • FIG. 1 is a diagram showing a part of a system mounted on a vehicle.
  • Vehicles include hybrid cars and electric cars.
  • the hybrid vehicle includes an engine or a fuel cell as a power source for running the vehicle in addition to the assembled battery described later.
  • the electric vehicle includes only an assembled battery described later as a power source for running the vehicle.
  • the assembled battery (corresponding to the first power storage device) 10 has a plurality of unit cells 11 connected in series.
  • a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used.
  • An electric double layer capacitor (capacitor) can be used instead of the secondary battery.
  • the plurality of single cells 11 are connected in series, but the plurality of single cells 11 connected in parallel may be included in the assembled battery 10.
  • the monitoring unit 12 detects the voltage of the assembled battery 10 or the voltage of the unit cell 11.
  • the monitoring unit 12 can detect the voltage of each block.
  • the plurality of blocks are connected in series, and each block includes a plurality of single cells 11 connected in series.
  • the monitoring unit 12 outputs detection information (voltage) to a PM-ECU (Power Management Electronic Control Unit) 31.
  • a relay IG ⁇ b> 1 is connected to the monitoring unit 12.
  • monitoring unit 12 operates by receiving power from auxiliary battery 51 (corresponding to the second power storage device).
  • Relay IG1 is switched between ON and OFF in response to a control signal from power supply ECU (Electronic Control Unit) 32.
  • the power supply ECU 32 switches the relay IG1 between on and off by flowing a current through the coil of the relay IG1 or not flowing a current.
  • the system main relay SMR-B is provided on the positive line PL connected to the positive terminal of the assembled battery 10.
  • a positive terminal of the assembled battery 10 is connected to a PCU (Power Control Unit) 22 through a positive line PL.
  • a system main relay SMR-G is provided on the negative electrode line NL connected to the negative electrode terminal of the assembled battery 10.
  • the negative electrode terminal of the battery pack 10 is connected to the PCU 22 via the negative electrode line NL.
  • System main relay SMR-P and current limiting resistor R are connected in parallel to system main relay SMR-G.
  • System main relay SMR-P and current limiting resistor R are connected in series.
  • the current limiting resistor R is used for suppressing the inrush current from flowing when the assembled battery 10 and the PCU 22 are connected.
  • System main relays SMR-B, SMR-G, and SMR-P are used when connecting the assembled battery 10 and the PCU 22.
  • System main relays SMR-B, SMR-G, and SMR-P are switched between ON and OFF in response to a control signal from PM-ECU 31.
  • the PM-ECU 31 When connecting the assembled battery 10 and the PCU 22, the PM-ECU 31 first switches the system main relays SMR-B and SMR-G from off to on. Thereby, a current can be passed through the current limiting resistor R.
  • the PM-ECU 31 switches the system main relay SMR-G from OFF to ON, and then turns the system main relay SMR-P from ON to OFF. Switch to. Thereby, the connection between the assembled battery 10 and the PCU 22 is completed, and the system shown in FIG. 1 is in a start-up state (Ready-On).
  • the PM-ECU 31 confirms that the ignition switch of the vehicle has been switched from OFF to ON, the PM-ECU 31 connects the assembled battery 10 and the PCU 22. Information regarding the on / off of the ignition switch is input to the PM-ECU 31.
  • the PM-ECU 31 disconnects the connection between the assembled battery 10 and the PCU 22 when it is confirmed that the ignition switch has been switched from on to off.
  • the PM-ECU 31 switches the system main relays SMR-B and SMR-G from on to off. As a result, the system shown in FIG. 1 enters a stopped state (Ready-Off).
  • the DC / DC converter 21 is connected to the positive electrode line PL and the negative electrode line NL. Specifically, DC / DC converter 21 is connected to positive line PL located between system main relays SMR-B and PCU 22 and negative line NL located between system main relays SMR-G and PCU 22. ing.
  • the DC / DC converter 21 steps down the voltage of the assembled battery 10 and supplies the power after stepping down to an auxiliary machine (not shown) or to the auxiliary battery 51.
  • An auxiliary machine is an electronic device mounted on a vehicle, such as an air conditioner, a light, and an audio facility.
  • the DC / DC converter 21 operates in response to a control signal from the PM-ECU 31.
  • the PCU 22 includes a booster circuit and an inverter.
  • the booster circuit boosts the output voltage of the assembled battery 10 and outputs the boosted power to the inverter.
  • the booster circuit can step down the output voltage of the inverter and output the stepped down power to the assembled battery 10.
  • the inverter converts the DC power output from the booster circuit into AC power, and outputs the AC power to a motor generator (AC motor).
  • the PCU 22 operates in response to a control signal from the PM-ECU 31.
  • the PCU 22 is connected to a motor / generator, and the motor / generator receives AC power from the PCU 22 (inverter) and generates kinetic energy for running the vehicle.
  • the motor / generator is connected to wheels, and the kinetic energy generated by the motor / generator is transmitted to the wheels. As a result, the vehicle can be driven by rotating the wheels.
  • the motor / generator converts kinetic energy generated during braking of the vehicle into electric energy (AC power).
  • the AC power generated by the motor / generator is output to the PCU 22.
  • the inverter of the PCU 22 converts AC power from the motor / generator into DC power and outputs the DC power to the booster circuit.
  • the output power of the motor / generator is supplied to the assembled battery 10 via the PCU 22, and the regenerative power can be stored in the assembled battery 10.
  • the booster circuit is used, but the booster circuit may be omitted.
  • the relay IG3 is connected to the PCU 22. When the relay IG3 is on, the PCU 22 operates by receiving power from the auxiliary battery 51. Relay IG3 switches between ON and OFF in response to a control signal from PM-ECU 31. The PM-ECU 31 switches the relay IG3 between on and off by flowing a current through the coil of the relay IG3 or not flowing a current. A relay IG1 is connected to the PM-ECU 31. When relay IG1 is on, PM-ECU 31 operates by receiving power from auxiliary battery 51.
  • the charge relay CHR1 is connected to the positive line PL. Specifically, one end of charging relay CHR1 is connected to positive electrode line PL located between assembled battery 10 and system main relay SMR-B. The other end of the charging relay CHR1 is connected to the charger 40.
  • a charging relay CHR2 is connected to the negative electrode line NL. Specifically, one end of the charging relay CHR2 is connected to the negative electrode line NL located between the assembled battery 10 and the system main relay SMR-G. The other end of the charging relay CHR2 is connected to the charger 40.
  • the charging relay CHR3 is connected in parallel to the charging relay CHR2.
  • the charging relay CHR3 is connected in series with the current limiting resistor R.
  • Charging relays CHR1 to CHR3 are used when connecting assembled battery 10 and charger 40.
  • the current limiting resistor R is used for suppressing the inrush current from flowing when the assembled battery 10 and the charger 40 are connected.
  • the charging relays CHR1 to CHR3 are switched between on and off in response to a control signal from the PM-ECU 31.
  • the PM-ECU 31 When connecting the assembled battery 10 and the charger 40, the PM-ECU 31 first switches the charging relays CHR1 and CHR3 from off to on. Thereby, a current can be passed through the current limiting resistor R.
  • the PM-ECU 31 switches the charging relay CHR3 from OFF to ON after switching the charging relay CHR2 from OFF to ON. Switch off. Thereby, the connection of the assembled battery 10 and the charger 40 is completed.
  • the assembled battery 10 and the charger 40 are connected, the assembled battery 10 and the PCU 22 are not connected.
  • one current limiting resistor R is used, but the present invention is not limited to this. That is, using two current limiting resistors R, the current limiting resistor R can be connected to each of the system main relay SMR-P and the charging relay CHR3. That is, the system main relay SMR-P and one current limiting resistor R can be connected in series, and the charging relay CHR3 and the other current limiting resistor R can be connected in series. In this embodiment, since one current limiting resistor R is used, the number of parts can be reduced as compared with the case where two current limiting resistors R are used.
  • the charger 40 is used to supply power from the external power source to the assembled battery 10.
  • the external power source is a power source arranged outside the vehicle, and a commercial power source, for example, can be used as the external power source.
  • a means for supplying power from the external power source to the charger 40 wired or wireless can be used.
  • a cable connector (so-called plug) connected to an external power source can be connected to a cable connector (so-called inlet) connected to the charger 40.
  • wireless means can supply electric power from an external power source to the charger 40 in a non-contact manner using electromagnetic induction or a resonance phenomenon.
  • the charger 40 converts AC power from an external power source into DC power, and supplies the DC power to the assembled battery 10. Thereby, the assembled battery 10 can be charged. This charging is called external charging.
  • the charger 40 has a bidirectional DC / DC converter 41.
  • the DC / DC converter 41 steps down the output voltage of the assembled battery 10, supplies the reduced power to the auxiliary battery 51, boosts the output voltage of the auxiliary battery 51, and supplies the boosted power to the assembled battery 10. Or to supply.
  • the DC / DC converter 41 is built in the charger 40, but the DC / DC converter 41 may be provided outside the charger 40.
  • the relay IG2 is connected to the charger 40. When relay IG2 is on, the power of auxiliary battery 51 is supplied to charger 40. Relay IG2 switches between ON and OFF in response to a control signal from PM-ECU 31. The PM-ECU 31 switches the relay IG2 between ON and OFF by passing a current through the coil of the relay IG2 or not flowing a current.
  • the auxiliary battery (corresponding to the second power storage device) 51 serves as a power source for operating the system shown in FIG.
  • a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used.
  • the auxiliary battery 51 can be configured by connecting a plurality of single cells in series.
  • the auxiliary battery 51 may include a plurality of single cells connected in parallel.
  • the nominal voltage of the auxiliary battery 51 is lower than the nominal voltage of the assembled battery 10.
  • the auxiliary battery 51 also supplies power to the power supply ECU 32.
  • the power supply ECU 32 operates by receiving power from the auxiliary battery 51.
  • a diode 54 is provided in a line connecting the auxiliary battery 51 and the power supply ECU 32. Specifically, the anode of the diode 54 is connected to the auxiliary battery 51, and the cathode of the diode 54 is connected to the power supply ECU 32.
  • the voltage sensor 52 detects the voltage of the auxiliary battery 51 and outputs the detection result to the PM-ECU 31.
  • a fuse 53 is connected to the auxiliary battery 51. The fuse 53 is used to prevent an excessive current from flowing through the auxiliary battery 51. If an excessive current flows through the auxiliary battery 51 via the fuse 53, the fuse 53 is cut off to cut off the current path.
  • the discharge amount and the charge amount of the auxiliary battery 51 are generally set so as to maintain a balance,
  • the SOC (State of Charge) of the auxiliary battery 51 does not change significantly.
  • the auxiliary battery 51 may have a memory effect. Note that the SOC is the ratio of the current charge capacity to the full charge capacity.
  • the memory effect is a deterioration phenomenon in which the battery discharge voltage is remarkably lowered when the battery is repeatedly charged before the battery is sufficiently discharged, and as a result, the battery capacity appears to be reduced.
  • the memory effect can be suppressed by continuing to discharge the battery.
  • the auxiliary battery 51 mounted on the vehicle it is difficult to perform a continuous discharge for the reasons described above, and a memory effect may occur.
  • the auxiliary battery 51 when external charging of the assembled battery 10 is performed using the charger 40, the auxiliary battery 51 is continuously discharged, so that the memory effect is prevented from occurring in the auxiliary battery 51. Yes. Specifically, the auxiliary battery 51 is discharged, and electric power at the time of discharging is supplied to the assembled battery 10.
  • a DC / DC converter 41 is used to supply the power of the auxiliary battery 51 to the assembled battery 10 or supply the power of the assembled battery 10 to the auxiliary battery 51.
  • FIG. 2 is a flowchart for explaining the memory effect suppression processing in this embodiment. The process shown in FIG. 2 is executed by the PM-ECU 31.
  • step S101 the PM-ECU 31 determines whether or not the assembled battery 10 is being externally charged.
  • the PM-ECU 31 can determine whether or not the assembled battery 10 is being externally charged by receiving a signal for starting external charging. For example, a signal for starting external charging is input to the PM-ECU 31 by connecting a connector of a cable connected to an external power supply to a connector of a cable connected to the charger 40.
  • the PM-ECU 31 determines that the assembled battery 10 is being externally charged
  • the PM-ECU 31 performs the process of step S102.
  • the PM-ECU 31 determines that the assembled battery 10 is not being externally charged
  • the process shown in FIG. As a case where the assembled battery 10 is not being externally charged, for example, the vehicle may be driven using the output of the assembled battery 10.
  • the PM-ECU 31 connects the charger 40 and the assembled battery 10 by controlling on and off of the charging relays CHR1 to CHR3.
  • the PM-ECU 31 determines whether the travel distance of the vehicle is longer than a threshold value (distance).
  • the PM-ECU 31 can acquire the travel distance of the vehicle using the output of the travel meter.
  • the travel distance of the vehicle can be, for example, a travel distance from 0 km to the present. Further, when the memory effect suppression process shown in FIG. 2 is performed, the travel distance from the time when the memory effect suppression process was performed last time to the present time can be set as the travel distance of the vehicle.
  • Threshold value (distance) is a threshold value related to travel distance.
  • the threshold value (distance) is a travel distance of the vehicle when the memory effect is assumed to occur in the auxiliary battery 51, and can be specified in advance by an experiment. Information about the threshold (distance) can be stored in a memory.
  • the PM-ECU 31 can read information on the threshold value (distance) from the memory and perform the process of step S102.
  • the PM-ECU 31 determines that the memory effect is occurring in the auxiliary battery 51 and performs the process of step S103.
  • the PM-ECU 31 determines that the memory effect has not occurred in the auxiliary battery 51 and ends the process shown in FIG.
  • whether or not the memory effect is generated in the auxiliary battery 51 is determined by comparing the travel distance of the vehicle and the threshold value (distance), but the present invention is not limited to this. That is, it is only necessary to determine whether or not the memory effect is generated in the auxiliary battery 51.
  • the accumulated time can be acquired using a timer.
  • the accumulated time can be, for example, an elapsed time from when the vehicle is used for the first time until the present time.
  • the accumulated time can be the elapsed time from when the memory effect suppression process was last performed to the present time.
  • Threshold value (time) compared with the accumulated time is a threshold value related to time, and is an elapsed time assumed to cause a memory effect.
  • the threshold value (time) can be specified in advance by an experiment, and information on the threshold value (time) can be stored in a memory.
  • the PM-ECU 31 can read information on the threshold value (time) from the memory and determine whether or not the memory effect is occurring.
  • step S103 the PM-ECU 31 calculates the amount of charge power of the assembled battery 10.
  • the amount of charge power is the amount of power until the assembled battery 10 is fully charged from the current charged state by charging the assembled battery 10.
  • the charge power amount of the assembled battery 10 can be calculated based on, for example, the current SOC of the assembled battery 10 and the full charge capacity [Ah] of the assembled battery 10. Since the full charge capacity of the assembled battery 10 is known in advance, if the SOC of the assembled battery 10 is specified, the charge power amount of the assembled battery 10 can be calculated.
  • SOC and OCV Open Circuit Voltage
  • the PM-ECU 31 determines whether or not the charge power amount is smaller than a threshold value (power amount).
  • the threshold value (power amount) is a threshold value related to the charging power amount. When the charge power amount is smaller than the threshold value (power amount), it becomes difficult to store the electric energy in the assembled battery 10 when the auxiliary battery 51 is discharged.
  • step S103 it is determined whether or not the electric energy when the auxiliary battery 51 is discharged can be stored in the assembled battery 10 by comparing the charging power amount and the threshold value (power amount). Yes.
  • the threshold value (power amount) can be set as appropriate based on the viewpoint that can ensure the discharge of the auxiliary battery 51.
  • the SOC of the battery pack 10 is likely to be in a reduced state, and the amount of charging power tends to be larger than the threshold value (power amount).
  • the threshold value (power amount) can be set to zero.
  • the threshold value (power amount) can be set to 0.
  • Information about the threshold (power amount) can be stored in a memory.
  • the PM-ECU 31 can read information on the threshold value (electric energy) from the memory and perform the process of step S103.
  • the PM-ECU 31 determines that the auxiliary battery 51 cannot be discharged, and ends the process shown in FIG.
  • the charging power amount is larger than the threshold value (power amount)
  • PM-ECU 31 determines that auxiliary battery 51 can be discharged, and performs the process of step S104.
  • step S104 the PM-ECU 31 discharges the auxiliary battery 51.
  • the discharge current of the auxiliary battery 51 flows to the assembled battery 10 via the DC / DC converter 41.
  • the assembled battery 10 can be charged.
  • the PM-ECU 31 can prevent the charging current from the external power source from flowing into the assembled battery 10 by controlling the operation of the charger 40.
  • step S105 the PM-ECU 31 determines whether or not the discharge power amount of the auxiliary battery 51 is greater than the threshold value (power amount) used in step S103.
  • PM-ECU 31 can calculate the amount of electric power discharged from auxiliary battery 51 based on the discharge current value of auxiliary battery 51 and the voltage detected by voltage sensor 52.
  • the PM-ECU 31 determines that the discharge power of the auxiliary battery 51 can continue to be supplied to the assembled battery 10, and the process of step S104 I do.
  • the discharge power amount of the auxiliary battery 51 is greater than the threshold value (power amount)
  • the PM-ECU 31 determines that the discharge power of the auxiliary battery 51 cannot be supplied to the assembled battery 10, and the process of step S106 I do.
  • step S106 the PM-ECU 31 stops the discharge of the auxiliary battery 51.
  • the auxiliary battery 51 is discharged until the amount of power when the auxiliary battery 51 is discharged reaches a threshold value (power amount), but is not limited thereto.
  • the discharge of the auxiliary battery 51 can be stopped before the electric energy when the auxiliary battery 51 is discharged reaches a threshold value (electric energy).
  • step S107 the PM-ECU 31 discharges the assembled battery 10.
  • the discharge current of the assembled battery 10 flows to the auxiliary battery 51 via the DC / DC converter 41.
  • the auxiliary battery 51 can be charged.
  • the power supply from the external power source to the assembled battery 10 can be stopped.
  • step S108 the PM-ECU 31 determines whether or not the amount of electric power when charging the auxiliary battery 51 (charged electric energy) has reached the amount of electric power when discharging the auxiliary battery 51 (discharged electric energy). Is determined.
  • the electric energy when the auxiliary battery 51 is discharged is the electric energy from the discharge of the auxiliary battery 51 in the process of step S104 to the completion of the discharge of the auxiliary battery 51 in the process of step S106. It is.
  • the charge power amount of the auxiliary battery 51 can be calculated from the current value of the auxiliary battery 51 and the voltage detected by the voltage sensor 53.
  • step S107 When the charge power amount of the auxiliary battery 51 has not reached the discharge power amount of the auxiliary battery 51, the PM-ECU 31 continues the process of step S107. On the other hand, when the charge power amount of the auxiliary battery 51 reaches the discharge power amount of the auxiliary battery 51, the PM-ECU 31 performs the process of step S109. In step S109, the PM-ECU 31 stops discharging the assembled battery 10, in other words, charging the auxiliary battery 51. After the auxiliary battery 51 is discharged and charged, power from an external power source can be supplied to the assembled battery 10.
  • the amount of electric power when discharging the auxiliary battery 51 and the amount of electric power when charging the auxiliary battery 51 are equal, but this is not restrictive. In other words, the amount of power when discharging the auxiliary battery 51 may be different from the amount of power when charging the auxiliary battery 51.
  • the SOC of the assembled battery 10 is the same as when the auxiliary battery 51 starts discharging. It may be lower than the SOC. In this case, by charging the assembled battery 10 using electric power from the external power source, it is possible to compensate for the decrease in the SOC of the assembled battery 10.
  • the charge / discharge characteristics of the auxiliary battery 51 can be acquired.
  • the charge / discharge characteristics of the auxiliary battery 51 include the relationship between the current and voltage of the auxiliary battery 51 and the OCV of the auxiliary battery 51.
  • the auxiliary battery 51 can be further discharged and charged.
  • the process of discharging and charging auxiliary battery 51 is the same as the process of steps S104 to S109.
  • the charge / discharge characteristics of the auxiliary battery 51 can be acquired again. Then, by comparing the charge / discharge characteristics acquired at the first time with the charge / discharge characteristics acquired at the second time, it is possible to confirm whether or not the memory effect is suppressed. If the voltage drop is eliminated by comparing the charge / discharge characteristics, it can be confirmed that the memory effect is suppressed. When it is determined that the memory effect is not suppressed, the auxiliary battery 51 can be discharged and charged (steps S104 to S109) again.
  • the range in which the SOC of the auxiliary battery 51 is changed by the discharge of the auxiliary battery 51 can be set as appropriate. Specifically, the number of times the auxiliary battery 51 is discharged and charged can be reduced as the amount of change in the SOC of the auxiliary battery 51 increases. For example, if the change amount of the SOC of the auxiliary battery 51 is set to about 90%, the memory effect may be suppressed by performing the discharge and charge processing of the auxiliary battery 51 only once.
  • the present invention is not limited to this.
  • the auxiliary battery 51 is periodically discharged and charged (steps S103 to S109) without determining whether or not the memory effect is generated in the auxiliary battery 51. Can do. Even in this case, the memory effect can be suppressed.
  • the memory effect generated in the auxiliary battery 51 can be suppressed by charging the auxiliary battery 51 after discharging it.
  • the electric energy can be used without waste. it can.
  • the charger 40 is generally provided with a DC / DC converter for converting the voltage of the external power source into a voltage corresponding to the assembled battery 10.
  • a DC / DC converter for converting the voltage of the external power source into a voltage corresponding to the assembled battery 10.
  • the auxiliary battery 51 is discharged and charged using the DC / DC converter 41 built in the charger 40, but the present invention is not limited to this. Specifically, the auxiliary battery 51 can be discharged and charged using the DC / DC converter 21. In this case, the DC / DC converter 21 and the auxiliary battery 51 may be connected, and even in a system that does not include the charger 40, the memory effect suppression process can be performed.
  • the auxiliary battery 51 when the auxiliary battery 51 is discharged and charged, it is necessary to connect the assembled battery 10 and the DC / DC converter 21 by driving the system main relays SMR-B, SMR-G, and SMR-P.
  • the power controlled by the DC / DC converter 41 tends to be lower than the power controlled by the DC / DC converter 21. For this reason, when the memory effect suppression process is performed, the power loss in the DC / DC converter 41 tends to be smaller than the power loss in the DC / DC converter 21. Therefore, in order to suppress power loss, it is preferable to use the DC / DC converter 41 rather than the DC / DC converter 21. On the other hand, if the memory effect suppression process is performed using the DC / DC converter 21, the processing time can be shortened as compared to the case where the memory effect suppression process is performed using the DC / DC converter 41.
  • the memory effect suppression process when the battery pack 10 is externally charged, the memory effect suppression process is performed, but the present invention is not limited to this. That is, the timing for performing the memory effect suppression process does not have to be when the battery pack 10 is being externally charged. For example, even when the vehicle is left unattended and the connection between the assembled battery 10 and the PCU 22 is cut off, the memory effect suppressing process can be performed. Specifically, when a predetermined time elapses with the vehicle left unattended, the PM-ECU 31 can be activated to perform the processing described in this embodiment (the processing shown in FIG. 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] To suppress the occurrence of memory effect in a power storage device that outputs drive power for auxiliary machinery. [Solution] A power storage system has a first power storage device and a second power storage device. The first power storage device outputs travel energy for a vehicle, and the second power storage device outputs drive power for auxiliary machinery mounted in the vehicle. A DC/DC converter converts voltage output from the second power storage device to the first power storage device, and also converts voltage output from the first power storage device to the second power storage device. A controller, by way of the DC/DC converter, performs charging and discharging processing in which the second power storage device is charged by discharging the first power storage device, after the first power storage device has been charged by discharging the second power storage device.

Description

蓄電システムPower storage system
 本発明は、補機の駆動電力を出力する蓄電装置と、車両の走行に用いられるエネルギを出力する蓄電装置とを備えた蓄電システムに関する。 The present invention relates to a power storage system including a power storage device that outputs driving power of an auxiliary machine and a power storage device that outputs energy used for traveling of a vehicle.
 特許文献1に記載のシステムでは、車両の走行エネルギを出力する高圧バッテリ(200V系)の他に、14V系の負荷を駆動するバッテリと、42V系の負荷を駆動するバッテリとを備えている。ここで、高圧バッテリや42V系バッテリとしては、ニッケル水素電池やリチウムイオン電池が用いられ、14V系バッテリとしては、鉛蓄電池が用いられている。 The system described in Patent Document 1 includes a battery that drives a 14V load and a battery that drives a 42V load, in addition to the high voltage battery (200V system) that outputs the running energy of the vehicle. Here, a nickel metal hydride battery or a lithium ion battery is used as the high-voltage battery or the 42V battery, and a lead storage battery is used as the 14V battery.
特開2008-110700号公報JP 2008-110700 A 特開2003-348764号公報JP 2003-348774 A 特開平10-290532号公報Japanese Patent Laid-Open No. 10-290532 特開2000-035467号公報JP 2000-035467 A
 二次電池では、メモリ効果が発生することが知られている。特許文献1に記載された14V系バッテリといった低電圧系のバッテリは、システムの動作を確保するために、放電させにくい。これにより、低電圧系のバッテリにメモリ効果が発生するおそれがある。また、メモリ効果が発生してしまっても、メモリ効果を解消させにくい。 It is known that a memory effect occurs in a secondary battery. A low-voltage battery such as a 14V battery described in Patent Document 1 is difficult to discharge in order to ensure system operation. This may cause a memory effect in the low voltage battery. Even if the memory effect occurs, it is difficult to eliminate the memory effect.
 本願第1の発明である蓄電システムは、第1蓄電装置および第2蓄電装置を有する。第1蓄電装置は、車両の走行エネルギを出力し、第2蓄電装置は、車両に搭載された補機の駆動電力を出力する。DC/DCコンバータは、第2蓄電装置から第1蓄電装置への出力電圧を変換するとともに、第1蓄電装置から第2蓄電装置への出力電圧を変換する。コントローラは、DC/DCコンバータを介して、第2蓄電装置の放電によって第1蓄電装置を充電した後に、第1蓄電装置の放電によって第2蓄電装置を充電する充放電処理を行う。 The power storage system according to the first invention of the present application includes a first power storage device and a second power storage device. The first power storage device outputs the traveling energy of the vehicle, and the second power storage device outputs the driving power of the auxiliary equipment mounted on the vehicle. The DC / DC converter converts an output voltage from the second power storage device to the first power storage device, and converts an output voltage from the first power storage device to the second power storage device. The controller performs a charging / discharging process of charging the second power storage device by discharging the first power storage device after charging the first power storage device by discharging the second power storage device via the DC / DC converter.
 本願第1の発明によれば、第2蓄電装置を積極的に放電させることにより、第2蓄電装置にメモリ効果が発生するのを抑制することができる。しかも、第2蓄電装置の出力電力を第1蓄電装置に一次的に蓄えておき、第1蓄電装置に蓄えられた電力を第2蓄電装置に戻すことにより、電力の損失を防止することができる。第2蓄電装置を放電しただけでも、メモリ効果の発生を抑制することができるが、第2蓄電装置を放電しただけでは、放電電力が無駄になってしまうこともある。本願第1の発明によれば、第2蓄電装置を放電したときの電力を第2蓄電装置に戻すことにより、電力の無駄を防止することができる。 According to the first invention of the present application, the memory effect can be suppressed from occurring in the second power storage device by positively discharging the second power storage device. In addition, power loss can be prevented by temporarily storing the output power of the second power storage device in the first power storage device and returning the power stored in the first power storage device to the second power storage device. . Although only the second power storage device is discharged, the occurrence of the memory effect can be suppressed, but the discharge power may be wasted only by discharging the second power storage device. According to the first invention of the present application, it is possible to prevent waste of power by returning the power when the second power storage device is discharged to the second power storage device.
 第2蓄電装置にメモリ効果が発生していることを判別したときに、充放電処理を行うことができる。これにより、メモリ効果を解消させることができる。一方、メモリ効果が発生していることを判別せずに、充放電処理を行うこともできる。 When it is determined that the memory effect is occurring in the second power storage device, the charge / discharge process can be performed. Thereby, the memory effect can be eliminated. On the other hand, it is also possible to perform the charge / discharge process without determining that the memory effect has occurred.
 第1蓄電装置を充電することができる電力量が閾値よりも高いとき、充放電処理を行うことができる。第1蓄電装置を充電することができる電力量とは、現在の充電状態から満充電状態になるまで第1蓄電装置を充電するときの電力量である。第1蓄電装置の充電電力量が閾値よりも高ければ、第2蓄電装置を放電するときの電力量を確保することができ、第2蓄電装置の放電によって、メモリ効果を解消させやすくすることができる。 When the amount of power that can charge the first power storage device is higher than the threshold value, the charge / discharge process can be performed. The amount of power that can charge the first power storage device is the amount of power when charging the first power storage device from the current charging state to the fully charged state. If the amount of charge power of the first power storage device is higher than the threshold, the amount of power when discharging the second power storage device can be secured, and the memory effect can be easily eliminated by discharging the second power storage device. it can.
 外部電源からの電力を用いて第1蓄電装置を充電するとき、充放電処理を行うことができる。外部電源からの電力を用いて第1蓄電装置を充電するときには、第2蓄電装置は、補機に駆動電力を出力しなくてもよい。この状態であれば、第2蓄電装置を積極的に放電することができ、上述した充放電処理を行うことができる。 When charging the first power storage device using power from an external power supply, a charge / discharge process can be performed. When charging the first power storage device using power from the external power source, the second power storage device may not output drive power to the auxiliary machine. In this state, the second power storage device can be positively discharged, and the above-described charge / discharge treatment can be performed.
 ここで、充放電処理を行った後に、外部電源からの電力を第1蓄電装置に供給することができる。充放電処理を行うとき、DC/DCコンバータの変換効率などによっては、わずかな電力の損失が発生することがある。電力の損失が発生したときには、外部電源からの電力を用いて、損失分の電力を補填することができる。外部電源からの電力を用いて第1蓄電装置を充電するときには、充電器を用いることができる。充電器には、上述したDC/DCコンバータを内蔵させることができる。 Here, after the charge / discharge treatment is performed, the power from the external power source can be supplied to the first power storage device. When the charge / discharge process is performed, a slight power loss may occur depending on the conversion efficiency of the DC / DC converter. When a power loss occurs, the power from the external power supply can be used to compensate for the loss power. When charging the first power storage device using electric power from an external power source, a charger can be used. The charger can incorporate the above-described DC / DC converter.
 充放電処理において、第2蓄電装置を充電するときの電力量が第2蓄電装置を放電したときの電力量に到達するまで、第2蓄電装置を充電することができる。これにより、第2蓄電装置のSOC(State of Charge)を、第2蓄電装置の放電を行う前の状態に戻すことができる。 In the charging / discharging process, the second power storage device can be charged until the amount of power when charging the second power storage device reaches the amount of power when discharging the second power storage device. Thereby, the SOC (State (of Charge) of the second power storage device can be returned to the state before the second power storage device is discharged.
 充放電処理を行うときに、第2蓄電装置の充放電特性を取得することができ、充放電処理を複数回行えば、複数の充放電特性を取得することができる。これらの充放電特性を比較すれば、第2蓄電装置において、メモリ効果が解消されているか否かを確認することができる。 When performing the charge / discharge process, the charge / discharge characteristics of the second power storage device can be acquired. If the charge / discharge process is performed a plurality of times, a plurality of charge / discharge characteristics can be acquired. By comparing these charge / discharge characteristics, it is possible to confirm whether or not the memory effect is eliminated in the second power storage device.
 第2蓄電装置の公称電圧は、第1蓄電装置の公称電圧よりも低い。ここで、DC/DCコンバータは、第2蓄電装置から第1蓄電装置に電力を供給するときには、昇圧処理を行うことができる。また、DC/DCコンバータは、第1蓄電装置から第2蓄電装置に電力を供給するときには、降圧処理を行うことができる。第2蓄電装置としては、ニッケル水素電池又はリチウムイオン電池を用いることができる。 The nominal voltage of the second power storage device is lower than the nominal voltage of the first power storage device. Here, the DC / DC converter can perform a boosting process when supplying power from the second power storage device to the first power storage device. Further, the DC / DC converter can perform a step-down process when supplying power from the first power storage device to the second power storage device. As the second power storage device, a nickel metal hydride battery or a lithium ion battery can be used.
 本願第2の発明は、車両の走行エネルギを出力する第1蓄電装置と、車両に搭載された補機の駆動電力を出力する第2蓄電装置との充放電を制御する制御方法である。まず、第2蓄電装置から第1蓄電装置への出力電圧を変換して、第2蓄電装置の放電によって第1蓄電装置を充電する。次に、第1蓄電装置を充電した後に、第1蓄電装置から第2蓄電装置への出力電圧を変換して、第1蓄電装置の放電によって第2蓄電装置を充電する。本願第2の発明においても、本願第1の発明と同様の効果を得ることができる。 The second invention of the present application is a control method for controlling charging / discharging between the first power storage device that outputs the running energy of the vehicle and the second power storage device that outputs the driving power of the auxiliary device mounted on the vehicle. First, the output voltage from the second power storage device to the first power storage device is converted, and the first power storage device is charged by discharging the second power storage device. Next, after charging the first power storage device, the output voltage from the first power storage device to the second power storage device is converted, and the second power storage device is charged by discharging the first power storage device. Also in the second invention of the present application, the same effect as that of the first invention of the present application can be obtained.
車両の一部のシステムを示す図である。It is a figure which shows the one part system of a vehicle. メモリ効果を抑制する処理を示すフローチャートである。It is a flowchart which shows the process which suppresses a memory effect.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
 本発明の実施例1である車両について、図1を用いて説明する。図1は、車両に搭載された一部のシステムを示す図である。車両としては、ハイブリッド自動車や電気自動車がある。ハイブリッド自動車は、車両を走行させる動力源として、後述する組電池に加えて、エンジン又は燃料電池を備えている。電気自動車は、車両を走行させる動力源として、後述する組電池だけを備えている。 A vehicle that is Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a part of a system mounted on a vehicle. Vehicles include hybrid cars and electric cars. The hybrid vehicle includes an engine or a fuel cell as a power source for running the vehicle in addition to the assembled battery described later. The electric vehicle includes only an assembled battery described later as a power source for running the vehicle.
 組電池(第1蓄電装置に相当する)10は、直列に接続された複数の単電池11を有する。単電池11としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることができる。本実施例では、複数の単電池11が直列に接続されているが、並列に接続された複数の単電池11が組電池10に含まれていてもよい。 The assembled battery (corresponding to the first power storage device) 10 has a plurality of unit cells 11 connected in series. As the cell 11, a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used. An electric double layer capacitor (capacitor) can be used instead of the secondary battery. In the present embodiment, the plurality of single cells 11 are connected in series, but the plurality of single cells 11 connected in parallel may be included in the assembled battery 10.
 監視ユニット12は、組電池10の電圧を検出したり、単電池11の電圧を検出したりする。組電池10を構成する複数の単電池11を複数のブロックに分けたとき、監視ユニット12は、各ブロックの電圧を検出することができる。複数のブロックは、直列に接続されており、各ブロックは、直列に接続された複数の単電池11を含んでいる。 The monitoring unit 12 detects the voltage of the assembled battery 10 or the voltage of the unit cell 11. When the plurality of single cells 11 constituting the assembled battery 10 are divided into a plurality of blocks, the monitoring unit 12 can detect the voltage of each block. The plurality of blocks are connected in series, and each block includes a plurality of single cells 11 connected in series.
 監視ユニット12は、検出情報(電圧)をPM-ECU(Power Management Electronic Control Unit)31に出力する。監視ユニット12には、リレーIG1が接続されている。リレーIG1がオンであるとき、監視ユニット12は、補機電池(第2蓄電装置に相当する)51からの電力を受けて動作する。リレーIG1は、電源ECU(Electronic Control Unit)32からの制御信号を受けて、オンおよびオフの間で切り替わる。電源ECU32は、リレーIG1のコイルに電流を流したり、電流を流さなかったりすることにより、リレーIG1をオンおよびオフの間で切り替える。 The monitoring unit 12 outputs detection information (voltage) to a PM-ECU (Power Management Electronic Control Unit) 31. A relay IG <b> 1 is connected to the monitoring unit 12. When relay IG1 is on, monitoring unit 12 operates by receiving power from auxiliary battery 51 (corresponding to the second power storage device). Relay IG1 is switched between ON and OFF in response to a control signal from power supply ECU (Electronic Control Unit) 32. The power supply ECU 32 switches the relay IG1 between on and off by flowing a current through the coil of the relay IG1 or not flowing a current.
 組電池10の正極端子と接続された正極ラインPLには、システムメインリレーSMR-Bが設けられている。組電池10の正極端子は、正極ラインPLを介して、PCU(Power Control Unit)22と接続されている。組電池10の負極端子と接続された負極ラインNLには、システムメインリレーSMR-Gが設けられている。組電池10の負極端子は、負極ラインNLを介して、PCU22と接続されている。 The system main relay SMR-B is provided on the positive line PL connected to the positive terminal of the assembled battery 10. A positive terminal of the assembled battery 10 is connected to a PCU (Power Control Unit) 22 through a positive line PL. A system main relay SMR-G is provided on the negative electrode line NL connected to the negative electrode terminal of the assembled battery 10. The negative electrode terminal of the battery pack 10 is connected to the PCU 22 via the negative electrode line NL.
 システムメインリレーSMR-Gには、システムメインリレーSMR-Pおよび電流制限抵抗Rが並列に接続されている。システムメインリレーSMR-Pおよび電流制限抵抗Rは、直列に接続されている。電流制限抵抗Rは、組電池10およびPCU22を接続するときに、突入電流が流れるのを抑制するために用いられる。 System main relay SMR-P and current limiting resistor R are connected in parallel to system main relay SMR-G. System main relay SMR-P and current limiting resistor R are connected in series. The current limiting resistor R is used for suppressing the inrush current from flowing when the assembled battery 10 and the PCU 22 are connected.
 システムメインリレーSMR-B,SMR-G,SMR-Pは、組電池10およびPCU22を接続するときに用いられる。システムメインリレーSMR-B,SMR-G,SMR-Pは、PM-ECU31からの制御信号を受けて、オンおよびオフの間で切り替わる。組電池10およびPCU22を接続するとき、PM-ECU31は、まず、システムメインリレーSMR-B,SMR-Gをオフからオンに切り替える。これにより、電流制限抵抗Rに電流を流すことができる。 System main relays SMR-B, SMR-G, and SMR-P are used when connecting the assembled battery 10 and the PCU 22. System main relays SMR-B, SMR-G, and SMR-P are switched between ON and OFF in response to a control signal from PM-ECU 31. When connecting the assembled battery 10 and the PCU 22, the PM-ECU 31 first switches the system main relays SMR-B and SMR-G from off to on. Thereby, a current can be passed through the current limiting resistor R.
 組電池10の出力電力によってコンデンサ(図示せず)のプリチャージが完了すると、PM-ECU31は、システムメインリレーSMR-Gをオフからオンに切り替えた後に、システムメインリレーSMR-Pをオンからオフに切り替える。これにより、組電池10およびPCU22の接続が完了し、図1に示すシステムは、起動状態(Ready-On)となる。PM-ECU31は、車両のイグニッションスイッチがオフからオンに切り替わったことを確認したとき、組電池10およびPCU22を接続する。イグニッションスイッチのオンおよびオフに関する情報は、PM-ECU31に入力される。 When the precharge of the capacitor (not shown) is completed by the output power of the assembled battery 10, the PM-ECU 31 switches the system main relay SMR-G from OFF to ON, and then turns the system main relay SMR-P from ON to OFF. Switch to. Thereby, the connection between the assembled battery 10 and the PCU 22 is completed, and the system shown in FIG. 1 is in a start-up state (Ready-On). When the PM-ECU 31 confirms that the ignition switch of the vehicle has been switched from OFF to ON, the PM-ECU 31 connects the assembled battery 10 and the PCU 22. Information regarding the on / off of the ignition switch is input to the PM-ECU 31.
 PM-ECU31は、イグニッションスイッチがオンからオフに切り替わったことを確認したときに、組電池10およびPCU22の接続を遮断する。組電池10およびPCU22の接続を遮断するとき、PM-ECU31は、システムメインリレーSMR-B,SMR-Gをオンからオフに切り替える。これにより、図1に示すシステムは、停止状態(Ready-Off)となる。 The PM-ECU 31 disconnects the connection between the assembled battery 10 and the PCU 22 when it is confirmed that the ignition switch has been switched from on to off. When the connection between the assembled battery 10 and the PCU 22 is disconnected, the PM-ECU 31 switches the system main relays SMR-B and SMR-G from on to off. As a result, the system shown in FIG. 1 enters a stopped state (Ready-Off).
 DC/DCコンバータ21は、正極ラインPLおよび負極ラインNLに接続されている。具体的には、DC/DCコンバータ21は、システムメインリレーSMR-BおよびPCU22の間に位置する正極ラインPLと、システムメインリレーSMR-GおよびPCU22の間に位置する負極ラインNLとに接続されている。 The DC / DC converter 21 is connected to the positive electrode line PL and the negative electrode line NL. Specifically, DC / DC converter 21 is connected to positive line PL located between system main relays SMR-B and PCU 22 and negative line NL located between system main relays SMR-G and PCU 22. ing.
 DC/DCコンバータ21は、組電池10の電圧を降圧し、降圧後の電力を補機(図示せず)に供給したり、補機バッテリ51に供給したりする。補機は、車両に搭載された電子機器であり、例えば、空調設備、ライト、音響設備がある。DC/DCコンバータ21は、PM-ECU31からの制御信号を受けて動作する。 The DC / DC converter 21 steps down the voltage of the assembled battery 10 and supplies the power after stepping down to an auxiliary machine (not shown) or to the auxiliary battery 51. An auxiliary machine is an electronic device mounted on a vehicle, such as an air conditioner, a light, and an audio facility. The DC / DC converter 21 operates in response to a control signal from the PM-ECU 31.
 PCU22は、昇圧回路やインバータを含んでいる。昇圧回路は、組電池10の出力電圧を昇圧し、昇圧後の電力をインバータに出力する。また、昇圧回路は、インバータの出力電圧を降圧し、降圧後の電力を組電池10に出力することができる。インバータは、昇圧回路から出力された直流電力を交流電力に変換し、交流電力をモータ・ジェネレータ(交流モータ)に出力する。PCU22は、PM-ECU31からの制御信号を受けて動作する。 The PCU 22 includes a booster circuit and an inverter. The booster circuit boosts the output voltage of the assembled battery 10 and outputs the boosted power to the inverter. The booster circuit can step down the output voltage of the inverter and output the stepped down power to the assembled battery 10. The inverter converts the DC power output from the booster circuit into AC power, and outputs the AC power to a motor generator (AC motor). The PCU 22 operates in response to a control signal from the PM-ECU 31.
 PCU22は、モータ・ジェネレータと接続されており、モータ・ジェネレータは、PCU22(インバータ)からの交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータは、車輪と接続されており、モータ・ジェネレータが生成した運動エネルギは、車輪に伝達される。これにより、車輪を回転させて、車両を走行させることができる。 The PCU 22 is connected to a motor / generator, and the motor / generator receives AC power from the PCU 22 (inverter) and generates kinetic energy for running the vehicle. The motor / generator is connected to wheels, and the kinetic energy generated by the motor / generator is transmitted to the wheels. As a result, the vehicle can be driven by rotating the wheels.
 車両を停止させたり、減速させたりするとき、モータ・ジェネレータは、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。モータ・ジェネレータが生成した交流電力は、PCU22に出力される。PCU22のインバータは、モータ・ジェネレータからの交流電力を直流電力に変換して、直流電力を昇圧回路に出力する。モータ・ジェネレータの出力電力は、PCU22を介して組電池10に供給され、回生電力を組電池10に蓄えることができる。本実施例では、昇圧回路を用いているが、昇圧回路を省略することもできる。 When the vehicle is stopped or decelerated, the motor / generator converts kinetic energy generated during braking of the vehicle into electric energy (AC power). The AC power generated by the motor / generator is output to the PCU 22. The inverter of the PCU 22 converts AC power from the motor / generator into DC power and outputs the DC power to the booster circuit. The output power of the motor / generator is supplied to the assembled battery 10 via the PCU 22, and the regenerative power can be stored in the assembled battery 10. In this embodiment, the booster circuit is used, but the booster circuit may be omitted.
 PCU22には、リレーIG3が接続されている。リレーIG3がオンであるとき、PCU22は、補機電池51からの電力を受けて動作する。リレーIG3は、PM-ECU31からの制御信号を受けて、オンおよびオフの間で切り替わる。PM-ECU31は、リレーIG3のコイルに電流を流したり、電流を流さなかったりすることにより、リレーIG3をオンおよびオフの間で切り替える。PM-ECU31には、リレーIG1が接続されている。リレーIG1がオンであるとき、PM-ECU31は、補機電池51からの電力を受けて動作する。 The relay IG3 is connected to the PCU 22. When the relay IG3 is on, the PCU 22 operates by receiving power from the auxiliary battery 51. Relay IG3 switches between ON and OFF in response to a control signal from PM-ECU 31. The PM-ECU 31 switches the relay IG3 between on and off by flowing a current through the coil of the relay IG3 or not flowing a current. A relay IG1 is connected to the PM-ECU 31. When relay IG1 is on, PM-ECU 31 operates by receiving power from auxiliary battery 51.
 正極ラインPLには、充電リレーCHR1が接続されている。具体的には、充電リレーCHR1の一端は、組電池10およびシステムメインリレーSMR-Bの間に位置する正極ラインPLと接続されている。充電リレーCHR1の他端は、充電器40に接続されている。負極ラインNLには、充電リレーCHR2が接続されている。具体的には、充電リレーCHR2の一端は、組電池10およびシステムメインリレーSMR-Gの間に位置する負極ラインNLと接続されている。充電リレーCHR2の他端は、充電器40に接続されている。 The charge relay CHR1 is connected to the positive line PL. Specifically, one end of charging relay CHR1 is connected to positive electrode line PL located between assembled battery 10 and system main relay SMR-B. The other end of the charging relay CHR1 is connected to the charger 40. A charging relay CHR2 is connected to the negative electrode line NL. Specifically, one end of the charging relay CHR2 is connected to the negative electrode line NL located between the assembled battery 10 and the system main relay SMR-G. The other end of the charging relay CHR2 is connected to the charger 40.
 充電リレーCHR2には、充電リレーCHR3が並列に接続されている。充電リレーCHR3は、電流制限抵抗Rと直列に接続されている。充電リレーCHR1~CHR3は、組電池10および充電器40を接続するときに用いられる。電流制限抵抗Rは、組電池10および充電器40を接続するときに、突入電流が流れるのを抑制するために用いられる。 The charging relay CHR3 is connected in parallel to the charging relay CHR2. The charging relay CHR3 is connected in series with the current limiting resistor R. Charging relays CHR1 to CHR3 are used when connecting assembled battery 10 and charger 40. The current limiting resistor R is used for suppressing the inrush current from flowing when the assembled battery 10 and the charger 40 are connected.
 充電リレーCHR1~CHR3は、PM-ECU31からの制御信号を受けることにより、オンおよびオフの間で切り替わる。組電池10および充電器40を接続するとき、PM-ECU31は、まず、充電リレーCHR1,CHR3をオフからオンに切り替える。これにより、電流制限抵抗Rに電流を流すことができる。 The charging relays CHR1 to CHR3 are switched between on and off in response to a control signal from the PM-ECU 31. When connecting the assembled battery 10 and the charger 40, the PM-ECU 31 first switches the charging relays CHR1 and CHR3 from off to on. Thereby, a current can be passed through the current limiting resistor R.
 組電池10の出力電力によって、充電器40に含まれるコンデンサ(図示せず)のプリチャージが完了すると、PM-ECU31は、充電リレーCHR2をオフからオンに切り替えた後に、充電リレーCHR3をオンからオフに切り替える。これにより、組電池10および充電器40の接続が完了する。ここで、組電池10および充電器40を接続するときには、組電池10およびPCU22は接続されない。 When the precharge of the capacitor (not shown) included in the charger 40 is completed by the output power of the assembled battery 10, the PM-ECU 31 switches the charging relay CHR3 from OFF to ON after switching the charging relay CHR2 from OFF to ON. Switch off. Thereby, the connection of the assembled battery 10 and the charger 40 is completed. Here, when the assembled battery 10 and the charger 40 are connected, the assembled battery 10 and the PCU 22 are not connected.
 本実施例では、1つの電流制限抵抗Rを用いているが、これに限るものではない。すなわち、2つの電流制限抵抗Rを用い、システムメインリレーSMR-Pおよび充電リレーCHR3のそれぞれに対して電流制限抵抗Rを接続することができる。すなわち、システムメインリレーSMR-Pおよび一方の電流制限抵抗Rを直列に接続するとともに、充電リレーCHR3および他方の電流制限抵抗Rを直列に接続することができる。本実施例では、1つの電流制限抵抗Rを用いているため、2つの電流制限抵抗Rを用いる場合と比べて、部品点数を削減することができる。 In this embodiment, one current limiting resistor R is used, but the present invention is not limited to this. That is, using two current limiting resistors R, the current limiting resistor R can be connected to each of the system main relay SMR-P and the charging relay CHR3. That is, the system main relay SMR-P and one current limiting resistor R can be connected in series, and the charging relay CHR3 and the other current limiting resistor R can be connected in series. In this embodiment, since one current limiting resistor R is used, the number of parts can be reduced as compared with the case where two current limiting resistors R are used.
 充電器40は、外部電源からの電力を組電池10に供給するために用いられる。外部電源は、車両とは別に、車両の外部に配置された電源であり、外部電源としては、例えば、商用電源を用いることができる。外部電源からの電力を充電器40に供給する手段としては、有線又は無線を用いることができる。有線を用いた手段では、外部電源と接続されたケーブルのコネクタ(いわゆるプラグ)を、充電器40と接続されたケーブルのコネクタ(いわゆるインレット)に接続することができる。また、無線を用いた手段では、電磁誘導又は共振現象を利用して、外部電源からの電力を非接触で充電器40に供給することができる。 The charger 40 is used to supply power from the external power source to the assembled battery 10. The external power source is a power source arranged outside the vehicle, and a commercial power source, for example, can be used as the external power source. As a means for supplying power from the external power source to the charger 40, wired or wireless can be used. In the means using a wire, a cable connector (so-called plug) connected to an external power source can be connected to a cable connector (so-called inlet) connected to the charger 40. In addition, wireless means can supply electric power from an external power source to the charger 40 in a non-contact manner using electromagnetic induction or a resonance phenomenon.
 充電器40は、外部電源からの交流電力を直流電力に変換し、直流電力を組電池10に供給する。これにより、組電池10を充電することができる。この充電を外部充電という。また、充電器40は、双方向型のDC/DCコンバータ41を有する。DC/DCコンバータ41は、組電池10の出力電圧を降圧し、降圧後の電力を補機電池51に供給したり、補機電池51の出力電圧を昇圧し、昇圧後の電力を組電池10に供給したりする。本実施例では、DC/DCコンバータ41が充電器40に内蔵されているが、充電器40の外部にDC/DCコンバータ41を設けることもできる。 The charger 40 converts AC power from an external power source into DC power, and supplies the DC power to the assembled battery 10. Thereby, the assembled battery 10 can be charged. This charging is called external charging. The charger 40 has a bidirectional DC / DC converter 41. The DC / DC converter 41 steps down the output voltage of the assembled battery 10, supplies the reduced power to the auxiliary battery 51, boosts the output voltage of the auxiliary battery 51, and supplies the boosted power to the assembled battery 10. Or to supply. In this embodiment, the DC / DC converter 41 is built in the charger 40, but the DC / DC converter 41 may be provided outside the charger 40.
 充電器40には、リレーIG2が接続されている。リレーIG2がオンであるとき、補機電池51の電力が充電器40に供給される。リレーIG2は、PM-ECU31からの制御信号を受けて、オンおよびオフの間で切り替わる。PM-ECU31は、リレーIG2のコイルに電流を流したり、電流を流さなかったりすることにより、リレーIG2をオンおよびオフの間で切り替える。 The relay IG2 is connected to the charger 40. When relay IG2 is on, the power of auxiliary battery 51 is supplied to charger 40. Relay IG2 switches between ON and OFF in response to a control signal from PM-ECU 31. The PM-ECU 31 switches the relay IG2 between ON and OFF by passing a current through the coil of the relay IG2 or not flowing a current.
 補機電池(第2蓄電装置に相当する)51は、図1に示すシステムを動作させるための電源となる。補機電池51としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。補機電池51は、複数の単電池を直列に接続することによって構成することができる。また、補機電池51は、並列に接続された複数の単電池を含んでいてもよい。補機電池51の公称電圧は、組電池10の公称電圧よりも低い。 The auxiliary battery (corresponding to the second power storage device) 51 serves as a power source for operating the system shown in FIG. As the auxiliary battery 51, a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used. The auxiliary battery 51 can be configured by connecting a plurality of single cells in series. The auxiliary battery 51 may include a plurality of single cells connected in parallel. The nominal voltage of the auxiliary battery 51 is lower than the nominal voltage of the assembled battery 10.
 補機電池51は、電源ECU32にも電力を供給する。電源ECU32は、補機電池51からの電力を受けて動作する。ここで、補機電池51および電源ECU32を接続するラインには、ダイオード54が設けられている。具体的には、ダイオード54のアノードが補機電池51と接続され、ダイオード54のカソードが電源ECU32と接続されている。 The auxiliary battery 51 also supplies power to the power supply ECU 32. The power supply ECU 32 operates by receiving power from the auxiliary battery 51. Here, a diode 54 is provided in a line connecting the auxiliary battery 51 and the power supply ECU 32. Specifically, the anode of the diode 54 is connected to the auxiliary battery 51, and the cathode of the diode 54 is connected to the power supply ECU 32.
 電圧センサ52は、補機電池51の電圧を検出し、検出結果をPM-ECU31に出力する。補機電池51には、ヒューズ53が接続されている。ヒューズ53は、補機電池51に過大な電流が流れるのを抑制するために用いられる。ヒューズ53を介して補機電池51に過大な電流が流れると、ヒューズ53は、溶断することによって電流経路を遮断する。 The voltage sensor 52 detects the voltage of the auxiliary battery 51 and outputs the detection result to the PM-ECU 31. A fuse 53 is connected to the auxiliary battery 51. The fuse 53 is used to prevent an excessive current from flowing through the auxiliary battery 51. If an excessive current flows through the auxiliary battery 51 via the fuse 53, the fuse 53 is cut off to cut off the current path.
 補機電池51からの電力供給を受けて動作するシステムでは、システムの動作を確保するために、一般的に、補機電池51の放電量および充電量がバランスを保つように設定されており、補機電池51のSOC(State of Charge)は、大幅に変化することはない。このように補機電池51を使用すると、補機電池51には、メモリ効果が発生してしまうことがある。なお、SOCとは、満充電容量に対する、現在の充電容量の割合である。 In a system that operates by receiving power supply from the auxiliary battery 51, in order to ensure the operation of the system, the discharge amount and the charge amount of the auxiliary battery 51 are generally set so as to maintain a balance, The SOC (State of Charge) of the auxiliary battery 51 does not change significantly. When the auxiliary battery 51 is used in this way, the auxiliary battery 51 may have a memory effect. Note that the SOC is the ratio of the current charge capacity to the full charge capacity.
 メモリ効果とは、電池を十分に放電しきらないうちに、電池の充電を繰り返すと、電池の放電電圧が顕著に低下し、結果として、電池容量が減少したように見える劣化現象である。ここで、電池を放電し続けることにより、メモリ効果を抑制できることが知られている。車両に搭載された補機電池51では、上述した理由により、継続した放電を行いにくくなり、メモリ効果が発生することがある。 The memory effect is a deterioration phenomenon in which the battery discharge voltage is remarkably lowered when the battery is repeatedly charged before the battery is sufficiently discharged, and as a result, the battery capacity appears to be reduced. Here, it is known that the memory effect can be suppressed by continuing to discharge the battery. In the auxiliary battery 51 mounted on the vehicle, it is difficult to perform a continuous discharge for the reasons described above, and a memory effect may occur.
 本実施例では、充電器40を用いて組電池10の外部充電を行うときに、補機電池51を放電させ続けることにより、補機電池51にメモリ効果が発生するのを抑制するようにしている。具体的には、補機電池51を放電し、放電時の電力を組電池10に供給している。 In the present embodiment, when external charging of the assembled battery 10 is performed using the charger 40, the auxiliary battery 51 is continuously discharged, so that the memory effect is prevented from occurring in the auxiliary battery 51. Yes. Specifically, the auxiliary battery 51 is discharged, and electric power at the time of discharging is supplied to the assembled battery 10.
 補機電池51を放電したままでは、補機電池51の電力を補機に供給しにくくなってしまう。このため、本実施例では、組電池10に蓄えられた電力を、補機電池51に戻すようにしている。これにより、メモリ効果を抑制しつつ、補機電池51のSOCが低下しすぎてしまうのを抑制することができる。補機電池51の電力を組電池10に供給したり、組電池10の電力を補機電池51に供給したりするために、DC/DCコンバータ41が用いられる。 If the auxiliary battery 51 is discharged, it becomes difficult to supply the power of the auxiliary battery 51 to the auxiliary machine. For this reason, in this embodiment, the power stored in the assembled battery 10 is returned to the auxiliary battery 51. Thereby, it can suppress that SOC of the auxiliary battery 51 falls too much, suppressing a memory effect. A DC / DC converter 41 is used to supply the power of the auxiliary battery 51 to the assembled battery 10 or supply the power of the assembled battery 10 to the auxiliary battery 51.
 図2は、本実施例において、メモリ効果の抑制処理を説明するフローチャートである。図2に示す処理は、PM-ECU31によって実行される。 FIG. 2 is a flowchart for explaining the memory effect suppression processing in this embodiment. The process shown in FIG. 2 is executed by the PM-ECU 31.
 ステップS101において、PM-ECU31は、組電池10が外部充電中であるか否かを判別する。PM-ECU31は、外部充電を開始する信号を受信することにより、組電池10が外部充電中であるか否かを判別することができる。例えば、外部電源に接続されたケーブルのコネクタを、充電器40に接続されたケーブルのコネクタに接続することにより、外部充電を開始する信号がPM-ECU31に入力される。 In step S101, the PM-ECU 31 determines whether or not the assembled battery 10 is being externally charged. The PM-ECU 31 can determine whether or not the assembled battery 10 is being externally charged by receiving a signal for starting external charging. For example, a signal for starting external charging is input to the PM-ECU 31 by connecting a connector of a cable connected to an external power supply to a connector of a cable connected to the charger 40.
 PM-ECU31は、組電池10が外部充電中であると判別したときには、ステップS102の処理を行う。一方、PM-ECU31は、組電池10が外部充電中ではないと判別したときには、図2に示す処理を終了する。組電池10が外部充電中ではない場合としては、例えば、組電池10の出力を用いて車両を走行させている場合がある。ここで、組電池10の外部充電を行うとき、PM-ECU31は、充電リレーCHR1~CHR3のオンおよびオフを制御することにより、充電器40および組電池10を接続する。 When the PM-ECU 31 determines that the assembled battery 10 is being externally charged, the PM-ECU 31 performs the process of step S102. On the other hand, when the PM-ECU 31 determines that the assembled battery 10 is not being externally charged, the process shown in FIG. As a case where the assembled battery 10 is not being externally charged, for example, the vehicle may be driven using the output of the assembled battery 10. Here, when external charging of the assembled battery 10 is performed, the PM-ECU 31 connects the charger 40 and the assembled battery 10 by controlling on and off of the charging relays CHR1 to CHR3.
 ステップS102において、PM-ECU31は、車両の走行距離が閾値(距離)よりも長いか否かを判別する。PM-ECU31は、走行メータの出力を用いて、車両の走行距離を取得することができる。車両の走行距離としては、例えば、0kmから現在までの走行距離とすることができる。また、図2に示すメモリ効果の抑制処理を行ったときには、車両の走行距離として、前回においてメモリ効果の抑制処理を行ったときから現在までの走行距離とすることができる。 In step S102, the PM-ECU 31 determines whether the travel distance of the vehicle is longer than a threshold value (distance). The PM-ECU 31 can acquire the travel distance of the vehicle using the output of the travel meter. The travel distance of the vehicle can be, for example, a travel distance from 0 km to the present. Further, when the memory effect suppression process shown in FIG. 2 is performed, the travel distance from the time when the memory effect suppression process was performed last time to the present time can be set as the travel distance of the vehicle.
 閾値(距離)は、走行距離に関する閾値である。閾値(距離)は、補機電池51にメモリ効果が発生すると想定されるときの車両の走行距離であり、実験によって予め特定しておくことができる。閾値(距離)に関する情報は、メモリに記憶しておくことができる。PM-ECU31は、メモリから閾値(距離)に関する情報を読み出し、ステップS102の処理を行うことができる。 Threshold value (distance) is a threshold value related to travel distance. The threshold value (distance) is a travel distance of the vehicle when the memory effect is assumed to occur in the auxiliary battery 51, and can be specified in advance by an experiment. Information about the threshold (distance) can be stored in a memory. The PM-ECU 31 can read information on the threshold value (distance) from the memory and perform the process of step S102.
 走行距離が閾値(距離)よりも長いとき、PM-ECU31は、補機電池51にメモリ効果が発生していると判断して、ステップS103の処理を行う。走行距離が閾値(距離)よりも短いとき、PM-ECU31は、補機電池51にメモリ効果が発生していないと判断して、図2に示す処理を終了する。 When the travel distance is longer than the threshold value (distance), the PM-ECU 31 determines that the memory effect is occurring in the auxiliary battery 51 and performs the process of step S103. When the travel distance is shorter than the threshold (distance), the PM-ECU 31 determines that the memory effect has not occurred in the auxiliary battery 51 and ends the process shown in FIG.
 本実施例では、車両の走行距離および閾値(距離)を比較することにより、補機電池51にメモリ効果が発生しているか否かを判別しているが、これに限るものではない。すなわち、補機電池51にメモリ効果が発生しているか否かを判別することができればよい。 In this embodiment, whether or not the memory effect is generated in the auxiliary battery 51 is determined by comparing the travel distance of the vehicle and the threshold value (distance), but the present invention is not limited to this. That is, it is only necessary to determine whether or not the memory effect is generated in the auxiliary battery 51.
 例えば、累積時間を閾値(時間)と比較することにより、メモリ効果が発生しているか否かを判別することができる。累積時間は、タイマを用いて取得することができる。累積時間としては、例えば、車両を初めて使用したときから現在までの経過時間とすることができる。また、図2に示すメモリ効果の抑制処理を行ったときには、累積時間として、前回においてメモリ効果の抑制処理を行ったときから現在までの経過時間とすることができる。 For example, by comparing the accumulated time with a threshold value (time), it is possible to determine whether or not a memory effect has occurred. The accumulated time can be acquired using a timer. The accumulated time can be, for example, an elapsed time from when the vehicle is used for the first time until the present time. When the memory effect suppression process shown in FIG. 2 is performed, the accumulated time can be the elapsed time from when the memory effect suppression process was last performed to the present time.
 累積時間と比較される閾値(時間)は、時間に関する閾値であり、メモリ効果が発生すると想定される経過時間である。閾値(時間)は、実験によって予め特定しておくことができ、この閾値(時間)に関する情報は、メモリに記憶しておくことができる。PM-ECU31は、メモリから閾値(時間)に関する情報を読み出して、メモリ効果が発生しているか否かを判別することができる。 Threshold value (time) compared with the accumulated time is a threshold value related to time, and is an elapsed time assumed to cause a memory effect. The threshold value (time) can be specified in advance by an experiment, and information on the threshold value (time) can be stored in a memory. The PM-ECU 31 can read information on the threshold value (time) from the memory and determine whether or not the memory effect is occurring.
 ステップS103において、PM-ECU31は、組電池10の充電電力量を算出する。充電電力量とは、組電池10の充電によって、組電池10が現在の充電状態から満充電状態になるまでの電力量である。組電池10の充電電力量は、例えば、組電池10の現在のSOCと、組電池10の満充電容量[Ah]とに基づいて算出することができる。組電池10の満充電容量は予め分かっているため、組電池10のSOCを特定すれば、組電池10の充電電力量を算出することができる。 In step S103, the PM-ECU 31 calculates the amount of charge power of the assembled battery 10. The amount of charge power is the amount of power until the assembled battery 10 is fully charged from the current charged state by charging the assembled battery 10. The charge power amount of the assembled battery 10 can be calculated based on, for example, the current SOC of the assembled battery 10 and the full charge capacity [Ah] of the assembled battery 10. Since the full charge capacity of the assembled battery 10 is known in advance, if the SOC of the assembled battery 10 is specified, the charge power amount of the assembled battery 10 can be calculated.
 SOCおよびOCV(Open Circuit Voltage)は、対応関係にあるため、組電池10のOCVを特定すれば、このOCVに対応するSOCを特定することができる。SOCおよびOCVの対応関係は、実験によって予め求めておくことができる。一方、組電池10を充放電したときの電流値を検出し、この電流値を積算することによって、組電池10のSOCを算出することもできる。 Since SOC and OCV (Open Circuit Voltage) are in a correspondence relationship, if the OCV of the assembled battery 10 is specified, the SOC corresponding to the OCV can be specified. The correspondence relationship between the SOC and the OCV can be obtained in advance by experiments. On the other hand, it is also possible to calculate the SOC of the assembled battery 10 by detecting the current value when the assembled battery 10 is charged / discharged and integrating the current value.
 また、ステップS103において、PM-ECU31は、充電電力量が閾値(電力量)よりも少ないか否かを判別する。閾値(電力量)は、充電電力量に関する閾値である。充電電力量が閾値(電力量)よりも少ないときには、補機電池51を放電したときの電気エネルギを組電池10に蓄え難くなってしまう。 Further, in step S103, the PM-ECU 31 determines whether or not the charge power amount is smaller than a threshold value (power amount). The threshold value (power amount) is a threshold value related to the charging power amount. When the charge power amount is smaller than the threshold value (power amount), it becomes difficult to store the electric energy in the assembled battery 10 when the auxiliary battery 51 is discharged.
 したがって、ステップS103の処理では、充電電力量および閾値(電力量)を比較することにより、補機電池51を放電したときの電気エネルギを組電池10に蓄えることができるか否かを判別している。閾値(電力量)は、補機電池51の放電を確保できる観点に基づいて、適宜設定することができる。ここで、外部充電を行うときには、組電池10のSOCが低下した状態となりやすく、充電電力量が閾値(電力量)よりも多くなりやすい。 Therefore, in the process of step S103, it is determined whether or not the electric energy when the auxiliary battery 51 is discharged can be stored in the assembled battery 10 by comparing the charging power amount and the threshold value (power amount). Yes. The threshold value (power amount) can be set as appropriate based on the viewpoint that can ensure the discharge of the auxiliary battery 51. Here, when external charging is performed, the SOC of the battery pack 10 is likely to be in a reduced state, and the amount of charging power tends to be larger than the threshold value (power amount).
 例えば、閾値(電力量)は0に設定することができる。組電池10のSOCが100%であるときには、組電池10を充電することができず、充電電力量は0となる。したがって、閾値(電力量)を0に設定することができる。閾値(電力量)に関する情報は、メモリに記憶しておくことができる。PM-ECU31は、メモリから閾値(電力量)に関する情報を読み出して、ステップS103の処理を行うことができる。 For example, the threshold value (power amount) can be set to zero. When the SOC of the assembled battery 10 is 100%, the assembled battery 10 cannot be charged and the amount of charge power is zero. Therefore, the threshold value (power amount) can be set to 0. Information about the threshold (power amount) can be stored in a memory. The PM-ECU 31 can read information on the threshold value (electric energy) from the memory and perform the process of step S103.
 充電電力量が閾値(電力量)よりも少ないとき、PM-ECU31は、補機電池51を放電できないと判断して、図2に示す処理を終了する。一方、充電電力量が閾値(電力量)よりも多いとき、PM-ECU31は、補機電池51を放電できると判断して、ステップS104の処理を行う。 When the charged electric energy is smaller than the threshold value (electric energy), the PM-ECU 31 determines that the auxiliary battery 51 cannot be discharged, and ends the process shown in FIG. On the other hand, when the charging power amount is larger than the threshold value (power amount), PM-ECU 31 determines that auxiliary battery 51 can be discharged, and performs the process of step S104.
 ステップS104において、PM-ECU31は、補機電池51を放電する。補機電池51の放電電流は、DC/DCコンバータ41を介して、組電池10に流れる。これにより、組電池10を充電することができる。ここで、補機電池51の電力を組電池10に供給するときには、外部電源から組電池10への電力供給を停止しておくことができる。具体的には、PM-ECU31は、充電器40の動作を制御することにより、外部電源からの充電電流が組電池10に流れないようにすることができる。 In step S104, the PM-ECU 31 discharges the auxiliary battery 51. The discharge current of the auxiliary battery 51 flows to the assembled battery 10 via the DC / DC converter 41. Thereby, the assembled battery 10 can be charged. Here, when the power of the auxiliary battery 51 is supplied to the assembled battery 10, the power supply from the external power source to the assembled battery 10 can be stopped. Specifically, the PM-ECU 31 can prevent the charging current from the external power source from flowing into the assembled battery 10 by controlling the operation of the charger 40.
 ステップS105において、PM-ECU31は、補機電池51の放電電力量がステップS103で用いられた閾値(電力量)よりも多いか否かを判別する。PM-ECU31は、補機電池51の放電電流値と、電圧センサ52による検出電圧とに基づいて、補機電池51の放電電力量を算出することができる。 In step S105, the PM-ECU 31 determines whether or not the discharge power amount of the auxiliary battery 51 is greater than the threshold value (power amount) used in step S103. PM-ECU 31 can calculate the amount of electric power discharged from auxiliary battery 51 based on the discharge current value of auxiliary battery 51 and the voltage detected by voltage sensor 52.
 補機電池51の放電電力量が閾値(電力量)よりも少ないとき、PM-ECU31は、補機電池51の放電電力を組電池10に供給し続けることができると判断し、ステップS104の処理を行う。補機電池51の放電電力量が閾値(電力量)よりも多いとき、PM-ECU31は、補機電池51の放電電力を組電池10に供給することができないと判断して、ステップS106の処理を行う。 When the discharge power amount of the auxiliary battery 51 is smaller than the threshold value (power amount), the PM-ECU 31 determines that the discharge power of the auxiliary battery 51 can continue to be supplied to the assembled battery 10, and the process of step S104 I do. When the discharge power amount of the auxiliary battery 51 is greater than the threshold value (power amount), the PM-ECU 31 determines that the discharge power of the auxiliary battery 51 cannot be supplied to the assembled battery 10, and the process of step S106 I do.
 ステップS106において、PM-ECU31は、補機電池51の放電を停止させる。補機電池51の放電を停止することにより、組電池10の充電も停止する。本実施例では、補機電池51を放電したときの電力量が閾値(電力量)に到達するまで、補機電池51を放電しているが、これに限るものではない。例えば、補機電池51を放電したときの電力量が閾値(電力量)に到達する前に、補機電池51の放電を停止することもできる。 In step S106, the PM-ECU 31 stops the discharge of the auxiliary battery 51. By stopping the discharge of the auxiliary battery 51, the charging of the assembled battery 10 is also stopped. In the present embodiment, the auxiliary battery 51 is discharged until the amount of power when the auxiliary battery 51 is discharged reaches a threshold value (power amount), but is not limited thereto. For example, the discharge of the auxiliary battery 51 can be stopped before the electric energy when the auxiliary battery 51 is discharged reaches a threshold value (electric energy).
 ステップS107において、PM-ECU31は、組電池10を放電する。組電池10の放電電流は、DC/DCコンバータ41を介して、補機電池51に流れる。これにより、補機電池51を充電することができる。ここで、組電池10の電力を補機電池51に供給するときには、外部電源から組電池10への電力供給を停止しておくことができる。 In step S107, the PM-ECU 31 discharges the assembled battery 10. The discharge current of the assembled battery 10 flows to the auxiliary battery 51 via the DC / DC converter 41. Thereby, the auxiliary battery 51 can be charged. Here, when the power of the assembled battery 10 is supplied to the auxiliary battery 51, the power supply from the external power source to the assembled battery 10 can be stopped.
 ステップS108において、PM-ECU31は、補機電池51を充電しているときの電力量(充電電力量)が、補機電池51を放電したときの電力量(放電電力量)に到達したか否かを判別する。ここで、補機電池51を放電したときの電力量とは、ステップS104の処理で補機電池51を放電してから、ステップS106の処理で補機電池51の放電を完了させるまでの電力量である。補機電池51の充電電力量は、補機電池51の電流値と、電圧センサ53による検出電圧とから算出することができる。 In step S108, the PM-ECU 31 determines whether or not the amount of electric power when charging the auxiliary battery 51 (charged electric energy) has reached the amount of electric power when discharging the auxiliary battery 51 (discharged electric energy). Is determined. Here, the electric energy when the auxiliary battery 51 is discharged is the electric energy from the discharge of the auxiliary battery 51 in the process of step S104 to the completion of the discharge of the auxiliary battery 51 in the process of step S106. It is. The charge power amount of the auxiliary battery 51 can be calculated from the current value of the auxiliary battery 51 and the voltage detected by the voltage sensor 53.
 補機電池51の充電電力量が、補機電池51の放電電力量に到達していないとき、PM-ECU31は、ステップS107の処理を続ける。一方、補機電池51の充電電力量が、補機電池51の放電電力量に到達したとき、PM-ECU31は、ステップS109の処理を行う。ステップS109において、PM-ECU31は、組電池10の放電、言い換えれば、補機電池51の充電を停止する。補機電池51の放電および充電を行った後に、外部電源からの電力を組電池10に供給することができる。 When the charge power amount of the auxiliary battery 51 has not reached the discharge power amount of the auxiliary battery 51, the PM-ECU 31 continues the process of step S107. On the other hand, when the charge power amount of the auxiliary battery 51 reaches the discharge power amount of the auxiliary battery 51, the PM-ECU 31 performs the process of step S109. In step S109, the PM-ECU 31 stops discharging the assembled battery 10, in other words, charging the auxiliary battery 51. After the auxiliary battery 51 is discharged and charged, power from an external power source can be supplied to the assembled battery 10.
 本実施例では、補機電池51を放電するときの電力量と、補機電池51を充電するときの電力量とを等しくしているが、これに限るものではない。すなわち、補機電池51を放電するときの電力量と、補機電池51を充電するときの電力量とを異ならせてもよい。ここで、補機電池51を充電するときの電力量が、補機電池51を放電するときの電力量よりも多いとき、組電池10のSOCは、補機電池51の放電を開始したときのSOCよりも低下してしまうことがある。この場合には、外部電源からの電力を用いて組電池10を充電することにより、組電池10のSOCが低下した分を補填することができる。 In this embodiment, the amount of electric power when discharging the auxiliary battery 51 and the amount of electric power when charging the auxiliary battery 51 are equal, but this is not restrictive. In other words, the amount of power when discharging the auxiliary battery 51 may be different from the amount of power when charging the auxiliary battery 51. Here, when the electric energy for charging the auxiliary battery 51 is larger than the electric energy for discharging the auxiliary battery 51, the SOC of the assembled battery 10 is the same as when the auxiliary battery 51 starts discharging. It may be lower than the SOC. In this case, by charging the assembled battery 10 using electric power from the external power source, it is possible to compensate for the decrease in the SOC of the assembled battery 10.
 一方、補機電池51の電力を組電池10に供給したり、組電池10の電力を補機電池51に供給したりするときには、DC/DCコンバータ41の変換効率などによって、電力の損失が発生してしまう。このため、補機電池51の充電によって、補機電池51のSOCを、補機電池51の放電を開始する前のSOCに戻すとき、組電池10のSOCが電力損失の分だけ低下してしまうことがある。この場合には、外部電源の電力を組電池10に供給することにより、組電池10のSOCが低下した分を補填することができる。 On the other hand, when the power of the auxiliary battery 51 is supplied to the assembled battery 10 or the power of the assembled battery 10 is supplied to the auxiliary battery 51, power loss occurs due to the conversion efficiency of the DC / DC converter 41. Resulting in. For this reason, when the auxiliary battery 51 is charged, when the SOC of the auxiliary battery 51 is returned to the SOC before the discharge of the auxiliary battery 51, the SOC of the assembled battery 10 is reduced by the amount of power loss. Sometimes. In this case, by supplying power from the external power source to the assembled battery 10, it is possible to compensate for the decrease in the SOC of the assembled battery 10.
 補機電池51を放電および充電するときに、補機電池51の充放電特性を取得することができる。補機電池51の充放電特性には、補機電池51の電流および電圧の関係や、補機電池51のOCVが含まれる。ここで、ステップS109の処理を完了した後に、補機電池51の放電および充電を更に行うことができる。補機電池51の放電および充電の処理は、ステップS104~ステップS109の処理と同じである。 When the auxiliary battery 51 is discharged and charged, the charge / discharge characteristics of the auxiliary battery 51 can be acquired. The charge / discharge characteristics of the auxiliary battery 51 include the relationship between the current and voltage of the auxiliary battery 51 and the OCV of the auxiliary battery 51. Here, after the process of step S109 is completed, the auxiliary battery 51 can be further discharged and charged. The process of discharging and charging auxiliary battery 51 is the same as the process of steps S104 to S109.
 補機電池51の放電および充電を更に行うときに、補機電池51の充放電特性を再び取得することができる。そして、1回目に取得した充放電特性と、2回目に取得した充放電特性とを比較することにより、メモリ効果が抑制されているか否かを確認することができる。充放電特性の比較によって電圧降下が解消されていれば、メモリ効果が抑制されていることを確認することができる。メモリ効果が抑制されていないと判別したときには、補機電池51の放電および充電の処理(ステップS104~ステップS109の処理)を再び行うことができる。 When the auxiliary battery 51 is further discharged and charged, the charge / discharge characteristics of the auxiliary battery 51 can be acquired again. Then, by comparing the charge / discharge characteristics acquired at the first time with the charge / discharge characteristics acquired at the second time, it is possible to confirm whether or not the memory effect is suppressed. If the voltage drop is eliminated by comparing the charge / discharge characteristics, it can be confirmed that the memory effect is suppressed. When it is determined that the memory effect is not suppressed, the auxiliary battery 51 can be discharged and charged (steps S104 to S109) again.
 本実施例において、補機電池51の放電によって補機電池51のSOCを変化させる範囲は、適宜設定することができる。具体的には、補機電池51のSOCの変化量が大きくなるほど、補機電池51の放電および充電を行う回数を減らすことができる。例えば、補機電池51のSOCの変化量を90%程度に設定すれば、補機電池51の放電および充電の処理を1回だけ行うことにより、メモリ効果を抑制できることがある。 In the present embodiment, the range in which the SOC of the auxiliary battery 51 is changed by the discharge of the auxiliary battery 51 can be set as appropriate. Specifically, the number of times the auxiliary battery 51 is discharged and charged can be reduced as the amount of change in the SOC of the auxiliary battery 51 increases. For example, if the change amount of the SOC of the auxiliary battery 51 is set to about 90%, the memory effect may be suppressed by performing the discharge and charge processing of the auxiliary battery 51 only once.
 一方、補機電池51のSOCの変化量が小さいほど、補機電池51の放電および充電の処理を増やすことができる。補機電池51の放電および充電の処理を繰り返して行うことにより、メモリ効果を抑制しやすくすることができる。 On the other hand, the smaller the amount of change in the SOC of the auxiliary battery 51, the more discharge and charging processes of the auxiliary battery 51 can be performed. By repeatedly performing discharge and charge processing of the auxiliary battery 51, the memory effect can be easily suppressed.
 本実施例では、ステップS102の処理において、補機電池51にメモリ効果が発生しているか否かを判別(予測)しているが、これに限るものではない。具体的には、補機電池51にメモリ効果が発生しているか否かを判別せずに、補機電池51の放電および充電の処理(ステップS103~ステップS109の処理)を定期的に行うことができる。この場合であっても、メモリ効果を抑制することができる。 In this embodiment, it is determined (predicted) whether or not the memory effect is generated in the auxiliary battery 51 in the process of step S102, but the present invention is not limited to this. Specifically, the auxiliary battery 51 is periodically discharged and charged (steps S103 to S109) without determining whether or not the memory effect is generated in the auxiliary battery 51. Can do. Even in this case, the memory effect can be suppressed.
 本実施例によれば、補機電池51を放電した後に、充電することにより、補機電池51に発生するメモリ効果を抑制することができる。また、補機電池51を放電したときの電気エネルギを組電池10に蓄えておき、組電池10に蓄えられた電気エネルギを補機電池51に戻すことにより、電気エネルギを無駄なく利用することができる。 According to the present embodiment, the memory effect generated in the auxiliary battery 51 can be suppressed by charging the auxiliary battery 51 after discharging it. In addition, by storing the electric energy when the auxiliary battery 51 is discharged in the assembled battery 10 and returning the electric energy stored in the assembled battery 10 to the auxiliary battery 51, the electric energy can be used without waste. it can.
 また、充電器40には、一般的には、外部電源の電圧を組電池10に対応した電圧に変換するためのDC/DCコンバータが備え付けられている。このDC/DCコンバータを双方向型のDC/DCコンバータに変更するだけで、メモリ効果の抑制処理を行うことができる。これにより、図1に示すシステムを大幅に変更する必要はなく、コストアップを抑制することができる。 The charger 40 is generally provided with a DC / DC converter for converting the voltage of the external power source into a voltage corresponding to the assembled battery 10. By simply changing the DC / DC converter to a bidirectional DC / DC converter, the memory effect suppression process can be performed. Thereby, it is not necessary to change the system shown in FIG. 1 significantly, and an increase in cost can be suppressed.
 本実施例では、充電器40に内蔵されたDC/DCコンバータ41を用いて、補機電池51の放電および充電を行っているが、これに限るものではない。具体的には、DC/DCコンバータ21を用いて、補機電池51の放電および充電を行うことができる。この場合には、DC/DCコンバータ21および補機電池51を接続すればよく、充電器40を備えていないシステムにおいても、メモリ効果の抑制処理を行うことができる。ここで、補機電池51の放電および充電を行うときには、システムメインリレーSMR-B,SMR-G,SMR-Pを駆動して、組電池10およびDC/DCコンバータ21を接続する必要がある。 In this embodiment, the auxiliary battery 51 is discharged and charged using the DC / DC converter 41 built in the charger 40, but the present invention is not limited to this. Specifically, the auxiliary battery 51 can be discharged and charged using the DC / DC converter 21. In this case, the DC / DC converter 21 and the auxiliary battery 51 may be connected, and even in a system that does not include the charger 40, the memory effect suppression process can be performed. Here, when the auxiliary battery 51 is discharged and charged, it is necessary to connect the assembled battery 10 and the DC / DC converter 21 by driving the system main relays SMR-B, SMR-G, and SMR-P.
 DC/DCコンバータ41で制御される電力は、DC/DCコンバータ21で制御される電力よりも低くなりやすい。このため、メモリ効果の抑制処理を行うときに、DC/DCコンバータ41での電力損失は、DC/DCコンバータ21での電力損失よりも小さくなりやすい。したがって、電力損失を抑制するためには、DC/DCコンバータ21よりも、DC/DCコンバータ41を用いることが好ましい。一方、DC/DCコンバータ21を用いてメモリ効果の抑制処理を行えば、DC/DCコンバータ41を用いてメモリ効果の抑制処理を行う場合に比べて、処理時間を短縮することができる。 The power controlled by the DC / DC converter 41 tends to be lower than the power controlled by the DC / DC converter 21. For this reason, when the memory effect suppression process is performed, the power loss in the DC / DC converter 41 tends to be smaller than the power loss in the DC / DC converter 21. Therefore, in order to suppress power loss, it is preferable to use the DC / DC converter 41 rather than the DC / DC converter 21. On the other hand, if the memory effect suppression process is performed using the DC / DC converter 21, the processing time can be shortened as compared to the case where the memory effect suppression process is performed using the DC / DC converter 41.
 本実施例では、組電池10の外部充電を行うときに、メモリ効果の抑制処理を行っているが、これに限るものではない。すなわち、メモリ効果の抑制処理を行うタイミングは、組電池10の外部充電を行っているときでなくてもよい。例えば、車両が放置されており、組電池10およびPCU22の接続が遮断されているときであっても、メモリ効果の抑制処理を行うことができる。具体的には、車両が放置されている状態で所定時間が経過したときに、PM-ECU31を起動して、本実施例で説明した処理(図2に示す処理)を行うことができる。
 
In the present embodiment, when the battery pack 10 is externally charged, the memory effect suppression process is performed, but the present invention is not limited to this. That is, the timing for performing the memory effect suppression process does not have to be when the battery pack 10 is being externally charged. For example, even when the vehicle is left unattended and the connection between the assembled battery 10 and the PCU 22 is cut off, the memory effect suppressing process can be performed. Specifically, when a predetermined time elapses with the vehicle left unattended, the PM-ECU 31 can be activated to perform the processing described in this embodiment (the processing shown in FIG. 2).

Claims (17)

  1.  車両の走行エネルギを出力する第1蓄電装置と、
     前記車両に搭載された補機の駆動電力を出力する第2蓄電装置と、
     前記第2蓄電装置から前記第1蓄電装置への出力電圧を変換するとともに、前記第1蓄電装置から前記第2蓄電装置への出力電圧を変換するDC/DCコンバータと、
     前記DC/DCコンバータを介して、前記第2蓄電装置の放電によって前記第1蓄電装置を充電した後に、前記第1蓄電装置の放電によって前記第2蓄電装置を充電する充放電処理を行うコントローラと、
    を有することを特徴とする蓄電システム。
    A first power storage device that outputs the running energy of the vehicle;
    A second power storage device that outputs driving power of an auxiliary device mounted on the vehicle;
    A DC / DC converter that converts an output voltage from the second power storage device to the first power storage device and converts an output voltage from the first power storage device to the second power storage device;
    A controller that performs charge / discharge processing for charging the second power storage device by discharging the first power storage device after charging the first power storage device by discharging the second power storage device via the DC / DC converter; ,
    A power storage system comprising:
  2.  前記コントローラは、前記第2蓄電装置にメモリ効果が発生していると判別したとき、前記充放電処理を行うことを特徴とする請求項1に記載の蓄電システム。 2. The power storage system according to claim 1, wherein the controller performs the charging / discharging process when it is determined that a memory effect is generated in the second power storage device.
  3.  前記コントローラは、前記第1蓄電装置を充電することができる電力量が閾値よりも高いとき、前記充放電処理を行うことを特徴とする請求項1又は2に記載の蓄電システム。 3. The power storage system according to claim 1, wherein the controller performs the charging / discharging process when an amount of electric power that can charge the first power storage device is higher than a threshold value.
  4.  前記コントローラは、外部電源からの電力を用いて前記第1蓄電装置を充電するとき、前記充放電処理を行うことを特徴とする請求項1から3のいずれか1つに記載の蓄電システム。 The power storage system according to any one of claims 1 to 3, wherein the controller performs the charging / discharging process when the first power storage device is charged using power from an external power source.
  5.  前記コントローラは、前記充放電処理を行った後に、前記外部電源からの電力を前記第1蓄電装置に供給することを特徴とする請求項4に記載の蓄電システム。 5. The power storage system according to claim 4, wherein the controller supplies power from the external power source to the first power storage device after performing the charge / discharge process.
  6.  前記DC/DCコンバータを含み、前記外部電源からの電力を前記第1蓄電装置に供給する充電器を有することを特徴とする請求項4又は5に記載の蓄電システム。 The power storage system according to claim 4 or 5, further comprising a charger that includes the DC / DC converter and supplies power from the external power source to the first power storage device.
  7.  前記コントローラは、前記充放電処理において、前記第2蓄電装置を充電するときの電力量が前記第2蓄電装置を放電したときの電力量に到達するまで、前記第2蓄電装置を充電することを特徴とする請求項1から6のいずれか1つに記載の蓄電システム。 The controller charges the second power storage device until the amount of power when charging the second power storage device reaches the power amount when discharging the second power storage device in the charge / discharge process. The power storage system according to any one of claims 1 to 6, wherein the power storage system is characterized in that:
  8.  前記コントローラは、
     前記充放電処理を行うときに、前記第2蓄電装置の充放電特性を取得し、
     前記充放電処理を複数回行ったときに取得した複数の前記充放電特性を比較することを特徴とする請求項1から7のいずれか1つに記載の蓄電システム。
    The controller is
    When performing the charge / discharge process, the charge / discharge characteristics of the second power storage device are acquired,
    The power storage system according to any one of claims 1 to 7, wherein a plurality of the charge / discharge characteristics acquired when the charge / discharge processing is performed a plurality of times are compared.
  9.  前記第2蓄電装置の公称電圧は、前記第1蓄電装置の公称電圧よりも低いことを特徴とする請求項1から8のいずれか1つに記載の蓄電システム。 The electrical storage system according to any one of claims 1 to 8, wherein a nominal voltage of the second electrical storage device is lower than a nominal voltage of the first electrical storage device.
  10.  前記第2蓄電装置は、ニッケル水素電池又はリチウムイオン電池であることを特徴とする請求項1から9のいずれか1つに記載の蓄電システム。 The power storage system according to any one of claims 1 to 9, wherein the second power storage device is a nickel metal hydride battery or a lithium ion battery.
  11.  車両の走行エネルギを出力する第1蓄電装置と、前記車両に搭載された補機の駆動電力を出力する第2蓄電装置との充放電を制御する制御方法であって、
     前記第2蓄電装置から前記第1蓄電装置への出力電圧を変換して、前記第2蓄電装置の放電によって前記第1蓄電装置を充電し、
     前記第1蓄電装置の充電後に、前記第1蓄電装置から前記第2蓄電装置への出力電圧を変換して、前記第1蓄電装置の放電によって前記第2蓄電装置を充電する、
    ことを特徴とする制御方法。
    A control method for controlling charging / discharging between a first power storage device that outputs travel energy of a vehicle and a second power storage device that outputs drive power of an auxiliary device mounted on the vehicle,
    Converting an output voltage from the second power storage device to the first power storage device, and charging the first power storage device by discharging the second power storage device;
    Converting the output voltage from the first power storage device to the second power storage device after charging the first power storage device, and charging the second power storage device by discharging the first power storage device;
    A control method characterized by that.
  12.  前記第1蓄電装置が前記第2蓄電装置の出力電力を蓄えることができるとき、前記充放電処理を行うことを特徴とする請求項11に記載の制御方法。 The control method according to claim 11, wherein the charge / discharge process is performed when the first power storage device can store the output power of the second power storage device.
  13.  外部電源からの電力を用いて前記第1蓄電装置を充電するとき、前記充放電処理を行うことを特徴とする請求項11又は12に記載の制御方法。 The control method according to claim 11 or 12, wherein the charge / discharge process is performed when the first power storage device is charged using electric power from an external power source.
  14.  前記充放電処理を行った後に、前記外部電源からの電力を前記第1蓄電装置に供給することを特徴とする請求項13に記載の制御方法。 14. The control method according to claim 13, wherein after the charge / discharge process is performed, electric power from the external power supply is supplied to the first power storage device.
  15.  前記充放電処理において、前記第2蓄電装置を充電するときの電力量が前記第2蓄電装置を放電したときの電力量に到達するまで、前記第2蓄電装置を充電することを特徴とする請求項11から14のいずれか1つに記載の制御方法。 In the charge / discharge process, the second power storage device is charged until the amount of power when charging the second power storage device reaches the amount of power when discharging the second power storage device. Item 15. The control method according to any one of Items 11 to 14.
  16.  前記充放電処理を行うときに、前記第2蓄電装置の充放電特性を取得し、
     前記充放電処理を複数回行ったときに取得した複数の前記充放電特性を比較することを特徴とする請求項11から15のいずれか1つに記載の制御方法。
    When performing the charge / discharge process, the charge / discharge characteristics of the second power storage device are acquired,
    The control method according to any one of claims 11 to 15, wherein a plurality of the charge / discharge characteristics acquired when the charge / discharge treatment is performed a plurality of times are compared.
  17.  前記第2蓄電装置の公称電圧は、前記第1蓄電装置の公称電圧よりも低いことを特徴とする請求項11から16のいずれか1つに記載の制御方法。
     
    The control method according to any one of claims 11 to 16, wherein a nominal voltage of the second power storage device is lower than a nominal voltage of the first power storage device.
PCT/JP2011/007367 2011-12-28 2011-12-28 Power storage system WO2013098904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007367 WO2013098904A1 (en) 2011-12-28 2011-12-28 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007367 WO2013098904A1 (en) 2011-12-28 2011-12-28 Power storage system

Publications (1)

Publication Number Publication Date
WO2013098904A1 true WO2013098904A1 (en) 2013-07-04

Family

ID=48696475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007367 WO2013098904A1 (en) 2011-12-28 2011-12-28 Power storage system

Country Status (1)

Country Link
WO (1) WO2013098904A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175712A (en) * 2016-03-22 2017-09-28 トヨタ自動車株式会社 Automobile
US20170274783A1 (en) * 2016-03-22 2017-09-28 Toyota Jidosha Kabushiki Kaisha Vehicle
US9873338B2 (en) 2014-11-26 2018-01-23 Toyota Jidosha Kabushiki Kaisha Electric vehicle
US9878625B2 (en) 2016-03-22 2018-01-30 Toyota Jidosha Kabushiki Kaisha Vehicle including charger and electronic control unit configured to control the charger, and control method for controlling charger of vehicle
US10017058B2 (en) 2016-03-22 2018-07-10 Toyota Jidosha Kabushiki Kaisha Automobile
CN112721833A (en) * 2021-01-04 2021-04-30 宝能(西安)汽车研究院有限公司 Vehicle low-voltage power supply voltage monitoring method and system, storage medium and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197464A (en) * 1992-12-22 1994-07-15 Casio Comput Co Ltd Charging and discharge apparatus
JPH10290532A (en) * 1997-02-14 1998-10-27 Toyota Motor Corp Electrically driven motor vehicle
JP2000014032A (en) * 1998-06-24 2000-01-14 Honda Motor Co Ltd Battery charge control equipment of battery change system
JP2003092805A (en) * 2001-09-20 2003-03-28 Sanyo Electric Co Ltd Power supply unit for hybrid car
JP2006333662A (en) * 2005-05-27 2006-12-07 Toyota Industries Corp Device and method for judging deterioration degree of battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197464A (en) * 1992-12-22 1994-07-15 Casio Comput Co Ltd Charging and discharge apparatus
JPH10290532A (en) * 1997-02-14 1998-10-27 Toyota Motor Corp Electrically driven motor vehicle
JP2000014032A (en) * 1998-06-24 2000-01-14 Honda Motor Co Ltd Battery charge control equipment of battery change system
JP2003092805A (en) * 2001-09-20 2003-03-28 Sanyo Electric Co Ltd Power supply unit for hybrid car
JP2006333662A (en) * 2005-05-27 2006-12-07 Toyota Industries Corp Device and method for judging deterioration degree of battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873338B2 (en) 2014-11-26 2018-01-23 Toyota Jidosha Kabushiki Kaisha Electric vehicle
JP2017175712A (en) * 2016-03-22 2017-09-28 トヨタ自動車株式会社 Automobile
US20170274783A1 (en) * 2016-03-22 2017-09-28 Toyota Jidosha Kabushiki Kaisha Vehicle
US9878625B2 (en) 2016-03-22 2018-01-30 Toyota Jidosha Kabushiki Kaisha Vehicle including charger and electronic control unit configured to control the charger, and control method for controlling charger of vehicle
US10017059B2 (en) 2016-03-22 2018-07-10 Toyota Jidosha Kabushiki Kaisha Vehicle
US10017058B2 (en) 2016-03-22 2018-07-10 Toyota Jidosha Kabushiki Kaisha Automobile
US10099571B2 (en) 2016-03-22 2018-10-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for vehicle
CN112721833A (en) * 2021-01-04 2021-04-30 宝能(西安)汽车研究院有限公司 Vehicle low-voltage power supply voltage monitoring method and system, storage medium and vehicle

Similar Documents

Publication Publication Date Title
KR101863737B1 (en) Electric power storage system
JP5605320B2 (en) Vehicle power supply
JP5867483B2 (en) Power storage system
US9731619B2 (en) Vehicle and control method for vehicle
JP5796457B2 (en) Battery system and battery system control method
WO2013042166A1 (en) Electrical storage system and method for controlling electrical storage system
CN110138044B (en) Power battery charging and discharging control system and method and vehicle
WO2013098904A1 (en) Power storage system
JP2013099167A (en) Control device and control method for vehicle mounted with electric storage system
JP2014086296A (en) Power storage system
JP5924418B2 (en) Power storage system
CN103563206A (en) Electricity storage system
JP6759216B2 (en) Power supply and electric vehicle equipped with this power supply
WO2013061358A1 (en) Electricity-storage system
JP2013145175A (en) Battery system and short circuit detection method
JP2014135825A (en) Power storage system
JP2011069720A (en) Power supply device for vehicle and vehicle to which power supply device is mounted
JP5691993B2 (en) Power storage system and method for detecting current sensor abnormality
JP6015626B2 (en) Power storage system
JP5404712B2 (en) Charging apparatus, in-vehicle charging apparatus, and charging method in in-vehicle charging apparatus
US20150004443A1 (en) Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
JP2014223003A (en) Power storage system
JP2013172536A (en) Energy storage system
JP6102714B2 (en) Power storage system
JP5772615B2 (en) Power storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP