WO2013097412A1 - 反馈时延的获取方法、装置及系统 - Google Patents

反馈时延的获取方法、装置及系统 Download PDF

Info

Publication number
WO2013097412A1
WO2013097412A1 PCT/CN2012/076026 CN2012076026W WO2013097412A1 WO 2013097412 A1 WO2013097412 A1 WO 2013097412A1 CN 2012076026 W CN2012076026 W CN 2012076026W WO 2013097412 A1 WO2013097412 A1 WO 2013097412A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
uplink
delay
downlink
radio frequency
Prior art date
Application number
PCT/CN2012/076026
Other languages
English (en)
French (fr)
Inventor
张锦芳
沈海华
黄罡
梁文亮
李波杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12863243.7A priority Critical patent/EP2779783A4/en
Priority to US13/715,349 priority patent/US8917621B2/en
Publication of WO2013097412A1 publication Critical patent/WO2013097412A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements

Definitions

  • the present invention relates to the field of communication systems, and in particular, to a method, device, and system for acquiring feedback delay.
  • a distributed base station with a remote radio frequency is divided into a baseband processing unit compared with a conventional base station.
  • BBU remote radio unit
  • RRU remote radio unit
  • the RRU is placed at an access point far from the BBU, and they are connected by optical fibers to transmit baseband wireless signals by analog or digital means.
  • C-RAN radio access technology-based radio access network system
  • C-RAN c loud RAN
  • baseband signals of multiple RRUs are connected to a centralized BBU computing center through a transport network for processing to obtain the benefits of computational resource statistical multiplexing and joint processing, but transmission to the transport network. Bandwidth raises high demands.
  • a pair of compression/decompression modules can be deployed between the RRU and the BBU computing center to compress the baseband signals transmitted between the RRU and the BBU computing center at one end. After the transmission network transmits, the compressed signal is recovered at the opposite end, thereby greatly reducing the transmission cost of the network. Due to compression/decompression, operations such as network transmission introduce additional delays that can affect processes that require high round trip delays in the system. In the whole system, the two processes with the highest latency requirements are the random access process and the fast automatic retransmission process. Since the window length of the random access response can be set, the delay of the random access process is compared. Easy to meet.
  • Embodiments of the present invention provide a method, an apparatus, and a system for acquiring a feedback delay, which solve the problem of introducing an extra delay due to factors such as compression/decompression, network transmission, and the like, thereby causing HARQ timing confusion and increasing unnecessary weight. Passing the question.
  • a method for obtaining a feedback delay includes:
  • the processing node obtains a target time in the process of receiving the uplink data from the remote end of the radio frequency to the remote end of the radio frequency to send the feedback information of the uplink data to the user end corresponding to the processing node, where the uplink data is The user terminal sends, the feedback information of the uplink data is fed back by the processing node, and the feedback information is information about whether the processing node successfully receives the uplink data sent by the user end;
  • the processing node adds the target time to the air interface transmission propagation delay to obtain a feedback delay, where the air interface transmission propagation delay is in the process of the uplink data sent by the user end to the radio frequency pull remote end.
  • a device for acquiring feedback delay includes:
  • the acquiring unit is configured to acquire a target time in the process of receiving the uplink data from the remote end of the radio frequency to the feedback information of the uplink data sent by the radio remote end to the user end; a calculating unit, configured to add the target time to the air interface transmission propagation delay to obtain a feedback delay, where the air interface transmission propagation delay is a remote end of the process in which the user sends uplink data to the radio remote end The delay in the process of sending the feedback information of the uplink data by the UE.
  • a feedback delay acquisition system includes: a processing node, a radio remote end, and a user end.
  • the processing node is configured to acquire a target time in the process of receiving the uplink data from the remote end of the radio frequency to the remote end of the radio frequency to send the feedback information of the uplink data to the user end corresponding to the processing node;
  • the user end is configured to send uplink data to the remote end of the radio frequency
  • the processing node is further configured to add the target time and the air interface transmission propagation delay to obtain a feedback delay, where the remote node is configured to send the feedback information of the uplink data to the user end.
  • the air interface transmission propagation delay is a delay in the process in which the user end sends the uplink data over the radio frequency pull end to send the uplink data feedback information to the user end.
  • Another method for obtaining feedback delay includes:
  • the processing node After the processing node sends the downlink detection data of one subframe to the radio remote end in the subframe without the downlink data transmission, the processing node obtains the time for transmitting the downlink detection data.
  • the processing node instructs the radio frequency pull end to feed back time required to process the uplink sounding data and the downlink sounding data required at the remote end of the radio frequency;
  • the processing node processes the uplink detection data and the downlink detection data according to the round-trip time of the uplink data and the downlink data, and the time required by the radio-radio remote end to process the uplink probe data and the downlink probe data , Calculate the feedback delay.
  • Another device for obtaining feedback delay includes:
  • a sending and receiving unit configured to: after sending the downlink sounding data of one subframe to the remote end of the radio frequency in the subframe without the downlink data transmission, obtain the time for sending the downlink sounding data;
  • An indicating unit configured to instruct the radio remote pull end to feed back time required for processing the uplink sounding data and the downlink sounding data at the far end of the radio frequency pull;
  • the receiving and receiving unit is further configured to receive, by the radio frequency remote end, a time required to process the uplink sounding data and the downlink sounding data required at the remote end of the radio frequency;
  • a calculating unit configured to process the uplink sounding data and the downlink sounding data according to the round-trip time of the uplink data and the downlink data, and the remote probe data sent by the remote end of the radio frequency Time, calculate the feedback delay.
  • Another system for obtaining feedback delays includes:
  • the processing node is configured to acquire, after the downlink probe data of one subframe is sent to the remote end of the radio in the subframe without the downlink data transmission, the time for sending the downlink probe data;
  • the processing node is further configured to: after receiving the uplink detection data of the one subframe that is sent by the radio remote end in the downlink sub-frame, obtain the time for receiving the uplink detection data;
  • the remote end of the radio frequency is used to feedback the remote end of the radio frequency according to the indication of the processing node.
  • the processing node is further configured to process, according to the round-trip time of the uplink data and the downlink data, the uplink probe data and the downlink that are required to be sent by the remote end of the radio The time at which the data was probed and the feedback delay was calculated.
  • the processing node acquires the uplink data received from the remote end of the radio frequency, and sends the uplink data to the remote end corresponding to the processing node.
  • the feedback time of the data is the target time in the process, and then the processing node adds the target time to the air interface transmission propagation delay to obtain a feedback delay.
  • the processing node obtains the delay in the process of sending the uplink data to the UE to send the feedback information of the uplink data to the user end, thereby solving the uplink data transmission process of the user end,
  • the extra delay introduced by compression/decompression, transport network, etc. causes HARQ timing confusion, and also increases the problem of unnecessary retransmission.
  • FIG. 1 is a flowchart of a method for acquiring a feedback delay according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a device for acquiring a feedback delay according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a system for acquiring a feedback delay according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another method for acquiring a feedback delay according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another apparatus for acquiring a feedback delay according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another system for acquiring feedback delay according to an embodiment of the present invention
  • FIG. 7 is an uplink HARQ sequence for a frequency division duplex long-term evolution system FDD-LTE system
  • Figure 8 shows the uplink HARQ timing when the uplink and downlink ratios are 2: 2 in the TDD-LTE system.
  • An embodiment of the present invention provides a method for obtaining a feedback delay. As shown in FIG. 1 , the method includes: 1 01. A processing node acquires uplink data received from a remote end of a radio frequency to a remote end of the radio frequency. The target time in the process of transmitting the feedback information of the uplink data by the UE corresponding to the processing node.
  • the target time is a radio frequency processing and a compression delay of the radio remote end, a transmission propagation delay of the uplink data through the transport network, and uplink data decompression, protocol stack processing, and decoding of the processing node.
  • the medium RF processing delay depends on the hardware capability of the remote radio pull.
  • the protocol stack and the encoding and decoding processing delay depend on the processing hardware and software processing capabilities of the processing node. These delays are relatively fixed.
  • the compression/decompression delay depends on the algorithm and implementation of the compression/decompression module.
  • the delay of the uplink and downlink data in the transport network depends on the amount of compressed data, network bandwidth, network equipment capabilities, network topology, etc. Delay is affected by the algorithm, Network changes impact.
  • the transmission delay between every two transmission nodes depends on the amount of data transmitted between the two nodes, the transmission bandwidth, and the granularity of data processed by the data receiver. If the data processing granularity of the transmitting peer node is one data packet, the transmission delay is the transmission delay of one data packet, that is, the data packet length/transmission bandwidth; if the data processing granularity of the transmitting opposite node is one subframe data, Then, the transmission delay is the compressed data amount/transmission bandwidth of one subframe.
  • the network device forwards the delay, which is the product of the forwarding delay of the single switching node and the number of nodes. For propagation delays, such as the signal propagation delay in the fiber is the product of 5us and fiber length.
  • the processing node may be a base station, a local computing center, or a centralized computing center.
  • the uplink data is sent by the user end, and the feedback information of the uplink data is fed back by the processing node, where the feedback information is information about whether the processing node successfully receives the uplink data sent by the user end. .
  • the processing node adds the target time to an air interface transmission propagation delay to obtain a feedback delay.
  • the air interface transmission propagation delay is a delay in the process in which the user sends the uplink digital remote end to the radio terminal to send the uplink data feedback information to the user end.
  • An embodiment of the present invention provides a device for acquiring a feedback delay. As shown in FIG. 2, the device includes: an obtaining unit 21 and a calculating unit 22.
  • the obtaining unit 21 is configured to acquire a target time in the process of receiving the uplink data from the remote end of the radio frequency and transmitting the feedback information of the uplink data to the user end.
  • the target time is a radio frequency processing and a compression delay of the radio remote end, and a transmission propagation delay of the uplink data through the transport network, and the uplink data decompression of the processing node and the protocol stack
  • the entity of the device may be a base station, a local computing center, or a centralized computing center.
  • the uplink data is sent by the user end, and the feedback information of the uplink data is fed back by the processing node, and the feedback information is information about whether the processing node successfully receives the uplink data sent by the user end. .
  • the calculating unit 22 is configured to add the target time acquired by the acquiring unit 21 and the air interface transmission propagation delay to obtain a feedback delay.
  • the air interface transmission propagation delay is a delay in the process in which the user sends the uplink digital remote end to the radio terminal to send the uplink data feedback information to the user end.
  • An embodiment of the present invention provides a system for acquiring a feedback delay.
  • the system includes: a processing node 31, a user terminal 32, and a radio frequency pull end 33.
  • the processing node 31 is configured to acquire a target time in the process of receiving the uplink data from the remote end of the radio frequency to the remote end of the radio frequency pull to send the feedback information of the uplink data to the user end corresponding to the processing node 31.
  • the user terminal 32 is configured to send uplink data to the remote end of the radio.
  • the processing node 31 can also be configured to add the target time and the air interface transmission propagation delay to the feedback delay.
  • the target time is a radio frequency processing and a compression delay of the radio remote end, and a transmission propagation delay of the uplink data through the transport network, and the uplink data decompression of the processing node and the protocol stack
  • the air interface transmission propagation delay is a delay in the process in which the user sends the uplink digital remote end to the radio terminal to send the uplink data feedback information to the user end.
  • An embodiment of the present invention provides another method for obtaining a feedback delay. As shown in FIG. 4, the method includes:
  • the processing node After the processing node sends the downlink probe data of one subframe to the remote end of the radio, the processing node obtains the time for sending the downlink probe data.
  • the processing node receives the uplink probe data of one subframe sent by the radio remote end in the air downlink sub-frame, and obtains the time for receiving the uplink probe data.
  • the processing node instructs the radio frequency pull end to feed back time required to process the uplink sounding data and the downlink sounding data required at the far end of the radio frequency pull.
  • the processing node receives, by the radio frequency remote end, a time required to process the uplink sounding data and the downlink sounding data required by the remote end of the radio frequency.
  • the processing node processes, according to the round-trip time of the uplink data and the downlink data, the uplink detection data and the downlink detection data that are required to be sent by the remote end of the radio Time, calculate the feedback delay.
  • the feedback delay is a delay in the process of sending the uplink data to the processing node corresponding to the processing node to send the uplink data feedback information to the UE.
  • the round-trip time of the uplink data and the downlink data is a time difference between a time when the processing node sends the downlink sounding data and a time when the processing node receives the uplink sounding data.
  • T1 is a round-trip time of the uplink data and the downlink data
  • ⁇ 2 is a time for the radio-radio remote end to process the uplink probe data and the downlink probe data
  • ⁇ 3 is a processing node that needs to be processed by the processing node.
  • the time of the uplink sounding data and the downlink sounding data is referred to as the feedback delay.
  • An embodiment of the present invention provides another apparatus for acquiring feedback delay.
  • the apparatus includes: a sending and receiving unit 51, a receiving and acquiring unit 52, an indicating unit 53, and a calculating unit 54.
  • the sending and receiving unit 51 is configured to obtain, after the downlink probe data of one subframe is sent to the remote end of the radio in the subframe without the downlink data transmission, the time for sending the downlink probe data.
  • the receiving and receiving unit 52 is configured to obtain the time for receiving the uplink sounding data after receiving the uplink sounding data of the one subframe that is sent by the radio remote end in the air downlink sub-frame.
  • the receiving and acquiring unit 52 is further configured to receive, by the radio frequency remote end, a time at which the radio frequency pull remote station is waiting to send the uplink sounding data, and the required processing, the uplink sounding data, and the downlink sounding. The time of the data.
  • the indicating unit 53 is configured to instruct the radio remote pull end to feed back the time required to process the uplink sounding data and the downlink sounding data at the far end of the radio frequency pull.
  • the calculating unit 54 is configured to process, according to the round-trip time of the uplink data and the downlink data, the uplink detection data and the downlink detection data that are required to be sent by the remote end of the radio frequency Time, calculate the feedback delay.
  • the feedback delay is a delay in the process of sending the uplink data to the processing node corresponding to the processing node to send the uplink data feedback information to the UE.
  • the round-trip time of the uplink data and the downlink data is a time difference between a time when the processing node sends the downlink sounding data and a time when the processing node receives the uplink sounding data.
  • T1 is a round-trip time of the uplink data and the downlink data
  • ⁇ 2 is a time for the radio-radio remote end to process the uplink probe data and the downlink probe data
  • ⁇ 3 is a processing node that needs to be processed by the processing node.
  • the time of the uplink sounding data and the downlink sounding data is referred to as the feedback delay.
  • the system includes: a processing node 61, and a radio remote end 62.
  • the processing node 61 is configured to obtain, after the downlink probe data of one subframe is sent to the radio remote end 62 in the subframe without the downlink data transmission, obtain the time for sending the downlink probe data.
  • the processing node 61 is further configured to: after receiving the uplink probe data of the one subframe that is sent by the radio remote end 62 on the air downlink sub-frame, obtain the time for receiving the uplink probe data.
  • the processing node 61 is further configured to process the uplink sounding data according to the round-trip time of the uplink data and the downlink data, and the required processing of the radio frequency pull remote end 62 at the radio remote end 62.
  • the time of the downlink detection data is calculated, and the feedback delay is calculated.
  • the feedback delay is a delay in a process in which the UE corresponding to the processing node 61 sends uplink data to the remote end of the radio to send the uplink data to the UE.
  • the round trip time of the uplink data and the downlink data is a time difference between a time when the processing node sends the downlink sounding data and a time when the processing node receives the uplink sounding data.
  • the T1 is the round-trip time of the uplink data and the downlink data, where ⁇ 2 is the time at which the radio-radio far-end 62 needs to process the uplink probe data and the downlink probe data, where ⁇ 3 is required by the processing node 61.
  • the time for processing the uplink sounding data and the downlink sounding data is ⁇ the feedback delay.
  • the radio remote end 62 is configured to feed back the time required for processing the uplink sounding data and the downlink sounding data at the radio frequency pull end 62 according to the indication of the processing node 61.
  • the processing node when the processing node adopts the traditional distributed base station architecture or the single-layer centralized base station architecture, if the user service belongs to a high-bandwidth real-time video service or a real-time interactive service, the processing node allocates the user terminal.
  • the feedback delay of the feedback information corresponding to the uplink data sent by the processing end obtained by the processing node; for the remaining user services, the feedback delay of the feedback information corresponding to the allocated uplink data may be greater than or equal to that obtained by the processing node
  • the feedback delay of the feedback information corresponding to the uplink data of the user end because for the user service that does not require high real-time performance, when the network is relatively busy, the feedback delay of the feedback information corresponding to the uplink data may be increased to reduce the user.
  • the utilization of network resources by the end service provides more network resources for the client service with high real-time requirements.
  • the processing node may be composed of a local computing center and a centralized computing center.
  • the client service is allocated to the centralized computing center or the local computing center for processing according to the principle of system capacity maximization and computational capacity balancing. For example, due to serious interference, cell edge users can consider processing in a centralized computing center as much as possible. For the cell center user, the interference is small, and priority can be given to processing in the local computing center. At the same time, the division of the user service processing node needs to consider the computing power of the local computing center and the centralized computing center. For example, some cell edge user services may be moved to the local computing center for processing due to insufficient capacity of the centralized computing center. Similarly, some cells are partially processed. The central user service may also be moved up to the centralized computing center due to insufficient capacity of the local computing center.
  • the feedback delay of the feedback information corresponding to the uplink data of the user service that can be processed by the local computing center is greater than or equal to the feedback delay that the local computing center can allocate to the user end, and the user that the centralized computing center can process
  • the feedback delay of the feedback information corresponding to the uplink data of the end service is greater than or equal to the feedback delay that the centralized computing center can allocate to the user end.
  • the method provided by the embodiment of the present invention also has backward compatibility.
  • the processing node performs feedback information feedback on the first uplink fast automatic retransmission HARQ transmission allocation at the feedback time point of the first uplink retransmission, such as the frequency division duplex long-term evolution FDD-LTE system shown in FIG.
  • the feedback delay of the feedback information of the uplink HARQ is greater than 3 ms and less than or equal to 1 1 ms, and the uplink data of the 0th subframe of the first frame is allocated in the second subframe of the second frame. Since the feedback time of the first transmission in the UE, that is, the 4th subframe of the first frame, does not receive feedback feedback, the HARQ entity defaults to the feedback information that no uplink data is received, and the previously allocated time-frequency resource will be used. The 8th subframe of the first frame initiates a non-adaptive retransmission.
  • the processing node directly discards the data received by the first retransmission and does not process it; if the first transmission error occurs, the processing node allocates the first uplink HARQ retransmission to the second uplink weight. Feedback feedback is sent at the feedback time point, and so on until the maximum number of retransmissions is reached. If the feedback delay of the uplink HARQ feedback information is larger, such as greater than 1 1 ms, the processing node allocates feedback for the first transmission to the second or mth time (m is less than or equal to the maximum number of retransmissions allowed by the system). Feedback feedback after the time point.
  • FIG. 8 depicts the uplink HARQ timing when the uplink-downlink ratio is 2:2 in the time division duplex long term evolution TDD-LTE system.
  • the method, device and system for acquiring feedback delay provided by the embodiments of the present invention can be used for long-term evolution
  • the LTE system can also be used for other feedback time point fixed systems of feedback information.
  • the method, the device and the system for acquiring the feedback delay provided by the embodiment of the present invention the processing node sends the uplink data from the user end to the radio frequency remote end, and the feedback information process of sending the uplink data to the user end
  • the delay in the solution solves the problem that the HARQ timing is confusing due to the extra delay introduced by the compression/decompression, the transmission network, and the like, and the unnecessary retransmission is also increased.
  • the apparatus and system for obtaining the feedback delay provided by the embodiment of the present invention may implement the foregoing method embodiments. For the specific function implementation, refer to the description in the method embodiment, and details are not described herein again.
  • the method, device and system for acquiring the feedback delay provided by the embodiment of the present invention can be applied to the field of communication systems, but are not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种反馈时延的获取方法、装置及系统,解决了用户端上行业务数据传输过程中,由于压缩/解压缩、传送网等引入的额外时延,造成的HARQ时序混乱,同时还会增加不必要的重传的问题。所述方法包括:处理节点获取从射频拉远端收到上行数据到所述射频拉远端向与所述处理节点对应的用户端发送所述上行数据的反馈信息过程中的目标时间,然后处理节点将所述目标时间与空口传输传播延时相加得到反馈时延。本发明适用于通信系统领域。

Description

反馈时延的获取方法、 装置及系统
本申请要求于 2011 年 12 月 28 日提交中国专利局、 申请号为 201110447835.8 , 发明名称为 "反馈时延的获取方法、 装置及系统" 的中国专 利申请优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信系统领域,特别涉及一种反馈时延的获取方法、装置及系 统。 背景技术 射频拉远的分布式基站与传统基站相比,整个系统被划分为基带处理单元
( BBU )和远端射频单元( RRU ) , 其中 RRU放置在离 BBU较远的接入点处, 它们 之间通过光纤连接起来, 通过模拟或数字方式传输基带无线信号。 最近, 基于云计算技术的无线接入网系统 C-RAN ( c loud RAN )正逐渐受到 工业界的普遍关注。在 C-RAN的集中式接入网架构中, 多个 RRU的基带信号通过 传送网连接到集中的 BBU计算中心进行处理以获得计算资源统计复用和联合处 理的好处, 但是对传送网的传输带宽提出了很高的需求。 为了有效降低 RRU和 BBU计算中心的数据传输带宽需求, 可以在 RRU和 BBU计算中心之间部署一对压 缩 /解压缩模块, 在一端对 RRU和 BBU计算中心之间传输的基带信号进行压缩, 经过传送网传输后,在对端将压缩后的信号恢复出来,从而大大降低网络的传 输成本。 由于压缩 /解压缩, 网络传输等操作引入了额外的时延, 这些时延会 对系统中往返时延要求较高的过程产生影响。 而整个系统中,对时延要求最高的两个过程是随机接入过程和快速自动重 传过程。 由于随机接入响应的窗口长度可设置, 所以随机接入过程的时延比较 容易满足。 但是对于快速自动重传过程的时延, 由于压缩 /解压缩、 网络传输 等引入的额外时延影响上行数据反馈信息的反馈时间,从而引起快速自动重传 HARQ (Hybr id Automa t ic Repea t Reques t)的时序混乱并且造成不必要的重传。 发明内容 本发明的实施例提供一种反馈时延的获取方法、装置及系统,解决了由于 压缩 /解压缩、 网络传输等因素引入额外时延, 从而造成的 HARQ时序混乱, 并 增加不必要重传的问题。 本发明实施例采用的技术方案为: 一种反馈时延的获取方法, 包括:
处理节点获取从射频拉远端收到上行数据到所述射频拉远端向与所述处 理节点对应的用户端发送所述上行数据的反馈信息过程中的目标时间,所述上 行数据由所述用户端发送, 所述上行数据的反馈信息由所述处理节点反馈, 所 述反馈信息为所述处理节点是否成功收到所述用户端发送的所述上行数据的 信息;
所述处理节点将所述目标时间与空口传输传播延时相加得到反馈时延,所 述空口传输传播延时为所述用户端向所述射频拉远端发送上行数据过程中的
端向所述用户端发送所述上行数据的反馈信息过程中的延时。
一种反馈时延的获取装置, 包括:
获取单元,用于获取从射频拉远端收到上行数据到所述射频拉远端向用户 端发送所述上行数据的反馈信息过程中的目标时间; 计算单元, 用于将所述目标时间与空口传输传播延时相加得到反馈时延, 所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数据过程中 远端向所述用户端发送所述上行数据的反馈信息过程中的延时。
一种反馈时延的获取系统, 包括: 处理节点、 射频拉远端和用户端。 所述处理节点,用于获取从射频拉远端收到上行数据到所述射频拉远端向 与所述处理节点对应的用户端发送所述上行数据的反馈信息过程中的目标时 间;
所述用户端, 用于向所述射频拉远端发送上行数据;
所述射频拉远端, 用于向所述用户端发送所述上行数据的反馈信息; 所述处理节点,还用于将所述目标时间与空口传输传播延时相加得到反馈 时延,所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数据过 频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。
另一种反馈时延的获取方法, 包括:
处理节点在没有下行数据发送的子帧上向射频拉远端发送一个子帧的下 行探测数据后, 获取发送所述下行探测数据的时间;
所述处理节点接收到所述射频拉远端在空口下行子帧上发送的一个子帧 的上行探测数据后, 获取接收到所述上行探测数据的时间;
所述处理节点指示所述射频拉远端反馈在所述射频拉远端所需的处理所 述上行探测数据和所述下行探测数据的时间;
所述处理节点接收所述射频拉远端发送的在所述射频拉远端所需的处理 所述上行探测数据和所述下行探测数据的时间;
所述处理节点根据所述上行数据和所述下行数据的往返时间和所述射频 拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述下行探 测数据的时间, 计算反馈时延。
另一种反馈时延的获取装置, 包括:
发送获取单元,用于在没有下行数据发送的子帧上向射频拉远端发送一个 子帧的下行探测数据后, 获取发送所述下行探测数据的时间;
接收获取单元,用于接收到所述射频拉远端在空口下行子帧上发送的一个 子帧的上行探测数据后, 获取接收到所述上行探测数据的时间;
指示单元,用于指示所述射频拉远端反馈在所述射频拉远端所需的处理所 述上行探测数据和所述下行探测数据的时间;
所述接收获取单元,还用于接收所述射频拉远端发送的在所述射频拉远端 所需的处理所述上行探测数据和所述下行探测数据的时间;
计算单元,用于根据所述上行数据和所述下行数据的往返时间和所述射频 拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述下行探 测数据的时间, 计算反馈时延。
另一种反馈时延的获取系统, 包括:
所述处理节点,用于在没有下行数据发送的子帧上向射频拉远端发送一个 子帧的下行探测数据后, 获取发送所述下行探测数据的时间;
所述处理节点,还用于接收到所述射频拉远端在空口下行子帧上发送的一 个子帧的上行探测数据后, 获取接收到所述上行探测数据的时间;
所述射频拉远端,用于根据所述处理节点的指示反馈在所述射频拉远端所 需的处理所述上行探测数据和所述下行探测数据的时间;
所述处理节点,还用于根据所述上行数据和所述下行数据的往返时间和所 述射频拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述 下行探测数据的时间, 计算反馈时延。
本发明实施例提供的反馈时延的获取方法、装置及系统,处理节点获取从 射频拉远端收到上行数据到所述射频拉远端向与所述处理节点对应的用户端 发送所述上行数据的反馈信息过程中的目标时间,然后处理节点将所述目标时 间与空口传输传播延时相加得到反馈时延。本发明实施例处理节点通过获取用 户端发送所述上行数据到射频拉远端向用户端发送所述上行数据的反馈信息 过程中的延时, 从而解决了用户端上行业务数据传输过程中, 由于压缩 /解压 缩、 传送网等引入的额外时延, 造成的 HARQ时序混乱, 同时还会增加不必要重 传的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅 仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳 动的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明实施例提供的一种反馈时延的获取方法流程图;
图 2为本发明实施例提供的一种反馈时延的获取装置结构示意图; 图 3为本发明实施例提供的一种反馈时延的获取系统示意图;
图 4为本发明实施例提供的另一种反馈时延的获取方法流程图; 图 5为本发明实施例提供的另一种反馈时延的获取装置结构示意图; 图 6为本发明实施例提供的另一种反馈时延的获取系统示意图; 图 7为频分双工长期演进系统 FDD-LTE系统下的上行 HARQ时序;
图 8为时分双工长期演进 TDD-LTE系统中上下行配比为 2: 2时的上行 HARQ时 序。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
为使本发明技术方案的优点更加清楚,下面结合附图和实施例对本发明作 详细说明。
本发明实施例提供一种反馈时延的获取方法,如图 1所示, 所述方法包括: 1 01、 处理节点获取从射频拉远端收到上行数据到所述射频拉远端向与所 述处理节点对应的用户端发送所述上行数据的反馈信息过程中的目标时间。
具体地, 所述目标时间为所述射频拉远端的中射频处理及压缩延时, 上行 数据经过传送网的传输传播延时, 所述处理节点的上行数据解压缩、协议栈处 理、 译码处理及下行数据压缩、 编码处理延时, 下行数据经过传送网的传输传 播延时, 所述射频拉远端解压缩及中射频处理延时中的所有延时之和。 其中, 中射频处理延时取决于射频拉远端的硬件能力 ,协议栈及编译码处理延时取决 于处理节点的软硬件处理能力, 这些延时都是相对固定的。 而压缩 /解压缩延 时取决于压缩 /解压缩模块的算法及实现, 上下行数据在传送网中的延时取决 于压缩后的数据量, 网络带宽, 网络设备能力, 网络拓朴等,这些延时受算法, 网络变化影响。每两个传输节点之间的传输延时取决于这两个节点之间传输数 据量、传输带宽及数据接收方处理的数据粒度。如果传输对端节点的数据处理 粒度为一个数据包, 传输延时为一个数据包的传输延时, 即数据包长度 /传输 带宽; 如果传输对端节点的数据处理粒度为一个子帧的数据, 则传输延时为一 个子帧经压缩后的数据量 /传输带宽。 网络设备转发延时, 为单交换节点转发 延时与节点数的乘积。 对于传播延时, 如光纤中信号传播延时为 5us与光纤长 度的乘积。
其中, 所述处理节点可以为基站、 本地计算中心或集中计算中心等。 所述 上行数据由所述用户端发送, 所述上行数据的反馈信息由所述处理节点反馈, 所述反馈信息为所述处理节点是否成功收到所述用户端发送的所述上行数据 的信息。
102、 所述处理节点将所述目标时间与空口传输传播延时相加得到反馈时 延。
其中,所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数 述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。
本发明实施例提供一种反馈时延的获取装置,如图 2所示, 所述装置包括: 获取单元 21、 计算单元 22。
获取单元 21 ,用于获取从射频拉远端收到上行数据到所述射频拉远端向用 户端发送所述上行数据的反馈信息过程中的目标时间。
具体地, 所述目标时间为所述射频拉远端的中射频处理及压缩延时, 上行 数据经过传送网的传输传播延时, 所述处理节点的上行数据解压缩、协议栈处 理、 译码处理及下行数据压缩、 编码处理延时, 下行数据经过传送网的传输传 播延时, 所述射频拉远端解压缩及中射频处理延时中的所有延时之和。
其中, 所述装置的实体可以为基站、 本地计算中心或集中计算中心等。 所 述上行数据由所述用户端发送, 所述上行数据的反馈信息由所述处理节点反 馈,所述反馈信息为所述处理节点是否成功收到所述用户端发送的所述上行数 据的信息。
计算单元 22 ,用于将所述获取单元 21获取的目标时间与空口传输传播延时 相加得到反馈时延。
其中,所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数 述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。
本发明实施例提供一种反馈时延的获取系统,如图 3所示, 所述系统包括: 处理节点 31、 用户端 32和射频拉远端 33。
所述处理节点 31 ,用于获取从射频拉远端收到上行数据到所述射频拉远端 向与所述处理节点 31对应的用户端发送所述上行数据的反馈信息过程中的目 标时间。
所述用户端 32 , 用于向所述射频拉远端发送上行数据。 所述处理节点 31 ,还可以用于将所述目标时间与空口传输传播延时相加得 到反馈时延。
具体地, 所述目标时间为所述射频拉远端的中射频处理及压缩延时, 上行 数据经过传送网的传输传播延时, 所述处理节点的上行数据解压缩、协议栈处 理、 译码处理及下行数据压缩、 编码处理延时, 下行数据经过传送网的传输传 播延时, 所述射频拉远端解压缩及中射频处理延时中的所有延时之和。
其中,所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数 述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。
本发明实施例提供另一种反馈时延的获取方法, 如图 4所示, 所述方法包 括:
401、 处理节点在没有下行数据发送的子帧上向射频拉远端发送一个子帧 的下行探测数据后, 获取发送所述下行探测数据的时间。
402、 所述处理节点接收到所述射频拉远端在空口下行子帧上发送的一个 子帧的上行探测数据后, 获取接收到所述上行探测数据的时间。
403、 所述处理节点指示所述射频拉远端反馈在所述射频拉远端所需的处 理所述上行探测数据和所述下行探测数据的时间。
404、 所述处理节点接收所述射频拉远端发送的在所述射频拉远端所需的 处理所述上行探测数据和所述下行探测数据的时间。
405、 所述处理节点根据所述上行数据和所述下行数据的往返时间和所述 射频拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述下 行探测数据的时间, 计算反馈时延。
其中,所述反馈时延为与所述处理节点对应的用户端发送上行数据到所述 射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。所述上 行数据和所述下行数据的往返时间为所述处理节点发送所述下行探测数据的 时间与所述处理节点接收到所述上行探测数据的时间的时间差。 具体地, 根据公式 T=T1+T2+T3计算所述反馈时延。
其中, T1为所述上行数据和所述下行数据的往返时间, Τ2为所述射频拉远 端需要处理所述上行探测数据和所述下行探测数据的时间, Τ3为所述处理节点 需要处理所述上行探测数据和所述下行探测数据的时间, Τ为所述反馈时延。
本发明实施例提供另一种反馈时延的获取装置, 如图 5所示, 所述装置包 括: 发送获取单元 51、 接收获取单元 52、 指示单元 53、 计算单元 54。
发送获取单元 51 ,用于在没有下行数据发送的子帧上向射频拉远端发送一 个子帧的下行探测数据后, 获取发送所述下行探测数据的时间。
接收获取单元 52 ,用于接收到所述射频拉远端在空口下行子帧上发送的一 个子帧的上行探测数据后, 获取接收到所述上行探测数据的时间。
所述接收获取单元 52 ,还用于接收所述射频拉远端发送的在所述射频拉远 端等待发送所述上行探测数据的时间和所需的处理所述上行探测数据和所述 下行探测数据的时间。
指示单元 53 ,用于指示所述射频拉远端反馈在所述射频拉远端所需的处理 所述上行探测数据和所述下行探测数据的时间。
计算单元 54 ,用于根据所述上行数据和所述下行数据的往返时间和所述射 频拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述下行 探测数据的时间, 计算反馈时延。
其中,所述反馈时延为与所述处理节点对应的用户端发送上行数据到所述 射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。所述上 行数据和所述下行数据的往返时间为所述处理节点发送所述下行探测数据的 时间与所述处理节点接收到所述上行探测数据的时间的时间差。 所述计算单元 54 , 具体可以用于根据公式 T=T1+T2+T3计算所述反馈时延。 其中, T1为所述上行数据和所述下行数据的往返时间, Τ2为所述射频拉远 端需要处理所述上行探测数据和所述下行探测数据的时间, Τ3为所述处理节点 需要处理所述上行探测数据和所述下行探测数据的时间, Τ为所述反馈时延。
本发明实施例提供另一种反馈时延的获取系统, 如图 6所示, 所述系统包 括: 处理节点 61、 射频拉远端 62。
所述处理节点 61 ,用于在没有下行数据发送的子帧上向射频拉远端 62发送 一个子帧的下行探测数据后, 获取发送所述下行探测数据的时间。
所述处理节点 61 ,还用于接收到所述射频拉远端 62在空口下行子帧上发送 的一个子帧的上行探测数据后, 获取接收到所述上行探测数据的时间。
所述处理节点 61 ,还用于根据所述上行数据和所述下行数据的往返时间和 所述射频拉远端 62发送的在所述射频拉远端 62所需的处理所述上行探测数据 和所述下行探测数据的时间, 计算反馈时延。
其中,所述反馈时延为与所述处理节点 61对应的用户端发送上行数据到所 述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延时。所述 上行数据和所述下行数据的往返时间为所述处理节点发送所述下行探测数据 的时间与所述处理节点接收到所述上行探测数据的时间的时间差。
所述处理节点 61 , 具体可以用于根据公式 Τ=Τ1+Τ2+Τ3计算所述反馈时延。 其中, T1为所述上行数据和所述下行数据的往返时间, Τ2为所述射频拉远 端 62需要处理所述上行探测数据和所述下行探测数据的时间, Τ3为所述处理节 点 61需要处理所述上行探测数据和所述下行探测数据的时间, Τ为所述反馈时 延。 所述射频拉远端 62 ,用于根据所述处理节点 61的指示反馈在所述射频拉远 端 62所需的处理所述上行探测数据和所述下行探测数据的时间。 在本发明实施例中,当处理节点采用传统分布式基站架构或单层的集中式 基站架构时, 如果用户端业务属于高带宽实时视频业务或实时交互类业务等, 则处理节点为用户端分配由处理节点获得的该用户端发送的上行数据对应的 反馈信息的反馈时延; 对其余用户端业务, 分配的上行数据对应的反馈信息的 反馈时延可以为大于或等于由处理节点获得的该用户端的上行数据对应的反 馈信息的反馈时延, 因为对于不需要 4艮高实时性的用户端业务, 当网络比较繁 忙时,可以增加其上行数据对应的反馈信息的反馈时延来减少该用户端业务对 网络资源的利用, 从而为实时性要求高的用户端业务提供更多的网络资源。 当所述处理节点采用分层式架构时,所述处理节点可以由本地计算中心和 集中计算中心组成。根据系统容量最大化和计算容量均衡的原则将用户端业务 分配在集中计算中心或本地计算中心进行处理。例如小区边缘用户由于干扰严 重, 可以尽量考虑在集中计算中心进行处理。 而对于小区中心用户, 其受干扰 较小, 可以优先考虑在本地计算中心进行处理。 同时, 用户业务处理节点的划 分还需要考虑本地计算中心和集中计算中心的计算能力,如部分小区边缘用户 业务可能由于集中计算中心的能力不足而下移到本地计算中心进行处理, 同 样,部分小区中心用户业务也可能由于本地计算中心的能力不足而上移到集中 计算中心处理。 其中, 所述本地计算中心能够处理的用户端业务的上行数据对 应的反馈信息的反馈时延大于等于所述本地计算中心能够为用户端分配的反 馈时延,所述集中计算中心能够处理的用户端业务的上行数据对应的反馈信息 的反馈时延大于等于所述集中计算中心能够为用户端分配的反馈时延。 本发明实施例提供的方法还具有后向兼容性。例如, 处理节点对第一次上 行快速自动重传 HARQ传输分配在第一次上行重传的反馈时间点上进行反馈信 息反馈,如在图 7所示的频分双工长期演进 FDD-LTE系统中,假设上行 HARQ的反 馈信息的反馈时延大于 3ms小于等于 1 1ms ,第一帧第 0个子帧的上行数据分配在 第二帧第 2个子帧反馈。 由于用户端在首次传输的反馈时间, 即第一帧的第 4 个子帧, 没有收到反馈信息反馈, HARQ实体默认为反馈信息为没有接收到上行 数据,将使用前一次分配的时频资源在第一帧的第 8个子帧发起非自适应重传。 如果第一次传输正确,处理节点对第一次重传收到的数据直接丢弃,不做处理; 如果第一次传输错误,处理节点对第一次上行 HARQ重传分配在第二次上行重传 的反馈时间点上进行反馈信息反馈, 以此类推直到达到最大重传次数。如果上 行 HARQ的反馈信息的反馈时延更大,如大于 1 1ms , 则处理节点对首次传输分配 在第二次或第 m次(m小于等于系统允许的最大重传次数)上行重传的反馈时间 点后进行反馈信息反馈。图 8描述了时分双工长期演进 TDD-LTE系统中上下行配 比为 2: 2时的上行 HARQ时序。
本发明实施例提供的反馈时延的获取方法、 装置及系统可用于长期演进
LTE系统,但不限于 LTE系统,还可以用于其它反馈信息的反馈时间点固定的系 统。
本发明实施例提供的反馈时延的获取方法、装置及系统,处理节点通过获 取从用户端向射频拉远端发送上行数据,到射频拉远端向用户端发送所述上行 数据的反馈信息过程中的延时, 从而解决了用户端上行业务数据传输过程中, 由于压缩 /解压缩、 传送网等引入的额外时延, 造成的 HARQ时序混乱, 同时还 会增加不必要的重传的问题。 本发明实施例提供的反馈时延的获取装置及系统可以实现上述提供的方 法实施例, 具体功能实现请参见方法实施例中的说明, 在此不再赘述。 本发明 实施例提供的反馈时延的获取方法、装置及系统可以适用于通信系统领域,但 不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围 应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种反馈时延的获取方法, 其特征在于, 包括:
处理节点获取从射频拉远端收到上行数据到所述射频拉远端向与所述处 理节点对应的用户端发送所述上行数据的反馈信息过程中的目标时间,所述上 行数据由所述用户端发送,所述上行数据的反馈信息由所述处理节点反馈给所 述射频拉远端,所述反馈信息为所述处理节点是否成功收到所述用户端发送的 所述上行数据的信息;
所述处理节点将所述目标时间与空口传输传播延时相加得到反馈时延,所 述空口传输传播延时为所述用户端向所述射频拉远端发送上行数据过程中的 传输延时; 所述反馈时延为从所述用户端向所述射频拉远端发送所述上行数 据,到所述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延 时。
2、 根据权利要求 1所述的反馈时延的获取方法, 其特征在于, 所述处理节 点获取从射频拉远端收到上行数据到所述射频拉远端向与所述处理节点对应 的用户端发送所述上行数据的反馈信息过程中的目标时间具体包括:
获取从射频拉远端收到上行数据到所述射频拉远端向与所述处理节点对 应的用户端发送所述上行数据的反馈信息过程中的射频拉远端的中射频处理 及压缩延时, 上行数据经过传送网的传输传播延时, 所述处理节点的上行数据 解压缩、 协议栈处理、 译码处理及下行数据压缩、 编码处理延时, 下行数据经 过传送网的传输传播延时,所述射频拉远端解压缩及中射频处理延时之和作为 所述目标时间。
3、 一种反馈时延的获取方法, 其特征在于, 包括: 处理节点在没有下行数据发送的子帧上向射频拉远端发送一个子帧的下 行探测数据后, 获取发送所述下行探测数据的时间;
所述处理节点接收到所述射频拉远端在空口下行子帧上发送的一个子帧 的上行探测数据后, 获取接收到所述上行探测数据的时间;
所述处理节点指示所述射频拉远端反馈在所述射频拉远端所需的处理所 述上行探测数据和所述下行探测数据的时间;
所述处理节点接收所述射频拉远端发送的在所述射频拉远端所需的处理 所述上行探测数据和所述下行探测数据的时间;
所述处理节点根据所述上行数据和所述下行数据的往返时间和所述射频 拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述下行探 测数据的时间, 计算反馈时延。 其中, 所述上行数据和所述下行数据的往返时 上行探测数据的时间的时间差;所述反馈时延为从与所述处理节点对应的用户 端向所述射频拉远端发送上行数据,到所述射频拉远端向所述用户端发送所述 上行数据的反馈信息过程中的延时。
4、 根据权利要求 3所述的反馈时延的获取方法, 其特征在于, 所述处理节 点根据所述上行数据和所述下行数据的往返时间和所述射频拉远端发送的在 所述射频拉远端等待发送所述上行探测数据的时间和所需的处理所述上行探 测数据和所述下行探测数据的时间, 计算反馈时延包括:
根据公式 T=T1+T2+T3计算所述反馈时延;
其中, T1为所述上行数据和所述下行数据的往返时间, Τ2为所述射频拉远 端需要处理所述上行探测数据和所述下行探测数据的时间, Τ3为所述处理节点 需要处理所述上行探测数据和所述下行探测数据的时间, T为所述反馈时延。
5、 一种反馈时延的获取装置, 其特征在于, 包括:
获取单元,用于获取从射频拉远端收到上行数据到所述射频拉远端向用户 端发送所述上行数据的反馈信息过程中的目标时间;
计算单元, 用于将所述目标时间与空口传输传播延时相加得到反馈时延, 所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数据过程中 的传输延时。所述反馈时延为从所述用户端向所述射频拉远端发送所述上行数 据,到所述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中的延 时。
6、 根据权利要求 5所述的反馈时延的获取装置, 其特征在于,
所述获取单元,还用于获取从射频拉远端收到上行数据到所述射频拉远端 向与所述处理节点对应的用户端发送所述上行数据的反馈信息过程中的射频 拉远端的中射频处理及压缩延时, 上行数据经过传送网的传输传播延时,所述 处理节点的上行数据解压缩、 协议栈处理、译码处理及下行数据压缩、 编码处 理延时, 下行数据经过传送网的传输传播延时, 所述射频拉远端解压缩及中射 频处理延时之和作为所述目标时间。
7、 一种反馈时延的获取装置, 其特征在于, 包括:
发送获取单元,用于在没有下行数据发送的子帧上向射频拉远端发送一个 子帧的下行探测数据后, 获取发送所述下行探测数据的时间;
接收获取单元,用于接收到所述射频拉远端在空口下行子帧上发送的一个 子帧的上行探测数据后, 获取接收到所述上行探测数据的时间;
指示单元,用于指示所述射频拉远端反馈在所述射频拉远端所需的处理所 述上行探测数据和所述下行探测数据的时间;
所述接收获取单元,还用于接收所述射频拉远端发送的在所述射频拉远端 所需的处理所述上行探测数据和所述下行探测数据的时间;
计算单元,用于根据所述上行数据和所述下行数据的往返时间和所述射频 拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述下行探 测数据的时间, 计算反馈时延;
其中,所述上行数据和所述下行数据的往返时间为所述处理节点发送所述 下行探测数据的时间与所述处理节点接收到所述上行探测数据的时间的时间 差;所述反馈时延为从与所述处理节点对应的用户端向所述射频拉远端发送上 行数据,到所述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中 的延时。
8、 根据权利要求 7所述的反馈时延的获取装置, 其特征在于,
所述计算单元还用于根据公式了=1 +了2+了3计算所述反馈时延;
其中, T1为所述上行数据和所述下行数据的往返时间, T2为所述射频拉远 端需要处理所述上行探测数据和所述下行探测数据的时间, T3为所述处理节点 需要处理所述上行探测数据和所述下行探测数据的时间, T为所述反馈时延。
9、 一种反馈时延的获取系统, 其特征在于, 包括: 处理节点、 射频拉远 端和用户端;
所述处理节点,用于获取从射频拉远端收到上行数据到所述射频拉远端向 与所述处理节点对应的用户端发送所述上行数据的反馈信息过程中的目标时 间;
所述用户端, 用于向所述射频拉远端发送上行数据; 所述射频拉远端, 用于向所述用户端发送所述上行数据的反馈信息; 所述处理节点,还用于将所述目标时间与空口传输传播延时相加得到反馈 时延,所述空口传输传播延时为所述用户端向所述射频拉远端发送上行数据过 程中的传输延时。所述反馈时延为从所述用户端向所述射频拉远端发送所述上 行数据,到所述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中 的延时。
10、 根据权利要求 9所述的反馈时延的获取系统, 其特征在于,
所述处理节点,还用于获取从射频拉远端收到上行数据到所述射频拉远端 向与所述处理节点对应的用户端发送所述上行数据的反馈信息过程中的射频 拉远端的中射频处理及压缩延时, 上行数据经过传送网的传输传播延时,所述 处理节点的上行数据解压缩、 协议栈处理、译码处理及下行数据压缩、 编码处 理延时, 下行数据经过传送网的传输传播延时, 所述射频拉远端解压缩及中射 频处理延时之和作为所述目标时间。
11、 一种反馈时延的获取系统, 其特征在于, 包括: 处理节点、 射频拉远 端;
所述处理节点,用于在没有下行数据发送的子帧上向射频拉远端发送一个 子帧的下行探测数据后, 获取发送所述下行探测数据的时间;
所述处理节点,还用于接收到所述射频拉远端在空口下行子帧上发送的一 个子帧的上行探测数据后, 获取接收到所述上行探测数据的时间;
所述射频拉远端,用于根据所述处理节点的指示反馈在所述射频拉远端所 需的处理所述上行探测数据和所述下行探测数据的时间;
所述处理节点,还用于根据所述上行数据和所述下行数据的往返时间和所 述射频拉远端发送的在所述射频拉远端所需的处理所述上行探测数据和所述 下行探测数据的时间, 计算反馈时延;
其中,所述上行数据和所述下行数据的往返时间为所述处理节点发送所述 下行探测数据的时间与所述处理节点接收到所述上行探测数据的时间的时间 差;所述反馈时延为从与所述处理节点对应的用户端向所述射频拉远端发送上 行数据,到所述射频拉远端向所述用户端发送所述上行数据的反馈信息过程中 的延时。
12、 根据权利要求 11所述的反馈时延的获取系统, 其特征在于, 所述处理节点, 还用于根据公式 T=T1+T2+T3计算所述反馈时延; 其中, T1为所述上行数据和所述下行数据的往返时间, Τ2为所述射频拉 远端需要处理所述上行探测数据和所述下行探测数据的时间, Τ3 为所述处理 节点需要处理所述上行探测数据和所述下行探测数据的时间, Τ为所述反馈时 延。
PCT/CN2012/076026 2011-12-28 2012-05-25 反馈时延的获取方法、装置及系统 WO2013097412A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12863243.7A EP2779783A4 (en) 2011-12-28 2012-05-25 METHOD, DEVICE AND SYSTEM FOR DETECTING A FEEDBACK DELAY
US13/715,349 US8917621B2 (en) 2011-12-28 2012-12-14 Method and apparatus for obtaining feedback delay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110447835.8A CN103188054B (zh) 2011-12-28 2011-12-28 反馈时延的获取方法、装置及系统
CN201110447835.8 2011-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/715,349 Continuation US8917621B2 (en) 2011-12-28 2012-12-14 Method and apparatus for obtaining feedback delay

Publications (1)

Publication Number Publication Date
WO2013097412A1 true WO2013097412A1 (zh) 2013-07-04

Family

ID=48679028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076026 WO2013097412A1 (zh) 2011-12-28 2012-05-25 反馈时延的获取方法、装置及系统

Country Status (3)

Country Link
EP (1) EP2779783A4 (zh)
CN (1) CN103188054B (zh)
WO (1) WO2013097412A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066920A1 (zh) * 2013-11-11 2015-05-14 华为技术有限公司 上行混合自动重传请求的反馈方法、系统和相关设备
EP3098995B1 (en) 2014-03-10 2020-01-08 Huawei Technologies Co., Ltd. Data transmission method, sender device and receiver device
CN110971350B (zh) * 2018-09-28 2021-10-26 华为技术有限公司 数据传输方法、设备和系统
CN114641956A (zh) * 2019-11-08 2022-06-17 华为技术有限公司 一种确定数据传输反馈时延的方法及装置
CN112532738A (zh) * 2020-12-07 2021-03-19 百果园技术(新加坡)有限公司 链路确定方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030241A1 (en) * 2002-09-24 2004-04-08 Telefonaktiebolaget L M Ericsson (Publ) Synchronizing radio units in a main-remote radio base station and in a hybrid radio base station
CN101080031A (zh) * 2006-05-26 2007-11-28 大唐移动通信设备有限公司 基带拉远技术的智能天线校准系统及其方法
CN101136688A (zh) * 2006-08-31 2008-03-05 大唐移动通信设备有限公司 一种td-scdma系统拉远单元同步方法及装置
CN101674589A (zh) * 2009-09-30 2010-03-17 中兴通讯股份有限公司 发射通道延时测量方法和装置、发射链路延时补偿方法
CN101841935A (zh) * 2010-05-12 2010-09-22 新邮通信设备有限公司 一种单天线射频拉远单元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687607B2 (en) * 2003-10-08 2014-04-01 Qualcomm Incorporated Method and apparatus for feedback reporting in a wireless communications system
CN101043303A (zh) * 2006-03-20 2007-09-26 华为技术有限公司 在多输入多输出通信系统中混合重传的方法及系统
US8051353B2 (en) * 2006-11-08 2011-11-01 Motorola Mobility, Inc. HARQ transmission feedback for higher layer protocols in a communication system
CN102090087B (zh) * 2009-04-27 2013-06-05 华为技术有限公司 信息处理方法、系统及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030241A1 (en) * 2002-09-24 2004-04-08 Telefonaktiebolaget L M Ericsson (Publ) Synchronizing radio units in a main-remote radio base station and in a hybrid radio base station
CN101080031A (zh) * 2006-05-26 2007-11-28 大唐移动通信设备有限公司 基带拉远技术的智能天线校准系统及其方法
CN101136688A (zh) * 2006-08-31 2008-03-05 大唐移动通信设备有限公司 一种td-scdma系统拉远单元同步方法及装置
CN101674589A (zh) * 2009-09-30 2010-03-17 中兴通讯股份有限公司 发射通道延时测量方法和装置、发射链路延时补偿方法
CN101841935A (zh) * 2010-05-12 2010-09-22 新邮通信设备有限公司 一种单天线射频拉远单元

Also Published As

Publication number Publication date
EP2779783A1 (en) 2014-09-17
CN103188054A (zh) 2013-07-03
EP2779783A4 (en) 2015-10-07
CN103188054B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
US20220399949A1 (en) Multi-codeword transmission method and apparatus
CN107211323B (zh) 用于在无线lan多用户传输机会中传输数据的系统和方法
JP7426479B2 (ja) Harqプロセスごとにフィードバックを有効化/無効化するharqコードブック構築
US10374776B2 (en) Base station, user equipment for integrating multiple rats using carrier aggregation and methods thereof
WO2018228578A1 (zh) 一种通信方法及其装置
CN106171004B (zh) 一种rlc数据包分流方法及基站
WO2018184471A1 (zh) 一种发送调度信息的方法和网络设备
WO2013097412A1 (zh) 反馈时延的获取方法、装置及系统
CN110999467A (zh) 多业务标识符的聚合媒体访问控制协议数据单元传输
CN110506403A (zh) 用于无线设备的流控制
US10524256B2 (en) Method of adaptive TTI tuning
WO2016192517A1 (zh) 射频处理设备及处理方法
US8917621B2 (en) Method and apparatus for obtaining feedback delay
CN107371246B (zh) 一种业务数据的传输方法、终端及网络侧设备
KR102406264B1 (ko) 무선 통신 시스템에서 데이터 송신 속도를 제어하기 위한 장치 및 방법
EP3920592B1 (en) Switching method, apparatus and system in wireless communication system
US11546101B2 (en) Cloud-based Wi-Fi network system using immediate ACK in uplink data transmission
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
WO2019153285A1 (zh) Rlc实体的配置方法及相关设备
WO2021121053A1 (zh) 上行控制信道的传输方法、终端及基站
US20160219545A1 (en) Method and system for feeding back uplink hybrid automatic repeat request, and related device
EP3403436A1 (en) Method and network node for handling signals transmitted from wireless devices
US20100091741A1 (en) WiFi system and method with high-speed mobile voice and video data communication
US20220104290A1 (en) System and method for ultra low latency wireless media streaming
WO2024041295A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012863243

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE