WO2013097200A1 - 可调激光器、光网路设备及光网络系统 - Google Patents

可调激光器、光网路设备及光网络系统 Download PDF

Info

Publication number
WO2013097200A1
WO2013097200A1 PCT/CN2011/085084 CN2011085084W WO2013097200A1 WO 2013097200 A1 WO2013097200 A1 WO 2013097200A1 CN 2011085084 W CN2011085084 W CN 2011085084W WO 2013097200 A1 WO2013097200 A1 WO 2013097200A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
cavity
coupling
modulation
region
Prior art date
Application number
PCT/CN2011/085084
Other languages
English (en)
French (fr)
Inventor
刘德坤
徐之光
周小平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/085084 priority Critical patent/WO2013097200A1/zh
Priority to CN2011800038291A priority patent/CN102725925A/zh
Publication of WO2013097200A1 publication Critical patent/WO2013097200A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1007Branched waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • H01S5/0602Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region which is an umpumped part of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets

Definitions

  • the present invention relates to the field of optical fiber communication technologies, and in particular, to a tunable laser, an optical network device, and an optical network system.
  • Tunable lasers help maximize the use of existing fiber network resources. By dynamically providing bandwidth, traffic can be moved from a crowded channel to an unused channel to meet the needs of the Internet. Tunable lasers are also an important prerequisite for implementing fiber-optic networks based entirely on cross-connections, enabling quick and easy setup or change of optical paths. Tunable lasers, especially tunable lasers with small size, large tuning range and high power output, are used in a wide range of applications in the fields of biology, medical devices and fiber optic sensor networks.
  • the traditional tunable laser based on the refractive index tuning of the wavelength tuning region is limited by the adjustable refractive index of the material, which results in a limited wavelength range of the laser, and it is impossible to achieve a wide range of wavelength tuning.
  • Another tunable laser is based on the structure of the coupling cavity.
  • the two F-P cavities with mutual coupling are used to achieve a wide range of wavelength tuning based on the vernier effect, such as a tunable laser based on a V-coupling cavity and a Y-coupling cavity.
  • the tunable laser based on the coupling cavity uses the mode of the Fabry-Perot cavity to select the wavelength.
  • the cavity cannot be directly modulated. It is necessary to add a costly external modulator to realize the modulation and emission function of the signal.
  • the tunable laser that causes the coupling cavity is complicated in manufacturing process and high in cost.
  • the technical problem to be solved by the present invention is to provide a tunable laser which is a low-cost wavelength tunable laser with a direct modulation function.
  • the tunable laser of the present invention uses the following technical solution:
  • a tunable laser the tunable laser includes: a coupling cavity and a modulation zone, the coupling cavity is provided with three output ends, and the coupling cavity The opposite end of the at least one output end is a modulation area, and an end surface of any output end of the coupling cavity is opposite to an end surface of the modulation area and is at an acute angle to an end surface of the modulation area, and the coupling cavity is used to generate a specific a frequency optical signal, sent to the modulation area;
  • the modulation area is configured to adjust an intensity of an optical signal of a specific frequency transmitted by the coupling cavity.
  • An optical network system comprising: an optical line terminal, an optical distribution network, and at least one optical network unit, wherein the optical line terminal is connected to the at least one optical network unit through the optical distribution network,
  • the optical line termination and/or optical network unit includes any of the tunable lasers described above.
  • a modulation region is disposed at an opposite end of at least one output end of the coupling cavity of the tunable laser, and an end surface of the modulation region is opposite to an end surface of the output end of the coupling cavity and is at an acute angle, so that After the light emitted by the laser reaches the end face of the modulation zone, only a very small amount of light is reflected back into the coupling cavity, thereby avoiding affecting the output wavelength of the coupling cavity, and the modulation zone modulates the light entering the modulation zone and outputs it.
  • the tunable laser has a simple processing process, low production cost, high yield rate, and is easy to promote.
  • FIG. 1 is a schematic structural view 1 of a tunable laser in an embodiment of the present invention.
  • FIG. 2 is a schematic structural view 1 of a coupling cavity according to an embodiment of the present invention.
  • FIG. 3 is a top plan enlarged view of a portion A of FIG. 1 according to an embodiment of the present invention
  • Figure 4 is a front elevational view, partly in section A, of Figure 1 of the present invention.
  • FIG. 5 is a second schematic structural diagram of a tunable laser according to an embodiment of the present invention.
  • Figure 6 is a top plan enlarged view of the portion B of Figure 5 in the embodiment of the present invention.
  • Figure ⁇ is a front elevational view of the portion B of Figure 5 in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a positional relationship of a resonance frequency of a first optical cavity and a second optical cavity in an embodiment of the present invention, and a gain spectrum curve of a material gain window;
  • FIG. 9 is a structural diagram showing a tunable laser using a Mach-Zehnder modulator according to an embodiment of the present invention. Intention
  • FIG. 10 is a schematic structural diagram of a Mach-Zehnder modulator according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view 3 of a tunable laser in an embodiment of the present invention.
  • FIG. 12 is a schematic structural view 2 of a coupling cavity according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an optical network system according to an embodiment of the present invention.
  • 3 Mach-Zehnder modulator; 3a - Mach-Zehnder modulator 3b - the input of the Mach-Zehnder modulator;
  • Embodiments of the present invention provide a tunable laser that is a laser that can be tuned over a wide range of low-cost wavelengths with direct modulation.
  • the tunable laser includes: a coupling cavity 1 and a modulation zone 2, the coupling cavity 1 is provided with three output terminals, and the opposite end of at least one output end of the coupling cavity 1 is a modulation zone 2, in FIG. 1, at the three output terminals of the coupling cavity 1
  • the modulation area 2 is provided at the end, but in fact, since the physical characteristics of the frequency of the outgoing light at the three output ends of the coupling cavity 1 are the same, it is only necessary to be at the opposite end of one of the three output ends of the coupling cavity 1 according to the actual situation.
  • Set modulation area 2 is provided at the end, but in fact, since the physical characteristics of the frequency of the outgoing light at the three output ends of the coupling cavity 1 are the same, it is only necessary to be at the opposite end of one of the three output ends of the coupling cavity 1 according to the actual situation. Set modulation area 2.
  • An end surface of any output end of the coupling cavity 1 is opposite to an end surface of the modulation area 2 and is at an acute angle to an end surface of the modulation area 2, and the coupling cavity 1 is configured to generate an optical signal of a specific frequency and send it to The modulation area 2;
  • the end face of any output end of the coupling cavity 1 is perpendicular to the waveguide direction of the coupling cavity 1, and the waveguide direction is the transmission direction of the light in the coupling cavity 1, and the end face of any output end of the coupling cavity 1 can be inside the coupling cavity 1.
  • the light reaching the end face is reflected back all the way.
  • the end face of the coupling cavity 1 needs special treatment. After special treatment according to the actual needs, the end face of any output end of the coupling cavity 1 can reflect the original part of the light reaching the end face of the coupling cavity 1 back, and the rest of the light exits from the end face of the coupling cavity 1.
  • the end surface of the modulation region 2 and the end surface of any output end of the coupling cavity 1 are at an acute angle, the end surface of the modulation region 2 and the propagation direction of the outgoing light of the coupling cavity 1 are at an angle, which makes the arrival
  • the outgoing light of the coupling cavity 1 on the end face of the modulation zone 2 can be partially modulated into the modulation zone 2, and only a very small portion of the light reflected from the end face of the modulation zone 2 back to the end face of either output end of the coupling cavity 1 can Return to the coupling cavity 1.
  • the end face of the modulation zone 2 and the end face of any output end of the coupling cavity 1 there is a medium having a lower refractive index than the coupling cavity 1 and the modulation zone 2, and the purity of the medium may not reach 100%, and various kinds of Impurities, impurities will destroy the linear propagation of part of the light transmitted in the medium, diverging part of the light, reducing the light that eventually enters the modulation zone 2.
  • the end face of the modulation zone 2 should As close as possible to the end face of the output end of its opposite coupling cavity, the spacing between the end face of the modulation zone 2 and the end face of the output end of the opposing coupling cavity 1 is typically several meters, based on prior art processing techniques.
  • FIG. 7 is a partially enlarged front view of the B region of FIG. 5.
  • the end surface of the modulation region 2 and the output end of the coupling cavity 1 form an acute angle.
  • the three output ends of the coupling cavity 1 are respectively disposed at a coupling region formed by the first end 10a of the first optical resonant cavity 10 and the first end 10b of the second optical resonant cavity 11, The second end 10b of the first optical cavity 10 and the second end 11b of the second optical cavity 11.
  • the coupling cavity 1 includes a first optical tuning cavity 10 and a second optical tuning cavity 11, the first end 10a of the first optical resonant cavity 10 and the first end 11 a of the second optical resonant cavity 11 are close to each other A coupling region is formed.
  • the coupling cavity 1 has a "V" shape.
  • the first end 10a of the first optical cavity 10 and the first end 11a of the second optical cavity 11 are close to each other and even touch each other, and the evanescent wave coupling or the mode light field overlap each other, A portion of the light within an optical cavity 10 will enter the second optical cavity 11 for coupling. Similarly, a portion of the light within the second optical cavity 11 will enter the first optical cavity 10 for coupling.
  • the first optical cavity 10 includes a first gain region, the first gain region 101 is used to change the intensity of light in the first optical cavity 10, and an electrode is disposed on the top of the first gain region. 102.
  • the second optical cavity 11 includes a second gain region 111 and a wavelength tuning region 113 for changing the intensity of light in the second optical cavity 11 at the second gain
  • An electrode 112 is disposed on the region 111 for changing the wavelength of light in the second optical cavity 11, and an electrode 114 is disposed on the wavelength tuning region.
  • a constant current is injected from the electrode 102 and the electrode 112, and the constant current generates laser light in the first gain region 101 and the second gain region 111.
  • a pump gain is used to enhance the intensity of light within the first gain region 101 and the second gain region 111.
  • the electrode 114 injects a variable current or a variable voltage into the wavelength tuning region 113, the variable current or variable voltage being used to adjust the refractive index of the optical waveguide in the wavelength tuning region 113, Adjusting the refractive index of the optical waveguide to adjust the frequency of the light within the wavelength tuning region 113 ultimately achieves the purpose of adjusting the wavelength of light within the wavelength tuning region 113.
  • the refractive index variable wavelength tuning region 113 is located away from the coupling region Far, such that the change in refractive index hardly affects the coupling coefficient between the first optical cavity 10 and the second optical cavity 11.
  • the principle of coupling the light in the first optical cavity 10 and the second optical cavity 11 in the embodiment of the present invention is substantially as follows: as shown in FIG. 8, the first optical cavity 10 and the second optical
  • the resonant cavity 11 has a series of resonant peaks of light at equal intervals, and the frequency interval of the resonant peak of the first optical cavity 10 is Af, and the frequency interval of the resonant peak of the second optical cavity 11 is A f. Since the lengths of the first optical cavity 10 and the second optical cavity 11 are different, A f and A f are slightly different, which makes the frequency of the resonance peak at only one frequency in the material gain window of the coupling cavity 1 Fo just coincides.
  • the frequency of the outgoing light of the coupling cavity 1 is f0
  • the outgoing light of the frequency f0 enters the modulation zone 2, and is further processed by modulation, etc., and finally output by the tunable laser, that is, the frequency of the output light of the tunable laser is F0.
  • the interval between the resonance peaks of the mutually coincident frequencies of the two optical resonators is the free spectral range of the coupling cavity 1, which is A f c in FIG. 8 , in order to avoid the light having the resonance peak at two frequencies at the same time Excited, A f c must generally be greater than the width of the material gain window of the coupling cavity 1.
  • the tunable laser outputs only one frequency of light, which is the single mode of the tunable laser.
  • the length of the optical waveguide of the wavelength tuning region 114 of the second optical cavity 11 changes, and the resonance peak of the light of the two optical resonators At another frequency that is different from f0, the frequency of the light emitted by the final tunable laser also changes.
  • the modulation area 2 is used to adjust the intensity of the optical signal of a specific frequency transmitted by the coupling cavity 1.
  • the modulation zone 2 When the current in the modulation zone 2 is large, the modulation zone 2 outputs light of a relatively high intensity.
  • the modulation area 2 When the current on the modulation area 2 is small, the modulation area 2 outputs light having a relatively weak intensity, thereby achieving intensity modulation of the output light intensity.
  • the modulation zone 2 can be a modulator, such as a Mach-Zehnder modulator 3.
  • a schematic diagram of intensity modulation of light by the Mach-Zehnder modulator 3 is provided for the tunable laser. Specifically, as shown in FIG.
  • the light outputted from the two output ends 10b and 1 ib of the coupling cavity 1 passes through the input ends of the Mach-Zehnder modulator 3 3a and 3b which are at an angle to the output end of the coupling cavity 1 Mach-Zehnder modulator 3, in general, the two beams entering the Mach-Zehnder modulator 3 from the two inputs 3a and 3b have the same intensity, one of which reaches the light after passing through the optical waveguide 30 and the optical waveguide 31.
  • the waveguide 33, the other beam of light also reaches the optical waveguide 33 after passing through the optical waveguide 32, and the two beams of light merge at the optical waveguide 33.
  • the optical waveguides 30, 31 and 32 of the Mach-Zehnder modulator 3 are respectively provided with electrodes, and the length of each optical waveguide can be changed by changing the injection current or voltage of the corresponding electrode of each optical waveguide; The length of the light that changes the light passing through the optical waveguide.
  • the two beams of light After the two beams of light pass through the optical waveguides of different Mach-Zehnder modulators 3 and converge at the optical waveguide 33, if the phase difference between the two beams at 3c or 3d is an odd multiple of 180°, the two beams are mutually coherent Destructively, the intensity of the outgoing light at the output 3c or 3d of the Mach-Zehnder modulator 3 is very low; if there is no phase difference or phase difference between the two beams of 180. An even multiple of the two beams of light rises mutually, and the intensity of the outgoing light of the output 3 c or 3 d of the Mach-Zehnder modulator 3 is strong.
  • a modulation region is disposed at an opposite end of at least one output end of the coupling cavity of the tunable laser, and an end surface of the modulation region is opposite to an end surface of the output end of the coupling cavity and is at an acute angle, so that After the light emitted by the laser reaches the end face of the modulation zone, only a very small amount of light is reflected back into the coupling cavity, thereby avoiding affecting the output wavelength of the coupling cavity, and the modulation zone modulates the light entering the modulation zone and outputs it.
  • the tunable laser has a simple processing process, low production cost, high yield rate, and is easy to promote.
  • the embodiment of the present invention provides another tunable laser, the basic principle of which is basically the same as that of the first embodiment. The difference is only that the coupling cavity is arranged side by side by two resonant cavities, and a superposed waveguide forms a "Y" font. .
  • the coupling cavity 1 includes a first optical tuning cavity 10 and a second optical tuning cavity 11, a first end 10a of the first optical resonant cavity 10 and a second optical resonant cavity 11 The one ends 11a are close to each other and overlap to form a coupling region, and the first optical resonant cavity 10 and the second optical resonant cavity 11 are arranged side by side in a "Y" shape.
  • the electrode A constant current injected by the 102 and the electrode 112 generates a laser pumping gain in the first gain region 101 and the second gain region 111, respectively, for enhancing the first gain region 101 and the second gain region 111.
  • the electrode 114 injects a variable current or a variable voltage into the wavelength tuning region 113, the variable current or variable voltage being used to adjust the refractive index of the optical waveguide in the wavelength tuning region 113, Adjusting the refractive index of the optical waveguide to adjust the frequency of the light within the wavelength tuning region 113 ultimately achieves the purpose of adjusting the wavelength of light within the wavelength tuning region 113.
  • a modulation region is disposed at an opposite end of at least one output end of the coupling cavity of the tunable laser, and an end surface of the modulation region is opposite to an end surface of the output end of the coupling cavity and is at an acute angle, so that After the light emitted by the laser reaches the end face of the modulation zone, it can partially enter the modulation zone, but only a very small amount of light will return to the coupling cavity, and the modulation zone modulates the light entering the modulation zone and outputs it. Further, for the Y-type coupling cavity, the intensity modulation of the output light can also be realized by the Mach-Zehnder modulation region based on the same principle as in the first embodiment.
  • the tunable laser has a simple processing process, low production cost, high yield, and is easy to promote.
  • the optical network system 200 includes: an optical line terminal 202, an optical distribution network 206, and at least one optical network unit 208.
  • the optical line terminal 202 passes.
  • the optical distribution network 206 is coupled to the at least one optical network unit 208, and the optical line termination 202 and/or optical network unit 208 includes a tunable laser 204.
  • the tunable laser 204 includes: a coupling cavity 1 and a modulation zone 2 , the coupling cavity 1 is provided with three output ends, and the opposite end of at least one output end of the coupling cavity 1 is a modulation zone.
  • the modulation area 2 is disposed at the opposite ends of the three output ends of the coupling cavity 1, but in reality, since the physical characteristics of the outgoing light of the three output ends of the coupling cavity 1 are the same, it is only necessary to The actual situation sets the modulation zone 2 at the opposite end of one of the three outputs of the coupling cavity 1.
  • An end surface of any of the output ends of the coupling cavity 1 is opposite to an end surface of the modulation zone 2 and is at an acute angle to an end surface of the modulation zone 1.
  • the coupling cavity 1 is configured to generate an optical signal of a specific frequency and send it to The modulation area 2;
  • the end faces of any of the output ends of the coupling cavity 1 are perpendicular to the waveguide direction of the coupling cavity 1.
  • the direction of the waveguide is the direction of light transmission in the coupling cavity 1
  • the end face of any output end of the coupling cavity 1 can reflect all the light in the coupling cavity 1 to the end face, so that the light energy in the coupling cavity 1 is
  • the end face of the coupling cavity 1 needs special treatment. After special treatment according to actual needs, the end face of any output end of the coupling cavity 1 can reflect the original part of the light reaching the end face in the coupling cavity 1 back, and the rest of the light exits from the end face of the coupling cavity 1.
  • the modulation area 2 is configured to modulate the intensity of the optical signal of the specific frequency transmitted by the coupling cavity 1.
  • the end surface of the modulation region 2 and the end surface of any output end of the coupling cavity 1 are at an acute angle, the end surface of the modulation region 2 and the propagation direction of the outgoing light of the coupling cavity 1 are at an angle, which makes the arrival
  • the outgoing light of the coupling cavity 1 on the end face of the modulation zone 2 can be partially modulated into the modulation zone 2, and only a very small portion of the light reflected from the end face of the modulation zone 2 back to the end face of either output end of the coupling cavity 1 can Return to the coupling cavity 1.
  • the coupling cavity 1 includes a first optical cavity 10 and a second optical cavity 11.
  • the first optical cavity 10 and the second optical cavity 11 of the coupling cavity 1 have two discharge modes:
  • the first end 10a of the first optical cavity 10 and the first end 11a of the second optical cavity 11 are close to each other to form a coupling region, the first optical resonance
  • the cavity 10 and the second optical resonant cavity 11 are arranged side by side in a "V" shape.
  • the second type as shown in FIG. 12, the first end 10a of the first optical cavity 10 and the first end 11a of the second optical cavity 11 are close to each other and overlap to form a coupling region, the first The optical cavity 10 and the second optical cavity 11 are arranged side by side in a "Y" shape.
  • the three output ends of the coupling cavity 1 are respectively disposed at the first end 10a of the first optical resonant cavity 10 and the first end of the second optical resonant cavity 11 A coupling region formed by the end 11a, a second end 10b of the first optical resonant cavity 10, and a second end 11b of the second optical resonant cavity 11.
  • the first optical resonant cavity 10 includes a first gain region, and the first gain region 101 is used to change the intensity of light in the first optical resonant cavity 10,
  • An electrode 102 is disposed at the top of the first gain region.
  • the second optical cavity 11 includes a second gain region 111 and a wavelength tuning region 113 for changing the intensity of light in the second optical cavity 11 at the second gain
  • An electrode 112 is disposed on the region 111 for changing the wavelength of light in the second optical cavity 11, and an electrode 114 is disposed on the wavelength tuning region.
  • a constant current is injected from the electrode 102 and the electrode 112, and the constant current generates laser light in the first gain region 101 and the second gain region 111.
  • a pump gain is used to enhance the intensity of light within the first gain region 101 and the second gain region 111.
  • the electrode 114 injects a variable current or a variable voltage into the wavelength tuning region 113, the variable current or variable voltage being used to adjust the refractive index of the optical waveguide in the wavelength tuning region 113, Adjusting the refractive index of the optical waveguide to adjust the frequency of the light within the wavelength tuning region 113 ultimately achieves the purpose of adjusting the wavelength of light within the wavelength tuning region 113.
  • the refractive index variable wavelength tuning region 113 is located far from the coupling region, the change in refractive index hardly affects between the first optical resonant cavity 10 and the second optical resonant cavity 11. Coupling coefficient.
  • the modulation area 2 is used to adjust the intensity of the optical signal of a specific frequency transmitted by the coupling cavity 1.
  • the modulation zone 2 When the current in the modulation zone 2 is large, the modulation zone 2 outputs light of a relatively high intensity.
  • the modulation area 2 When the current on the modulation area 2 is small, the modulation area 2 outputs light having a relatively weak intensity, thereby achieving intensity modulation of the output light intensity.
  • the modulation area 2 in the embodiment of the present invention may be a modulator.
  • a modulation region is disposed at an opposite end of at least one output end of the coupling cavity of the tunable laser, and an end surface of the modulation region is opposite to an end surface of the output end of the coupling cavity and is at an acute angle, so that After the light emitted by the laser reaches the end face of the modulation zone, only a very small amount of light is reflected back into the coupling cavity, thereby avoiding affecting the output wavelength of the coupling cavity, and the modulation zone modulates the light entering the modulation zone and outputs it.
  • the tunable laser has a simple processing process, low production cost, high yield rate, and is easy to promote.
  • the invention can be implemented by means of software plus the necessary general hardware, and of course also by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

公开了一种可调激光器、光网络设备及光网络系统,属于光纤通信技术领域。可调激光器包括耦合腔(1)和调制区(2),耦合腔(1)设置有三个输出端,其中至少一个输出端的对端为调制区(2)。耦合腔(1)的任一输出端的端面与调制区(2)的端面相对,且与调制区(2)的端面成锐角。耦合腔(1)用于产生特定频率的光信号,发送给调制区(2);调制区(2),用于调制耦合腔(1)发送的特定频率的光信号的强度。该可调激光器具有直接调制功能,成本低且可大范围调谐波长,应用于单模可调激光器。

Description

可调激光器、 光网路设备及光网络系统 技术领域
本发明涉及光纤通信技术领域, 尤其涉及一种可调激光器、 光网路设 备及光网络系统。
背景技术
目前, 大多数现代电信系统均釆用光纤通信。 光纤网络提供了前所未 有的大容量和安装的灵活性, 可以支持不断发展的各种宽带应用。 可调激 光器可以帮助最大限度的利用现有的光纤网络资源。通过动态提供带宽可 以将流量从拥挤通道转移到未使用的通道, 从而满足互联网的需求。 可调 激光器也是实现完全基于互交的光纤网络的重要先决条件,可以快速简单 的建立或改变光路。 可调激光器, 特别是尺寸小、 调谐范围大和高功率输 出的可调激光器, 在生物、 医疗器械和光纤传感器网络等领域中有着广泛 的应用。
传统的单纯基于波长调谐区折射率调谐的可调激光器, 受材料折射率 的可调范围非常有限, 导致激光器的波长可调范围也很有限, 无法实现波 长大范围的调谐。 而传统的基于折射率差调谐的釆样布拉格反射光栅
( SG-DBR, Sample - Grating Distributed Bragg Reflector ) 激光器, 制作 工艺非常复杂, 所需用于调谐电极很多, 成本非常高昂。
另一种可调激光器基于耦合腔的结构, 利用两个带有互相耦合的 F - P腔基于游标效应实现波长大范围调谐, 例如基于 V型耦合腔、 Y型耦合 腔的可调激光器。 基于耦合腔的可调激光器是利用法布利-珀罗腔自身的 模式进行波长选择, 不能对谐振腔直接进行调制, 必须要额外增加成本高 昂的外调制器才能实现信号的调制以及发射功能,进而导致耦合腔的可调 激光器的制作工艺复杂, 成本高。
发明内容
本发明所要解决的技术问题在于提供一种可调激光器,为一种具有直 接调制功能的低成本波长可大范围调谐的激光器。 为解决上述技术问题, 本发明可调激光器釆用如下技术方案: 一种可调激光器, 所述可调激光器包括: 耦合腔和调制区, 所述耦合 腔设置有三个输出端, 所述耦合腔的至少一个输出端的对端为调制区, 所述耦合腔的任一输出端的端面与所述调制区的端面相对,且与所述 调制区的端面成锐角, 所述耦合腔, 用于产生特定频率的光信号, 发送给 所述调制区;
所述调制区, 用于调整所述耦合腔发送的特定频率的光信号的强度。 一种光网络设备, 所述光网络设备上述任意一种可调激光器。
一种光网络系统, 所述光网络系统包括: 光线路终端、 光分配网以及 至少一个光网络单元,所述光线路终端通过所述光分配网与所述至少一个 光网络单元连接, 所述光线路终端和 /或光网络单元包括上述任意一种可 调激光器。
在本实施例的技术方案中,在可调激光器的耦合腔的至少一个输出端 的对端设置调制区,所述调制区的端面与所述耦合腔的输出端的端面相对 并且成锐角,使得由可调激光器发出的光到达调制区的端面后, 只有极少 数的光会反射回耦合腔中, 从而避免影响耦合腔的输出波长, 调制区对进 入调制区的光进行调制后进行输出。 该可调激光器的加工工艺简单, 制作 成本低, 良品率高, 易于推广使用。
附图说明
图 1为本发明实施例中可调激光器结构示意图一;
图 2为本发明实施例中耦合腔结构示意图一;
图 3为本发明实施例中图 1的 A部分俯视放大图;
图 4为本发明实施例中图 1的 A部分正视放大图;
图 5为本发明实施例中可调激光器结构示意图二;
图 6为本发明实施例中图 5的 B部分俯视放大图;
图 Ί为本发明实施例中图 5的 B部分正视放大图;
图 8 为本发明实施例中第一光学谐振腔与第二光学谐振腔的谐振频 率位置关系的示意图, 以及材料增益窗口的增益光谱曲线;
图 9 为本发明实施例中利用马赫曾德调制器的可调激光器的结构示 意图;
图 10为本发明实施例中马赫曾德调制器的结构示意图;
图 11为本发明实施例中可调激光器结构示意图三;
图 12为本发明实施例中耦合腔结构示意图二;
图 13为本发明实施例中光网络系统结构示意图。
附图标记说明:
1一耦合腔; 2—调制区; 2a—调制区的端面
10—第一光学谐振腔; 10a—第一光学谐振腔 10b—第一光学谐振腔 的第一端; 的第二端;
101—第一增益区; 102—电极; I I一第二光学谐振腔; 11a—第二光学谐振腔 l ib—第二光学谐振腔 I I I 第二增益区; 的第一端; 的第二端;
112—电极; 113 波长调谐区; 114—电极;
3—马赫曾德调制器; 3a—马赫曾德调制器 3b—马赫曾德调制器 的输入端; 的输入端;
3c—马赫曾德调制器 3d—马赫曾德调制器 30〜33 马赫曾德调制 的输出端; 的输出端; 器的光波导。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而 不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有 做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范 围。
实施例一
本发明实施例提供一种可调激光器,为一种具有直接调制功能的低成 本波长可大范围调谐的激光器。
如图 1所示, 该可调激光器包括: 耦合腔 1和调制区 2 , 所述耦合腔 1设置有三个输出端, 所述耦合腔 1的至少一个输出端的对端为调制区 2 , 图 1 中, 在耦合腔 1的三个输出 端对端都设置有调制区 2 , 但实际上, 由于耦合腔 1的三个输出端的出射 光的频率等物理特性相同,故而只需根据实际情况在耦合腔 1的三个输出 端之一的对端设置调制区 2。
所述耦合腔 1的任一输出端的端面与所述调制区 2的端面相对,且与 所述调制区 2的端面成锐角,所述耦合腔 1 ,用于产生特定频率的光信号, 发送给所述调制区 2;
一般来说,耦合腔 1的任一输出端的端面均与耦合腔 1的波导方向垂 直, 波导方向即耦合腔 1 内光的传输方向,耦合腔 1的任一输出端的端面 能将耦合腔 1 内到达端面处的光全部原路反射回去, 为了使得耦合腔 1 内的光能从任一输出端出射,耦合腔 1的端面需要经过特殊处理。根据实 际需要经过特殊处理后,耦合腔 1的任一输出端的端面能将耦合腔 1 内到 达端面处的光部分原路反射回去, 其余光从耦合腔 1的端面出射。
在本发明实施例中,由于调制区 2的端面与耦合腔 1的任一输出端的 端面成锐角,调制区 2的端面与耦合腔 1的出射光的传播方向成一定的角 度,该角度使得到达调制区 2的端面上的耦合腔 1的出射光能够部分进入 调制区 2中进行调制,而由调制区 2的端面反射回所述耦合腔 1的任一输 出端的端面的光只有极少部分能够返回到耦合腔 1 中。
调制区 2的端面与耦合腔 1的任一输出端的端面之间存在空气等折射 率比耦合腔 1 以及调制区 2低的介质,由于介质的纯度不可能达到 100% , 其中必定会存在各种杂质, 杂质会破坏介质内传输的部分光的直线传播, 将部分光发散, 减少最终进入调制区 2 的光, 为了保证足够的耦合腔 1 的出射光进入调制区 2 , 调制区 2的端面应尽量靠近其相对的耦合腔的输 出端的端面, 基于现有的加工技术, 调制区 2的端面与其相对的耦合腔 1 的输出端的端面之间间隔通常为数 米。
所述可调激光器的耦合腔 1 和调制区 2可为图 1 所示, 也可为图 5 所示。 需要说明的是, 图 7为图 5 中 B 区域的局部放大正视图, 由图 7 可看出, 调制区 2的端面与所述耦合腔 1的输出端之间成锐角。 进一步地,所述耦合腔 1的三个输出端分别设置于所述第一光学谐振 腔 10的第一端 10a与所述第二光学谐振腔 11的第一端 10b形成的耦合区、 所述第一光学谐振腔 10的第二端 10b和所述第二光学谐振腔 11的第二端 l lb。
所述耦合腔 1 包括第一光学调谐腔 10和第二光学调谐腔 11 , 所述第 一光学谐振腔 10的第一端 10a与所述第二光学谐振腔 11的第一端 11 a相 互靠近形成耦合区。 所述耦合腔 1呈 "V" 字型。
如图 2所示, 第一光学谐振腔 10的第一端 10a和第二光学谐振腔 11 的第一端 11 a相互靠近甚至相互碰触,通过倏逝波耦合或模式光场相互重 叠,第一光学谐振腔 10内的一部分光会进入第二光学谐振腔 11 中进行耦 合, 同样的, 第二光学谐振腔 11 内的一部分光会进入第一光学谐振腔 10 中进行耦合。
所述第一光学谐振腔 10包括第一增益区, 所述第一增益区 101用于 改变所述第一光学谐振腔 10内的光的强度, 所述第一增益区的顶部设置 有一个电极 102。
所述第二光学谐振腔 11 包括第二增益区 111 和波长调谐区 113 , 所 述第二增益区 111用于改变所述第二光学谐振腔内 11 的光的强度, 在所 述第二增益区 111上设置有一个电极 112 , 所述波长调谐区 113用于改变 所述第二光学谐振腔 11 内的光的波长, 在所述波长调谐区上设置有一个 电极 114。
在本发明实施例中, 当所述可调激光器工作时, 从电极 102 和电极 112上注入恒定的电流, 该恒定电流在所述第一增益区 101和所述第二增 益区 111 内产生激光泵浦增益,用于增强所述第一增益区 101和所述第二 增益区 111 内的光的强度。 同时, 电极 114向所述波长调谐区 113注入可 变的电流或可变的电压,该可变的电流或可变的电压用于调节所述波长调 谐区 113 内的光波导的折射率,通过调节光波导的折射率进而调节所述波 长调谐区 113内的光的频率,最终达到调节所述波长调谐区 113 内的光的 波长的目的。
需要说明的是, 由于折射率可变的波长调谐区 113 位置离耦合区较 远, 使得其折射率的改变几乎不影响所述第一光学谐振腔 10和所述第二 光学谐振腔 11之间的耦合系数。
在本发明实施例中的所述第一光学谐振腔 10和所述第二光学谐振腔 11 内的光进行耦合的原理大致为: 由图 8所示, 第一光学谐振腔 10和第 二光学谐振腔 11 内都有一系列频率等间隔分布的光的谐振峰存在, 将第 一光学谐振腔 10的谐振峰的频率间隔命为 A f, 第二光学谐振腔 11 的谐 振峰的频率间隔命为 A f。 由于第一光学谐振腔 10和第二光学谐振腔 11 的长度不同, A f和 A f略有差异, 这使得在耦合腔 1的材料增益窗口内, 两者只有一个频率处的谐振峰的频率 fo恰好重合。
此时, 耦合腔 1 的出射光的频率为 f0 , 频率为 f0的出射光进入调制 区 2后, 经过调制等进一步的操作, 最终由可调激光器输出, 即可调激光 器的输出光的频率为 f0。
进一步地,两个光学谐振腔的互相重合的频率的谐振峰之间的间隔为 耦合腔 1的自由光谱范围, 为图 8中的 A fc , 为了避免同时有两个频率处 的谐振峰的光被激发, A fc —般必须大于耦合腔 1 的材料增益窗口的宽 度。 此时, 可调激光器输出的只有一个频率的光, 此为可调激光器的单模 性。
当通过改变第二光学谐振腔 11的波长调谐区 114的注入电流或注入 电压时, 第二光学谐振腔 11 的波长调谐区 114光波导长度会发生变化, 两个光学谐振腔的光的谐振峰会在另一个与 f0不同的频率处重合, 则最 终可调激光器发出的光的频率也发生变化。
在本发明实施例中, 所述调制区 2 , 用于调整所述耦合腔 1发送的特 定频率的光信号的强度。当需要对耦合腔 1输出端输出的光进行强度调制 时, 只需要改变调制区 2上的注入电流, 当调制区 2上的电流较大时, 调 制区 2则输出强度比较高的光。 当调制区 2上的电流较小时, 调制区 2 则输出强度比较弱的光, 从而实现输出光强的强度调制。
对由耦合腔 1输出端输出的光进行强度调制时,所述调制区 2可为调 制器, 例如为马赫曾德调制器 3。 如图 9所示, 为所述可调激光器利用马 赫曾德调制器 3对光进行强度调制的示意图。 具体如图 10所示, 由耦合腔 1的两个输出端 10b与 l ib输出的光通 过马赫曾德调制器 3的 3a和 3b两个与耦合腔 1的输出端成一定角度的输 入端进入马赫曾德调制器 3 , —般来说, 由 3a以及 3b两个输入端进入马 赫曾德调制器 3的两束光的强度相同, 其中一束光在经过光波导 30和光 波导 31后到达光波导 33 ,另一束光在经过光波导 32后也到达光波导 33 , 两束光在光波导 33处汇合。
所述马赫曾德调制器 3的光波导 30、 31和 32上分别设置有电极, 通 过改变每一个光波导的对应电极的注入电流或电压,可改变每一个光波导 的长度; 通过改变光波导的长度, 可改变通过光波导的光的相位。
两束光经过不同的马赫曾德调制器 3的光波导汇聚于光波导 33处后, 若两束光在 3c或者 3d处之间的相位差为 180° 的奇数倍, 则两束光相互 相干相消,所述马赫曾德调制器 3的输出端 3c或者 3d处出射光的强度很 低; 若两束光之间无相位差或相位差为 180。 的偶数倍, 两束光的互相相 干相涨,所述马赫曾德调制器 3的输出端 3 c或者 3 d的出射光的强度很强。
从而, 马赫曾德调制器 3实现对耦合腔 1输出的光的强度的调制。 在本实施例的技术方案中,在可调激光器的耦合腔的至少一个输出端 的对端设置调制区,所述调制区的端面与所述耦合腔的输出端的端面相对 并且成锐角,使得由可调激光器发出的光到达调制区的端面后, 只有极少 数的光会反射回耦合腔中, 从而避免影响耦合腔的输出波长, 调制区对进 入调制区的光进行调制后进行输出。 该可调激光器的加工工艺简单, 制作 成本低, 良品率高, 易于推广使用。
实施例二
本发明实施例提供了另外一种可调激光器,其基本原理与实施例一基 本相同, 区别仅在与该耦合腔由两个谐振腔并列排列, 经过一段重合的波 导构成一个 "Y" 字型。 如图 11 所示, 所述耦合腔 1 包括第一光学调谐 腔 10和第二光学调谐腔 11 , 所述第一光学谐振腔 10的第一端 10a与所 述第二光学谐振腔 11 的第一端 11 a相互靠近并重合形成耦合区, 所述第 一光学谐振腔 10和所述第二光学谐振腔 11并排呈 "Y"字型。
同样的原理, 在本发明实施例中, 当所述可调激光器工作时, 由电极 102和电极 112注入的恒定电流分别在所述第一增益区 101和所述第二增 益区 111 内产生激光泵浦增益,用于增强所述第一增益区 101和所述第二 增益区 111 内的光的强度。 同时, 电极 114向所述波长调谐区 113注入可 变的电流或可变的电压,该可变的电流或可变的电压用于调节所述波长调 谐区 113内的光波导的折射率,通过调节光波导的折射率进而调节所述波 长调谐区 113内的光的频率,最终达到调节所述波长调谐区 113 内的光的 波长的目的。
在本实施例的技术方案中,在可调激光器的耦合腔的至少一个输出端 的对端设置调制区,所述调制区的端面与所述耦合腔的输出端的端面相对 并且成锐角,使得由可调激光器发出的光到达调制区的端面后, 能够部分 进入调制区,但只有极少数的光会返回到耦合腔中, 调制区对进入调制区 的光进行调制后进行输出。 此外, 对于 Y型耦合腔, 也可以基于实施例 一同样的原理利用马赫曾德调制区实现对输出光的强度调制。该可调激光 器的加工工艺简单, 制作成本低, 良品率高, 易于推广使用。
实施例三
本发明实施例提供了一种光网络系统, 如图 13所示, 所述光网络系 统 200包括:光线路终端 202、光分配网 206以及至少一个光网络单元 208 , 所述光线路终端 202通过所述光分配网 206与所述至少一个光网络单元 208连接,所述光线路终端 202和 /或光网络单元 208包括可调激光器 204。
其中, 如图 1所示, 所述可调激光器 204包括: 耦合腔 1和调制区 2 , 所述耦合腔 1设置有三个输出端,所述耦合腔 1的至少一个输出端的对端 为调制区 2 , 图 1 中, 在耦合腔 1的三个输出端对端都设置有调制区 2 , 但实际上, 由于耦合腔 1的三个输出端的出射光的频率等物理特性相同, 故而只需根据实际情况在耦合腔 1 的三个输出端之一的对端设置调制区 2。
所述耦合腔 1的任一输出端的端面与所述调制区 2的端面相对,且与 所述调制区 1的端面成锐角,所述耦合腔 1 ,用于产生特定频率的光信号, 发送给所述调制区 2;
一般来说,耦合腔 1的任一输出端的端面均与耦合腔 1的波导方向垂 直, 波导方向即耦合腔 1 内光的传输方向,耦合腔 1的任一输出端的端面 能将耦合腔 1 内到达端面处的光全部原路反射回去, 为了使得耦合腔 1 内的光能从任一输出端出射,耦合腔 1的端面需要经过特殊处理。根据实 际需要经过特殊处理后,耦合腔 1的任一输出端的端面能将耦合腔 1 内到 达端面处的光部分原路反射回去, 其余光从耦合腔 1的端面出射。
所述调制区 2 , 用于调制所述耦合腔 1发送的特定频率的光信号的强 度。
在本发明实施例中,由于调制区 2的端面与耦合腔 1的任一输出端的 端面成锐角,调制区 2的端面与耦合腔 1的出射光的传播方向成一定的角 度,该角度使得到达调制区 2的端面上的耦合腔 1的出射光能够部分进入 调制区 2中进行调制,而由调制区 2的端面反射回所述耦合腔 1的任一输 出端的端面的光只有极少部分能够返回到耦合腔 1 中。
进一步的, 如图 1所示, 所述耦合腔 1 包括第一光学谐振腔 10和第 二光学谐振腔 11。
耦合腔 1的第一光学谐振腔 10和第二光学谐振腔 11具有两种排放方 式:
第一种: 如图 2所示, 所述第一光学谐振腔 10的第一端 10a与所述 第二光学谐振腔 11 的第一端 11 a相互靠近形成耦合区, 所述第一光学谐 振腔 10和所述第二光学谐振腔 11并排呈 "V" 字型。
第二种: 如图 12所示, 所述第一光学谐振腔 10的第一端 10a与所述 第二光学谐振腔 11 的第一端 11 a相互靠近并重合形成耦合区, 所述第一 光学谐振腔 10和所述第二光学谐振腔 11并排呈 "Y"字型。
具体地, 如图 2或图 12所示, 所述耦合腔 1的三个输出端分别设置 于所述第一光学谐振腔 10的第一端 10a与所述第二光学谐振腔 11的第一 端 11 a形成的耦合区、 所述第一光学谐振腔 10的第二端 10b和所述第二 光学谐振腔 11的第二端 l lb。
其中,如图 2或图 12所示,所述第一光学谐振腔 10包括第一增益区, 所述第一增益区 101用于改变所述第一光学谐振腔 10内的光的强度, 所 述第一增益区的顶部设置有一个电极 102。 所述第二光学谐振腔 11 包括第二增益区 111 和波长调谐区 113 , 所 述第二增益区 111用于改变所述第二光学谐振腔内 11 的光的强度, 在所 述第二增益区 111上设置有一个电极 112 , 所述波长调谐区 113用于改变 所述第二光学谐振腔 11 内的光的波长, 在所述波长调谐区上设置有一个 电极 114。
在本发明实施例中, 当所述可调激光器工作时, 从电极 102 和电极 112上注入恒定的电流, 该恒定电流在所述第一增益区 101和所述第二增 益区 111 内产生激光泵浦增益,用于增强所述第一增益区 101和所述第二 增益区 111 内的光的强度。 同时, 电极 114向所述波长调谐区 113注入可 变的电流或可变的电压,该可变的电流或可变的电压用于调节所述波长调 谐区 113内的光波导的折射率,通过调节光波导的折射率进而调节所述波 长调谐区 113内的光的频率,最终达到调节所述波长调谐区 113 内的光的 波长的目的。
需要说明的是, 由于折射率可变的波长调谐区 113 位置离耦合区较 远, 使得其折射率的改变几乎不影响所述第一光学谐振腔 10和所述第二 光学谐振腔 11之间的耦合系数。
在本发明实施例中, 所述调制区 2 , 用于调整所述耦合腔 1发送的特 定频率的光信号的强度。当需要对耦合腔 1输出端输出的光进行强度调制 时, 只需要改变调制区 2上的注入电流, 当调制区 2上的电流较大时, 调 制区 2则输出强度比较高的光。 当调制区 2上的电流较小时, 调制区 2 则输出强度比较弱的光, 从而实现输出光强的强度调制。
需要说明的是, 本发明实施例中的调制区 2可为调制器。
在本实施例的技术方案中,在可调激光器的耦合腔的至少一个输出端 的对端设置调制区,所述调制区的端面与所述耦合腔的输出端的端面相对 并且成锐角,使得由可调激光器发出的光到达调制区的端面后, 只有极少 数的光会反射回耦合腔中, 从而避免影响耦合腔的输出波长, 调制区对进 入调制区的光进行调制后进行输出。 该可调激光器的加工工艺简单, 制作 成本低, 良品率高, 易于推广使用。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到 本发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬 件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式 体现出来, 该计算机软件产品存储在可读取的存储介质中, 如计算机的软 盘, 硬盘或光盘等, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种可调激光器, 其特征在于, 所述可调激光器包括: 耦合 腔和调制区, 所述耦合腔设置有三个输出端, 所述耦合腔的至少一个 输出端的对端为调制区,
所述耦合腔的任一输出端的端面与所述调制区的端面相对,且与 所述调制区的端面成锐角,所述耦合腔,用于产生特定频率的光信号, 发送给所述调制区;
所述调制区,用于调制所述耦合腔发送的特定频率的光信号的强 度。
2、 根据权利要求 1所述的可调激光器, 其特征在于,
所述耦合腔包括第一光学谐振腔和第二光学谐振腔。
3、 根据权利要求 2所述的可调激光器, 其特征在于,
所述第一光学谐振腔的第一端与所述第二光学谐振腔的第一端 相互靠近形成耦合区, 所述第一光学谐振腔和所述第二光学谐振腔并 排呈 " V" 字型。
4、 根据权利要求 2所述的可调激光器, 其特征在于,
所述第一光学谐振腔的第一端与所述第二光学谐振腔的第一端 相互靠近并重合形成耦合区, 所述第一光学谐振腔和所述第二光学谐 振腔并排呈 " Y" 字型。
5、 根据权利要求 1至 4所述的可调激光器, 其特征在于, 所述耦合腔的三个输出端分别设置于所述第一光学谐振腔的第 一端与所述第二光学谐振腔的第一端形成的耦合区、 所述第一光学谐 振腔的第二端和所述第二光学谐振腔的第二端。
6、 根据权利要求 1至 4所述的可调激光器, 其特征在于, 所述第一光学谐振腔包括第一增益区,所述第一增益区用于改变 所述第一光学谐振腔内的光的强度。
7、 根据权利要求 1至 4所述的可调激光器, 其特征在于, 所述第二光学谐振腔包括第二增益区和波长调谐区,所述第二增 益区用于改变所述第二光学谐振腔内的光的强度, 所述波长调谐区用 于改变所述第二光学谐振腔内的光的波长。
8、 一种光网络设备, 其特征在于, 所述光网络设备包括如权利 要求 1 -7所述的任意一种可调激光器。
9、 一种光网络系统, 所述光网络系统包括: 光线路终端、 光分 配网以及至少一个光网络单元, 所述光线路终端通过所迷光分配网与 所述至少一个光网络单元连接, 其特征在于, 所述光线路终端和 /或 光网络单元包括如权利要求 1 -7所述的任意一种可调激光器。
PCT/CN2011/085084 2011-12-30 2011-12-30 可调激光器、光网路设备及光网络系统 WO2013097200A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/085084 WO2013097200A1 (zh) 2011-12-30 2011-12-30 可调激光器、光网路设备及光网络系统
CN2011800038291A CN102725925A (zh) 2011-12-30 2011-12-30 可调激光器、光网路设备及光网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/085084 WO2013097200A1 (zh) 2011-12-30 2011-12-30 可调激光器、光网路设备及光网络系统

Publications (1)

Publication Number Publication Date
WO2013097200A1 true WO2013097200A1 (zh) 2013-07-04

Family

ID=46950469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085084 WO2013097200A1 (zh) 2011-12-30 2011-12-30 可调激光器、光网路设备及光网络系统

Country Status (2)

Country Link
CN (1) CN102725925A (zh)
WO (1) WO2013097200A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319667A (en) * 1992-04-10 1994-06-07 Alcatel N.V. Tunable semiconductor laser
CN1639614A (zh) * 2002-02-25 2005-07-13 英特尔公司 用于对光发射模块进行集成的方法和装置
CN1949607A (zh) * 2006-11-09 2007-04-18 何建军 V型耦合腔波长可切换半导体激光器
CN101005196A (zh) * 2006-01-20 2007-07-25 中国科学院半导体研究所 波长可选分布反馈激光器二维阵列集成组件
CN101162829A (zh) * 2007-07-13 2008-04-16 昂纳明达数字显示技术(深圳)有限公司 大功率半导体激光器耦合封装组件
CN102036314A (zh) * 2009-09-28 2011-04-27 夏普株式会社 跨载频指示处理方法和用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129028B2 (ja) * 1993-05-28 2001-01-29 松下電器産業株式会社 短波長レーザ光源
KR100802199B1 (ko) * 2006-05-25 2008-03-17 정경희 광모듈 및 그 제조방법
CN102036134A (zh) * 2011-01-18 2011-04-27 北京邮电大学 基于正交频分复用的汇聚式光接入网系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319667A (en) * 1992-04-10 1994-06-07 Alcatel N.V. Tunable semiconductor laser
CN1639614A (zh) * 2002-02-25 2005-07-13 英特尔公司 用于对光发射模块进行集成的方法和装置
CN101005196A (zh) * 2006-01-20 2007-07-25 中国科学院半导体研究所 波长可选分布反馈激光器二维阵列集成组件
CN1949607A (zh) * 2006-11-09 2007-04-18 何建军 V型耦合腔波长可切换半导体激光器
CN101162829A (zh) * 2007-07-13 2008-04-16 昂纳明达数字显示技术(深圳)有限公司 大功率半导体激光器耦合封装组件
CN102036314A (zh) * 2009-09-28 2011-04-27 夏普株式会社 跨载频指示处理方法和用户设备

Also Published As

Publication number Publication date
CN102725925A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN102368582A (zh) 一种基于激光波长调节的频率宽带可调光电振荡器
CN102709811B (zh) 一种实现频率自锁定的分布反馈外腔窄线宽半导体激光器
WO2012162911A1 (zh) 一种外腔式可调谐激光器
US20170310075A1 (en) External cavity laser comprising a photonic crystal resonator
CN103337778A (zh) 频率调制单频光纤激光器
US20210234330A1 (en) A Transverse Mode Switchable All-Fiber High-Order Mode Brillouin Laser
CN104104011A (zh) 一种宽带可调谐激光器
CN101826699A (zh) 电吸收调制器与自脉动激光器单片集成器件的制作方法
CN104143757A (zh) 基于分布布拉格反射激光器的波长可调谐窄线宽光源
CN102280814A (zh) 基于环形激光器的宽带光混沌信号源芯片结构
CN104865714A (zh) 一种超宽光学频率梳的产生方法
CN102244353B (zh) 光频率间隔为25GHz的外腔式可调谐激光器
CN106654835B (zh) 多种子注入腔内差频实现多波长中红外光学参量振荡器
CN205212162U (zh) 基于波导结构的内调制太赫兹源
CN103688203A (zh) 波向量匹配的谐振器及总线波导系统
CN110729623A (zh) 一种微波源
JP2016018124A (ja) 光周波数コム発生装置
JP4635050B2 (ja) Y接合反射器による調整可能遅延または共振器導波路装置
CN201298658Y (zh) 基于半导体光放大器的外注入式线性腔主动锁模光纤激光器
CN203288929U (zh) 频率调制单频光纤激光器
WO2013097200A1 (zh) 可调激光器、光网路设备及光网络系统
CN202217910U (zh) 一种基于环形激光器的宽带光混沌信号源芯片结构
CN105449494B (zh) 基于波导结构的内调制太赫兹源及其内调制方法
CN108963726B (zh) 一种基于光谱分割的可重构光电振荡器
CN113131322B (zh) 一种锁模光纤激光器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003829.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878334

Country of ref document: EP

Kind code of ref document: A1