WO2013094349A1 - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
WO2013094349A1
WO2013094349A1 PCT/JP2012/079608 JP2012079608W WO2013094349A1 WO 2013094349 A1 WO2013094349 A1 WO 2013094349A1 JP 2012079608 W JP2012079608 W JP 2012079608W WO 2013094349 A1 WO2013094349 A1 WO 2013094349A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
outer peripheral
peripheral surface
slits
Prior art date
Application number
PCT/JP2012/079608
Other languages
French (fr)
Japanese (ja)
Inventor
昭 杉山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280061396.XA priority Critical patent/CN103999331B/en
Publication of WO2013094349A1 publication Critical patent/WO2013094349A1/en
Priority to IN4509CHN2014 priority patent/IN2014CN04509A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet motor having a rotor in which permanent magnets are embedded.
  • a rotor of a conventional permanent magnet motor is disclosed in Patent Document 1.
  • the rotor of this conventional permanent magnet motor is a rotor with a permanent magnet embedded in an iron core (rotor core).
  • a motor having a rotor with this configuration can use both the magnet torque generated by the attraction and repulsion of the permanent magnet and the reluctance torque generated by the coil attracting the rotor iron core, so that high efficiency can be achieved.
  • a permanent magnet motor has a wide range of application to home appliances such as an air conditioner, a washing machine, and a refrigerator.
  • the rotor of the permanent magnet motor described in Patent Document 1 includes a plurality of slits on the radially outer side of the permanent magnet insertion port (permanent magnet punching hole).
  • the plurality of slits are arranged at substantially equal intervals along the adjacent permanent magnets, and are formed such that the intervals between the permanent magnets and the rotor outer peripheral surface are all the same.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a permanent magnet motor capable of effectively suppressing torque ripple generated when the rotor rotates.
  • the permanent magnet motor of the present invention is a portion corresponding to each side of a substantially polygon centered on the axis of the rotor and close to the outer peripheral surface of the rotor at two end portions.
  • the permanent magnet embedded in the rotor along the rotor axial direction and the cross-sectional shape perpendicular to the rotor axial direction disposed between the outer peripheral surface of the rotor and the permanent magnet are permanent.
  • a slit extending in a longitudinal direction extending from the magnet side toward the rotor outer peripheral surface side and extending along the rotor axial direction, and a plurality of slits arranged at intervals along the permanent magnet.
  • the longitudinal direction of each of the cross-sections is substantially parallel and the rotor outer peripheral surface side ends and the rotor Outside Spacing between the surface is characterized by different things.
  • this permanent magnet motor has a small fluctuation range of torque generated when the rotor rotates.
  • the “longitudinal direction” described here refers to a long side of a rectangular or belt-like shape in a so-called “longitudinal” shape such as a rectangular or belt-like shape, an oval shape (oval or oval), an arc shape, or the like.
  • the plurality of slits in the vicinity of the end portions including those arranged corresponding to the end portions of the permanent magnet are more slits than the slits corresponding to the end portions.
  • the gap between the end portion on the rotor outer peripheral surface side of the slit on the inner side in the arrangement direction and the outer peripheral surface of the rotor is wide.
  • the permanent magnet has a flat surface facing the outer peripheral surface of the rotor between the two end portions, and corresponds to the end portions of the permanent magnet.
  • the plurality of slits in the vicinity of the end including the arranged ones are characterized in that the lengths in the longitudinal direction of the respective cross sections are the same.
  • the rotor since the rotor generally has a cylindrical shape, a plurality of slits including those arranged corresponding to the end portions of the permanent magnets are different from each other in the distance from the outer peripheral surface of each rotor. Therefore, the amount of magnetic flux generated near the end of the permanent magnet close to the rotor outer peripheral surface is adjusted.
  • the amount of magnetic flux generated near the end of the permanent magnet close to the outer peripheral surface of the rotor is adjusted, and the fluctuation range of torque generated when the rotor rotates can be reduced. Therefore, it is possible to provide a permanent magnet motor capable of effectively suppressing torque ripple generated when the rotor rotates.
  • FIG. 1 is a cross-sectional view of a permanent magnet motor according to a first embodiment of the present invention. It is sectional drawing of the rotor of the permanent magnet motor which concerns on the 1st Embodiment of this invention. It is the elements on larger scale of the location of the permanent magnet and slit of the rotor cross section of the permanent magnet motor which concern on the 1st Embodiment of this invention. It is a graph which shows the relationship between the rotor rotation angle and torque of the permanent magnet motor which concerns on the 1st Embodiment of this invention. It is sectional drawing of the rotor of the permanent magnet motor of a comparative example.
  • FIG. 1 is a sectional view of a permanent magnet motor.
  • the permanent magnet motor 1 includes a stator 10 that is a stator and a rotor 20 that is a rotor, as shown in FIG.
  • the stator 10 includes a stator core 11 made of an annular magnetic material.
  • the stator core 11 includes an annular stator yoke 12 and a stator tooth 13 extending so as to protrude radially inward from an inner peripheral portion of the stator yoke 12.
  • the radially inner tip of the stator teeth 13 faces the outer peripheral surface of the rotor 20 with a gap therebetween.
  • Stator teeth 13 are arranged in the circumferential direction of the permanent magnet motor 1, for example, six are arranged side by side. That is, six slots 14 are formed in the stator 10.
  • the stator teeth 13 are integrally formed, for example, by laminating a plurality of steel plates in the motor axis direction (direction perpendicular to the paper surface of FIG. 1).
  • An insulator (not shown) constituting a bobbin made of an electrically insulating material is mounted on the outer periphery of the stator teeth 13. Further, a coil 15 around which an electric wire is wound along the motor axial direction is formed outside the insulator and at the slot 14. A current for rotating the rotor 20 is passed through the coil 15.
  • the rotor 20 is made of a magnetic material having a substantially cylindrical shape, and is a rotor that is rotatably disposed inside the stator 10 as shown in FIG.
  • the rotor 20 includes a rotating shaft 21 and a rotor core 22 fixed so as not to be displaceable with respect to the peripheral surface of the rotating shaft 21.
  • the both ends of the rotating shaft 21 are rotatably supported by a motor case (not shown) or the like via two bearings (not shown), for example.
  • a motor case (not shown) or the like via two bearings (not shown), for example.
  • one end of the rotating shaft 21 is supported in a cantilever manner using a bearing or the like.
  • the rotor axial direction is the same as the motor axial direction and extends in a direction perpendicular to the paper surface of FIG.
  • a permanent magnet 23 is embedded in the rotor core 22.
  • FIG. 2 is a cross-sectional view of the rotor 20 of the permanent magnet motor 1
  • FIG. 3 is a partially enlarged view of the permanent magnet 23 and slits in the cross section of the rotor 20
  • FIG. 4 is a relationship between the rotor rotation angle and torque of the permanent magnet motor 1. It is a graph which shows.
  • the rotor core 22 of the rotor 20 is configured by arranging two magnetic poles of N pole and S pole alternately in parallel along the circumferential direction.
  • the number of magnetic poles of the rotor core 22 is four.
  • Each of the magnetic poles of the rotor core 22 is provided with a permanent magnet insertion slot 24, and a permanent magnet 23 is embedded in the permanent magnet insertion slot 24.
  • the permanent magnet 23 has a rectangular cross-sectional shape perpendicular to the rotor axial direction, and corresponds to each side of a quadrangle centered on the axis of the rotor 20, and the outer peripheral surface of the rotor 20 at two ends. It is arranged to be close to.
  • the permanent magnet insertion opening 24 has, for example, a trapezoidal cross section that is perpendicular to the rotor axial direction in which the permanent magnet 23 can be inserted, and is open along the rotor axial direction.
  • the permanent magnet 23 extends along the rotor axial direction in accordance with the permanent magnet insertion opening 24 and is inserted and embedded in the permanent magnet insertion opening 24.
  • FIG. 2 shows a cross section of the permanent magnet 23 and the permanent magnet insertion opening 24 described here.
  • the permanent magnet 23 is in contact with the inner surface of the permanent magnet insertion port 24 between both longitudinal ends of the cross section.
  • a gap portion 25 is provided adjacent to the outer ends of the longitudinal direction of the cross section of the permanent magnet 23 and close to the outer peripheral surface of the rotor 20.
  • the gap 25 has a triangular cross section, for example, and is open along the rotor axial direction.
  • a slit 26 is provided between the outer peripheral surface of the rotor 20 and the permanent magnet 23.
  • the slit 26 has a cross-sectional shape perpendicular to the rotor axial direction that extends from the permanent magnet side toward the rotor outer peripheral surface side, that is, an oblong shape, and opens along the rotor axial direction.
  • a plurality of slits 26 are arranged at intervals along the adjacent permanent magnets 23. That is, six slits 26 are provided for each adjacent permanent magnet 23.
  • the slits 26a and 26b are substantially parallel in the longitudinal direction of each cross section. Note that the direction in which the one-dot chain line in FIG. 3 extends indicates the longitudinal direction of the cross section of the two slits 26a and 26b.
  • the intervals Xa and Xb between the end portions of the slits 26a and 26b on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. That is, the rotor outer peripheral surface of the slit 26b on the inner side in the slit arrangement direction than the interval Xa between the end portion on the rotor outer peripheral surface side of the slit 26a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 The gap Xb between the end on the side and the outer peripheral surface of the rotor 20 is widened.
  • one surface 23a facing the outer peripheral surface of the rotor 20 between the two end portions of the permanent magnet 23 forms a flat surface, and the two slits 26a and 26b near the end portions of the permanent magnet 23 have cross sections.
  • interval Xb becomes wider than the space
  • FIG. 4 is a graph showing the relationship between the rotor rotation angle and the torque when the permanent magnet motor 1 having the configuration of the embodiment is rotated.
  • the horizontal axis of the graph indicates the rotation angle of the rotor 20 from 0 degrees to 90 degrees
  • the vertical axis of the graph indicates the torque generated corresponding to the rotation angle of the rotor 20. According to this, it can be seen that the torque fluctuates within a fluctuation range Tr1 between the minimum value and the maximum value every 30 degrees as the rotor rotation angle.
  • FIG. 5 is a cross-sectional view of a rotor of a comparative permanent magnet motor
  • FIG. 6 is a partially enlarged view of a permanent magnet and a slit in the cross section of the rotor of the comparative permanent magnet motor
  • FIG. 7 is a rotor of the permanent magnet motor of the comparative example. It is a graph which shows the relationship between a rotation angle and a torque. Note that the basic configuration of this comparative example is the same as that of the above-described embodiment described with reference to FIGS. 1 to 4, and thus description of components common to the above-described embodiment will be omitted.
  • the rotor 120 of the comparative permanent magnet motor includes a rotating shaft 121 and a rotor core 122 as shown in FIG.
  • Each of the magnetic poles of the rotor core 122 is provided with a permanent magnet insertion slot 124, and the permanent magnet 123 is embedded in the permanent magnet insertion slot 124.
  • a slit 126 is provided between the outer peripheral surface of the rotor 120 and the permanent magnet 123.
  • the slit 126 has an oval shape in which a cross-sectional shape perpendicular to the rotor axial direction extends from the permanent magnet side toward the rotor outer peripheral surface side.
  • FIG. 7 is a graph showing the relationship between the rotor rotation angle and the torque when the permanent magnet motor having the configuration of the comparative example is rotated. According to this, it can be seen that the torque fluctuates within a fluctuation range Tr0 between the minimum value and the maximum value every 30 degrees as the rotor rotation angle.
  • the torque fluctuation width Tr1 generated in the permanent magnet motor 1 of the embodiment is about 40% of the torque fluctuation width Tr0 generated in the permanent magnet motor of the comparative example, which is small.
  • the two slits 26 a and 26 b in the vicinity of the end including the slit 26 a arranged corresponding to the end of the permanent magnet 23 are substantially parallel in the longitudinal direction of each cross section.
  • the distances Xa and Xb between the end portions of the rotor outer peripheral surfaces and the outer peripheral surface of the rotor 20 are different, the amount of magnetic flux generated near the end portions of the permanent magnets 23 close to the rotor outer peripheral surface is adjusted. Therefore, the permanent magnet motor 1 can reduce the fluctuation range of the torque generated when the rotor rotates.
  • the rotor outer peripheral surface of the slit 26b on the inner side in the slit arrangement direction than the distance Xa between the end portion on the rotor outer peripheral surface side of the slit 26a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20
  • the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
  • one surface 23a facing the outer peripheral surface of the rotor 20 of the permanent magnet 23 forms a flat surface, and the two slits 26a and 26b near the end of the permanent magnet 23 are in the longitudinal direction of each cross section. Since the lengths of the rotors 20 are the same, a difference occurs in the distance from the outer peripheral surface of each rotor 20. Therefore, the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
  • the amount of magnetic flux generated in the vicinity of the end of the permanent magnet 23 close to the outer peripheral surface of the permanent magnet motor 1 is adjusted, and the fluctuation range of torque generated when the rotor rotates is reduced. It becomes possible to do. Therefore, it is possible to provide the permanent magnet motor 1 that can effectively suppress the torque ripple generated when the rotor rotates.
  • FIG. 8 is a partially enlarged view of a permanent magnet and a slit in the rotor cross section of the permanent magnet motor. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 7, the same reference numerals are assigned to the same components as those of the first embodiment. The description of the drawings and the description thereof will be omitted.
  • the permanent magnet motor according to the second embodiment includes a slit 27 between the outer peripheral surface of the rotor 20 and the permanent magnet 23 as shown in FIG. Eight slits 27 are provided for each adjacent permanent magnet 23.
  • the three slits 27a, 27b, 27c in the vicinity of the ends including the slits 27a arranged corresponding to the two end portions of the permanent magnet 23 are the longitudinal directions of the respective cross sections. Are substantially parallel.
  • the direction where the dashed-dotted line of FIG. 8 extends has shown the longitudinal direction of the cross section of the two slits 27a, 27b, and 27c.
  • the intervals Ua, Ub, Uc between the end portions of the slits 27a, 27b, 27c on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. That is, the rotors of the slits 27b and 27c on the inner side in the slit arrangement direction than the interval Ua between the end portion on the rotor outer peripheral surface side of the slit 27a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 The distances Ub and Uc between the end on the outer peripheral surface side and the outer peripheral surface of the rotor 20 are widened.
  • the one surface 23a facing the outer peripheral surface of the rotor 20 between the two end portions of the permanent magnet 23 forms a flat surface, and the two slits 27a, 27b, 27c near the end portion of the permanent magnet 23 are respectively formed.
  • the lengths of the cross-sections in the longitudinal direction are the same. As a result, the intervals Ub and Uc are wider than the interval Ua.
  • the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
  • FIG. 9 is a partially enlarged view of a permanent magnet and a slit in the rotor cross section of the permanent magnet motor. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 7, the same reference numerals are assigned to the same components as those of the first embodiment. The description of the drawings and the description thereof will be omitted.
  • the permanent magnet motor according to the third embodiment includes a slit 28 between the outer peripheral surface of the rotor 20 and the permanent magnet 23 as shown in FIG. Six slits 28 are provided for each of the adjacent permanent magnets 23.
  • the two slits 28a and 28b in the vicinity of the ends including the slits 28a arranged corresponding to the two ends of the permanent magnet 23 are substantially in the longitudinal direction of each cross section. They are parallel.
  • the direction in which the one-dot chain line in FIG. 9 extends indicates the longitudinal direction of the cross section of the two slits 28a and 28b.
  • the intervals Ta and Tb between the end portions of the slits 28a and 28b on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. That is, the distance Ta between the rotor outer peripheral surface side of the slit 28a arranged corresponding to the end of the permanent magnet 23 and the outer peripheral surface of the rotor 20 is the rotor outer peripheral surface side of the slit 28b on the inner side in the slit arrangement direction. This is wider than the interval Tb between the end of the rotor and the outer peripheral surface of the rotor 20.
  • the interval Ta between the rotor outer peripheral surface side end of the slit 28a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 is the slit arrangement. Even if it is wider than the interval Tb between the end of the slit 28b on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20, the difference between the intervals Ta and Tb can be made. Therefore, the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
  • the shape and quantity of the permanent magnet 23, the permanent magnet insertion port 24, and the slit 26 are not limited to the shape and quantity used in the above embodiment, but may be other shapes and quantities.
  • the polygon is not limited to the quadrangle of the above-described embodiment.
  • Other polygons such as an octagon may be used.
  • each cross section is substantially parallel with respect to two or three slits near the end of the permanent magnet 23, and the end of each rotor outer peripheral surface and the outer peripheral surface of the rotor 20.
  • four or more slits near the end of the permanent magnet 23 may be targeted. In this case, it is desirable that the number of slits arranged at intervals along the permanent magnet 23 is 10 or more.
  • the present invention can be used for a permanent magnet motor having a rotor in which permanent magnets are embedded.

Abstract

A permanent magnet motor (1) is provided with: a permanent magnet (23) embedded into a rotor (20) so as to come close to the outer circumferential surface of the rotor (20) at two locations on the edge, said locations corresponding to each side of a square in which the axial center of the rotor (20) functions as the center; and slits (26) which are disposed between the permanent magnet (23) and the outer circumferential surface of the rotor (20) and are arranged at an interval along the permanent magnet (23), and of which the cross-sectional shape forming a right angle with the axial line direction of the rotor is a lengthwise shape extending from the side of the permanent magnet towards the outer circumferential surface of the rotor. With regard to the slits (26a, 26b) in the vicinity of the edges including the slits disposed in correspondence with the edges of the permanent magnet (23), the lengthwise directions of the cross-section of the slits are roughly parallel to one another, and the distances (Xa, Xb) between the outer circumferential surface of the rotor (20) and the edge of the slits on the side of the outer circumferential surface of the rotor are different.

Description

永久磁石モータPermanent magnet motor
 本発明は、永久磁石が埋め込まれたロータを有する永久磁石モータに関する。 The present invention relates to a permanent magnet motor having a rotor in which permanent magnets are embedded.
 従来の永久磁石モータのロータは特許文献1に開示されている。この従来の永久磁石モータのロータは鉄心(ロータコア)内部に永久磁石を埋め込んだ構成のロータである。この構成のロータを有するモータは永久磁石の吸引、反発により生じるマグネットトルクと、コイルがロータ鉄心を吸引することにより生じるリラクタンストルクとを併用することができ、高効率化を図ることが可能である。昨今、このような永久磁石モータはエアコン、洗濯機、冷蔵庫などといった家電製品へと応用の範囲が広がっている。 A rotor of a conventional permanent magnet motor is disclosed in Patent Document 1. The rotor of this conventional permanent magnet motor is a rotor with a permanent magnet embedded in an iron core (rotor core). A motor having a rotor with this configuration can use both the magnet torque generated by the attraction and repulsion of the permanent magnet and the reluctance torque generated by the coil attracting the rotor iron core, so that high efficiency can be achieved. . Nowadays, such a permanent magnet motor has a wide range of application to home appliances such as an air conditioner, a washing machine, and a refrigerator.
 一方、永久磁石が埋め込まれたロータを有するモータはロータ回転時に生じるトルク変動であるトルクリップルが大きくなる可能性があることが懸念されている。ロータ回転時のトルクリップルが大きくなると、永久磁石モータ及びそのモータを搭載した機器の振動・騒音が大きくなるという問題があった。 On the other hand, there is a concern that a motor having a rotor in which a permanent magnet is embedded may have a large torque ripple that is a torque fluctuation generated when the rotor rotates. When the torque ripple at the time of rotor rotation becomes large, there has been a problem that the vibration and noise of the permanent magnet motor and the device equipped with the motor become large.
 この問題を解決すべく、特許文献1に記載された永久磁石モータのロータは永久磁石挿入口(永久磁石用打ち抜き穴)の径方向外側に複数のスリットを備えている。これら複数のスリットは近接する永久磁石に沿って略等間隔に配置され、永久磁石との間隔及びロータ外周面との間隔がすべて同じになるように形成されている。これにより、この従来のロータはロータ回転時に生じるトルクリップルを小さくし、振動、騒音の小さいモータを提供しようとしている。 In order to solve this problem, the rotor of the permanent magnet motor described in Patent Document 1 includes a plurality of slits on the radially outer side of the permanent magnet insertion port (permanent magnet punching hole). The plurality of slits are arranged at substantially equal intervals along the adjacent permanent magnets, and are formed such that the intervals between the permanent magnets and the rotor outer peripheral surface are all the same. As a result, this conventional rotor tries to provide a motor with reduced vibration and noise by reducing the torque ripple generated when the rotor rotates.
特開平11-187597号公報JP-A-11-187597
 しかしながら、上記従来の永久磁石モータのロータは複数のスリットの永久磁石との間隔及びロータ外周面との間隔がすべて同じになるように形成されているので、ロータ外周面に近接する永久磁石の端部付近で生じる磁束に対してトルクリップルを抑制するための好適な配慮がなされていない。これにより、ロータ回転時に生じるトルクリップルを十分に抑制できない可能性があるという問題があった。 However, since the rotor of the conventional permanent magnet motor is formed so that the intervals between the plurality of slits and the outer peripheral surface of the rotor are all the same, the end of the permanent magnet close to the outer peripheral surface of the rotor is formed. No suitable consideration has been made to suppress torque ripple with respect to magnetic flux generated near the portion. As a result, there is a problem in that torque ripple generated during rotor rotation may not be sufficiently suppressed.
 本発明は、上記の点に鑑みなされたものであり、ロータ回転時に生じるトルクリップルを効果的に抑制することが可能な永久磁石モータを提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a permanent magnet motor capable of effectively suppressing torque ripple generated when the rotor rotates.
 上記の課題を解決するため、本発明の永久磁石モータは、ロータの軸心を中心とする略多角形の各辺に対応する箇所であって2箇所の端部で前記ロータの外周面に近接するように配置されてロータ軸線方向に沿って前記ロータに埋め込まれた永久磁石と、前記ロータの外周面と前記永久磁石との間に配置されてロータ軸線方向と直角をなす断面の形状が永久磁石側からロータ外周面側に向かって延びる長手状をなしてロータ軸線方向に沿って開口されるとともに前記永久磁石に沿って間隔を空けて複数が配列されたスリットと、を備え、前記永久磁石の前記端部に対応して配置されたものを含む前記端部近傍の複数の前記スリットに関して、各々の前記断面の長手方向が略平行をなすとともに各々のロータ外周面側の端部と前記ロータの外周面との間隔が異なることを特徴としている。 In order to solve the above-described problems, the permanent magnet motor of the present invention is a portion corresponding to each side of a substantially polygon centered on the axis of the rotor and close to the outer peripheral surface of the rotor at two end portions. The permanent magnet embedded in the rotor along the rotor axial direction and the cross-sectional shape perpendicular to the rotor axial direction disposed between the outer peripheral surface of the rotor and the permanent magnet are permanent. A slit extending in a longitudinal direction extending from the magnet side toward the rotor outer peripheral surface side and extending along the rotor axial direction, and a plurality of slits arranged at intervals along the permanent magnet. With respect to the plurality of slits in the vicinity of the ends including those arranged corresponding to the ends of the rotor, the longitudinal direction of each of the cross-sections is substantially parallel and the rotor outer peripheral surface side ends and the rotor Outside Spacing between the surface is characterized by different things.
 この構成によれば、ロータ外周面に近接する永久磁石の端部付近で生じる磁束量が調整される。したがって、この永久磁石モータはロータ回転時に生じるトルクの変動幅が小さくなる。 According to this configuration, the amount of magnetic flux generated near the end of the permanent magnet close to the outer peripheral surface of the rotor is adjusted. Therefore, this permanent magnet motor has a small fluctuation range of torque generated when the rotor rotates.
 なお、ここで述べる「長手方向」とは、例えば矩形や帯状形状、オーバル形状(楕円形、長円形)、円弧状形状などといった所謂「長手状」をなす形状において、矩形や帯状形状の長辺方向、オーバル形状の長軸方向、円弧状形状の周方向を意味する。 Note that the “longitudinal direction” described here refers to a long side of a rectangular or belt-like shape in a so-called “longitudinal” shape such as a rectangular or belt-like shape, an oval shape (oval or oval), an arc shape, or the like. Direction, major axis direction of oval shape, and circumferential direction of arc shape.
 また、上記構成の永久磁石モータにおいて、前記永久磁石の前記端部に対応して配置されたものを含む前記端部近傍の複数の前記スリットに関して、前記端部に対応する前記スリットよりも、スリット配列方向内側の前記スリットのロータ外周面側の端部と前記ロータの外周面との間隔が広いことを特徴としている。 Further, in the permanent magnet motor having the above-described configuration, the plurality of slits in the vicinity of the end portions including those arranged corresponding to the end portions of the permanent magnet are more slits than the slits corresponding to the end portions. The gap between the end portion on the rotor outer peripheral surface side of the slit on the inner side in the arrangement direction and the outer peripheral surface of the rotor is wide.
 この構成によれば、永久磁石の端部に対応するスリットとロータの外周面との間隔と、それよりスリット配列方向内側のスリットとロータの外周面との間隔とに差異が生じる。したがって、ロータ外周面に近接する永久磁石の端部付近で生じる磁束量が調整される。 According to this configuration, there is a difference between the distance between the slit corresponding to the end of the permanent magnet and the outer peripheral surface of the rotor, and the distance between the inner slit in the slit arrangement direction and the outer peripheral surface of the rotor. Therefore, the amount of magnetic flux generated near the end of the permanent magnet close to the rotor outer peripheral surface is adjusted.
 また、上記構成の永久磁石モータにおいて、前記永久磁石は、2箇所の前記端部の間に有する前記ロータの外周面に対向する一面が平面をなし、前記永久磁石の前記端部に対応して配置されたものを含む前記端部近傍の複数の前記スリットは、各々の前記断面の長手方向の長さが同じであることを特徴としている。 Further, in the permanent magnet motor configured as described above, the permanent magnet has a flat surface facing the outer peripheral surface of the rotor between the two end portions, and corresponds to the end portions of the permanent magnet. The plurality of slits in the vicinity of the end including the arranged ones are characterized in that the lengths in the longitudinal direction of the respective cross sections are the same.
 この構成によれば、一般的にロータが円柱形状をなすので、永久磁石の端部に対応して配置されたものを含む複数のスリットは各々のロータの外周面との間隔に差異が生じる。したがって、ロータ外周面に近接する永久磁石の端部付近で生じる磁束量が調整される。 According to this configuration, since the rotor generally has a cylindrical shape, a plurality of slits including those arranged corresponding to the end portions of the permanent magnets are different from each other in the distance from the outer peripheral surface of each rotor. Therefore, the amount of magnetic flux generated near the end of the permanent magnet close to the rotor outer peripheral surface is adjusted.
 本発明の構成によれば、永久磁石モータはロータ外周面に近接する永久磁石の端部付近で生じる磁束量が調整され、ロータ回転時に生じるトルクの変動幅を小さくすることが可能になる。したがって、ロータ回転時に生じるトルクリップルを効果的に抑制することが可能な永久磁石モータを提供することができる。 According to the configuration of the present invention, in the permanent magnet motor, the amount of magnetic flux generated near the end of the permanent magnet close to the outer peripheral surface of the rotor is adjusted, and the fluctuation range of torque generated when the rotor rotates can be reduced. Therefore, it is possible to provide a permanent magnet motor capable of effectively suppressing torque ripple generated when the rotor rotates.
本発明の第1の実施形態に係る永久磁石モータの断面図である。1 is a cross-sectional view of a permanent magnet motor according to a first embodiment of the present invention. 本発明の第1の実施形態に係る永久磁石モータのロータの断面図である。It is sectional drawing of the rotor of the permanent magnet motor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図である。It is the elements on larger scale of the location of the permanent magnet and slit of the rotor cross section of the permanent magnet motor which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る永久磁石モータのロータ回転角度とトルクとの関係を示すグラフである。It is a graph which shows the relationship between the rotor rotation angle and torque of the permanent magnet motor which concerns on the 1st Embodiment of this invention. 比較例の永久磁石モータのロータの断面図である。It is sectional drawing of the rotor of the permanent magnet motor of a comparative example. 比較例の永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図である。It is the elements on larger scale of the location of the permanent magnet and slit of the rotor cross section of the permanent magnet motor of a comparative example. 比較例の永久磁石モータのロータ回転角度とトルクとの関係を示すグラフである。It is a graph which shows the relationship between the rotor rotation angle and torque of the permanent magnet motor of a comparative example. 本発明の第2の実施形態に係る永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図である。It is the elements on larger scale of the location of the permanent magnet and slit of the rotor cross section of the permanent magnet motor which concern on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図である。It is the elements on larger scale of the location of the permanent magnet and slit of the rotor cross section of the permanent magnet motor which concern on the 3rd Embodiment of this invention.
 以下、本発明の実施形態を図1~図9に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
 最初に、本発明の第1の実施形態に係る永久磁石モータについて、図1を用いてその構造の概略を説明する。図1は永久磁石モータの断面図である。 First, the outline of the structure of the permanent magnet motor according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of a permanent magnet motor.
 永久磁石モータ1は、図1に示すように固定子であるステータ10と、回転子であるロータ20とを備えている。 The permanent magnet motor 1 includes a stator 10 that is a stator and a rotor 20 that is a rotor, as shown in FIG.
 ステータ10は環状をなす磁性材料で構成されたステータコア11を備えている。ステータコア11は環状をなすステータヨーク12と、そのステータヨーク12の内周部分から径方向内側に突出するように延びるステータティース13とを備えている。ステータティース13の径方向内側の先端部はロータ20の外周面に間隙を隔てて対向している。 The stator 10 includes a stator core 11 made of an annular magnetic material. The stator core 11 includes an annular stator yoke 12 and a stator tooth 13 extending so as to protrude radially inward from an inner peripheral portion of the stator yoke 12. The radially inner tip of the stator teeth 13 faces the outer peripheral surface of the rotor 20 with a gap therebetween.
 ステータティース13は永久磁石モータ1の周方向に、例えば6個が並べて一周させて配置されている。すなわち、ステータ10には6か所のスロット14が形成されている。ステータティース13は、例えば複数枚の鋼板をモータ軸線方向(図1の紙面に対して垂直をなす方向)に積層して一体として形成されている。 Stator teeth 13 are arranged in the circumferential direction of the permanent magnet motor 1, for example, six are arranged side by side. That is, six slots 14 are formed in the stator 10. The stator teeth 13 are integrally formed, for example, by laminating a plurality of steel plates in the motor axis direction (direction perpendicular to the paper surface of FIG. 1).
 ステータティース13の外周には電気絶縁材料からなるボビンを構成するインシュレータ(図示せず)が装着される。さらに、インシュレータの外側であってスロット14の箇所にはモータ軸線方向に沿って電線が巻きつけられたコイル15が形成される。このコイル15にはロータ20を回転駆動するための電流が流される。 An insulator (not shown) constituting a bobbin made of an electrically insulating material is mounted on the outer periphery of the stator teeth 13. Further, a coil 15 around which an electric wire is wound along the motor axial direction is formed outside the insulator and at the slot 14. A current for rotating the rotor 20 is passed through the coil 15.
 ロータ20は略円柱状をなす磁性材料で構成され、図1及に示すようにステータ10の内側に回転可能に配置される回転子である。ロータ20は回転軸21と、その回転軸21の周面に対して変位不能に固定されたロータコア22を備えている。 The rotor 20 is made of a magnetic material having a substantially cylindrical shape, and is a rotor that is rotatably disposed inside the stator 10 as shown in FIG. The rotor 20 includes a rotating shaft 21 and a rotor core 22 fixed so as not to be displaceable with respect to the peripheral surface of the rotating shaft 21.
 回転軸21は例えばその両端部が2個の軸受け(図示せず)を介してモータケース(図示せず)などに回転可能に支持されている。また別の例では、回転軸21は一方の端部が軸受け等を用いて片持ち状で支持されている。なお、ロータ軸線方向はモータ軸線方向と同一であって、図1の紙面に対して垂直をなす方向に延びている。ロータコア22には永久磁石23が埋め込まれている。 The both ends of the rotating shaft 21 are rotatably supported by a motor case (not shown) or the like via two bearings (not shown), for example. In another example, one end of the rotating shaft 21 is supported in a cantilever manner using a bearing or the like. The rotor axial direction is the same as the motor axial direction and extends in a direction perpendicular to the paper surface of FIG. A permanent magnet 23 is embedded in the rotor core 22.
 続いて、ロータ20の構成について、図1に加えて図2~図4を用いてさらに詳しく説明する。図2は永久磁石モータ1のロータ20の断面図、図3はロータ20の断面の永久磁石23及びスリットの箇所の部分拡大図、図4は永久磁石モータ1のロータ回転角度とトルクとの関係を示すグラフである。 Subsequently, the configuration of the rotor 20 will be described in more detail with reference to FIGS. 2 to 4 in addition to FIG. 2 is a cross-sectional view of the rotor 20 of the permanent magnet motor 1, FIG. 3 is a partially enlarged view of the permanent magnet 23 and slits in the cross section of the rotor 20, and FIG. 4 is a relationship between the rotor rotation angle and torque of the permanent magnet motor 1. It is a graph which shows.
 ロータ20のロータコア22は、図2に示すようにN極及びS極の2つの磁極が周方向に沿って全周にわたって交互に並置されて構成されている。ロータコア22の磁極数は4となっている。ロータコア22の磁極にはそれぞれ1箇所ずつ永久磁石挿入口24が設けられ、永久磁石挿入口24に永久磁石23が埋め込まれている。 As shown in FIG. 2, the rotor core 22 of the rotor 20 is configured by arranging two magnetic poles of N pole and S pole alternately in parallel along the circumferential direction. The number of magnetic poles of the rotor core 22 is four. Each of the magnetic poles of the rotor core 22 is provided with a permanent magnet insertion slot 24, and a permanent magnet 23 is embedded in the permanent magnet insertion slot 24.
 永久磁石23はロータ軸線方向と直角をなす断面形状が矩形状をなし、ロータ20の軸心を中心とする四角形の各辺に対応する箇所であって2箇所の端部でロータ20の外周面に近接するように配置されている。永久磁石挿入口24は永久磁石23が挿入可能な大きさのロータ軸線方向と直角をなす断面形状が例えば台形状をなし、ロータ軸線方向に沿って開口している。永久磁石23は永久磁石挿入口24に合わせてロータ軸線方向に沿って延びて永久磁石挿入口24に挿入され、埋め込まれている。なお、図2が永久磁石23及び永久磁石挿入口24のここで述べる断面を示している。 The permanent magnet 23 has a rectangular cross-sectional shape perpendicular to the rotor axial direction, and corresponds to each side of a quadrangle centered on the axis of the rotor 20, and the outer peripheral surface of the rotor 20 at two ends. It is arranged to be close to. The permanent magnet insertion opening 24 has, for example, a trapezoidal cross section that is perpendicular to the rotor axial direction in which the permanent magnet 23 can be inserted, and is open along the rotor axial direction. The permanent magnet 23 extends along the rotor axial direction in accordance with the permanent magnet insertion opening 24 and is inserted and embedded in the permanent magnet insertion opening 24. FIG. 2 shows a cross section of the permanent magnet 23 and the permanent magnet insertion opening 24 described here.
 永久磁石23はその断面の長手方向両端の間において永久磁石挿入口24の内面に接触している。そして、その永久磁石挿入口24の内部において永久磁石23の断面の長手方向両端外側に隣接するとともにロータ20の外周面に近接して空隙部25が設けられている。空隙部25はその断面形状が例えば三角形状をなし、ロータ軸線方向に沿って開口している。 The permanent magnet 23 is in contact with the inner surface of the permanent magnet insertion port 24 between both longitudinal ends of the cross section. In the permanent magnet insertion opening 24, a gap portion 25 is provided adjacent to the outer ends of the longitudinal direction of the cross section of the permanent magnet 23 and close to the outer peripheral surface of the rotor 20. The gap 25 has a triangular cross section, for example, and is open along the rotor axial direction.
 ロータ20の外周面と永久磁石23との間にはスリット26が設けられている。スリット26はロータ軸線方向と直角をなす断面の形状が永久磁石側からロータ外周面側に向かって延びる長手状、すなわち長円状をなしてロータ軸線方向に沿って開口している。また、スリット26は近接する永久磁石23に沿って間隔を空けて複数が配列されている。すなわち、スリット26は近接する1個の永久磁石23につき6個が設けられている。 A slit 26 is provided between the outer peripheral surface of the rotor 20 and the permanent magnet 23. The slit 26 has a cross-sectional shape perpendicular to the rotor axial direction that extends from the permanent magnet side toward the rotor outer peripheral surface side, that is, an oblong shape, and opens along the rotor axial direction. A plurality of slits 26 are arranged at intervals along the adjacent permanent magnets 23. That is, six slits 26 are provided for each adjacent permanent magnet 23.
 図3に示すように、1個の永久磁石23に近接する6個のスリット26のうち、永久磁石23の2箇所の端部各々に対応して配置されたスリット26aを含む端部近傍の2個のスリット26a、26bは、各々の断面の長手方向が略平行をなしている。なお、図3の一点鎖線が延びる方向が2個のスリット26a、26bの断面の長手方向を示している。 As shown in FIG. 3, among the six slits 26 adjacent to one permanent magnet 23, 2 near the end including the slits 26 a arranged corresponding to each of the two ends of the permanent magnet 23. The slits 26a and 26b are substantially parallel in the longitudinal direction of each cross section. Note that the direction in which the one-dot chain line in FIG. 3 extends indicates the longitudinal direction of the cross section of the two slits 26a and 26b.
 そして、スリット26a、26bの各々のロータ外周面側の端部とロータ20の外周面との間隔Xa、Xbが異なっている。すなわち、永久磁石23の端部に対応して配置されたスリット26aのロータ外周面側の端部とロータ20の外周面との間隔Xaよりも、そのスリット配列方向内側のスリット26bのロータ外周面側の端部とロータ20の外周面との間隔Xbが広くなっている。 Further, the intervals Xa and Xb between the end portions of the slits 26a and 26b on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. That is, the rotor outer peripheral surface of the slit 26b on the inner side in the slit arrangement direction than the interval Xa between the end portion on the rotor outer peripheral surface side of the slit 26a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 The gap Xb between the end on the side and the outer peripheral surface of the rotor 20 is widened.
 言い換えれば、永久磁石23の2箇所の端部の間に有するロータ20の外周面に対向する一面23aが平面をなし、永久磁石23の端部近傍の2個のスリット26a、26bは各々の断面の長手方向の長さが同じである。これにより、上記間隔Xbが間隔Xaより広くなる。 In other words, one surface 23a facing the outer peripheral surface of the rotor 20 between the two end portions of the permanent magnet 23 forms a flat surface, and the two slits 26a and 26b near the end portions of the permanent magnet 23 have cross sections. Have the same length in the longitudinal direction. Thereby, the said space | interval Xb becomes wider than the space | interval Xa.
 図4は、このような実施形態の構成の永久磁石モータ1を回転させたときのロータ回転角度とトルクとの関係をグラフとして示している。グラフの横軸は0度から90度までのロータ20の回転角度を示し、グラフの縦軸はロータ20の回転角度に対応して生じるトルクを示している。これによれば、トルクはロータ回転角度にして30度ごとに最小値と最大値との間の変動幅Tr1で変動していることが分かる。 FIG. 4 is a graph showing the relationship between the rotor rotation angle and the torque when the permanent magnet motor 1 having the configuration of the embodiment is rotated. The horizontal axis of the graph indicates the rotation angle of the rotor 20 from 0 degrees to 90 degrees, and the vertical axis of the graph indicates the torque generated corresponding to the rotation angle of the rotor 20. According to this, it can be seen that the torque fluctuates within a fluctuation range Tr1 between the minimum value and the maximum value every 30 degrees as the rotor rotation angle.
 ここで、上記実施形態としての永久磁石モータ1に対する比較例である永久磁石モータについて、図5~図7を用いて説明する。図5は比較例の永久磁石モータのロータの断面図、図6は比較例の永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図、図7は比較例の永久磁石モータのロータ回転角度とトルクとの関係を示すグラフである。なお、この比較例の基本的な構成は図1~図4を用いて説明した上記実施形態と同じであるので、上記実施形態と共通する構成要素について説明を省略するものとする。 Here, a permanent magnet motor which is a comparative example to the permanent magnet motor 1 as the above embodiment will be described with reference to FIGS. FIG. 5 is a cross-sectional view of a rotor of a comparative permanent magnet motor, FIG. 6 is a partially enlarged view of a permanent magnet and a slit in the cross section of the rotor of the comparative permanent magnet motor, and FIG. 7 is a rotor of the permanent magnet motor of the comparative example. It is a graph which shows the relationship between a rotation angle and a torque. Note that the basic configuration of this comparative example is the same as that of the above-described embodiment described with reference to FIGS. 1 to 4, and thus description of components common to the above-described embodiment will be omitted.
 比較例の永久磁石モータのロータ120は、図5に示すように回転軸121及びロータコア122を備えている。ロータコア122の磁極にはそれぞれ1箇所ずつ永久磁石挿入口124が設けられ、永久磁石挿入口124に永久磁石123が埋め込まれている。 The rotor 120 of the comparative permanent magnet motor includes a rotating shaft 121 and a rotor core 122 as shown in FIG. Each of the magnetic poles of the rotor core 122 is provided with a permanent magnet insertion slot 124, and the permanent magnet 123 is embedded in the permanent magnet insertion slot 124.
 ロータ120の外周面と永久磁石123との間にはスリット126が設けられている。スリット126はロータ軸線方向と直角をなす断面の形状が永久磁石側からロータ外周面側に向かって延びる長円状をなしている。 A slit 126 is provided between the outer peripheral surface of the rotor 120 and the permanent magnet 123. The slit 126 has an oval shape in which a cross-sectional shape perpendicular to the rotor axial direction extends from the permanent magnet side toward the rotor outer peripheral surface side.
 そして、図6に示すように永久磁石123の端部に対応して配置されたスリット126aを含む端部近傍の2個のスリット126a、126bに関して、各々のロータ外周面側の端部とロータ20の外周面との間隔Ya、Ybがほぼ同じになっている。 As shown in FIG. 6, with respect to the two slits 126a and 126b in the vicinity of the end including the slit 126a arranged corresponding to the end of the permanent magnet 123, the end on the rotor outer peripheral surface side and the rotor 20 The distances Ya and Yb from the outer peripheral surface of are substantially the same.
 図7は、このような比較例の構成の永久磁石モータを回転させたときのロータ回転角度とトルクとの関係をグラフとして示している。これによれば、トルクはロータ回転角度にして30度ごとに最小値と最大値との間の変動幅Tr0で変動していることが分かる。 FIG. 7 is a graph showing the relationship between the rotor rotation angle and the torque when the permanent magnet motor having the configuration of the comparative example is rotated. According to this, it can be seen that the torque fluctuates within a fluctuation range Tr0 between the minimum value and the maximum value every 30 degrees as the rotor rotation angle.
 そして、図4に示した上記実施形態の永久磁石モータ1を回転させたときのトルク変動幅Tr1と、図7に示した比較例の永久磁石モータを回転させたときのトルク変動幅Tr0とを比較すると、実施形態の永久磁石モータ1で生じるトルク変動幅Tr1が比較例の永久磁石モータで生じるトルク変動幅Tr0の約40%であり、小さくなっている。 And the torque fluctuation range Tr1 when rotating the permanent magnet motor 1 of the said embodiment shown in FIG. 4, and the torque fluctuation range Tr0 when rotating the permanent magnet motor of the comparative example shown in FIG. In comparison, the torque fluctuation width Tr1 generated in the permanent magnet motor 1 of the embodiment is about 40% of the torque fluctuation width Tr0 generated in the permanent magnet motor of the comparative example, which is small.
 このようにして、永久磁石モータ1は、永久磁石23の端部に対応して配置されたスリット26aを含む端部近傍の2個のスリット26a、26bが各々の断面の長手方向が略平行をなすとともに各々のロータ外周面側の端部とロータ20の外周面との間隔Xa、Xbが異なるので、ロータ外周面に近接する永久磁石23の端部付近で生じる磁束量が調整される。したがって、永久磁石モータ1はロータ回転時に生じるトルクの変動幅を小さくすることが可能になる。 In this way, in the permanent magnet motor 1, the two slits 26 a and 26 b in the vicinity of the end including the slit 26 a arranged corresponding to the end of the permanent magnet 23 are substantially parallel in the longitudinal direction of each cross section. In addition, since the distances Xa and Xb between the end portions of the rotor outer peripheral surfaces and the outer peripheral surface of the rotor 20 are different, the amount of magnetic flux generated near the end portions of the permanent magnets 23 close to the rotor outer peripheral surface is adjusted. Therefore, the permanent magnet motor 1 can reduce the fluctuation range of the torque generated when the rotor rotates.
 また、永久磁石23の端部に対応して配置されたスリット26aのロータ外周面側の端部とロータ20の外周面との間隔Xaよりも、そのスリット配列方向内側のスリット26bのロータ外周面側の端部とロータ20の外周面との間隔Xbを広くすることにより、それら間隔Xa、Xbに差異を生じさせることができる。したがって、永久磁石モータ1はロータ外周面に近接する永久磁石23の端部付近で生じる磁束量を調整することが可能になる。 Further, the rotor outer peripheral surface of the slit 26b on the inner side in the slit arrangement direction than the distance Xa between the end portion on the rotor outer peripheral surface side of the slit 26a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 By widening the distance Xb between the end portion on the side and the outer peripheral surface of the rotor 20, it is possible to make a difference in the distances Xa and Xb. Therefore, the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
 さらに、円柱形状をなすロータ20において永久磁石23のロータ20の外周面に対向する一面23aが平面をなし、永久磁石23の端部近傍の2個のスリット26a、26bは各々の断面の長手方向の長さを同じにしたことにより、各々のロータ20の外周面との間隔に差異が生じる。したがって、永久磁石モータ1はロータ外周面に近接する永久磁石23の端部付近で生じる磁束量を調整することが可能になる。 Further, in the rotor 20 having a cylindrical shape, one surface 23a facing the outer peripheral surface of the rotor 20 of the permanent magnet 23 forms a flat surface, and the two slits 26a and 26b near the end of the permanent magnet 23 are in the longitudinal direction of each cross section. Since the lengths of the rotors 20 are the same, a difference occurs in the distance from the outer peripheral surface of each rotor 20. Therefore, the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
 そして、本発明の上記実施形態の構成によれば、永久磁石モータ1はロータ外周面に近接する永久磁石23の端部付近で生じる磁束量が調整され、ロータ回転時に生じるトルクの変動幅を小さくすることが可能になる。したがって、ロータ回転時に生じるトルクリップルを効果的に抑制することが可能な永久磁石モータ1を提供することができる。 According to the configuration of the above-described embodiment of the present invention, the amount of magnetic flux generated in the vicinity of the end of the permanent magnet 23 close to the outer peripheral surface of the permanent magnet motor 1 is adjusted, and the fluctuation range of torque generated when the rotor rotates is reduced. It becomes possible to do. Therefore, it is possible to provide the permanent magnet motor 1 that can effectively suppress the torque ripple generated when the rotor rotates.
 次に、本発明の第2の実施形態に係る永久磁石モータについて、図8を用いて説明する。図8は永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図である。なお、この実施形態の基本的な構成は図1~図7を用いて説明した前記第1の実施形態と同じであるので、第1の実施形態と共通する構成要素には前と同じ符号を付し、図面の記載及びその説明を省略するものとする。 Next, a permanent magnet motor according to a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a partially enlarged view of a permanent magnet and a slit in the rotor cross section of the permanent magnet motor. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 7, the same reference numerals are assigned to the same components as those of the first embodiment. The description of the drawings and the description thereof will be omitted.
 第2の実施形態に係る永久磁石モータは、図8に示すようにロータ20の外周面と永久磁石23との間にスリット27を備えている。スリット27は近接する1個の永久磁石23につき8個が設けられている。 The permanent magnet motor according to the second embodiment includes a slit 27 between the outer peripheral surface of the rotor 20 and the permanent magnet 23 as shown in FIG. Eight slits 27 are provided for each adjacent permanent magnet 23.
 8個のスリット27のうち、永久磁石23の2箇所の端部各々に対応して配置されたスリット27aを含む端部近傍の3個のスリット27a、27b、27cは、各々の断面の長手方向が略平行をなしている。なお、図8の一点鎖線が延びる方向が2個のスリット27a、27b、27cの断面の長手方向を示している。 Of the eight slits 27, the three slits 27a, 27b, 27c in the vicinity of the ends including the slits 27a arranged corresponding to the two end portions of the permanent magnet 23 are the longitudinal directions of the respective cross sections. Are substantially parallel. In addition, the direction where the dashed-dotted line of FIG. 8 extends has shown the longitudinal direction of the cross section of the two slits 27a, 27b, and 27c.
 そして、スリット27a、27b、27cの各々のロータ外周面側の端部とロータ20の外周面との間隔Ua、Ub、Ucが異なっている。すなわち、永久磁石23の端部に対応して配置されたスリット27aのロータ外周面側の端部とロータ20の外周面との間隔Uaよりも、そのスリット配列方向内側のスリット27b、27cのロータ外周面側の端部とロータ20の外周面との間隔Ub、Ucが広くなっている。 Further, the intervals Ua, Ub, Uc between the end portions of the slits 27a, 27b, 27c on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. That is, the rotors of the slits 27b and 27c on the inner side in the slit arrangement direction than the interval Ua between the end portion on the rotor outer peripheral surface side of the slit 27a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 The distances Ub and Uc between the end on the outer peripheral surface side and the outer peripheral surface of the rotor 20 are widened.
 言い換えれば、永久磁石23の2箇所の端部の間に有するロータ20の外周面に対向する一面23aが平面をなし、永久磁石23の端部近傍の2個のスリット27a、27b、27cは各々の断面の長手方向の長さが同じである。これにより、上記間隔Ub、Ucが間隔Uaより広くなる。 In other words, the one surface 23a facing the outer peripheral surface of the rotor 20 between the two end portions of the permanent magnet 23 forms a flat surface, and the two slits 27a, 27b, 27c near the end portion of the permanent magnet 23 are respectively formed. The lengths of the cross-sections in the longitudinal direction are the same. As a result, the intervals Ub and Uc are wider than the interval Ua.
 この第2の実施形態の構成のように、永久磁石23の2箇所の端部各々に対応して配置されたスリット27aを含む端部近傍の3個のスリット27a、27b、27cに関して各々の断面の長手方向が略平行をなすとともに各々のロータ外周面側の端部とロータ20の外周面との間隔Ua、Ub、Ucが異なる場合でも、ロータ外周面に近接する永久磁石23の端部付近で生じる磁束量が調整される。したがって、永久磁石モータ1はロータ回転時に生じるトルクの変動幅を小さくすることが可能になる。 As in the configuration of the second embodiment, each of the three slits 27a, 27b, 27c in the vicinity of the end including the slit 27a disposed corresponding to each of the two ends of the permanent magnet 23, respectively. Near the end of the permanent magnet 23 adjacent to the rotor outer peripheral surface even when the distances Ua, Ub, Uc between the end of each rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. Is adjusted. Therefore, the permanent magnet motor 1 can reduce the fluctuation range of the torque generated when the rotor rotates.
 そして、永久磁石23の端部に対応して配置されたスリット27aのロータ外周面側の端部とロータ20の外周面との間隔Uaよりも、そのスリット配列方向内側のスリット27b、27cのロータ外周面側の端部とロータ20の外周面との間隔Ub、Ucを広くすることにより、それら間隔Ua、Ub、Ucに差異を生じさせることができる。したがって、永久磁石モータ1はロータ外周面に近接する永久磁石23の端部付近で生じる磁束量を調整することが可能になる。 Then, the rotors of the slits 27b and 27c on the inner side in the slit arrangement direction than the interval Ua between the end portion on the rotor outer peripheral surface side of the slit 27a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 By widening the distances Ub and Uc between the end on the outer peripheral surface side and the outer peripheral surface of the rotor 20, it is possible to make a difference in the distances Ua, Ub and Uc. Therefore, the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
 次に、本発明の第3の実施形態に係る永久磁石モータについて、図9を用いて説明する。図9は永久磁石モータのロータ断面の永久磁石及びスリットの箇所の部分拡大図である。なお、この実施形態の基本的な構成は図1~図7を用いて説明した前記第1の実施形態と同じであるので、第1の実施形態と共通する構成要素には前と同じ符号を付し、図面の記載及びその説明を省略するものとする。 Next, a permanent magnet motor according to a third embodiment of the present invention will be described with reference to FIG. FIG. 9 is a partially enlarged view of a permanent magnet and a slit in the rotor cross section of the permanent magnet motor. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 7, the same reference numerals are assigned to the same components as those of the first embodiment. The description of the drawings and the description thereof will be omitted.
 第3の実施形態に係る永久磁石モータは、図9に示すようにロータ20の外周面と永久磁石23との間にスリット28を備えている。スリット28は近接する1個の永久磁石23につき6個が設けられている。 The permanent magnet motor according to the third embodiment includes a slit 28 between the outer peripheral surface of the rotor 20 and the permanent magnet 23 as shown in FIG. Six slits 28 are provided for each of the adjacent permanent magnets 23.
 6個のスリット28のうち、永久磁石23の2箇所の端部各々に対応して配置されたスリット28aを含む端部近傍の2個のスリット28a、28bは、各々の断面の長手方向が略平行をなしている。なお、図9の一点鎖線が延びる方向が2個のスリット28a、28bの断面の長手方向を示している。 Of the six slits 28, the two slits 28a and 28b in the vicinity of the ends including the slits 28a arranged corresponding to the two ends of the permanent magnet 23 are substantially in the longitudinal direction of each cross section. They are parallel. In addition, the direction in which the one-dot chain line in FIG. 9 extends indicates the longitudinal direction of the cross section of the two slits 28a and 28b.
 そして、スリット28a、28bの各々のロータ外周面側の端部とロータ20の外周面との間隔Ta、Tbが異なっている。すなわち、永久磁石23の端部に対応して配置されたスリット28aのロータ外周面側の端部とロータ20の外周面との間隔Taが、そのスリット配列方向内側のスリット28bのロータ外周面側の端部とロータ20の外周面との間隔Tbより広くなっている。 Further, the intervals Ta and Tb between the end portions of the slits 28a and 28b on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20 are different. That is, the distance Ta between the rotor outer peripheral surface side of the slit 28a arranged corresponding to the end of the permanent magnet 23 and the outer peripheral surface of the rotor 20 is the rotor outer peripheral surface side of the slit 28b on the inner side in the slit arrangement direction. This is wider than the interval Tb between the end of the rotor and the outer peripheral surface of the rotor 20.
 この第3の実施形態の構成のように、永久磁石23の端部に対応して配置されたスリット28aのロータ外周面側の端部とロータ20の外周面との間隔Taが、そのスリット配列方向内側のスリット28bのロータ外周面側の端部とロータ20の外周面との間隔Tbより広い場合であっても、それら間隔Ta、Tbに差異を生じさせることができる。したがって、永久磁石モータ1はロータ外周面に近接する永久磁石23の端部付近で生じる磁束量を調整することが可能になる。 As in the configuration of the third embodiment, the interval Ta between the rotor outer peripheral surface side end of the slit 28a arranged corresponding to the end portion of the permanent magnet 23 and the outer peripheral surface of the rotor 20 is the slit arrangement. Even if it is wider than the interval Tb between the end of the slit 28b on the rotor outer peripheral surface side and the outer peripheral surface of the rotor 20, the difference between the intervals Ta and Tb can be made. Therefore, the permanent magnet motor 1 can adjust the amount of magnetic flux generated in the vicinity of the end portion of the permanent magnet 23 close to the outer peripheral surface of the rotor.
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。 The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.
 例えば、永久磁石23、永久磁石挿入口24及びスリット26の形状、数量は上記実施形態で用いた形状、数量に限定されるわけではなく、他の形状、数量であっても良い。 For example, the shape and quantity of the permanent magnet 23, the permanent magnet insertion port 24, and the slit 26 are not limited to the shape and quantity used in the above embodiment, but may be other shapes and quantities.
 また、ロータ20の軸心を中心とする多角形の各辺に対応する箇所に配置される永久磁石23に関して、その多角形は上記実施形態の四角形に限定されるわけではなく、例えば六角形や八角形など他の多角形であっても良い。 Further, regarding the permanent magnets 23 arranged at the positions corresponding to the sides of the polygon centered on the axis of the rotor 20, the polygon is not limited to the quadrangle of the above-described embodiment. Other polygons such as an octagon may be used.
 また、上記実施形態では永久磁石23の端部近傍の2個または3個のスリットに関して、各々の断面の長手方向が略平行をなすとともに各々のロータ外周面側の端部とロータ20の外周面との間隔が異なることとしたが、永久磁石23の端部近傍の4個以上のスリットを対象としても良い。この場合、永久磁石23に沿って間隔を空けて配列される複数のスリットは10個以上であることが望ましい。 Further, in the above embodiment, the longitudinal direction of each cross section is substantially parallel with respect to two or three slits near the end of the permanent magnet 23, and the end of each rotor outer peripheral surface and the outer peripheral surface of the rotor 20. However, four or more slits near the end of the permanent magnet 23 may be targeted. In this case, it is desirable that the number of slits arranged at intervals along the permanent magnet 23 is 10 or more.
 本発明は、永久磁石が埋め込まれたロータを有する永久磁石モータに利用することができる。 The present invention can be used for a permanent magnet motor having a rotor in which permanent magnets are embedded.
   1  永久磁石モータ
   10  ステータ
   20  ロータ
   21  回転軸
   22  ロータコア
   23  永久磁石
   24  永久磁石挿入口
   25  空隙部
   26、27、28  スリット
DESCRIPTION OF SYMBOLS 1 Permanent magnet motor 10 Stator 20 Rotor 21 Rotating shaft 22 Rotor core 23 Permanent magnet 24 Permanent magnet insertion port 25 Air gap part 26, 27, 28 Slit

Claims (3)

  1.  ロータの軸心を中心とする略多角形の各辺に対応する箇所であって2箇所の端部で前記ロータの外周面に近接するように配置されてロータ軸線方向に沿って前記ロータに埋め込まれた永久磁石と、
     前記ロータの外周面と前記永久磁石との間に配置されてロータ軸線方向と直角をなす断面の形状が永久磁石側からロータ外周面側に向かって延びる長手状をなしてロータ軸線方向に沿って開口されるとともに前記永久磁石に沿って間隔を空けて複数が配列されたスリットと、
    を備え、
     前記永久磁石の前記端部に対応して配置されたものを含む前記端部近傍の複数の前記スリットに関して、各々の前記断面の長手方向が略平行をなすとともに各々のロータ外周面側の端部と前記ロータの外周面との間隔が異なることを特徴とする永久磁石モータ。
    A portion corresponding to each side of a substantially polygonal shape centered on the axis of the rotor, and disposed at two end portions so as to be close to the outer peripheral surface of the rotor, and embedded in the rotor along the rotor axial direction. Permanent magnets,
    The cross-sectional shape that is arranged between the outer peripheral surface of the rotor and the permanent magnet and is perpendicular to the rotor axial direction forms a longitudinal shape that extends from the permanent magnet side toward the rotor outer peripheral surface side along the rotor axial direction. A plurality of slits that are opened and arranged at intervals along the permanent magnet;
    With
    With respect to the plurality of slits in the vicinity of the end including those arranged corresponding to the end of the permanent magnet, the longitudinal direction of each of the cross sections is substantially parallel and the end on the rotor outer peripheral surface side And a distance between the outer peripheral surface of the rotor and the permanent magnet motor.
  2.  前記永久磁石の前記端部に対応して配置されたものを含む前記端部近傍の複数の前記スリットに関して、前記端部に対応する前記スリットよりも、スリット配列方向内側の前記スリットのロータ外周面側の端部と前記ロータの外周面との間隔が広いことを特徴とする請求項1に記載の永久磁石モータ。 With respect to the plurality of slits in the vicinity of the end including those arranged corresponding to the end of the permanent magnet, the rotor outer peripheral surface of the slit on the inner side in the slit arrangement direction than the slit corresponding to the end The permanent magnet motor according to claim 1, wherein an interval between a side end portion and an outer peripheral surface of the rotor is wide.
  3.  前記永久磁石は、2箇所の前記端部の間に有する前記ロータの外周面に対向する一面が平面をなし、
     前記永久磁石の前記端部に対応して配置されたものを含む複数の前記スリットは、各々の前記断面の長手方向の長さが同じであることを特徴とする請求項1または請求項2に記載の永久磁石モータ。
    The permanent magnet has a flat surface facing the outer peripheral surface of the rotor between the two end portions,
    3. The plurality of slits including those arranged corresponding to the end portions of the permanent magnet have the same length in the longitudinal direction of each of the cross sections. The permanent magnet motor described.
PCT/JP2012/079608 2011-12-22 2012-11-15 Permanent magnet motor WO2013094349A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280061396.XA CN103999331B (en) 2011-12-22 2012-11-15 Magneto
IN4509CHN2014 IN2014CN04509A (en) 2011-12-22 2014-06-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281044 2011-12-22
JP2011281044A JP2013132164A (en) 2011-12-22 2011-12-22 Permanent magnet motor

Publications (1)

Publication Number Publication Date
WO2013094349A1 true WO2013094349A1 (en) 2013-06-27

Family

ID=48668248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079608 WO2013094349A1 (en) 2011-12-22 2012-11-15 Permanent magnet motor

Country Status (5)

Country Link
JP (1) JP2013132164A (en)
CN (1) CN103999331B (en)
IN (1) IN2014CN04509A (en)
TW (1) TWI555307B (en)
WO (1) WO2013094349A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3813231A4 (en) * 2018-06-25 2021-06-16 Mitsubishi Electric Corporation Rotor, electric motor, fan, and air conditioner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280761B2 (en) * 2014-02-10 2018-02-14 山洋電気株式会社 Stator core and permanent magnet motor
CN106100179B (en) * 2016-06-29 2019-11-08 沈阳工业大学 Permanent magnet rotor with reluctance slot
US11496005B2 (en) 2017-05-10 2022-11-08 Mitsubishi Electric Corporation Stator, electric motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing stator
US11004586B2 (en) 2017-09-15 2021-05-11 Siemens Gamesa Renewable Energy A/S Permanent magnet for a permanent magnet machine
CN111903038B (en) * 2018-04-10 2023-11-28 三菱电机株式会社 Motor, compressor and air conditioning device
CN108711968A (en) * 2018-07-13 2018-10-26 珠海格力电器股份有限公司 Rotor assembly and motor
JP7053392B2 (en) * 2018-07-13 2022-04-12 オークマ株式会社 Rotor of synchronous motor
CN110299773A (en) * 2019-08-02 2019-10-01 珠海格力电器股份有限公司 Rotor assembly and alternately pole motor
CN112436624B (en) * 2019-08-26 2022-02-11 安徽美芝精密制造有限公司 Rotor, motor, compressor and refrigeration plant
TWI749556B (en) * 2020-05-18 2021-12-11 姚立和 Motor structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037127A (en) * 1999-07-26 2001-02-09 Toshiba Corp Permanent magnet type motor
JP2011083168A (en) * 2009-10-09 2011-04-21 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor, blower and compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083168A (en) * 1999-09-16 2001-03-30 Suzuki Motor Corp Rotation detector for propeller
JP4248984B2 (en) * 2003-09-19 2009-04-02 東芝キヤリア株式会社 Permanent magnet motor
JP5478136B2 (en) * 2009-07-15 2014-04-23 三菱電機株式会社 Permanent magnet synchronous motor
WO2011062064A1 (en) * 2009-11-17 2011-05-26 三菱電機株式会社 Permanent-magnet synchronous motor
JP5061207B2 (en) * 2010-03-05 2012-10-31 株式会社日立産機システム Permanent magnet synchronous machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037127A (en) * 1999-07-26 2001-02-09 Toshiba Corp Permanent magnet type motor
JP2011083168A (en) * 2009-10-09 2011-04-21 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor, blower and compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3813231A4 (en) * 2018-06-25 2021-06-16 Mitsubishi Electric Corporation Rotor, electric motor, fan, and air conditioner
US11552515B2 (en) 2018-06-25 2023-01-10 Mitsubishi Electric Corporation Rotor, motor, fan, and air conditioner

Also Published As

Publication number Publication date
JP2013132164A (en) 2013-07-04
TW201338353A (en) 2013-09-16
CN103999331B (en) 2017-08-11
IN2014CN04509A (en) 2015-09-11
TWI555307B (en) 2016-10-21
CN103999331A (en) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2013094349A1 (en) Permanent magnet motor
WO2013061397A1 (en) Rotor of interior permanent magnet motor, compressor, and refrigeration and air-conditioning device
JP5902501B2 (en) Permanent magnet motor
JP5511921B2 (en) Electric motor, blower and compressor
EP3101789B1 (en) Single-phase outer-rotor motor and stator thereof
WO2014195999A1 (en) Synchronous motor
JP2013132172A (en) Permanent magnet motor
JP2006333656A (en) Rotor of rotary electric machine and rotary electric machine using same
JP5954279B2 (en) Rotating electric machine
JP2013118788A (en) Brushless motor
JP5483582B2 (en) motor
JP2013132163A (en) Permanent magnet motor
JP2011193635A (en) Brushless motor
JP2014113033A (en) Embedded magnet dynamo-electric machine
JP5848097B2 (en) Rotor and motor
JP2018026965A (en) Rotor and permanent magnet type rotary electric machine
WO2017042886A1 (en) Permanent magnet-type rotating electric motor and compressor using same
JP6012046B2 (en) Brushless motor
JP2012080697A (en) Motor
JP5491344B2 (en) motor
JP2014161206A (en) Interior magnet type rotating electrical machine
JP2015002565A (en) Dynamo-electric machine
JP2014143797A (en) Magnet embedded rotary electric machine
JP5840919B2 (en) Rotor and motor
JP2016100979A (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858818

Country of ref document: EP

Kind code of ref document: A1