WO2013097148A1 - 一种多相流体旋流分离装置 - Google Patents

一种多相流体旋流分离装置 Download PDF

Info

Publication number
WO2013097148A1
WO2013097148A1 PCT/CN2011/084926 CN2011084926W WO2013097148A1 WO 2013097148 A1 WO2013097148 A1 WO 2013097148A1 CN 2011084926 W CN2011084926 W CN 2011084926W WO 2013097148 A1 WO2013097148 A1 WO 2013097148A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
valve
tube
separation tube
cylindrical
Prior art date
Application number
PCT/CN2011/084926
Other languages
English (en)
French (fr)
Inventor
刘文化
王娜
张鹏
陈火
黄鹏
张晓卫
Original Assignee
西安东风机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安东风机电有限公司 filed Critical 西安东风机电有限公司
Priority to CN201180046185.4A priority Critical patent/CN103459043B/zh
Priority to PCT/CN2011/084926 priority patent/WO2013097148A1/zh
Publication of WO2013097148A1 publication Critical patent/WO2013097148A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0217Separation of non-miscible liquids by centrifugal force

Definitions

  • Multiphase fluid cyclone separation device Multiphase fluid cyclone separation device
  • the invention relates to a multiphase fluid cyclone separation device, in particular to a multiphase fluid separated by two-stage mixed jet two-phase fluid to separate a multi-phase fluid with a large density difference.
  • the common oil and gas separation system separates the gas phase and the liquid phase extracted from the oil well, and separately measures the amount of liquid phase in the crude oil, the amount of gas phase, and the liquidus content of the liquid phase.
  • the production of oil the purpose of production measurement, support the oilfield information management and decision-making, measurement, control, increase the oil production to provide basis and guarantee.
  • the cyclone separator has been developed in large quantities due to its small volume, high separation speed and good separation effect.
  • the patent application number is 200610009659.9 (publication number CN1820816A).
  • the present invention provides a multi-phase fluid cyclone separation device with high measurement precision, small error and strong stability, and double-flow double separation.
  • the technical solution of the present invention is:
  • the present invention provides a multi-phase fluid cyclone separation device comprising a first-stage inclined pre-separation tube and a first-order vertical cyclone separation tube, the end tangential direction of the first-stage inclined pre-separation tube Injection into the first-stage vertical swirling separation pipe, which is special in that: the multi-phase fluid cyclone separation device further comprises a secondary inclined pre-separation pipe and a secondary vertical swirling separation pipe; the second-stage inclined pre-separation pipe Leading from the near end of the first-stage inclined pre-separation tube; the end of the second-stage inclined pre-separation tube is tangentially injected into the secondary vertical swirling separation tube.
  • the multiphase fluid cyclone separation device further includes a height difference conversion pipe; the height of the first stage inclined pre-separation pipe is higher than the height of the second-stage inclined pre-separation pipe; and the first-stage inclined pre-separation pipe passes the height difference conversion pipe and The secondary inclined pre-separation tube is mixed.
  • the first-stage inclined pre-separation tube is provided with a wire speed stabilization device at an entrance of the first-stage vertical cyclone separation tube; and the secondary vertical cyclone separation tube is provided with a forced spiral surface.
  • the above linear speed stabilizing device is a self-excited linear speed stabilizing device or a non-self-exciting feedback linear speed stabilizing device.
  • the linear speed stabilizing device is a self-excited linear speed stabilizing device
  • the linear speed stabilizing device is a planar reed valve piece mounted on the end of the first-stage inclined pre-separating tube, or is installed at the end of the first-stage inclined pre-separating tube.
  • the linear velocity stabilizing device is a planar reed valve plate mounted on the end of the first-stage inclined pre-separation tube, the linear velocity stabilizing device comprising a valve seat disposed on the end pipe wall of the first-stage inclined pre-separation pipe and a valve piece movably connected to the valve seat; the valve piece extends into the interior of the first vertical swirling separation pipe, and the valve plate and the inner wall of the first vertical swirling separation pipe together form a nozzle of the first-stage inclined pre-separating pipe;
  • An upper gap and a lower gap are respectively disposed between the upper and lower sides of the valve piece and the entrance port of the first vertical swirling separation tube; the upper gap is larger than the lower gap; the valve plate is in the free state and is located at the entrance port and a cylindrical thread of a vertical swirling separation tube inner wall cut point;
  • the linear speed stabilizing device is a cylindrical reed valve piece installed outside the end of the first-stage inclined pre-separating tube, the linear speed stabilizing device comprising a valve piece portion of a cylindrical reed valve piece and a cylindrical reed a cylindrical portion of the cylindrical reed valve piece of the valve piece of the valve piece; the cylindrical portion of the cylindrical reed valve piece is disposed on a pipe wall at the end of the first stage inclined pre-separation pipe; the cylindrical reed a valve piece portion of the valve piece extends into the interior of the first vertical swirling separation tube; a valve piece portion of the cylindrical reed valve piece and a An upper gap and a lower gap are respectively disposed between the entrances of the vertical spiral separation tubes; the upper and lower sides of the cylindrical portion of the cylindrical reed valve are equal to or slightly larger than the entrance of the first vertical swirling separation tube.
  • the height does not cover the entrance port; the dimension of the valve piece portion of the cylindrical reed valve piece is equal to or slightly smaller than the height of the entrance port of the first vertical swirling separation tube; the lower gap is larger than the upper gap; The valve piece portion of the cylindrical reed valve plate is in a free state close to the entrance port and perpendicular to the cylindrical line of the primary wall of the first-order swirling separation tube and maintains a minimum gap.
  • the valve portion of the above-mentioned cylindrical reed valve piece is a 45° cylindrical rotary plane valve, a 45° cylindrical rotary surface valve or an approximately triangular planar valve.
  • the non-self-exciting feedback linear speed stabilizing device is a flat head valve or a cylindrical surface rotating valve disposed at an end of the first stage inclined pre-separating tube;
  • the excitation feedback type linear speed stabilizing device is a flat head gate valve disposed at an end of the first stage inclined pre-separating tube, the flat head gate valve includes a valve head and an angular displacement gear;
  • the valve head includes a horizontal section and a vertical portion disposed with the horizontal section The horizontal section and the vertical section of the valve head are collectively L-shaped;
  • the angular displacement gear meshes with a vertical section of the valve head;
  • the horizontal section of the valve head extends into the interior of the first-stage vertical swirling separation tube,
  • the horizontal section of the valve head and the inner wall of the first vertical swirling separation tube together form a nozzle of the first-stage inclined pre-separation tube;
  • the non-self-exciting feedback type linear speed stabilizing device is a cylindrical surface rotating valve disposed at the end of the first-stage inclined pre-separating tube, wherein the cylindrical surface rotating valve comprises a cylindrical surface valve plate, a valve plate supporting turbine, an angular displacement driving worm, The turbine rotates the support rod and the support groove; the support groove is disposed on the first vertical swirling separation pipe; the turbine rotating support rod is disposed on the valve plate supporting turbine and extends into the support groove; the angular displacement drives the worm and The valve plate supporting the turbine meshes; the cylindrical valve plate is fixedly connected with the valve plate supporting turbine; the upper and lower gaps are respectively disposed between the upper and lower sides of the valve plate and the entrance port of the first vertical swirling separation tube;
  • the valve port of the cylindrical surface rotary valve is a convex curve, the convex curve is an asymmetrical curve and the apex is above the center line; and the convex curve is an approximately isosceles triangle.
  • the forced helix surface includes an upper spiral surface, a connecting tube and a lower spiral surface; the upper spiral surface is connected to the lower spiral surface through a connecting pipe; the end of the second inclined pre-separating tube is tangentially injected into the second vertical swirling separation a connecting pipe in the tube; a spiral direction of a lower helix surface of the forced helicoid surface is the same as a downward spiral direction formed when a jet incident to the second-order vertical swirling separation tube is incident; the forced spiral The spiral direction of the upper spiral surface of the face is opposite to the downward spiral direction formed when the jet incident to the secondary vertical swirl separation tube is incident.
  • the diameter of the upper spiral surface of the forced helicoid is smaller than the diameter of the lower spiral surface; the forced helix surface is integrally tapered in a plane passing through the plane of the secondary vertical separation tube axis; the forced spiral surface includes an outer edge and An inner edge different from the diameter of the outer edge; the outer edge of the forced spiral surface cooperates with the inner wall of the second-order vertical swirling separation tube and is clamped on the pipe wall; the inner edge of the forced spiral surface is in a free state; The outer edge of the helicoid is the same as the inner edge of the forced helicoid.
  • the horizontal half of the lower helix surface of the forced helicoidal surface is perpendicular to the horizontal perpendicular to the axis of the secondary vertical swirling separation tube by 6° to 10°; the right half of the lower helicoidal surface of the forced helicoidal surface is perpendicular to The horizontal angle of the axis of the secondary vertical swirling separation tube is -6° ⁇ -10°; the horizontal angle of the left half of the upper spiral surface of the forced spiral surface and the axis perpendicular to the axis of the secondary vertical swirling separation tube is 9° ⁇ 16°; the left half of the upper spiral surface of the forced helicoid is at an angle -9 to the horizontal perpendicular to the axis of the secondary vertical swirling separation tube. ⁇ - 16 0 .
  • a height difference conversion pipe is disposed upward at a position near the end of the primary pre-separation pipe, that is, a pre-separation of the conglomerate pipe, and most of the gas phase components which have been precipitated in the primary pre-separation pipe are introduced into the secondary pre-separation pipe.
  • the remaining fluid in the primary pre-separation tube enters the primary vertical cyclone separation tube from the jet opening at the end of the primary pre-separation tube, and forms an effective cyclonic separation by means of an appropriate jet line velocity.
  • the fluid in the secondary pre-separation tube is pre-separated and then enters the secondary vertical cyclone separation tube from the jet port at the end of the secondary pre-separation tube.
  • the liquid phase separated from the first-stage vertical cyclone separation tube and the liquid phase separated from the two-stage vertical cyclone separation tube merge from the lower end through the control system into the liquid phase metering pipeline; the separated gas phase merges from the upper end through the control system. Gas phase metering line. Avoid the interference between the gas phase and the liquid phase which have been separated in the primary pre-separation tube to affect the separation effect.
  • the secondary pre-separation tubes are not independently parallel with respect to the primary pre-separation tubes, but are taken from the position near the end of the primary pre-separation tubes, that is, two-stage mixing. And in the differential arrangement, the height position of the secondary pre-separation pipe relative to the primary pre-separation pipe is moved downward in parallel, and the height of the jet port at the end of the secondary pre-separation pipe is lower than the jet port at the end of the first-stage pre-separation pipe.
  • a linear velocity stabilization device is provided at the position of the jet port at the end of the primary pre-separation tube, and the jet velocity is changed by changing the cross-sectional area of the jet orifice.
  • Degree according to the increase of the upstream flow, increase the cross-sectional area of the jet.
  • the upstream flow rate is increased, the flow rate of the jet port increases, but as the cross-sectional area increases, the line speed remains substantially unchanged.
  • the instantaneous flow rate is varied within a wide range, one of the key parameters of the cyclone separation is that the jet velocity is kept substantially within the optimum range.
  • the invention ensures the pre-separation effect, stabilizes the jet line speed and a certain flow range in a large flow range, and ensures the first-stage pre-separation flow.
  • the remaining small flow rate relies on the spiral surface forced swirl to achieve better separation in a wider flow range. effect.
  • the engineering prototype using the above technology is matched with the standard working condition calibration test Dongfeng C7 mass flowmeter.
  • the gas-liquid two-phase separation measurement liquid phase error is less than 0.8%, and the national standard specifies the error ⁇ 3 %.
  • the actual two-phase separation of the oil field determines that the liquidus density is stable at the lowest value of 0.841 g/cm 3 or more, while the actual other engineering products are separated from the two conditions of the working condition, and the liquid phase density is stable at the lowest value of 0.6 ⁇ 0.7 g/cm 3 or more.
  • FIG. 1 is a schematic view of a multi-phase fluid cyclone separation device with two stages of two-stage mixed jet separation
  • Figure 2 is a schematic view of a linear speed stabilizing device in the form of a planar reed valve
  • Figure 3 is a schematic view showing the shape of a planar reed valve in the form of Figure 2;
  • Figure 4 is a schematic view of a cylindrical reed valve plate of a 45° cylindrical turning plane
  • Figure 5 is a schematic view of a cylindrical reed valve piece of a 45° cylindrical turning surface
  • Figure 6 is a schematic view of an approximately triangular cylindrical reed valve
  • FIG. 7 is a schematic diagram of an embodiment of a non-self-excited feedback type linear speed stabilization device
  • FIG. 8 is a schematic view showing a cylindrical surface rotary valve as an embodiment of a non-self-excited feedback type linear speed stabilizer;
  • FIG. 9 is a schematic view of a forced helix;
  • the present invention provides a two-stage hybrid jet two-stage separation multi-phase fluid cyclone separation device, the device comprising a fluid stabilization tube 1, a first-stage inclined pre-separation tube 2, a height difference conversion tube 3 (pre The separation and consolidation pipe), the first-stage vertical cyclone separation pipe 5, the second-stage inclined pre-separation pipe 6, the jet line speed stabilization device 4, the secondary vertical cyclone separation pipe 7, and the forced-swirl spiral surface 8.
  • the working process of the present invention is: the gas-liquid two-phase mixed fluid rises and segregates in the fluid stabilizing tube 1, and then enters the inclined first-stage inclined pre-separation tube 2, and is separated into a stratified flow of the upper gas phase and the lower liquid phase. .
  • the height difference conversion pipe 3 is arranged upward at the position of the first-stage inclined pre-separation 2 pipe near the end, that is, the pre-separation consolidation pipe is introduced, and most of the gas phase components which have been precipitated in the first-stage inclined pre-separation pipe 2 are introduced into the second-stage inclined pre-separation. In tube 6.
  • the remaining fluid in the first-stage inclined pre-separation pipe 2 enters the first-stage vertical swirling separation pipe 5 from the jet port at the end of the first-stage inclined pre-separation pipe 2, and forms an effective cyclone separation by an appropriate jet line velocity.
  • the fluid in the secondary inclined pre-separation pipe 6 is pre-separated and then enters the secondary vertical swirling separation pipe 7 from the jet port at the end of the secondary inclined pre-separation pipe 6.
  • the liquid phase separated from the first-stage vertical cyclone separation tube 5 and the liquid phase separated from the two-stage vertical cyclone separation tube 7 are merged from the lower end through the control system into the liquid phase metering pipeline; the separated gas phase is merged from the upper end and controlled The system enters the gas phase metering line.
  • the two-stage inclined pre-separation pipe 6 is not independently parallel with respect to the first-stage inclined pre-separation pipe 2, but is taken out from the position of the first-stage inclined pre-separation pipe 2 near the end, that is, two-stage mixing.
  • the second-stage inclined pre-separation pipe 6 is pre-divided with respect to the first-order tilt
  • the height position of the pipe 2 is moved downward in parallel, and the height of the jet port at the end of the second-stage inclined pre-separation pipe 6 is lower than the jet port at the end of the first-stage inclined pre-separation pipe 2.
  • a linear velocity stabilizing device 4 is disposed at the position of the jet opening at the end of the first-stage inclined pre-separating tube 2, and the jet velocity is changed by changing the cross-sectional area of the jet opening.
  • the cross-sectional area of the jet opening is increased.
  • the upstream flow rate is increased, the flow rate of the jet port increases, but as the cross-sectional area increases, the line speed remains substantially unchanged.
  • the instantaneous flow rate is varied over a wide range, one of the key parameters of the cyclone separation is that the jet line speed is kept within the optimum range.
  • the invention relates to a multiphase fluid separation device; in particular to a cyclone separation device which uses a two-stage mixed jet and a two-stage separation pipeline to separate multiphase fluids having different density differences. It is characterized by pre-separation effect consolidation, stable jet line velocity, and small flow forced cyclone separation. It includes a pre-separation tube, a pre-separation consolidation tube, a jet tube, a separation tube, a jet line speed stabilization device, and a forced swirl spiral surface.
  • FIG. 1 an embodiment of a separation device provided by the present invention is shown.
  • the two-stage inclined pre-separation pipe and the cyclone separation pipe are differentially arranged, two-stage mixing, and the second-stage inclined pre-separation pipe 6 is taken out from the near end of the first-stage inclined pre-separation pipe 2; the first-stage inclined pre-separation pipe 2 enters
  • the entrance of the vertical swirling separation tube 5 is provided with a linear velocity stabilizing device 4, and the secondary vertical swirling separating tube 7 is provided with a forced spiral separating rail 8.
  • the height position of the first-stage inclined pre-separation pipe 2 is higher than that of the second-stage inclined pre-separation pipe 6.
  • the direction of the pipeline from the first-stage inclined pre-separation pipe 2 to the second-stage inclined pre-separation pipe 6 is upwardly drawn from the near end of the first-stage inclined pre-separation pipe 2, and then folded backward, and enters the secondary inclined pre-separation pipe 6 from the upper portion.
  • the connecting nozzle of the first-stage inclined pre-separation pipe 2 and the first-stage vertical main separating pipe 5 is provided with a linear speed stabilizing device 4, and the working principle of the linear velocity stabilizing device 4 is to change the first-stage inclined pre-separating pipe 2 through the valve provided at the jet port.
  • the cross-sectional area of the jet port of the vertical swirling separation tube 5 is such that the linear velocity of the fluid at the jet port is stabilized when the upstream flow fluctuation is reached.
  • 2 and 3 are schematic views of an embodiment of the linear speed stabilizing device 4 which is self-excited, and the linear speed stabilizing device 4 is a planar reed valve piece 43 mounted on the nozzle, a planar reed valve
  • the piece 43 is mounted on the valve seat 42 which is not tangential to the inner wall of the vertical swirling main separation pipe 5;
  • the valve seat 42 is mounted on the pipe wall of the first-stage inclined pre-separation pipe by the reinforcing plate 41, and the free state is opposed to the jet
  • the nozzle is perpendicular to the cylindrical line of the cut point of the inner wall of the vertical swirling separation tube 5. Similar to the planar side shape of the triangular nozzle, the jet port 51 on the primary vertical swirling separation tube is vertically mounted.
  • the flat-shaped reed valve piece 43 has a shape in which the waist portion is adjusted to have a reduced width, and the relationship between the change in the pressure difference between the front and the back of the jet port and the bending deformation of the valve piece is maintained.
  • the rigidity is reduced to suit the shape, and the upper and lower sides are asymmetrical in order to adapt to the force state; in order to reduce the pressure loss, the fluid contracting section is disposed near the jet port.
  • a gap is left between the upper and lower sides of the flat-shaped reed valve piece 43 and the nozzle of the jet port, and the upper gap is larger than the lower gap.
  • the planar reed valve piece projects into the interior of the vertical swirling separation tube 5, and together with the inner wall of one side of the separation tube, forms a swirling nozzle.
  • the flat reed valve piece has a shape close to the plane side of the triangular nozzle, and is vertically installed at the jet port. As the pressure difference between the front and the back of the jet port increases, the valve plate is curved and the cross section of the jet port is enlarged.
  • the planar reed valve plate is mounted on the side of the jet orifice that is not tangent to the inner wall of the vertical swirling main separation tube, and the free state is placed against the cylindrical line at the point where the jet nozzle is perpendicular to the inner wall of the vertical swirling separation tube.
  • the waist portion of the flat reed valve is set to have a shape that is reduced in width, and the relationship between the change in pressure difference before and after the jet opening and the bending deformation of the valve plate is maintained.
  • Figure 4 is a cylindrical reed valve plate with a 45° cylindrical turning plane.
  • 441 is the plane valve piece of the cylindrical reed valve piece of 45° cylindrical rotation plane;
  • 442 is the cylindrical part of the cylindrical reed valve piece of 45° cylindrical rotation plane;
  • 511 is the upper clearance of the valve piece and the jet opening;
  • 512 is The valve plate has a gap with the lower portion of the jet opening.
  • Figure 5 is a cylindrical reed valve piece with a 45° cylindrical turning surface.
  • 451 is the arcuate valve portion of the cylindrical reed valve of the 45° cylindrical curved surface;
  • 452 is the cylindrical portion of the cylindrical reed valve of the 45° cylindrical curved surface; the curved shape is complicated but easier An effective tangential jet is formed.
  • the commonality of the reed valve sheets in Figures 4 and 5 is: Installed in the first vertical swirling separation tube 5 outside the jet port
  • the size of the upper and lower sides of the cylindrical portion is equal to or slightly larger than the height of the jet opening; the dimension of the flat or curved surface of the valve plate is equal to or slightly smaller than the nozzle height, and the lower gap is larger than the upper gap; the cylindrical portion does not cover the pre-separation tube Jet nozzle; the end of the plane or curved portion, in the free state close to the cylindrical line of the jet nozzle and the tangent point of the inner wall of the vertical spiral separation tube and maintain a minimum gap.
  • the cylindrical portion of the 45° cylindrical to face or curved valve does not cover the pre-separation tube jet nozzle.
  • Fig. 6 is a further embodiment.
  • the cylindrical reed valve piece is formed into a substantially triangular shape so that the mainly contained gas phase fluid and the main liquid phase-containing fluid are sprayed close to the upper and lower ends, respectively.
  • Fig. 7 is a schematic view showing an embodiment of a non-self-excited feedback type linear speed stabilizing device.
  • the linear speed stabilizing device is a non-self-exciting feedback type linear speed stabilizing device, the linear speed stabilizing device is a flat head gate valve disposed at the end of the first stage inclined pre-separating tube 2; the flat head gate valve non-self-exciting feedback type linear speed stabilizing device is set at the first level
  • the flat head gate valve includes a valve head 461 and an angular displacement gear 462;
  • the valve head 461 includes a horizontal section and a vertical section disposed with the horizontal section; the horizontal section and the vertical section of the valve head 461 are co-presented L-shaped; angular displacement gear 462 meshes with the vertical section of the valve head 461; the horizontal section of the valve head 461 extends into the interior of the primary vertical swirling separation tube 5, the horizontal section of the valve head 461 and the first-stage vertical swirling separation
  • the working process is: Change the jet nozzle width by changing the width of the jet nozzle by moving the 461 flat gate valve up and down, so as to change the cross section of the jet nozzle.
  • the signal is sent to the valve power source through calculation, the 462 angular displacement gear is operated to the designated position, the follow-up position of the flat-head gate valve is controlled, and the size of the cross-section channel of the jet port is changed.
  • the pressure at the front and middle points of the inclined pre-separation tube is measured as information for calculation.
  • the valve movement flexibility is improved.
  • the flat head gate valve is not in close contact with the nozzle at both end faces in the non-moving direction, leaving a gap; the lower gap is larger than the upper gap.
  • the non-self-excited feedback linear velocity stabilization device is a cylindrical rotary valve disposed at the end of the first-stage inclined pre-separation tube, and the cylindrical rotary valve includes a cylindrical valve plate 471, a valve plate supporting turbine 472, an angular displacement driving worm 473, a turbine rotating support rod 474, and a support groove 475; the support groove 475 is disposed on the primary vertical swirling separation pipe 5;
  • the rod 474 is disposed on the valve support turbine 472 and extends into the support groove 475;
  • the angular displacement drive worm 473 is engaged with the valve plate support turbine 472;
  • the cylindrical valve plate 471 is fixedly coupled, and the valve support turbine 472 drives the cylindrical valve
  • the rotation of the piece 471 adjusts the opening degree of the cylindrical surface valve piece 471 and the jet opening to achieve the purpose of stabilizing the linear velocity; the upper and lower sides of the cylindrical surface valve piece 471 and the entrance opening of the
  • the valve port is a convex curve, the convex curve is an asymmetrical curve, and the apex is above the midline; the convex curve is an approximate unequal waist triangle.
  • the linear speed stabilization device measures the front pressure of the inclined pre-separation tube in advance, sends a signal to the valve power source through calculation, and the valve changes the size of the cross-section passage of the jet flow according to the command action.
  • the linear speed stabilization device measures the pressure at the front and middle points of the inclined pre-separation tube, sends a signal to the valve power source through calculation, and the valve changes the size of the cross-section passage of the jet port according to the command action.
  • the secondary inclined pre-separation tube and the secondary vertical swirl separation tube act to supplement and buffer; In most cases, the fluid in the secondary vertical cyclone separation tube, especially the liquid phase fluid, is less, resulting in a lower jet velocity.
  • a forced helicoid 8 is provided in the secondary vertical swirl separation tube. , causing the small flow fluid to force the cyclone separation.
  • the embodiment is shown in Fig. 9, 81 is a lower helicoid; 82 is a connecting pipe; 83 is an upper helicoid; and 71 is a jet port on the secondary vertical swirling separating pipe.
  • the outer edge of the forced spiral surface provided in the two-stage vertical swirling separation pipe is matched with the inner wall of the two-stage vertical swirling separation pipe, and the two ends are squatted on the pipe wall, the inner edge is free, and the section other than the height of the jet port is not associated with other accessories. connection.
  • the outer edge of the forced helicoid has a helix angle of 9°.
  • the outer edge has the same pitch as the inner edge, and the outer edge diameter is equal to three times the diameter of the inner edge.
  • the forced helicoid is divided into two sections, which are connected together by a hollow pipe.
  • the helical direction of the forced helix surface below the jet orifice is the same as the downward spiral direction formed when the jet is incident.
  • the helical direction of the forced helix surface above the jet orifice is opposite to the upward spiral direction formed when the jet is incident.
  • the forced helix surface 8 has a forward taper in a plane passing through the plane of the vertical separation tube axis, that is, the upper diameter is small, the lower diameter is large, that is, the diameter of the lower spiral surface 81 is large, and the diameter of the upper spiral surface 83 is small; a forced spiral surface 8 below the jet opening 71 on the swirling separation tube and a shaft passing through the vertical swirling separation tube
  • the intersection of the plane, the angle between the left half and the horizontal line is 6° ⁇ 10°, and the angle between the right half and the horizontal line is -6° ⁇ -10°.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cyclones (AREA)

Abstract

一种多相流体旋流分离装置,包括一级倾斜预分离管(2)、一级垂直旋流分离管(5)、二级倾斜预分离管(6)、以及二级垂直旋流分离管(7)。一级倾斜预分离管(2)的末端切向射入一级垂直旋流分离管(5)。二级倾斜预分离管(6)从一级倾斜预分离管(2)的靠近末端处引出。二级倾斜预分离管(6)的末端切向射入二级垂直旋流分离管(7)。本多相流体旋流分离装置为混联双射流双分离,测量精度高,误差小,稳定性强。

Description

一种多相流体旋流分离装置 技术领域
本发明涉及一种多相流体旋流分离装置, 尤其涉及一种两级混联射流两级 分离的多相流体旋流分离密度差较大多相流体的装置。
背景技术
在原油集输计量系统, 特别是井口单井计量系统中, 常用油气分离系统把 油井开采出的气相和液相分离开, 分别计量原油中的液相数量、 气相数量, 液 相含水率进而推算出产油量, 实现生产计量的目的, 支持油田信息化管理和决 策、 计量、 控制、 提高产油量提供依据和保障。 旋流分离器相比传统的卧式分 离器、 立式分离器由于体积小、 分离速度高、 分离效果好被大量开发出来, 如 专利申请号为 200610009659.9 (公开号为 CN1820816A) 的中国发明专利 《螺旋 管复合气液分离器》、 专利号为 ZL200720108504.0 (公开号为 CN201055811Y) 的中国实用新型专利 《一种旋流式气液分离器》、 专利申请号为 200910153153.0 (公开号为 10664720) 的中国发明专利 《一种双筒旋流式气油水分离器》。 旋流 分离器的关键是流体切向射入垂直的旋流分离器中, 以适当的速度旋转, 产生 大约相当于重力差 50〜60倍的离心力差, 实现气液两相快速分离。 为了提高旋 流分离精度,趋向于在垂直的旋流分离器入口前设置倾斜角 -27°的预分离管对原 油进行分层预处理。 削弱液相中含气对液相计量精度的干扰, 满足液相计量精 度要求。
由于原油集输系统的流体参数为非稳态, 例如断塞流等瞬间大气量、 大液 量、 无流量等现象, 大幅度改变原油集输的瞬时流量, 导致决定旋流分离效果 的关键参数一射流线速度在过大的范围内变动, 严重削弱旋流分离效果, 降低 实际分离计量精度。
发明内容
为了解决油田计量中遇到的断塞流等影响分离计量精度的故障, 本发明提 供了一种测量精度高、 误差小以及稳定性强的混联双射流双分离的多相流体旋 流分离装置。 本发明的技术解决方案是: 本发明提供了一种多相流体旋流分离装置, 包 括一级倾斜预分离管以及一级垂直旋流分离管, 所述一级倾斜预分离管的末端 切向射入一级垂直旋流分离管, 其特殊之处在于: 所述多相流体旋流分离装置 还包括二级倾斜预分离管以及二级垂直旋流分离管; 所述二级倾斜预分离管从 一级倾斜预分离管的靠近末端处引出; 所述二级倾斜预分离管的末端切向射入 二级垂直旋流分离管。
上述多相流体旋流分离装置还包括高度差转换管; 所述一级倾斜预分离管 的高度高于二级倾斜预分离管的高度; 所述一级倾斜预分离管通过高度差转换 管与二级倾斜预分离管混联。
上述一级倾斜预分离管进入一级垂直旋流分离管的入射口处设置有线速度 稳定装置; 所述二级垂直旋流分离管中设置有强制螺旋面。
上述线速度稳定装置是自励式线速度稳定装置或非自励反馈式线速度稳定 装置。
上述线速度稳定装置是自励式线速度稳定装置时, 所述线速度稳定装置是 安装在一级倾斜预分离管末端上的平面状舌簧阀片, 或安装在一级倾斜预分离 管末端之外且在一级旋流分离管内壁上靠近射流口的圆柱状舌簧阀片;
所述线速度稳定装置是安装在一级倾斜预分离管末端上的平面状舌簧阀片 时, 所述线速度稳定装置包括设置在一级倾斜预分离管的末端管壁上的阀座以 及与阀座活动连接的阀片; 所述阀片伸入一级垂直旋流分离管的内部, 所述阀 片与一级垂直旋流分离管的内壁共同形成一级倾斜预分离管的喷嘴; 所述阀片 的上下侧与一级垂直旋流分离管的入射口之间分别设置有上部间隙和下部间 隙; 所述上部间隙大于下部间隙; 所述阀片在自由状态下靠在入射口与垂直旋 流分离管内壁切点的圆柱素线;
所述线速度稳定装置是安装在一级倾斜预分离管末端之外的圆柱状舌簧阀 片时, 所述线速度稳定装置包括圆柱状舌簧阀片的阀片部分以及与圆柱状舌簧 阀片的阀片部分活动连接的圆柱状舌簧阀片的圆柱部分; 所述圆柱状舌簧阀片 的圆柱部分设置在一级倾斜预分离管末端的管壁上; 所述圆柱状舌簧阀片的阀 片部分伸入一级垂直旋流分离管的内部; 所述圆柱状舌簧阀片的阀片部分与一 级垂直旋流分离管的入射口之间分别设置有上部间隙和下部间隙; 所述圆柱状 舌簧阀片的圆柱部分上下方向的尺寸等于或略大于一级垂直旋流分离管的入射 口的高度并不遮盖入射口; 所述圆柱状舌簧阀片的阀片部分上下方向的尺寸等 于或略小于一级垂直旋流分离管的入射口的高度; 所述下部间隙大于上部间隙; 所述圆柱状舌簧阀片的阀片部分在自由状态下靠近入射口并与一级垂直旋流分 离管内壁切点的圆柱素线且保持最小间隙。
上述圆柱状舌簧阀片的阀片部分是 45°圆柱转平面阀门、 45°圆柱转弧面阀 门或近似三角形的平面阀门。
上述线速度稳定装置是非自励反馈式线速度稳定装置时, 所述非自励反馈 式线速度稳定装置是设置在一级倾斜预分离管末端的平头闸阀或圆柱面转阀; 所述非自励反馈式线速度稳定装置是设置在一级倾斜预分离管末端的平头 闸阀时, 所述平头闸阀包括阀头以及角位移齿轮; 所述阀头包括水平段以及与 水平段设置在一起的垂直段; 所述阀头的水平段以及垂直段共同呈 L型; 所述角 位移齿轮与阀头的垂直段相啮合; 所述阀头的水平段伸入一级垂直旋流分离管 的内部, 所述阀头的水平段与一级垂直旋流分离管的内壁共同形成一级倾斜预 分离管的喷嘴;
所述非自励反馈式线速度稳定装置是设置在一级倾斜预分离管末端的圆柱 面转阀时, 所述圆柱面转阀包括圆柱面阀片、 阀片支承涡轮、 角位移驱动蜗杆、 涡轮转动支承杆以及支承槽; 所述支承槽设置在一级垂直旋流分离管上; 所述 涡轮转动支承杆设置在阀片支承涡轮上并伸入支承槽中; 所述角位移驱动蜗杆 与阀片支承涡轮相啮合; 所述圆柱面阀片与阀片支承涡轮固定连接; 所述阀片 的上下侧与一级垂直旋流分离管的入射口之间分别设置有上部间隙和下部间 隙; 所述圆柱面转阀的阀口是外凸曲线, 所述外凸曲线是非对称曲线且顶点在 中线之上; 所述外凸曲线是近似不等腰三角形。
上述强制螺旋面包括上部螺旋面、 连接管以及下部螺旋面; 所述上部螺旋 面通过连接管与下部螺旋面连接; 所述二级倾斜预分离管的末端切向射入二级 垂直旋流分离管中的连接管; 所述强制螺旋面的下部螺旋面的螺旋方向与入射 至二级垂直旋流分离管的射流入射时形成的向下螺旋方向相同; 所述强制螺旋 面的上部螺旋面的螺旋方向与入射至二级垂直旋流分离管的射流入射时形成的 向下螺旋方向相反。
上述强制螺旋面的上部螺旋面的直径小于下部螺旋面的直径; 所述强制螺 旋面在通过二级垂直分离管轴线的平面内的剖面整体成一正锥形; 所述强制螺 旋面包括外沿以及与外沿直径不同的内沿; 所述强制螺旋面的外沿与二级垂直 旋流分离管内壁间隙配合并悍在管壁上; 所述强制螺旋面的内沿处于自由状态; 所述强制螺旋面的外沿与强制螺旋面的内沿的螺距相同。
上述强制螺旋面的下部螺旋面的左半部分与垂直于二级垂直旋流分离管轴 线的水平夹角是 6°〜10°; 所述强制螺旋面的下部螺旋面的右半部分与垂直于二 级垂直旋流分离管轴线的水平夹角是 -6°〜- 10°;所述强制螺旋面的上部螺旋面的 左半部分与垂直于二级垂直旋流分离管轴线的水平夹角是 9°〜16°; 所述强制螺 旋面的上部螺旋面的左半部分与垂直于二级垂直旋流分离管轴线的水平夹角是 -9。〜- 160
本发明的优点是:
在一级预分离管靠近末端的位置向上设置高度差转换管, 也就是预分离巩 固管, 把一级预分离管中已经析出的大部分气相组分导入二级预分离管。 一级 预分离管中剩余的流体从一级预分离管末端的射流口进入一级垂直旋流分离 管, 依靠适当的射流线速度形成有效地旋流分离。 二级预分离管中的流体进一 歩预分离后从二级预分离管末端的射流口进入二级垂直旋流分离管。 一级垂直 旋流分离管分离出的液相与二级垂直旋流分离管分离出的液相从下端汇合经控 制系统进入液相计量管路; 它们分离出的气相从上端汇合经控制系统进入气相 计量管路。 避免一级预分离管中已经分出的气相与液相干涉影响分离效果。
二级预分离管相对一级预分离管不是独立并行的, 而是从一级预分离管靠 近末端的位置引出, 即两级混联。 并且差异化布置, 二级预分离管相对于一级 预分离管的高度位置整个平行下移, 二级预分离管末端的射流口高度低于一级 预分离管末端的射流口。
为了稳定一级垂直旋流分离管中的射流线速度, 在一级预分离管末端的射 流口位置设置线速度稳定装置, 通过改变射流口的截面积大小, 改变射流线速 度, 根据上游流量的增大, 增大射流口截面积大小。 达到上游流量增大时, 射 流口的流量随着增大, 但由于截面积增大, 线速度基本保持不变的效果。 实现 瞬时流量在较宽的范围内变化时, 旋流分离的关键参数之一一一射流线速度基 本保持在最佳范围之内的目的。
当流量进一歩增大时, 部分流体通过高度差转换管进入二级预分离管, 起 到缓冲波动的作用, 但由于二级高度差转换, 大部分流体从一级预分离管末端 的射流口进入以及垂直旋流分离管; 大部分情况下二级预分离管中的流量较小, 射流线速度小, 不能形成有效地分离旋流。 因而在二级垂直旋流分离管中设置 强制螺旋面。 强制进入二级垂直旋流管中的流体旋转上升或下降, 实现分离效 果。
本发明通过巩固预分离效果、 在较大流量范围内稳定射流线速度和一定流 量范围保证一级预分离的流量其余小流量依靠螺旋面强制旋流, 达到较宽的流 量范围内较好的分离效果。
采用上述技术的工程样机, 按照标准工况的标定试验配套东风 C7型质量流 量计, 气液两相分离计量液相误差小于 0.8%, 国家标准规定误差 ±3 %。 油田实 际两相分离测量液相密度稳定在最低值 0.841g/cm3以上, 而实际其它工程产品同 工况两相分离测量液相密度稳定在最低值 0.6〜0.7g/cm3以上。
附图说明
图 1是两级混联射流两级分离的多相流体旋流分离装置的示意图;
图 2是平面舌簧状阀片形式的线速度稳定装置示意图;
图 3是图 2形式的平面舌簧状阀片形状示意图;
图 4是 45°圆柱转平面的圆柱状舌簧阀片示意图;
图 5是 45°圆柱转弧面的圆柱状舌簧阀片示意图;
图 6是近似三角形圆柱状舌簧阀片示意图;
图 7是非自励反馈式线速度稳定装置的实施例示意图;
图 8是圆柱面转阀作为非自励反馈式线速度稳定装置实施例的示意图; 图 9是强制螺旋面示意图;
其中: 1-流体稳定管; 2-—级倾斜预分离管; 3-高度差转换管; 4-射流线速度稳定 装置; 5-—级垂直旋流分离管; 6-二级倾斜预分离管; 7-二级垂直旋流分离管; 8-强制螺旋面; 2-—级倾斜预分离管; 41-补强板; 42-阀座; 43-阀片; 51-—级 垂直旋流分离管上的射流口; 21-—级倾斜预分离管的喷嘴; 441-45°圆柱转平面 的圆柱状舌簧阀片的平面阀片部分; 442-45°圆柱转平面的圆柱状舌簧阀片的圆 柱部分; 511-阀片与射流口上部间隙; 512-阀片与射流口下部间隙; 451-45°圆柱 转弧面的圆柱状舌簧阀片的弧面阀片部分; 452-45°圆柱转弧面的圆柱状舌簧阀 片的圆柱部分; 461-带驱动齿条的平头闸阀; 462-受信号控制的角位移齿轮; 471- 圆柱面阀片; 472-阀片支承涡轮; 473-角位移驱动蜗杆; 474-涡轮转动支承杆; 475-支承槽; 81-下部螺旋面; 82-连接管; 83-上部螺旋面; 71-二级垂直旋流分 离管上的射流口。
具体实施方式
参见图 1, 本发明提供了一种两级混联射流两级分离的多相流体旋流分离装 置, 该装置包括流体稳定管 1、 一级倾斜预分离管 2、 高度差转换管 3 (预分离巩 固管)、 一级垂直旋流分离管 5、 二级倾斜预分离管 6、 射流线速度稳定装置 4、 二级垂直旋流分离管 7以及强制旋流螺旋面 8。
本发明的工作过程是: 气液两相混合流体在流体稳定管 1中上升、 离析, 然 后进入倾斜布置的一级倾斜预分离管 2, 逐歩分离成上部气相、 下部液相的分层 流。 在一级倾斜预分离 2管靠近末端的位置向上设置高度差转换管 3, 也就是预 分离巩固管, 把一级倾斜预分离管 2中已经析出的大部分气相组分导入二级倾斜 预分离管 6中。 一级倾斜预分离管 2中剩余的流体从一级倾斜预分离管 2末端的射 流口进入一级垂直旋流分离管 5, 依靠适当的射流线速度形成有效地旋流分离。 二级倾斜预分离管 6中的流体进一歩预分离后从二级倾斜预分离管 6末端的射流 口进入二级垂直旋流分离管 7。 一级垂直旋流分离管 5分离出的液相与二级垂直 旋流分离管 7分离出的液相从下端汇合经控制系统进入液相计量管路; 它们分离 出的气相从上端汇合经控制系统进入气相计量管路。 二级倾斜预分离管 6相对一 级倾斜预分离管 2不是独立并行的, 而是从一级倾斜预分离管 2靠近末端的位置 引出, 即两级混联。 并且差异化布置, 二级倾斜预分离管 6相对于一级倾斜预分 离管 2的高度位置整个平行下移, 二级倾斜预分离管 6末端的射流口高度低于一 级倾斜预分离管 2末端的射流口。
为了稳定一级垂直旋流分离管 5中的射流线速度, 在一级倾斜预分离管 2末 端的射流口位置设置线速度稳定装置 4, 通过改变射流口的截面积大小, 改变射 流线速度, 根据上游流量的增大, 增大射流口截面积大小。 达到上游流量增大 时, 射流口的流量随着增大, 但由于截面积增大, 线速度基本保持不变的效果。 实现瞬时流量在较宽的范围内变化时, 旋流分离的关键参数之一——射流线速 度基本保持在最佳范围之内的目的。
当流量进一歩增大时, 部分流体通过高度差转换管 3进入二级倾斜预分离管 6, 起到缓冲波动的作用, 但由于二级高度差转换, 大部分流体从一级倾斜预分 离管 2末端的射流口进入一级垂直旋流分离管 5 ; 大部分情况下二级倾斜预分离 管 6中的流量较小, 射流线速度小, 不能形成有效地分离旋流。 因而在二级垂直 旋流分离管 7中设置强制螺旋面 8, 强制进入二级垂直旋流管 7中的流体旋转上升 或下降, 实现分离效果。
本发明涉及一种多相流体分离装置; 尤其涉及一种采用两级混联射流、 两 级分离管路, 来分离密度差别较大的的多相流体的旋流分离装置。 其特征是预 分离效果巩固、 射流线速度稳定、 小流量强制旋流分离。 包括预分离管、 预分 离巩固管、 射流管、 分离管、 射流线速度稳定装置、 强制旋流螺旋面。
参见图 1, 是本发明所提供的分离装置的一种实施例。 两级的倾斜预分离管 和旋流分离管为差异化布置, 两级混联, 二级倾斜预分离管 6从一级倾斜预分离 管 2的靠近末端引出; 一级倾斜预分离管 2进入它的垂直旋流分离管 5的入射口设 有线速度稳定装置 4, 二级垂直旋流分离管 7中设有强制螺旋分离轨道 8。 一级倾 斜预分离管 2的高度位置高于二级倾斜预分离管 6。 从一级倾斜预分离管 2到二级 倾斜预分离管 6的管路方向为从一级倾斜预分离管 2的靠近末端处向上引出再向 后折, 从上部进入二级倾斜预分离管 6。 一级倾斜预分离管 2与一级垂直主分离 管 5的连接喷嘴设有线速度稳定装置 4, 线速度稳定装置 4的工作原理是通过设在 射流口的阀门改变一级倾斜预分离管 2进入垂直旋流分离管 5的射流口通道截面 大小, 达到上游流量波动的情况下保持射流口流体的线速度稳定。 图 2和图 3是线速度稳定装置 4的一种实施例的示意图, 它是自励式工作的, 线速度稳定装置 4是安装在喷嘴上的平面状舌簧阀片 43, 平面状舌簧阀片 43安装 在射流口不与垂直旋流主分离管 5内壁相切的阀座 42上; 阀座 42通过补强板 41安 装在一级倾斜预分离管的管壁上, 自由状态靠在射流喷嘴与垂直旋流分离管 5内 壁切点的圆柱素线。 与三角形喷嘴的平面侧形状相近, 在一级垂直旋流分离管 上的射流口 51垂直安装。
当上游流量增大时, 喷嘴 21两端的流量也随着增大, 两端的压力差也增大, 随着射流口前后压力差的增大, 使阀片两面的流体合力增大, 阀片 43弯曲, 射 流口截面扩大阀片 43被推向阀座 42—侧, 射流口的截面积增大, 射流线速度的 增大远低于流量的增大, 反之依然, 达到稳定设立线速度的目的。
平面状舌簧阀片 43腰部设为縮小宽度适应的形状, 保持射流口前后压力差 变化与阀片弯曲变形的对应关系。 縮小刚度适应形状, 为了适应受力状态制作 为上下两侧不对称; 为了减小压力损失, 设置在靠近射流口的流体收縮段。 平 面状舌簧阀片 43上下侧与射流口的喷嘴之间留有间隙, 上部间隙大于下部间隙。 平面状舌簧阀片伸入垂直旋流分离管 5的内部, 与分离管的一侧内壁共同形成旋 流的喷嘴。
平面状舌簧阀片与三角形喷嘴的平面侧形状相近, 在射流口垂直安装, 随 着射流口前后压力差的增大, 阀片弯曲, 射流口截面扩大。 平面状舌簧阀片安 装在射流口不与垂直旋流主分离管内壁相切的一侧, 自由状态靠在射流喷嘴与 垂直旋流分离管内壁切点的圆柱素线。 平面状舌簧阀片腰部设为縮小宽度适应 的形状, 保持射流口前后压力差变化与阀片弯曲变形的对应关系。
图 4是 45°圆柱转平面的圆柱状舌簧阀片。 441是 45°圆柱转平面的圆柱状舌簧 阀片的平面阀片部分; 442是 45°圆柱转平面的圆柱状舌簧阀片的圆柱部分; 511 是阀片与射流口上部间隙; 512是阀片与射流口下部间隙。
图 5是 45°圆柱转弧面的圆柱状舌簧阀片。 451是 45°圆柱转弧面的圆柱状舌簧 阀片的弧面阀片部分; 452是 45°圆柱转弧面的圆柱状舌簧阀片的圆柱部分; 弧面 形状虽然复杂, 但更容易形成有效地切向射流。
图 4和图 5中舌簧阀片的共性是: 安装在射流口之外一级垂直旋流分离管 5内 壁上; 圆柱部分上下方向的尺寸等于或略大于射流口高度; 平面或弧面形状的 阀片上下方向的尺寸等于或略小于喷嘴高度, 且下部间隙大于上部间隙; 圆柱 部分不遮盖预分离管射流管口; 平面或弧面部分的末端, 在自由状态下靠近射 流喷嘴与一级垂直旋流分离管内壁切点的圆柱素线且保持最小间隙。
45°圆柱转平面或弧面阀门的圆柱部分不遮盖预分离管射流管口。 45°圆柱转 平面或弧面阀门的平面或弧面部分的末端, 在自由状态下靠在射流喷嘴与主分 离管内壁切点的圆柱素线。
图 6是进一歩实施例, 为了提高预分离效果, 圆柱状舌簧阀片制作成近似三 角形, 使主要含的气相流体与主要含液相的流体分别靠近上下两端喷射。
图 7是非自励反馈式线速度稳定装置的一个实施例示意图。 该线速度稳定装 置是非自励反馈式线速度稳定装置, 线速度稳定装置是设置在一级倾斜预分离 管 2末端的平头闸阀; 平头闸阀非自励反馈式线速度稳定装置是设置在一级倾斜 预分离管末端的平头闸阀时, 平头闸阀包括阀头 461以及角位移齿轮 462; 阀头 461包括水平段以及与水平段设置在一起的垂直段; 阀头 461的水平段以及垂直 段共同呈 L型; 角位移齿轮 462与阀头 461的垂直段相啮合; 阀头 461的水平段伸 入一级垂直旋流分离管 5的内部, 阀头 461的水平段与一级垂直旋流分离管 5的内 壁共同形成一级倾斜预分离管的喷嘴。 其工作过程是: 通过 461平头闸阀上下移 动, 改变射流喷嘴宽度, 从而改变射流喷嘴截面大小。 通过提前测量倾斜预分 离管前部压力, 通过运算给阀门动力源发送信号, 使 462角位移齿轮运转到指定 位置, 控制平头闸阀的随动位置, 改变射流口截面通道大小。 为了进一歩提高 随动精度, 测量倾斜预分离管前部和中部两点的压力, 作为运算的信息。 为了 适应原油等非稳定组成介质中杂质等的影响, 提高阀门动作灵活性, 根据需要, 平头闸阀在非移动方向的两端面, 与喷嘴没有密合, 留有间隙; 下部间隙大于 上部间隙。
非自励反馈式线速度稳定装置另一个实施例的示意图见图 8, 该非自励反馈 式线速度稳定装置是设置在一级倾斜预分离管末端的圆柱面转阀, 圆柱面转阀 包括圆柱面阀片 471、 阀片支承涡轮 472、 角位移驱动蜗杆 473、 涡轮转动支承杆 474以及支承槽 475 ; 支承槽 475设置在一级垂直旋流分离管 5上; 涡轮转动支承 杆 474设置在阀片支承涡轮 472上并伸入支承槽 475中; 角位移驱动蜗杆 473与阀 片支承涡轮 472相啮合; 圆柱面阀片 471与固定连接, 阀片支承涡轮 472带动圆柱 面阀片 471的转动并调节圆柱面阀片 471与射流口的开度大小, 达到稳定线速度 的目的; 圆柱面阀片 471的上下侧与一级垂直旋流分离管的入射口之间分别设置 有上部间隙和下部间隙; 阀口的圆柱面阀片 471的形状为上部的上凹曲线与下部 的下凹曲线组成, 连接处圆滑过渡, 上部的上凹曲线与下部的下凹曲线不对称, 且连接点在中线之上。 适应被分离介质两相含量变化, 其阀口为外凸曲线, 外 凸曲线为非对称曲线, 且顶点在中线之上; 外凸曲线为近似不等腰三角形。 当 线速度稳定装置是非自励反馈式的时, 线速度稳定装置是通过提前测量倾斜预 分离管前部压力, 通过运算给阀门动力源发送信号, 阀门按指令动作来改变射 流口截面通道大小的。 线速度稳定装置是通过测量倾斜预分离管前部和中部两 点的压力, 通过运算给阀门动力源发送信号, 阀门按指令动作来改变射流口截 面通道大小的。
由于大部分流体, 特别是液相流体从一级倾斜预分离管后进入一级垂直旋 流分离管, 二级倾斜预分离管和二级垂直旋流分离管起着补充和缓冲的作用; 因而大部分情况下二级垂直旋流分离管中的流体特别是液相流体偏少, 导致射 流线速度偏低, 为了改善旋流分离效果, 在二级垂直旋流分离管中设置强制螺 旋面 8, 促使小流量流体强制旋流分离。 实施例如图 9所示, 81是下部螺旋面; 82是连接管; 83是上部螺旋面; 71是二级垂直旋流分离管上的射流口。 二级垂 直旋流分离管中设的强制螺旋面外沿与二级垂直旋流分离管内壁间隙配合两端 悍在管壁上, 内沿自由, 在射流口高度以外的区段不与其它配件连接。 强制螺 旋面的外沿螺旋升角为 9°。 外沿与内沿的螺距相同, 外沿直径等于内沿直径的 3 倍。 强制螺旋面分为两段, 中间用一根空心管道连接在一起。 强制螺旋面在射 流口以下部分的螺旋方向与射流入射时形成的向下螺旋方向相同。 强制螺旋面 在射流口以上部分的螺旋方向与射流入射时形成的向上螺旋方向相反。 强制螺 旋面 8在通过垂直分离管轴线的平面内的剖面成一正锥形, 即上部直径小, 下部 直径大, 也就是下部螺旋面 81的直径大, 上部螺旋面 83的直径小; 二级垂直旋 流分离管上的射流口 71以下部位的强制螺旋面 8与通过垂直旋流分离管轴线的 平面的交线, 左半部分与水平线夹角为 6°〜10°, 右半部分与水平线夹角为 -6°〜 -10°。 射流口以上部位的强制螺旋面与通过垂直旋流分离管轴线的平面的交线, 左半部分与水平线夹角为 9°〜16°, 右半部分与水平线夹角为 -9°〜- 16°。

Claims

权 利 要 求 书
1、 一种多相流体旋流分离装置, 包括一级倾斜预分离管以及一级垂直旋流 分离管, 所述一级倾斜预分离管的末端切向射入一级垂直旋流分离管, 其特征 在于: 所述多相流体旋流分离装置还包括二级倾斜预分离管以及二级垂直旋流 分离管; 所述二级倾斜预分离管从一级倾斜预分离管的靠近末端处引出; 所述 二级倾斜预分离管的末端切向射入二级垂直旋流分离管。
2、 根据权利要求 1所述的多相流体旋流分离装置, 其特征在于: 所述多相 流体旋流分离装置还包括高度差转换管; 所述一级倾斜预分离管的高度高于二 级倾斜预分离管的高度; 所述一级倾斜预分离管通过高度差转换管与二级倾斜 预分离管混联。
3、 根据权利要求 2所述的多相流体旋流分离装置, 其特征在于: 所述一级 倾斜预分离管进入一级垂直旋流分离管的入射口处设置有线速度稳定装置; 所 述二级垂直旋流分离管中设置有强制螺旋面。
4、 根据权利要求 3所述的多相流体旋流分离装置, 其特征在于: 所述线速 度稳定装置是自励式线速度稳定装置或非自励反馈式线速度稳定装置。
5、 根据权利要求 4所述的多相流体旋流分离装置, 其特征在于: 所述线速 度稳定装置是自励式线速度稳定装置时, 所述线速度稳定装置是安装在一级倾 斜预分离管末端上的平面状舌簧阀片, 或安装在一级倾斜预分离管末端之外且 在一级旋流分离管内壁上靠近射流口的圆柱状舌簧阀片;
所述线速度稳定装置是安装在一级倾斜预分离管末端上的平面状舌簧阀片 时, 所述线速度稳定装置包括设置在一级倾斜预分离管的末端管壁上的阀座以 及与阀座用螺钉固定连接的阀片; 所述阀片伸入一级垂直旋流分离管的内部, 所述阀片与一级垂直旋流分离管的内壁共同形成一级倾斜预分离管的喷嘴; 所 述阀片的上下侧与一级垂直旋流分离管的入射口之间分别设置有上部间隙和下 部间隙; 所述上部间隙大于下部间隙; 所述阀片在自由状态下靠在入射口与垂 直旋流分离管内壁切点的圆柱素线上;
所述线速度稳定装置是安装在一级倾斜预分离管末端之外且在一级旋流分 离管内壁上靠近射流口的圆柱状舌簧阀片时, 所述线速度稳定装置包括圆柱状 舌簧阀片的阀片部分以及与圆柱状舌簧阀片的阀片部分制成一体的圆柱状舌簧 阀片的圆柱部分; 所述圆柱状舌簧阀片设置在一级倾斜预分离管末端之外且在 一级旋流分离管内壁上靠近射流口的部位; 所述圆柱状舌簧阀片的阀片部分与 一级垂直旋流分离管的入射口之间分别设置有上部间隙和下部间隙; 所述圆柱 状舌簧阀片的圆柱部分上下方向的尺寸等于或略大于一级垂直旋流分离管的入 射口的高度并不遮盖入射口; 所述圆柱状舌簧阀片的阀片部分上下方向的尺寸 等于或略小于一级垂直旋流分离管的入射口的高度; 所述阀片部分的下部间隙 大于上部间隙; 所述圆柱状舌簧阀片的阀片部分在自由状态下靠近入射口一级 垂直旋流分离管内壁切点的圆柱素线并与该素线且保持最小间隙。
6、 根据权利要求 5所述的多相流体旋流分离装置, 其特征在于: 所述圆柱 状舌簧阀片的阀片部分是 45°圆柱转平面阀门、 45°圆柱转弧面阀门或近似三角 形的圆柱面阀门。
7、 根据权利要求 4所述的多相流体旋流分离装置, 其特征在于: 所述线速 度稳定装置是非自励反馈式线速度稳定装置时, 所述非自励反馈式线速度稳定 装置是设置在一级倾斜预分离管末端的平头闸阀或圆柱面转阀;
所述非自励反馈式线速度稳定装置是设置在一级倾斜预分离管末端的平头 闸阀时, 所述平头闸阀包括阀头以及与角位移齿轮; 所述阀头包括水平段以及 与水平段设置在一起的垂直段; 所述阀头的水平段以及垂直段共同呈 L型; 所述 角位移齿轮与阀头的垂直段相啮合; 所述阀头的水平段伸入一级垂直旋流分离 管的内部, 所述阀头的水平段与一级垂直旋流分离管的内壁共同形成一级倾斜 预分离管的喷嘴;
所述非自励反馈式线速度稳定装置是设置在一级倾斜预分离管末端的圆柱 面转阀时, 所述圆柱面转阀包括圆柱面阀片、 阀片支承涡轮、 角位移驱动蜗杆、 涡轮转动支承杆以及支承槽; 所述支承槽设置在一级垂直旋流分离管上; 所述 涡轮转动支承杆设置在阀片支承涡轮上并伸入支承槽中; 所述角位移驱动蜗杆 与阀片支承涡轮相啮合; 所述圆柱面阀片与阀片支承涡轮固定连接; 所述圆柱 面阀片的上下侧与一级垂直旋流分离管的入射口之间分别设置有上部间隙和下 部间隙; 所述圆柱面转阀的阀口是外凸曲线, 所述外凸曲线是非对称曲线且顶 点在中线之上; 所述外凸曲线是近似不等腰三角形。
8、 根据权利要求 3或 4或 5或 6或 7所述的多相流体旋流分离装置, 其特征在 于: 所述强制螺旋面包括上部螺旋面、 连接管以及下部螺旋面; 所述上部螺旋 面通过连接管与下部螺旋面连接; 所述二级倾斜预分离管的末端切向射入二级 垂直旋流分离管中的连接管; 所述强制螺旋面的下部螺旋面的螺旋方向与入射 至二级垂直旋流分离管的射流入射时形成的向下螺旋方向相同; 所述强制螺旋 面的上部螺旋面的螺旋方向与入射至二级垂直旋流分离管的射流入射时形成的 向下螺旋方向相反。
9、 根据权利要求 8所述的多相流体旋流分离装置, 其特征在于: 所述强制 螺旋面的上部螺旋面的直径小于下部螺旋面的直径; 所述强制螺旋面在通过二 级垂直分离管轴线的平面内的剖面整体成一正锥形; 所述强制螺旋面包括外沿 以及与外沿直径不同的内沿; 所述强制螺旋面的外沿与二级垂直旋流分离管内 壁间隙配合并悍在管壁上; 所述强制螺旋面的内沿处于自由状态; 所述强制螺 旋面的外沿与强制螺旋面的内沿的螺距相同。
10、 根据权利要求 9所述的多相流体旋流分离装置, 其特征在于: 所述强制 螺旋面的下部螺旋面的左半部分与垂直于二级垂直旋流分离管轴线的水平夹角 是 6°〜10°; 所述强制螺旋面的下部螺旋面的右半部分与垂直于二级垂直旋流分 离管轴线的水平夹角是 -6°〜- 10°;所述强制螺旋面的上部螺旋面的左半部分与垂 直于二级垂直旋流分离管轴线的水平夹角是 9°〜16°; 所述强制螺旋面的上部螺 旋面的左半部分与垂直于二级垂直旋流分离管轴线的水平夹角是 -9°〜- 16°。
PCT/CN2011/084926 2011-12-29 2011-12-29 一种多相流体旋流分离装置 WO2013097148A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180046185.4A CN103459043B (zh) 2011-12-29 2011-12-29 一种多相流体旋流分离装置
PCT/CN2011/084926 WO2013097148A1 (zh) 2011-12-29 2011-12-29 一种多相流体旋流分离装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084926 WO2013097148A1 (zh) 2011-12-29 2011-12-29 一种多相流体旋流分离装置

Publications (1)

Publication Number Publication Date
WO2013097148A1 true WO2013097148A1 (zh) 2013-07-04

Family

ID=48696226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084926 WO2013097148A1 (zh) 2011-12-29 2011-12-29 一种多相流体旋流分离装置

Country Status (2)

Country Link
CN (1) CN103459043B (zh)
WO (1) WO2013097148A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170199B (zh) * 2014-07-23 2022-10-25 康明斯滤清系统知识产权公司 入口旁路流动管理系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711720A (en) * 1986-07-18 1987-12-08 Amoco Corporation Tangentially staged hydrocyclones
CN201055811Y (zh) * 2007-04-19 2008-05-07 宁波威瑞泰默赛多相流仪器设备有限公司 一种旋流式气液分离器
CN101524665A (zh) * 2009-04-07 2009-09-09 张世平 一种高磷赤铁矿的选矿工艺及装置
CN201381813Y (zh) * 2009-03-25 2010-01-13 宝鸡翌东石油机械厂 管柱式气液旋流分离器
CN201603632U (zh) * 2009-09-21 2010-10-13 宁波威瑞泰默赛多相流仪器设备有限公司 一种双筒旋流式气油水分离器
CN101670196B (zh) * 2009-09-21 2011-07-13 宁波威瑞泰默赛多相流仪器设备有限公司 一种双筒旋流式气油水分离器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638147A (en) * 1979-09-06 1981-04-13 Sumitomo Heavy Ind Ltd Pressure loss reducing method of cyclon in cement preheater and its apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711720A (en) * 1986-07-18 1987-12-08 Amoco Corporation Tangentially staged hydrocyclones
CN201055811Y (zh) * 2007-04-19 2008-05-07 宁波威瑞泰默赛多相流仪器设备有限公司 一种旋流式气液分离器
CN201381813Y (zh) * 2009-03-25 2010-01-13 宝鸡翌东石油机械厂 管柱式气液旋流分离器
CN101524665A (zh) * 2009-04-07 2009-09-09 张世平 一种高磷赤铁矿的选矿工艺及装置
CN201603632U (zh) * 2009-09-21 2010-10-13 宁波威瑞泰默赛多相流仪器设备有限公司 一种双筒旋流式气油水分离器
CN101670196B (zh) * 2009-09-21 2011-07-13 宁波威瑞泰默赛多相流仪器设备有限公司 一种双筒旋流式气油水分离器

Also Published As

Publication number Publication date
CN103459043B (zh) 2014-08-20
CN103459043A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2011130259A1 (en) Apparatus for separation of gas-liquid mixtures and promoting coalescence of liquids
WO2011108746A1 (ja) 気液分離器及び流量計測装置
CN110180220B (zh) 气液两相流分配控制装置及方法
CN105148625B (zh) 一种涡流管式气液分离器
CN1309451C (zh) 旋流式流体分离器
CN104148196B (zh) 一种柱状气液旋流分离器入口整流装置
EA012384B1 (ru) Устройство регулирования перемежающегося потока
CN204933069U (zh) 一种涡流管式气液分离器
US8715513B2 (en) Modified compact oil-water separation device and systems and methods for use thereof
CN100453144C (zh) 气液分离器
CN103233708A (zh) 一种旋转式稳流器
WO2013097148A1 (zh) 一种多相流体旋流分离装置
CN108434787B (zh) 一种管式油水分离装置
CN102716819B (zh) 一种变截面多叶片导流式内锥型分离器
CN103008123A (zh) 一种变入口段管道截面积水力旋流器
CN114570118B (zh) 一种多级多段分离作用协同集成的管式气液分离器
CN102536759B (zh) 一种用于低产量天然气井的涡流排液采气的井下工具
CN112081571A (zh) 双入口管柱式气液分离器
CN108759940B (zh) 一种可调的流量测定装置高压喷嘴
CN201776190U (zh) 一种带有组合开缝结构的双蜗壳式旋风管
CN202338327U (zh) 双喇叭孔计量孔板
CN202398153U (zh) 一种内置集成式射流旋流分离器
CA2577070A1 (en) Guide-case for water turbine
CN207847946U (zh) 油分桶及螺杆压缩机
CN207246795U (zh) 一种气液界面与流速调节器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 10.11.14)

122 Ep: pct application non-entry in european phase

Ref document number: 11878734

Country of ref document: EP

Kind code of ref document: A1