WO2013097692A1 - Alternating current direct drive led light-emitting device - Google Patents

Alternating current direct drive led light-emitting device Download PDF

Info

Publication number
WO2013097692A1
WO2013097692A1 PCT/CN2012/087382 CN2012087382W WO2013097692A1 WO 2013097692 A1 WO2013097692 A1 WO 2013097692A1 CN 2012087382 W CN2012087382 W CN 2012087382W WO 2013097692 A1 WO2013097692 A1 WO 2013097692A1
Authority
WO
WIPO (PCT)
Prior art keywords
alternating current
unit
led
direct drive
lighting device
Prior art date
Application number
PCT/CN2012/087382
Other languages
French (fr)
Chinese (zh)
Inventor
李东明
杨冕
封正勇
龙文涛
赵昆
张明
Original Assignee
四川新力光源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川新力光源股份有限公司 filed Critical 四川新力光源股份有限公司
Publication of WO2013097692A1 publication Critical patent/WO2013097692A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits

Definitions

  • the present invention relates to an LED (Light Emitting Diode) illuminating device, and more particularly to an AC direct driving technique for an LED illuminating device.
  • LED Light Emitting Diode
  • LED As a new type of solid-state light source, LED is expected to become a new generation of illumination source with its advantages of energy saving, environmental protection and long life. As we all know, the existing LEDs are almost all driven by DC, and our production and living electricity is AC. Therefore, in the currently used LED products, a power converter is required to convert the alternating current into direct current. The introduction of power converters has many negative effects. First, the life of the power converter is much lower than the life of the LED itself, which shortens the service life of the lighting device. Second, the power converter reduces the efficiency of the lighting device. Third, in low power applications, power conversion The device will cause a drop in power factor and an increase in total harmonic distortion of the current. In order to give full play to the advantages of semiconductor lighting, LED light-emitting devices that can be directly driven by alternating current have become the current research hotspots.
  • the LED components are connected in a reverse parallel or bridge rectified circuit topology to meet the AC power drive requirements.
  • the AC power fluctuates periodically according to a certain frequency. Due to the presence of the LED's own turn-on voltage, the LED will turn on and emit light when the instantaneous voltage exceeds the turn-on voltage. Conversely, the LED is off and not illuminated. This circuit makes the LED's luminous efficiency very low, and the illuminating flicker occurs with the AC voltage fluctuation.
  • the driving current of the LED fluctuates with the fluctuation of the AC voltage, which causes a change in brightness when the LED emits light, and a phenomenon of illuminating and flickering occurs.
  • the core of the LED device is a PN junction diode whose I-V characteristic is an approximate exponential function. When the voltage across the LED is greater than the turn-on voltage, the current flowing through the PN junction increases exponentially.
  • the prior art AC drive method may directly damage the LED device when the AC voltage rises unexpectedly.
  • the technical problem to be solved by the present invention is to address the shortcomings of the flashing light caused by the direct driving of the LED lighting device by the alternating current in the prior art, and to provide an LED lighting device directly driven by the alternating current, overcome the LED flicker phenomenon caused by the alternating current, and improve the LED lighting.
  • the efficiency of the device extends the life of the LED.
  • an AC direct-drive LED lighting device includes an AC input terminal, a protection unit, and a rectifying unit, wherein the first output end of the rectifying unit passes through n LEDs.
  • the module and a switch unit are connected to the second output end, wherein nl is an integer; when 1 2, a channel formed by the switch unit between each two LED modules is connected with the second output end, and each switch The unit is connected to the sampling unit; the AC input terminal is used for connecting an alternating current to provide an operating current for the device;
  • the protection unit is connected to the AC input terminal to provide a protection function for the device
  • the rectifying unit is connected to the protection unit, and rectifies the alternating current output by the protection unit;
  • the sampling unit is configured to sample an output voltage of the rectifying unit, and output a control signal to each switching unit; the switching unit is connected to the sampling unit, and is turned off or on according to a control signal output by the sampling unit.
  • the LED light-emitting device circuit of the invention is composed of a cascade of n-level LED modules, and the turn-off and turn-on voltage of the corresponding switch unit of each level of the LED module is appropriately preset by the sampling unit, so that flickering occurs when the AC voltage fluctuates phenomenon.
  • Increasing the number of LED modules is equivalent to reducing the turn-on voltage of each stage of the LED module and improving the utilization of the power supply.
  • multi-level LED module when the AC voltage fluctuates, each LED module is affected less by the influence of a single module, and the stability of LED operation is better, more reliable, and the ability to withstand AC voltage fluctuation. Stronger.
  • the n LED modules are composed of an LED array.
  • LED arrays can be used to form high-power LED modules.
  • the LED array is composed of at least one LED disposed on the same printed circuit board; or at least one LED integrally packaged on the same substrate; or at least one LED integrated on the same semiconductor substrate Composition.
  • Arranging all the LEDs in the LED module on the same printed circuit board is the simplest and most economical packaging method under the current process conditions; or all the LEDs in the LED module are integrally packaged on the same substrate, that is, the LED module All of the LEDs are secondarily packaged and integrated on the same heat sink substrate; or integrated on the same semiconductor substrate, which is a semiconductor integrated circuit process that integrates LEDs on the same semiconductor substrate.
  • These technologies can also interleave the LEDs in each LED module to improve the uniformity of the illumination brightness of the illumination device, and to overcome the flicker phenomenon, and the LED package wiring is also more convenient.
  • the LEDs are connected in parallel and/or in series.
  • the appropriate combination of LEDs in the LED module can adapt to the AC direct drive environment, and easily adjust the current and voltage parameters of each LED module.
  • the protection unit includes a fuse and/or a varistor, and the fuse is connected in series at an AC input end, The varistor is connected in parallel to the AC input.
  • Fuses are commonly used current-limiting protection components, and varistors are commonly used voltage-limiting protection components. Their combination can achieve the most basic current limiting and voltage limiting protection, and the cost is low, the installation is convenient, and secondary integration is facilitated.
  • the protection unit further includes a common mode choke coil and/or a gas discharge tube, the common mode choke coil is connected in series at the AC input end, and the gas discharge tube is connected in parallel at the AC input end.
  • the common mode choke can suppress common mode interference, and the gas discharge tube can protect the lighting device from being damaged by lightning.
  • the rectifying unit is configured by a full-wave rectification or a half-wave rectifying circuit composed of a rectifying diode.
  • the rectifier diode is used as the rectifying component, which is small in size and light in weight, and is convenient for secondary integrated packaging.
  • the sampling unit is composed of a resistor network.
  • the resistor network is ideal for collecting DC parameters and is easy to set the switching unit operating point.
  • the switch unit is composed of a transistor, and the transistor control pole is connected to the sampling unit.
  • the transistor As a switching element, the transistor has the characteristics of easy control, no contact, and long life.
  • the transistor is a field effect transistor or a bipolar transistor
  • the control is the gate of a field effect transistor or the base of a bipolar transistor.
  • Transistor switching elements mature technology, responsive, reliable operation.
  • the invention has the beneficial effects that the LED module is directly driven by the alternating current power, the circuit is simple, the volume is small, the weight is light, and the cost is low.
  • the AC power directly drives the LED device without flickering when the AC voltage fluctuates.
  • the switch unit is turned off, and the LED module does not emit light, thereby improving the utilization efficiency of the power source and reducing the power loss.
  • the LED module is also prevented from being burnt due to excessive current, which prolongs the service life of the device.
  • Embodiment 1 is a block diagram showing the structure of Embodiment 1;
  • FIG. 2 is a circuit schematic diagram of Embodiment 1;
  • FIG. 3 is a block diagram showing the structure of Embodiment 2;
  • FIG. 4 is a block diagram showing the structure of Embodiment 3.
  • Fig. 5 is a circuit diagram of the third embodiment.
  • the AC direct-drive LED lighting device of the present invention comprises an AC input terminal, a protection unit, a rectifying unit, a sampling unit, a switching unit and n LED modules, wherein ⁇ 1, and is an integer.
  • the first output end of the rectifying unit (generally the positive end of the direct current output) is connected to the second output end through n LED modules and a switching unit (straight Description Book stream output negative end).
  • a channel formed by a switch unit between each two LED modules is connected to the second output end.
  • Each switching unit is connected to and controlled by the sampling unit.
  • the LED light-emitting device circuit of the invention is composed of a cascade of n-level LED modules, and the turn-off and turn-on voltage of the corresponding switch unit of each level of the LED module is appropriately preset by the sampling unit, so that flickering occurs when the AC voltage fluctuates phenomenon.
  • Increasing the number of LED modules is equivalent to reducing the turn-on voltage of each stage of the LED module and improving the utilization of the power supply.
  • multi-level LED module when the AC voltage fluctuates, each LED module is affected less by the influence of a single module, and the stability of LED operation is better, more reliable, and the ability to withstand AC voltage fluctuation. Stronger.
  • the illuminating device of the present embodiment includes an AC input terminal 1, a protection unit 2, a rectifying unit 3, a sampling unit 4, a switch unit 6, and an LED module 5.
  • the first output end of the rectifying unit of this example is a DC output positive terminal 31, and the positive terminal 31 is connected to the second output DC output negative terminal 32 through the LED module 5 switching unit 6. See Figure 1.
  • the AC input terminal 1 is connected to the AC L terminal (phase line) and N terminal (neutral line) to introduce AC power into the protection unit 2.
  • the protection unit 2 provides a basic protection function for the entire device, consisting of a varistor VR and a fuse F.
  • the fuse F is connected in series on the phase line, and the varistor is connected in parallel between the phase line and the neutral line, as shown in Fig. 2.
  • the protection unit 2 may also include a common mode choke and a gas discharge tube.
  • the common mode choke is connected in series on the phase line and the neutral line, and the gas discharge tube is generally connected in parallel between the phase line and the neutral line.
  • the rectifying unit 3 of this example is composed of a full-wave rectifying circuit D composed of a rectifying diode, and performs full-wave rectification on the alternating current.
  • the voltage sampling unit 4 of this example is composed of a resistor network composed of sampling resistors R1 and R2, and the switching unit 6 is controlled by the DC voltage output from the sampling rectifier circuit D.
  • the switching unit 6 of this example is composed of M0SFET (Metal Oxide Semiconductor Field Effect Transistor, FET for short) Ml and M2 and Zener diodes DZ1, DZ2, resistors R3, R4 and R5.
  • the LED module 5 of the present example is composed of an array of a plurality of LEDs connected in series, in parallel or in a mixed manner, and may be a plurality of LEDs arranged on the same printed circuit board, or a plurality of LEDs integrated on the same heat dissipation substrate. Or an integrated circuit composed of a plurality of LEDs integrated on the same semiconductor substrate.
  • the switch unit 6 When the instantaneous voltage of the alternating current reaches the turn-on voltage of the LED module 5, the switch unit 6 is turned on by the sampling unit 4, and the LED module 5 starts to emit light; when the instantaneous voltage of the alternating current exceeds the preset turn-off voltage, the switch When unit 6 is turned off, LED module 5 stops emitting light; when AC power fluctuates, within the normal working voltage range, that is, between the turn-on voltage of LED module 5 and the preset turn-off voltage, only the change occurs. At the time when the switching unit 6 is turned on and off, the illumination of the LED module 5 does not blink.
  • the positive terminal of the rectifier circuit D is connected to one end of the resistor R1, and is connected to the positive terminal of the LED module, and the output negative terminal of the rectifier circuit D serves as a ground.
  • the other end of the resistor R1 is connected to one end of the resistor R2, the negative terminal of the Zener diode DZ1, and one end of the resistor R3; the other end of the resistor R3 is connected to the gate of the field effect transistor M1, the drain of the field effect transistor M1, and the resistor R4
  • One end, one end of the resistor R5, and the negative terminal of the Zener diode DZ2 are connected.
  • the gate of M2 is connected, the drain of FET M2, the other end of resistor R4, and the negative terminal of LED module are connected.
  • the other end of the resistor R2, the positive terminal of the Zener diode DZ1, the positive terminal of the Zener diode DZ2, the source of the FET M1, and the source of the FET M2 are connected to the ground (DC output negative terminal).
  • the lighting device When the AC input terminal 1 is connected to the power grid, the lighting device obtains AC power, passes through the protection unit 2, and is rectified into a DC power by the rectifying unit 3, and is supplied to the sampling unit 4, the switching unit 6, and the LED module 5.
  • the output voltage of the rectifier circuit D rises from zero.
  • the FET M1 turns off, M2 turns on, and the LED module 5 starts to emit light;
  • the current passed by the LED module increases.
  • the voltage output by the sampling unit 4 is insufficient to turn on the FET M1, M1 remains turned off, and M2 remains turned on.
  • the LED module 5 continues to emit light; when the voltage rises unexpectedly, when the preset off voltage is exceeded, Ml starts to conduct, M2 turns off, and the LED module does not emit light, protecting the LED module 5 from the impact of a large current.
  • FIG. 3 there are two LED modules 5 of the present embodiment, and two switching units 6 are also provided.
  • the positive terminal 31 of the rectifying unit 3 passes through two LED modules and a second switching unit 6 (labeled as a switching unit in the figure). 2, other switch units are labeled similarly) connected to the negative terminal 32 of the rectifier unit 3, and there is a channel and a rectification unit formed by the first switch unit 6 between the first LED module 5 and the second LED module 5 3 negative terminal 32 connection.
  • all of the switching units 6 are connected to the sampling unit 4.
  • FIG. 4 there are three LED modules 5 of the present embodiment, and three switch units 6 are also provided.
  • the positive terminal 31 of the rectifying unit 3 passes through the three LED modules and the third switching unit 6 and the negative terminal of the rectifying unit 3.
  • 32 connection there is a channel formed by the first switch unit 6 between the first LED module 5 (labeled as LED module 1 in the figure, similar to other LED modules) and the second LED module 5 It is connected to the negative terminal 32 of the rectifying unit 3.
  • a channel formed by the second switching unit 6 between the second LED module 5 and the third LED module 5 is connected to the negative terminal 32 of the rectifying unit 3.
  • all of the switching units 6 are connected to the sampling unit 4.
  • the circuit schematic diagram of the device of this example is shown in FIG. 5, and its working principle and specific circuit structure are similar to those of Embodiment 1, and are not described here.
  • the sampling unit 4 of this example is composed of resistors R1, R2, R6, R7, Rl l, R12, three switching units 6, and three LED module groups 5 into three-stage circuits, and three switching units 6 respectively control three LEDs.
  • the module sets the off time of each stage switch through the sampling unit 4, and protects the corresponding LED module 5. As the number of LED modules increases, the turn-on voltage of each LED module is reduced, which improves the utilization of the power supply.
  • multi-level LED module is applied, when the AC voltage fluctuates, each LED module is affected less by the influence of a single module, and the stability of LED operation is better, more reliable, and the ability to withstand AC voltage fluctuation. Stronger.
  • the voltage sampling unit of the present invention monitors the input voltage while also having the pair of LEDs.
  • the protection function of the manual module When the AC voltage fluctuates greatly, the switch unit can also be disconnected in time to protect the LED module from damage due to excessive current.

Abstract

The present solution relates to an alternating current direct drive technology for an LED light-emitting device. In response to the shortcoming of flickering light caused by an alternating current direct drive LED light-emitting device in the prior art, disclosed is an alternating current direct drive LED light-emitting device, constituted by cascading n number of LED modules (5), where switch-off and switch-on voltages for a switch unit (6) corresponding to each level of the LED modules (5) are preconfigured appropriately via a sampling unit (4), thus preventing flickers from occurring during an alternating current voltage fluctuation. An increase in the number of the LED modules (5), equivalent to a decrease in the conductive voltage of each level of the LED modules (5), increases the utilization rate of a power supply. When multiple levels of the LED modules (5) are used, during the alternating current voltage fluctuation, the impact on each LED module (5) is of a relatively lesser extent than when a single module is used, also, the LED is provided with improved working stability, improved reliability, and enhanced capability in countering the alternating current voltage fluctuation.

Description

说 明 书 交流电直接驱动的 LED发光装置 技术领域  Description of the book AC light direct drive LED lighting device
本发明涉及 LED (发光二极管) 发光装置, 特别涉及 LED发光装置的交流电直接驱动技 术。  The present invention relates to an LED (Light Emitting Diode) illuminating device, and more particularly to an AC direct driving technique for an LED illuminating device.
背景技术 Background technique
LED作为一种新型固态光源, 以其节能、 环保、 寿命长等优点有望成为新一代照明光源。 众所周知, 现有 LED几乎都是用直流电驱动的, 而我们的生产生活用电却是交流电。 因此, 在目前使用的 LED产品中, 需要一个电源转换器, 将交流电转换为直流电。 电源转换器的引 入, 带来很多负面效应。 其一, 电源转换器的寿命远远低于 LED自身的寿命, 使得照明装置 的使用寿命变短; 其二, 电源转换器会降低发光装置的效率; 其三, 在小功率应用中, 电源 转换器会引起功率因数的下降和电流总谐波失真的增加。 为了充分发挥半导体照明的优势, 可以用交流电直接驱动的 LED发光装置成为当前的研究热点。  As a new type of solid-state light source, LED is expected to become a new generation of illumination source with its advantages of energy saving, environmental protection and long life. As we all know, the existing LEDs are almost all driven by DC, and our production and living electricity is AC. Therefore, in the currently used LED products, a power converter is required to convert the alternating current into direct current. The introduction of power converters has many negative effects. First, the life of the power converter is much lower than the life of the LED itself, which shortens the service life of the lighting device. Second, the power converter reduces the efficiency of the lighting device. Third, in low power applications, power conversion The device will cause a drop in power factor and an increase in total harmonic distortion of the current. In order to give full play to the advantages of semiconductor lighting, LED light-emitting devices that can be directly driven by alternating current have become the current research hotspots.
在已有的交流 LED公开技术中, 大多是使用多颗 LED组件按照反向并联或者桥式整流的 电路拓扑结构连接而成, 以满足交流电力的驱动要求。 但是, 交流电是按照一定的频率周期 性波动的, 由于 LED 自身开启电压的存在, 在瞬时电压超过开启电压时, LED才会导通并发 光。 反之, LED是截止不发光的。 这种电路使得 LED的发光效率很低, 并且随着交流电压波 动出现发光闪烁现象。  In the existing AC LED disclosure technology, most of the LED components are connected in a reverse parallel or bridge rectified circuit topology to meet the AC power drive requirements. However, the AC power fluctuates periodically according to a certain frequency. Due to the presence of the LED's own turn-on voltage, the LED will turn on and emit light when the instantaneous voltage exceeds the turn-on voltage. Conversely, the LED is off and not illuminated. This circuit makes the LED's luminous efficiency very low, and the illuminating flicker occurs with the AC voltage fluctuation.
国际专利 WO 2004/023568A1 "LIGHT-EMITTING DEVICE HAVING LIGHT-EMITTING ELEMENTS" 中, 提出了在蓝宝石衬底上集成 LED芯片阵列, 从而提供一种交流电力驱动的发 光装置, 但没有解决 LED的发光闪烁问题。  In the international patent WO 2004/023568A1 "LIGHT-EMITTING DEVICE HAVING LIGHT-EMITTING ELEMENTS", it is proposed to integrate an LED chip array on a sapphire substrate to provide an AC power driven illumination device, but does not solve the problem of LED illumination and flicker. .
美国专利 US 7, 489, 086 B2 "AC LIGHT EITTING DIODE AND AC LED DRIVE METHODS AND APPARATUS"提供了一种交流 LED器件,该发明是一种将多个 LED集成封装的器件,利用人眼 的视觉暂留效应来弥补交流电引起的 LED发光闪烁现象。 该专利没有从根本上解决交流电压 周期性波动造成的发光闪烁现象。  US Patent No. 7,489, 086 B2 "AC LIGHT EITTING DIODE AND AC LED DRIVE METHODS AND APPARATUS" provides an AC LED device, which is a device in which a plurality of LEDs are integrally packaged, utilizing the vision of the human eye. The effect of retention is to compensate for the LED illuminating phenomenon caused by the alternating current. This patent does not fundamentally address the phenomenon of illuminating flicker caused by periodic fluctuations in AC voltage.
可见, 在已公开 LED交流驱动技术中, 都存在一个缺点: LED的驱动电流会随着交流电 压的波动而波动, 导致 LED发光时出现亮度变化, 产生发光闪烁的现象。 同时, LED器件的 核心是一个 PN结二极管,其 I-V特性为近似的指数函数,当 LED两端的电压大于开启电压后, 流过 PN结的电流呈指数增长。现有技术的交流驱动方法, 当交流电压意外升高时, 可能直接 损坏 LED器件。  It can be seen that in the disclosed LED AC drive technology, there is a disadvantage that the driving current of the LED fluctuates with the fluctuation of the AC voltage, which causes a change in brightness when the LED emits light, and a phenomenon of illuminating and flickering occurs. At the same time, the core of the LED device is a PN junction diode whose I-V characteristic is an approximate exponential function. When the voltage across the LED is greater than the turn-on voltage, the current flowing through the PN junction increases exponentially. The prior art AC drive method may directly damage the LED device when the AC voltage rises unexpectedly.
发明内容 说 明 书 本发明所要解决的技术问题, 就是针对现有技术交流电直接驱动 LED发光装置造成的发 光闪烁的缺点,提供一种交流电直接驱动的 LED发光装置, 克服交流电引起的 LED闪烁现象, 并提高 LED发光装置的效率, 延长 LED的使用寿命。 Summary of the invention The technical problem to be solved by the present invention is to address the shortcomings of the flashing light caused by the direct driving of the LED lighting device by the alternating current in the prior art, and to provide an LED lighting device directly driven by the alternating current, overcome the LED flicker phenomenon caused by the alternating current, and improve the LED lighting. The efficiency of the device extends the life of the LED.
本发明解决所述技术问题, 采用的技术方案是, 交流电直接驱动的 LED发光装置, 包括 交流输入端、 保护单元和整流单元, 其特征在于, 所述整流单元的第一输出端通过 n个 LED 模组和一个开关单元连接到第二输出端, 其中 n l, 且为整数; 当 1 2时, 每两个 LED模 组之间还有开关单元构成的通道与第二输出端连接, 每一个开关单元都与采样单元连接; 所述交流输入端用于连接交流电, 为装置提供工作电流; The present invention solves the technical problem, and adopts a technical solution that an AC direct-drive LED lighting device includes an AC input terminal, a protection unit, and a rectifying unit, wherein the first output end of the rectifying unit passes through n LEDs. The module and a switch unit are connected to the second output end, wherein nl is an integer; when 1 2, a channel formed by the switch unit between each two LED modules is connected with the second output end, and each switch The unit is connected to the sampling unit; the AC input terminal is used for connecting an alternating current to provide an operating current for the device;
所述保护单元与交流输入端连接, 为装置提供保护功能;  The protection unit is connected to the AC input terminal to provide a protection function for the device;
所述整流单元与保护单元连接, 对保护单元输出的交流电进行整流;  The rectifying unit is connected to the protection unit, and rectifies the alternating current output by the protection unit;
所述采样单元用于对整流单元的输出电压进行采样, 并输出控制信号到各个开关单元; 所述开关单元与采样单元连接, 根据采样单元输出的控制信号关断或接通。  The sampling unit is configured to sample an output voltage of the rectifying unit, and output a control signal to each switching unit; the switching unit is connected to the sampling unit, and is turned off or on according to a control signal output by the sampling unit.
本发明的 LED发光装置电路, 由 n级 LED模组级联构成, 通过采样单元适当预置每一级 LED模组对应开关单元的关断和接通电压, 可以避免交流电压波动的时候出现闪烁现象。 增 加 LED模组的数量, 相当于降低了每一级 LED模组的导通电压, 提高了电源的利用率。 多级 LED模组应用时, 当交流电压波动时, 每个 LED模组受到的影响相对采用单个模组的影响更 小, LED工作的稳定性也更好, 更可靠, 抗交流电压波动的能力更强。  The LED light-emitting device circuit of the invention is composed of a cascade of n-level LED modules, and the turn-off and turn-on voltage of the corresponding switch unit of each level of the LED module is appropriately preset by the sampling unit, so that flickering occurs when the AC voltage fluctuates phenomenon. Increasing the number of LED modules is equivalent to reducing the turn-on voltage of each stage of the LED module and improving the utilization of the power supply. When multi-level LED module is applied, when the AC voltage fluctuates, each LED module is affected less by the influence of a single module, and the stability of LED operation is better, more reliable, and the ability to withstand AC voltage fluctuation. Stronger.
具体的, 所述 n个 LED模组由 LED阵列组成。  Specifically, the n LED modules are composed of an LED array.
采用 LED阵列可以组成大功率的 LED模组。  LED arrays can be used to form high-power LED modules.
进一步的, 所述 LED阵列由布置在同一印制电路板上的至少 1个 LED构成; 或者集成封 装在同一基板上的至少 1个 LED构成; 或者集成在同一半导体衬底上的至少 1个 LED构成。  Further, the LED array is composed of at least one LED disposed on the same printed circuit board; or at least one LED integrally packaged on the same substrate; or at least one LED integrated on the same semiconductor substrate Composition.
将 LED模组中所有的 LED布置在同一印制电路板上, 是目前工艺条件下最简单最经济的 封装方法;或者将 LED模组中所有的 LED集成封装在同一基板上,即将 LED模组中所有的 LED 进行二次封装, 集成在同一散热基板上; 或者集成在同一半导体衬底上, 这是采用半导体集 成电路工艺,在同一半导体基片上实现 LED的集成。这些技术还可以将各个 LED模组中的 LED 交错布置, 提高照明装置发光亮度的均匀性, 并有利于克服闪烁现象, LED封装布线也更方 便。  Arranging all the LEDs in the LED module on the same printed circuit board is the simplest and most economical packaging method under the current process conditions; or all the LEDs in the LED module are integrally packaged on the same substrate, that is, the LED module All of the LEDs are secondarily packaged and integrated on the same heat sink substrate; or integrated on the same semiconductor substrate, which is a semiconductor integrated circuit process that integrates LEDs on the same semiconductor substrate. These technologies can also interleave the LEDs in each LED module to improve the uniformity of the illumination brightness of the illumination device, and to overcome the flicker phenomenon, and the LED package wiring is also more convenient.
具体的, 所述 LED并联和 /或串联连接。  Specifically, the LEDs are connected in parallel and/or in series.
LED模组中 LED适当的连接组合, 如并联、 串联或混联等, 更能够适应交流电直接驱动 的使用环境, 方便地调整各个 LED模组的电流、 电压参数。  The appropriate combination of LEDs in the LED module, such as parallel, series or hybrid, can adapt to the AC direct drive environment, and easily adjust the current and voltage parameters of each LED module.
具体的, 所述保护单元包括保险丝和 /或压敏电阻, 所述保险丝串联在交流输入端, 所述 说 明 书 压敏电阻并联在交流输入端。 Specifically, the protection unit includes a fuse and/or a varistor, and the fuse is connected in series at an AC input end, The varistor is connected in parallel to the AC input.
保险丝是常用的限流保护元件, 压敏电阻则是常用的限压保护元件, 他们的组合可以完 成最基本的限流和限压保护, 并且成本低, 安装方便, 便于进行二次集成。  Fuses are commonly used current-limiting protection components, and varistors are commonly used voltage-limiting protection components. Their combination can achieve the most basic current limiting and voltage limiting protection, and the cost is low, the installation is convenient, and secondary integration is facilitated.
进一步的,所述保护单元还包括共模扼流圈和 /或气体放电管,所述共模扼流圈串联在交 流输入端, 所述气体放电管并联在交流输入端。  Further, the protection unit further includes a common mode choke coil and/or a gas discharge tube, the common mode choke coil is connected in series at the AC input end, and the gas discharge tube is connected in parallel at the AC input end.
共模扼流圈可以抑制共模干扰, 气体放电管可以保护照明装置不被雷电等伤害。  The common mode choke can suppress common mode interference, and the gas discharge tube can protect the lighting device from being damaged by lightning.
具体的, 所述整流单元由整流二极管组成的全波整流或半波整流电路构成。  Specifically, the rectifying unit is configured by a full-wave rectification or a half-wave rectifying circuit composed of a rectifying diode.
采用整流二极管作为整流元件, 体积小重量轻, 便于二次集成封装。  The rectifier diode is used as the rectifying component, which is small in size and light in weight, and is convenient for secondary integrated packaging.
具体的, 所述采样单元由电阻网络构成。  Specifically, the sampling unit is composed of a resistor network.
电阻网络非常适合采集直流参数, 便于设定开关单元动作点。  The resistor network is ideal for collecting DC parameters and is easy to set the switching unit operating point.
具体的, 所述开关单元由晶体管构成, 所述晶体管控制极与采样单元连接。  Specifically, the switch unit is composed of a transistor, and the transistor control pole is connected to the sampling unit.
晶体管作为开关元件, 具有控制容易, 无触点, 长寿命的特点。  As a switching element, the transistor has the characteristics of easy control, no contact, and long life.
更具体的, 所述晶体管为场效应晶体管或双极型晶体管, 所述控制极为场效应晶体管的 栅极或双极型晶体管的基极。  More specifically, the transistor is a field effect transistor or a bipolar transistor, and the control is the gate of a field effect transistor or the base of a bipolar transistor.
晶体管开关元件, 技术成熟, 反应灵敏, 动作可靠。  Transistor switching elements, mature technology, responsive, reliable operation.
本发明的有益效果是, 使用交流电力直接驱动 LED模组, 电路简单, 体积小、 重量轻, 成本低。 通过预置适当的关断电压, 实现交流电力直接驱动 LED装置在交流电压波动的时候 不会闪烁。 并且, 在交流电瞬时电压过高时, 开关单元关断, LED模组不发光, 提高了电源 的利用效率, 降低了电力损耗。 同时, 也避免 LED模组因电流过大而烧毁的情况, 延长了装 置的使用寿命。  The invention has the beneficial effects that the LED module is directly driven by the alternating current power, the circuit is simple, the volume is small, the weight is light, and the cost is low. By presetting the appropriate turn-off voltage, the AC power directly drives the LED device without flickering when the AC voltage fluctuates. Moreover, when the instantaneous voltage of the alternating current is too high, the switch unit is turned off, and the LED module does not emit light, thereby improving the utilization efficiency of the power source and reducing the power loss. At the same time, the LED module is also prevented from being burnt due to excessive current, which prolongs the service life of the device.
附图说明 DRAWINGS
图 1是实施例 1的结构框图;  1 is a block diagram showing the structure of Embodiment 1;
图 2是实施例 1的电路原理图;  Figure 2 is a circuit schematic diagram of Embodiment 1;
图 3是实施例 2的结构框图;  Figure 3 is a block diagram showing the structure of Embodiment 2;
图 4是实施例 3的结构框图;  Figure 4 is a block diagram showing the structure of Embodiment 3;
图 5是实施例 3的电路原理图。  Fig. 5 is a circuit diagram of the third embodiment.
具体实施方式 detailed description
下面结合附图及实施例, 详细描述本发明的技术方案。  The technical solution of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.
本发明的交流电直接驱动的 LED发光装置, 包括交流输入端、 保护单元、 整流单元、 采 样单元、 开关单元和 n个 LED模组, 其中 η 1, 且为整数。 本发明发光装置中, 整流单元的 第一输出端(一般为直流输出正端)通过 n个 LED模组和一个开关单元连接到第二输出端(直 说 明 书 流输出负端)。当 LED模组数量超过 2个时,每两个 LED模组之间还有开关单元构成的通道与 第二输出端连接。 每一个开关单元都与采样单元连接, 受其控制。 本发明的 LED发光装置电 路, 由 n级 LED模组级联构成, 通过采样单元适当预置每一级 LED模组对应开关单元的关断 和接通电压, 可以避免交流电压波动的时候出现闪烁现象。 增加 LED模组的数量, 相当于降 低了每一级 LED模组的导通电压, 提高了电源的利用率。 多级 LED模组应用时, 当交流电压 波动时, 每个 LED模组受到的影响相对采用单个模组的影响更小, LED工作的稳定性也更好, 更可靠, 抗交流电压波动的能力更强。 The AC direct-drive LED lighting device of the present invention comprises an AC input terminal, a protection unit, a rectifying unit, a sampling unit, a switching unit and n LED modules, wherein η 1, and is an integer. In the illuminating device of the present invention, the first output end of the rectifying unit (generally the positive end of the direct current output) is connected to the second output end through n LED modules and a switching unit (straight Description Book stream output negative end). When the number of LED modules exceeds two, a channel formed by a switch unit between each two LED modules is connected to the second output end. Each switching unit is connected to and controlled by the sampling unit. The LED light-emitting device circuit of the invention is composed of a cascade of n-level LED modules, and the turn-off and turn-on voltage of the corresponding switch unit of each level of the LED module is appropriately preset by the sampling unit, so that flickering occurs when the AC voltage fluctuates phenomenon. Increasing the number of LED modules is equivalent to reducing the turn-on voltage of each stage of the LED module and improving the utilization of the power supply. When multi-level LED module is applied, when the AC voltage fluctuates, each LED module is affected less by the influence of a single module, and the stability of LED operation is better, more reliable, and the ability to withstand AC voltage fluctuation. Stronger.
实施例 1  Example 1
参见图 1和图 2, 本例发光装置包括交流输入端 1、 保护单元 2、 整流单元 3、 采样单元 4、 开关单元 6和 LED模组 5, 本例 LED模组 5的数量为 1 (即 n = l )。 本例整流单元的第一 输出端为直流输出正端 31, 该正端 31通过 LED模组 5开关单元 6连接到第二输出端直流输 出负端 32。 参见图 1。 交流输入端 1与交流电 L端 (相线)和 N端 (零线) 连接, 将交流电 引入保护单元 2。 保护单元 2对整个装置提供基本的保护功能, 由压敏电阻 VR和保险丝 F构 成, 保险丝 F串联在相线上, 压敏电阻并联在相线和零线之间, 见图 2。 对于应用于特殊环 境的, 保护单元 2还可包括共模扼流圈以及气体放电管。 共模扼流圈串联在相线和零线上, 气体放电管一般并联在相线和零线之间。 本例整流单元 3由整流二极管构成的全波整流电路 D组成, 对交流电进行全波整流。本例电压采样单元 4, 由采样电阻 R1和 R2组成的电阻网络 构成, 通过釆样整流电路 D输出的直流电压, 控制开关单元 6。 如图 2所示。本例开关单元 6 由 M0SFET (金属氧化物半导体场效应晶体管, 简称场效应管) Ml和 M2及稳压二极管 DZ1、 DZ2、 电阻 R3、 R4和 R5构成。本例 LED模组 5由多颗串联、 并联或者混联的 LED组成的阵列 构成, 可以是布置在同一印制电路板上的多个 LED, 或者集成封装在同一散热基板上的多个 LED, 又或者集成在同一半导体衬底上的多个 LED构成的集成电路。  Referring to FIG. 1 and FIG. 2, the illuminating device of the present embodiment includes an AC input terminal 1, a protection unit 2, a rectifying unit 3, a sampling unit 4, a switch unit 6, and an LED module 5. The number of LED modules 5 in this example is 1 (ie, n = l ). The first output end of the rectifying unit of this example is a DC output positive terminal 31, and the positive terminal 31 is connected to the second output DC output negative terminal 32 through the LED module 5 switching unit 6. See Figure 1. The AC input terminal 1 is connected to the AC L terminal (phase line) and N terminal (neutral line) to introduce AC power into the protection unit 2. The protection unit 2 provides a basic protection function for the entire device, consisting of a varistor VR and a fuse F. The fuse F is connected in series on the phase line, and the varistor is connected in parallel between the phase line and the neutral line, as shown in Fig. 2. For application to a particular environment, the protection unit 2 may also include a common mode choke and a gas discharge tube. The common mode choke is connected in series on the phase line and the neutral line, and the gas discharge tube is generally connected in parallel between the phase line and the neutral line. The rectifying unit 3 of this example is composed of a full-wave rectifying circuit D composed of a rectifying diode, and performs full-wave rectification on the alternating current. The voltage sampling unit 4 of this example is composed of a resistor network composed of sampling resistors R1 and R2, and the switching unit 6 is controlled by the DC voltage output from the sampling rectifier circuit D. as shown in picture 2. The switching unit 6 of this example is composed of M0SFET (Metal Oxide Semiconductor Field Effect Transistor, FET for short) Ml and M2 and Zener diodes DZ1, DZ2, resistors R3, R4 and R5. The LED module 5 of the present example is composed of an array of a plurality of LEDs connected in series, in parallel or in a mixed manner, and may be a plurality of LEDs arranged on the same printed circuit board, or a plurality of LEDs integrated on the same heat dissipation substrate. Or an integrated circuit composed of a plurality of LEDs integrated on the same semiconductor substrate.
当交流电的瞬时电压达到 LED模组 5的开启电压时, 开关单元 6在采样单元 4的驱动下 导通, LED模组 5开始发光; 当交流电的瞬时电压超过预设的关断电压时, 开关单元 6关断, LED模组 5停止发光; 当交流电出现波动时, 在正常的工作电压范围以内, 即在 LED模组 5 的开启电压与预设的关断电压之间时, 发生变化的只是开关单元 6的导通和关断的时间点, LED模组 5的发光不会闪烁。  When the instantaneous voltage of the alternating current reaches the turn-on voltage of the LED module 5, the switch unit 6 is turned on by the sampling unit 4, and the LED module 5 starts to emit light; when the instantaneous voltage of the alternating current exceeds the preset turn-off voltage, the switch When unit 6 is turned off, LED module 5 stops emitting light; when AC power fluctuates, within the normal working voltage range, that is, between the turn-on voltage of LED module 5 and the preset turn-off voltage, only the change occurs. At the time when the switching unit 6 is turned on and off, the illumination of the LED module 5 does not blink.
如图 2所示, 整流电路 D输出正端和电阻 R1的一端连接, 同时连接到 LED模组的正端, 整流电路 D的输出负端作为地。 电阻 R1的另一端与电阻 R2的一端、稳压二极管 DZ1的负端、 电阻 R3的一端连接; 电阻 R3的另一端与场效应管 Ml的栅极连接, 场效应管 Ml的漏极、 电 阻 R4的一端、 电阻 R5的一端、 稳压二极管 DZ2的负端连接。 电阻 R5的另一端与场效应管 说 明 书 As shown in FIG. 2, the positive terminal of the rectifier circuit D is connected to one end of the resistor R1, and is connected to the positive terminal of the LED module, and the output negative terminal of the rectifier circuit D serves as a ground. The other end of the resistor R1 is connected to one end of the resistor R2, the negative terminal of the Zener diode DZ1, and one end of the resistor R3; the other end of the resistor R3 is connected to the gate of the field effect transistor M1, the drain of the field effect transistor M1, and the resistor R4 One end, one end of the resistor R5, and the negative terminal of the Zener diode DZ2 are connected. The other end of the resistor R5 and the field effect transistor Description
M2的栅极连接, 场效应管 M2的漏极、 电阻 R4的另一端、 LED模组的负端连接。 电阻 R2的另 一端、 稳压管 DZ1的正端、 稳压管 DZ2的正端、 场效应管 Ml的源极、 场效应管 M2的源极连 接到地 (直流输出负端)。  The gate of M2 is connected, the drain of FET M2, the other end of resistor R4, and the negative terminal of LED module are connected. The other end of the resistor R2, the positive terminal of the Zener diode DZ1, the positive terminal of the Zener diode DZ2, the source of the FET M1, and the source of the FET M2 are connected to the ground (DC output negative terminal).
当交流输入端 1与电网连接, 本照明装置获得交流电力, 经过保护单元 2, 并由整流单元 3, 整流成直流电, 提供给采样单元 4、 开关单元 6和 LED模组 5。 在每个交流周期中, 整流 电路 D输出电压从零开始上升, 当电压升高到开关单元的开启电压时, 场效应管 Ml关断, M2 导通, LED模组 5开始发光; 随着输入电压升高 LED模组通过的电流增大, 在电压低于预设 的关断电压阶段, 采样单元 4输出的电压不足以使场效应管 Ml导通, Ml保持关断, M2保持 导通, LED模组 5持续发光; 当电压意外升高, 超过预设的关断电压时, Ml开始导通, M2 关断, LED模组不发光, 保护 LED模组 5免受大电流的冲击。  When the AC input terminal 1 is connected to the power grid, the lighting device obtains AC power, passes through the protection unit 2, and is rectified into a DC power by the rectifying unit 3, and is supplied to the sampling unit 4, the switching unit 6, and the LED module 5. In each AC cycle, the output voltage of the rectifier circuit D rises from zero. When the voltage rises to the turn-on voltage of the switch unit, the FET M1 turns off, M2 turns on, and the LED module 5 starts to emit light; When the voltage rises, the current passed by the LED module increases. When the voltage is lower than the preset turn-off voltage, the voltage output by the sampling unit 4 is insufficient to turn on the FET M1, M1 remains turned off, and M2 remains turned on. The LED module 5 continues to emit light; when the voltage rises unexpectedly, when the preset off voltage is exceeded, Ml starts to conduct, M2 turns off, and the LED module does not emit light, protecting the LED module 5 from the impact of a large current.
实施例 2  Example 2
如图 3所示, 本例发光装置 LED模组 5有 2个, 开关单元 6也是 2个, 整流单元 3正端 31通过 2个 LED模组和第 2开关单元 6 (图中标注为开关单元 2, 其他开关单元标注与此类 似)与整流单元 3负端 32连接,在第 1个 LED模组 5和第 2个 LED模组 5之间有第 1个开关 单元 6构成的通道与整流单元 3负端 32连接。 本例所有开关单元 6均与采样单元 4连接。  As shown in FIG. 3, there are two LED modules 5 of the present embodiment, and two switching units 6 are also provided. The positive terminal 31 of the rectifying unit 3 passes through two LED modules and a second switching unit 6 (labeled as a switching unit in the figure). 2, other switch units are labeled similarly) connected to the negative terminal 32 of the rectifier unit 3, and there is a channel and a rectification unit formed by the first switch unit 6 between the first LED module 5 and the second LED module 5 3 negative terminal 32 connection. In this example, all of the switching units 6 are connected to the sampling unit 4.
实施例 3  Example 3
如图 4所示, 本例发光装置 LED模组 5有 3个, 开关单元 6也是 3个, 整流单元 3正端 31通过 3个 LED模组和第 3个开关单元 6与整流单元 3负端 32连接, 在第 1个 LED模组 5 (图中标注为 LED模组 1, 其他 LED模组标注与此类似)和第 2个 LED模组 5之间有第 1个 开关单元 6构成的通道与整流单元 3负端 32连接。在第 2个 LED模组 5和第 3个 LED模组 5 之间还有第 2个开关单元 6构成的通道与整流单元 3负端 32连接。本例所有开关单元 6均与 采样单元 4连接。  As shown in FIG. 4, there are three LED modules 5 of the present embodiment, and three switch units 6 are also provided. The positive terminal 31 of the rectifying unit 3 passes through the three LED modules and the third switching unit 6 and the negative terminal of the rectifying unit 3. 32 connection, there is a channel formed by the first switch unit 6 between the first LED module 5 (labeled as LED module 1 in the figure, similar to other LED modules) and the second LED module 5 It is connected to the negative terminal 32 of the rectifying unit 3. A channel formed by the second switching unit 6 between the second LED module 5 and the third LED module 5 is connected to the negative terminal 32 of the rectifying unit 3. In this example, all of the switching units 6 are connected to the sampling unit 4.
本例装置的电路原理图如图 5所示, 其工作原理和具体电路结构与实施例 1类似, 此处 不在赘述。 本例采样单元 4由电阻 Rl、 R2 , R6、 R7 , Rl l、 R12构成, 三个开关单元 6, 和 3 个 LED模组组 5成三级电路, 三个开关单元 6分别控制三个 LED模组, 通过采样单元 4分别 设置每一级开关的关断时间, 并对相应的 LED模组 5进行保护。 随着 LED模组数量的增加, 相当于降低了每一个 LED模组的导通电压, 提高了电源的利用率。 多级 LED模组应用时, 当 交流电压波动时, 每个 LED模组受到的影响相对采用单个模组的影响更小, LED工作的稳定 性也更好, 更可靠, 抗交流电压波动的能力更强。  The circuit schematic diagram of the device of this example is shown in FIG. 5, and its working principle and specific circuit structure are similar to those of Embodiment 1, and are not described here. The sampling unit 4 of this example is composed of resistors R1, R2, R6, R7, Rl l, R12, three switching units 6, and three LED module groups 5 into three-stage circuits, and three switching units 6 respectively control three LEDs. The module sets the off time of each stage switch through the sampling unit 4, and protects the corresponding LED module 5. As the number of LED modules increases, the turn-on voltage of each LED module is reduced, which improves the utilization of the power supply. When multi-level LED module is applied, when the AC voltage fluctuates, each LED module is affected less by the influence of a single module, and the stability of LED operation is better, more reliable, and the ability to withstand AC voltage fluctuation. Stronger.
经上述详细的阐释, 可以看出, 本发明的电压采样单元监测输入电压, 同时还具有对 LED 说 明 书 模组的保护功能。 当交流电压出现大的波动的时候, 开关单元也能及时断开, 保护 LED模组 不因电流过大而损坏。 From the above detailed explanation, it can be seen that the voltage sampling unit of the present invention monitors the input voltage while also having the pair of LEDs. The protection function of the manual module. When the AC voltage fluctuates greatly, the switch unit can also be disconnected in time to protect the LED module from damage due to excessive current.
需要说明的是: 虽然上述实施例已经详细描述了本发明的结构, 但本发明并不限于上述 实施例, 凡是本领域技术人员根据上述描述进行的常规的替换结构, 均属于本发明的保护范 围。  It should be noted that, although the above embodiments have described the structure of the present invention in detail, the present invention is not limited to the above embodiments, and any conventional replacement structure performed by those skilled in the art according to the above description belongs to the protection scope of the present invention. .

Claims

权 利 要 求 书 Claim
1、 交流电直接驱动的 LED发光装置, 包括交流输入端、 保护单元和整流单元, 其特征在 于, 所述整流单元的第一输出端通过 n个 LED模组和一个开关单元连接到第二输出端, 其中 n^ l , 且为整数; 当0 2时, 每两个 LED模组之间还有开关单元构成的通道与第二输出端连 接, 每一个开关单元都与采样单元连接; 1. An LED light-emitting device directly driven by an alternating current, comprising an alternating current input end, a protection unit and a rectifying unit, wherein the first output end of the rectifying unit is connected to the second output end through n LED modules and a switching unit , where n^ l , and is an integer; when 0 2, a channel formed by a switch unit between each two LED modules is connected to the second output end, and each switch unit is connected to the sampling unit;
所述交流输入端用于连接交流电, 为装置提供工作电流;  The AC input terminal is used for connecting an alternating current to provide an operating current for the device;
所述保护单元与交流输入端连接, 为装置提供保护功能;  The protection unit is connected to the AC input terminal to provide a protection function for the device;
所述整流单元与保护单元连接, 对保护单元输出的交流电进行整流;  The rectifying unit is connected to the protection unit, and rectifies the alternating current output by the protection unit;
所述采样单元用于对整流单元的输出电压进行采样, 并输出控制信号到各个开关单元; 所述开关单元与采样单元连接, 根据采样单元输出的控制信号关断或接通。  The sampling unit is configured to sample an output voltage of the rectifying unit, and output a control signal to each switching unit; the switching unit is connected to the sampling unit, and is turned off or on according to a control signal output by the sampling unit.
2、 根据权利要求 1所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述 n个 LED 模组由 LED阵列组成。  2. The alternating current direct drive LED lighting device according to claim 1, wherein the n LED modules are composed of an LED array.
3、根据权利要求 2所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述 LED阵列 由布置在同一印制电路板上的至少 1个 LED构成;或者集成封装在同一基板上的至少 1个 LED 构成; 或者集成在同一半导体衬底上的至少 1个 LED构成。  3. The alternating current direct drive LED lighting device according to claim 2, wherein the LED array is composed of at least one LED disposed on the same printed circuit board; or at least integrated on the same substrate. One LED is configured; or at least one LED integrated on the same semiconductor substrate.
4、根据权利要求 3所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述 LED并联 和 /或串联连接。  4. An alternating current direct drive LED lighting device according to claim 3, wherein the LEDs are connected in parallel and/or in series.
5、根据权利要求 1所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述保护单元 包括保险丝和 /或压敏电阻,所述保险丝串联在交流输入端,所述压敏电阻并联在交流输入端。  5. The alternating current direct drive LED lighting device of claim 1, wherein the protection unit comprises a fuse and/or a varistor, the fuse being connected in series at an alternating current input, the varistor being connected in parallel AC input.
6、根据权利要求 5所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述保护单元 还包括共模扼流圈和 /或气体放电管, 所述共模扼流圈串联在交流输入端, 所述气体放电管并 联在交流输入端。  6. The alternating current direct drive LED lighting device of claim 5, wherein the protection unit further comprises a common mode choke and/or a gas discharge tube, wherein the common mode choke is connected in series to the alternating current input. The gas discharge tube is connected in parallel at the AC input end.
7、根据权利要求 1所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述整流单元 由整流二极管组成的全波整流或半波整流电路构成。  7. The alternating current direct drive LED lighting device according to claim 1, wherein the rectifying unit is constituted by a full-wave rectifying or half-wave rectifying circuit composed of a rectifying diode.
8、根据权利要求 1所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述采样单元 由电阻网络构成。  8. The alternating current direct drive LED lighting device according to claim 1, wherein the sampling unit is constituted by a resistor network.
9、根据权利要求 1所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述开关单元 由晶体管构成, 所述晶体管控制极与采样单元连接。  9. The alternating current direct drive LED lighting device according to claim 1, wherein the switching unit is constituted by a transistor, and the transistor control electrode is connected to the sampling unit.
10、 根据权利要求 9所述的交流电直接驱动的 LED发光装置, 其特征在于, 所述晶体管 为场效应晶体管或双极型晶体管,所述控制极为场效应晶体管的栅极或双极型晶体管的基极。  10. The alternating current direct drive LED lighting device according to claim 9, wherein the transistor is a field effect transistor or a bipolar transistor, and the gate of the field effect transistor or the bipolar transistor is controlled. Base.
PCT/CN2012/087382 2011-12-31 2012-12-25 Alternating current direct drive led light-emitting device WO2013097692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110457843.0 2011-12-31
CN201110457843.0A CN103188845B (en) 2011-12-31 2011-12-31 The LED light emission device of alternating current Direct driver

Publications (1)

Publication Number Publication Date
WO2013097692A1 true WO2013097692A1 (en) 2013-07-04

Family

ID=48679725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087382 WO2013097692A1 (en) 2011-12-31 2012-12-25 Alternating current direct drive led light-emitting device

Country Status (2)

Country Link
CN (2) CN103188845B (en)
WO (1) WO2013097692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020122A1 (en) * 2014-04-22 2015-10-23 Renault Sas METHOD FOR CONTROLLING A LIGHT EMITTING DIODE LIGHT OR SIGNALING LIGHT FOR A MOTOR VEHICLE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540287B (en) * 2012-10-30 2017-11-17 四川新力光源股份有限公司 LED dimming driving circuits
CN102892238B (en) * 2012-10-30 2015-02-04 四川新力光源股份有限公司 Dimming drive circuit of AC (Alternating Current) direct drive LED module
CN104427688B (en) 2013-08-23 2016-09-28 四川新力光源股份有限公司 LED alternating-current drive circuit
CN104936330B (en) * 2014-03-18 2020-05-19 赵依军 LED driving power supply and LED lighting device comprising same
CN104519645B (en) * 2014-11-27 2019-01-08 上海航空电器有限公司 A kind of guide-lighting drive circuit based on PWM light modulation
CN104582137B (en) * 2014-11-28 2019-01-04 上海航空电器有限公司 The multi-level dimming circuit of three kinds of alarm signals
US9913325B1 (en) * 2017-02-03 2018-03-06 Semiconductor Components Industries, Llc LED direct AC drive circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601843A (en) * 2004-10-26 2005-03-30 曾献昌 A, C, mains overvoltage protector having metalic ceramic gas discharge tube
CN1695290A (en) * 2002-11-11 2005-11-09 财团法人理工学振兴会 Filter
CN2750324Y (en) * 2004-11-23 2006-01-04 桐乡市永泰隆电子有限公司 Three-phase four-wire electric energy meter
US20060274024A1 (en) * 2005-06-02 2006-12-07 Au Optronics Corp. Liquid crystal display and light emitting diode drive circuit thereof
CN201178507Y (en) * 2008-04-14 2009-01-07 曹型勇 Constant-current automatic light regulating electric source for LED traffic light
CN101674692A (en) * 2008-09-12 2010-03-17 连营科技股份有限公司 Light emitting diode (LED) driving device and illuminating system
CN102892238A (en) * 2012-10-30 2013-01-23 四川新力光源股份有限公司 Dimming drive circuit of AC (Alternating Current) direct drive LED module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727354B1 (en) * 2005-11-09 2007-06-13 주식회사 유양정보통신 Constant Current Pulse Width Modulation Driving Circuit for Light Emitting Diode
US8174212B2 (en) * 2008-11-30 2012-05-08 Microsemi Corp.—Analog Mixed Signal Group Ltd. LED string driver with light intensity responsive to input voltage
CN102202441A (en) * 2010-03-23 2011-09-28 陕西西电科大华成电子股份有限公司 Constant-current controller topology circuit powered directly by alternating current power supply for LED lighting lamp
CN102186282B (en) * 2011-03-21 2013-11-27 中国航天科技集团公司第九研究院第七七一研究所 Drive circuit capable of improving power factors of alternating current light emitting diode (AC LED) lamp
CN102209415A (en) * 2011-05-30 2011-10-05 桂林源通网络软件有限公司朝阳路分公司 Light emitting diode (LED) alternating-current direct power supply circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1695290A (en) * 2002-11-11 2005-11-09 财团法人理工学振兴会 Filter
CN1601843A (en) * 2004-10-26 2005-03-30 曾献昌 A, C, mains overvoltage protector having metalic ceramic gas discharge tube
CN2750324Y (en) * 2004-11-23 2006-01-04 桐乡市永泰隆电子有限公司 Three-phase four-wire electric energy meter
US20060274024A1 (en) * 2005-06-02 2006-12-07 Au Optronics Corp. Liquid crystal display and light emitting diode drive circuit thereof
CN201178507Y (en) * 2008-04-14 2009-01-07 曹型勇 Constant-current automatic light regulating electric source for LED traffic light
CN101674692A (en) * 2008-09-12 2010-03-17 连营科技股份有限公司 Light emitting diode (LED) driving device and illuminating system
CN102892238A (en) * 2012-10-30 2013-01-23 四川新力光源股份有限公司 Dimming drive circuit of AC (Alternating Current) direct drive LED module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020122A1 (en) * 2014-04-22 2015-10-23 Renault Sas METHOD FOR CONTROLLING A LIGHT EMITTING DIODE LIGHT OR SIGNALING LIGHT FOR A MOTOR VEHICLE

Also Published As

Publication number Publication date
CN104918387B (en) 2019-02-12
CN103188845A (en) 2013-07-03
CN104918387A (en) 2015-09-16
CN103188845B (en) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2013097692A1 (en) Alternating current direct drive led light-emitting device
US9860958B2 (en) Dimming drive circuit of alternating current directly-driven LED module
WO2013104250A1 (en) White led light emitting device driven directly by constant alternating current
JP2014216310A (en) Dimming control circuit by fluctuation power source
JP2005142137A (en) Led lighting device
EP2496056B1 (en) Constant-current-drive led module device
JP2014509456A (en) LED driving device and control method thereof
CN103582231A (en) Light emitting diode driving device
CN108966430B (en) Linear driving circuit of LED lighting lamp
CN102026437A (en) Modular alternating current light-emitting diode (LED) luminous circuit
CN105027682A (en) Control circuit for light emitting diode lighting device
CN108124348A (en) A kind of LED light bar network over under-voltage protection circuit, driving power and television set
CN201386933Y (en) ACLED illuminating light source
CN201550315U (en) LED driving circuit
CN201174804Y (en) Separation type general illuminating LED driving circuit
TW201141313A (en) AC LED apparatus
CN204518177U (en) A kind of LED drive power circuit
CN202050573U (en) LED (light-emitting diode) lamp control circuit with overvoltage protection function for key components
JP3152775U (en) LED driven by a chip that converts alternating current into constant current
KR20110005559A (en) Power supply unit with flicker prevention circuit for light emitting diode
WO2013097694A1 (en) Alternating current direct drive white-light led light-emitting device
CN103200735A (en) Light-emitting diode (LED) actuator preventing LED from flickering
WO2013104251A1 (en) Alternating current direct constant current drive led light-emitting device
CN205071401U (en) A LED constant -current drive apparatus
CN218998327U (en) Dimming non-isolated LED driving power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863423

Country of ref document: EP

Kind code of ref document: A1