WO2013094330A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2013094330A1
WO2013094330A1 PCT/JP2012/079056 JP2012079056W WO2013094330A1 WO 2013094330 A1 WO2013094330 A1 WO 2013094330A1 JP 2012079056 W JP2012079056 W JP 2012079056W WO 2013094330 A1 WO2013094330 A1 WO 2013094330A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ground fault
output
voltage
buffer
Prior art date
Application number
PCT/JP2012/079056
Other languages
French (fr)
Japanese (ja)
Inventor
敬史 小倉
哲 重田
浩明 五十嵐
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013094330A1 publication Critical patent/WO2013094330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power converter using a semiconductor switching element, and more particularly to a power converter provided with a novel AC current ground fault detector for detecting a ground fault phenomenon.
  • a power conversion device that performs power conversion by an inverter circuit including a semiconductor switching element and supplies the power to a load such as a three-phase induction motor
  • various abnormality detection devices are provided.
  • an overcurrent detection device, an overvoltage detection device, a ground fault detection device, and the like are typical ones.
  • the present invention is directed to a ground fault detection device for detecting an AC current ground fault phenomenon (hereinafter simply referred to as a ground fault phenomenon), and generally between an inverter circuit unit and a three-phase induction motor.
  • the signal of the current sensor for detecting the flowing alternating current is sampled by a microcomputer at a predetermined cycle, and the change degree is monitored to detect the ground fault phenomenon.
  • each phase on the secondary side of the three-phase induction motor is disclosed. It is known to detect the ground fault phenomenon by connecting a resistor to the star and detecting the current or voltage at this neutral point.
  • the detection of the ground fault phenomenon of the conventional alternating current was performed by the software processing of the microcomputer based on the information of the current sensor.
  • a situation in which the ground fault phenomenon cannot be detected occurs depending on the abnormality of the microcomputer and the sampling timing for reading the information of the current sensor.
  • the operation time from the occurrence of the ground fault phenomenon to the protection operation by the protection circuit depends on the processing speed of the microcomputer and the start cycle of the processing task, there are situations where the protection operation against the ground fault phenomenon is not in time. There are concerns about the occurrence.
  • An object of the present invention is to provide a power conversion device including a ground fault detection device that can reliably detect the occurrence of a ground fault phenomenon of an alternating current and does not require a high breakdown voltage.
  • the feature of the present invention is that the output part of the current sensor that detects the current value of the alternating current flowing through the U-phase, V-phase, and W-phase output lines connecting the inverter circuit and the load is connected to a star-connected resistive load.
  • the ground fault is detected by inputting the neutral point output of the resistive load connected in a star to the decision unit, and the operation of the gate drive circuit that drives the inverter circuit is limited by the protection circuit by detecting this ground fault. It is a thing.
  • the output portion of each of the U-phase, V-phase, and W-phase current sensors is connected to a star-connected resistance load, and the neutral point output of the star-connected resistance load is input to the determination device. Therefore, it is possible to reliably cause a ground fault phenomenon, and since a current is supplied from a current sensor to a resistive load, it can be configured as a weak electric circuit, so that it is not necessary to consider the countermeasure for high breakdown voltage in the ground fault detection device. is there.
  • FIG. 1 shows a circuit diagram of a three-phase induction motor drive device for a hybrid vehicle as an example of a power conversion device.
  • the three-phase induction motor drive device for a hybrid vehicle includes a DC power supply 101, a smoothing capacitor 102, an inverter circuit.
  • a smoothing capacitor 102 is connected in parallel with the DC power source 101, and the gate drive unit 106 switches the inverter circuit unit 103 according to a control signal of the motor drive control unit 105 to convert the DC voltage into an AC voltage. Drive control of the three-phase induction motor 104 is performed.
  • the motor drive control unit 105 is interposed between at least the motor control microcomputer 110 and the motor control microcomputer 110 and the gate drive unit 106 that drives the inverter circuit unit 103, and restricts the operation of the gate drive unit 106.
  • the protection logic circuit 108 and the ground fault detection unit 109 are provided.
  • the ground fault detection unit 109 receives an output from a current sensor 107 provided on an output line 111 that supplies an AC output from the inverter circuit unit 103 to the three-phase induction motor 104.
  • the output of the current sensor 107 is also input to the motor control microcomputer 110 and used for phase angle control of the inverter circuit unit 103 and the like.
  • the current sensor 107 does not directly measure the current flowing through the output line 111, but converts the magnetic field generated in proportion to the current into a weak electric system voltage by the Hall element to indirectly detect the current.
  • the current sensor 107 is a voltage output and is used by the motor control microcomputer 110.
  • the output of the current sensor 107 can be directly input to the motor control microcomputer 110.
  • the output of the current sensor 107 is taken in at a predetermined sample timing by the motor control microcomputer 110 and is used after being A / D converted.
  • Current sensors 107 are provided in accordance with the number of output lines 111. Actually, since the output line 111 has U-phase, V-phase, and W-phase, the current sensor 107 also supplies U-phase, V-phase, and W-phase current. Three are provided to detect.
  • the U-phase, V-phase, and W-phase currents are supplied to the star-connected resistance loads 112, 113, 114 of the ground fault detection unit 109. That is, the U-phase current is supplied to the resistance load 112, the V-phase current is supplied to the resistance load 113, and the W-phase current is supplied to the resistance load 114.
  • each resistance load 112, 113, 114 is set to the same resistance value.
  • the output of the neutral point 115 of the resistance load that is star-connected is input to the determiner 116, and the ground fault phenomenon is determined.
  • a voltage is used for the output of the neutral point 115, but it may be converted into a current and used. In the following description, the voltage at the neutral point 115 is used.
  • the inverter circuit unit 103 receives a DC voltage from the DC power source 101, performs PWM (pulse modulation: Pulse Width Modulation) control according to a signal from the motor drive control unit 105, and converts the DC voltage into an arbitrary three-phase AC. Have.
  • PWM pulse modulation: Pulse Width Modulation
  • This inverter circuit unit 103 is configured by switching elements 3a to 3f made of semiconductors by a three-phase full bridge connection.
  • switching element of this embodiment an element on which an IGBT and a reflux diode are mounted is used.
  • the current of each phase of the U phase, V phase and W phase flowing between the inverter circuit unit 103 and the three-phase induction motor 104 is converted into a voltage used in the weak electric system by the current sensor 107, and the motor drive control unit 105 It is input to the motor control microcomputer 110 and also input to the ground fault detection unit 109.
  • the ground fault detection unit 109 is driven by a 5 V power source.
  • the neutral point 115 of the star connection is obtained.
  • the neutral point potential is normally stabilized at a predetermined constant value.
  • the current sensor 107 is a current-voltage conversion ratio of 500 A / V
  • the current measurement range is -1000 A to +1000 A
  • the output voltage is ⁇ 2 V centered on 2.5 V
  • the neutral point potential is about 2.5 V It stabilizes at.
  • the resistance values of the resistance loads 112, 113, and 114 are set to 10 k ⁇ in consideration of the power supply short circuit failure of the output of the current sensor 107. Then, this neutral point 115 is connected to an upper threshold value determiner 201 and a lower threshold value determiner 202 that constitute the determiner 16 as shown in FIG.
  • the + side input terminal voltage of the comparator 203 constituting the upper threshold value judgment unit 201 is determined by the voltage dividing resistance of the resistor 203 and the resistor 204. For example, if the resistor 203 is 2 k ⁇ and the resistor 204 is 3 k ⁇ , the + side input terminal voltage of the comparator 205 is 3V. This + side input terminal voltage is a comparison reference voltage and also serves as an upper threshold.
  • the potential of the neutral point 115 is stable at about 2.5V. For this reason, since the neutral point potential is lower than 3V which is the + side input terminal voltage, the output of the comparator 205 becomes high impedance, 5V is input to the transistor 206 at the final stage, and the ground fault detection signal becomes OFF. Not output.
  • the output is inverted to the low level because it is higher than 3V which is the + side input terminal voltage of the comparator 205. . Therefore, the transistor 206 at the final stage is turned on and a 5V ground fault detection signal is output.
  • the + side input terminal voltage of the comparator 205 changes depending on the resistance values of the resistors 204 and 207, the forward voltage drop of the diode 208, and the low level output voltage of the comparator 205. To do. For example, if the resistance 207 is 13 k ⁇ , the forward voltage drop of the diode 208 is 0.5 V, and the low level output voltage of the comparator 205 is 0.2 V, the + side input terminal voltage is about 2.8 V. As a result, hysteresis can be given to the + side input terminal voltage, and chattering can be prevented even if the potential of the neutral point 115 fluctuates.
  • the negative side input terminal voltage of the comparator 209 constituting the lower threshold value judgment unit 202 is determined by the voltage dividing resistance of the resistor 210 and the resistor 211. For example, if the resistor 2106 is 3 k ⁇ and the resistor 211 is 2 k ⁇ , the negative input terminal voltage of the comparator 209 is 2V.
  • the negative side input terminal voltage is a comparison reference voltage and is a lower threshold value.
  • the potential at the neutral point 115 is stable at about 2.5 V, and thus becomes higher than the negative input terminal voltage of 2 V, and the output of the comparator 209 is high. Impedance.
  • the output of the comparator 209 is high impedance, the transistor 206 at the final stage is turned off and no ground fault detection signal is output.
  • the negative side input terminal voltage of the comparator 209 of the lower threshold determination unit 202 is determined by the resistance values of the resistors 211 and 212 and the collector-emitter voltage Vce of the transistor 213. .
  • the resistor 212 is 13 k ⁇ and Vce is 0.3 V
  • the negative input terminal voltage is about 2.2 V.
  • the resistors connected to the transistors 206 and 213 are adjustment resistors.
  • the resistance of the star-connected resistance load can be reduced.
  • Each threshold can be provided with hysteresis without changing the potential of the neutral point 115.
  • the current of each phase of the U phase, V phase and W phase is detected by a current sensor, and the voltage at the neutral point is detected by applying a voltage proportional to the current of each phase to the star-connected resistance load.
  • a determination device preferably a comparator having an upper threshold value and a lower threshold value, it becomes possible to always detect a ground fault state, and to connect the inverter circuit unit and the three-phase induction motor.
  • the current flowing in the output line to be connected is converted to a voltage that can be used in a weak electric system and applied to a star-connected resistive load, and the neutral point potential obtained by this is determined by a determiner.
  • FIG. 3 shows an embodiment of the protection logic circuit 108 provided in the motor drive control unit 105 when the protection operation of the three-phase open control is performed when the ground fault phenomenon is detected.
  • FIG. 4 shows an embodiment of the protection logic circuit 108 provided in the motor drive control unit 105 when the protection operation of the three-phase short control is performed when a ground fault is detected.
  • the inverter circuit unit 103 is normally controlled by a motor control microcomputer 110 provided in the motor drive control unit 105.
  • the motor control microcomputer 110 functions to perform PWM control by calculating an appropriate switching time of the semiconductor switching element of the inverter circuit unit 103 in order to give an arbitrary torque and rotation speed to the three-phase induction motor.
  • the first buffer 301 and the second buffer 303 constituting the protection logic circuit 108, and the first buffer 301 arranged between them.
  • Three buffers 302a and a fourth buffer 302b are provided.
  • buffers 301, 302 a, 302 b, and 303 function as a blocking function unit that transmits a control signal from the motor control microcomputer 110 to the gate drive unit 106 and blocks transmission of the control signal in the event of an abnormality.
  • Buffers 301 and 303 are provided on all the switching control signal lines of the semiconductor switching elements 3a to 3f constituting the upper and lower arms.
  • the buffer 302a is provided on the switching control signal line of the semiconductor switching elements 3a, 3b, and 3c constituting the upper arm
  • the buffer 302b is on the switching control signal line of the semiconductor switching elements 3d, 3e, and 3f constituting the lower arm. Is provided.
  • Switching control signals for controlling the semiconductor switching elements 3a to 3f output from the motor control microcomputer 110 are input to the gate driving unit 106 through these buffers 301, 302a, 302b, and 303.
  • Buffers 301, 302a, 302b, and 303 are three-state buffers, and a three-phase open signal, a three-phase short signal, or the like is input as a control signal (hereinafter referred to as a trigger signal) that changes the state of each buffer.
  • the trigger signal is not input, and the buffers 301, 302a, 302b, and 303 are in a conductive state, and each semiconductor switching output from the motor control microcomputer 110 is performed.
  • a switching control signal for controlling the elements 3a to 3f passes through the buffers 301, 302a, 302b, and 303 and is output as it is and is transmitted to the gate drive circuit 106.
  • each of the buffers 301, 302a, 302b, and 303 is inverted to a cutoff state (high impedance state).
  • the buffer 301 is cut off, the output side of the buffer 301 (that is, the input side of the buffers 302a and 302b) is pulled up to the high state.
  • the output side of the buffers 302a and 302b (that is, the input side of the buffer 303) is pulled down to the low state.
  • the output side of the buffer 303 that is, the input side of the gate driving unit 109
  • the photocoupler in the gate driving unit 106 becomes non-conductive, so that the switching elements 3a to 3f It becomes OFF.
  • the gate driving unit 106 When the Low signal is input, the gate driving unit 106 turns on the semiconductor switching element (conducting state), and conversely, when the High signal is input, the gate driving unit 106 turns off the semiconductor switching element.
  • Gate operation by performing an open operation or a 3-phase short (upper arm 3-phase short, lower arm 3-phase short) operation in which only the upper arms 3a to 3c or the lower arms (3d to 3f) are turned on and the others are turned off The operation of the drive unit 106 is limited.
  • the three-phase open operation is executed by a three-phase open signal such as the ground fault detection signal 306, the overcurrent detection signal 307, or the overvoltage detection signal 308 detected in the embodiment shown in FIG.
  • the trigger signal for the open operation is input to the buffer 301 via the timer circuit 305.
  • the buffer 301 When the trigger signal is input to the buffer 301 via the timer circuit 305, the buffer 301 is cut off as described above, and the output side of the buffer 301 is in a high state.
  • the buffer 301 is cut off and the buffers 302a, 302b, and 303 are in a conductive state, so that a high signal is input to the gate driving unit 106 for all the semiconductor switching elements 3a to 3f of the upper and lower arms.
  • the semiconductor switching element when a high signal is input to the gate driving unit 106, the semiconductor switching element is turned off (shut off), and when a low signal is input, the semiconductor switching element is turned on (conductive state).
  • a trigger signal 309 for performing either or both of the upper arm three-phase short operation and the lower arm three-phase short operation can be output from a host microcomputer such as a unit, and the overvoltage detection signal 308 and the ground fault detection signal in FIG.
  • Reference numeral 306 denotes a trigger signal for performing a lower arm three-phase short operation.
  • the buffer 301 receives a trigger signal 309 from the host microcomputer, and the buffers 302a and 302b have a trigger signal 309, an overvoltage signal 308, A ground fault signal 306 is input.
  • the timing chart in the case of the upper arm three-phase short circuit is the same as that in the case of the lower arm three-phase short circuit shown in FIG.
  • a three-phase short signal (lower arm three-phase short) from a host microcomputer or the like is input to a buffer 301 and a three-phase short drive signal control logic 304.
  • the output of the buffer 301 is cut off, and as a result, the input side of the buffer 302a and the buffer 302b provided in the subsequent stage of the buffer 301 is pulled up to a high state.
  • the semiconductor switching element when the low signal is input to the gate driving unit 106, the semiconductor switching element is turned on, and when the high signal is input, the semiconductor switching element is turned off.
  • the input side of the buffers 302a and 302b (the output side of the buffer 301) is in a high state. Since the High signal passes through the buffer 303 and is directly input to the gate driving unit 109, the semiconductor switching elements 3a to 3f are turned off. This produces an output as shown in “Output Buffer 301” in FIG.
  • the three-phase short drive signal control logic 304 when a three-phase short signal is input to the three-phase short drive signal control logic 304, the three-phase short drive signal control logic 304 performs a delay operation and is delayed by a predetermined delay time ⁇ t1 from the output cutoff of the buffer 301.
  • the upper arm 3-phase short signal in the case of an upper arm 3-phase short operation
  • the lower arm 3-phase short signal in the case of a lower arm 3-phase short operation
  • FIG. 5 shows the case of a three-phase short in the lower arm, so the output of the buffer 302b is delayed by a predetermined delay time ⁇ t1 from the output cut off of the buffer 301. Blocked.
  • the semiconductor switching elements 3d to 3f when entering the three-phase short operation, first, the three-phase open operation for turning off all the semiconductor switching elements 3a to 3f is performed, and then the semiconductor switching elements 3a to 3c are performed. Alternatively, the semiconductor switching elements 3d to 3f are turned on. (In FIG. 5, the semiconductor switching elements 3d to 3f operate so as to be turned on.) When the three-phase short signal disappears, as shown in “buffer 302b output” in FIG. 5, the buffer 302b (buffer 302a in the case of the upper-arm three-phase short operation) immediately returns to the active state. At this time, since the output side of the buffer 301 is High, the semiconductor switching elements 3d to 3f are turned OFF and switched to the three-phase open state.
  • the three-phase open state is set and then the operation returns to the normal PWM control.
  • the upper and lower arm semiconductor switching elements can be prevented from being short-circuited during the three-phase short-circuit control, and the structure is highly safe. .
  • the dead time value guaranteed by the inverter circuit unit 103 is 5 ⁇ s
  • the three-phase open periods ( ⁇ t1, ⁇ t2) before and after the three-phase short period are at least 5 ⁇ s, so Occurrence can be reliably prevented.
  • the cost can be reduced compared to a configuration using a microcomputer and software.
  • the protection operation can be performed while ensuring a sufficient dead time, leading to an improvement in safety.
  • FIG. 6 is a diagram showing a detailed circuit of the three-phase short drive signal control logic 304.
  • the above-described dead time ⁇ t1 is generated by the circuit 602 and the circuit 603 in FIG.
  • the design constants of the resistors and capacitors provided in the circuits 602 and 603 can be adjusted.
  • control signals from the host microcomputer include the upper arm three-phase short signal for blocking the output of the buffer 302a and the lower arm three-phase short signal for blocking the output of the buffer 302b.
  • the motor drive control unit 105 sets a priority between the upper arm three-phase short signal and the lower arm three-phase short signal by using a three-phase short drive signal control logic 304 as shown in FIG. The upper and lower short circuit is not caused.
  • FIG. 6 a case is considered in which an upper arm three-phase short signal and a lower arm three-phase short signal are simultaneously input from the host microcomputer.
  • the output of the buffer 301 is shut off. For this reason, the upper arm three-phase short signal is not output, and upper and lower short circuits are prevented.
  • the priority of the upper and lower arms can be selected by switching the signal input. Further, an overvoltage detection signal and a ground fault detection signal are also input to the three-phase short drive signal control logic 304, so that a three-phase short signal, an overvoltage detection signal and a ground fault detection signal are simultaneously generated by the host microcomputer. Prevention becomes possible.
  • an alternating current is output from the inverter circuit unit 103 to the three-phase induction motor 104.
  • the output voltage of the current sensor 107 is a sine wave centered at 2.5V. Since the output current from the inverter to the three-phase induction motor is shifted by 120 degrees in the U phase, V phase, and W phase, the output voltage of the current sensor 107 in the U phase, V phase, and W phase is also shifted by 120 degrees. Yes.
  • the neutral point potential of the star connection is stabilized at about 2.5V.
  • the threshold value of the determiner 201 is 3V and the threshold value of the determiner 202 is 2V, the ground fault detection signal is not output, and the buffers 301, 302a, 302b, and 303 of the protection logic circuit 108 are in a conductive state.
  • the PWM signal from the motor control microcomputer 110 is sent to the gate drive unit 106 as it is to drive the three-phase induction motor 104 normally.
  • the output current from the inverter circuit unit 103 leaks from the ground fault point and is disturbed.
  • the output voltage of the current sensor 107 is also disturbed from the sine wave, and the potential of the neutral point 115 of the resistance load star-connected to the current sensor 107 varies from 2.5V.
  • the potential of the fluctuating neutral point 115 exceeds 3V, which is the upper threshold value of the determiner 201, or falls below 2V, which is the lower threshold value of the determiner 202, a ground fault detection signal is output.
  • the protection logic circuit 108 When a ground fault phenomenon is detected by such a ground fault detection device 109, the protection logic circuit 108 performs the following operation.
  • the ground fault detection signal 306 is input to the buffer 301 via the timer circuit 305 of the protection logic circuit 108 as shown in FIG.
  • the operation when the three phases are open is as described above, and all the switching elements 3a to 3f are turned off. In the three-phase open state, all of the switching elements 3a to 3f are turned off, so that no current is supplied to the three-phase induction motor 104 and no ground fault current flows.
  • the ground fault detection signal 306 is input to both the buffer 301 and the three-phase short drive signal control logic 304 via the timer circuit 305 of the protection logic circuit 108. Is done.
  • the operation at the time of three-phase short is as described above.
  • the upper arm three-phase short state in which switching elements 3a to 3c are turned on and the rest is turned off, or the lower arm three phases in which switching elements 3d to 3f are turned on and the rest are turned off. Short circuit.
  • the switching elements 3a to 3c or the switching elements 3d to 3f are turned on and the other switching elements are turned off, so that a current flows between the three-phase induction motor 104 and the switching element in the ON state. It is possible to recirculate, and it is possible to prevent inflow of current via the freewheeling diode.
  • the current sensor 107 of this embodiment uses a current sensor that is insulated by a Hall element, and is thereby insulated from the voltage of the DC power supply 101. Therefore, a ground fault detection unit is used with a weak power system (5V, etc.) power supply. 109 can be configured, and the size and cost can be reduced.
  • the resistors 112, 113, and 114 of the ground fault detection unit 109 are configured by network resistors, the relative error of the resistance values of the resistors 112, 113, and 114 can be reduced to reduce the resistance of the star-connected resistance load. Variation in the potential of the neutral point 115 can be suppressed, and the ground fault phenomenon can be detected with higher accuracy.
  • the ground drive detection unit 109 and the protection logic circuit 108 that performs the protection operation may be built in the gate drive unit 106.
  • the gate since the output of the current sensor 107 is input to the conductive motive drive control unit 105, the gate There is a need to increase the number of signal lines for sending signals from the current sensor 107 to the drive unit 106.
  • the gate drive unit 106 since the gate drive unit 106 is not a weak power source, it is necessary to increase the withstand voltage, and the circuit configuration is expensive. Therefore, it is not preferable.
  • the protection logic circuit 108 can be prevented from malfunctioning.
  • ground fault phenomenon of alternating current has been performed by microcomputer software processing based on the current sensor information, so depending on the abnormality of the microcomputer and the sampling timing for reading the current sensor information, the ground fault phenomenon may be detected.
  • the grounding phenomenon occurs because the operation time from the occurrence of an undetectable situation or the occurrence of an alternating current ground fault to the protection operation by the protection circuit depends on the processing speed of the microcomputer and the start cycle of the processing task. There is a problem that a situation occurs in which the protection operation against the time is not in time.
  • the output part of the current sensor that detects the current value of the alternating current flowing through the U-phase, V-phase, and W-phase output lines connecting between the inverter circuit part and the load such as the electric motor is provided.
  • Connect to a star-connected resistive load and input the neutral point output of the star-connected resistive load to the determiner to detect the ground fault phenomenon.
  • the gate drive circuit that drives the inverter circuit Since the protection logic circuit that restricts the operation is operated, it is possible to reliably cause a ground fault phenomenon and to supply a current from the current sensor to the resistive load. This makes it unnecessary to consider the countermeasures for increasing the breakdown voltage.

Abstract

Alternating-current grounding detection has been carried out by means of microcomputer software processing from the output of current sensors, but there have been situations in which it has not been possible to detect grounding due to an abnormality of a microcomputer or due to the sampling timing of a current sensor. By connecting output units of U-phase, V-phase, and W-phase current sensors to a star-connected resistance load, and inputting a neutral-point output of the star-connected resistance load to a determination unit, grounding can be reliably carried out, and furthermore, because current is supplied to the resistance load from the current sensors, a weak electrical circuit configuration can be implemented and handling increases in withstand voltage does not have to be taken into account.

Description

電力変換装置Power converter
 本発明は半導体スイッチング素子を用いた電力変換装置に係り、特に地絡現象を検出する新規な交流電流の地絡検出装置を備えた電力変換装置に関するものである。 The present invention relates to a power converter using a semiconductor switching element, and more particularly to a power converter provided with a novel AC current ground fault detector for detecting a ground fault phenomenon.
 半導体スイッチング素子を備えたインバータ回路により電力変換を行い、その電力を三相誘導電動機のような負荷に供給する電力変換装置においては、種々の異常検出装置が備えられている。例えば、過電流検出装置や過電圧検出装置、及び地絡検出装置等がその代表的なものである。 In a power conversion device that performs power conversion by an inverter circuit including a semiconductor switching element and supplies the power to a load such as a three-phase induction motor, various abnormality detection devices are provided. For example, an overcurrent detection device, an overvoltage detection device, a ground fault detection device, and the like are typical ones.
 ここで、本発明が対象とするのは交流電流の地絡現象(以下では単に地絡現象という)を検出する地絡検出装置であって、一般にはインバータ回路部と三相誘導電動機の間を流れる交流電流を検出する電流センサの信号をマイクロコンピュータによって所定の周期でサンプリングしてその変化度合を監視して地絡現象を検出していた。 Here, the present invention is directed to a ground fault detection device for detecting an AC current ground fault phenomenon (hereinafter simply referred to as a ground fault phenomenon), and generally between an inverter circuit unit and a three-phase induction motor. The signal of the current sensor for detecting the flowing alternating current is sampled by a microcomputer at a predetermined cycle, and the change degree is monitored to detect the ground fault phenomenon.
 また、この他に三相誘導電動機の二次側の異常を検出するものとして、特開2006-141108号公報(特許文献1)にあるように、三相誘導電動機の二次側のそれぞれの相に対して抵抗をスター接続し、この中性点の電流或いは電圧を検出して地絡現象を検出するものが知られている。 In addition to this, as a detection of an abnormality on the secondary side of the three-phase induction motor, as disclosed in Japanese Patent Laid-Open No. 2006-141108 (Patent Document 1), each phase on the secondary side of the three-phase induction motor is disclosed. It is known to detect the ground fault phenomenon by connecting a resistor to the star and detecting the current or voltage at this neutral point.
特開2006-141108号公報JP 2006-141108 A
 上述したように、従来の交流電流の地絡現象の検出は電流センサの情報を元にマイクロコンピュータのソフトウエア処理により行っていた。しかしながら、マイクロコンピュータの異常や電流センサの情報を読み取るサンプリングのタイミングによっては地絡現象を検出できない状況が発生する。 As described above, the detection of the ground fault phenomenon of the conventional alternating current was performed by the software processing of the microcomputer based on the information of the current sensor. However, a situation in which the ground fault phenomenon cannot be detected occurs depending on the abnormality of the microcomputer and the sampling timing for reading the information of the current sensor.
 更に、地絡現象が発生してから保護回路による保護動作へ移るまでの動作時間がマイクロコンピュータの処理速度や処理タスクの起動周期に依存しているので地絡現象に対する保護動作が間に合わない状況も発生することが懸念される。 Furthermore, since the operation time from the occurrence of the ground fault phenomenon to the protection operation by the protection circuit depends on the processing speed of the microcomputer and the start cycle of the processing task, there are situations where the protection operation against the ground fault phenomenon is not in time. There are concerns about the occurrence.
 また、特許文献1に記載の技術では三相誘導電動機の負荷側に地絡検出回路を設けているが、各相の抵抗を負荷側と直接的に接続するので検出回路の高耐圧化が要求され、このため地絡検出回路が大型、高コスト化するという課題があった。 Further, in the technique described in Patent Document 1, a ground fault detection circuit is provided on the load side of the three-phase induction motor. However, since the resistance of each phase is directly connected to the load side, a high breakdown voltage of the detection circuit is required. Therefore, there has been a problem that the ground fault detection circuit is large and expensive.
 本発明の目的は、確実に交流電流の地絡現象の発生を検出できると共に、高耐圧化を必要としない地絡検出装置を備えた電力変換装置を提供することにある。 An object of the present invention is to provide a power conversion device including a ground fault detection device that can reliably detect the occurrence of a ground fault phenomenon of an alternating current and does not require a high breakdown voltage.
 本発明の特徴は、インバータ回路と負荷の間を結ぶU相、V相及びW相の各出力線を流れる交流電流の電流値を検出する電流センサの出力部をスター結線した抵抗負荷に接続し、スター結線した抵抗負荷の中性点の出力を判定器に入力して地絡現象を検出し、この地絡現象の検出によってインバータ回路を駆動するゲート駆動回路の動作を保護回路によって制限するようにしたものである。 The feature of the present invention is that the output part of the current sensor that detects the current value of the alternating current flowing through the U-phase, V-phase, and W-phase output lines connecting the inverter circuit and the load is connected to a star-connected resistive load. The ground fault is detected by inputting the neutral point output of the resistive load connected in a star to the decision unit, and the operation of the gate drive circuit that drives the inverter circuit is limited by the protection circuit by detecting this ground fault. It is a thing.
 本発明によれば、U相、V相及びW相の各電流センサの出力部をスター結線した抵抗負荷に接続し、スター結線した抵抗負荷の中性点出力を判定器に入力する構成としたので確実に地絡現象をすることができ、しかも電流センサから抵抗負荷に電流を供給するので弱電系の回路として構成できるので地絡検出装置に高耐圧化の対応を考慮しなくてよくなるものである。 According to the present invention, the output portion of each of the U-phase, V-phase, and W-phase current sensors is connected to a star-connected resistance load, and the neutral point output of the star-connected resistance load is input to the determination device. Therefore, it is possible to reliably cause a ground fault phenomenon, and since a current is supplied from a current sensor to a resistive load, it can be configured as a weak electric circuit, so that it is not necessary to consider the countermeasure for high breakdown voltage in the ground fault detection device. is there.
本発明の一実施例になる地絡検出装置を備えた電力変換装置の構成を示す構成図である。It is a block diagram which shows the structure of the power converter device provided with the ground fault detection apparatus which becomes one Example of this invention. 本発明の一実施例になる地絡検出装置の回路図である。It is a circuit diagram of the ground fault detection apparatus which becomes one Example of this invention. 電力変換装置の保護回路を説明するための回路図である。It is a circuit diagram for demonstrating the protection circuit of a power converter device. 電力変換装置の保護回路を説明するための回路図である。It is a circuit diagram for demonstrating the protection circuit of a power converter device. 保護回路の出力とゲート信号の関係を示すチャート図である。It is a chart figure showing the relation between the output of a protection circuit, and a gate signal. 3相ショート駆動信号制御ロジックの回路図である。It is a circuit diagram of a three-phase short drive signal control logic.
 図1は電力変換装置の一例としてのハイブリッド自動車用の三相誘導電動機駆動装置の回路図を示しており、このハイブリッド自動車用の三相誘導電動機駆動装置は直流電源101、平滑コンデンサ102、インバータ回路部103、三相誘導電動機104、電動機駆動制御部105、ゲート駆動部106等より構成されている。 FIG. 1 shows a circuit diagram of a three-phase induction motor drive device for a hybrid vehicle as an example of a power conversion device. The three-phase induction motor drive device for a hybrid vehicle includes a DC power supply 101, a smoothing capacitor 102, an inverter circuit. The unit 103, the three-phase induction motor 104, the motor drive control unit 105, the gate drive unit 106, and the like.
 そして、直流電源101と並列に平滑コンデンサ102が接続されており、直流電圧を電動機駆動制御部105の制御信号に応じてゲート駆動部106がインバータ回路部103をスイッチングして交流電圧に変換し、三相誘導電動機104を駆動制御するものである。 A smoothing capacitor 102 is connected in parallel with the DC power source 101, and the gate drive unit 106 switches the inverter circuit unit 103 according to a control signal of the motor drive control unit 105 to convert the DC voltage into an AC voltage. Drive control of the three-phase induction motor 104 is performed.
 電動機駆動制御部105は少なくとも電動機制御用マイクロコンピュータ110と、この電動機制御用マイクロコンピュータ110とインバータ回路部103を駆動するゲート駆動部106との間に介装され、ゲート駆動部106の動作を制限する保護ロジック回路108及び地絡検出部109を備えている。 The motor drive control unit 105 is interposed between at least the motor control microcomputer 110 and the motor control microcomputer 110 and the gate drive unit 106 that drives the inverter circuit unit 103, and restricts the operation of the gate drive unit 106. The protection logic circuit 108 and the ground fault detection unit 109 are provided.
 地絡検出部109はインバータ回路部103から三相誘導電動機104に交流出力を供給する出力線111に設けられた電流センサ107からの出力が入力されている。 The ground fault detection unit 109 receives an output from a current sensor 107 provided on an output line 111 that supplies an AC output from the inverter circuit unit 103 to the three-phase induction motor 104.
 この電流センサ107の出力は電動機制御用マイクロコンピュータ110にも入力されており、インバータ回路部103の位相角制御等に利用されている。 The output of the current sensor 107 is also input to the motor control microcomputer 110 and used for phase angle control of the inverter circuit unit 103 and the like.
 電流センサ107は出力線111に流れる電流を直接測定するのではなく、電流に比例して発生する磁界をホール素子によって弱電系の電圧に変換し、間接的に電流検出をしている。尚、電流センサ107は電圧出力であり、電動機制御用マイクロコンピュータ110で利用される。 The current sensor 107 does not directly measure the current flowing through the output line 111, but converts the magnetic field generated in proportion to the current into a weak electric system voltage by the Hall element to indirectly detect the current. The current sensor 107 is a voltage output and is used by the motor control microcomputer 110.
 したがって、電流センサ107の出力は電動機制御用マイクロコンピュータ110にも直接的に入力が可能である。この場合には、電動機制御用マイクロコンピュータ110によって所定のサンプルタイミングで電流センサ107の出力が取り込まれ、A/D変換されて使用されるものである。 Therefore, the output of the current sensor 107 can be directly input to the motor control microcomputer 110. In this case, the output of the current sensor 107 is taken in at a predetermined sample timing by the motor control microcomputer 110 and is used after being A / D converted.
 電流センサ107は出力線111の数に応じて設けられており、実際には出力線111はU相、V相及びW相があるので電流センサ107もU相、V相及びW相の電流を検出するように3個設けられている。 Current sensors 107 are provided in accordance with the number of output lines 111. Actually, since the output line 111 has U-phase, V-phase, and W-phase, the current sensor 107 also supplies U-phase, V-phase, and W-phase current. Three are provided to detect.
 そして、U相、V相及びW相の電流は地絡検出部109のスター結線された抵抗負荷112、113、114に供給されるように構成されている。つまり、U相の電流は抵抗負荷112に与えられ、V相の電流は抵抗負荷113に与えられ、W相の電流は抵抗負荷114に与えられるものである。ここで、各抵抗負荷112、113、114は同じ抵抗値に設定されている。そして、スター結線された抵抗負荷の中性点115の出力は判定器116に入力されて地絡現象が判定されるものである。ここで、中性点115の出力は電圧を使用しているが、この他に電流に変換して使用するようにしても良い。以下の説明においては中性点115の電圧を利用するようにしている。 The U-phase, V-phase, and W-phase currents are supplied to the star-connected resistance loads 112, 113, 114 of the ground fault detection unit 109. That is, the U-phase current is supplied to the resistance load 112, the V-phase current is supplied to the resistance load 113, and the W-phase current is supplied to the resistance load 114. Here, each resistance load 112, 113, 114 is set to the same resistance value. Then, the output of the neutral point 115 of the resistance load that is star-connected is input to the determiner 116, and the ground fault phenomenon is determined. Here, a voltage is used for the output of the neutral point 115, but it may be converted into a current and used. In the following description, the voltage at the neutral point 115 is used.
 インバータ回路部103は直流電源101からの直流電圧が入力され、電動機駆動制御部105の信号に従いPWM(パルス変調:Pulse Width Modulation)制御を行い、直流電圧を任意の3相交流に変換する機能を有している。 The inverter circuit unit 103 receives a DC voltage from the DC power source 101, performs PWM (pulse modulation: Pulse Width Modulation) control according to a signal from the motor drive control unit 105, and converts the DC voltage into an arbitrary three-phase AC. Have.
 このインバータ回路部103は半導体によるスイッチング素子3a~3fを3相フルブリッジ接続で構成している。本実施形態のスイッチング素子にはIGBTと還流用ダイオードが搭載されたものを用いている。 This inverter circuit unit 103 is configured by switching elements 3a to 3f made of semiconductors by a three-phase full bridge connection. As the switching element of this embodiment, an element on which an IGBT and a reflux diode are mounted is used.
 インバータ回路部103と三相誘導電動機104の間に流れるU相、V相及びW相の各相の電流は、電流センサ107によって弱電系で使用される電圧に変換されて電動機駆動制御部105の電動機制御マイクロコンピュータ110に入力され、また、地絡検出部109へ入力される。 The current of each phase of the U phase, V phase and W phase flowing between the inverter circuit unit 103 and the three-phase induction motor 104 is converted into a voltage used in the weak electric system by the current sensor 107, and the motor drive control unit 105 It is input to the motor control microcomputer 110 and also input to the ground fault detection unit 109.
 次に地絡検出部109の具体的な回路構成について図2を用いて説明する。この地絡検出部109は5V電源で駆動されるものであり、U相、V相及びW相の各電流センサ107の出力をスター結線した同一抵抗負荷につなぐと、スター結線の中性点115の中性点電位は通常では所定の一定値で安定する。 Next, a specific circuit configuration of the ground fault detection unit 109 will be described with reference to FIG. The ground fault detection unit 109 is driven by a 5 V power source. When the outputs of the U-phase, V-phase, and W-phase current sensors 107 are connected to the same resistance load that is star-connected, the neutral point 115 of the star connection is obtained. The neutral point potential is normally stabilized at a predetermined constant value.
 例えば、電流センサ107の仕様が500A/Vの電流電圧変換比で、電流測定範囲が-1000A~+1000A、出力電圧が2.5Vを中心に±2Vとすると、中性点電位は約2.5Vで安定する。 For example, if the specification of the current sensor 107 is a current-voltage conversion ratio of 500 A / V, the current measurement range is -1000 A to +1000 A, and the output voltage is ± 2 V centered on 2.5 V, the neutral point potential is about 2.5 V It stabilizes at.
 本実施例では抵抗負荷112、113、114の抵抗値は電流センサ107の出力の電源ショート故障も考慮して10kΩとする。そして、この中性点115を図2のように判定器16を構成する上側閾値判定器201と下側閾値判定器202に接続する。 In this embodiment, the resistance values of the resistance loads 112, 113, and 114 are set to 10 kΩ in consideration of the power supply short circuit failure of the output of the current sensor 107. Then, this neutral point 115 is connected to an upper threshold value determiner 201 and a lower threshold value determiner 202 that constitute the determiner 16 as shown in FIG.
 上側閾値判定器201を構成する比較器203の+側入力端子電圧は抵抗203と抵抗204の分圧抵抗によって決まる。例えば抵抗203を2kΩ、抵抗204を3kΩとすると比較器205の+側入力端子電圧は3Vとなる。この+側入力端子電圧は比較基準電圧であり、また上側閾値となるものである。 The + side input terminal voltage of the comparator 203 constituting the upper threshold value judgment unit 201 is determined by the voltage dividing resistance of the resistor 203 and the resistor 204. For example, if the resistor 203 is 2 kΩ and the resistor 204 is 3 kΩ, the + side input terminal voltage of the comparator 205 is 3V. This + side input terminal voltage is a comparison reference voltage and also serves as an upper threshold.
 よって、三相誘導電動機を通常駆動している場合では中性点115の電位は約2.5Vで安定している。このため、中性点電位が+側入力端子電圧である3Vより低いので比較器205の出力はハイインピーダンスとなり、最終段のトランジスタ206には5Vが入力され、OFFとなって地絡検出信号は出力されない。 Therefore, when the three-phase induction motor is normally driven, the potential of the neutral point 115 is stable at about 2.5V. For this reason, since the neutral point potential is lower than 3V which is the + side input terminal voltage, the output of the comparator 205 becomes high impedance, 5V is input to the transistor 206 at the final stage, and the ground fault detection signal becomes OFF. Not output.
 一方、地絡事故の影響等によりスター結線された抵抗負荷の中性点115の電位が3Vを越えると、比較器205の+側入力端子電圧である3Vより高いので出力はLowレベルに反転する。したがって、最終段のトランジスタ206はONとなって5Vの地絡検出信号が出力されることになる。 On the other hand, if the potential of the neutral point 115 of the resistance load star-connected due to the influence of the ground fault exceeds 3V, the output is inverted to the low level because it is higher than 3V which is the + side input terminal voltage of the comparator 205. . Therefore, the transistor 206 at the final stage is turned on and a 5V ground fault detection signal is output.
 ここで、比較器205の出力がLowレベルとなると比較器205の+側入力端子電圧は抵抗204と抵抗207の抵抗値とダイオード208の順方向電圧降下、比較器205のLowレベル出力電圧によって変化する。例えば、抵抗207を13kΩ、ダイオード208の順方向電圧降下を0.5V、比較器205のLowレベル出力電圧が0.2Vだとすると、+側入力端子電圧は約2.8Vとなる。これにより+側入力端子電圧にヒステリシスを持たせることができ、中性点115の電位が変動してもチャタリングを防止できる。 Here, when the output of the comparator 205 becomes low level, the + side input terminal voltage of the comparator 205 changes depending on the resistance values of the resistors 204 and 207, the forward voltage drop of the diode 208, and the low level output voltage of the comparator 205. To do. For example, if the resistance 207 is 13 kΩ, the forward voltage drop of the diode 208 is 0.5 V, and the low level output voltage of the comparator 205 is 0.2 V, the + side input terminal voltage is about 2.8 V. As a result, hysteresis can be given to the + side input terminal voltage, and chattering can be prevented even if the potential of the neutral point 115 fluctuates.
 次に、下側閾値判定器202を構成する比較器209の-側入力端子電圧は抵抗210と抵抗211の分圧抵抗によって決まる。例えば、抵抗2106を3kΩ、抵抗211を2kΩとすると比較器209の-側入力端子電圧は2Vとなる。この-側入力端子電圧は比較基準電圧であり、また下側閾値となるものである。 Next, the negative side input terminal voltage of the comparator 209 constituting the lower threshold value judgment unit 202 is determined by the voltage dividing resistance of the resistor 210 and the resistor 211. For example, if the resistor 2106 is 3 kΩ and the resistor 211 is 2 kΩ, the negative input terminal voltage of the comparator 209 is 2V. The negative side input terminal voltage is a comparison reference voltage and is a lower threshold value.
 よって、三相誘導電動機を通常駆動している場合では中性点115の電位は約2.5Vで安定しているので-側入力端子電圧である2Vより高くなって比較器209の出力はハイインピーダンスとなる。比較器209の出力がハイインピーダンスであると最終段のトランジスタ206はOFFとなって地絡検出信号は出力されない。 Therefore, when the three-phase induction motor is normally driven, the potential at the neutral point 115 is stable at about 2.5 V, and thus becomes higher than the negative input terminal voltage of 2 V, and the output of the comparator 209 is high. Impedance. When the output of the comparator 209 is high impedance, the transistor 206 at the final stage is turned off and no ground fault detection signal is output.
 一方、地絡事故の影響等によりスター結線された抵抗負荷の中性点115の電位が2Vを下回ると比較器209の出力はLowレベルに反転する。したがって、最終段のトランジスタ206はONとなって5Vの地絡検出信号が出力されることになる。 On the other hand, when the potential of the neutral point 115 of the resistance load that is star-connected due to the influence of the ground fault or the like falls below 2V, the output of the comparator 209 is inverted to the low level. Therefore, the transistor 206 at the final stage is turned on and a 5V ground fault detection signal is output.
 比較器209の出力がLowレベルとなると下側閾値判定器202の比較器209の-側入力端子電圧は、抵抗211と抵抗212の抵抗値とトランジスタ213のコレクタ-エミッタ電圧Vceによって決まるようになる。 When the output of the comparator 209 becomes low level, the negative side input terminal voltage of the comparator 209 of the lower threshold determination unit 202 is determined by the resistance values of the resistors 211 and 212 and the collector-emitter voltage Vce of the transistor 213. .
 例えば、抵抗212が13kΩ、Vceが0.3Vだとすると-側入力端子電圧は約2.2Vとなる。これにより-側入力端子電圧にヒステリシスを持たせることができ、チャタリングを防止できる。尚、トランジスタ206とトランジスタ213に接続された抵抗は調整抵抗である。 For example, if the resistor 212 is 13 kΩ and Vce is 0.3 V, the negative input terminal voltage is about 2.2 V. Thereby, hysteresis can be given to the negative side input terminal voltage and chattering can be prevented. Note that the resistors connected to the transistors 206 and 213 are adjustment resistors.
 図2に示すように、上側閾値判定器201と下側閾値判定器202のフィードドバック系をスター結線された抵抗負荷の中性点115と無関係に構成することで、スター結線された抵抗負荷の中性点115の電位を変動させることなく各閾値にヒステリシスを持たせることができる。 As shown in FIG. 2, by configuring the feedback system of the upper threshold determination unit 201 and the lower threshold determination unit 202 independently of the neutral point 115 of the star-connected resistance load, the resistance of the star-connected resistance load can be reduced. Each threshold can be provided with hysteresis without changing the potential of the neutral point 115.
 以上の構成によって、高耐圧化を考慮せずに地絡現象の検出を精度良くおこなうことができる。すなわち、U相、V相及びW相の各相の電流を電流センサで検出し、この各相の電流に比例した電圧をスター結線された抵抗負荷に与えるようにして中性点の電位を検出し、この中性点電位を判定器、好ましくは上側閾値と下側閾値を有する比較器によって比較することで地絡状態を常に検出することが可能となり、またインバータ回路部と三相誘導電動機を結ぶ出力線に流れる電流を弱電系で使用できる電圧に変換してスター結線された抵抗負荷に与え、これによって得られた中性点の電位を判定器で判定するので上記した高耐圧化を考慮せずに地絡現象の検出を精度良くおこなうことができるという効果を奏することができるものである。これによって、マイクロコンピュータのソフトウエア処理により行っていた地絡検出方法で生じていた、マイクロコンピュータの異常や電流センサの情報を読み取るサンプリングのタイミングによっては地絡を検出できない状況が発生したり、地絡現象が発生してから保護回路による保護動作へ移るまでの動作時間がマイクロコンピュータの処理速度や処理タスクの起動周期に依存しているので地絡現象に対する保護動作が間に合わない状況が発生したりするといった課題を解決できるものである。 With the above configuration, it is possible to accurately detect the ground fault phenomenon without considering high breakdown voltage. That is, the current of each phase of the U phase, V phase and W phase is detected by a current sensor, and the voltage at the neutral point is detected by applying a voltage proportional to the current of each phase to the star-connected resistance load. By comparing this neutral point potential with a determination device, preferably a comparator having an upper threshold value and a lower threshold value, it becomes possible to always detect a ground fault state, and to connect the inverter circuit unit and the three-phase induction motor. The current flowing in the output line to be connected is converted to a voltage that can be used in a weak electric system and applied to a star-connected resistive load, and the neutral point potential obtained by this is determined by a determiner. Thus, it is possible to achieve the effect that the detection of the ground fault phenomenon can be performed with high accuracy. As a result, a ground fault cannot be detected depending on the timing of the sampling that reads the information of the microcomputer abnormality or current sensor, which has occurred in the ground fault detection method performed by the microcomputer software processing. Since the operation time from the occurrence of the fault phenomenon to the protection operation by the protection circuit depends on the processing speed of the microcomputer and the start cycle of the processing task, there may be situations where the protective action against the ground fault phenomenon is not in time. It can solve the problem of doing.
 また、三相誘導電動機の負荷側に地絡検出回路を設けているものでは、各相の抵抗を負荷側と直接接続するので検出回路の高耐圧化が要求され、このため地絡検出回路が大型、高コスト化する、という課題についても解決できるものである。 In addition, in the case where a ground fault detection circuit is provided on the load side of the three-phase induction motor, the resistance of each phase is directly connected to the load side, so a high breakdown voltage of the detection circuit is required. The problem of large size and high cost can also be solved.
 次に、上記した地絡検出装置109を用いて電力変換装置の保護を行うためにゲート駆動部106の動作を制限する保護ロジック回路108の構成について説明する。 Next, the configuration of the protection logic circuit 108 that restricts the operation of the gate driving unit 106 in order to protect the power conversion device using the above-described ground fault detection device 109 will be described.
 図3は地絡現象を検出した際に、3相オープン制御の保護動作を行う場合の電動機駆動制御部105に設けた保護ロジック回路108の実施形態を示している。 FIG. 3 shows an embodiment of the protection logic circuit 108 provided in the motor drive control unit 105 when the protection operation of the three-phase open control is performed when the ground fault phenomenon is detected.
 図4は地絡を検出した際に、3相ショート制御の保護動作を行う場合の電動機駆動制御部105に設けた保護ロジック回路108の実施形態を示している。 FIG. 4 shows an embodiment of the protection logic circuit 108 provided in the motor drive control unit 105 when the protection operation of the three-phase short control is performed when a ground fault is detected.
 インバータ回路部103は通常では電動機駆動制御部105に設けた電動機制御マイクロコンピュータ110によって制御されている。電動機制御マイクロコンピュータ110は、三相誘導電動機に任意のトルクや回転数を与えるために、インバータ回路部103の半導体スイッチング素子の適切なスイッチング時間を演算し、PWM制御を行うように機能する。 The inverter circuit unit 103 is normally controlled by a motor control microcomputer 110 provided in the motor drive control unit 105. The motor control microcomputer 110 functions to perform PWM control by calculating an appropriate switching time of the semiconductor switching element of the inverter circuit unit 103 in order to give an arbitrary torque and rotation speed to the three-phase induction motor.
 その結果、三相誘導電動機104の各相には交流電圧及び電流が印加され、その速度等が駆動制御される。 As a result, an AC voltage and a current are applied to each phase of the three-phase induction motor 104, and its speed and the like are driven and controlled.
 電動機制御マイクロコンピュータ110とゲート駆動部106との間のスイッチング制御信号のライン上には、保護ロジック回路108を構成する第1のバッファ301、第2のバッファ303、これらの間に配置された第3のバッファ302a及び第4のバッファ302bが設けられている。 On the line of the switching control signal between the motor control microcomputer 110 and the gate driving unit 106, the first buffer 301 and the second buffer 303 constituting the protection logic circuit 108, and the first buffer 301 arranged between them. Three buffers 302a and a fourth buffer 302b are provided.
 これらのバッファ301、302a、302b、303は電動機制御マイクロコンピュータ110からの制御信号をゲート駆動部106に伝達したり、異常時に制御信号の伝達を遮断する遮断機能部として作用する。 These buffers 301, 302 a, 302 b, and 303 function as a blocking function unit that transmits a control signal from the motor control microcomputer 110 to the gate drive unit 106 and blocks transmission of the control signal in the event of an abnormality.
 バッファ301、303は上下アームを構成する半導体スイッチング素子3a~3fのスイッチング制御信号ライン上の全てに設けられている。 Buffers 301 and 303 are provided on all the switching control signal lines of the semiconductor switching elements 3a to 3f constituting the upper and lower arms.
 一方、バッファ302aは上アームを構成する半導体スイッチング素子3a、3b、3cのスイッチング制御信号ライン上に設けられ、バッファ302bは下アームを構成する半導体スイッチング素子3d、3e、3fのスイッチング制御信号ライン上に設けられている。 On the other hand, the buffer 302a is provided on the switching control signal line of the semiconductor switching elements 3a, 3b, and 3c constituting the upper arm, and the buffer 302b is on the switching control signal line of the semiconductor switching elements 3d, 3e, and 3f constituting the lower arm. Is provided.
 電動機制御マイクロコンピュータ110から出力された各半導体スイッチング素子3a~3fを制御するスイッチング制御信号は、これらのバッファ301、302a、302b、303を介してゲート駆動部106に入力される。バッファ301、302a、302b、303は3ステートバッファであって、3相オープン信号や3相ショート信号等が各バッファの状態を変更する制御信号(以下では、トリガ信号と称する)として入力される。 Switching control signals for controlling the semiconductor switching elements 3a to 3f output from the motor control microcomputer 110 are input to the gate driving unit 106 through these buffers 301, 302a, 302b, and 303. Buffers 301, 302a, 302b, and 303 are three-state buffers, and a three-phase open signal, a three-phase short signal, or the like is input as a control signal (hereinafter referred to as a trigger signal) that changes the state of each buffer.
 電力変換装置が正常に動作している場合はトリガ信号が入力されない状態となっており、バッファ301、302a、302b、303は導通状態であって、電動機制御マイクロコンピュータ110から出力された各半導体スイッチング素子3a~3fを制御するスイッチング制御信号は各バッファ301、302a、302b、303を通過してそのまま出力されゲート駆動回路106に伝達される。 When the power converter is operating normally, the trigger signal is not input, and the buffers 301, 302a, 302b, and 303 are in a conductive state, and each semiconductor switching output from the motor control microcomputer 110 is performed. A switching control signal for controlling the elements 3a to 3f passes through the buffers 301, 302a, 302b, and 303 and is output as it is and is transmitted to the gate drive circuit 106.
 一方、電力変換装置に異常が生じてトリガ信号が入力されると、各バッファ301、302a、302b、303は遮断状態(ハイインピーダンス状態)に反転される。バッファ301が遮断状態となると、バッファ301の出力側(すなわち、バッファ302a、302bの入力側)はHigh状態にプルアップされる。 On the other hand, when an abnormality occurs in the power conversion apparatus and a trigger signal is input, each of the buffers 301, 302a, 302b, and 303 is inverted to a cutoff state (high impedance state). When the buffer 301 is cut off, the output side of the buffer 301 (that is, the input side of the buffers 302a and 302b) is pulled up to the high state.
 バッファ302a、302bが遮断状態となると、バッファ302a、302bの出力側(すなわち、バッファ303の入力側)はLow状態にプルダウンされる。バッファ303が遮断状態となると、バッファ303の出力側(すなわち、ゲート駆動部109の入力側)はハイインピーダンス状態となり、ゲート駆動部106内のフォトカプラは非導通となるためスイッチング素子3a~3fはOFFとなる。 When the buffers 302a and 302b are cut off, the output side of the buffers 302a and 302b (that is, the input side of the buffer 303) is pulled down to the low state. When the buffer 303 is cut off, the output side of the buffer 303 (that is, the input side of the gate driving unit 109) is in a high impedance state, and the photocoupler in the gate driving unit 106 becomes non-conductive, so that the switching elements 3a to 3f It becomes OFF.
 ゲート駆動部106はLow信号が入力されると半導体スイッチング素子をON(導通状態)にし、逆に、High信号が入力されると半導体スイッチング素子をOFF(遮断状態)にする。 When the Low signal is input, the gate driving unit 106 turns on the semiconductor switching element (conducting state), and conversely, when the High signal is input, the gate driving unit 106 turns off the semiconductor switching element.
 本実施形態では、電力変換装置の異常時の保護動作として、バッファ301、302a、302b、303の内の特定のバッファ出力を遮断することによって、半導体スイッチング素子3a~3fを全てOFFにする3相オープン動作や、上アーム3a~3c、または下アーム(3d~3f)のみをONにして他をOFFする3相ショート(上アーム3相ショート、下アーム3相ショート)動作を行うようにしてゲート駆動部106の動作を制限するものである。 In the present embodiment, as a protection operation in the event of an abnormality of the power conversion device, a three-phase that turns off all of the semiconductor switching elements 3a to 3f by shutting off specific buffer outputs of the buffers 301, 302a, 302b, and 303. Gate operation by performing an open operation or a 3-phase short (upper arm 3-phase short, lower arm 3-phase short) operation in which only the upper arms 3a to 3c or the lower arms (3d to 3f) are turned on and the others are turned off The operation of the drive unit 106 is limited.
 次に、上述した保護ロジック回路108を用いた具体的な保護動作として、3相オープン動作、3相ショート動作について説明するが、これらの保護動作は異常状態の種類によって選択されるものである。
『3相オープン動作』
 3相オープン動作は図2に示した実施例で検出される地絡検出信号306や、過電流検出信号307や、過電圧検出信号308等の3相オープン信号によって実行されるものであり、3相オープン動作のトリガ信号はタイマ回路305を介してバッファ301に入力する。
Next, a three-phase open operation and a three-phase short operation will be described as specific protection operations using the above-described protection logic circuit 108. These protection operations are selected according to the type of abnormal state.
"Three-phase open operation"
The three-phase open operation is executed by a three-phase open signal such as the ground fault detection signal 306, the overcurrent detection signal 307, or the overvoltage detection signal 308 detected in the embodiment shown in FIG. The trigger signal for the open operation is input to the buffer 301 via the timer circuit 305.
 トリガ信号がタイマ回路305を介してバッファ301に入力されると、上述したようにバッファ301は遮断状態とされ、バッファ301の出力側はHigh状態となる。 When the trigger signal is input to the buffer 301 via the timer circuit 305, the buffer 301 is cut off as described above, and the output side of the buffer 301 is in a high state.
 一方、バッファ302a、302b、303にはトリガ信号が入力されないのでいずれも導通状態となっており、入力された信号はHigh状態及びLow状態を変えることなくそのまま出力される。 On the other hand, since no trigger signal is input to the buffers 302a, 302b, and 303, all are in a conductive state, and the input signal is output as it is without changing the High state and the Low state.
 すなわち、3相オープン動作時にはバッファ301は遮断状態となり、バッファ302a、302b、303は導通状態となっているので上下アームの全ての半導体スイッチング素子3a~3fに関してHigh信号がゲート駆動部106に入力される。その結果、半導体スイッチング素子3a~3fの全てが遮断状態とされる。 That is, during the three-phase open operation, the buffer 301 is cut off and the buffers 302a, 302b, and 303 are in a conductive state, so that a high signal is input to the gate driving unit 106 for all the semiconductor switching elements 3a to 3f of the upper and lower arms. The As a result, all of the semiconductor switching elements 3a to 3f are cut off.
 尚、上述したようにゲート駆動部106にHigh信号が入力されると半導体スイッチング素子はOFF(遮断状態)とされ、Low信号が入力されると半導体スイッチング素子はON(導通状態)とされる。 Note that, as described above, when a high signal is input to the gate driving unit 106, the semiconductor switching element is turned off (shut off), and when a low signal is input, the semiconductor switching element is turned on (conductive state).
 次に、電力変換装置の異常が解消されて正常に復帰すると、トリガ信号の入力がなくなるので、タイマ回路305により設定された所定の時間だけバッファ301への3相オープン信号の入力が保持された後に、バッファ301への3相オープン信号の入力がなくなる。この結果、バッファ301への3相オープン信号の入力がなくなるとバッファ301は導通状態となって通常のPWM制御に復帰するようになる。
『3相ショート動作』
 上述したように、3相ショート動作には上アームの3相をショートする場合と、下アームの3相をショートする場合とがあり、本実施例では電動機駆動制御部105とは別のエンジンコントロールユニット等の上位マイクロコンピュータから上アーム3相ショート動作と下アーム3相ショート動作の両方あるいはどちらか一方の動作を行うトリガ信号309を出せるものとし、過電圧検出信号308と図2における地絡検出信号306は下アーム3相ショート動作を行うトリガ信号とするものである。
Next, when the abnormality of the power converter is resolved and normal operation is resumed, the trigger signal is no longer input, so the input of the three-phase open signal to the buffer 301 is held for a predetermined time set by the timer circuit 305. Later, there is no input of the three-phase open signal to the buffer 301. As a result, when the three-phase open signal is no longer input to the buffer 301, the buffer 301 becomes conductive and returns to normal PWM control.
"3-phase short operation"
As described above, in the three-phase short operation, there are a case where the three phases of the upper arm are shorted and a case where the three phases of the lower arm are short-circuited. In this embodiment, the engine control different from the motor drive control unit 105 is performed. A trigger signal 309 for performing either or both of the upper arm three-phase short operation and the lower arm three-phase short operation can be output from a host microcomputer such as a unit, and the overvoltage detection signal 308 and the ground fault detection signal in FIG. Reference numeral 306 denotes a trigger signal for performing a lower arm three-phase short operation.
 図4にあるようにバッファ301には図3に示す例に加えてに上位マイクロコンピュータからのトリガ信号309が入力され、バッファ302a、302bには上位マイクロコンピュータからのトリガ信号309、過電圧信号308、地絡信号306が入力されるようになっている。 As shown in FIG. 4, in addition to the example shown in FIG. 3, the buffer 301 receives a trigger signal 309 from the host microcomputer, and the buffers 302a and 302b have a trigger signal 309, an overvoltage signal 308, A ground fault signal 306 is input.
 上述したように、3相ショート動作には上アームの3相をショートする場合と、下アームの3相をショートする場合とがあるが、図5には下アーム3相ショートの場合のタイミングチャートを示している。尚、上アーム3相ショートの場合のタイミングチャートも、図5に示す下アーム3相ショートの場合と同様である。 As described above, there are a case where the three phases of the upper arm are short-circuited and a case where the three phases of the lower arm are short-circuited in the three-phase short operation. FIG. Is shown. The timing chart in the case of the upper arm three-phase short circuit is the same as that in the case of the lower arm three-phase short circuit shown in FIG.
 上位マイクロコンピュータ等からの3相ショート信号(下アーム3相ショート)は、バッファ301と3相ショート駆動信号制御ロジック304に入力される。3相ショート信号がバッファ301に入力されると、バッファ301の出力は遮断され、その結果バッファ301の後段に設けられているバッファ302a、バッファ302bの入力側はHigh状態にプルアップされる。 A three-phase short signal (lower arm three-phase short) from a host microcomputer or the like is input to a buffer 301 and a three-phase short drive signal control logic 304. When the three-phase short signal is input to the buffer 301, the output of the buffer 301 is cut off, and as a result, the input side of the buffer 302a and the buffer 302b provided in the subsequent stage of the buffer 301 is pulled up to a high state.
 上述したように、ゲート駆動部106に対してLow信号が入力されると半導体スイッチング素子がONされ、High信号が入力されると半導体スイッチング素子がOFFされるので、3相ショート信号がバッファ301に入力されると、上述したようにバッファ302a、バッファ302bの入力側(バッファ301の出力側)はHigh状態となる。そして、High信号はバッファ303を通過してそのままゲート駆動部109に入力されるため、半導体スイッチング素子3a~3fがOFFされる動作を行なう。図5の「バッファ301出力」に示されたような出力を生じる。 As described above, when the low signal is input to the gate driving unit 106, the semiconductor switching element is turned on, and when the high signal is input, the semiconductor switching element is turned off. When input, as described above, the input side of the buffers 302a and 302b (the output side of the buffer 301) is in a high state. Since the High signal passes through the buffer 303 and is directly input to the gate driving unit 109, the semiconductor switching elements 3a to 3f are turned off. This produces an output as shown in “Output Buffer 301” in FIG.
 また、これとは別に3相ショート信号が3相ショート駆動信号制御ロジック304に入力されると、3相ショート駆動信号制御ロジック304は遅延動作を行ないバッファ301の出力遮断より所定遅延時間Δt1だけ遅れて上アーム3相ショート信号(上アーム3相ショート動作の場合)もしくは下アーム3相ショート信号(下アーム3相ショート動作の場合)を出力する。 Alternatively, when a three-phase short signal is input to the three-phase short drive signal control logic 304, the three-phase short drive signal control logic 304 performs a delay operation and is delayed by a predetermined delay time Δt1 from the output cutoff of the buffer 301. The upper arm 3-phase short signal (in the case of an upper arm 3-phase short operation) or the lower arm 3-phase short signal (in the case of a lower arm 3-phase short operation) is output.
 その結果、バッファ302aもしくはバッファ302bの出力が遮断されるが、図5は下アーム3相ショートの場合を示しているので、バッファ301の出力遮断より所定遅延時間Δt1だけ遅れてバッファ302bの出力が遮断される。 As a result, the output of the buffer 302a or the buffer 302b is cut off, but FIG. 5 shows the case of a three-phase short in the lower arm, so the output of the buffer 302b is delayed by a predetermined delay time Δt1 from the output cut off of the buffer 301. Blocked.
 バッファ302bの出力が遮断されると、バッファ302bの出力側はLow状態にプルダウンされる。その結果、図5の「半導体スイッチング素子3d~3f」の状態にあるように、下アームの半導体スイッチング素子3d~3fに関してはLow信号がゲート駆動部106に入力され、半導体スイッチング素子3d~3fがONされることになる。 When the output of the buffer 302b is cut off, the output side of the buffer 302b is pulled down to a low state. As a result, as in the state of “semiconductor switching elements 3d to 3f” in FIG. 5, a low signal is input to the gate driving unit 106 for the semiconductor switching elements 3d to 3f in the lower arm, and the semiconductor switching elements 3d to 3f are It will be turned on.
 このように、本実施の形態では、3相ショート動作への突入時においては、最初に全ての半導体スイッチング素子3a~3fをOFFにする3相オープン動作を行い、その後に半導体スイッチング素子3a~3cもしくは半導体スイッチング素子3d~3fをONするようにしている。(図5では半導体スイッチング素子3d~3fをONするように動作する。)
 3相ショート信号がなくなると図5の「バッファ302b出力」にあるように、バッファ302b(上アーム3相ショート動作の場合にはバッファ302a)は即座に動通状態に戻る。このとき、バッファ301の出力側はHighになっているので半導体スイッチング素子3d~3fがOFFされ、3相オープン状態に切り替わる。
As described above, in this embodiment, when entering the three-phase short operation, first, the three-phase open operation for turning off all the semiconductor switching elements 3a to 3f is performed, and then the semiconductor switching elements 3a to 3c are performed. Alternatively, the semiconductor switching elements 3d to 3f are turned on. (In FIG. 5, the semiconductor switching elements 3d to 3f operate so as to be turned on.)
When the three-phase short signal disappears, as shown in “buffer 302b output” in FIG. 5, the buffer 302b (buffer 302a in the case of the upper-arm three-phase short operation) immediately returns to the active state. At this time, since the output side of the buffer 301 is High, the semiconductor switching elements 3d to 3f are turned OFF and switched to the three-phase open state.
 そして、図5の「半導体スイッチング素子3d~3f」の状態にあるように、タイマ回路305により設定される時間Δt2だけバッファ301の出力遮断が保持された後に、バッファ301は導通状態に戻り、通常のPWM制御に復帰する。 Then, as in the state of “semiconductor switching elements 3d to 3f” in FIG. 5, after the output cutoff of the buffer 301 is held for the time Δt2 set by the timer circuit 305, the buffer 301 returns to the conductive state, and the normal state Return to PWM control.
 すなわち、3相ショート動作からの復帰時においては、3相ショート信号がなくなった後は、3相オープンの状態にしてから通常のPWM制御に復帰するように動作するものである。 That is, at the time of return from the three-phase short operation, after the three-phase short signal disappears, the three-phase open state is set and then the operation returns to the normal PWM control.
 上述のように、本実施の形態では、3相ショート動作の制御を行う際には、実際に半導体スイッチング素子が3相ショートとされる期間の前後に、3相オープンとする期間を設けている。 As described above, in the present embodiment, when the three-phase short operation is controlled, a period in which the three-phase open is provided before and after the period in which the semiconductor switching element is actually short-circuited. .
 すなわち、前後にデッドタイムを生成していることになるため、3相ショート制御の際に、上下アーム半導体スイッチング素子の上下短絡の発生を防止することができ、安全性の高い構成となっている。 That is, since dead times are generated before and after, the upper and lower arm semiconductor switching elements can be prevented from being short-circuited during the three-phase short-circuit control, and the structure is highly safe. .
 例えば、インバータ回路部103が保証するデッドタイム値が5μsであるならば、この3相ショート期間の前後の3相オープン期間(Δt1、Δt2)は最低でも5μs以上を確保することで、上下短絡の発生を確実に防止することができる。 For example, if the dead time value guaranteed by the inverter circuit unit 103 is 5 μs, the three-phase open periods (Δt1, Δt2) before and after the three-phase short period are at least 5 μs, so Occurrence can be reliably prevented.
 また、これら一連の保護ロジック回路108やタイマ回路305、3相ショート駆動信号制御ロジック304をハード系で構成することにより、マイクロコンピュータとソフトを用いた構成に比べてコスト低減を図れる。 Further, by configuring the series of the protection logic circuit 108, the timer circuit 305, and the three-phase short drive signal control logic 304 in a hardware system, the cost can be reduced compared to a configuration using a microcomputer and software.
 更に、マイクロコンピュータの異常時やソフトバグが起きたときでも十分なデッドタイムを確保しながら保護動作を行うことができ、安全性の向上に繋がる。 Furthermore, even when a microcomputer malfunctions or a software bug occurs, the protection operation can be performed while ensuring a sufficient dead time, leading to an improvement in safety.
 図6は、3相ショート駆動信号制御ロジック304の詳細回路を示す図である。上述したデッドタイムΔt1は、図6の回路602および回路603により生成される。回路602、603に設けられた抵抗やキャパシタの設計定数を調整することにより、デッドタイムΔt1の長さを調整することができる。 FIG. 6 is a diagram showing a detailed circuit of the three-phase short drive signal control logic 304. The above-described dead time Δt1 is generated by the circuit 602 and the circuit 603 in FIG. By adjusting the design constants of the resistors and capacitors provided in the circuits 602 and 603, the length of the dead time Δt1 can be adjusted.
 上述したように、上位マイクロコンピュータによる制御信号には、バッファ302aの出力を遮断する上アーム3相ショート信号と、バッファ302bの出力を遮断する下アーム3相ショート信号がある。 As described above, the control signals from the host microcomputer include the upper arm three-phase short signal for blocking the output of the buffer 302a and the lower arm three-phase short signal for blocking the output of the buffer 302b.
 しかし、この二つの信号が同時に出力された場合、上下短絡を引き起こすことが考えられる。そこで、電動機駆動制御部105では、図6に示すような3相ショート駆動信号制御ロジック304を用いることにより、上アーム3相ショート信号と下アーム3相ショート信号との間に優先度を設定し、上下短絡に至らないようにしている。 However, if these two signals are output at the same time, it is possible to cause a vertical short circuit. Therefore, the motor drive control unit 105 sets a priority between the upper arm three-phase short signal and the lower arm three-phase short signal by using a three-phase short drive signal control logic 304 as shown in FIG. The upper and lower short circuit is not caused.
 図6において、上位マイクロコンピュータから上アーム3相ショート信号と下アーム3相ショート信号とが同時に入力された場合を考える。メインマイクロコンピュータから下アーム3相ショート信号が出力されると、バッファ301の出力が遮断される。そのため、上アーム3相ショート信号は出力されず、上下短絡が防止される。 In FIG. 6, a case is considered in which an upper arm three-phase short signal and a lower arm three-phase short signal are simultaneously input from the host microcomputer. When the lower arm three-phase short signal is output from the main microcomputer, the output of the buffer 301 is shut off. For this reason, the upper arm three-phase short signal is not output, and upper and lower short circuits are prevented.
 尚、この上下アームの優先度は信号入力を入れ替えることで選択可能である。更に、過電圧検出信号や地絡検出信号も3相ショート駆動信号制御ロジック304に入力することで、上位マイクロコンピュータによる3相ショート信号と過電圧検出信号、地絡検出信号が同時に発生したときの上下短絡防止が可能となる。 The priority of the upper and lower arms can be selected by switching the signal input. Further, an overvoltage detection signal and a ground fault detection signal are also input to the three-phase short drive signal control logic 304, so that a three-phase short signal, an overvoltage detection signal and a ground fault detection signal are simultaneously generated by the host microcomputer. Prevention becomes possible.
 以上に説明した地絡検出装置109及び保護ロジック回路108を用いた電力変換装置の「通常時の動作」と「地絡発生時の動作」の概略について以下に説明する。 An outline of the “normal operation” and “operation when a ground fault occurs” of the power converter using the ground fault detection device 109 and the protection logic circuit 108 described above will be described below.
 通常動作時はインバータ回路部103から三相誘導電動機104へ交流電流が出力されるが、このときの電流センサ107の出力電圧は2.5Vを中心とした正弦波となっている。インバータから三相誘導電動機への出力電流はU相、V相及びW相で120度ずれているため、U相、V相及びW相の電流センサ107の出力電圧も位相が120度ずつずれている。 During normal operation, an alternating current is output from the inverter circuit unit 103 to the three-phase induction motor 104. At this time, the output voltage of the current sensor 107 is a sine wave centered at 2.5V. Since the output current from the inverter to the three-phase induction motor is shifted by 120 degrees in the U phase, V phase, and W phase, the output voltage of the current sensor 107 in the U phase, V phase, and W phase is also shifted by 120 degrees. Yes.
 よって、U相、V相及びW相の電流センサの出力をスター結線した抵抗負荷112、113、114に繋ぐとスター結線の中性点電位は略2.5Vで安定する。本実施例では判定器201の閾値を3V、判定器202の閾値を2Vとしているので地絡検出信号は出力されず、保護ロジック回路108の各バッファ301、302a、302b及び303は導通状態となり、電動機制御マイクロコンピュータ110からのPWM信号はそのままゲート駆動部106へ送られ三相誘導電動機104を正常に駆動する。 Therefore, when the outputs of the U-phase, V-phase, and W-phase current sensors are connected to the resistance loads 112, 113, and 114 connected in a star connection, the neutral point potential of the star connection is stabilized at about 2.5V. In this embodiment, since the threshold value of the determiner 201 is 3V and the threshold value of the determiner 202 is 2V, the ground fault detection signal is not output, and the buffers 301, 302a, 302b, and 303 of the protection logic circuit 108 are in a conductive state. The PWM signal from the motor control microcomputer 110 is sent to the gate drive unit 106 as it is to drive the three-phase induction motor 104 normally.
 一方、地絡現象が発生すると、インバータ回路部103からの出力電流は地絡地点から漏れて乱れることになる。インバータ回路部103の出力電流が乱れたことにより、電流センサ107の出力電圧も正弦波から乱れて電流センサ107とスター結線された抵抗負荷の中性点115の電位は2.5Vから変動する。この変動した中性点115の電位が判定器201の上側閾値である3Vを越える、または判定器202の下側閾値である2Vを下回ると地絡検出信号が出力される。 On the other hand, when a ground fault occurs, the output current from the inverter circuit unit 103 leaks from the ground fault point and is disturbed. When the output current of the inverter circuit unit 103 is disturbed, the output voltage of the current sensor 107 is also disturbed from the sine wave, and the potential of the neutral point 115 of the resistance load star-connected to the current sensor 107 varies from 2.5V. When the potential of the fluctuating neutral point 115 exceeds 3V, which is the upper threshold value of the determiner 201, or falls below 2V, which is the lower threshold value of the determiner 202, a ground fault detection signal is output.
 このような地絡検出装置109によって地絡現象が検出されると、保護ロジック回路108は次のような動作を行なうことになる。 When a ground fault phenomenon is detected by such a ground fault detection device 109, the protection logic circuit 108 performs the following operation.
 3相オープン動作の場合、図3に示したように、地絡検出信号306は保護ロジック回路108のタイマ回路305を経由しバッファ301に入力される。3相オープン時の動作は上述した通りで、スイッチング素子3a~3fの全てをOFF状態とする。3相オープン状態ではスイッチング素子3a~3fの全てをOFFにしているため、三相誘導電動機104へ電流が供給されずに地絡電流が流れることがないようになる。 In the case of the three-phase open operation, the ground fault detection signal 306 is input to the buffer 301 via the timer circuit 305 of the protection logic circuit 108 as shown in FIG. The operation when the three phases are open is as described above, and all the switching elements 3a to 3f are turned off. In the three-phase open state, all of the switching elements 3a to 3f are turned off, so that no current is supplied to the three-phase induction motor 104 and no ground fault current flows.
 一方、3相ショート動作の場合、図4に示したように、地絡検出信号306は保護ロジック回路108のタイマ回路305を経由しバッファ301と、3相ショート駆動信号制御ロジック304の両方に入力される。 On the other hand, in the case of a three-phase short operation, as shown in FIG. 4, the ground fault detection signal 306 is input to both the buffer 301 and the three-phase short drive signal control logic 304 via the timer circuit 305 of the protection logic circuit 108. Is done.
 3相ショート時の動作は上述した通りで、スイッチング素子3a~3cをONして残りをOFFする上アーム3相ショート状態か、スイッチング素子3d~3fをONして残りをOFFする下アーム3相ショート状態にする。 The operation at the time of three-phase short is as described above. The upper arm three-phase short state in which switching elements 3a to 3c are turned on and the rest is turned off, or the lower arm three phases in which switching elements 3d to 3f are turned on and the rest are turned off. Short circuit.
 このようにすることで、3相ショート状態では三相誘導電動機の誘起電圧によるスイッチング素子の耐圧破壊を防ぐことができる。 By doing so, it is possible to prevent breakdown of the switching element due to the induced voltage of the three-phase induction motor in the three-phase short circuit state.
 また、地絡現象が発生している状態では誘起電圧が地絡地点の電位を中心に正側と負側の上下方向で発生することになる。このとき発生した誘起電圧が直流電源の電位を上回るとスイッチング素子の還流ダイオードを経由して予期せぬ電流がインバータ回路部103や平滑コンデンサ102、直流電源101へ流れ込んでしまい、これらを破壊する可能性がある。 In addition, in the state where the ground fault occurs, an induced voltage is generated in the vertical direction on the positive side and the negative side around the potential at the ground fault point. If the induced voltage generated at this time exceeds the potential of the DC power supply, an unexpected current flows into the inverter circuit unit 103, the smoothing capacitor 102, and the DC power supply 101 via the freewheeling diode of the switching element, and these can be destroyed. There is sex.
 これに対して、3相ショート動作ではスイッチング素子3a~3c、またはスイッチング素子3d~3fをONにし、他のスイッチング素子をOFFするため、三相誘導電動機104とON状態のスイッチング素子間で電流が還流させることができ、還流ダイオードを経由した電流の流入を防ぐことができる。 On the other hand, in the three-phase short operation, the switching elements 3a to 3c or the switching elements 3d to 3f are turned on and the other switching elements are turned off, so that a current flows between the three-phase induction motor 104 and the switching element in the ON state. It is possible to recirculate, and it is possible to prevent inflow of current via the freewheeling diode.
 本実施例の電流センサ107はホール素子による絶縁された電流センサを用いており、これにより直流電源101の電圧から絶縁されるようになるので、弱電系(5V等)の電源で地絡検出部109を構成することができ、小型、低コスト化が可能となる。 The current sensor 107 of this embodiment uses a current sensor that is insulated by a Hall element, and is thereby insulated from the voltage of the DC power supply 101. Therefore, a ground fault detection unit is used with a weak power system (5V, etc.) power supply. 109 can be configured, and the size and cost can be reduced.
 また、地絡検出部109の抵抗112、抵抗113、抵抗114をネットワーク抵抗で構成すれば、抵抗112、抵抗113、抵抗114の抵抗値の相対誤差を小さくすることでスター結線された抵抗負荷の中性点115の電位のばらつきを抑えることができ、より高精度に地絡現象を検出することができる。 In addition, if the resistors 112, 113, and 114 of the ground fault detection unit 109 are configured by network resistors, the relative error of the resistance values of the resistors 112, 113, and 114 can be reduced to reduce the resistance of the star-connected resistance load. Variation in the potential of the neutral point 115 can be suppressed, and the ground fault phenomenon can be detected with higher accuracy.
 尚、ゲート駆動部106に地絡検出部109と保護動作を行う保護ロジック回路108を作りこむように構成しても良いが、電流センサ107の出力は導電動機駆動制御部105に入力されるためゲート駆動部106へ電流センサ107の信号を送る信号線を増やす必要があり、また、ゲート駆動部106は弱電系の電源でないため高耐圧化させる必要があり回路構成が高コストとなる課題を有しているので好ましいものではない。 Note that the ground drive detection unit 109 and the protection logic circuit 108 that performs the protection operation may be built in the gate drive unit 106. However, since the output of the current sensor 107 is input to the conductive motive drive control unit 105, the gate There is a need to increase the number of signal lines for sending signals from the current sensor 107 to the drive unit 106. Also, since the gate drive unit 106 is not a weak power source, it is necessary to increase the withstand voltage, and the circuit configuration is expensive. Therefore, it is not preferable.
 これに対して、本発明では、電流センサ107の出力は電動機駆動制御部105に入力されるため信号線を増やす必要がなく、また、電動機駆動制御部105は弱電系の電源であるので高耐圧化させる必要がないものである。 On the other hand, in the present invention, since the output of the current sensor 107 is input to the motor drive control unit 105, there is no need to increase the number of signal lines, and since the motor drive control unit 105 is a low power system power source, It is not necessary to make it.
 更に、地絡検出部109と保護ロジック回路108の電源を別系統で構成し、地絡検出信号をHighレベルの電圧信号とすることで地絡検出部109の電源が故障等により落ちたときでも、保護ロジック回路108が誤動作しないようにできる、という効果も期待できる。 Further, even when the power supply of the ground fault detection unit 109 and the protection logic circuit 108 are configured in different systems and the ground fault detection signal is a high level voltage signal, the power supply of the ground fault detection unit 109 is dropped due to a failure or the like. The effect that the protection logic circuit 108 can be prevented from malfunctioning can also be expected.
 従来の交流電流の地絡現象の検出は電流センサの情報を元にマイクロコンピュータのソフトウエア処理により行っていたので、マイクロコンピュータの異常や電流センサの情報を読み取るサンプリングのタイミングによっては地絡現象を検出できない状況が発生したり、交流電流の地絡が発生してから保護回路による保護動作へ移るまでの動作時間がマイクロコンピュータの処理速度や処理タスクの起動周期に依存しているので地絡現象に対する保護動作が間に合わない状況も発生するといった課題があった。 Conventional detection of the ground fault phenomenon of alternating current has been performed by microcomputer software processing based on the current sensor information, so depending on the abnormality of the microcomputer and the sampling timing for reading the current sensor information, the ground fault phenomenon may be detected. The grounding phenomenon occurs because the operation time from the occurrence of an undetectable situation or the occurrence of an alternating current ground fault to the protection operation by the protection circuit depends on the processing speed of the microcomputer and the start cycle of the processing task. There is a problem that a situation occurs in which the protection operation against the time is not in time.
 また、三相誘導電動機の負荷側に地絡検出回路を設けると、各相の抵抗を負荷側と直接接続するので検出回路の高耐圧化が要求され、このため地絡検出回路が大型、高コスト化するという課題があった。 In addition, if a ground fault detection circuit is provided on the load side of the three-phase induction motor, the resistance of each phase is directly connected to the load side, so a high withstand voltage of the detection circuit is required. There was a problem of cost.
 これに対して、本発明では、インバータ回路部と電動機のような負荷の間を結ぶU相、V相及びW相の各出力線を流れる交流電流の電流値を検出する電流センサの出力部をスター結線した抵抗負荷に接続し、スター結線した抵抗負荷の中性点の出力を判定器に入力して地絡現象を検出し、この地絡現象の検出によってインバータ回路を駆動するゲート駆動回路の動作を制限する保護ロジック回路を動作させるようにしたので、確実に地絡現象をすることができ、しかも電流センサから抵抗負荷に電流を供給するので弱電系の回路構成とでき地絡検出装置に高耐圧化の対応を考慮しなくてよくなるものである。 On the other hand, in the present invention, the output part of the current sensor that detects the current value of the alternating current flowing through the U-phase, V-phase, and W-phase output lines connecting between the inverter circuit part and the load such as the electric motor is provided. Connect to a star-connected resistive load, and input the neutral point output of the star-connected resistive load to the determiner to detect the ground fault phenomenon. By detecting this ground fault phenomenon, the gate drive circuit that drives the inverter circuit Since the protection logic circuit that restricts the operation is operated, it is possible to reliably cause a ground fault phenomenon and to supply a current from the current sensor to the resistive load. This makes it unnecessary to consider the countermeasures for increasing the breakdown voltage.
 101…直流電源、102…平滑コンデンサ、103…インバータ回路部、104…三相誘導電動機、105…電動機駆動制御部、106…ゲート駆動部、107…電流センサ、108…保護ロジック回路、109…地絡検出部、110…電動機制御マイクロコンピュータ、111…出力線、112,113,114…抵抗負荷、115…中性点、116…判定器、201…上側閾値判定器、202…下側閾値判定器、203,204,207、210、211、212…抵抗、205、209…比較器、301、302a、302b、303…バッファ。 DESCRIPTION OF SYMBOLS 101 ... DC power supply, 102 ... Smoothing capacitor, 103 ... Inverter circuit part, 104 ... Three-phase induction motor, 105 ... Electric motor drive control part, 106 ... Gate drive part, 107 ... Current sensor, 108 ... Protection logic circuit, 109 ... Ground Fault detection unit, 110 ... electric motor control microcomputer, 111 ... output line, 112, 113, 114 ... resistance load, 115 ... neutral point, 116 ... judgment device, 201 ... upper threshold judgment device, 202 ... lower threshold judgment device , 203, 204, 207, 210, 211, 212 ... resistors, 205, 209 ... comparators, 301, 302a, 302b, 303 ... buffers.

Claims (6)

  1. 電動機を駆動するための交流電流を生成するインバータ回路部と、このインバータ回路部を構成する半導体スイッチング素子を制御するゲート駆動部を少なくとも備えた電力変換装置において、
    前記電動機と前記インバータ回路部との間を結ぶU相、V相及びW相の各出力線を流れる電流を検出する電流センサの出力部をスター結線した抵抗負荷に接続し、前記スター結線した抵抗負荷の中性点の出力を判定器に入力して前記出力の変化から地絡現象を検出し、この地絡現象を検出すると前記ゲート駆動部の動作を制限する保護ロジック回路を動作させることを特徴とする電力変換装置。
    In a power conversion device including at least an inverter circuit unit that generates an alternating current for driving an electric motor and a gate driving unit that controls a semiconductor switching element that constitutes the inverter circuit unit.
    An output part of a current sensor that detects currents flowing through U-phase, V-phase, and W-phase output lines connecting the electric motor and the inverter circuit section is connected to a star-connected resistance load, and the star-connected resistance The output of the neutral point of the load is input to the determination device, a ground fault phenomenon is detected from the change in the output, and when this ground fault phenomenon is detected, a protection logic circuit that restricts the operation of the gate drive unit is operated. A power conversion device.
  2. 請求項1に記載の電力変換装置において、
    前記電流センサは前記出力線を流れる電流を弱電系で使用される電圧に変換し、この弱電系に変換された電圧は前記ゲート駆動回路を制御する電動機制御マイクロコンピュータと前記スター結線した抵抗負荷に入力されることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The current sensor converts the current flowing through the output line into a voltage used in a weak electrical system, and the voltage converted into the weak electrical system is applied to the motor control microcomputer that controls the gate drive circuit and the resistance load that is star-connected. A power converter characterized by being input.
  3. 請求項1に記載の電力変換装置において、
    前記スター結線した抵抗負荷の中性点の出力は電圧として検出され、この中性点の電圧は電圧比較器に入力されて所定の比較電圧と比較されて地絡現象が検出されることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The neutral point output of the star-connected resistance load is detected as a voltage, and the neutral point voltage is input to a voltage comparator and compared with a predetermined comparison voltage to detect a ground fault phenomenon. A power converter.
  4. 請求項3に記載の電力変換装置において、
    前記電圧比較器は第1の電圧比較器及び第2の電圧比較器から構成されており、前記第1の電圧比較器で所定の第1の比較電圧と前記中性点の電位が比較されてこれを超えると地絡現象が検出され、前記第2の電圧比較器で所定の第2の比較電圧と前記中性点の電位が比較されてこれを下回ると地絡現象が検出されることを特徴とする電力変換装置。
    The power conversion device according to claim 3,
    The voltage comparator includes a first voltage comparator and a second voltage comparator, and the first voltage comparator compares a predetermined first comparison voltage with the neutral point potential. When this value is exceeded, a ground fault phenomenon is detected, and when the second voltage comparator compares the predetermined second comparison voltage with the potential at the neutral point, the ground fault phenomenon is detected. A power conversion device.
  5. 請求項1に記載の電力変換装置において、
    前記保護ロジック回路は前記ゲート駆動部と前記電動機制御マイクロコンピュータとの間に設けられ、更に前記保護ロジック回路は前記判定器によって地絡現象が検出されると前記電動機制御マイクロコンピュータからの制御信号を前記ゲート駆動部に伝えるのを遮断する遮断機能部を備えていることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The protection logic circuit is provided between the gate drive unit and the motor control microcomputer, and the protection logic circuit receives a control signal from the motor control microcomputer when a ground fault is detected by the determiner. A power conversion device comprising a shut-off function unit that shuts off transmission to the gate drive unit.
  6. 請求項5に記載の電力変換装置において、
    前記保護ロジック回路の遮断機能部は前記インバータ回路部にあるスイッチング素子の全てに繋がる制御信号ライン上に設けられた第1及び第2のバッファと、前記第1及び前記第2のバッファの間で前記制御信号ラインの半分の制御信号ライン上に設けられた第3のバッファと、前記第1及び前記第2のバッファの間で前記制御信号ラインの残りの半分の制御信号ライン上に設けられた第4のバッファとから構成され、前記第1のバッファ、前記第3のバッファ及び前記第4のバッファに前記判定器の地絡検出信号が入力されることを特徴とする電力変換装置。
    The power conversion device according to claim 5,
    The cutoff function part of the protection logic circuit is between the first and second buffers provided on the control signal line connected to all the switching elements in the inverter circuit part, and the first and second buffers. A third buffer provided on a control signal line half of the control signal line, and a control signal line on the other half of the control signal line between the first and second buffers; A power converter comprising: a fourth buffer, wherein a ground fault detection signal of the determiner is input to the first buffer, the third buffer, and the fourth buffer.
PCT/JP2012/079056 2011-12-20 2012-11-09 Power conversion device WO2013094330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-278327 2011-12-20
JP2011278327A JP5893383B2 (en) 2011-12-20 2011-12-20 Power converter

Publications (1)

Publication Number Publication Date
WO2013094330A1 true WO2013094330A1 (en) 2013-06-27

Family

ID=48668229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079056 WO2013094330A1 (en) 2011-12-20 2012-11-09 Power conversion device

Country Status (2)

Country Link
JP (1) JP5893383B2 (en)
WO (1) WO2013094330A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148925A (en) * 2019-04-17 2019-08-20 浙江正泰电器股份有限公司 For the guard method of motor ground fault and frequency converter in frequency converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305605B1 (en) * 2017-05-22 2018-04-04 三菱電機株式会社 Motor control device
WO2023105584A1 (en) * 2021-12-06 2023-06-15 株式会社安川電機 Electric power conversion system, power module, and control module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227086A (en) * 1994-02-07 1995-08-22 Mitsubishi Electric Corp Failure detection system of inverter
JPH11220898A (en) * 1998-01-30 1999-08-10 Daikin Ind Ltd Leakage current reduction device of electric apparatus
JP2002199744A (en) * 2000-12-27 2002-07-12 Daikin Ind Ltd Inverter-protecting method and device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227086A (en) * 1994-02-07 1995-08-22 Mitsubishi Electric Corp Failure detection system of inverter
JPH11220898A (en) * 1998-01-30 1999-08-10 Daikin Ind Ltd Leakage current reduction device of electric apparatus
JP2002199744A (en) * 2000-12-27 2002-07-12 Daikin Ind Ltd Inverter-protecting method and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148925A (en) * 2019-04-17 2019-08-20 浙江正泰电器股份有限公司 For the guard method of motor ground fault and frequency converter in frequency converter

Also Published As

Publication number Publication date
JP2013132098A (en) 2013-07-04
JP5893383B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
AU2005290575B2 (en) Power supply circuit protecting method and apparatus for the same
JP5547559B2 (en) Power converter
US9793849B2 (en) Inverter apparatus for polyphase AC motor drive
EP2845282B1 (en) System and method for ground fault detection and protection in adjustable speed drives
JP5452551B2 (en) Power conversion device and power conversion system
US20110068728A1 (en) Motor drive device
KR101628401B1 (en) Method for detecting inverter fail for electric vehicle
US20160028342A1 (en) Electric motor drive device
JP4772104B2 (en) Power converter
CN109643959B (en) Power conversion device and logic circuit
JP2008118834A (en) Surge reduction circuit and inverter device equipped with surge reduction circuit
JP2013223371A (en) Motor drive device
JP6220456B2 (en) Power converter
CA2848001A1 (en) Over temperature protection device for electric motors
JP2008236907A (en) Gate control circuit and method of power conversion apparatus
JP5893383B2 (en) Power converter
JP5124899B2 (en) Motor control method and apparatus
JP2012239247A (en) Motor control device
JP6230677B1 (en) Control device and control method for rotating electrical machine
JP5321622B2 (en) Motor control method and apparatus
US9369035B2 (en) Power converter and method of operation
JP6439597B2 (en) Power converter
JP6879188B2 (en) Drive device abnormality judgment device
JP2000134947A (en) Power converter and controller thereof
US20230126273A1 (en) Motor control device and abnormality detection method for current detector provided in motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858730

Country of ref document: EP

Kind code of ref document: A1