WO2013094793A1 - Drive merge control system for construction machine - Google Patents

Drive merge control system for construction machine Download PDF

Info

Publication number
WO2013094793A1
WO2013094793A1 PCT/KR2011/010035 KR2011010035W WO2013094793A1 WO 2013094793 A1 WO2013094793 A1 WO 2013094793A1 KR 2011010035 W KR2011010035 W KR 2011010035W WO 2013094793 A1 WO2013094793 A1 WO 2013094793A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pump
spool
hydraulic
flow path
traveling
Prior art date
Application number
PCT/KR2011/010035
Other languages
French (fr)
Korean (ko)
Inventor
이상희
정해균
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to PCT/KR2011/010035 priority Critical patent/WO2013094793A1/en
Priority to KR1020147016875A priority patent/KR101641272B1/en
Publication of WO2013094793A1 publication Critical patent/WO2013094793A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a running confluence control system of a construction machine, and more particularly, a driving confluence control of a construction machine to secure a predetermined traveling speed by using a pump having a low RPM and a low capacity at a high speed in a wheel type excavator. It is about the system.
  • first and second hydraulic pumps 2 and 3 Electronically controlled variable displacement first and second hydraulic pumps (hereinafter referred to as “first and second hydraulic pumps") 2 and 3 connected to the power generator 1,
  • Running spool 5 is installed in the flow path 4 of the first hydraulic pump 2, and controls the start, stop and direction change of the hydraulic motor (not shown) during switching;
  • a work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
  • a hydraulic traveling pedal 8 which outputs a driving signal pressure in proportion to the operation amount
  • the electronics provided in the first and second hydraulic pumps 2 and 3 to control the RPM of the power generator 1 and the discharge flow rates of the first and second hydraulic pumps 2 and 3 to correspond to the traveling signal pressure. And a controller 10 for outputting a control signal to the control valves 2a and 3a (PPRV).
  • reference numeral 11 denotes a main control valve (MCV)
  • 12 denotes a pressure sensing device for detecting a pressure according to pressurization of the traveling pedal 8 and transmitting a detection signal to the controller
  • 13 denotes a power generator ( RPM detection device for detecting the RPM of 1) and transmits the detection signal to the controller (10).
  • the driving pedal 8 is pressed after the driving mode is selected by the driver by operating the work mode selection switch 9, the driving spool 5 is plotted by the driving signal pressure according to the pressing of the driving pedal 8. Switch to up or left direction. At this time, the pressure signal detected by the pressure sensing device 12 is transmitted to the controller 10.
  • the controller 10 outputs a control signal to the power generator 1 to increase the RPM of the power generator 1 so as to be proportional to the signal pressure, and the electronic control valve provided in the first hydraulic pump 2 ( The control signal is output to 2a) to discharge the flow rate corresponding to the signal pressure.
  • the control signal is output to 2a to discharge the flow rate corresponding to the signal pressure.
  • a power generator 1 A power generator 1,
  • a traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
  • a work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
  • a hydraulic traveling pedal 14 mechanically connected to an electric control switch (not shown) for outputting a driving signal current value according to the manipulation amount;
  • the configuration except that the operation amount of the driving pedal 14 is detected by the current value input to the controller 10 when the driver operates the electric control switch of the driving pedal 14 is the driving control shown in FIG. 1. Since the configuration of the system is the same, detailed descriptions of their configuration and operation are omitted, and the reference numerals for the overlapping configurations are the same.
  • a power generator 1 A power generator 1,
  • a traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
  • a work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
  • a proportional control valve 17 for outputting a secondary signal pressure in which the pilot signal pressure supplied from the pilot pump 16 to the traveling spool 5 is proportional to the control signal from the outside;
  • First and second hydraulic pumps to control the RPM of the power generator 1 and to control the discharge flow rate of the first and second hydraulic pumps 2 and 3 in correspondence with the current value according to the operation of the electric running pedal 15. And a controller 10 for outputting a control signal to the electronic control valves 2a and 3a provided at (2, 3).
  • the operation amount of the driving pedal 15 is detected by the current value input to the controller 10, and the control signal is supplied to the proportional control valve 17 to be proportional to the operation amount.
  • the configuration except for controlling the traveling spool 5 by outputting the same is the same as the configuration of the traveling control system shown in FIG. 1, so that detailed descriptions of the configuration and operation thereof are omitted and the reference numerals for the overlapping configurations are the same. To be written.
  • the hydraulic oil required for driving is used using only one of the above-described first hydraulic pump 2 or the second hydraulic pump 3.
  • the hydraulic pump having a higher RPM and a larger capacity is generally used than the tracked excavator of the same class.
  • a predetermined traveling speed can be secured even at a low RPM and a low capacity pump, thereby reducing equipment cost costs. It is related to the driving joining control system of construction machinery to improve fuel economy.
  • Hydraulic traveling pedal to output the driving signal pressure in proportion to the operation amount
  • a work mode selection switch for selecting a work mode or a driving mode
  • a traveling spool which is installed in the flow path of the first hydraulic pump and controls the start, stop and direction change of the hydraulic motor during switching;
  • At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
  • a traveling confluence spool for converting the flow path of the hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic fluid of the first hydraulic pump;
  • a CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump at the time of switching;
  • a first proportional control valve for supplying secondary signal pressures output in proportion to a control signal from the outside to the traveling confluence spool and the CBP spool, respectively;
  • Controlling the RPM of the power generating device corresponding to the driving signal pressure of the driving pedal, and outputting a control signal to the electronic control valve provided in the first and second hydraulic pumps to control the discharge flow rates of the first and second hydraulic pumps; 1 includes a controller for outputting a control signal to the proportional control valve.
  • a hydraulic traveling pedal mechanically connected to an electric control switch for outputting a driving signal current value according to the manipulation amount
  • a work mode selection switch for selecting a work mode or a driving mode
  • a traveling spool which is installed in the flow path of the first hydraulic pump and controls the start, stop and direction change of the hydraulic motor during switching;
  • At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
  • a traveling confluence spool for converting the flow path of the hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic fluid of the first hydraulic pump;
  • a CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump at the time of switching;
  • a first proportional control valve for supplying secondary signal pressures output in proportion to a control signal from the outside to the traveling confluence spool and the CBP spool, respectively;
  • Control the RPM of the power generating device to correspond to the current value according to the operation of the electric control switch of the driving pedal, and to control the electronic control valve provided in the first and second hydraulic pump to control the discharge flow rate of the first and second hydraulic pump And a controller for outputting a signal and outputting a control signal to the first proportional control valve.
  • An electric traveling pedal for outputting a driving signal current value in proportion to the manipulated amount
  • a work mode selection switch for selecting a work mode or a driving mode
  • a traveling spool which is installed in the flow path of the first hydraulic pump and controls the start, stop and direction change of the hydraulic motor during switching;
  • At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
  • a traveling confluence spool for converting the flow path of the hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic fluid of the first hydraulic pump;
  • a CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump at the time of switching;
  • a first proportional control valve for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling confluence spool;
  • Proportional control valve for supplying the secondary signal pressure output to the traveling spool in proportion to the control signal from the outside
  • it includes a pressure sensing device for detecting the driving signal pressure according to the pressure of the hydraulic traveling pedal described above and transmitting the detection signal to the controller.
  • It includes an RPM detecting device for detecting the RPM of the power generating device described above and transmitting the detection signal to the controller.
  • a mechanical variable displacement hydraulic pump which variably controls the discharge flow rate by a regulator operated by a control signal pressure from the outside is used.
  • a solenoid valve for supplying pilot signal pressure so as to switch the driving confluence spool and the CBP spool when the driving mode is selected by operating the work mode selection switch.
  • the traveling joining control system of a construction machine as described above has the following advantages.
  • the discharge flow rate of the low RPM and the low capacity pump is joined to secure a predetermined driving speed, thereby reducing the cost of equipment and improving fuel economy.
  • FIG. 1 is a hydraulic circuit diagram according to a first embodiment of the prior art
  • FIG. 2 is a hydraulic circuit diagram according to a second embodiment of the prior art
  • FIG. 3 is a hydraulic circuit diagram according to a third embodiment of the prior art.
  • FIG. 4 is a hydraulic circuit diagram of a traveling joining control system of a construction machine according to a first embodiment of the present invention
  • FIG. 5 is a hydraulic circuit diagram of a traveling joining control system of a construction machine according to a second embodiment of the present invention.
  • FIG. 6 is a hydraulic circuit diagram of a traveling joining control system of a construction machine according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart of a traveling joining control system for a construction machine according to a first embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a case where a solenoid valve is used as a control valve for supplying pilot signal pressure to switch between the traveling joining spool and the CBP spool in the traveling joining control system of a construction machine according to embodiments of the present disclosure.
  • first and second hydraulic pumps 2 and 3 Electronically controlled variable displacement first and second hydraulic pumps 2 and 3 connected to the power generator 1 (hereinafter referred to as "first and second hydraulic pumps")
  • a hydraulic traveling pedal 8 which outputs a driving signal pressure in proportion to the amount of operation by the driver
  • a traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor (not shown) during switching;
  • At least one work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
  • a CBP spool 22 which is installed at the downstreammost side of the flow path 6 of the second hydraulic pump 2 and forms an operating pressure in the tandem flow path 18 of the second hydraulic pump 3 during switching;
  • the first proportional control valve 23 installed in the flow path of the pilot pump 16 and supplying the secondary signal pressure outputted in proportion to the electric control signal from the outside to the traveling confluence spool 21 and the CBP spool 22, respectively.
  • the first and second hydraulic pumps 2 and 3 control the RPM of the power generator 1 in correspondence with the travel signal pressure of the travel pedal 8 and control the discharge flow rates of the first and second hydraulic pumps 2 and 3.
  • a controller 10 for outputting control signals to the electronic control valves 2a and 3a (PPRV) provided in 3), and for outputting an electrical control signal to the first proportional control valve 23.
  • PPRV electronic control valves 2a and 3a
  • a pressure sensing device 12 that detects the driving signal pressure according to the pressurization of the hydraulic traveling pedal 8 and transmits the detection signal to the controller 10.
  • RPM detection device 13 for detecting the above-described RPM of the power generating device 1 and transmits a detection signal to the controller (10).
  • a mechanical variable displacement hydraulic pump that variably controls the discharge flow rate may be used by a regulator operated by a control signal pressure from the outside.
  • the traveling joining spool which is installed on the upstream side of the flow path 6 of the above-mentioned second hydraulic pump 3 and joins the hydraulic fluid of the second hydraulic pump 3 side with the hydraulic oil of the first hydraulic pump 2 during switching ( 21), the CBP spool 22 provided at the most downstream side of the flow path 6 of the second hydraulic pump 3, and the traveling confluence spool 21 and the CBP spool ( Except for the first proportional control valve 23 for outputting the secondary signal pressure supplied to 22), the configuration is the same as that of the traveling confluence control system shown in FIG. Omitted and duplicated reference numerals are the same.
  • the travel spool 5 is switched to the left in the drawing by the travel signal pressure output according to the hydraulic travel pedal 8 pressure.
  • the pressure detection device 12 detects the travel signal pressure according to the pressurization of the travel pedal 8, but the detection signal is transmitted to the controller 10.
  • the controller 10 outputs a control signal to the power generator 1 in proportion to the travel signal pressure to control the RPM of the power generator 1.
  • the flow rate of the first hydraulic pump 2 is controlled by outputting a control signal corresponding to the driving signal pressure to the electronic control valve 2a provided in the first hydraulic pump 2.
  • the driver 10 is required to be faster than the speed corresponding to the maximum flow rate of the first hydraulic pump 2 to further press the running pedal 8, the controller 10 in the second hydraulic pump 3
  • the control signal is output to the electromagnetic proportional valve 3a and the first proportional control valve 23.
  • the first proportional control valve 23 outputs a secondary signal pressure proportional to the traveling signal pressure. Therefore, when gradually shifting the traveling confluence spool 21 and the CBP spool 22 by the secondary signal pressure output from the first proportional control valve 23, the hydraulic oil discharged from the second hydraulic pump 3. A part is moved to the tandem flow path 18 via the flow path 6 and the traveling confluence spool 21, and at the same time, a part of the working oil of the second hydraulic pump 3 passes through the joining path 19 and the joining flow path 20. Since the moving spool 5 is moved upstream, confluence with the flow rate discharged from the first hydraulic pump 2 starts.
  • the discharge flow rate of the first hydraulic pump 2 is controlled by outputting a control signal to the electromagnetic proportional valve 2a of the first hydraulic pump 2 corresponding to the traveling signal pressure.
  • the pilot signal pressure is supplied to switch between the driving confluence spool 21 and the CBP spool 22 by being switched by a control signal input from the controller 10. It may include a solenoid valve (not shown).
  • the solenoid valve is turned on by the control signal from the controller 10. For this reason, the pilot signal pressure from the pilot pump 16 is supplied to the traveling confluence spool 21 and the CBP spool 22, respectively, and is switched.
  • the pressure detection device 12 detects the driving signal pressure according to the driving pedal pressure, but the detection signal is transmitted to the controller 10.
  • the RPM of the power generator 1 is controlled by the control signal input from the controller 10 so as to be proportional to the detected travel signal pressure (see graph curve "a").
  • the discharge flow rate of the hydraulic pump can be controlled in response to the travel signal pressure. That is, as compared with the discharge flow rates discharged from the first hydraulic pump 2 and the second hydraulic pump 3, respectively, as in the graph curve b shown by the solid line, It can be seen that the combined flow rate in which the flow rate of the two hydraulic pumps 3 is joined to the flow rate of the first hydraulic pump 2 can discharge the flow rate required for the maximum speed of the equipment.
  • first and second hydraulic pumps 2 and 3 Electronically controlled variable displacement first and second hydraulic pumps (hereinafter referred to as “first and second hydraulic pumps") 2 and 3 connected to the power generator 1,
  • a hydraulic traveling pedal 14 mechanically connected to an electric control switch for outputting a driving signal current value according to the manipulation amount
  • a traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor (not shown) during switching;
  • At least one work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
  • a CBP spool 22 which is installed at the downstreammost side of the flow path 6 of the second hydraulic pump 3 and forms an operating pressure in the tandem flow path 18 of the second hydraulic pump 3 during switching;
  • a first proportional control valve 23 for supplying secondary signal pressures output in proportion to an electrical control signal from the outside to the traveling confluence valve 21 and the CBP spool 22, respectively;
  • First and second hydraulic pumps to control the RPM of the power generating device and to control the discharge flow rate of the first and second hydraulic pumps 2 and 3 in correspondence with the current value according to the operation of the electric control switch of the travel pedal 14.
  • a controller 10 for outputting a control signal to the electronic control valves 2a and 3a provided at (2, 3) and for outputting an electrical control signal to the first proportional control valve 23.
  • the traveling confluence spool which is installed on the upstream side of the flow path 6 of the above-mentioned second hydraulic pump 3 and joins the hydraulic oil of the second hydraulic pump 3 side with the hydraulic oil of the first hydraulic pump 2 during switching ( 21), the CBP spool 22 provided at the most downstream side of the flow path 6 of the second hydraulic pump 3, and the running confluence spool 21 and the CBP spool (by the electric control signal from the controller 10). Since the configuration except for the first proportional control valve 23 that outputs the secondary signal pressure supplied to 22) is the same as that of the traveling confluence control system shown in FIG. 2, a detailed description thereof will be given. Omitted and duplicated reference numerals are the same.
  • an electric control switch (not shown) provided in the driving pedal 14 when operated by a driver, an operation amount of the driving pedal 14 may be detected by a current value directly input to the controller 10. Can be. This makes the parts of the pressure sensing device 12 shown in FIG. 4 unnecessary.
  • the driving spool 5 is switched by the electric control switch operation of the traveling pedal 14, and at the same time, the controller 10 detects the operation amount of the traveling pedal 14. Therefore, the traveling confluence spool 21 and the CBP spool 22 are switched by the control signal output in proportion to the operation amount from the controller 10. Therefore, the configuration in which the flow rate of the second hydraulic pump 3 is supplied to the traveling spool 5 via the traveling confluence spool 21 and joined with the flow rate of the first hydraulic pump 2 is the traveling confluence shown in FIG. 4. Since the configuration is the same as that of the control system, their configuration and detailed description are omitted.
  • first and second hydraulic pumps 2 and 3 Electronically controlled variable displacement first and second hydraulic pumps (hereinafter referred to as “first and second hydraulic pumps") 2 and 3 connected to the power generator 1,
  • a traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor (not shown) during switching;
  • At least one work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
  • a CBP spool 22 which is installed at the downstreammost side of the flow path 6 of the second hydraulic pump 3 and forms an operating pressure in the tandem flow path 18 of the second hydraulic pump 3 during switching;
  • a first proportional control valve 23 for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling confluence spool 21;
  • a proportional control valve 17 for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling spool 5;
  • the first and second hydraulic pumps may be configured to control the RPM of the power generator 1 and to control the discharge flow rates of the first and second hydraulic pumps 2 and 3 in correspondence with the current values according to the operation of the travel pedal 15. And a controller 10 for outputting control signals to the electronic control valves 2a and 3a provided at 2 and 3 and outputting control signals to the proportional control valve 17 and the first proportional control valve 23. .
  • the traveling joining spool which is installed on the upstream side of the flow path 6 of the above-mentioned second hydraulic pump 3 and joins the hydraulic fluid of the second hydraulic pump 3 side with the hydraulic oil of the first hydraulic pump 2 during switching ( 21), the CBP spool 22 provided at the most downstream side of the flow path 6 of the second hydraulic pump 3, and the traveling confluence spool 21 and the CBP spool ( Except for the first proportional control valve 23 that outputs the secondary signal pressure supplied to 22, the configuration is the same as that of the traveling confluence control system shown in FIG. Omitted and duplicated reference numerals are the same.
  • the manipulation amount of the driving pedal 15 may be detected by a current value input directly to the controller 10 when the electric driving pedal 15 is pressed by the driver. This makes the parts of the pressure sensing device 12 shown in FIG. 4 unnecessary.
  • the operation amount of the traveling pedal 15 is detected by the current value input to the controller 10 when the driving pedal 15 is operated, and the proportional control valve 17 is supplied from the controller 10 to be proportional to the operation amount.
  • the configuration except for controlling the traveling spool 5 by outputting a control signal is the same as the configuration of the traveling joining control system shown in FIG. 4, and thus the configuration and detailed description thereof are omitted.

Abstract

Disclosed is a drive merge control system for securing a driving speed by merging low RPM and a low-capacity pump discharge flow rate when driving a wheel-type excavator at a high speed. The present invention provides the drive merge control system comprising: first and second electronically controlled variable capacity hydraulic pumps; a hydraulic drive pedal; a work mode selection switch; a drive spool and at least one work device spool; a drive merge spool, which is installed on an upstream side of a flow path of the second hydraulic pump, for blocking a flow path of the first hydraulic pump and merging hydraulic oil of the second hydraulic pump with the hydraulic oil of the first hydraulic pump; a CBP spool, which is installed on the lower-most side of a downstream of the second hydraulic pump, for creating an actuation pressure on a tandem flow path of the second hydraulic pump; a first proportional control valve for supplying a secondary signal pressure, which is outputted so as to be proportionate to an external control signal, to each of the drive merge spool and the CBP spool; and a controller for controlling the RPM of a driving force generation device in correspondence with a drive signal pressure of the drive pedal, outputting the control signal to an electronic control valves that are provided on the first and second hydraulic pumps, and for outputting the control signal to the first proportional control valve.

Description

건설기계의 주행 합류 제어시스템Driving joining control system of construction machinery
본 발명은 건설기계의 주행 합류 제어시스템에 관한 것으로, 더욱 상세하게는 휠 타입 굴삭기에서 고속 주행시 저 RPM 및 저 용량의 펌프를 이용하여 소정의 주행속도를 확보할 수 있도록 한 건설기계의 주행 합류 제어시스템에 관한 것이다.The present invention relates to a running confluence control system of a construction machine, and more particularly, a driving confluence control of a construction machine to secure a predetermined traveling speed by using a pump having a low RPM and a low capacity at a high speed in a wheel type excavator. It is about the system.
도 1에 도시된 종래 기술에 의한 휠 타입 건설기계의 주행 합류 제어시스템은,The running joining control system of the wheel type construction machine according to the related art shown in FIG. 1,
동력발생장치(1)(엔진을 말함)와,Power generator 1 (engine),
동력발생장치(1)에 연결되는 전자제어 가변용량형 제1,2유압펌프(이하, "제1,2유압펌프" 라고 함)(2,3)와,Electronically controlled variable displacement first and second hydraulic pumps (hereinafter referred to as "first and second hydraulic pumps") 2 and 3 connected to the power generator 1,
제1유압펌프(2)의 유로(4)에 설치되며, 절환시 유압모터(미도시됨)의 기동,정지 및 방향전환을 제어하는 주행스풀(5)과,Running spool 5 is installed in the flow path 4 of the first hydraulic pump 2, and controls the start, stop and direction change of the hydraulic motor (not shown) during switching;
제2유압펌프(3)의 유로(6)에 설치되며, 절환시 붐 등의 작업장치의 기동, 정지 및 방향전환을 제어하는 작업장치 스풀(7)과,A work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
조작량에 비례하여 주행신호 압력을 출력하는 유압식 주행페달(8)과,A hydraulic traveling pedal 8 which outputs a driving signal pressure in proportion to the operation amount;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치(9)와,A work mode selector switch 9 for selecting a work mode or a driving mode;
주행신호 압력에 대응되게 동력발생장치(1)의 RPM을 제어하고, 제1,2유압펌프(2,3)의 토출 유량을 제어하도록 제1,2유압펌프(2,3)에 구비된 전자제어밸브(2a,3a)(PPRV)에 제어신호를 출력하는 컨트롤러(10)를 포함한다.The electronics provided in the first and second hydraulic pumps 2 and 3 to control the RPM of the power generator 1 and the discharge flow rates of the first and second hydraulic pumps 2 and 3 to correspond to the traveling signal pressure. And a controller 10 for outputting a control signal to the control valves 2a and 3a (PPRV).
도면중 미 설명부호 11은 메인 컨트롤밸브(MCV)이고, 12는 주행페달(8) 가압에 따른 압력을 검출하여 검출신호를 컨트롤러(10)에 전송하는 압력 감지장치이고, 13은 동력발생장치(1)의 RPM을 검출하여 검출신호를 컨트롤러(10)에 전송하는 RPM 감지장치이다.In the drawing, reference numeral 11 denotes a main control valve (MCV), 12 denotes a pressure sensing device for detecting a pressure according to pressurization of the traveling pedal 8 and transmitting a detection signal to the controller 10, and 13 denotes a power generator ( RPM detection device for detecting the RPM of 1) and transmits the detection signal to the controller (10).
따라서, 운전자에 의해 작업모드 선택스위치(9)를 조작하여 주행모드를 선택한 후 주행페달(8)을 가압할 경우, 주행페달(8) 가압에 따른 주행신호 압력에 의해 주행스풀(5)을 도면상, 좌측 방향으로 절환시킨다. 이때 압력 감지장치(12)에 의해 검출되는 압력신호는 컨트롤러(10)에 전송된다.Therefore, when the driving pedal 8 is pressed after the driving mode is selected by the driver by operating the work mode selection switch 9, the driving spool 5 is plotted by the driving signal pressure according to the pressing of the driving pedal 8. Switch to up or left direction. At this time, the pressure signal detected by the pressure sensing device 12 is transmitted to the controller 10.
따라서, 컨트롤러(10)에서는 동력발생장치(1)에 제어신호를 출력하여 신호압력에 비례하도록 동력발생장치(1)의 RPM을 높여주고, 제1유압펌프(2)에 구비된 전자제어밸브(2a)에 제어신호를 출력하여 신호압력에 대응되는 유량을 토출하게 된다. 이로 인해 제1유압펌프(2)로부터 토출되는 작동유는 유로(4)를 따라 주행스풀(5)측으로 공급되어 주행모터를 구동시킨다.Therefore, the controller 10 outputs a control signal to the power generator 1 to increase the RPM of the power generator 1 so as to be proportional to the signal pressure, and the electronic control valve provided in the first hydraulic pump 2 ( The control signal is output to 2a) to discharge the flow rate corresponding to the signal pressure. Thus, the hydraulic oil discharged from the first hydraulic pump 2 is supplied to the traveling spool 5 side along the flow path 4 to drive the traveling motor.
도 2에 도시된 종래 다른 기술에 의한 건설기계의 주행 합류 제어시스템은,Travel joining control system of a construction machine according to another prior art shown in Figure 2,
동력발생장치(1)와,A power generator 1,
동력발생장치(1)에 연결되는 전자제어 가변용량형 제1,2유압펌프(2,3)와,Electronically controlled variable displacement first and second hydraulic pumps (2,3) connected to the power generator (1),
제1유압펌프(2)의 유로(4)에 설치되며, 절환시 유압모터의 기동,정지 및 방향전환을 제어하는 주행스풀(5)과,A traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
제2유압펌프(3)의 유로(6)에 설치되며, 절환시 붐 등의 작업장치의 기동, 정지 및 방향전환을 제어하는 작업장치 스풀(7)과,A work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치(9)와,A work mode selector switch 9 for selecting a work mode or a driving mode;
조작량에 따른 주행신호 전류값을 출력하는 전기제어스위치(미도시됨)가 기계적으로 연결된 유압식 주행페달(14)과,A hydraulic traveling pedal 14 mechanically connected to an electric control switch (not shown) for outputting a driving signal current value according to the manipulation amount;
유압식 주행페달(14)의 전기제어스위치 조작에 따른 전류값에 대응되게 동력발생장치(1)의 RPM을 제어하고, 제1,2유압펌프(2,3)의 토출 유량을 제어하도록 제1,2유압펌프(2,3)에 구비된 전자제어밸브(2a,3a)에 제어신호를 출력하는 컨트롤러(10)를 포함한다.In order to control the RPM of the power generating device 1 and the discharge flow rates of the first and second hydraulic pumps 2 and 3 in correspondence with the current value according to the electric control switch operation of the hydraulic traveling pedal 14. And a controller 10 for outputting a control signal to the electronic control valves 2a and 3a provided in the two hydraulic pumps 2 and 3.
이때, 운전자에 의해 주행페달(14)의 전기제어스위치를 조작시 컨트롤러(10)에 입력되는 전류값에 의해 주행페달(14)의 조작량을 검출하는 것을 제외한 구성은, 도 1에 도시된 주행 제어시스템의 구성과 동일하므로, 이들의 구성 및 작동의 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.At this time, the configuration except that the operation amount of the driving pedal 14 is detected by the current value input to the controller 10 when the driver operates the electric control switch of the driving pedal 14 is the driving control shown in FIG. 1. Since the configuration of the system is the same, detailed descriptions of their configuration and operation are omitted, and the reference numerals for the overlapping configurations are the same.
도 3에 도시된 종래 기술에 의한 건설기계의 주행 합류 제어시스템은,Running joining control system of the construction machine according to the prior art shown in Figure 3,
동력발생장치(1)와,A power generator 1,
동력발생장치(1)에 연결되는 전자제어 가변용량형 제1,2유압펌프(2,3)와,Electronically controlled variable displacement first and second hydraulic pumps (2,3) connected to the power generator (1),
제1유압펌프(2)의 유로(4)에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀(5)과,A traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
제2유압펌프(3)의 유로(6)에 설치되며, 절환시 붐 등의 작업장치의 기동, 정지 및 방향전환을 제어하는 작업장치 스풀(7)과,A work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치(9)와,A work mode selector switch 9 for selecting a work mode or a driving mode;
조작량에 비례하여 주행신호 전류값을 출력하는 전기식 주행페달(15)과,An electric traveling pedal 15 for outputting a driving signal current value in proportion to the operation amount;
파일럿 펌프(16)로부터 주행 스풀(5)에 공급되는 파일럿 신호압을 외부로부터의 제어신호에 비례하도록 가압한 2차 신호압을 출력하는 비례제어밸브(17)와A proportional control valve 17 for outputting a secondary signal pressure in which the pilot signal pressure supplied from the pilot pump 16 to the traveling spool 5 is proportional to the control signal from the outside;
전기식 주행페달(15)의 조작에 따른 전류값에 대응되게 동력발생장치(1)의 RPM을 제어하고, 제1,2유압펌프(2,3)의 토출 유량을 제어하도록 제1,2유압펌프(2,3)에 구비된 전자제어밸브(2a,3a)에 제어신호를 출력하는 컨트롤러(10)를 포함한다.First and second hydraulic pumps to control the RPM of the power generator 1 and to control the discharge flow rate of the first and second hydraulic pumps 2 and 3 in correspondence with the current value according to the operation of the electric running pedal 15. And a controller 10 for outputting a control signal to the electronic control valves 2a and 3a provided at (2, 3).
이때, 운전자에 의해 전기식 주행페달(15)을 조작시 컨트롤러(10)에 입력되는 전류값에 의해 주행페달(15)의 조작량을 검출하고, 이 조작량에 비례하도록 비례제어밸브(17)에 제어신호를 출력하여 주행 스풀(5)을 제어하는 것을 제외한 구성은, 도 1에 도시된 주행 제어시스템의 구성과 동일하므로, 이들의 구성 및 작동의 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.At this time, when the electric pedal 15 is operated by the driver, the operation amount of the driving pedal 15 is detected by the current value input to the controller 10, and the control signal is supplied to the proportional control valve 17 to be proportional to the operation amount. The configuration except for controlling the traveling spool 5 by outputting the same is the same as the configuration of the traveling control system shown in FIG. 1, so that detailed descriptions of the configuration and operation thereof are omitted and the reference numerals for the overlapping configurations are the same. To be written.
전술한 바와 같이 종래 기술들에 의한 휠 타입 굴삭기에서는, 전술한 제1유압펌프(2) 또는 제2유압펌프(3) 중 어느 하나 만을 이용하여 주행에 필요한 작동유를 사용하게 된다. 이때 휠 타입 굴삭기는 궤도형 굴삭기보다 상대적으로 고속 주행이 가능해야 되므로, 일반적으로 동급의 궤도형 굴삭기보다 고 RPM 및 대 용량의 유압펌프를 사용하게 된다.As described above, in the wheel type excavator according to the related arts, the hydraulic oil required for driving is used using only one of the above-described first hydraulic pump 2 or the second hydraulic pump 3. At this time, since the wheel type excavator should be capable of traveling at a relatively high speed than the tracked excavator, the hydraulic pump having a higher RPM and a larger capacity is generally used than the tracked excavator of the same class.
따라서, 부품 원가비용 상승으로 인해 장비 전체의 비용이 상승되고, 장비의 연비 호율이 떨어지는 문제점을 갖는다.Therefore, the cost of the entire equipment is increased due to the increase in the cost of parts, and the fuel consumption rate of the equipment is lowered.
본 발명의 실시예는, 휠 타입 굴삭기의 고속 주행시, 복수개의 유압펌프 토출유량을 합류시킴에 따라, 저 RPM 및 저 용량의 펌프에서도 소정의 주행속도를 확보할 수 있어 장비 원가비용을 절감하고, 연비를 향상시킬 수 있도록 한 건설기계의 주행 합류 제어시스템과 관련된다.According to an embodiment of the present invention, when a plurality of hydraulic pump discharge flow rates are joined at a high speed of a wheel type excavator, a predetermined traveling speed can be secured even at a low RPM and a low capacity pump, thereby reducing equipment cost costs. It is related to the driving joining control system of construction machinery to improve fuel economy.
본 발명의 제1실시예에 의한 건설기계의 주행 합류 제어시스템은,The running joining control system of a construction machine according to a first embodiment of the present invention,
동력발생장치와,Power generator,
동력발생장치에 연결되는 전자제어 가변용량형 제1,2유압펌프와,Electronically controlled variable displacement first and second hydraulic pumps connected to the power generating device,
조작량에 비례하여 주행신호 압력을 출력하는 유압식 주행페달과,Hydraulic traveling pedal to output the driving signal pressure in proportion to the operation amount,
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치와,A work mode selection switch for selecting a work mode or a driving mode;
제1유압펌프의 유로에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀과,A traveling spool which is installed in the flow path of the first hydraulic pump and controls the start, stop and direction change of the hydraulic motor during switching;
제2유압펌프의 유로에 설치되며, 절환시 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀과,At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
제2유압펌프의 유로 상류측에 설치되며, 중립시 제1유압펌프의 유량을 주행 스풀의 하류측으로 공급하고 제2유압펌프의 유량을 제2유압펌프의 텐덤유로로 공급하며, 절환시 제1유압펌프의 유로는 블록 상태로 전환되고, 제2유압펌프측 작동유를 합류유로를 통하여 주행 스풀의 상류측으로 공급하여 제1유압펌프의 작동유와 합류시키는 주행 합류스풀과,It is installed on the upstream side of the flow path of the second hydraulic pump, supplying the flow rate of the first hydraulic pump downstream of the running spool when neutral, and supplying the flow rate of the second hydraulic pump to the tandem flow path of the second hydraulic pump, A traveling confluence spool for converting the flow path of the hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic fluid of the first hydraulic pump;
제2유압펌프의 유로 최하류측에 설치되며, 절환시 제2유압펌프의 텐덤유로에 작동압을 형성하는 CBP스풀과,A CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump at the time of switching;
외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 주행합류스풀과 CBP스풀에 각각 공급하는 제1비례제어밸브와,A first proportional control valve for supplying secondary signal pressures output in proportion to a control signal from the outside to the traveling confluence spool and the CBP spool, respectively;
주행 페달의 주행신호 압력에 대응되게 동력발생장치의 RPM을 제어하고, 제1,2유압펌프의 토출유량을 제어하도록 제1,2유압펌프에 구비된 전자제어밸브에 제어신호를 출력하며, 제1비례제어밸브에 제어신호를 출력하는 컨트롤러를 포함한다.Controlling the RPM of the power generating device corresponding to the driving signal pressure of the driving pedal, and outputting a control signal to the electronic control valve provided in the first and second hydraulic pumps to control the discharge flow rates of the first and second hydraulic pumps; 1 includes a controller for outputting a control signal to the proportional control valve.
본 발명의 제2실시예에 의한 건설기계의 주행 합류 제어시스템은,The running joining control system of a construction machine according to a second embodiment of the present invention,
동력발생장치와,Power generator,
동력발생장치에 연결되는 전자제어 가변용량형 제1,2유압펌프와,Electronically controlled variable displacement first and second hydraulic pumps connected to the power generating device,
조작량에 따른 주행신호 전류값을 출력하는 전기제어스위치가 기계적으로 연결되는 유압식 주행페달과,A hydraulic traveling pedal mechanically connected to an electric control switch for outputting a driving signal current value according to the manipulation amount;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치와,A work mode selection switch for selecting a work mode or a driving mode;
제1유압펌프의 유로에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀과,A traveling spool which is installed in the flow path of the first hydraulic pump and controls the start, stop and direction change of the hydraulic motor during switching;
제2유압펌프의 유로에 설치되며, 절환시 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀과,At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
제2유압펌프의 유로 상류측에 설치되며, 중립시 제1유압펌프의 유량을 주행 스풀의 하류측으로 공급하고 제2유압펌프의 유량을 제2유압펌프의 텐덤유로로 공급하며, 절환시 제1유압펌프의 유로는 블록 상태로 전환되고, 제2유압펌프측 작동유를 합류유로를 통하여 주행 스풀의 상류측으로 공급하여 제1유압펌프의 작동유와 합류시키는 주행 합류스풀과,It is installed on the upstream side of the flow path of the second hydraulic pump, supplying the flow rate of the first hydraulic pump downstream of the running spool when neutral, and supplying the flow rate of the second hydraulic pump to the tandem flow path of the second hydraulic pump, A traveling confluence spool for converting the flow path of the hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic fluid of the first hydraulic pump;
제2유압펌프의 유로 최하류측에 설치되며, 절환시 제2유압펌프의 텐덤유로에 작동압을 형성하는 CBP스풀과,A CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump at the time of switching;
외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 주행합류스풀과 CBP스풀에 각각 공급하는 제1비례제어밸브와,A first proportional control valve for supplying secondary signal pressures output in proportion to a control signal from the outside to the traveling confluence spool and the CBP spool, respectively;
주행 페달의 전기제어스위치의 조작에 따른 전류값에 대응되게 동력발생장치의 RPM을 제어하고, 제1,2유압펌프의 토출유량을 제어하도록 제1,2유압펌프에 구비된 전자제어밸브에 제어신호를 출력하며, 제1비례제어밸브에 제어신호를 출력하는 컨트롤러를 포함한다.Control the RPM of the power generating device to correspond to the current value according to the operation of the electric control switch of the driving pedal, and to control the electronic control valve provided in the first and second hydraulic pump to control the discharge flow rate of the first and second hydraulic pump And a controller for outputting a signal and outputting a control signal to the first proportional control valve.
본 발명의 제3실시예에 의한 건설기계의 주행 합류 제어시스템은,The running joining control system of a construction machine according to a third embodiment of the present invention,
동력발생장치와,Power generator,
동력발생장치에 연결되는 전자제어 가변용량형 제1,2유압펌프와,Electronically controlled variable displacement first and second hydraulic pumps connected to the power generating device,
조작량에 비례하여 주행신호 전류값을 출력하는 전기식 주행페달과,An electric traveling pedal for outputting a driving signal current value in proportion to the manipulated amount;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치와,A work mode selection switch for selecting a work mode or a driving mode;
제1유압펌프의 유로에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀과,A traveling spool which is installed in the flow path of the first hydraulic pump and controls the start, stop and direction change of the hydraulic motor during switching;
제2유압펌프의 유로에 설치되며, 절환시 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀과,At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
제2유압펌프의 유로 상류측에 설치되며, 중립시 제1유압펌프의 유량을 주행 스풀의 하류측으로 공급하고 제2유압펌프의 유량을 제2유압펌프의 텐덤유로로 공급하며, 절환시 제1유압펌프의 유로는 블록 상태로 전환되고, 제2유압펌프측 작동유를 합류유로를 통하여 주행 스풀의 상류측으로 공급하여 제1유압펌프의 작동유와 합류시키는 주행 합류스풀과,It is installed on the upstream side of the flow path of the second hydraulic pump, supplying the flow rate of the first hydraulic pump downstream of the running spool when neutral, and supplying the flow rate of the second hydraulic pump to the tandem flow path of the second hydraulic pump, A traveling confluence spool for converting the flow path of the hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic fluid of the first hydraulic pump;
제2유압펌프의 유로 최하류측에 설치되며, 절환시 제2유압펌프의 텐덤유로에 작동압을 형성하는 CBP스풀과,A CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump at the time of switching;
외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 주행합류스풀에 공급하는 제1비례제어밸브와,A first proportional control valve for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling confluence spool;
외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 주행 스풀에 공급하는 비례제어밸브와,Proportional control valve for supplying the secondary signal pressure output to the traveling spool in proportion to the control signal from the outside,
주행 페달의 조작에 따른 전류값에 대응되게 동력발생장치의 RPM을 제어하고, 제1,2유압펌프의 토출유량을 제어하도록 제1,2유압펌프에 구비된 전자제어밸브에 제어신호를 출력하며, 비례제어밸브 및 제1비례제어밸브에 제어신호를 출력하는 컨트롤러를 포함한다.To control the RPM of the power generating device corresponding to the current value according to the operation of the driving pedal, and outputs a control signal to the electronic control valve provided in the first and second hydraulic pump to control the discharge flow rate of the first and second hydraulic pump And a controller for outputting a control signal to the proportional control valve and the first proportional control valve.
바람직한 실시예에 의하면, 전술한 유압식 주행페달의 가압에 따른 주행 신호압력을 검출하여 검출신호를 컨트롤러에 전송하는 압력감지장치를 포함한다.According to a preferred embodiment, it includes a pressure sensing device for detecting the driving signal pressure according to the pressure of the hydraulic traveling pedal described above and transmitting the detection signal to the controller.
전술한 동력발생장치의 RPM을 검출하여 검출신호를 컨트롤러에 전송하는 RPM감지장치를 포함한다.It includes an RPM detecting device for detecting the RPM of the power generating device described above and transmitting the detection signal to the controller.
전술한 제1,2유압펌프로서,As the above-mentioned first and second hydraulic pumps,
외부로부터의 제어신호 압력에 의해 작동되는 레귤레이터에 의해 토출 유량을 가변 제어하는 기계식 가변용량형 유압펌프가 사용된다.A mechanical variable displacement hydraulic pump which variably controls the discharge flow rate by a regulator operated by a control signal pressure from the outside is used.
전술한 주행합류스풀과 CBP스풀에 제어신호를 각각 출력하는 제어밸브로서,A control valve for outputting a control signal to each of the above-mentioned running confluence spool and CBP spool,
작업모드 선택스위치를 조작하여 주행모드를 선택시, 컨트롤러로부터 입력되는 제어신호에 의해 절환되어 주행합류스풀과 CBP스풀을 절환시키도록 파일럿 신호압을 공급하는 솔레노이드밸브를 포함한다.And a solenoid valve for supplying pilot signal pressure so as to switch the driving confluence spool and the CBP spool when the driving mode is selected by operating the work mode selection switch.
전술한 바와 같은 본 발명의 실시예에 의한 건설기계의 주행 합류 제어시스템은 아래와 같은 이점을 갖는다.The traveling joining control system of a construction machine according to an embodiment of the present invention as described above has the following advantages.
휠 타입 굴삭기의 고속 주행시, 저 RPM 및 저 용량의 펌프의 토출유량을 합류시켜 소정의 주행속도를 확보하므로 장비 원가비용을 절감하고, 연비를 향상시킬 수 있다.When driving the wheel type excavator at high speed, the discharge flow rate of the low RPM and the low capacity pump is joined to secure a predetermined driving speed, thereby reducing the cost of equipment and improving fuel economy.
도 1은 종래 기술의 제1실시예에 의한 유압회로도,1 is a hydraulic circuit diagram according to a first embodiment of the prior art;
도 2는 종래 기술의 제2실시예에 의한 유압회로도,2 is a hydraulic circuit diagram according to a second embodiment of the prior art;
도 3은 종래 기술의 제3실시예에 의한 유압회로도,3 is a hydraulic circuit diagram according to a third embodiment of the prior art;
도 4는 본 발명의 제1실시예에 의한 건설기계의 주행 합류 제어시스템의 유압회로도,4 is a hydraulic circuit diagram of a traveling joining control system of a construction machine according to a first embodiment of the present invention;
도 5는 본 발명의 제2실시예에 의한 건설기계의 주행 합류 제어시스템의 유압회로도,5 is a hydraulic circuit diagram of a traveling joining control system of a construction machine according to a second embodiment of the present invention;
도 6은 본 발명의 제3실시예에 의한 건설기계의 주행 합류 제어시스템의 유압회로도,6 is a hydraulic circuit diagram of a traveling joining control system of a construction machine according to a third embodiment of the present invention;
도 7은 본 발명의 제1실시예에 의한 건설기계의 주행 합류 제어시스템의 흐름도,7 is a flowchart of a traveling joining control system for a construction machine according to a first embodiment of the present invention;
도 8은 본 발명의 실시예들에 의한 건설기계의 주행 합류 제어시스템에서, 주행합류스풀과 CBP스풀을 절환시키도록 파일럿 신호압을 공급하는 제어밸브로써 솔레노이드밸브를 사용할 경우를 나타내는 흐름도이다.FIG. 8 is a flowchart illustrating a case where a solenoid valve is used as a control valve for supplying pilot signal pressure to switch between the traveling joining spool and the CBP spool in the traveling joining control system of a construction machine according to embodiments of the present disclosure.
〈도면의 주요 부분에 대한 참조 부호의 설명〉<Explanation of reference numerals for the main parts of the drawings>
1; 동력발생장치One; Power generator
2; 제1유압펌프2; 1st hydraulic pump
3; 제2유압펌프3; 2nd hydraulic pump
4,6; 유로4,6; Euro
5; 주행스풀5; Running Spool
7; 작업장치 스풀7; Tool spool
8; 유압식 주행페달8; Hydraulic Drive Pedal
9; 작업모드 선택스위치9; Work mode selector switch
10; 컨트롤러10; controller
12; 압력감지장치12; Pressure sensor
13; RPM감지장치13; RPM sensing device
14; 유압식 주행페달14; Hydraulic Drive Pedal
15; 전기식 주행페달15; Electric running pedal
16; 파일럿 펌프16; Pilot pump
17; 비례제어밸브17; Proportional control valve
18; 템덤유로18; Temdom Euro
19; 합류통로19; Confluence
20; 합류유로20; Euro
21; 주행합류스풀21; Driving confluence spool
22; CBP스풀22; CBP Spool
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings, which are intended to explain in detail enough to enable those skilled in the art to easily carry out the invention, and thus It is not intended that the technical spirit and scope of the invention be limited.
도 4에 도시된 본 발명의 제1실시예에 의한 건설기계의 주행 합류 제어시스템은,Running joining control system of the construction machine according to the first embodiment of the present invention shown in Figure 4,
동력발생장치(1)(엔진을 말함)와,Power generator 1 (engine),
동력발생장치(1)에 연결되는 전자제어 가변용량형 제1,2유압펌프(2,3)(이하, "제1,2유압펌프" 라고 함),Electronically controlled variable displacement first and second hydraulic pumps 2 and 3 connected to the power generator 1 (hereinafter referred to as "first and second hydraulic pumps"),
운전자에 의한 조작량에 비례하여 주행신호 압력을 출력하는 유압식 주행페달(8)과,A hydraulic traveling pedal 8 which outputs a driving signal pressure in proportion to the amount of operation by the driver;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치(9)와,A work mode selector switch 9 for selecting a work mode or a driving mode;
제1유압펌프(2)의 유로(4)에 설치되며, 절환시 유압모터(미도시됨)의 기동,정지 및 방향전환을 제어하는 주행 스풀(5)과,A traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor (not shown) during switching;
제2유압펌프(3)의 유로(6)에 설치되며, 절환시 붐 등의 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀(7)과,At least one work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
제2유압펌프(2)의 유로(6) 상류측에 설치되며, 중립시 제1유압펌프(2)의 유량을 유로(25)를 통해 주행 스풀(5)의 하류측으로 공급하고, 제2유압펌프(3)의 유량을 제2유압펌프(3)의 텐덤유로(18)로 공급하며, 파일럿 펌프(16)의 파일럿 신호압에 의해 절환시 제1유압펌프(2)의 유로는 블록(block) 상태로 전환되고, 제2유압펌프(3)측 작동유를 합류통로(19) 및 합류유로(20)를 통하여 주행 스풀(5)의 상류측으로 공급하여 제1유압펌프(2)의 작동유와 합류시키는 주행 합류스풀(21)과,It is installed on the upstream side of the flow path 6 of the second hydraulic pump 2, and when it is neutral, the flow rate of the first hydraulic pump 2 is supplied to the downstream side of the traveling spool 5 through the flow path 25, the second hydraulic pressure The flow rate of the pump 3 is supplied to the tandem flow path 18 of the second hydraulic pump 3, and the flow path of the first hydraulic pump 2 is blocked when switching by the pilot signal pressure of the pilot pump 16. ) And the hydraulic fluid of the second hydraulic pump 3 is supplied to the upstream side of the traveling spool 5 through the confluence passage 19 and the confluence passage 20 to merge with the hydraulic oil of the first hydraulic pump 2. Running confluence spool (21),
제2유압펌프(2)의 유로(6) 최하류측에 설치되며, 절환시 제2유압펌프(3)의 텐덤유로(18)에 작동압을 형성하는 CBP 스풀(22)과,A CBP spool 22 which is installed at the downstreammost side of the flow path 6 of the second hydraulic pump 2 and forms an operating pressure in the tandem flow path 18 of the second hydraulic pump 3 during switching;
파일럿 펌프(16)의 유로에 설치되며, 외부로부터의 전기적 제어신호에 비례하도록 출력되는 2차 신호압력을 주행합류스풀(21)와 CBP스풀(22)에 각각 공급하는 제1비례제어밸브(23)와,The first proportional control valve 23 installed in the flow path of the pilot pump 16 and supplying the secondary signal pressure outputted in proportion to the electric control signal from the outside to the traveling confluence spool 21 and the CBP spool 22, respectively. )Wow,
주행 페달(8)의 주행신호 압력에 대응되게 동력발생장치(1)의 RPM을 제어하고, 제1,2유압펌프(2,3)의 토출 유량을 제어하도록 제1,2유압펌프(2,3)에 구비된 전자제어밸브(2a,3a)(PPRV)에 제어신호를 각각 출력하며, 제1비례제어밸브(23)에 전기적 제어신호를 출력하는 컨트롤러(10)를 포함한다.The first and second hydraulic pumps 2 and 3 control the RPM of the power generator 1 in correspondence with the travel signal pressure of the travel pedal 8 and control the discharge flow rates of the first and second hydraulic pumps 2 and 3. And a controller 10 for outputting control signals to the electronic control valves 2a and 3a (PPRV) provided in 3), and for outputting an electrical control signal to the first proportional control valve 23.
전술한 유압식 주행페달(8)의 가압에 따른 주행 신호압력을 검출하여 검출신호를 컨트롤러(10)에 전송하는 압력감지장치(12)를 포함한다.And a pressure sensing device 12 that detects the driving signal pressure according to the pressurization of the hydraulic traveling pedal 8 and transmits the detection signal to the controller 10.
전술한 동력발생장치(1)의 RPM을 검출하여 검출신호를 컨트롤러(10)에 전송하는 RPM감지장치(13)를 포함한다. RPM detection device 13 for detecting the above-described RPM of the power generating device 1 and transmits a detection signal to the controller (10).
도면에는 미 도시되었으나, 전술한 제1,2유압펌프(2,3)로서,Although not shown in the drawing, the above-described first and second hydraulic pumps 2 and 3,
외부로부터의 제어신호 압력에 의해 작동되는 레귤레이터(regulator)에 의해 토출 유량을 가변 제어하는 기계식 가변용량형 유압펌프가 사용될 수 있다.A mechanical variable displacement hydraulic pump that variably controls the discharge flow rate may be used by a regulator operated by a control signal pressure from the outside.
이때, 전술한 제2유압펌프(3)의 유로(6) 상류측에 설치되며, 절환시 제2유압펌프(3)측 작동유를 제1유압펌프(2)의 작동유와 합류시키는 주행합류 스풀(21)과, 제2유압펌프(3)의 유로(6) 최하류측에 설치되는 CBP스풀(22)과, 컨트롤러(10)로부터의 전기적 제어신호에 의해 주행합류스풀(21) 및 CBP스풀(22)에 공급되는 2차 신호압을 출력하는 제1비례제어밸브(23)를 제외한 구성은, 도 1에 도시된 주행 합류 제어시스템의 구성과 동일하므로, 이들의 구성 및 작동에 대한 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.At this time, the traveling joining spool which is installed on the upstream side of the flow path 6 of the above-mentioned second hydraulic pump 3 and joins the hydraulic fluid of the second hydraulic pump 3 side with the hydraulic oil of the first hydraulic pump 2 during switching ( 21), the CBP spool 22 provided at the most downstream side of the flow path 6 of the second hydraulic pump 3, and the traveling confluence spool 21 and the CBP spool ( Except for the first proportional control valve 23 for outputting the secondary signal pressure supplied to 22), the configuration is the same as that of the traveling confluence control system shown in FIG. Omitted and duplicated reference numerals are the same.
이하에서, 본 발명의 제1실시예에 의한 건설기계의 주행 합류 제어시스템의 사용예를 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, a use example of the traveling joining control system for a construction machine according to a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 4 및 도 7에서와 같이, 운전자의 작업모드 선택스위치(9)의 조작에 따른 주행모드를 선택여부를 판단하되, 주행모드가 선택된 경우 다음 단계(S200 참조)로 진행하고, 주행모드가 선택되지않을 경우 종료한다(S100 참조).4 and 7, it is determined whether the driving mode is selected according to the operation of the driver's work mode selection switch 9, but if the driving mode is selected, the process proceeds to the next step (S200), and the driving mode is selected. If not, it ends (see S100).
S200에서와 같이, 주행모드가 선택된 경우로서, 유압식 주행페달(8) 가압에 따라 출력되는 주행신호 압력에 의해 주행 스풀(5)을 도면상, 좌측방향으로 절환시킨다. 동시에, 압력감지장치(12)에 의해 주행페달(8) 가압에 따른 주행신호 압력을 검출하되 검출신호는 컨트롤러(10)에 전송된다.As in S200, when the travel mode is selected, the travel spool 5 is switched to the left in the drawing by the travel signal pressure output according to the hydraulic travel pedal 8 pressure. At the same time, the pressure detection device 12 detects the travel signal pressure according to the pressurization of the travel pedal 8, but the detection signal is transmitted to the controller 10.
따라서, 컨트롤러(10)에서는 동력발생장치(1)에 주행신호 압력에 비례하도록 제어신호를 출력하여 동력발생장치(1)의 RPM을 제어한다. 또한 제1유압펌프(2)에 구비된 전자제어밸브(2a)에 주행신호 압력에 대응되는 제어신호를 출력하여 제1유압펌프(2)의 유량을 제어하게 된다.Therefore, the controller 10 outputs a control signal to the power generator 1 in proportion to the travel signal pressure to control the RPM of the power generator 1. In addition, the flow rate of the first hydraulic pump 2 is controlled by outputting a control signal corresponding to the driving signal pressure to the electronic control valve 2a provided in the first hydraulic pump 2.
S300에서와 같이, 주행신호 압력이 합류시점 이상 여부를 판단하되, 합류시점 이상일 경우에 S400으로 진행하고, 합류시점을 초과하지않을 경우에는 S900으로 진행한다.As in S300, it is determined whether the driving signal pressure is greater than the joining time, but proceeds to S400 if the joining time or more, and proceeds to S900 if not exceeding the joining time.
S400에서와 같이, 주행신호 압력이 합류시점을 초과할 경우(즉 압력감지장치(12)에 의해 검출된 주행 신호압력이 미리 셋팅된 합류지점의 압력보다 높을 경우)로서, 주행신호 압력에 비례하도록 동력발생장치(1)의 RPM을 제어하게 된다.As in S400, when the travel signal pressure exceeds the time of confluence (that is, when the travel signal pressure detected by the pressure sensing device 12 is higher than the pressure of the preset confluence point), it is proportional to the travel signal pressure. It is to control the RPM of the power generator (1).
S500에서와 같이, 운전자가 제1유압펌프(2)의 최대 유량에 대응하는 속력보다 더 빠른 속력이 요구되어 주행페달(8)을 더 가압함에 따라, 컨트롤러(10)에서는 제2유압펌프(3)의 전자비례밸브(3a)와 제1비례제어밸브(23)에 제어신호를 출력한다.As in S500, the driver 10 is required to be faster than the speed corresponding to the maximum flow rate of the first hydraulic pump 2 to further press the running pedal 8, the controller 10 in the second hydraulic pump 3 The control signal is output to the electromagnetic proportional valve 3a and the first proportional control valve 23.
S500에서와 같이, 제1비례제어밸브(23)는 주행신호 압력에 비례하는 2차 신호압력을 출력한다. 이로 인해 제1비례제어밸브(23)에 의해 출력되는 2차 신호압에 의해 주행합류스풀(21)과 CBP스풀(22)을 서서히 시프팅시킬 경우, 제2유압펌프(3)로부터 토출되는 작동유 일부는 유로(6), 주행합류스풀(21)을 경유하여 텐덤유로(18)에 이동되며, 동시에 제2유압펌프(3)의 작동유 일부는 합류통로(19) 및 합류유로(20)를 경유하여 주행스풀(5) 상류측으로 이동되므로, 제1유압펌프(2)로부터 토출되는 유량과 합류가 시작된다.As in S500, the first proportional control valve 23 outputs a secondary signal pressure proportional to the traveling signal pressure. Therefore, when gradually shifting the traveling confluence spool 21 and the CBP spool 22 by the secondary signal pressure output from the first proportional control valve 23, the hydraulic oil discharged from the second hydraulic pump 3. A part is moved to the tandem flow path 18 via the flow path 6 and the traveling confluence spool 21, and at the same time, a part of the working oil of the second hydraulic pump 3 passes through the joining path 19 and the joining flow path 20. Since the moving spool 5 is moved upstream, confluence with the flow rate discharged from the first hydraulic pump 2 starts.
S600에서와 같이, 제1비례제어밸브(23)에 의한 2차 신호압과 CBP스풀(22)의 개구면적은 반비례하게 되므로, 운전자에 의해 주행페달(8)을 조금 더 가압할 경우, CBP스풀(22)의 유로가 완전하게 차단된다.As in S600, since the secondary signal pressure by the first proportional control valve 23 and the opening area of the CBP spool 22 are inversely proportional, when the driver presses the driving pedal 8 a little more, the CBP spool The flow path of 22 is completely blocked.
S700에서와 같이, 제1비례제어밸브(23)에 의한 2차 신호압과 합류통로(19)의 개구면적은 비례하게 되므로, 제2유압펌프(3)로부터 토출되는 모든 작동유는 합류통로(19) 및 합류유로(20)를 통해 주행스풀(5) 상류쪽으로 공급된다.As in S700, since the secondary signal pressure by the first proportional control valve 23 and the opening area of the confluence passage 19 are proportional to each other, all the hydraulic fluid discharged from the second hydraulic pump 3 passes through the confluence passage 19 And upstream of the traveling spool 5 through the confluence passage 20.
S800에서와 같이, 합류시점 이후에 제2유압펌프(3)로부터 토출되는 모든 유량이 제1유압펌프(2)의 토출 유량에 합류된다. 즉 제2유압펌프(3)의 유량을 제1유압펌프(2)의 유량에 합류시킨 합류 유량은, 장비의 최고 속력에 요구되는 유량으로 주행모터에 공급할 수 있게 된다.As in S800, all the flow rates discharged from the second hydraulic pump 3 after the joining time are joined to the discharge flow rates of the first hydraulic pump 2. In other words, the combined flow rate obtained by joining the flow rate of the second hydraulic pump 3 to the flow rate of the first hydraulic pump 2 can be supplied to the traveling motor at the flow rate required for the maximum speed of the equipment.
한편, S900에서와 같이, 주행신호 압력이 합류시점 이전일 경우로서, 주행신호 압력에 비례하도록 동력발생장치(1)의 RPM을 제어하게 된다.On the other hand, as in S900, when the driving signal pressure is before the joining time, the RPM of the power generator 1 is controlled to be proportional to the driving signal pressure.
S1000에서와 같이, 주행신호 압력에 대응되게 제1유압펌프(2)의 전자비례밸브(2a)에 제어신호를 출력하여 제1유압펌프(2)의 토출 유량을 제어한다.As in S1000, the discharge flow rate of the first hydraulic pump 2 is controlled by outputting a control signal to the electromagnetic proportional valve 2a of the first hydraulic pump 2 corresponding to the traveling signal pressure.
도면에는 미 도시되었으나, 전술한 주행 합류스풀(21)과 CBP스풀(22)에 제어신호를 각각 출력하는 제어밸브로서,Although not shown in the drawing, as a control valve for outputting a control signal to the above-mentioned running confluence spool 21 and CBP spool 22, respectively,
작업모드 선택스위치(9)를 조작하여 주행모드를 선택시, 컨트롤러(10)로부터 입력되는 제어신호에 의해 절환되어 주행합류스풀(21)과 CBP스풀(22)을 절환시키도록 파일럿 신호압을 공급하는 솔레노이드밸브(미도시됨)를 포함할 수 있다.When the driving mode is selected by operating the work mode selection switch 9, the pilot signal pressure is supplied to switch between the driving confluence spool 21 and the CBP spool 22 by being switched by a control signal input from the controller 10. It may include a solenoid valve (not shown).
도 8에서와 같이, 작업모드 선택스위치(9) 조작에 의한 주행모드 선택여부를 판단하되, 주행모드가 선택된 경우 다음 단계(S20)로 진행하고, 주행모드가 선택되지않을 경우 종료한다(S10 참조).As shown in FIG. 8, it is determined whether the driving mode is selected by the operation of the operation mode selection switch 9, but if the driving mode is selected, the process proceeds to the next step (S20), and if the driving mode is not selected, the operation ends (S10). ).
S20에서와 같이, 주행모드가 선택된 경우, 컨트롤러(10)로부터의 제어신호에 의해 솔레노이드밸브를 온(ON) 상태로 전환시킨다. 이로 인해 파일럿 펌프(16)로부터의 파일럿 신호압을 주행합류스풀(21)과 CBP스풀(22)에 각각 공급하여 이들을 절환시킨다.As in S20, when the travel mode is selected, the solenoid valve is turned on by the control signal from the controller 10. For this reason, the pilot signal pressure from the pilot pump 16 is supplied to the traveling confluence spool 21 and the CBP spool 22, respectively, and is switched.
S30에서와 같이, 압력감지장치(12)에 의해 주행페달 가압에 따른 주행신호 압력을 검출하되 검출신호는 컨트롤러(10)에 전송된다.As in S30, the pressure detection device 12 detects the driving signal pressure according to the driving pedal pressure, but the detection signal is transmitted to the controller 10.
S40에서와 같이, 검출된 주행신호 압력에 비례하도록 컨트롤러(10)로부터 입력되는 제어신호에 의해 동력발생장치(1)의 RPM을 제어하게 된다(그래프 곡선 "a"참조).As in S40, the RPM of the power generator 1 is controlled by the control signal input from the controller 10 so as to be proportional to the detected travel signal pressure (see graph curve "a").
S50에서와 같이, 주행신호 압력에 대응하여 유압펌프의 토출 유량을 제어할 수 있다. 즉 실선으로 도시된 그래프 곡선(b)에서와 같이 제1유압펌프(2) 및 제2유압펌프(3)로부터 각각 토출되는 토출 유량에 비해, 점선으로 도시된 그래프 곡선(c)에서와 같이 제2유압펌프(3)의 유량을 제1유압펌프(2)의 유량에 합류시킨 합류 유량은 장비의 최대 속력에 요구되는 유량을 토출할 수 있음을 확인할 수 있다.As in S50, the discharge flow rate of the hydraulic pump can be controlled in response to the travel signal pressure. That is, as compared with the discharge flow rates discharged from the first hydraulic pump 2 and the second hydraulic pump 3, respectively, as in the graph curve b shown by the solid line, It can be seen that the combined flow rate in which the flow rate of the two hydraulic pumps 3 is joined to the flow rate of the first hydraulic pump 2 can discharge the flow rate required for the maximum speed of the equipment.
도 5에 도시된 본 발명의 제2실시예에 의한 건설기계의 주행 합류 제어시스템은,The running joining control system of the construction machine according to the second embodiment of the present invention shown in Figure 5,
동력발생장치(1)(엔진을 말함)와,Power generator 1 (engine),
동력발생장치(1)에 연결되는 전자제어 가변용량형 제1,2유압펌프(이하, "제1,2유압펌프" 라고 함)(2,3)와,Electronically controlled variable displacement first and second hydraulic pumps (hereinafter referred to as "first and second hydraulic pumps") 2 and 3 connected to the power generator 1,
조작량에 따른 주행신호 전류값을 출력하는 전기제어스위치가 기계적으로 연결되는 유압식 주행페달(14)과,A hydraulic traveling pedal 14 mechanically connected to an electric control switch for outputting a driving signal current value according to the manipulation amount;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치(9)와,A work mode selector switch 9 for selecting a work mode or a driving mode;
제1유압펌프(2)의 유로(4)에 설치되며, 절환시 유압모터(미도시됨)의 기동,정지 및 방향전환을 제어하는 주행 스풀(5)과,A traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor (not shown) during switching;
제2유압펌프(3)의 유로(6)에 설치되며, 절환시 붐 등의 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀(7)과,At least one work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
제2유압펌프(3)의 유로(6) 상류측에 설치되며, 중립시 제1유압펌프(2)의 유량을 유로(25)를 통해 주행 스풀(5)의 하류측으로 공급하고 제2유압펌프(3)의 유량을 제2유압펌프(3)의 텐덤유로(18)로 공급하며, 파일럿 펌프(16)의 파일럿 신호압에 의해 절환시 제1유압펌프(2)의 유로는 블록(block) 상태로 전환되고, 제2유압펌프(3)측 작동유를 합류통로(19) 및 합류유로(20)를 통하여 주행 스풀(5)의 상류측으로 공급하여 제1유압펌프(2)의 작동유와 합류시키는 주행 합류스풀(21)과,It is installed in the upstream side of the flow path 6 of the 2nd hydraulic pump 3, When it is neutral, it supplies the flow volume of the 1st hydraulic pump 2 to the downstream side of the traveling spool 5 through the flow path 25, and the 2nd hydraulic pump The flow rate of (3) is supplied to the tandem flow path 18 of the second hydraulic pump 3, and the flow path of the first hydraulic pump 2 at the time of switching by the pilot signal pressure of the pilot pump 16 is a block. A state in which the hydraulic fluid is supplied to the upstream side of the traveling spool 5 through the joining passage 19 and the joining flow passage 20 is joined to the hydraulic oil of the first hydraulic pump 2. Running confluence spool (21),
제2유압펌프(3)의 유로(6) 최하류측에 설치되며, 절환시 제2유압펌프(3)의 텐덤유로(18)에 작동압을 형성하는 CBP스풀(22)과,A CBP spool 22 which is installed at the downstreammost side of the flow path 6 of the second hydraulic pump 3 and forms an operating pressure in the tandem flow path 18 of the second hydraulic pump 3 during switching;
외부로부터의 전기적 제어신호에 비례하도록 출력되는 2차 신호압력을 주행합류밸브(21)와 CBP스풀(22)에 각각 공급하는 제1비례제어밸브(23)와,A first proportional control valve 23 for supplying secondary signal pressures output in proportion to an electrical control signal from the outside to the traveling confluence valve 21 and the CBP spool 22, respectively;
주행 페달(14)의 전기제어스위치의 조작에 따른 전류값에 대응되게 동력발생장치의 RPM을 제어하고, 제1,2유압펌프(2,3)의 토출 유량을 제어하도록 제1,2유압펌프(2,3)에 구비된 전자제어밸브(2a,3a)에 제어신호를 출력하며, 제1비례제어밸브(23)에 전기적 제어신호를 출력하는 컨트롤러(10)를 포함한다.First and second hydraulic pumps to control the RPM of the power generating device and to control the discharge flow rate of the first and second hydraulic pumps 2 and 3 in correspondence with the current value according to the operation of the electric control switch of the travel pedal 14. And a controller 10 for outputting a control signal to the electronic control valves 2a and 3a provided at (2, 3) and for outputting an electrical control signal to the first proportional control valve 23.
이때, 전술한 제2유압펌프(3)의 유로(6) 상류측에 설치되며, 절환시 제2유압펌프(3)측 작동유를 제1유압펌프(2)의 작동유와 합류시키는 주행 합류스풀(21)과, 제2유압펌프(3)의 유로(6) 최하류측에 설치되는 CBP스풀(22)과, 컨트롤러(10)로부터의 전기적 제어신호에 의해 주행 합류스풀(21) 및 CBP스풀(22)에 공급되는 2차 신호압을 출력하는 제1비례제어밸브(23)를 제외한 구성은, 도 2에 도시된 주행 합류 제어시스템의 구성과 동일하므로, 이들의 구성 및 작동에 대한 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.At this time, the traveling confluence spool which is installed on the upstream side of the flow path 6 of the above-mentioned second hydraulic pump 3 and joins the hydraulic oil of the second hydraulic pump 3 side with the hydraulic oil of the first hydraulic pump 2 during switching ( 21), the CBP spool 22 provided at the most downstream side of the flow path 6 of the second hydraulic pump 3, and the running confluence spool 21 and the CBP spool (by the electric control signal from the controller 10). Since the configuration except for the first proportional control valve 23 that outputs the secondary signal pressure supplied to 22) is the same as that of the traveling confluence control system shown in FIG. 2, a detailed description thereof will be given. Omitted and duplicated reference numerals are the same.
이하에서, 본 발명의 제2실시예에 의한 건설기계의 주행 합류 제어시스템의 사용예를 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, a use example of the traveling joining control system for a construction machine according to a second embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 5에서와 같이, 운전자에 의해 주행페달(14)에 구비된 전기제어스위치(미도시됨)를 조작시 컨트롤러(10)에 직접 입력되는 전류값에 의해 주행페달(14)의 조작량을 검출할 수 있다. 이로 인해 도 4에 도시된 압력감지장치(12)의 부품이 불필요하게 된다.As shown in FIG. 5, when an electric control switch (not shown) provided in the driving pedal 14 is operated by a driver, an operation amount of the driving pedal 14 may be detected by a current value directly input to the controller 10. Can be. This makes the parts of the pressure sensing device 12 shown in FIG. 4 unnecessary.
즉, 주행페달(14)의 전기제어스위치 조작에 의해 주행스풀(5)을 절환시키게 되고, 동시에 주행페달(14)의 조작량을 컨트롤러(10)에서 검출하게 된다. 이로 인해 컨트롤러(10)로부터 조작량에 비례하도록 출력되는 제어신호에 의해 주행합류스풀(21) 및 CBP스풀(22)을 절환시킨다. 따라서 제2유압펌프(3)의 유량을 주행합류스풀(21)을 경유하여 주행스풀(5)쪽으로 공급하여 제1유압펌프(2)의 유량과 합류시키는 구성은, 도 4에 도시된 주행 합류 제어시스템의 구성과 동일하므로 이들의 구성 및 상세한 설명은 생략한다.That is, the driving spool 5 is switched by the electric control switch operation of the traveling pedal 14, and at the same time, the controller 10 detects the operation amount of the traveling pedal 14. Therefore, the traveling confluence spool 21 and the CBP spool 22 are switched by the control signal output in proportion to the operation amount from the controller 10. Therefore, the configuration in which the flow rate of the second hydraulic pump 3 is supplied to the traveling spool 5 via the traveling confluence spool 21 and joined with the flow rate of the first hydraulic pump 2 is the traveling confluence shown in FIG. 4. Since the configuration is the same as that of the control system, their configuration and detailed description are omitted.
도 6에 도시된 본 발명의 제3실시예에 의한 건설기계의 주행 합류 제어시스템은,Running confluence control system of a construction machine according to a third embodiment of the present invention shown in Figure 6,
동력발생장치(1)(엔진을 말함)와,Power generator 1 (engine),
동력발생장치(1)에 연결되는 전자제어 가변용량형 제1,2유압펌프(이하, "제1,2유압펌프" 라고 함)(2,3)와,Electronically controlled variable displacement first and second hydraulic pumps (hereinafter referred to as "first and second hydraulic pumps") 2 and 3 connected to the power generator 1,
조작량에 비례하여 주행신호 전류값을 출력하는 전기식 주행페달(15)과,An electric traveling pedal 15 for outputting a driving signal current value in proportion to the operation amount;
작업모드 또는 주행모드를 선택하는 작업모드 선택스위치(9)와,A work mode selector switch 9 for selecting a work mode or a driving mode;
제1유압펌프(2)의 유로(4)에 설치되며, 절환시 유압모터(미도시됨)의 기동,정지 및 방향전환을 제어하는 주행 스풀(5)과,A traveling spool (5) installed in the flow path (4) of the first hydraulic pump (2) and controlling the starting, stopping, and direction change of the hydraulic motor (not shown) during switching;
제2유압펌프(3)의 유로(6)에 설치되며, 절환시 붐 등의 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀(7)과,At least one work device spool (7) installed in the flow path (6) of the second hydraulic pump (3) for controlling the starting, stopping, and reversing of a work device such as a boom during switching;
제2유압펌프(3)의 유로(6) 상류측에 설치되며, 중립시 제1유압펌프(2)의 유량을 유로(25)를 통해 주행 스풀(5)의 하류측으로 공급하고 제2유압펌프(3)의 유량을 제2유압펌프(3)의 텐덤유로(18)로 공급하며, 파일럿 펌프(16)의 파일럿 신호압에 의해 절환시 제1유압펌프(2)의 유로는 블록(block) 상태로 전환되고, 제2유압펌프(3)측 작동유를 합류통로(19) 및 합류유로(20)를 통하여 주행 스풀(5)의 상류측으로 공급하여 제1유압펌프(2)의 작동유와 합류시키는 주행 합류스풀(21)과,It is installed in the upstream side of the flow path 6 of the 2nd hydraulic pump 3, When it is neutral, it supplies the flow volume of the 1st hydraulic pump 2 to the downstream side of the traveling spool 5 through the flow path 25, and the 2nd hydraulic pump The flow rate of (3) is supplied to the tandem flow path 18 of the second hydraulic pump 3, and the flow path of the first hydraulic pump 2 at the time of switching by the pilot signal pressure of the pilot pump 16 is a block. A state in which the hydraulic fluid is supplied to the upstream side of the traveling spool 5 through the joining passage 19 and the joining flow passage 20 is joined to the hydraulic oil of the first hydraulic pump 2. Running confluence spool (21),
제2유압펌프(3)의 유로(6) 최하류측에 설치되며, 절환시 제2유압펌프(3)의 텐덤유로(18)에 작동압을 형성하는 CBP스풀(22)과,A CBP spool 22 which is installed at the downstreammost side of the flow path 6 of the second hydraulic pump 3 and forms an operating pressure in the tandem flow path 18 of the second hydraulic pump 3 during switching;
외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 주행합류스풀(21)에 공급하는 제1비례제어밸브(23)와,A first proportional control valve 23 for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling confluence spool 21;
외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 주행 스풀(5)에 공급하는 비례제어밸브(17)와,A proportional control valve 17 for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling spool 5;
주행 페달(15)의 조작에 따른 전류값에 대응되게 동력발생장치(1)의 RPM을 제어하고, 제1,2유압펌프(2,3)의 토출 유량을 제어하도록 제1,2유압펌프(2,3)에 구비된 전자제어밸브(2a,3a)에 제어신호를 출력하며, 비례제어밸브(17) 및 제1비례제어밸브(23)에 제어신호를 출력하는 컨트롤러(10)를 포함한다.The first and second hydraulic pumps may be configured to control the RPM of the power generator 1 and to control the discharge flow rates of the first and second hydraulic pumps 2 and 3 in correspondence with the current values according to the operation of the travel pedal 15. And a controller 10 for outputting control signals to the electronic control valves 2a and 3a provided at 2 and 3 and outputting control signals to the proportional control valve 17 and the first proportional control valve 23. .
이때, 전술한 제2유압펌프(3)의 유로(6) 상류측에 설치되며, 절환시 제2유압펌프(3)측 작동유를 제1유압펌프(2)의 작동유와 합류시키는 주행합류 스풀(21)과, 제2유압펌프(3)의 유로(6) 최하류측에 설치되는 CBP스풀(22)과, 컨트롤러(10)로부터의 전기적 제어신호에 의해 주행합류스풀(21) 및 CBP스풀(22)에 공급되는 2차 신호압을 출력하는 제1비례제어밸브(23)를 제외한 구성은, 도 3에 도시된 주행 합류 제어시스템의 구성과 동일하므로, 이들의 구성 및 작동에 대한 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.At this time, the traveling joining spool which is installed on the upstream side of the flow path 6 of the above-mentioned second hydraulic pump 3 and joins the hydraulic fluid of the second hydraulic pump 3 side with the hydraulic oil of the first hydraulic pump 2 during switching ( 21), the CBP spool 22 provided at the most downstream side of the flow path 6 of the second hydraulic pump 3, and the traveling confluence spool 21 and the CBP spool ( Except for the first proportional control valve 23 that outputs the secondary signal pressure supplied to 22, the configuration is the same as that of the traveling confluence control system shown in FIG. Omitted and duplicated reference numerals are the same.
이하에서, 본 발명의 제3실시예에 의한 건설기계의 주행 합류 제어시스템의 사용예를 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, a use example of the traveling joining control system for a construction machine according to a third embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 6에서와 같이, 운전자에 의해 전기식 주행페달(15)를 가압시 컨트롤러(10)에 직접 입력되는 전류값에 의해 주행페달(15)의 조작량을 검출할 수 있다. 이로 인해 도 4에 도시된 압력감지장치(12)의 부품이 불필요하게 된다.As shown in FIG. 6, the manipulation amount of the driving pedal 15 may be detected by a current value input directly to the controller 10 when the electric driving pedal 15 is pressed by the driver. This makes the parts of the pressure sensing device 12 shown in FIG. 4 unnecessary.
즉, 주행페달(15)을 조작시 컨트롤러(10)에 입력되는 전류값에 의해 주행페달(15)의 조작량을 검출하게 되고, 이 조작량에 비례하도록 컨트롤러(10)로부터 비례제어밸브(17)에 제어신호를 출력하여 주행 스풀(5)을 제어하는 것을 제외한 구성은, 도 4에 도시된 주행 합류 제어시스템의 구성과 동일하므로 이들의 구성 및 상세한 설명은 생략한다.That is, the operation amount of the traveling pedal 15 is detected by the current value input to the controller 10 when the driving pedal 15 is operated, and the proportional control valve 17 is supplied from the controller 10 to be proportional to the operation amount. The configuration except for controlling the traveling spool 5 by outputting a control signal is the same as the configuration of the traveling joining control system shown in FIG. 4, and thus the configuration and detailed description thereof are omitted.
전술한 구성을 갖는 본 발명에 따르면, 휠 타입 굴삭기의 고속 주행시 저 RPM 및 저 용량의 펌프 토출유량을 합류시켜 소정의 주행속도를 확보함에 따라, 장비 원가비용을 절감하고 연비를 향상시킬 수 있다.According to the present invention having the above-described configuration, by combining the pump discharge flow rate of the low RPM and low capacity during high-speed running of the wheel type excavator to secure a predetermined running speed, it is possible to reduce the equipment cost cost and improve fuel economy.

Claims (13)

  1. 동력발생장치와,Power generator,
    상기 동력발생장치에 연결되는 전자제어 가변용량형 제1,2유압펌프와,An electronically controlled variable displacement first and second hydraulic pump connected to the power generator;
    조작량에 비례하여 주행신호 압력을 출력하는 유압식 주행페달과,Hydraulic traveling pedal to output the driving signal pressure in proportion to the operation amount,
    작업모드 또는 주행모드를 선택하는 작업모드 선택스위치와,A work mode selection switch for selecting a work mode or a driving mode;
    상기 제1유압펌프의 유로에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀과,A traveling spool installed in the flow path of the first hydraulic pump and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
    상기 제2유압펌프의 유로에 설치되며, 절환시 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀과,At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
    상기 제2유압펌프의 유로 상류측에 설치되며, 중립시 제1유압펌프의 유량을 주행 스풀의 하류측으로 공급하고 제2유압펌프의 유량을 제2유압펌프의 텐덤유로로 공급하며, 절환시 제1유압펌프의 유로는 블록 상태로 전환되고, 제2유압펌프측 작동유를 합류유로를 통하여 상기 주행 스풀의 상류측으로 공급하여 제1유압펌프의 작동유와 합류시키는 주행 합류스풀과,It is installed on the upstream side of the flow path of the second hydraulic pump, the neutral supply the flow rate of the first hydraulic pump downstream of the running spool and the flow rate of the second hydraulic pump to the tandem flow path of the second hydraulic pump, A traveling confluence spool for converting the flow path of the first hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic oil of the first hydraulic pump;
    상기 제2유압펌프의 유로 최하류측에 설치되며, 절환시 상기 제2유압펌프의 텐덤유로에 작동압을 형성하는 CBP스풀과,A CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump during switching;
    외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 상기 주행합류밸브와 CBP스풀에 각각 공급하는 제1비례제어밸브와,A first proportional control valve for supplying secondary signal pressures output in proportion to a control signal from the outside to the traveling confluence valve and the CBP spool, respectively;
    상기 주행 페달의 주행신호 압력에 대응되게 상기 동력발생장치의 RPM을 제어하고, 상기 제1,2유압펌프의 토출 유량을 제어하도록 제1,2유압펌프에 구비된 전자제어밸브에 제어신호를 출력하며, 상기 제1비례제어밸브에 제어신호를 출력하는 컨트롤러를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.The control signal is output to an electronic control valve provided in the first and second hydraulic pumps to control the RPM of the power generator to correspond to the driving signal pressure of the driving pedal, and to control the discharge flow rate of the first and second hydraulic pumps. And a controller configured to output a control signal to the first proportional control valve.
  2. 제1항에 있어서, 상기 유압식 주행페달의 가압에 따른 주행 신호압력을 검출하여 검출신호를 상기 컨트롤러에 전송하는 압력감지장치를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.The traveling joining control system of claim 1, further comprising a pressure sensing device that detects a driving signal pressure according to the pressurization of the hydraulic traveling pedal and transmits a detection signal to the controller.
  3. 제1항에 있어서, 상기 동력발생장치의 RPM을 검출하여 검출신호를 상기 컨트롤러에 전송하는 RPM감지장치를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.The system of claim 1, further comprising: an RPM sensing device for detecting the RPM of the power generator and transmitting a detection signal to the controller.
  4. 제1항에 있어서, 상기 제1,2유압펌프로서,According to claim 1, wherein the first and second hydraulic pumps,
    외부로부터의 제어신호 압력에 의해 작동되는 레귤레이터에 의해 토출유량을 가변 제어하는 기계식 가변용량형 유압펌프가 사용되는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.And a mechanical variable displacement hydraulic pump for variably controlling the discharge flow rate by a regulator operated by a control signal pressure from the outside.
  5. 제1항에 있어서, 상기 주행합류스풀과 CBP스풀에 제어신호를 각각 출력하는 제어밸브로서,The control valve according to claim 1, wherein the control valve outputs control signals to the traveling confluence spool and the CBP spool, respectively.
    상기 작업모드 선택스위치를 조작하여 주행모드를 선택시, 상기 컨트롤러로부터 입력되는 제어신호에 의해 절환되어 상기 주행합류스풀과 CBP스풀을 절환시키도록 파일럿 신호압을 공급하는 솔레노이드밸브를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.And a solenoid valve for supplying a pilot signal pressure to switch between the driving confluence spool and the CBP spool when the driving mode is selected by operating the work mode selection switch, the control signal being input from the controller. Driving joining control system of construction machinery.
  6. 동력발생장치와,Power generator,
    상기 동력발생장치에 연결되는 전자제어 가변용량형 제1,2유압펌프와,An electronically controlled variable displacement first and second hydraulic pump connected to the power generator;
    조작량에 따른 주행신호 전류값을 출력하는 전기제어스위치가 기계적으로 연결되는 유압식 주행페달과,A hydraulic traveling pedal mechanically connected to an electric control switch for outputting a driving signal current value according to the manipulation amount;
    작업모드 또는 주행모드를 선택하는 작업모드 선택스위치와,A work mode selection switch for selecting a work mode or a driving mode;
    상기 제1유압펌프의 유로에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀과,A traveling spool installed in the flow path of the first hydraulic pump and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
    상기 제2유압펌프의 유로에 설치되며, 절환시 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀과,At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
    상기 제2유압펌프의 유로 상류측에 설치되며, 중립시 제1유압펌프의 유량을 주행 스풀의 하류측으로 공급하고 제2유압펌프의 유량을 제2유압펌프의 텐덤유로로 공급하며, 절환시 제1유압펌프의 유로는 블록 상태로 전환되고, 제2유압펌프측 작동유를 합류유로를 통하여 상기 주행 스풀의 상류측으로 공급하여 제1유압펌프의 작동유와 합류시키는 주행 합류스풀과,It is installed on the upstream side of the flow path of the second hydraulic pump, the neutral supply the flow rate of the first hydraulic pump downstream of the running spool and the flow rate of the second hydraulic pump to the tandem flow path of the second hydraulic pump, A traveling confluence spool for converting the flow path of the first hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic oil of the first hydraulic pump;
    상기 제2유압펌프의 유로 최하류측에 설치되며, 절환시 상기 제2유압펌프의 텐덤유로에 작동압을 형성하는 CBP스풀과,A CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump during switching;
    외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 상기 주행합류밸브와 CBP스풀에 각각 공급하는 제1비례제어밸브와,A first proportional control valve for supplying secondary signal pressures output in proportion to a control signal from the outside to the traveling confluence valve and the CBP spool, respectively;
    상기 주행 페달의 전기제어스위치의 조작에 따른 전류값에 대응되게 상기 동력발생장치의 RPM을 제어하고, 상기 제1,2유압펌프의 토출유량을 제어하도록 제1,2유압펌프에 구비된 전자제어밸브에 제어신호를 출력하며, 상기 제1비례제어밸브에 제어신호를 출력하는 컨트롤러를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.Electronic control provided in the first and second hydraulic pumps to control the RPM of the power generating device and to control the discharge flow rate of the first and second hydraulic pumps to correspond to the current value according to the operation of the electric control switch of the driving pedal. And a controller for outputting a control signal to the valve and for outputting a control signal to the first proportional control valve.
  7. 제6항에 있어서, 상기 동력발생장치의 RPM을 검출하여 검출신호를 상기 컨트롤러에 전송하는 RPM감지장치를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.The system of claim 6, further comprising: an RPM sensing device for detecting the RPM of the power generator and transmitting a detection signal to the controller.
  8. 제6항에 있어서, 상기 제1,2유압펌프로서The method of claim 6, wherein the first and second hydraulic pumps
    외부로부터의 제어신호 압력에 의해 작동되는 레귤레이터에 의해 토출유량을 가변 제어하는 기계식 가변용량형 유압펌프가 사용되는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.And a mechanical variable displacement hydraulic pump for variably controlling the discharge flow rate by a regulator operated by a control signal pressure from the outside.
  9. 제6항에 있어서, 상기 주행합류스풀과 CBP스풀에 제어신호를 각각 출력하는 제어밸브로서7. The control valve according to claim 6, wherein the control valve outputs control signals to the traveling confluence spool and the CBP spool, respectively.
    상기 작업모드 선택스위치를 조작하여 주행모드를 선택시, 상기 컨트롤러로부터 입력되는 제어신호에 의해 절환되어 상기 주행합류스풀과 CBP스풀을 절환시키도록 파일럿 신호압을 공급하는 솔레노이드밸브를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.And a solenoid valve for supplying a pilot signal pressure to switch between the driving confluence spool and the CBP spool when the driving mode is selected by operating the work mode selection switch, the control signal being input from the controller. Driving joining control system of construction machinery.
  10. 동력발생장치와,Power generator,
    상기 동력발생장치에 연결되는 전자제어 가변용량형 제1,2유압펌프와,An electronically controlled variable displacement first and second hydraulic pump connected to the power generator;
    조작량에 비례하여 주행신호 전류값을 출력하는 전기식 주행페달과,An electric traveling pedal for outputting a driving signal current value in proportion to the manipulated amount;
    작업모드 또는 주행모드를 선택하는 작업모드 선택스위치와,A work mode selection switch for selecting a work mode or a driving mode;
    상기 제1유압펌프의 유로에 설치되며, 절환시 유압모터의 기동, 정지 및 방향전환을 제어하는 주행 스풀과,A traveling spool installed in the flow path of the first hydraulic pump and controlling the starting, stopping, and direction change of the hydraulic motor at the time of switching;
    상기 제2유압펌프의 유로에 설치되며, 절환시 작업장치의 기동, 정지 및 방향전환을 제어하는 적어도 하나 이상의 작업장치 스풀과,At least one work device spool installed in a flow path of the second hydraulic pump, for controlling start, stop, and direction change of the work device at the time of switching;
    상기 제2유압펌프의 유로 상류측에 설치되며, 중립시 제1유압펌프의 유량을 주행 스풀의 하류측으로 공급하고 제2유압펌프의 유량을 제2유압펌프의 텐덤유로로 공급하며, 절환시 제1유압펌프의 유로는 블록 상태로 전환되고, 제2유압펌프측 작동유를 합류유로를 통하여 상기 주행 스풀의 상류측으로 공급하여 제1유압펌프의 작동유와 합류시키는 주행 합류스풀과,It is installed on the upstream side of the flow path of the second hydraulic pump, the neutral supply the flow rate of the first hydraulic pump downstream of the running spool and the flow rate of the second hydraulic pump to the tandem flow path of the second hydraulic pump, A traveling confluence spool for converting the flow path of the first hydraulic pump into a block state and supplying the hydraulic fluid on the second hydraulic pump side to an upstream side of the traveling spool through the confluence flow path and joining the hydraulic oil of the first hydraulic pump;
    상기 제2유압펌프의 유로 최하류측에 설치되며, 절환시 상기 제2유압펌프의 텐덤유로에 작동압을 형성하는 CBP스풀과,A CBP spool which is installed at the downstream side of the flow path of the second hydraulic pump and forms an operating pressure in the tandem flow path of the second hydraulic pump during switching;
    외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 상기 주행합류스풀에 공급하는 제1비례제어밸브와,A first proportional control valve for supplying a secondary signal pressure output in proportion to a control signal from the outside to the traveling confluence spool;
    외부로부터의 제어신호에 비례하도록 출력되는 2차 신호압력을 상기 주행 스풀에 공급하는 비례제어밸브와,A proportional control valve for supplying the traveling spool with a secondary signal pressure output in proportion to a control signal from the outside;
    상기 주행 페달의 조작에 따른 전류값에 대응되게 상기 동력발생장치의 RPM을 제어하고, 상기 제1,2유압펌프의 토출유량을 제어하도록 제1,2유압펌프에 구비된 전자제어밸브에 제어신호를 출력하며, 상기 비례제어밸브 및 제1비례제어밸브에 제어신호를 출력하는 컨트롤러를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.Control signal to the electronic control valve provided in the first and second hydraulic pump to control the RPM of the power generating device corresponding to the current value according to the operation of the driving pedal, and to control the discharge flow rate of the first and second hydraulic pump And a controller configured to output a control signal to the proportional control valve and the first proportional control valve.
  11. 제10항에 있어서, 상기 동력발생장치의 RPM을 검출하여 검출신호를 상기 컨트롤러에 전송하는 RPM감지장치를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.The system of claim 10, further comprising: an RPM sensing device for detecting the RPM of the power generator and transmitting a detection signal to the controller.
  12. 제10항에 있어서, 상기 제1,2유압펌프로서The method of claim 10, wherein as the first and second hydraulic pump
    외부로부터의 제어신호 압력에 의해 작동되는 레귤레이터에 의해 토출 유량을 가변 제어하는 기계식 가변용량형 유압펌프가 사용되는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.And a mechanical variable displacement hydraulic pump for variably controlling the discharge flow rate by a regulator operated by a control signal pressure from the outside.
  13. 제10항에 있어서, 상기 주행합류스풀과 CBP스풀에 제어신호를 각각 출력하는 제어밸브로서11. The control valve according to claim 10, wherein the control valve outputs control signals to the traveling confluence spool and the CBP spool, respectively.
    상기 작업모드 선택스위치를 조작하여 주행모드를 선택시, 상기 컨트롤러로부터 입력되는 제어신호에 의해 절환되어 상기 주행합류스풀과 CBP스풀을 절환시키도록 파일럿 신호압을 공급하는 솔레노이드밸브를 포함하는 것을 특징으로 하는 건설기계의 주행 합류 제어시스템.And a solenoid valve for supplying a pilot signal pressure to switch between the driving confluence spool and the CBP spool when the driving mode is selected by operating the work mode selection switch, the control signal being input from the controller. Driving joining control system of construction machinery.
PCT/KR2011/010035 2011-12-23 2011-12-23 Drive merge control system for construction machine WO2013094793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2011/010035 WO2013094793A1 (en) 2011-12-23 2011-12-23 Drive merge control system for construction machine
KR1020147016875A KR101641272B1 (en) 2011-12-23 2011-12-23 Drive merge control system for construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/010035 WO2013094793A1 (en) 2011-12-23 2011-12-23 Drive merge control system for construction machine

Publications (1)

Publication Number Publication Date
WO2013094793A1 true WO2013094793A1 (en) 2013-06-27

Family

ID=48668665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010035 WO2013094793A1 (en) 2011-12-23 2011-12-23 Drive merge control system for construction machine

Country Status (2)

Country Link
KR (1) KR101641272B1 (en)
WO (1) WO2013094793A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527541A (en) * 2013-09-16 2014-01-22 洛阳中重自动化工程有限责任公司 Hydraulic control system achieving automatic switchover of stand by pump
CN108518369A (en) * 2018-03-20 2018-09-11 广东力源液压机械有限公司 A kind of inserted valve big flow dynamical output control method and inserted valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000021360U (en) * 1999-05-26 2000-12-26 김형벽 Travel control system for construction equipment which is operated by oil pressure
KR20070069849A (en) * 2005-12-28 2007-07-03 두산인프라코어 주식회사 Hydraulic control system for a travel-combined-operation of en excavator
JP2007321972A (en) * 2006-06-05 2007-12-13 Kayaba Ind Co Ltd Power unit for construction machine
KR20100041100A (en) * 2008-10-13 2010-04-22 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Hydraulic system of construction equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200208364Y1 (en) * 2000-07-26 2000-12-15 주식회사아펙스인 3-dimensional surround-sound audio system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000021360U (en) * 1999-05-26 2000-12-26 김형벽 Travel control system for construction equipment which is operated by oil pressure
KR20070069849A (en) * 2005-12-28 2007-07-03 두산인프라코어 주식회사 Hydraulic control system for a travel-combined-operation of en excavator
JP2007321972A (en) * 2006-06-05 2007-12-13 Kayaba Ind Co Ltd Power unit for construction machine
KR20100041100A (en) * 2008-10-13 2010-04-22 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Hydraulic system of construction equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527541A (en) * 2013-09-16 2014-01-22 洛阳中重自动化工程有限责任公司 Hydraulic control system achieving automatic switchover of stand by pump
CN108518369A (en) * 2018-03-20 2018-09-11 广东力源液压机械有限公司 A kind of inserted valve big flow dynamical output control method and inserted valve
CN108518369B (en) * 2018-03-20 2023-09-29 广东力源液压机械有限公司 Cartridge valve high-flow dynamic output control method and cartridge valve

Also Published As

Publication number Publication date
KR101641272B1 (en) 2016-07-20
KR20140110871A (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2013051741A1 (en) Priority control system for construction machine
WO2012169676A1 (en) Hydraulic system for construction machinery
WO2014208828A1 (en) Hydraulic circuit for construction machinery having floating function and method for controlling floating function
WO2016072535A1 (en) Driving straight ahead device for construction machine and control method therefor
WO2014208787A1 (en) Device for controlling control valve of construction machine, method for controlling same, and method for controlling discharge flow rate of hydraulic pump
WO2012070703A1 (en) Flow control valve for construction machine
WO2014123253A1 (en) Swing control system for construction machines
WO2012091182A1 (en) Hydraulic pump for construction machinery
WO2014112668A1 (en) Flow control device and flow control method for construction machine
WO2013022132A1 (en) Hydraulic control system for construction machinery
WO2013022131A1 (en) Hydraulic control system for construction machinery
WO2015111775A1 (en) Device for controlling regenerated flow rate for construction machine and method for controlling same
WO2016104832A1 (en) Swing control apparatus of construction equipment and control method therefor
WO2020185012A1 (en) Electronic brake system and operation method
WO2012087012A2 (en) Hydraulic system for construction machine including emergency control unit for electric hydraulic pump
WO2018048291A1 (en) System for controlling construction machinery and method for controlling construction machinery
WO2020256338A1 (en) Steering control device and steering assist system including same
WO2016043365A1 (en) Hydraulic circuit for construction equipment
WO2016175352A1 (en) Flow rate control apparatus of construction equipment and control method therefor
WO2014069702A1 (en) Apparatus and method for controlling swing of construction machine
WO2015152434A1 (en) Control device for confluence flow rate of working device for construction machinery and control method therefor
WO2014115907A1 (en) Device and method for controlling flow rate in construction machinery
WO2013094793A1 (en) Drive merge control system for construction machine
WO2014081053A1 (en) Apparatus and method for controlling preferential function of construction machine
WO2020242072A1 (en) Electronic brake system and method for operating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147016875

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878230

Country of ref document: EP

Kind code of ref document: A1