WO2013097018A1 - Fiber-optic device with one-dimensional element for near-field optical spectroscopy and microscopy - Google Patents

Fiber-optic device with one-dimensional element for near-field optical spectroscopy and microscopy Download PDF

Info

Publication number
WO2013097018A1
WO2013097018A1 PCT/BR2012/000557 BR2012000557W WO2013097018A1 WO 2013097018 A1 WO2013097018 A1 WO 2013097018A1 BR 2012000557 W BR2012000557 W BR 2012000557W WO 2013097018 A1 WO2013097018 A1 WO 2013097018A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
microscopy
fiber
optical
spectroscopy
Prior art date
Application number
PCT/BR2012/000557
Other languages
French (fr)
Portuguese (pt)
Inventor
Ado JÓRIO DE VASCONCELLOS
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Minas Gerais - Ufmg filed Critical Universidade Federal De Minas Gerais - Ufmg
Publication of WO2013097018A1 publication Critical patent/WO2013097018A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • G01Q70/12Nanotube tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/04Self-detecting probes, i.e. wherein the probe itself generates a signal representative of its position, e.g. piezoelectric gauge

Definitions

  • the treated matter ( Figure 1) is described by a fiber optic device (1) with at least one one-dimensional element (3) at the end (2) of (1); for near field optical microscopy and spectroscopy.
  • This device comprises a probe and may preferably be applied to microscopy and spectroscopy equipment and techniques, both by probe scanning.
  • the device ( Figure 1) has adequate dimensions to carry the light propagating through the fiber to a surface to be analyzed, but condensing the light at the fiber outlet by coupling the light with the one-dimensional element.
  • the treated matter ( Figure 1) presents robustness during the surface analysis process, being able to analyze with high resolution structures smaller than 10 nm.
  • SPM stands for a family of techniques that differ from each other by the type of probe-material interaction that is monitored in the process. Some examples are: AFM (atomic force microscopy); EFM ⁇ electrical force microscopy; Magnetic force microscopy (MFM); scanning tunneling microscopy (STM); scanning near-field optical microscopy (SNOM) .
  • AFM atomic force microscopy
  • EFM electroscopy
  • MFM Magnetic force microscopy
  • STM scanning tunneling microscopy
  • SNOM scanning near-field optical microscopy
  • SPM family techniques are based on the same principle of operation. All microscope operating SPM techniques have at least one mechanical probe with the specific property required for the technique (electrical, magnetic, optical, etc.), a piezoelectric positioner able to move the probe with subnanometric precision, probe-ammonia monitoring mechanism oyster, preliminary probe positioning system on the sample, specific technique effect measurement system (s) used, and a computer that controls the entire system (Neves, BRA et AL .. Ceramics. vol.44, no. 290, 1998).
  • Microscopy and near field optical spectroscopy are a hybrid of probe scanning microscopy with optical microscopy and spectroscopy (Synge, EH Phil. Mag. V.6, p.356, 1928).
  • the probe in this case, is the agent responsible for locating the optical signal primarily in a nanometric region, thus generating optical microscopy and spectroscopy with higher spatial resolution than given by the diffraction limit of light. In one of its possible designs, this probe is formed of a very thin optical fiber that carries visible light to the surface of the sample.
  • the excited area is of the order of the opening of the optical fiber
  • the current technology it is possible to study the optical properties of materials with spatial resolution of the order of 50 nm (Neves et al. Ceramics, vol.44, n.290, 1998 ).
  • the term "near field” comes from the fact that the electromagnetic field does not propagate through holes smaller than the length of light due to the diffraction effect.
  • the opening of the probe there is a very close “field” intense, which can be used for microscopy and spectroscopy using the SPM technique, which is responsible for bringing the probe close enough to the surface (around 1 nm) so that the near field can be felt by the surface.
  • SNOM Near field optical microscopy
  • the SNOM technique can achieve a spatial resolution of the order of 10 nm, which is well below the resolution of a tunnel or atomic force microscope.
  • SPM hybrid with optical microscopy and spectroscopy which are diverse.
  • main parameters that may be of interest for the investigation of a nanoscale structure in addition to shape and size, are its chemical composition, molecular structure as well as its dynamic and electronic properties, largely measured by various optical properties of the nanoscale. materials.
  • the SNOM principle is relatively simple.
  • the sample to be characterized is scanned by an optical fiber or a metal probe having an opening of the order of ten or tens of nanometers in diameter at its end.
  • Through the fiber passes visible light, which will interact or interacted with the sample, going from it to a detector.
  • the metal probe With the metal probe, the propagating light is condensed in a nanometric region by the resonance effect with the metal surface plasmons.
  • Another possibility is to cover an optical fiber with a metal film, thus taking advantage of the two technologies described above.
  • the optical signal strength detected at each point of the probe scan constitutes a data set that will reproduce an image of the sample surface, with spatial resolution determined by the probe end size currently limited to 10nm (N. Anderson, A. Hartschuh and L. Novotny, J. Am. Chem. Soc. 127, 2533 (2005)).
  • the limitation imposed by the near field effect is that the distance between the probe and the sample has to be a few nanometers. Therefore, the probe is trapped in a system capable of detecting the interaction of the probe with the surface so that the probe is close enough to that surface so that van der Waals interactions can be detected.
  • An example of a system capable of sensing this interaction is the so-called 'tunning forK' ((5), Figure 2), which is a tuning fork-like device with well-defined vibration frequency (K. Karrai and RD Grober, Appl. Lett.
  • one of the major limiters is the amount of light sent and / or collected that passes through this probe.
  • the transmitted power decreases exponentially with the reduction in fiber diameter. For this reason, an accuracy of about 50 to 100 nm is usually generated.
  • this type of probe is limited to the study of intense signals, such as photoluminescence. It is, however, unsuitable for the study of weaker signals, such as Raman spectroscopy, where the signal is on the order of a thousand times lower than luminescence signals, making Raman spectroscopy coupled with nanometric spatial resolution unviable.
  • the material under study is illuminated by an optical microscope.
  • a nanometer-sized metal tip is approached from the sample by the SPM system, condensing the electric field of light around itself.
  • the resolution is in the order of 10 nm. This resolution is limited by the manufacturing technology of the metal probes, which will hardly evolve below 10 nm due to the metallurgical properties of the material used for their manufacture.
  • the nanoanthene axis is perpendicular to the surface.
  • a direction of light propagation which, consequently, will have its polarized electric field normal to the surface, that is, perpendicular to the axis of the antenna.
  • the so-called “doughnut mode” which generates a radially polarized propagating light, has been used (Quabis, S. et al. App. Phys. B: Laser and Optics, v.81, n.5 , p.597-600, 2005).
  • This light when focused by the microscope objective, generates a polarization component perpendicular to the focus surface of the lens, ie parallel to the nanoanthene axis.
  • a probe In all processes used in probe scanning microscopy and spectroscopy, a probe is used that scans a surface for topography, electrical, magnetic, elastic, optical, and other information. For the best possible spatial resolution in this process of collecting surface information or objects on it (eg adsorbed molecules), this probe should have the end that contacts the sample as small as possible, ideally a point , representing, for the surface, a "zero" dimension material. Ideally, this point or "zero-dimensional" probe is effectively a single atom at the end of the probe as a whole, thus generating resolution images. subatomic, common in probe scan tuneing microscopy (STM) experiments.
  • STM probe scan tuneing microscopy
  • a fiber optic device / probe with at least one one-dimensional element where the surface-probe interaction region via near field is substantially "one-dimensional".
  • the system solves the largest limiter of the state of the art, which is to obtain nanometer-order resolutions using a thinly tuned optical fiber, 100 nm in diameter or more. If on the one hand the one-dimensional system loses spatial resolution along one of its dimensions (Figure 1), when compared to one end, mechanical strength and spatial resolution on the other dimension are gained ( Figure 1), which can be reduced below current technological limit of 10 nm.
  • Figure 1 illustrates the device formed by an optical fiber (1) and a one-dimensional element (3) located at the end (2) of (1).
  • Figure 2 illustrates the device ( Figure 1) coupled to a probe-surface interaction sensing system, or a tunning fork (5). It is important to note that the optical fiber (1) can be as long as necessary, with only the end (1) shown in the figure attached to the tunning fork (5).
  • the treated material ( Figure 1) comprises a device formed by an optical fiber (1) and a one-dimensional element (3), which is coupled to the end (2) of the fiber (1).
  • the one-dimensional element (3) is preferably a carbon nanotube or a bundle of carbon nanotubes, an Au or Ag or Cu nanowire or an Au or Ag or Cu nanobastane.
  • This device ( Figure 1) is preferably used in microscopy and spectroscopy equipment and techniques, both by probe scanning.
  • the proposed device ( Figure 1) has adequate dimensions for the propagation of light by the probe (compatible with light wavelength) and the coupling of the electric field of light propagating by the optical fiber with the one-dimensional element ensures the system a high resolution of near field in one dimension (typically but not limiting values from 1 to 20 nanometers).
  • the treated matter (Figure 1) can be coupled to a probe-surface interaction sensing system, preferably a tuning fork or tunning fork, which will preferably be coupled to a SNOM system.
  • Optical fibers can be fabricated using the method proposed by Puygranier (Puygranier, BAF; Dawson, P .; v.85, p.235 (2000)) and one-dimensional element deposition can be performed by chemical method. or by nano-manipulation
  • the cylinder indicated by (1) in Figure 1 represents the end of an optical fiber, tuned to 300 nm in diameter.
  • the final part (2) it contained a one-dimensional metallic material (3) that came into contact with the surface and effectively served as a field probe near the light propagating through the fiber.
  • the resolution of the near field effect was given by the diameter of the one-dimensional material, a single-walled carbon nanotube, 0.8 nm in diameter.
  • the near field of light from the optical fiber was condensed around the one-dimensional system from 300 nm to 1 nm in terms of resolution; either for near field optical microscopy or near field optical spectroscopy, considering a device scan along the dimension perpendicular to the carbon nanotube axis.
  • the carbon nanotube deposition process at the end of the optical fiber consisted of the commercial acquisition of an aqueous solution of isolated carbon nanotubes, selected by chirality. Nanotubes of the type (6,5) with optical transition energy compatible with a photon of wavelength ( ⁇ ) equal to 568 nm were chosen. Another type of nanotube can also be selected as long as its optical excitation is well known or determined. Drops of the isolated nanotube solution were deposited on the tip of the optical fiber, and the fiber was attached to a spinning system, so that the deposition occurred through the so-called spin coating process. This process generated a homogeneous dispersion of material in the probe surface. At each 5-drop deposition, the fiber was removed and the Raman spectrum from the region where the nanotube was deposited was measured.
  • the optical fiber was then fixed to a probe-surface interaction sensing system, preferably a tuning fork or tuning fork, and then a laser beam of SNOM via optical fiber was used as excitation means for SNOM.
  • a probe-surface interaction sensing system preferably a tuning fork or tuning fork
  • a laser beam of SNOM via optical fiber was used as excitation means for SNOM.
  • AFM images were obtained with approximately 300nm resolution, while SNOM images were obtained with approximately 1nm resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The subject matter (figure 1) is a fiber-optic device (1) with at least one one-dimensional element (3) at the extremity (2) of (1) for near-field optical spectroscopy and microscopy. This device comprises a probe that may be used, preferably, in scanning-probe microscopy and spectroscopy techniques and equipment. The device (figure 1) is suitably dimensioned to carry the light propagated along the fiber to a surface to be analyzed, condensing the light at the fiber output by coupling the light with the one-dimensional element. The subject matter (figure 1) is sufficiently robust for the surface analysis process, and is able to provide high-resolution analysis of structures having dimensions of less than 10 nm.

Description

"DISPOSITIVO DE FIBRA ÓPTICA COM ELEMENTO UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO "UNI-DIMENSIONAL FIBER OPTICAL DEVICE FOR MICROSCOPY AND FIELD OPTICAL SPECTROSCOPY
PRÓXIMO" NEXT"
A matéria tratada (Figura 1) é descrita por um dispositivo à base de fibra óptica (1) com, pelo menos, um elemento unidimensional (3) na extremidade (2) de (1); para microscopia e espectroscopia óptica de campo próximo. Este dispositivo compreende uma sonda, podendo esta ser aplicada, preferencialmente, em equipamentos e técnicas de microscopia e espectroscopia, ambas por varredura de sonda. O dispositivo (Figura 1 ) apresenta dimensões adequadas para carrear a luz que propaga pela fibra até uma superfície a ser analisada, mas condensando a luz na saída da fibra pelo acoplamento da luz com o elemento unidimensional. A matéria tratada (Figura 1) apresenta robustez durante o processo de análise superficial, podendo analisar com alta resolução estruturas de dimensões inferiores a 10 nm.  The treated matter (Figure 1) is described by a fiber optic device (1) with at least one one-dimensional element (3) at the end (2) of (1); for near field optical microscopy and spectroscopy. This device comprises a probe and may preferably be applied to microscopy and spectroscopy equipment and techniques, both by probe scanning. The device (Figure 1) has adequate dimensions to carry the light propagating through the fiber to a surface to be analyzed, but condensing the light at the fiber outlet by coupling the light with the one-dimensional element. The treated matter (Figure 1) presents robustness during the surface analysis process, being able to analyze with high resolution structures smaller than 10 nm.
No início dos anos 80, a Microscopia de Varredura por Sonda (do Inglês, In the early 1980s, Probe Scanning Microscopy
Scanning Probe Microscopy ou SPM) surpreendeu o mundo com as primeiras imagens com resolução atómica da superfície de um cristal de silício. Desde então, a técnica de SPM vem sendo utilizada amplamente, produzindo imagens de átomos a estruturas nanométricas na superfície de diversos materiais. Em indústrias de manufatura de precisão, relacionadas a tecnologias tais como microeletrônica, energia solar, dispositivos médicos, automotivo, aeroespacial e outros, os microscópios de varredura por sonda permitem aos usuários monitorar seus produtos em todo o processo de fabricação para melhorar a produtividade, reduzir custos e melhorar a qualidade do produto. O principal mercado para microscópios de varredura da sonda está no setor de semicondutores e eletrônicos, no qual eles são rotineiramente utilizados para a inspeção de produtos e análise de falhas. Eles também são amplamente utilizados nas universidades, centros de pesquisa e centros científicos em todo o mundo (Neves, B.R.A. et AL.. Cerâmica, vol.44, n.290, 1998). Scanning Probe Microscopy (SPM) surprised the world with the first atomic resolution images of the surface of a silicon crystal. Since then, the SPM technique has been widely used, producing images of atoms to nanometric structures on the surface of various materials. In precision manufacturing industries related to technologies such as microelectronics, solar energy, medical devices, automotive, aerospace and others, probe scanning microscopes allow users to monitor their products throughout the manufacturing process to improve productivity, reduce costs and improve product quality. The primary market for probe scanning microscopes is in the semiconductor and electronics sector, where they are routinely used for product inspection and fault analysis. They are also widely used in universities, research centers, and scientific centers around the world (Neves, B.R.A. et AL .. Ceramics, vol.44, n.290, 1998).
A sigla SPM representa uma família de técnicas que diferem entre si pelo tipo de interação sonda-material que é monitorado no processo. Alguns exemplos são: AFM (atomic force microscopy ou microscopia de força atómica; EFM {electrical force microscopy ou microscopia de força elétrica; MFM (magnetic force microscopy ou microscopia de força magnética; STM (scanning tunneling microscopy ou microscopia de tunelamento por varredura); SNOM (scanning near-field optical microscopy ou microscopia óptica de campo próximo). Várias destas técnicas podem oferecer, além de informações de microscopia, informações espectroscópicas, sendo nomeadas trocando-se o M por S na sigla (exemplo: STS ao invés de STM). Apesar de fornecerem informações bastante diferentes entre si, tais como morfologia, condutividade elétrica, dureza e propriedades magnéticas e ópticas, todas as técnicas da família SPM se baseiam num mesmo princípio de operação. Todo microscópio que opera as técnicas de SPM possui, no mínimo, uma sonda mecânica com a propriedade específica necessária para técnica (propriedade elétrica, magnética, óptica, etc), um posicionador piezoelétrico capaz de mover a sonda com precisão subnanométrica, mecanismo de monitoração da interação sonda- amostra, sistema de posicionamento preliminar da sonda sobre a amostra, sistema(s) de medida do efeito da técnica específico utilizada, e um computador que controla todo o sistema (Neves, B.R.A. et AL.. Cerâmica. vol.44, n.290, 1998). SPM stands for a family of techniques that differ from each other by the type of probe-material interaction that is monitored in the process. Some examples are: AFM (atomic force microscopy); EFM {electrical force microscopy; Magnetic force microscopy (MFM); scanning tunneling microscopy (STM); scanning near-field optical microscopy (SNOM) .Many of these techniques can offer, in addition to information from microscopy, spectroscopic information, being named by replacing M with S (for example: STS instead of STM), although they provide very different information such as morphology, electrical conductivity, hardness, and magnetic and optical properties. SPM family techniques are based on the same principle of operation.All microscope operating SPM techniques have at least one mechanical probe with the specific property required for the technique (electrical, magnetic, optical, etc.), a piezoelectric positioner able to move the probe with subnanometric precision, probe-ammonia monitoring mechanism oyster, preliminary probe positioning system on the sample, specific technique effect measurement system (s) used, and a computer that controls the entire system (Neves, BRA et AL .. Ceramics. vol.44, no. 290, 1998).
A microscopia e a espectroscopia óptica de campo próximo (SNOM, SNOM ou NFOM) são um híbrido das microscopias de varredura por sonda com a microscopia e espectroscopia ótica (Synge, E.H. Phil. Mag. v.6, p.356, 1928). A sonda, neste caso, é o agente responsável por localizar o sinal óptico primordialmente em uma região nanométrica, gerando assim a microscopia e espectroscopia óptica com resolução espacial superior ao dado pelo limite de difração da luz. Em uma de suas possíveis concepções, esta sonda é formada por uma fibra óptica muito fina que carreia luz visível à superfície da amostra. Como a área excitada é da ordem da abertura da fibra óptica, com a tecnologia atual consegue-se estudar as propriedades ópticas de materiais com resolução espacial da ordem de 50 nm (Neves et al. Cerâmica, vol.44, n.290, 1998). O termo "campo próximo" vem do fato de que o campo eletromagnético não se propaga por orifícios menores que o comprimento da luz, devido ao efeito da difração. Entretanto, na abertura da sonda existe um "campo próximo" muito intenso, que pode ser usado para microscopia e espectroscopia com o uso da técnica de SPM, que é responsável aproximar a sonda da superfície o suficiente (da ordem de 1 nm) para que o campo próximo possa ser sentido pela superfície. Microscopy and near field optical spectroscopy (SNOM, SNOM or NFOM) are a hybrid of probe scanning microscopy with optical microscopy and spectroscopy (Synge, EH Phil. Mag. V.6, p.356, 1928). The probe, in this case, is the agent responsible for locating the optical signal primarily in a nanometric region, thus generating optical microscopy and spectroscopy with higher spatial resolution than given by the diffraction limit of light. In one of its possible designs, this probe is formed of a very thin optical fiber that carries visible light to the surface of the sample. As the excited area is of the order of the opening of the optical fiber, with the current technology it is possible to study the optical properties of materials with spatial resolution of the order of 50 nm (Neves et al. Ceramics, vol.44, n.290, 1998 ). The term "near field" comes from the fact that the electromagnetic field does not propagate through holes smaller than the length of light due to the diffraction effect. However, at the opening of the probe there is a very close "field" intense, which can be used for microscopy and spectroscopy using the SPM technique, which is responsible for bringing the probe close enough to the surface (around 1 nm) so that the near field can be felt by the surface.
A microscopia óptica de campo próximo (SNOM) melhora a resolução espacial da ótica convencional, esta melhoria dependendo da dimensão da sonda utilizada no processo. Com a tecnologia atual, a técnica de SNOM pode alcançar uma resolução espacial da ordem de 10 nm, o que é bem inferior à resolução de um microscópio de força atómica ou de tunelamento. Entretanto, trás as vantagens do híbrido de SPM com a microscopia e espectroscopia ótica, que são diversas. Entre os principais parâmetros que possam ser de interesse para a investigação de uma estrutura na escala nanométrica, além de forma e tamanho, estão a sua composição química, estrutura molecular, bem como a suas propriedades dinâmicas e eletrônicas, largamente mensuradas por diversas propriedades ópticas dos materiais.  Near field optical microscopy (SNOM) improves the spatial resolution of conventional optics, this improvement depending on the size of the probe used in the process. With current technology, the SNOM technique can achieve a spatial resolution of the order of 10 nm, which is well below the resolution of a tunnel or atomic force microscope. However, it brings the advantages of the SPM hybrid with optical microscopy and spectroscopy, which are diverse. Among the main parameters that may be of interest for the investigation of a nanoscale structure, in addition to shape and size, are its chemical composition, molecular structure as well as its dynamic and electronic properties, largely measured by various optical properties of the nanoscale. materials.
A resolução recorde de 12nm foi obtida não com o uso de uma fibra óptica como sonda, mas com o efeito de ressonância da luz propagante com os plasmons de uma sonda metálica (Hartschuh et al., Phys. Rev. Lett. 90, 2003). Como exemplo, o sistema pode utilizar a configuração confocal usual de um microscópio óptico invertido, mas a luz sendo condensada em uma pequena região de 12nm devido à ressonância com o plasma de uma sonda metálica de dimensão nanométrica colocada na região a ser estudada por um sistema de SPM. Este efeito possibilita medidas efetivas de sinais pouco intensos, como o espalhamento Raman na escala nanométrica, sendo chamado neste caso de TERS (T/p Enhanced Raman Spectroscopy, Chem. Phys. Lett. 335, 369-374, (2001)), em analogia ao conhecido SERS {Suríace Enhanced Raman Spectroscopy, ver Chem. Phys. Lett. 126, 163, (1974)), que utiliza partículas metálicas dispersas em uma superfície para aumentar o sinal Raman de moléculas. A diferença é que, na configuração TERS, a posição desta partícula metálica é controlada por um sistema tipo SPM. Imagens espectroscópicas com resolução nanométrica podem ser geradas, e a observação de espalhamento Raman e emissão de luz localizadas em regiões nanométricas tem sido obtidas usando esta técnica (Maciel et al. Nature Materials 7, 878 (2008)). A espectroscopia Raman tem larga aplicação nas indústrias farmacêuticas, químicas, petrolíferas, tendo o TERS grande potencial para gerador de avanços tecnológicos nestes e outros ramos de atividade. Record resolution of 12nm was achieved not with the use of an optical fiber as a probe, but with the resonant effect of propagating light with the plasmon of a metal probe (Hartschuh et al., Phys. Rev. Lett. 90, 2003). . As an example, the system may use the usual confocal configuration of an inverted optical microscope, but the light being condensed in a small 12nm region due to the plasma resonance of a nanometer-sized metal probe placed in the region to be studied by a system. from SPM. This effect enables effective measurements of low intensity signals, such as the Raman scattering on the nanometer scale, being called in this case TERS (T / p Enhanced Raman Spectroscopy, Chem. Phys. Lett. 335, 369-374, (2001)). analogy to the known SERS {Suriac Enhanced Raman Spectroscopy, see Chem. Phys. Lett. 126, 163, (1974)), which uses metal particles dispersed on a surface to increase the Raman signal of molecules. The difference is that in the TERS configuration the position of this metal particle is controlled by an SPM type system. Nanoscopic spectroscopic images can be generated, and observation of Raman scattering and light emission located in nanometric regions have been obtained using this technique (Maciel et al. Nature Materials 7, 878 (2008)). Raman spectroscopy has wide application in the pharmaceutical, chemical and petroleum industries, with TERS having great potential to generate technological advances in these and other fields of activity.
O princípio do SNOM é, relativamente, simples. A amostra a ser caracterizada é varrida por uma fibra ótica ou por uma sonda metálica, que têm uma abertura da ordem de dez ou de dezenas de nanômetros de diâmetro na sua extremidade. Pela fibra passa luz visível, que irá interagir ou interagiu com amostra, indo dela para um detector. Com a sonda metálica, a luz propagante é condensada em uma região nanométrica pelo efeito de ressonância com os plasmons de superfície do metal. Outra possibilidade é recobrir uma fibra óptica com uma película metálica, aproveitando-se, assim, das vantagens das duas tecnologias descritas acima. Em todos os casos, a intensidade do sinal ótico detectado em cada ponto da varredura da sonda constitui um conjunto de dados que irão reproduzir uma imagem da superfície da amostra, com resolução espacial determinada pelo tamanho da extremidade da sonda limitada atualmente em 10nm (N. Anderson, A. Hartschuh and L. Novotny, J. Am. Chem. Soe. 127, 2533 (2005)).  The SNOM principle is relatively simple. The sample to be characterized is scanned by an optical fiber or a metal probe having an opening of the order of ten or tens of nanometers in diameter at its end. Through the fiber passes visible light, which will interact or interacted with the sample, going from it to a detector. With the metal probe, the propagating light is condensed in a nanometric region by the resonance effect with the metal surface plasmons. Another possibility is to cover an optical fiber with a metal film, thus taking advantage of the two technologies described above. In all cases, the optical signal strength detected at each point of the probe scan constitutes a data set that will reproduce an image of the sample surface, with spatial resolution determined by the probe end size currently limited to 10nm (N. Anderson, A. Hartschuh and L. Novotny, J. Am. Chem. Soc. 127, 2533 (2005)).
A limitação imposta pelo efeito de campo próximo é que a distância entre a sonda e a amostra tem que ser de poucos nanômetros. Por isto, a sonda é presa em um sistema capaz de detectar a interação da sonda com a superfície, de modo que a sonda se aproxime dessa superfície o suficiente para que interações de Van der Waals possam ser detectadas. Um exemplo de sistema capaz de sentir esta interação é o chamado "tunning forK' ((5), Figura 2), que é um dispositivo semelhante ao um diapasão, com frequência de vibração bem definida (K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842-1844, (1995)). Quando a sonda, presa a este dispositivo, aproxima-se da superfície a ser analisada, a interação sonda-superfície altera a frequência de vibração do diapasão, e esta variação é detectada pela eletrônica do sistema. Existem também outros métodos de medir a interação sonda-superfície, como pela reflexão de um laser no topo da sonda, mais comum em sistemas de AFM (Neves, B.R.A. et AL.. Cerâmica, vol.44, n.290, 1998). Finalmente, com o SNOM obtêm-se imagens óticas de uma amostra que, para efeitos de análises dos dados, podem ser comparadas com imagens topográficas, por exemplo, adquiridas simultaneamente pelo método de força atómica (L. G. Cançado, A. Hartschuh and L. Novotny, J. Raman Spectrosc. 40, 1420-1426 (2009)). The limitation imposed by the near field effect is that the distance between the probe and the sample has to be a few nanometers. Therefore, the probe is trapped in a system capable of detecting the interaction of the probe with the surface so that the probe is close enough to that surface so that van der Waals interactions can be detected. An example of a system capable of sensing this interaction is the so-called 'tunning forK' ((5), Figure 2), which is a tuning fork-like device with well-defined vibration frequency (K. Karrai and RD Grober, Appl. Lett. 66, 1842-1844 (1995)) When the probe attached to this device approaches the surface to be analyzed, the probe-surface interaction alters the pitch vibration frequency, and this variation is There are also other methods of measuring probe-surface interaction, such as the reflection of a laser at the top of the probe, most common in AFM systems (Neves, BRA et al .. Ceramics, vol.44, n Finally, with the SNOM optical images are obtained from a sample which, for the purpose of data analysis, can be compared with topographic images, eg acquired simultaneously by the atomic force method (LG Cançado, A. Hartschuh and L. Novotny, J. Raman Spectrosc. 40, 1420-1426 (2009)).
Há, contudo, diversas limitações para a eficiência de um SNOM no que diz respeito à eficiência do sinal óptico, tanto no uso de fibras-ópticas (metalizadas ou não), quanto de sondas metálicas.  There are, however, several limitations to the efficiency of an SNOM with respect to optical signal efficiency, both in the use of fiber optics (metallized or not) and metal probes.
No caso do funcionamento da microscopia óptica de campo próximo utilizando uma sonda de fibra-óptica, um dos maiores limitadores é a quantidade de luz enviada e/ou coletada que passa por esta sonda. A potência transmitida decai exponencialmente com a redução do diâmetro da fibra. Por essa razão, gera-se usualmente uma precisão da ordem de 50 a 100 nm. Somando-se ao problema da baixa resolução, o uso desse tipo de sonda fica limitado ao estudo de sinais intensos, como a fotoluminescência. É, entretanto, inadequado para o estudo de sinais mais fracos, como a espectroscopia Raman, onde o sinal é da ordem de mil vezes inferior do que sinais de luminescência, tornando inviável a espectroscopia Raman acoplada a uma resolução espacial nanométrica.  In the case of near field optical microscopy operating using a fiber optic probe, one of the major limiters is the amount of light sent and / or collected that passes through this probe. The transmitted power decreases exponentially with the reduction in fiber diameter. For this reason, an accuracy of about 50 to 100 nm is usually generated. In addition to the problem of low resolution, the use of this type of probe is limited to the study of intense signals, such as photoluminescence. It is, however, unsuitable for the study of weaker signals, such as Raman spectroscopy, where the signal is on the order of a thousand times lower than luminescence signals, making Raman spectroscopy coupled with nanometric spatial resolution unviable.
Já no caso do funcionamento da microscopia de campo próximo utilizando uma sonda metálica, o material em estudo é iluminado por um microscópio óptico. Uma ponta metálica de dimensões nanométricas é aproximada da amostra pelo sistema de SPM, condensando o campo elétrico da luz em torno de si. Nessa técnica, a resolução chega a ser da ordem de 10 nm. Esta resolução está limitada pela tecnologia de fabricação das sondas metálicas, que dificilmente evoluirão para valores abaixo de 10 nm devido às propriedades metalúrgicas do material utilizado para sua fabricação.  In the case of the operation of near field microscopy using a metal probe, the material under study is illuminated by an optical microscope. A nanometer-sized metal tip is approached from the sample by the SPM system, condensing the electric field of light around itself. In this technique, the resolution is in the order of 10 nm. This resolution is limited by the manufacturing technology of the metal probes, which will hardly evolve below 10 nm due to the metallurgical properties of the material used for their manufacture.
Melhorar a resolução das sondas metálicas não é o único ou o pior desafio: em toda microscopia por sonda de varredura a qualidade dos resultados está fortemente relacionada à qualidade da sonda utilizada. Este fato tem sido a grande limitação para a utilização em larga escala do SNOM com sonda metálica. De fato, nota-se que boa parte dos artigos publicados na área de microscopia óptica em campo-próximo está relacionada com a produção e caracterização dos dispositivos/sondas de varredura (P. Lambelet et al, Applied Optics 37(31), 7289-7292 (1998); B. Ren, G. Picardi and B. Pettinger, Rev. Sei. Instrum. 75, 837 (2004); P. Bharadwaj, B. Deutsch and Lukas Novotny, Adv. Opt. Photon. 1 , 438 - 483 (2009)). O que agrava o problema da qualidade da sonda para a SNOM é que o acoplamento dessas sondas com a luz que propaga, efeito responsável pela condensação do campo em torno da sonda não é simples, dependendo da qualidade da sonda e da geometria luz-sonda. Uma das razões de o acoplamento da sonda metálica com a luz ser pouco eficiente é que, como em qualquer antena, o campo elétrico de polarização da luz deve estar na direção do eixo do dipolo, idealmente no deixo da antena. Improving the resolution of metal probes is not the only or the worst challenge: in all scanning probe microscopy the quality of the results is strongly related to the quality of the probe used. This fact has been the major limitation for the large-scale use of SNOM with metal probe. In fact, it is noted that most of the articles published in the field of near-field optical microscopy are related to the production and characterization of scanning devices / probes (P. Lambelet et al., Applied Optics 37 (31), 7289-7292 (1998); B. Ren, G. Picardi and B. Pettinger, Rev. Sci. Instrum. 75, 837 (2004); P. Bharadwaj, B. Deutsch and Lukas Novotny, Adv. Opt. Photon. 1, 438-483 (2009)). What aggravates the probe quality problem for SNOM is that the coupling of these probes with the propagating light, which is responsible for the condensation of the field around the probe, is not simple, depending on the quality of the probe and the light-probe geometry. One of the reasons that the coupling of the metal probe with light is inefficient is that, as with any antenna, the electric field of light polarization must be in the direction of the dipole axis, ideally when leaving the antenna.
Entretanto, no caso da microscopia e espectroscopia de campo próximo com as extremidades das sondas "zerodimensionais", o eixo da nanoantena é perpendicular à superfície. Dessa forma, para iluminar a superfície tem-se que usar uma direção de propagação da luz que, consequentemente, terá seu campo elétrico polarizado normal à superfície, isto é, perpendicular ao eixo da antena. Para a implementação desta geometria, o chamado "doughnut mode", que gera uma luz propagante com polarização radial, tem sido utilizado (Quabis, S. et al. App. Phys. B: Laser and Optics, v.81 , n.5, p.597-600, 2005). Esta luz, quando focalizada pela objetiva do microscópio, gera uma componente de polarização perpendicular à superfície do foco da objetiva, ou seja, paralela ao eixo da nanoantena.  However, in the case of near field microscopy and spectroscopy with the ends of the "zero-dimensional" probes, the nanoanthene axis is perpendicular to the surface. Thus, to illuminate the surface one has to use a direction of light propagation which, consequently, will have its polarized electric field normal to the surface, that is, perpendicular to the axis of the antenna. For the implementation of this geometry, the so-called "doughnut mode", which generates a radially polarized propagating light, has been used (Quabis, S. et al. App. Phys. B: Laser and Optics, v.81, n.5 , p.597-600, 2005). This light, when focused by the microscope objective, generates a polarization component perpendicular to the focus surface of the lens, ie parallel to the nanoanthene axis.
Em todos os processos utilizados na microscopia e espectroscopia por varredura de sonda, usa-se uma sonda de prova que varre uma superfície obtendo informações de topografia, elétricas, magnéticas, elásticas, ópticas e outras. Para obter a melhor resolução espacial possível neste processo de coleta de informações da superfície ou de objetos existentes na mesma (por exemplo, moléculas adsorvidas), esta sonda deve ter a extremidade que entra em contato com a amostra tão pequena quanto possível, idealmente um ponto, representando, para a superfície, um material de dimensão "zero". Idealmente, esta sonda pontual ou "zerodimensional" é efetivamente um único átomo na extremidade da sonda como um todo, gerando assim imagens com resolução subatômicas, comuns em experimentos de microscopia de tuneiamento por varredura de sonda (STM). In all processes used in probe scanning microscopy and spectroscopy, a probe is used that scans a surface for topography, electrical, magnetic, elastic, optical, and other information. For the best possible spatial resolution in this process of collecting surface information or objects on it (eg adsorbed molecules), this probe should have the end that contacts the sample as small as possible, ideally a point , representing, for the surface, a "zero" dimension material. Ideally, this point or "zero-dimensional" probe is effectively a single atom at the end of the probe as a whole, thus generating resolution images. subatomic, common in probe scan tuneing microscopy (STM) experiments.
Então, propõe-se um dispositivo/sonda de fibra óptica com pelo menos um elemento unidimensional, onde a região de interação superfície-sonda via campo-próximo é substancialmente "unidimensional". Neste caso, tem-se o campo próximo de um elemento unidimensional que varre uma superfície, ao invés do campo próximo de toda a extremidade da fibra óptica. Isto determina a importância de se propor um "Dispositivo de fibra óptica com elemento unidimensional (Figura 1) para microscopia e espectroscopia óptica de campo próximo".  Therefore, a fiber optic device / probe with at least one one-dimensional element is proposed, where the surface-probe interaction region via near field is substantially "one-dimensional". In this case, we have the field near a one-dimensional element that scans a surface, rather than the field near the entire end of the optical fiber. This determines the importance of proposing a "One-Dimensional Element Fiber Optic Device (Figure 1) for near field optical microscopy and spectroscopy".
Por utilizar a resolução do elemento unidimensional, o sistema resolve o maior limitador do estado da técnica, que é obter resoluções da ordem de nanômetros utilizando uma fibra óptica não muito afinada, de 100 nm de diâmetro ou mais. Se por um lado o sistema unidimensional perde resolução espacial ao longo de uma de suas dimensões (Figura 1), quando comparado a uma ponta, ganha-se robustez mecânica e resolução espacial na outra dimensão (Figura 1), que pode ser reduzida abaixo do limite tecnológico atual de 10 nm.  By utilizing one-dimensional element resolution, the system solves the largest limiter of the state of the art, which is to obtain nanometer-order resolutions using a thinly tuned optical fiber, 100 nm in diameter or more. If on the one hand the one-dimensional system loses spatial resolution along one of its dimensions (Figure 1), when compared to one end, mechanical strength and spatial resolution on the other dimension are gained (Figure 1), which can be reduced below current technological limit of 10 nm.
Diversos pedidos de patente descrevem detalhadamente microscópios para a realização da SNOM, conforme verificado no documento JP2011122896A, intitulado "Near-field optical microscope", e no documento US6194711 B1 , intitulado "Scanning near-field optical microscope".  Several patent applications describe in detail microscopes for performing SNOM, as found in JP2011122896A, entitled "Near-field optical microscope", and US6194711 B1, entitled "Scanning near-field optical microscope".
Outros documentos focam especificamente nas propriedades da sonda de SNOM, abordando o seu funcionamento e, em alguns casos, a sua fabricação. Isso pode ser constatado nos documentos US4917462, intitulado "Near field scanning optical microscopy"; US4604520, intitulado "Optical near- field scanning microscope"; US20100032719A1 , intitulado "Probes for scanning probe microscopy"; US007735147B2, intitulado "Probe system comprising an electric-field-aligned probe tip and method"; US20030094035A1, intitulado "Carbon nanotube probe tip grown on a small probe"; US2004168527A1 , intitulado "Coated nanotube surface signal probe"; US20050083826A1 , intitulado "Optical fiber probe using an electrical potential difference and an optical recorder using the same"; US20080000293A1 , intitulado "Spm cantilever and manufacturing method thereof; WO2009/085184A1 , intitulado "Protected metallic tip or metallized scanning probe microscopy tip for optical applications"). Na patente US005831743A, intitulada Optical probes", por exemplo, é proposto um novo design de sonda com uma angulação dupla. Entretanto, o objetivo é a medição de luz totalmente refletida na interface, diferentemente do proposto na presente invenção. Other documents focus specifically on the properties of the SNOM probe, addressing its operation and, in some cases, its manufacture. This can be seen in US4917462 entitled "Near field scanning optical microscopy"; US4604520, entitled "Optical near-field scanning microscope"; US20100032719A1, entitled "Probes for scanning probe microscopy"; US007735147B2 entitled "Probe system comprising an electric-field-aligned probe tip and method"; US20030094035A1 entitled "Carbon nanotube probe tip grown on a small probe"; US2004168527A1, entitled "Coated nanotube surface signal probe"; US20050083826A1 entitled "Optical fiber probe using an electrical potential difference and an optical recorder using the same "; US20080000293A1, titled" Spm cantilever and manufacturing method thereof; WO2009 / 085184A1, entitled "Protected metallic tip or metallized scanning probe microscopy tip for optical applications"). In US005831743A entitled Optical probes, for example, a new dual-angle probe design is proposed. However, the objective is to measure light fully reflected at the interface, unlike that proposed in the present invention.
Existem, também, diversos documentos que reivindicam o uso de materiais unidimensionais para aplicações como sondas de SPM, conforme verificado nos documentos US007735147B2, intitulada "Probe system comprising an electric-field-aligned probe tip and method for fabricating the same"; US20030094035A1 , intitulada "Carbon nanotube probe tip grown on a small probe"; US2004168527A1 , intitulada "Coated nanotube surface signal probe"; e US20080000293A1 , intitulada "SPM Cantilever and Manufacturing Method Thereof". Entretanto, os documentos tratam do dispositivo onde o material unidimensional está disposto perpendicular à superfície em estudo, de forma que a interação com a superfície é feita com sua extremidade, essencialmente "zerodimensional".  There are also several documents claiming the use of one-dimensional materials for applications such as SPM probes, as found in US007735147B2 entitled "Probe system comprising an electric-field-aligned probe tip and method for fabricating the same"; US20030094035A1 entitled "Carbon nanotube probe tip grown on a small probe"; US2004168527A1 entitled "Coated nanotube surface signal probe"; and US20080000293A1, entitled "SPM Cantilever and Manufacturing Method Thereof". However, the documents deal with the device where the one-dimensional material is arranged perpendicular to the surface under study, so that the interaction with the surface is made with its essentially "zero-dimensional" end.
Verifica-se, então, que em nenhum documento é descrito ou reivindicado um dispositivo de fibra óptica acoplado a um elemento unidimensional para microscopia e espectroscopia óptica de campo próximo, da forma como é proposto nesta presente invenção.  It is then found that no document describing or claiming a fiber optic device coupled to a one-dimensional element for near field optical microscopy and spectroscopy, as proposed in this invention.
Em todos os casos descritos na literatura, a deficiência está no desenvolvimento de sondas efetivas, robustas, e com resolução espacial inferior a dezenas de nanômetros. Os requisitos são rigidez mecânica, eficiência óptica e resolução espacial, somados. O sistema tem que ser rígido para que sirva também como sonda para microscopia de forca atómica, e deve apresentar um acoplamento com o campo eletromagnético da luz incidente, gerando um aumento do campo local campo próximo. Este aumento deve ser localizado em uma região do espaço que, atualmente, utilizando-se sondas metálicas ou fibras ópticas metalizadas, está na faixa de dezenas de nanômetros. A matéria tratada (Figura 1), por sua vez, pode resolver as deficiências supracitadas, uma vez que apresenta dimensões adequadas para uma varredura robusta, e o acoplamento do elemento unidimensional com o campo elétrico de luz que propaga pela fibra garante resolução do campo próximo em uma dimensão. In all cases described in the literature, the deficiency is in the development of effective, robust probes with spatial resolution of less than tens of nanometers. The requirements are mechanical rigidity, optical efficiency and spatial resolution all together. The system must be rigid to serve also as a probe for atomic force microscopy, and must be coupled with the electromagnetic field of the incident light, generating an increase of the local near field. This increase should be located in a region of space that currently, using metal probes or metalized optical fibers, is in the range of tens of nanometers. The treated matter (Figure 1), in turn, can solve the aforementioned deficiencies, since it has adequate dimensions for robust scanning, and the coupling of the one-dimensional element with the electric light field propagating through the fiber ensures near field resolution. in one dimension.
DESCRIÇÃO DAS FIGURAS DESCRIPTION OF THE FIGURES
A Figura 1 ilustra o dispositivo formado por uma fibra óptica (1) e por um elemento unidimensional (3), este localizado na extremidade (2) de (1). Figure 1 illustrates the device formed by an optical fiber (1) and a one-dimensional element (3) located at the end (2) of (1).
A Figura 2 ilustra o dispositivo (Figura 1) acoplado a um sistema de sensoriamento da interação sonda-superfície, ou um diapasão (em inglês tunning fork) (5). É importante salientar que a fibra óptica (1 ) pode ser tão longa quanto necessário, estando representado nesta figura apenas extremidade da mesma (1 ), que é fixada ao tunning fork (5).  Figure 2 illustrates the device (Figure 1) coupled to a probe-surface interaction sensing system, or a tunning fork (5). It is important to note that the optical fiber (1) can be as long as necessary, with only the end (1) shown in the figure attached to the tunning fork (5).
DESCRIÇÃO DETALHADA DA INVENÇÃO A matéria tratada (Figura 1 ) compreende um dispositivo formado por uma fibra óptica (1) e por um elemento unidimensional (3), este acoplado na extremidade (2) da fibra (1 ). DETAILED DESCRIPTION OF THE INVENTION The treated material (Figure 1) comprises a device formed by an optical fiber (1) and a one-dimensional element (3), which is coupled to the end (2) of the fiber (1).
O elemento unidimensional (3) é, preferencialmente, um nanotubo de carbono ou um feixe de nanotubos de carbono, um nanofio de Au ou Ag ou Cu ou um nanobastão de Au ou Ag ou Cu.  The one-dimensional element (3) is preferably a carbon nanotube or a bundle of carbon nanotubes, an Au or Ag or Cu nanowire or an Au or Ag or Cu nanobastane.
Este dispositivo (Figura 1) é utilizado, preferencialmente, em equipamentos e técnicas de microscopia e espectroscopia, ambas por varredura de sonda. O dispositivo proposto (Figura 1) possui dimensões adequadas para a propagação da luz pela sonda (compatível com comprimento de onda da luz) e o acoplamento do campo elétrico da luz que propaga pela fibra óptica com o elemento unidimensional garante ao sistema uma grande resolução de campo próximo em uma dimensão (valores tipicamente, mas não limitantes, de 1 a 20 nanômetros).  This device (Figure 1) is preferably used in microscopy and spectroscopy equipment and techniques, both by probe scanning. The proposed device (Figure 1) has adequate dimensions for the propagation of light by the probe (compatible with light wavelength) and the coupling of the electric field of light propagating by the optical fiber with the one-dimensional element ensures the system a high resolution of near field in one dimension (typically but not limiting values from 1 to 20 nanometers).
A matéria tratada (Figura 1) pode ser acoplada a um sistema de sensoriamento da interação sonda-superfície, preferencialmente um diapasão ou tunning fork, que será acoplado, preferencialmente, em um sistema de SNOM. The treated matter (Figure 1) can be coupled to a probe-surface interaction sensing system, preferably a tuning fork or tunning fork, which will preferably be coupled to a SNOM system.
O processo de fabricação das fibras ópticas pode ser feito por meio do método proposto por Puygranier (Puygranier, B.A.F.; Dawson, P.; v.85, p.235 (2000)) e a deposição do elemento unidimensional pode ser realizada por método químico ou por nano-manipulação  Optical fibers can be fabricated using the method proposed by Puygranier (Puygranier, BAF; Dawson, P .; v.85, p.235 (2000)) and one-dimensional element deposition can be performed by chemical method. or by nano-manipulation
A matéria tratada pode ser mais bem compreendida através do seguinte exemplo, não limitante.  The subject matter can be better understood by the following non-limiting example.
Exemplo - Processo de fabricação do dispositivo de fibra óptica com nanotubo de carbono.  Example - Process of manufacturing the carbon nanotube fiber optic device.
O cilindro indicado por (1) na Figura 1 representa a extremidade de uma fibra óptica, afinada em 300 nm de diâmetro. Esta continha, na parte final (2), um material unidimensional metálico (3) que entrou em contato com a superfície e que serviu efetivamente de sonda de campo próximo da luz que propaga pela fibra. A resolução do efeito de campo próximo foi dada pelo diâmetro do material unidimensional, um nanotubo de carbono de parede simples, de 0.8 nm de diâmetro. O campo próximo da luz proveniente da fibra óptica foi condensado em torno do sistema unidimensional, passando de 300 nm para 1 nm em termos de resolução; seja tanto para a técnica da microscopia óptica de campo próximo, quanto para a espectroscopia óptica de campo próximo, considerando uma varredura do dispositivo ao longo da dimensão perpendicular ao eixo do nanotubo de carbono.  The cylinder indicated by (1) in Figure 1 represents the end of an optical fiber, tuned to 300 nm in diameter. In the final part (2) it contained a one-dimensional metallic material (3) that came into contact with the surface and effectively served as a field probe near the light propagating through the fiber. The resolution of the near field effect was given by the diameter of the one-dimensional material, a single-walled carbon nanotube, 0.8 nm in diameter. The near field of light from the optical fiber was condensed around the one-dimensional system from 300 nm to 1 nm in terms of resolution; either for near field optical microscopy or near field optical spectroscopy, considering a device scan along the dimension perpendicular to the carbon nanotube axis.
O processo de deposição de nanotubos de carbono na ponta da fibra óptica consistiu na aquisição comercial uma solução aquosa de nanotubos de carbono isolados, selecionados por quiralidade. Foram escolhidos nanotubos do tipo (6,5) que apresentaram energia de transição óptica compatível a um fóton de comprimento de onda (λ) igual a 568 nm. Outro tipo de nanotubo pode ser selecionado igualmente, desde que sua excitação óptica seja bem conhecida ou determinada. Depositaram-se gotas da solução de nanotubos isolados na ponta da fibra óptica, estando esta fibra anexada em um sistema giratório, para que a deposição ocorresse pelo chamado processo de "spin coating". Este processo gerou uma dispersão homogénea de material na superfície da sonda. A cada deposição de 5 gotas, a fibra foi retirada e o espectro Raman, da região onde foi depositado o nanotubo foi medido. A fibra óptica foi, então, fixada a um sistema de sensoriamento da interação sonda- superfície, preferencialmente um diapasão ou "tuning fork" e, em seguida, utilizou-se como meio de excitação para o SNOM via fibra óptica um feixe de laser de mesmo comprimento de onda ( λ=568 nm). Imagens de AFM foram obtidas com resolução de aproximadamente 300nm, enquanto imagens de SNOM foram obtidas com resolução de, aproximadamente, 1nm. The carbon nanotube deposition process at the end of the optical fiber consisted of the commercial acquisition of an aqueous solution of isolated carbon nanotubes, selected by chirality. Nanotubes of the type (6,5) with optical transition energy compatible with a photon of wavelength (λ) equal to 568 nm were chosen. Another type of nanotube can also be selected as long as its optical excitation is well known or determined. Drops of the isolated nanotube solution were deposited on the tip of the optical fiber, and the fiber was attached to a spinning system, so that the deposition occurred through the so-called spin coating process. This process generated a homogeneous dispersion of material in the probe surface. At each 5-drop deposition, the fiber was removed and the Raman spectrum from the region where the nanotube was deposited was measured. The optical fiber was then fixed to a probe-surface interaction sensing system, preferably a tuning fork or tuning fork, and then a laser beam of SNOM via optical fiber was used as excitation means for SNOM. same wavelength (λ = 568 nm). AFM images were obtained with approximately 300nm resolution, while SNOM images were obtained with approximately 1nm resolution.

Claims

REIVINDICAÇÕES
1. Dispositivo de fibra óptica com elemento unidimensional para microscopia e espectroscopia óptica de campo próximo, caracterizado por compreender um corpo de fibra óptica cilíndrico (1) com um sistema unidimensional (3) acoplado na sua extremidade (2), composto preferencialmente por um nanotubo de carbono ou um feixe de nanotubos de carbono, ou por um nanofio ou nanobastão de Au, Ag ou Cu. 1. One-dimensional fiber optic device for near-field optical microscopy and spectroscopy, characterized in that it comprises a cylindrical optical fiber body (1) with a one-dimensional system (3) coupled to its end (2), preferably composed of a nanotube carbon or a beam of carbon nanotubes, or by an Au, Ag or Cu nanowire or nanobastane.
2. Dispositivo de fibra óptica com elemento unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com a reivindicação 1, caracterizado pelas dimensões de diâmetro da fibra variando de λ/10 a λ, sendo λ o comprimento de onda da luz no processo de SNOM, variando usualmente de 200nm a 1 mícron; e dimensão do elemento unidimensional (3) tipicamente de 0,8 nm a 20 nm de diâmetro.  Unidimensional element optical fiber device for near field optical microscopy and spectroscopy according to claim 1, characterized in that the fiber diameter dimensions varying from λ / 10 to λ, where λ is the wavelength of light in the process. SNOM, usually ranging from 200nm to 1 micron; and dimension of the one-dimensional element (3) typically from 0.8 nm to 20 nm in diameter.
3. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 e 2, caracterizado por poder ser utilizado nas microscopias e espectroscopias ópticas de campo próximo; preferencialmente, SNOM.  Massive one-dimensional end device for near field optical microscopy and spectroscopy according to claims 1 and 2, characterized in that it can be used in near field optical microscopy and spectroscopy; preferably SNOM.
4. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 a 3, caracterizado por compreender meios de avaliar a topografia e as propriedades ópticas de uma superfície.  Massive one-dimensional end device for near field optical microscopy and spectroscopy according to any of claims 1 to 3, characterized in that it comprises means of assessing the topography and optical properties of a surface.
PCT/BR2012/000557 2011-12-29 2012-12-27 Fiber-optic device with one-dimensional element for near-field optical spectroscopy and microscopy WO2013097018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1105972A BRPI1105972B1 (en) 2011-12-29 2011-12-29 fiber optic device with one-dimensional element for near-field microscopy and optical spectroscopy
BRPI1105972-9 2011-12-29

Publications (1)

Publication Number Publication Date
WO2013097018A1 true WO2013097018A1 (en) 2013-07-04

Family

ID=48696132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000557 WO2013097018A1 (en) 2011-12-29 2012-12-27 Fiber-optic device with one-dimensional element for near-field optical spectroscopy and microscopy

Country Status (2)

Country Link
BR (1) BRPI1105972B1 (en)
WO (1) WO2013097018A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279359A (en) * 2003-03-19 2004-10-07 Konica Minolta Holdings Inc Nanoprobe for near-field infrared microscope spectroscopy
US20070221840A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation Monolithic high aspect ratio nano-size scanning probe microscope (SPM) tip formed by nanowire growth
US20090276923A1 (en) * 2008-05-02 2009-11-05 Mikhail Sumetsky Near-field scanning optical microscopy with nanoscale resolution from microscale probes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279359A (en) * 2003-03-19 2004-10-07 Konica Minolta Holdings Inc Nanoprobe for near-field infrared microscope spectroscopy
US20070221840A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation Monolithic high aspect ratio nano-size scanning probe microscope (SPM) tip formed by nanowire growth
US20090276923A1 (en) * 2008-05-02 2009-11-05 Mikhail Sumetsky Near-field scanning optical microscopy with nanoscale resolution from microscale probes

Also Published As

Publication number Publication date
BRPI1105972A2 (en) 2013-11-12
BRPI1105972B1 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
Yano et al. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres
Crut et al. Optical absorption and scattering spectroscopies of single nano-objects
US6887365B2 (en) Nanotube cantilever probes for nanoscale magnetic microscopy
US7214303B2 (en) Cantilever probes for nanoscale magnetic and atomic force microscopy
Neacsu et al. Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules
US20150067930A1 (en) Method and Apparatus of Physical Property Measurement Using a Probe-Based Nano-Localized Light Source
JP2009541742A (en) Polarization design methods and application examples
Ambrosio et al. Observation of nanoscale refractive index contrast via photoinduced force microscopy
Wang et al. Development and prospect of near-field optical measurements and characterizations
US6995367B2 (en) Nanotube, near-field light detecting apparatus and near-field light detecting method
Hou et al. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever
Zhang et al. Principle, system, and applications of tip-enhanced Raman spectroscopy
Kohlgraf-Owens et al. Optically induced forces in scanning probe microscopy
WO2013097018A1 (en) Fiber-optic device with one-dimensional element for near-field optical spectroscopy and microscopy
WO2013097021A1 (en) Hollow device with a one-dimensional extremity for near-field optical spectroscopy and microscopy
Wang et al. Detection of carbon nanotubes using tip-enhanced Raman spectroscopy
Hayazawa et al. Tip-enhanced Raman spectroscopy
BRPI1105968A2 (en) UNI-DIMENSION MASSIVE DEVICE FOR NEXT FIELD MICROSCOPY AND OPTICAL SPECTROSCOPY
BR102012033304B1 (en) Massive device with one-dimensional tip for near-field microscopy and optical spectroscopy
Umakoshi et al. Tip-Enhanced Raman Spectroscopy
Riaz et al. Nanoscale Spectroscopy with Applications to Chemistry
Radamson et al. Scanning Probe Microscopies (SPMs) Part I: Atom Force microscope (AFM)
BR102012026973B1 (en) Massive carbon nanocone encased device for scanning probe microscopy and spectroscopy
Hayazawa et al. Development of tip-enhanced near-field optical spectroscopy and microscopy
WO2013097019A1 (en) Solid device with a one-dimensional extremity for near-field optical spectroscopy and microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861081

Country of ref document: EP

Kind code of ref document: A1