WO2013094245A1 - Polycrystalline silicon ingot, process for producing same, and uses thereof - Google Patents

Polycrystalline silicon ingot, process for producing same, and uses thereof Download PDF

Info

Publication number
WO2013094245A1
WO2013094245A1 PCT/JP2012/070001 JP2012070001W WO2013094245A1 WO 2013094245 A1 WO2013094245 A1 WO 2013094245A1 JP 2012070001 W JP2012070001 W JP 2012070001W WO 2013094245 A1 WO2013094245 A1 WO 2013094245A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
crucible
temperature
ingot
silicon ingot
Prior art date
Application number
PCT/JP2012/070001
Other languages
French (fr)
Japanese (ja)
Inventor
大石 隆一
和也 上野
梶本 公彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280063468.4A priority Critical patent/CN104010968B/en
Publication of WO2013094245A1 publication Critical patent/WO2013094245A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polycrystalline silicon ingot, its manufacturing method, and its use.
  • a polycrystalline silicon wafer which is generally widely used as a substrate for polycrystalline silicon solar cells, is an ingot manufactured by a method called a casting method in which molten silicon is unidirectionally solidified in a crucible to obtain a large polycrystalline silicon ingot. It is cut into blocks and made into wafers by slicing.
  • the polycrystalline silicon wafer manufactured by the casting method generally has a distribution in the output characteristics of the solar cell as shown in FIG. 5 depending on the position in the height direction in the ingot or block.
  • the cause of the characteristic distribution of FIG. 5 is generally explained as follows. First, in the region I at the initial stage of unidirectional solidification, the characteristics deteriorate due to the influence of impurities diffused from the crucible. In the region II on the upper side, since the incorporation of impurities in the raw material due to segregation and the occurrence of crystal defects are few, the characteristics are the best in the block. Further, in the upper region III, the amount of impurities taken into the crystal gradually increases, the generation of crystal defects increases, and the characteristics are deteriorated as compared with the region II.
  • the upper surface portion was formed after the ingot solidified to the end. Impurity reverse diffusion occurs from the high concentration portion of the impurity, and the amount of the impurity further increases, so that the characteristic deterioration becomes more remarkable than in the region III.
  • the influence of impurities in the raw material and impurities eluted from the crucible is considered, but even if there is no such influence, in regions III and IV, crystals that become minority carrier traps toward the top Since defects increase gradually, the characteristics of solar cells tend to deteriorate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-152985
  • Patent Document 2 International Publication No. 2005/092791 proposes a method of performing heat flow control during ingot growth with a structure that can change the heat receiving (heat exchange) area.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2005-132671
  • Patent Document 4 disclose a dendrite as a crystal nucleus at the bottom of an ingot (at the beginning of solidification) by quenching the bottom of the crucible.
  • Patent Document 5 proposes a method of obtaining a pseudo single crystal by growing crystal pieces (undissolved) left in the melting step of silicon raw material and enlarging crystal grains.
  • Patent Document 6 proposes a method of obtaining a pseudo single crystal by heteroepitaxially growing silicon from a seed crystal such as SiC arranged with the crystal orientation aligned on the crucible bottom.
  • Japanese Unexamined Patent Publication No. 2005-152985 International Publication No. 2005/092791 Japanese Patent No. 4203603
  • Japanese Unexamined Patent Publication No. 2005-132671 Japanese Patent No. 4054873
  • Patent Document 1 particularly when the heater is next to the crucible, the shape of the solid-liquid interface is further deteriorated, and there is a problem that effects such as reduction of crystal defect density and prevention of cracking cannot be obtained.
  • Patent Document 2 can improve the controllability of heat removal from the crucible side wall, there is a problem that the device configuration is very complicated, there are many high-temperature movable parts, and the cost of the device increases and the failure increases. is there.
  • the present invention provides a method for producing a large-sized polycrystalline silicon ingot capable of reducing the crystal defect density and preventing cracks easily and at low cost, and the polycrystalline silicon ingot obtained thereby and use thereof. Is an issue.
  • the inventors of the present invention have started solidification (crystal growth) when producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom to the top of the crucible.
  • the present inventors have found that the above-mentioned problems can be solved by controlling the temperature at the bottom to conditions that promote the generation of crystal nuclei.
  • a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom of the crucible, and the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon Conditions in which there is a time for the temperature to fall at a temperature change rate of 1 to 10 ° C./hour while the detected temperature is lowered from (Tm ⁇ 20) ° C. to (Tm ⁇ 60) ° C. with the detection temperature in the vicinity as Tm.
  • the temperature decreases at a temperature change rate of 1 to 10 ° C./hour while the detected temperature is lowered from (Tm′ ⁇ 20) ° C. to (Tm′ ⁇ 60) ° C. with the detected temperature at the lower 20 mm position in the vicinity as Tm ′.
  • a method for producing a polycrystalline silicon ingot that obtains a polycrystalline silicon ingot by unidirectionally solidifying the molten silicon under conditions where there is time to perform.
  • a polycrystalline silicon ingot produced by the above-described polycrystalline silicon ingot producing method a polycrystalline silicon block obtained by processing the polycrystalline silicon ingot, and processing the polycrystalline silicon block A polycrystalline silicon wafer obtained by the above and a polycrystalline silicon solar cell manufactured using the polycrystalline silicon wafer are provided.
  • the “solar battery” means a “solar battery module” in which a “solar battery cell” constituting a minimum unit and a plurality thereof are electrically connected.
  • the manufacturing method of the large-sized polycrystalline silicon ingot which can perform the reduction
  • the time during which the temperature decreases at the temperature change rate of 1 to 10 ° C./hour is 20% or more.
  • the above effects are particularly exerted.
  • the method for producing a polycrystalline silicon ingot according to the present invention is a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom of the crucible, and when the silicon temperature becomes the melting point of silicon.
  • Tm the detected temperature near the center of the bottom of the crucible
  • Tm-60 the time during which the temperature decreases at a temperature change rate of 1 to 10 ° C./hour while the detected temperature decreases from (Tm-20) ° C. to (Tm-60) ° C.
  • a polycrystalline silicon ingot is obtained by unidirectionally solidifying the molten silicon under existing conditions.
  • the detected temperature “Tm” is equal to the silicon melt temperature immediately before the completion of silicon melting, and the detected temperature near the bottom of the crucible is almost the same. It can be determined as the detected temperature when it becomes constant.
  • the silicon melt temperature is the melting point of silicon
  • Tm is a detected temperature near the center of the bottom surface of the crucible at that time. Since the crucible base is always cooled, it is considered that Tm is several degrees lower than the melting point of silicon.
  • the actual measured absolute value of Tm varies slightly due to the thermocouple calibration method, the degree of deterioration, individual differences, variation in installation in the apparatus, etc., and the error in the actual measured absolute value is large.
  • the measured absolute value of Tm in this example was also found to be higher than the melting point of silicon for the reasons described above, and was in the range of 1407 ° C. to 1418 ° C.
  • Tm the temperature of the melt
  • a radiation thermometer the temperature of the melt
  • correlating it the detected temperature near the center of the bottom of the crucible
  • the method for producing a polycrystalline silicon ingot according to the present invention is a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible upward from the bottom of the crucible, and the silicon temperature becomes the melting point of silicon.
  • the detected temperature at the lower 20 mm position near the center of the bottom surface of the crucible at the time is Tm ′, and the detected temperature decreases from (Tm′ ⁇ 20) ° C. to (Tm′ ⁇ 60) ° C.
  • a polycrystalline silicon ingot is obtained by unidirectionally solidifying the molten silicon under a condition in which time for temperature decrease at a rate of change exists.
  • the detected temperature “Tm ′” can be determined in the same manner as “Tm”, except that the temperature measurement point is different.
  • the position 20 mm below the lower surface of the crucible is selected as the temperature measurement point.
  • the temperature measurement point can be a temperature measurement point as long as it is thermally connected to the crucible and correlates with the temperature of silicon in the crucible.
  • the present inventors As a result of evaluating, analyzing and examining crystal defects for a large number of polycrystalline silicon ingots, the present inventors have been considered to be effective as a method for reducing the crystal defect density on the top side of the ingot, and It has been found that there is a completely different method other than the stress reduction by suppressing the temperature distribution that is commonly used. Specifically, the present inventors have developed a polycrystal having a small crystal grain size, which is completely opposite to the techniques described in Patent Documents 3 to 6 in which deterioration of characteristics due to grain boundaries is suppressed by coarsening of crystal grains. It has been found that a silicon ingot is more resistant to stress and less prone to crystal defects than a silicon ingot having a large crystal grain size.
  • the density of crystal defects introduced into the inside is large between the grains having a large crystal grain size and the grains having a small crystal grain size even in the portion immediately adjacent to each other in the polycrystalline silicon ingot.
  • the top of the polycrystalline silicon ingot is reduced by promoting the generation of crystal nuclei at the bottom of the crucible and reducing the crystal grain size.
  • the side characteristic deterioration can be relieved.
  • the crystal defects on the top side of the polycrystalline silicon ingot can be reduced only by controlling the crystal grain size to reduce the crystal grain size.
  • the polycrystalline silicon ingot production apparatus that can be used in the method for producing a polycrystalline silicon ingot of the present invention is not particularly limited, and can be implemented using a known production apparatus.
  • a cooling mechanism such as a refrigerant circulation provided on the base side of the crucible and the distance from the heating mechanism with a lifting drive mechanism
  • It can be implemented by a manufacturing apparatus or the like that gradually melts molten silicon from molten silicon near the bottom of the crucible.
  • the heater temperature is controlled by a known method, specifically, a thermocouple or a radiation thermometer, and the temperature change rate of melting and solidification of silicon and cooling is monitored.
  • FIG. 4 is a schematic cross-sectional view showing an example of an apparatus used in the method for producing a polycrystalline semiconductor ingot according to the present invention.
  • This apparatus is generally used for producing a polycrystalline silicon ingot, and has a chamber (sealed container) 7 constituting a resistance heating furnace.
  • a crucible 1 made of graphite, quartz (SiO 2 ) or the like is disposed inside the chamber 7 so that the atmosphere inside the chamber 7 can be maintained in a sealed state.
  • a graphite crucible base 3 that supports the crucible 1 is disposed in the chamber 7 in which the crucible 1 is accommodated.
  • the crucible base 3 can be moved up and down by a lift drive mechanism 12, and the refrigerant (cooling water) in the cooling tank 11 is circulated therein.
  • An outer crucible 2 made of graphite or the like is disposed on the upper portion of the crucible base 3, and the crucible 1 is disposed therein.
  • a cover made of graphite or the like surrounding the crucible 1 may be disposed.
  • a resistance heating body 10 such as a graphite heater is disposed so as to surround the outer crucible 2, and a heat insulating material 8 is disposed so as to cover these from above.
  • the resistance heating body 10 can be heated from the periphery of the crucible 1 to melt the raw material silicon 4 in the crucible 1. If the temperature control of the present invention is possible by heating by the resistance heating body 10, cooling from the lower side of the crucible 1 by the cooling tank 11, and raising and lowering of the crucible 1 by the lifting drive mechanism 12, a heating mechanism such as a heating element can be used.
  • the arrangement is not particularly limited.
  • thermocouple 5 In order to detect the temperature of the bottom surface of the crucible 1, a crucible lower thermocouple 5 is disposed near the center of the lower surface of the crucible 1, and an outer crucible lower thermocouple 6 is disposed near the center of the lower surface of the outer crucible. And the heating state by the resistance heater 10 is controlled.
  • a thermocouple or a radiation thermometer for detecting temperature may be arranged.
  • the inside of the chamber 7 can be kept in a sealed state so that external oxygen gas, nitrogen gas, etc. do not flow in.
  • an inert gas such as argon gas is introduced to maintain an inert atmosphere.
  • the silicon raw material 4 is filled into the crucible 1, degassing (evacuation), gas replacement in the chamber 7 by introducing an inert gas, melting of the silicon raw material 4 by heating, A polycrystalline silicon ingot is manufactured through the steps of melting confirmation and holding, temperature control and solidification start by operation of the lifting drive mechanism 12, solidification completion confirmation and annealing, and ingot removal.
  • the detection temperature near the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon is Tm
  • the detection temperature decreases from (Tm ⁇ 20) ° C. to (Tm ⁇ 60) ° C.
  • the conditions are such that there is a time for the temperature to drop at a temperature change rate of ⁇ 10 ° C./hour.
  • the detection temperature at a position 20 mm below the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon is Tm ′, and the detection temperature is from (Tm′ ⁇ 20) ° C. to (Tm′ ⁇ 60). While the temperature is lowered to 0 ° C., the temperature is changed at a rate of 1 to 10 ° C./hour so that the time for temperature reduction exists.
  • the present inventors have confirmed the following.
  • the temperature in the vicinity of the center of the bottom surface of the crucible and the temperature in the lower 20 mm position near the center of the bottom surface of the crucible show a substantially constant value immediately before the completion of melting.
  • this constant value as the reference temperature (Tm and Tm ′, respectively)
  • the temperature under the crucible rises as the liquid temperature rises, but usually the temperature is gradually lowered after that in order to enter the unidirectional solidification process.
  • the temperature measurement point does not necessarily have to be in the vicinity of the crucible bottom surface center or the lower 20 mm position near the crucible bottom surface center, and can be a temperature range where nucleation occurs at the crucible bottom surface, as long as the temperature can be correlated with the temperature near the crucible bottom surface center.
  • a position convenient for thermocouple installation can be selected as appropriate.
  • the temperature of the temperature measurement point selected in this way changes while maintaining a substantially constant difference from the temperature in the vicinity of the center of the bottom of the crucible. It is desirable that the central portion be less susceptible to changes in the heater output within the surface.
  • the detected temperature of the thermocouple installed near the center of the lower surface of the outer crucible 2 always has a certain temperature difference from the detected temperature near the center of the lower surface of the crucible 1
  • the detected temperature near the center of the bottom surface of the outer crucible 2 when T is constant (the melting point of silicon) is Tm ′′
  • the detected temperature near the center of the bottom surface of the outer crucible is from (Tm ′′ ⁇ 20) ° C. to (Tm ′′ ⁇ 60).
  • the temperature can be controlled by assuming that the detection temperature in the vicinity of the center of the bottom surface of the crucible is equivalent to the decrease in temperature from (Tm-20) ° C to (Tm-60) ° C.
  • the detected temperature of the thermocouple installed near the center of the lower surface of the outer crucible 2 is always a difference of ⁇ 10 ° C. from the detected temperature near the center of the lower surface of the crucible 1.
  • the temperature can be controlled in the production method of the present invention while the temperature decreases from (Tm′ ⁇ 20) ° C. to (Tm′ ⁇ 60) ° C.
  • the generation of crystal nuclei starts from the molten silicon at the bottom of the crucible, and the crystal grain size is determined based on the probability of crystal nucleation at the bottom of the crucible and the growth rate of the crystal nuclei. It is thought that it depends on. And since there is time to cool at the above temperature change rate, the horizontal growth rate of crystal nuclei at the crucible bottom is suppressed, and as a result, the generation density of crystal nuclei is increased and the crystal grain size is controlled to be small It is possible to reduce the crystal defects on the top side of the polycrystalline silicon ingot and relieve the deterioration of the characteristics.
  • the temperature change rate of cooling is more than 0 ° C./hour and less than 1 ° C./hour, it is good in terms of controlling the crystal grain size to be small, but it takes too much time for crystal growth, and as a result, the crucible is melted into molten silicon. Alternatively, the diffusion (elution) of metal impurities into the solidified silicon is facilitated, and the merit may be offset. If the rate of temperature change of cooling exceeds 10 ° C./hour, the horizontal growth rate of crystal nuclei generated at the bottom of the crucible cannot be suppressed, and as a result, the generation density of crystal nuclei cannot be increased. Therefore, the temperature change rate of cooling is preferably between 1 and 10 ° C./hour. A more preferable temperature change rate is 2 to 7 ° C./hour.
  • the rate of time during which the temperature lowers at a temperature change rate of 1 to 10 ° C./hour during the above temperature decrease is preferably higher, for example, preferably 20% or more. % Or more is more preferable.
  • this ratio is high, the generation density of crystal nuclei at the bottom of the crucible is high, and the ratio of the region where the crystal grain size is small is increased.
  • the polycrystalline silicon ingot of the present invention is manufactured by the polycrystalline silicon ingot manufacturing method of the present invention.
  • the polycrystalline silicon block of the present invention can be obtained by processing the polycrystalline silicon ingot of the present invention.
  • the polycrystalline silicon block can be obtained, for example, by cutting a surface portion where impurities such as a crucible material may be diffused in the polycrystalline silicon ingot of the present invention using a known apparatus such as a band saw. it can. Moreover, you may grind
  • the polycrystalline silicon wafer of the present invention can be obtained by processing the polycrystalline silicon block of the present invention.
  • the polycrystalline silicon wafer can be obtained, for example, by slicing the polycrystalline silicon block of the present invention to a desired thickness using a known apparatus such as a multi-wire saw. At present, a thickness of about 170 to 200 ⁇ m is generally used, but the trend is to reduce the thickness for cost reduction. Further, if necessary, the surface of the polycrystalline silicon wafer may be polished.
  • the polycrystalline silicon solar cell of the present invention is manufactured using the crystalline silicon wafer of the present invention.
  • a polycrystalline silicon solar cell can be manufactured, for example, by a known solar cell process using the crystalline silicon wafer of the present invention. That is, in the case of a silicon wafer doped with a p-type impurity by a known method using a known material, an n-type impurity is doped to form an n-type layer to form a pn junction, and the surface electrode And a back surface electrode is formed and a polycrystalline silicon solar cell is obtained.
  • a p-type impurity is doped to form a p-type layer to form a pn junction, and a surface electrode and a back electrode are formed to form a polycrystalline silicon solar A battery cell is obtained.
  • MIS type solar cells in which a metal is deposited with a thin insulating layer interposed therebetween, for example, a silicon thin film such as a conductive amorphous type opposite to a polycrystalline wafer is used.
  • a silicon thin film such as a conductive amorphous type opposite to a polycrystalline wafer is used.
  • films formed and utilizing p-type and n-type silicon heterojunctions having different structures. Further, a plurality of them are electrically connected to obtain a polycrystalline silicon solar cell module.
  • the inside of the apparatus was evacuated and replaced with argon gas. Thereafter, the silicon raw material is melted using a heating mechanism (graphite heater 10) disposed beside the crucible as a heating means of the apparatus, and after confirming melting of all raw materials, the silicon is unidirectionally solidified under the following conditions. Annealing was performed at a temperature of 2 ° C. for 2 hours, the temperature was lowered at a cooling rate of 100 ° C./hour, and the polycrystalline silicon ingot was taken out from the apparatus.
  • a heating mechanism graphite heater 10
  • the temperature change rate of the thermocouple becomes 0. 0% while the detected temperature near the center of the bottom of the crucible decreases from Tm-20 ° C to Tm-60 ° C. 5 ° C./hour, 1 ° C./hour, 2 ° C./hour, 5 ° C./hour, 7 ° C./hour, 10 ° C./hour, 15 ° C./hour, and 20 ° C./hour were almost constant.
  • “Temperature change rate” indicates a negative slope in cooling. In this test, the measured value of Tm was in the range of 1410 ° C to 1418 ° C.
  • the temperature conditions other than the temperature change rate of the thermocouple were made almost the same, and in particular, only the influence of nucleation at the bottom of the ingot could be evaluated.
  • the difference was constantly maintained with a difference of about 10 ° C. It was confirmed that the temperature range of the detected temperature near the center from Tm-20 ° C to Tm-60 ° C corresponds to the detected temperature Tm'-20 ° C to Tm'-60 ° C near the bottom center of the outer crucible 2.
  • the obtained polycrystalline silicon ingot is processed into a block (156 mm ⁇ 156 mm ⁇ 200 mm) using a band saw, further sliced using a wire saw, and a polycrystalline silicon wafer (156 mm ⁇ 156 mm ⁇ thickness 0.18 mm) About 12,000 sheets were obtained.
  • the obtained polycrystalline silicon wafer was put into a normal solar cell process to produce 12,000 solar cells (outer dimensions 156 mm ⁇ 156 mm ⁇ thickness 0.18 mm) per ingot, and the output (W ) was measured.
  • Test Example 2 Examination of Occupancy Rate of Temperature Change Rate
  • the ratio of time that the temperature change rate of the thermocouple becomes 1 to 10 ° C./hour (occupation Rate) is 0%, 20%, 40%, 60%, 80%, and 100%, respectively, except that a polycrystalline silicon ingot is manufactured and a solar cell is manufactured in the same manner as in Test Example 1.
  • the output distribution was evaluated. Except for the range in which the temperature change rate is 1 to 10 ° C./hour, the average temperature change rate was adjusted to 25 ° C./hour. In this test, the measured value of Tm was in the range of 1407 ° C to 1415 ° C.
  • TG1, TG10, and TG25 indicate lines with temperature change rates of 1 ° C./hour, 10 ° C./hour, and 25 ° C./hour, respectively. That is, in Test Example 2, as in Test Example 1, only the influence of nucleation at the bottom of the ingot can be evaluated. The obtained results are shown in Table 2 and FIG.
  • thermocouple under crucible thermocouple under crucible 20 mm
  • Chamber 8 Heat insulating material 9
  • Control device 10 Resistance heater (graphite heater) 11
  • Cooling tank 12 Lifting drive mechanism TG1 Temperature change rate 1 ° C / hour line TG10 Temperature change rate 10 ° C / hour line TG25 Temperature change rate 25 ° C / hour line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A process for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible upward from the bottom of the crucible, wherein the molten silicon is unidirectionally solidified under such conditions that when the temperature measured at a position in the vicinity of the center of the undersurface of the crucible falls from (Tm-20)°C to (Tm-60)°C, where Tm is the temperature measured at the position when the silicon temperature is the melting point of the silicon, then there is a period during which that temperature falls at a rate of 1-10 °C/hr, thereby obtaining the polycrystalline silicon ingot.

Description

多結晶シリコンインゴットとその製造方法およびその用途Polycrystalline silicon ingot, method for producing the same, and use thereof
 この発明は、多結晶シリコンインゴットとその製造方法およびその用途に関する。 The present invention relates to a polycrystalline silicon ingot, its manufacturing method, and its use.
 地球環境に様々な問題を引き起こしている石油などの代替として自然エネルギーの利用が注目されている。その中でも太陽電池は大きな設備を必要とせず、稼働時に騒音などを発生しないことから、日本や欧州などで特に積極的に導入されてきている。
 カドミウムテルルなどの化合物半導体を用いた太陽電池も一部で実用化されているが、物質自体の安全性やこれまでの実績、またコストパフォーマンスの面から、結晶シリコン基板を用いた太陽電池が大きなシェアを占め、その中でも多結晶シリコン基板を用いた太陽電池(多結晶シリコン太陽電池)が大きなシェアを占めている。
The use of natural energy is attracting attention as an alternative to oil, which is causing various problems in the global environment. Among them, the solar cell does not require a large facility and does not generate noise during operation, and thus has been particularly actively introduced in Japan and Europe.
Solar cells using compound semiconductors such as cadmium tellurium have also been put into practical use, but solar cells using crystalline silicon substrates are large in terms of the safety of the materials themselves, past achievements, and cost performance. Solar cells using a polycrystalline silicon substrate (polycrystalline silicon solar cells) occupy a large share.
 多結晶シリコン太陽電池の基板として一般的に広く用いられている多結晶シリコンウエハは、坩堝内で溶融シリコンを一方向凝固させて大きな多結晶シリコンインゴットを得るキャスト法と呼ばれる方法で製造したインゴットをブロックに切り出し、スライスによりウエハ化したものである。
 キャスト法で製造した多結晶シリコンウエハは、インゴットまたはブロック内の高さ方向の位置により、一般的に図5に示すような太陽電池の出力特性に分布を有している。
A polycrystalline silicon wafer, which is generally widely used as a substrate for polycrystalline silicon solar cells, is an ingot manufactured by a method called a casting method in which molten silicon is unidirectionally solidified in a crucible to obtain a large polycrystalline silicon ingot. It is cut into blocks and made into wafers by slicing.
The polycrystalline silicon wafer manufactured by the casting method generally has a distribution in the output characteristics of the solar cell as shown in FIG. 5 depending on the position in the height direction in the ingot or block.
 図5の特性分布が生じる原因は一般的に以下のように説明されている。
 まず一方向凝固の初期の領域Iでは、坩堝から拡散した不純物の影響により特性低下が起こる。その上部側の領域IIでは、偏析による原料中の不純物の結晶中への取り込みや結晶欠陥の発生が少ないために、ブロック中で最も特性が良好となる。さらに上部側の領域IIIでは、結晶中に取り込まれる不純物量が徐々に増えることに加え、結晶欠陥の発生が増加し、領域IIよりも特性が低下する。さらに上部側の領域IVでは、領域IIIと同様に、結晶中に取り込まれる不純物量や結晶欠陥の発生がさらに増加することに加えて、インゴットが最後まで凝固した後に、最上部表面部分にできた不純物の高濃度部分から不純物の逆拡散が起こり、さらに不純物量が増加するために、領域IIIよりもさらに特性低下が顕著になる。
 上記の説明では、原料中の不純物や坩堝から溶出する不純物の影響を考慮しているが、仮にそれらの影響がない場合でも、領域IIIおよびIVでは、上部に向かうにしたがって少数キャリアトラップとなる結晶欠陥が徐々に増加するために、太陽電池の特性は低下する傾向にある。
The cause of the characteristic distribution of FIG. 5 is generally explained as follows.
First, in the region I at the initial stage of unidirectional solidification, the characteristics deteriorate due to the influence of impurities diffused from the crucible. In the region II on the upper side, since the incorporation of impurities in the raw material due to segregation and the occurrence of crystal defects are few, the characteristics are the best in the block. Further, in the upper region III, the amount of impurities taken into the crystal gradually increases, the generation of crystal defects increases, and the characteristics are deteriorated as compared with the region II. Furthermore, in the upper region IV, similarly to the region III, in addition to further increasing the amount of impurities incorporated into the crystal and the generation of crystal defects, the upper surface portion was formed after the ingot solidified to the end. Impurity reverse diffusion occurs from the high concentration portion of the impurity, and the amount of the impurity further increases, so that the characteristic deterioration becomes more remarkable than in the region III.
In the above description, the influence of impurities in the raw material and impurities eluted from the crucible is considered, but even if there is no such influence, in regions III and IV, crystals that become minority carrier traps toward the top Since defects increase gradually, the characteristics of solar cells tend to deteriorate.
 結晶欠陥が発生する原因は、インゴット中の温度分布に起因する応力であると考えられ、これを抑制するという観点から、次の2つの方法が提案されている。
 第1に、例えば、日本特開2005-152985号公報(特許文献1)には、一方向凝固(キャスト)時に坩堝下部に設置する鋳型ホルダとして、中心部の熱流束が周辺よりも大きいものを使用する方法が提案されている。
 第2に、例えば、国際公開第2005/092791(特許文献2)には、受熱(熱交換)面積を可変にできる構造により、インゴット成長の途中で熱流制御を行う方法が提案されている。
The cause of the occurrence of crystal defects is considered to be the stress caused by the temperature distribution in the ingot. From the viewpoint of suppressing this, the following two methods have been proposed.
First, for example, in Japanese Patent Application Laid-Open No. 2005-152985 (Patent Document 1), a mold holder that is installed at the lower part of a crucible during unidirectional solidification (casting) has a larger heat flux at the center than at the periphery. A method to use is proposed.
Secondly, for example, International Publication No. 2005/092791 (Patent Document 2) proposes a method of performing heat flow control during ingot growth with a structure that can change the heat receiving (heat exchange) area.
 また、上記の方法とは別の多結晶シリコンインゴットの品質向上対策として、大粒径化を目的とした方法が提案されている。
 例えば、日本特許第4203603号公報(特許文献3)および日本特開2005-132671号公報(特許文献4)には、坩堝底部を急冷することにより、インゴット底部に(凝固初期に)結晶核としてデンドライト結晶を発生させて、結晶粒を粗大化させる方法が提案されている。
 また、日本特許第4054873号公報(特許文献5)には、シリコン原料の融解工程において残存させた結晶片(溶け残り)を成長させ結晶粒を肥大させて、擬似単結晶を得る方法が提案されている。
 さらに、日本特許第4569957号公報(特許文献6)には、坩堝底に結晶方位を揃えて配置したSiCなどの種結晶からシリコンをヘテロエピ成長させて、擬似単結晶を得る方法が提案されている。
Further, as a measure for improving the quality of a polycrystalline silicon ingot different from the above method, a method aimed at increasing the particle size has been proposed.
For example, Japanese Patent No. 4203603 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2005-132671 (Patent Document 4) disclose a dendrite as a crystal nucleus at the bottom of an ingot (at the beginning of solidification) by quenching the bottom of the crucible. There has been proposed a method of generating crystals and coarsening crystal grains.
Japanese Patent No. 4054873 (Patent Document 5) proposes a method of obtaining a pseudo single crystal by growing crystal pieces (undissolved) left in the melting step of silicon raw material and enlarging crystal grains. ing.
Furthermore, Japanese Patent No. 4569957 (Patent Document 6) proposes a method of obtaining a pseudo single crystal by heteroepitaxially growing silicon from a seed crystal such as SiC arranged with the crystal orientation aligned on the crucible bottom. .
日本特開2005-152985号公報Japanese Unexamined Patent Publication No. 2005-152985 国際公開第2005/092791International Publication No. 2005/092791 日本特許第4203603号公報Japanese Patent No. 4203603 日本特開2005-132671号公報Japanese Unexamined Patent Publication No. 2005-132671 日本特許第4054873号公報Japanese Patent No. 4054873 日本特許第4569957号公報Japanese Patent No. 4569957
 特許文献1の方法では、特にヒータが坩堝横にあるような場合、固液界面の形状をより悪化させる結果となり、結晶欠陥密度の低減や割れ防止などの効果が得られないという課題がある。
 特許文献2の方法では、坩堝側壁からの抜熱の制御性を向上させることはできるものの、装置構成が大変複雑で、高温の可動部分が多く、装置のコストアップや故障が増加するという課題がある。
In the method of Patent Document 1, particularly when the heater is next to the crucible, the shape of the solid-liquid interface is further deteriorated, and there is a problem that effects such as reduction of crystal defect density and prevention of cracking cannot be obtained.
Although the method of Patent Document 2 can improve the controllability of heat removal from the crucible side wall, there is a problem that the device configuration is very complicated, there are many high-temperature movable parts, and the cost of the device increases and the failure increases. is there.
 特許文献3~5の方法では、結晶粒の粗大化により粒界による特性低下を抑制でき、特にインゴットサイズが小さい場合には、温度分布による応力が比較的小さく、インゴットのトップ側で導入される結晶欠陥もある程度抑えられるというメリットがある。しかし、インゴットサイズが大きくなると共にトップ側での結晶欠陥が増加するために、ボトム側での特性向上が見られるものの、やはりトップ側で作製した太陽電池における特性が低下するという課題が残る。 In the methods of Patent Documents 3 to 5, deterioration of characteristics due to grain boundaries can be suppressed by coarsening of crystal grains, and particularly when the ingot size is small, the stress due to temperature distribution is relatively small and is introduced on the top side of the ingot. There is an advantage that crystal defects can be suppressed to some extent. However, as the ingot size increases and crystal defects on the top side increase, the characteristics on the bottom side are improved, but the problem still remains that the characteristics of the solar cell fabricated on the top side deteriorate.
 特許文献6の方法では、隣り合うSiCなどの種結晶から成長したシリコン結晶がぶつかりあう境界部分で欠陥が形成され、インゴットは巨視的には単結晶に見えても電気的には多くの欠陥を含むものと考えられる。またトップ側に関しては、インゴットサイズが大きくなると共にトップ側での結晶欠陥密度が高くなり、やはりトップ側で作製した太陽電池における特性が低下するという課題が残る。 In the method of Patent Document 6, defects are formed at a boundary portion where silicon crystals grown from adjacent seed crystals such as SiC collide, and an ingot has many defects electrically even though it looks macroscopically. It is thought to include. On the top side, the ingot size increases and the crystal defect density on the top side increases, and the problem remains that the characteristics of the solar cell fabricated on the top side also deteriorate.
 他方、多結晶シリコンインゴットのサイズが大きいほど、多結晶シリコンウエハの1枚当たりの価格を抑えることができるため、インゴットのサイズは大型化する傾向にある。
 したがって、最終的な多結晶シリコン太陽電池モジュールの高性能化および低価格化のためには、大きなサイズの多結晶シリコンインゴットの製造において、結晶欠陥密度の低減や割れ防止を簡便でかつ低コストで行うことが可能な方法が求められている。
On the other hand, the larger the size of the polycrystalline silicon ingot, the lower the price per polycrystalline silicon wafer can be, so the size of the ingot tends to increase.
Therefore, in order to improve the performance and cost of the final polycrystalline silicon solar cell module, it is easy and low-cost to reduce the crystal defect density and prevent cracking in the production of large-sized polycrystalline silicon ingots. There is a need for a method that can be performed.
 本発明は、結晶欠陥密度の低減や割れ防止を簡便でかつ低コストで行うことが可能な大きなサイズの多結晶シリコンインゴットの製造方法およびそれにより得られる多結晶シリコンインゴットならびにその用途を提供することを課題とする。 The present invention provides a method for producing a large-sized polycrystalline silicon ingot capable of reducing the crystal defect density and preventing cracks easily and at low cost, and the polycrystalline silicon ingot obtained thereby and use thereof. Is an issue.
 本発明者らは、鋭意研究を重ねた結果、坩堝中の溶融シリコンを坩堝の底部から上部に一方向凝固させて多結晶シリコンインゴットを製造する際に、凝固(結晶成長)が開始される坩堝底部における温度を結晶核の発生を促進する条件に制御することにより、上記の課題を解消できることを見出し、本発明に至った。 As a result of intensive research, the inventors of the present invention have started solidification (crystal growth) when producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom to the top of the crucible. The present inventors have found that the above-mentioned problems can be solved by controlling the temperature at the bottom to conditions that promote the generation of crystal nuclei.
 かくして、本発明によれば、坩堝中の溶融シリコンを前記坩堝の底部から上方に一方向凝固させて多結晶シリコンインゴットを製造する方法であり、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の検知温度をTmとして前記検知温度が(Tm-20)℃から(Tm-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件下で、前記溶融シリコンを一方向凝固させて多結晶シリコンインゴットを得る多結晶シリコンインゴット製造方法が提供される。 Thus, according to the present invention, there is a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom of the crucible, and the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon. Conditions in which there is a time for the temperature to fall at a temperature change rate of 1 to 10 ° C./hour while the detected temperature is lowered from (Tm−20) ° C. to (Tm−60) ° C. with the detection temperature in the vicinity as Tm. Thus, there is provided a polycrystalline silicon ingot manufacturing method for obtaining a polycrystalline silicon ingot by unidirectionally solidifying the molten silicon.
 また、本発明によれば、坩堝中の溶融シリコンを前記坩堝の底部から上方に一方向凝固させて多結晶シリコンインゴットを製造する方法であり、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の下方20mm位置の検知温度をTm’として前記検知温度が(Tm’-20)℃から(Tm’-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件下で、前記溶融シリコンを一方向凝固させて多結晶シリコンインゴットを得る多結晶シリコンインゴット製造方法が提供される。 Further, according to the present invention, there is provided a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible upward from the bottom of the crucible, and the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon. The temperature decreases at a temperature change rate of 1 to 10 ° C./hour while the detected temperature is lowered from (Tm′−20) ° C. to (Tm′−60) ° C. with the detected temperature at the lower 20 mm position in the vicinity as Tm ′. There is provided a method for producing a polycrystalline silicon ingot that obtains a polycrystalline silicon ingot by unidirectionally solidifying the molten silicon under conditions where there is time to perform.
 また、本発明によれば、上記の多結晶シリコンインゴット製造方法により製造された多結晶シリコンインゴット、その多結晶シリコンインゴットを加工して得られた多結晶シリコンブロック、その多結晶シリコンブロックを加工して得られた多結晶シリコンウエハおよびその多結晶シリコンウエハを用いて製造された多結晶シリコン太陽電池が提供される。
 本発明において、「太陽電池」とは、最小ユニットを構成する「太陽電池セル」およびその複数個を電気的に接続した「太陽電池モジュール」を意味する。
Further, according to the present invention, a polycrystalline silicon ingot produced by the above-described polycrystalline silicon ingot producing method, a polycrystalline silicon block obtained by processing the polycrystalline silicon ingot, and processing the polycrystalline silicon block A polycrystalline silicon wafer obtained by the above and a polycrystalline silicon solar cell manufactured using the polycrystalline silicon wafer are provided.
In the present invention, the “solar battery” means a “solar battery module” in which a “solar battery cell” constituting a minimum unit and a plurality thereof are electrically connected.
 本発明によれば、結晶欠陥密度の低減や割れ防止を簡便でかつ低コストで行うことが可能な大きなサイズの多結晶シリコンインゴットの製造方法およびそれにより得られる多結晶シリコンインゴットならびにその用途を提供することができる。
 すなわち、本発明によれば、高品質の多結晶シリコンインゴット、ブロックおよびウエハを低価格で製造することができ、コストパフォーマンスの高い、高出力の多結晶シリコン太陽電池を市場に供給することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the large-sized polycrystalline silicon ingot which can perform the reduction | decrease of a crystal defect density and prevention of a crack simply and at low cost, the polycrystalline silicon ingot obtained by that, and its use are provided. can do.
That is, according to the present invention, high-quality polycrystalline silicon ingots, blocks and wafers can be manufactured at low prices, and high-performance polycrystalline silicon solar cells with high cost performance can be supplied to the market. .
 本発明の多結晶シリコンインゴットの製造方法は、上記の温度変化率が2~7℃/時間である場合に、上記の1~10℃/時間の温度変化率で温度低下する時間が20%以上存在する場合に、上記の効果が特に発揮される。 In the method for producing a polycrystalline silicon ingot according to the present invention, when the temperature change rate is 2 to 7 ° C./hour, the time during which the temperature decreases at the temperature change rate of 1 to 10 ° C./hour is 20% or more. When present, the above effects are particularly exerted.
多結晶シリコンインゴット製造時の坩堝下面中央近傍の温度変化を示す図である(試験例2)。It is a figure which shows the temperature change of the crucible lower surface center vicinity at the time of polycrystalline silicon ingot manufacture (Test Example 2). 太陽電池の出力と多結晶シリコンインゴット製造時の温度変化率との関係を示す図である(試験例1)。It is a figure which shows the relationship between the output of a solar cell, and the temperature change rate at the time of polycrystalline silicon ingot manufacture (Test Example 1). 太陽電池の出力と多結晶シリコンインゴット製造時の温度変化率の占有率との関係を示す図である(試験例2)。It is a figure which shows the relationship between the output of a solar cell, and the occupation rate of the temperature change rate at the time of polycrystalline silicon ingot manufacture (Test Example 2). 本発明の多結晶半導体インゴットの製造方法に用いられる装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the apparatus used for the manufacturing method of the polycrystalline semiconductor ingot of this invention. 一般的な多結晶シリコンインゴットの高さ方向の位置と作製した太陽電池の出力との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the position of the height direction of a common polycrystalline silicon ingot, and the output of the produced solar cell.
 本発明の多結晶シリコンインゴットの製造方法は、坩堝中の溶融シリコンを前記坩堝の底部から上方に一方向凝固させて多結晶シリコンインゴットを製造する方法であり、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の検知温度をTmとして前記検知温度が(Tm-20)℃から(Tm-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件下で、前記溶融シリコンを一方向凝固させて多結晶シリコンインゴットを得ることを特徴とする。 The method for producing a polycrystalline silicon ingot according to the present invention is a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom of the crucible, and when the silicon temperature becomes the melting point of silicon. When the detected temperature near the center of the bottom of the crucible is Tm, the time during which the temperature decreases at a temperature change rate of 1 to 10 ° C./hour while the detected temperature decreases from (Tm-20) ° C. to (Tm-60) ° C. A polycrystalline silicon ingot is obtained by unidirectionally solidifying the molten silicon under existing conditions.
 上記の検知温度「Tm」は、坩堝内で原料固体シリコンを溶融する場合には、シリコン溶融完了直前にシリコン融液温度がシリコンの融点で一定値をとり、坩堝下面中央近傍の検知温度もほぼ一定となる時の検知温度として決定できる。この状態では、シリコン融液温度は、シリコンの融点となっており、Tmはその時の坩堝下面中央近傍の検知温度である。坩堝台は常に冷却されるため、Tmはシリコンの融点より数℃低いものと考えられる。Tmの実測絶対値は熱電対の較正方法や劣化度合い、個体差、装置への設置のばらつきなどのため、表示に若干ばらつきはあり、実測絶対値の誤差は大きい。但し、Tmを基準として坩堝下面中央近傍の検知温度を補正することで、上記ばらつき要因を排除することができ、結晶成長条件の再現性を確保可能となる。本実施例でのTmの実測絶対値は上記のような理由でシリコンの融点よりも高い場合も見られ、1407℃から1418℃の範囲内であった。
 坩堝にシリコン融液を注ぐ方式の多結晶シリコンインゴット製造装置などの場合には、例えば、放射温度計で融液の温度を測定し、坩堝下面中央近傍での検知温度との相関をとることで上記「Tm」を決定することが可能である。
When the raw material silicon is melted in the crucible, the detected temperature “Tm” is equal to the silicon melt temperature immediately before the completion of silicon melting, and the detected temperature near the bottom of the crucible is almost the same. It can be determined as the detected temperature when it becomes constant. In this state, the silicon melt temperature is the melting point of silicon, and Tm is a detected temperature near the center of the bottom surface of the crucible at that time. Since the crucible base is always cooled, it is considered that Tm is several degrees lower than the melting point of silicon. The actual measured absolute value of Tm varies slightly due to the thermocouple calibration method, the degree of deterioration, individual differences, variation in installation in the apparatus, etc., and the error in the actual measured absolute value is large. However, by correcting the detected temperature in the vicinity of the center of the bottom surface of the crucible with reference to Tm, the above-mentioned variation factor can be eliminated, and the reproducibility of the crystal growth conditions can be ensured. The measured absolute value of Tm in this example was also found to be higher than the melting point of silicon for the reasons described above, and was in the range of 1407 ° C. to 1418 ° C.
In the case of a polycrystalline silicon ingot manufacturing system that pours silicon melt into a crucible, for example, by measuring the temperature of the melt with a radiation thermometer and correlating it with the detected temperature near the center of the bottom of the crucible It is possible to determine the “Tm”.
 また本発明の多結晶シリコンインゴットの製造方法は、坩堝中の溶融シリコンを前記坩堝の底部から上方に一方向凝固させて多結晶シリコンインゴットを製造する方法であり、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の下方20mm位置の検知温度をTm’として前記検知温度が(Tm’-20)℃から(Tm’-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件下で、前記溶融シリコンを一方向凝固させて多結晶シリコンインゴットを得ることを特徴とする。 The method for producing a polycrystalline silicon ingot according to the present invention is a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible upward from the bottom of the crucible, and the silicon temperature becomes the melting point of silicon. The detected temperature at the lower 20 mm position near the center of the bottom surface of the crucible at the time is Tm ′, and the detected temperature decreases from (Tm′−20) ° C. to (Tm′−60) ° C. A polycrystalline silicon ingot is obtained by unidirectionally solidifying the molten silicon under a condition in which time for temperature decrease at a rate of change exists.
 上記の検知温度「Tm’」は、温度測定ポイントが異なるだけで、前記「Tm」と同様に決定することができる。ここでは温度測定ポイントとして、坩堝下面近傍の下方20mm位置を選んだが、坩堝と熱的に導通があり、坩堝内のシリコンの温度と相関の取れる領域であれば温度測定ポイントとなりえる。 The detected temperature “Tm ′” can be determined in the same manner as “Tm”, except that the temperature measurement point is different. Here, the position 20 mm below the lower surface of the crucible is selected as the temperature measurement point. However, the temperature measurement point can be a temperature measurement point as long as it is thermally connected to the crucible and correlates with the temperature of silicon in the crucible.
 本発明者らは、多数の多結晶シリコンインゴットについて結晶欠陥の評価、分析および検討を行った結果、インゴットのトップ側の結晶欠陥密度を低減する方法として、従来から有効であると考えられ、そして常用されている温度分布の抑制による応力低減以外に全く別の方法があることを見出した。
 具体的には、本発明者らは、結晶粒の粗大化により粒界による特性低下を抑制するという特許文献3~6に記載の技術とは全く逆の発想で、結晶粒径の小さい多結晶シリコンインゴットが、結晶粒径の大きいものと比較して、応力に強く、結晶欠陥が発生し難いことを見出した。
As a result of evaluating, analyzing and examining crystal defects for a large number of polycrystalline silicon ingots, the present inventors have been considered to be effective as a method for reducing the crystal defect density on the top side of the ingot, and It has been found that there is a completely different method other than the stress reduction by suppressing the temperature distribution that is commonly used.
Specifically, the present inventors have developed a polycrystal having a small crystal grain size, which is completely opposite to the techniques described in Patent Documents 3 to 6 in which deterioration of characteristics due to grain boundaries is suppressed by coarsening of crystal grains. It has been found that a silicon ingot is more resistant to stress and less prone to crystal defects than a silicon ingot having a large crystal grain size.
 本発明者らの知見によれば、(1)多結晶シリコンインゴット内ですぐ隣り合った部分であっても結晶粒径の大きい粒と小さい粒とでは内部に導入されている結晶欠陥密度が大きく異なり、(2)インゴットの結晶粒径とそのトップ側の結晶欠陥密度との間に相関があり、(3)例外はあるものの結晶粒径が小さいほどインゴットのトップ側の結晶欠陥密度が低い。インゴット内の隣り合った部分で、インゴット成長時に受ける熱ストレスに大きな差があるとは考え難いことから、結晶粒径の小さな部分は、粒界部分のすべりなどにより結晶粒内が受けるストレスが緩和され、結果的に結晶粒内への結晶欠陥導入が抑えられるものと考えられる。 According to the knowledge of the present inventors, (1) the density of crystal defects introduced into the inside is large between the grains having a large crystal grain size and the grains having a small crystal grain size even in the portion immediately adjacent to each other in the polycrystalline silicon ingot. Unlikely, (2) there is a correlation between the crystal grain size of the ingot and the crystal defect density on the top side. (3) Although there are exceptions, the smaller the crystal grain size, the lower the crystal defect density on the top side of the ingot. Since it is difficult to think that there is a large difference in thermal stress applied during ingot growth between adjacent parts in the ingot, the stress received in the crystal grains is mitigated due to slipping of the grain boundary part, etc. As a result, it is considered that the introduction of crystal defects into the crystal grains can be suppressed.
 したがって、坩堝中の溶融シリコンを一方向凝固させて多結晶シリコンインゴットを製造する際に、坩堝底部での結晶核の発生を促進して結晶粒径を小さくすることで、多結晶シリコンインゴットのトップ側の特性低下を和らげることができる。
 多結晶シリコンインゴットのトップ側の結晶欠陥を低減するためには、これまで、固液界面の平坦化など、インゴットにかかる熱ストレスの低減が必要と考えられてきたのに対して、本発明では、結晶粒径を小さくする結晶粒径の制御のみで、多結晶シリコンインゴットのトップ側の結晶欠陥を低減できる。
Therefore, when producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in the crucible, the top of the polycrystalline silicon ingot is reduced by promoting the generation of crystal nuclei at the bottom of the crucible and reducing the crystal grain size. The side characteristic deterioration can be relieved.
In order to reduce crystal defects on the top side of a polycrystalline silicon ingot, it has been thought that it is necessary to reduce the thermal stress applied to the ingot, such as flattening of the solid-liquid interface. The crystal defects on the top side of the polycrystalline silicon ingot can be reduced only by controlling the crystal grain size to reduce the crystal grain size.
 本発明の多結晶シリコンインゴットの製造方法に利用できる多結晶シリコンインゴット製造装置は、特に限定されるわけではなく、公知の製造装置を用いて実施できる。
 一例として挙げると、例えば、坩堝の台座側に設けられた冷媒循環のような冷却機構によって坩堝底面を冷却することと、昇降駆動機構によって坩堝を加熱機構から遠ざけることとの併用により、坩堝中の溶融シリコンを、坩堝の底部付近の溶融シリコンから徐々に凝固させる方式の製造装置などにより実施可能である。その際、公知の方法、具体的には熱電対や放射温度計によりヒータ温度を制御し、シリコンの溶融および凝固、冷却の温度変化率などを監視する。
The polycrystalline silicon ingot production apparatus that can be used in the method for producing a polycrystalline silicon ingot of the present invention is not particularly limited, and can be implemented using a known production apparatus.
As an example, for example, by combining the cooling of the bottom of the crucible with a cooling mechanism such as a refrigerant circulation provided on the base side of the crucible and the distance from the heating mechanism with a lifting drive mechanism, It can be implemented by a manufacturing apparatus or the like that gradually melts molten silicon from molten silicon near the bottom of the crucible. At that time, the heater temperature is controlled by a known method, specifically, a thermocouple or a radiation thermometer, and the temperature change rate of melting and solidification of silicon and cooling is monitored.
(多結晶シリコンインゴットの製造方法)
 本発明の多結晶シリコンインゴットの製造方法について、以下に図面に基づいて説明するが、本発明はこの実施形態に限定されるものではない。
 本発明の多結晶半導体インゴットの製造方法は、図4に示されるような公知の装置を用いても実施することができる。
 図4は、本発明の多結晶半導体インゴットの製造方法に用いられる装置の一例を示す概略断面図である。
(Production method of polycrystalline silicon ingot)
The method for producing a polycrystalline silicon ingot of the present invention will be described below with reference to the drawings, but the present invention is not limited to this embodiment.
The method for producing a polycrystalline semiconductor ingot of the present invention can also be carried out using a known apparatus as shown in FIG.
FIG. 4 is a schematic cross-sectional view showing an example of an apparatus used in the method for producing a polycrystalline semiconductor ingot according to the present invention.
 この装置は、一般に多結晶シリコンインゴットを製造するために使用され、抵抗加熱炉を構成するチャンバー(密閉容器)7を有している。
 チャンバー7の内部には、黒鉛製、石英(SiO2)製などの坩堝1が配置され、チャンバー7の内部の雰囲気を密閉状態で保持できるようになっている。
 坩堝1が収容されるチャンバー7内には、坩堝1を支持する、黒鉛製の坩堝台3が配置されている。坩堝台3は、昇降駆動機構12により昇降が可能であり、その内部には冷却槽11内の冷媒(冷却水)が循環されるようになっている。
 坩堝台3の上部には、黒鉛製などの外坩堝2が配置され、その中に坩堝1が配置されている。外坩堝2の代わりに、坩堝1を取り囲むような黒鉛製などのカバーが配置されていてもよい。
This apparatus is generally used for producing a polycrystalline silicon ingot, and has a chamber (sealed container) 7 constituting a resistance heating furnace.
A crucible 1 made of graphite, quartz (SiO 2 ) or the like is disposed inside the chamber 7 so that the atmosphere inside the chamber 7 can be maintained in a sealed state.
In the chamber 7 in which the crucible 1 is accommodated, a graphite crucible base 3 that supports the crucible 1 is disposed. The crucible base 3 can be moved up and down by a lift drive mechanism 12, and the refrigerant (cooling water) in the cooling tank 11 is circulated therein.
An outer crucible 2 made of graphite or the like is disposed on the upper portion of the crucible base 3, and the crucible 1 is disposed therein. Instead of the outer crucible 2, a cover made of graphite or the like surrounding the crucible 1 may be disposed.
 外坩堝2を取り囲むように、黒鉛ヒータのような抵抗加熱体10が配置され、さらにこれらを上方から覆うように、断熱材8が配置されている。
 抵抗加熱体10は、坩堝1の周囲から加熱して、坩堝1内の原料シリコン4を融解させることができる。
 抵抗加熱体10による加熱、上記の冷却槽11による坩堝1下方からの冷却および昇降駆動機構12による坩堝1の昇降により、本発明の温度制御が可能であれば、発熱体などの加熱機構の形態や配置は特に限定されない。
A resistance heating body 10 such as a graphite heater is disposed so as to surround the outer crucible 2, and a heat insulating material 8 is disposed so as to cover these from above.
The resistance heating body 10 can be heated from the periphery of the crucible 1 to melt the raw material silicon 4 in the crucible 1.
If the temperature control of the present invention is possible by heating by the resistance heating body 10, cooling from the lower side of the crucible 1 by the cooling tank 11, and raising and lowering of the crucible 1 by the lifting drive mechanism 12, a heating mechanism such as a heating element can be used. The arrangement is not particularly limited.
 坩堝1の底面の温度を検出するために、坩堝1下面中央近傍に坩堝下熱電対5が、外坩堝下面の中央近傍に外坩堝下熱電対6がそれぞれ配置され、これらの出力を制御装置9に入力し、抵抗加熱体10による加熱状態を制御する。上記の熱電対以外にも温度を検出するための熱電対や放射温度計が配置されていてもよい。 In order to detect the temperature of the bottom surface of the crucible 1, a crucible lower thermocouple 5 is disposed near the center of the lower surface of the crucible 1, and an outer crucible lower thermocouple 6 is disposed near the center of the lower surface of the outer crucible. And the heating state by the resistance heater 10 is controlled. In addition to the thermocouple described above, a thermocouple or a radiation thermometer for detecting temperature may be arranged.
 チャンバー7は、外部の酸素ガス、窒素ガスなどが流入しないように、その内部を密閉状態に保持でき、通常、多結晶シリコンなどのシリコン原料を投入した後でその溶融前に、チャンバー7内を真空にし、その後アルゴンガスなどの不活性ガスを導入して、不活性な雰囲気に保持する。 The inside of the chamber 7 can be kept in a sealed state so that external oxygen gas, nitrogen gas, etc. do not flow in. Normally, after the silicon raw material such as polycrystalline silicon is charged and before the melting, A vacuum is applied, and then an inert gas such as argon gas is introduced to maintain an inert atmosphere.
 このような構成の装置により、基本的に、坩堝1へのシリコン原料4の充填、脱気(真空化)および不活性ガスの導入によるチャンバー7内のガス置換、加熱によるシリコン原料4の溶融、溶融確認とその保持、温度制御および昇降駆動機構12の動作による凝固開始、固化完了確認およびアニールならびにインゴット取り出しの工程により、多結晶シリコンインゴットを製造する。 With the apparatus having such a configuration, basically, the silicon raw material 4 is filled into the crucible 1, degassing (evacuation), gas replacement in the chamber 7 by introducing an inert gas, melting of the silicon raw material 4 by heating, A polycrystalline silicon ingot is manufactured through the steps of melting confirmation and holding, temperature control and solidification start by operation of the lifting drive mechanism 12, solidification completion confirmation and annealing, and ingot removal.
 本発明の製造方法では、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の検知温度をTmとして検知温度が(Tm-20)℃から(Tm-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件にする。 In the manufacturing method of the present invention, while the detection temperature near the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon is Tm, the detection temperature decreases from (Tm−20) ° C. to (Tm−60) ° C. The conditions are such that there is a time for the temperature to drop at a temperature change rate of ˜10 ° C./hour.
 また本発明の製造方法では、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の下方20mm位置の検知温度をTm’として検知温度が(Tm’-20)℃から(Tm’-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件にする。 Further, in the manufacturing method of the present invention, the detection temperature at a position 20 mm below the center of the bottom surface of the crucible when the silicon temperature becomes the melting point of silicon is Tm ′, and the detection temperature is from (Tm′−20) ° C. to (Tm′−60). While the temperature is lowered to 0 ° C., the temperature is changed at a rate of 1 to 10 ° C./hour so that the time for temperature reduction exists.
 本発明者らは、次のことを確認している。
 シリコン原料を坩堝中で融解する場合には、融解完了直前に坩堝下面中央近傍温度および坩堝下面中央近傍の下方20mm位置の温度がほぼ一定値を示す。この一定値を基準温度(それぞれTm、Tm’)とすることで、前述の通り例えば、熱電対を交換した場合でも個体差(ばらつき)を排除することができ、温度条件を安定させることができる。融解が完了すると一時、液温上昇に伴い、坩堝下温度も上昇するが、通常はその後、一方向凝固過程に入るために徐々に温度を下げる。
The present inventors have confirmed the following.
When the silicon raw material is melted in the crucible, the temperature in the vicinity of the center of the bottom surface of the crucible and the temperature in the lower 20 mm position near the center of the bottom surface of the crucible show a substantially constant value immediately before the completion of melting. By using this constant value as the reference temperature (Tm and Tm ′, respectively), for example, even when a thermocouple is replaced, individual differences (variations) can be eliminated, and the temperature condition can be stabilized. . When melting is completed, the temperature under the crucible rises as the liquid temperature rises, but usually the temperature is gradually lowered after that in order to enter the unidirectional solidification process.
 温度測定ポイントは、坩堝下面中央近傍や坩堝下面中央近傍の下方20mm位置である必要は必ずしもなく、坩堝底面で核発生が起こる温度範囲で、坩堝下面中央近傍の温度と相関が取れる位置であれば、熱電対設置に便利な位置を適宜選択することができる。但し、そのように選択した温度測定ポイントの温度が、坩堝下面中央近傍の温度とほぼ一定の差を保ったまま変化することが好ましく、例えば、坩堝台の中であれば坩堝台のできる限り上方部、面内ではヒータ出力の変化の影響を受けにくい中央部が望ましい。 The temperature measurement point does not necessarily have to be in the vicinity of the crucible bottom surface center or the lower 20 mm position near the crucible bottom surface center, and can be a temperature range where nucleation occurs at the crucible bottom surface, as long as the temperature can be correlated with the temperature near the crucible bottom surface center. A position convenient for thermocouple installation can be selected as appropriate. However, it is preferable that the temperature of the temperature measurement point selected in this way changes while maintaining a substantially constant difference from the temperature in the vicinity of the center of the bottom of the crucible. It is desirable that the central portion be less susceptible to changes in the heater output within the surface.
 例えば、図4の装置において、外坩堝2下面中央近傍に設置した熱電対の検知温度が、坩堝1下面中央近傍の検知温度と常に一定の温度差がある場合には、シリコン溶融直前にシリコン温度が一定(シリコンの融点)になる時の外坩堝2下面中央近傍の検知温度をTm’’として、外坩堝下面中央近傍の検知温度が(Tm’’-20)℃から(Tm’’-60)℃まで低下する間が、坩堝下面中央近傍の検知温度が(Tm-20)℃から(Tm-60)℃まで低下する間に等価であるとして温度制御が可能である。
 具体的には、実施例に記載のように、外坩堝2下面中央近傍(下方20mm位置)に設置した熱電対の検知温度が、坩堝1下面中央近傍の検知温度と常に-10℃の温度差があり、(Tm’-20)℃から(Tm’-60)℃まで低下する間で、本発明の製造方法における温度制御が可能である。
For example, in the apparatus of FIG. 4, when the detected temperature of the thermocouple installed near the center of the lower surface of the outer crucible 2 always has a certain temperature difference from the detected temperature near the center of the lower surface of the crucible 1, The detected temperature near the center of the bottom surface of the outer crucible 2 when T is constant (the melting point of silicon) is Tm ″, and the detected temperature near the center of the bottom surface of the outer crucible is from (Tm ″ −20) ° C. to (Tm ″ −60). The temperature can be controlled by assuming that the detection temperature in the vicinity of the center of the bottom surface of the crucible is equivalent to the decrease in temperature from (Tm-20) ° C to (Tm-60) ° C.
Specifically, as described in the examples, the detected temperature of the thermocouple installed near the center of the lower surface of the outer crucible 2 (downward 20 mm position) is always a difference of −10 ° C. from the detected temperature near the center of the lower surface of the crucible 1. The temperature can be controlled in the production method of the present invention while the temperature decreases from (Tm′−20) ° C. to (Tm′−60) ° C.
 本発明者らの知見によれば、上記の温度範囲において、坩堝底部の溶融シリコンから結晶核の発生が始まり、その結晶粒径は、坩堝底部での結晶核の発生確率と結晶核の成長速度に依存するものと考えられる。
 そして、上記の温度変化率で冷却される時間が存在することにより、坩堝底部での結晶核の水平方向の成長速度が抑制され、結果として結晶核の発生密度を高く、結晶粒径を小さく制御することができ、多結晶シリコンインゴットのトップ側の結晶欠陥を低減してその特性低下を和らげることができる。
According to the knowledge of the present inventors, in the above temperature range, the generation of crystal nuclei starts from the molten silicon at the bottom of the crucible, and the crystal grain size is determined based on the probability of crystal nucleation at the bottom of the crucible and the growth rate of the crystal nuclei. It is thought that it depends on.
And since there is time to cool at the above temperature change rate, the horizontal growth rate of crystal nuclei at the crucible bottom is suppressed, and as a result, the generation density of crystal nuclei is increased and the crystal grain size is controlled to be small It is possible to reduce the crystal defects on the top side of the polycrystalline silicon ingot and relieve the deterioration of the characteristics.
 冷却の温度変化率が0℃/時間を超え1℃/時間未満では、結晶粒径を小さく制御するという意味では良好なものの、結晶成長に時間が掛かり過ぎること、またその結果として坩堝から溶融シリコンまたは凝固シリコン中への金属不純物の拡散(溶出)が助長されてしまうため、メリットが相殺されるおそれがある。また冷却の温度変化率が10℃/時間を超えると坩堝底部で発生した結晶核の水平方向の成長速度を抑制することができず、結果として結晶核の発生密度を高くすることができない。したがって、冷却の温度変化率は1~10℃/時間の間が好ましい。より好ましい温度変化率は、2~7℃/時間である。 When the temperature change rate of cooling is more than 0 ° C./hour and less than 1 ° C./hour, it is good in terms of controlling the crystal grain size to be small, but it takes too much time for crystal growth, and as a result, the crucible is melted into molten silicon. Alternatively, the diffusion (elution) of metal impurities into the solidified silicon is facilitated, and the merit may be offset. If the rate of temperature change of cooling exceeds 10 ° C./hour, the horizontal growth rate of crystal nuclei generated at the bottom of the crucible cannot be suppressed, and as a result, the generation density of crystal nuclei cannot be increased. Therefore, the temperature change rate of cooling is preferably between 1 and 10 ° C./hour. A more preferable temperature change rate is 2 to 7 ° C./hour.
 本発明の製造方法では、上記の温度低下の間に、1~10℃/時間の温度変化率で温度低下する時間の割合はより高い方が好ましく、例えば20%以上であるのが好ましく、40%以上であるのがより好ましい。この割合が高いことにより、坩堝底部での結晶核の発生密度が高く、結晶粒径が小さく制御された領域の割合が増加する。 In the production method of the present invention, the rate of time during which the temperature lowers at a temperature change rate of 1 to 10 ° C./hour during the above temperature decrease is preferably higher, for example, preferably 20% or more. % Or more is more preferable. When this ratio is high, the generation density of crystal nuclei at the bottom of the crucible is high, and the ratio of the region where the crystal grain size is small is increased.
(多結晶シリコンインゴット)
 本発明の多結晶シリコンインゴットは、本発明の多結晶シリコンインゴット製造方法により製造される。
(Polycrystalline silicon ingot)
The polycrystalline silicon ingot of the present invention is manufactured by the polycrystalline silicon ingot manufacturing method of the present invention.
(多結晶シリコンブロック)
 本発明の多結晶シリコンブロックは、本発明の多結晶シリコンインゴットを加工することにより得られる。
 多結晶シリコンブロックは、例えば、バンドソーなどの公知の装置を用いて、本発明の多結晶シリコンインゴットにおいて坩堝材料などの不純物が拡散されているおそれのある表面部分を切断加工することにより得ることができる。
 また、必要に応じて、多結晶シリコンブロックの表面を研磨加工してもよい。
(Polycrystalline silicon block)
The polycrystalline silicon block of the present invention can be obtained by processing the polycrystalline silicon ingot of the present invention.
The polycrystalline silicon block can be obtained, for example, by cutting a surface portion where impurities such as a crucible material may be diffused in the polycrystalline silicon ingot of the present invention using a known apparatus such as a band saw. it can.
Moreover, you may grind | polish the surface of a polycrystalline silicon block as needed.
(多結晶シリコンウエハ)
 本発明の多結晶シリコンウエハは、本発明の多結晶シリコンブロックを加工することにより得られる。
 多結晶シリコンウエハは、例えば、マルチワイヤーソーなどの公知の装置を用いて、本発明の多結晶シリコンブロックを所望の厚さにスライス加工することにより得ることができる。現状では、厚さ170~200μm程度が一般的であるが、傾向としてはコスト削減のため、薄型化の傾向にある。
 また、必要に応じて、多結晶シリコンウエハの表面を研磨加工してもよい。
(Polycrystalline silicon wafer)
The polycrystalline silicon wafer of the present invention can be obtained by processing the polycrystalline silicon block of the present invention.
The polycrystalline silicon wafer can be obtained, for example, by slicing the polycrystalline silicon block of the present invention to a desired thickness using a known apparatus such as a multi-wire saw. At present, a thickness of about 170 to 200 μm is generally used, but the trend is to reduce the thickness for cost reduction.
Further, if necessary, the surface of the polycrystalline silicon wafer may be polished.
(多結晶シリコン太陽電池)
 本発明の多結晶シリコン太陽電池は、本発明の結晶シリコンウエハを用いて製造される。
 多結晶シリコン太陽電池セルは、例えば、本発明の結晶シリコンウエハを用いて、公知の太陽電池セルプロセスにより製造することができる。すなわち、公知の材料を用いて、公知の方法により、p型の不純物がドープされたシリコンウエハの場合、n型の不純物をドープしてn型層を形成してpn接合を形成し、表面電極および裏面電極を形成して多結晶シリコン太陽電池セルを得る。
(Polycrystalline silicon solar cell)
The polycrystalline silicon solar cell of the present invention is manufactured using the crystalline silicon wafer of the present invention.
A polycrystalline silicon solar cell can be manufactured, for example, by a known solar cell process using the crystalline silicon wafer of the present invention. That is, in the case of a silicon wafer doped with a p-type impurity by a known method using a known material, an n-type impurity is doped to form an n-type layer to form a pn junction, and the surface electrode And a back surface electrode is formed and a polycrystalline silicon solar cell is obtained.
 同様に、n型の不純物がドープされたシリコンウエハの場合、p型の不純物をドープしてp型層を形成してpn接合を形成し、表面電極および裏面電極を形成して多結晶シリコン太陽電池セルを得る。あるいは、これらシリコン同士のpn接合を利用したものの他にも、薄い絶縁層を挟んで金属を蒸着するなどしたMIS型太陽電池、例えば、多結晶ウエハと反対の導電型のアモルファスなどのシリコン薄膜を製膜し、異なる構造のp型、n型シリコンヘテロ接合を利用したものなどがある。また、その複数個を電気的に接続して、多結晶シリコン太陽電池モジュールを得る。 Similarly, in the case of a silicon wafer doped with n-type impurities, a p-type impurity is doped to form a p-type layer to form a pn junction, and a surface electrode and a back electrode are formed to form a polycrystalline silicon solar A battery cell is obtained. Alternatively, in addition to those using a pn junction between silicon, MIS type solar cells in which a metal is deposited with a thin insulating layer interposed therebetween, for example, a silicon thin film such as a conductive amorphous type opposite to a polycrystalline wafer is used. There are films formed and utilizing p-type and n-type silicon heterojunctions having different structures. Further, a plurality of them are electrically connected to obtain a polycrystalline silicon solar cell module.
 上記のように、本明細書においては、「太陽電池セル」と「太陽電池モジュール」とを含む概念として、単に「太陽電池」と称する。したがって、例えば、「多結晶シリコン太陽電池」と記載されたものがあれば、それは「多結晶シリコン太陽電池セル」および「多結晶シリコン太陽電池モジュール」を含む意味となる。 As described above, in this specification, the concept including “solar battery cell” and “solar battery module” is simply referred to as “solar battery”. Therefore, for example, what is described as “polycrystalline silicon solar cell” is meant to include “polycrystalline silicon solar cell” and “polycrystalline silicon solar cell module”.
 以下に試験例により本発明を具体的に説明するが、これらの試験例により本発明が限定されるものではない。 Hereinafter, the present invention will be described in detail by test examples, but the present invention is not limited by these test examples.
(試験例1)温度変化率の依存性に関する検討
 図4に示される多結晶シリコンインゴット製造装置内の黒鉛製坩堝台3(880mm×880mm×厚さ200mm)上に、黒鉛製外坩堝2(内寸:900mm×900mm×高さ460mm、底板肉厚および側面肉厚20mm)を設置し、その中に石英製坩堝1(内寸:830mm×830mm×420mm、底板肉厚および側面肉厚22mm)を設置した。また、温度測定用の熱電対を、坩堝1下面中央近傍および外坩堝2下面中央近傍の2ヵ所に設置した。
(Test Example 1) Study on dependency of temperature change rate On the graphite crucible base 3 (880 mm × 880 mm × thickness 200 mm) in the polycrystalline silicon ingot manufacturing apparatus shown in FIG. Dimensions: 900 mm x 900 mm x 460 mm height, bottom plate thickness and side wall thickness 20 mm), quartz crucible 1 (inside dimensions: 830 mm x 830 mm x 420 mm, bottom plate wall thickness and side wall thickness 22 mm) in it installed. In addition, thermocouples for temperature measurement were installed at two locations near the center of the bottom surface of the crucible 1 and near the center of the bottom surface of the outer crucible 2.
 次いで、インゴットの比抵抗が約1.5Ωcmになるようにホウ素ドーパント濃度を調整した原料シリコン4の420kgを坩堝1にチャージした後、装置内を真空引きし、アルゴンガスで置換した。その後、装置の加熱手段として坩堝横に配置された加熱機構(黒鉛ヒータ10)を用いてシリコン原料を融解し、全原料の融解を確認した後、下記の条件でシリコンを一方向凝固させ、1200℃で2時間アニールし、100℃/時間の冷却速度で降温させ、装置から多結晶シリコンインゴットを取り出した。 Next, after charging 420 kg of raw silicon 4 with the boron dopant concentration adjusted so that the specific resistance of the ingot was about 1.5 Ωcm, the inside of the apparatus was evacuated and replaced with argon gas. Thereafter, the silicon raw material is melted using a heating mechanism (graphite heater 10) disposed beside the crucible as a heating means of the apparatus, and after confirming melting of all raw materials, the silicon is unidirectionally solidified under the following conditions. Annealing was performed at a temperature of 2 ° C. for 2 hours, the temperature was lowered at a cooling rate of 100 ° C./hour, and the polycrystalline silicon ingot was taken out from the apparatus.
 凝固工程では、ヒータ温度および坩堝下降速度を制御することにより、坩堝下面中央近傍の検知温度がTm-20℃からTm-60℃まで低下する間に、熱電対の温度変化率が、それぞれ0.5℃/時間、1℃/時間、2℃/時間、5℃/時間、7℃/時間、10℃/時間、15℃/時間および20℃/時間のほぼ一定になる条件とした。「温度変化率」は、冷却における負の傾きを示す。この試験では、Tmの実測値は1410℃~1418℃の範囲内であった。
 熱電対の温度変化率以外の温度条件はほぼ同一条件とし、特にインゴット底部の核発生の影響のみを評価できるようにした。
 坩堝1下面中央近傍、外坩堝2下面中央近傍(坩堝下面中央近傍の下方20mm位置)の検知温度の相関を確認したところ、常にほぼ10℃の差を保ったまま変化しており、坩堝1下面中央近傍の検知温度がTm-20℃からTm-60℃までの温度範囲が、外坩堝2下面中央近傍の検知温度Tm’-20℃からTm’-60℃までに対応することを確認した。
In the solidification process, by controlling the heater temperature and the crucible lowering speed, the temperature change rate of the thermocouple becomes 0. 0% while the detected temperature near the center of the bottom of the crucible decreases from Tm-20 ° C to Tm-60 ° C. 5 ° C./hour, 1 ° C./hour, 2 ° C./hour, 5 ° C./hour, 7 ° C./hour, 10 ° C./hour, 15 ° C./hour, and 20 ° C./hour were almost constant. “Temperature change rate” indicates a negative slope in cooling. In this test, the measured value of Tm was in the range of 1410 ° C to 1418 ° C.
The temperature conditions other than the temperature change rate of the thermocouple were made almost the same, and in particular, only the influence of nucleation at the bottom of the ingot could be evaluated.
When the correlation between the detected temperatures in the vicinity of the bottom center of the crucible 1 and the vicinity of the bottom center of the outer crucible 2 (downward 20 mm position near the center of the bottom surface of the crucible) was confirmed, the difference was constantly maintained with a difference of about 10 ° C. It was confirmed that the temperature range of the detected temperature near the center from Tm-20 ° C to Tm-60 ° C corresponds to the detected temperature Tm'-20 ° C to Tm'-60 ° C near the bottom center of the outer crucible 2.
 得られた多結晶シリコンインゴットを、バンドソーを用いてブロック(156mm×156mm×200mm)に加工し、さらにワイヤーソーを用いてスライスして、多結晶シリコンウエハ(156mm×156mm×厚さ0.18mm)約12,000枚を得た。
 得られた多結晶シリコンウエハを通常の太陽電池セルプロセスに投入して、1つのインゴット当たり12,000個の太陽電池(外形156mm×156mm×厚さ0.18mm)を作製し、その出力(W)を測定した。
The obtained polycrystalline silicon ingot is processed into a block (156 mm × 156 mm × 200 mm) using a band saw, further sliced using a wire saw, and a polycrystalline silicon wafer (156 mm × 156 mm × thickness 0.18 mm) About 12,000 sheets were obtained.
The obtained polycrystalline silicon wafer was put into a normal solar cell process to produce 12,000 solar cells (outer dimensions 156 mm × 156 mm × thickness 0.18 mm) per ingot, and the output (W ) Was measured.
 一般的に太陽電池の出力が低くなる原因の大部分は、インゴットのトップ側での結晶欠陥、特に結晶成長の時間、つまりインゴットの製造時間が極端に長い場合には、インゴットのボトム側の不純物拡散にあることがわかっている。
 したがって、太陽電池の出力分布を評価することにより、インゴットの良否がわかる。
 各太陽電池の出力を、ランク1の下限出力を100として規格化し、高出力側からランク1~3に分類し、各インゴット毎にその存在割合(%)を算出した。
   ランク1:出力100以上
   ランク2:出力93以上100未満
   ランク3:出力93未満
 得られた結果を表1および図2に示す。
In general, most of the causes of low solar cell output are crystal defects on the top side of the ingot, especially when the crystal growth time, that is, the production time of the ingot is extremely long, impurities on the bottom side of the ingot. I know it is in diffusion.
Therefore, the quality of the ingot can be determined by evaluating the output distribution of the solar cell.
The output of each solar cell was normalized with the lower limit output of rank 1 as 100, classified into ranks 1 to 3 from the high output side, and the existence ratio (%) was calculated for each ingot.
Rank 1: Output 100 or more Rank 2: Output 93 or more and less than 100 Rank 3: Output less than 93 Table 1 and FIG. 2 show the obtained results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図2の結果から明らかなように、温度変化率が1~10℃/時間である場合、特に2~7℃/時間以下である場合において、高ランク品の発生率が高く、インゴット品質が良好であることがわかる。
 一方、温度変化率が1℃/時間未満である場合および10℃/時間を超える場合において、低ランク品の発生率が高く、インゴット品質が良好でないことがわかる。
 また、得られた多結晶シリコンインゴットの結晶粒径を目視で観察したところ、温度変化率が大きいほど結晶粒径が大きいことがわかった。
As apparent from the results of Table 1 and FIG. 2, when the temperature change rate is 1 to 10 ° C./hour, particularly when it is 2 to 7 ° C./hour or less, the occurrence rate of high-rank products is high, and the ingot It turns out that the quality is good.
On the other hand, it can be seen that when the rate of temperature change is less than 1 ° C./hour and when it exceeds 10 ° C./hour, the occurrence rate of low-rank products is high and the ingot quality is not good.
Further, when the crystal grain size of the obtained polycrystalline silicon ingot was visually observed, it was found that the larger the temperature change rate, the larger the crystal grain size.
(試験例2)温度変化率の占有率に関する検討
 凝固工程では、ヒータ温度および坩堝下降速度を制御することにより、熱電対の温度変化率が1~10℃/時間になる時間の占める割合(占有率)がそれぞれ0%、20%、40%、60%、80%および100%になる条件とすること以外は、試験例1と同様にして多結晶シリコンインゴットを製造し、太陽電池を作製して、それらの出力分布を評価した。なお温度変化率が1~10℃/時間となる範囲の他は、平均温度変化率が25℃/時となるように調整した。
 この試験では、Tmの実測値は1407℃~1415℃の範囲内であった。
 図1に、占有率60%のときの経過時間(時間)と坩堝下面中央近傍の検知温度(℃)の関係を示す。図中、TG1、TG10およびTG25はそれぞれ温度変化率1℃/時間、10℃/時間および25℃/時間のラインを示す。
 すなわち、試験例2でも試験例1と同様に、特にインゴット底部の核発生の影響のみを評価できるようにした。
 得られた結果を表2および図3に示す。
(Test Example 2) Examination of Occupancy Rate of Temperature Change Rate In the solidification process, by controlling the heater temperature and the crucible lowering speed, the ratio of time that the temperature change rate of the thermocouple becomes 1 to 10 ° C./hour (occupation Rate) is 0%, 20%, 40%, 60%, 80%, and 100%, respectively, except that a polycrystalline silicon ingot is manufactured and a solar cell is manufactured in the same manner as in Test Example 1. The output distribution was evaluated. Except for the range in which the temperature change rate is 1 to 10 ° C./hour, the average temperature change rate was adjusted to 25 ° C./hour.
In this test, the measured value of Tm was in the range of 1407 ° C to 1415 ° C.
FIG. 1 shows the relationship between the elapsed time (hour) when the occupation ratio is 60% and the detected temperature (° C.) near the center of the bottom surface of the crucible. In the figure, TG1, TG10, and TG25 indicate lines with temperature change rates of 1 ° C./hour, 10 ° C./hour, and 25 ° C./hour, respectively.
That is, in Test Example 2, as in Test Example 1, only the influence of nucleation at the bottom of the ingot can be evaluated.
The obtained results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図3の結果から明らかなように、特定の温度変化率の占有率が20%以上である場合、特に40%以上である場合において、低ランク品の発生率が低下し、良好な品質のインゴットが得られることがわかる。 As is clear from the results of Table 2 and FIG. 3, when the occupation rate of the specific temperature change rate is 20% or more, particularly when it is 40% or more, the occurrence rate of low-rank products is reduced and good. It can be seen that a quality ingot is obtained.
  1 坩堝
  2 外坩堝
  3 坩堝台
  4 原料シリコン
  5 坩堝下熱電対
  6 外坩堝下熱電対(坩堝下20mm熱電対)
  7 チャンバー
  8 断熱材
  9 制御装置
 10 抵抗加熱体(黒鉛ヒータ)
 11 冷却槽
 12 昇降駆動機構
 TG1  温度変化率1℃/時間のライン
 TG10 温度変化率10℃/時間のライン
 TG25 温度変化率25℃/時間のライン
1 crucible 2 outer crucible 3 crucible stand 4 raw material silicon 5 thermocouple under crucible 6 thermocouple under outer crucible (thermocouple under crucible 20 mm)
7 Chamber 8 Heat insulating material 9 Control device 10 Resistance heater (graphite heater)
11 Cooling tank 12 Lifting drive mechanism TG1 Temperature change rate 1 ° C / hour line TG10 Temperature change rate 10 ° C / hour line TG25 Temperature change rate 25 ° C / hour line

Claims (14)

  1.  坩堝中の溶融シリコンを前記坩堝の底部から上方に一方向凝固させて多結晶シリコンインゴットを製造する方法であり、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の検知温度をTmとして前記検知温度が(Tm-20)℃から(Tm-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件下で、前記溶融シリコンを一方向凝固させて多結晶シリコンインゴットを得る多結晶シリコンインゴット製造方法。 A method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible upward from the bottom of the crucible, wherein the detected temperature near the center of the lower surface of the crucible when the silicon temperature becomes the melting point of silicon is Tm. While the detection temperature decreases from (Tm−20) ° C. to (Tm−60) ° C., the molten silicon is unidirectionally moved under the condition that the temperature decreases at a temperature change rate of 1 to 10 ° C./hour. A method for producing a polycrystalline silicon ingot which is solidified to obtain a polycrystalline silicon ingot.
  2.  前記温度変化率が、2~7℃/時間である請求項1に記載の多結晶シリコンインゴット製造方法。 The method for producing a polycrystalline silicon ingot according to claim 1, wherein the rate of temperature change is 2 to 7 ° C / hour.
  3.  前記1~10℃/時間の温度変化率で温度低下する時間が、20%以上存在する請求項1に記載の多結晶シリコンインゴット製造方法。 2. The method for producing a polycrystalline silicon ingot according to claim 1, wherein the time for the temperature to drop at a temperature change rate of 1 to 10 ° C./hour is 20% or more.
  4.  請求項1に記載の多結晶シリコンインゴット製造方法により製造された多結晶シリコンインゴット。 A polycrystalline silicon ingot produced by the polycrystalline silicon ingot producing method according to claim 1.
  5.  請求項4に記載の多結晶シリコンインゴットを加工して得られた多結晶シリコンブロック。 A polycrystalline silicon block obtained by processing the polycrystalline silicon ingot according to claim 4.
  6.  請求項5に記載の多結晶シリコンブロックを加工して得られた多結晶シリコンウエハ。 A polycrystalline silicon wafer obtained by processing the polycrystalline silicon block according to claim 5.
  7.  請求項6に記載の多結晶シリコンウエハを用いて製造された多結晶シリコン太陽電池。 A polycrystalline silicon solar cell manufactured using the polycrystalline silicon wafer according to claim 6.
  8.  坩堝中の溶融シリコンを前記坩堝の底部から上方に一方向凝固させて多結晶シリコンインゴットを製造する方法であり、シリコン温度がシリコンの融点となる時の坩堝下面中央近傍の下方20mm位置の検知温度をTm’として前記検知温度が(Tm’-20)℃から(Tm’-60)℃まで低下する間に、1~10℃/時間の温度変化率で温度低下する時間が存在する条件下で、前記溶融シリコンを一方向凝固させて多結晶シリコンインゴットを得る多結晶シリコンインゴット製造方法。 This is a method for producing a polycrystalline silicon ingot by unidirectionally solidifying molten silicon in a crucible from the bottom of the crucible, and a detection temperature at a lower 20 mm position near the center of the lower surface of the crucible when the silicon temperature becomes the melting point of silicon. And Tm ′, while the detected temperature falls from (Tm′−20) ° C. to (Tm′−60) ° C., the temperature falls at a rate of 1 to 10 ° C./hour. A method for producing a polycrystalline silicon ingot, wherein the molten silicon is solidified in one direction to obtain a polycrystalline silicon ingot.
  9.  前記温度変化率が、2~7℃/時間である請求項8に記載の多結晶シリコンインゴット製造方法。 The method for producing a polycrystalline silicon ingot according to claim 8, wherein the temperature change rate is 2 to 7 ° C / hour.
  10.  前記1~10℃/時間の温度変化率で温度低下する時間が、20%以上存在する請求項8に記載の多結晶シリコンインゴット製造方法。 The method for producing a polycrystalline silicon ingot according to claim 8, wherein the time for temperature decrease at a temperature change rate of 1 to 10 ° C / hour is 20% or more.
  11.  請求項8に記載の多結晶シリコンインゴット製造方法により製造された多結晶シリコンインゴット。 A polycrystalline silicon ingot produced by the polycrystalline silicon ingot producing method according to claim 8.
  12.  請求項11に記載の多結晶シリコンインゴットを加工して得られた多結晶シリコンブロック。 A polycrystalline silicon block obtained by processing the polycrystalline silicon ingot according to claim 11.
  13.  請求項12に記載の多結晶シリコンブロックを加工して得られた多結晶シリコンウエハ。 A polycrystalline silicon wafer obtained by processing the polycrystalline silicon block according to claim 12.
  14.  請求項13に記載の多結晶シリコンウエハを用いて製造された多結晶シリコン太陽電池。 A polycrystalline silicon solar cell manufactured using the polycrystalline silicon wafer according to claim 13.
PCT/JP2012/070001 2011-12-22 2012-08-06 Polycrystalline silicon ingot, process for producing same, and uses thereof WO2013094245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280063468.4A CN104010968B (en) 2011-12-22 2012-08-06 Polycrystal silicon ingot, its manufacture method and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281750 2011-12-22
JP2011281750A JP5135467B1 (en) 2011-12-22 2011-12-22 Method for producing polycrystalline silicon ingot

Publications (1)

Publication Number Publication Date
WO2013094245A1 true WO2013094245A1 (en) 2013-06-27

Family

ID=47789784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070001 WO2013094245A1 (en) 2011-12-22 2012-08-06 Polycrystalline silicon ingot, process for producing same, and uses thereof

Country Status (4)

Country Link
JP (1) JP5135467B1 (en)
CN (1) CN104010968B (en)
TW (1) TWI468563B (en)
WO (1) WO2013094245A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372404B (en) * 2014-11-18 2017-01-18 保利协鑫(苏州)新能源运营管理有限公司 Preparation method of polycrystalline silicon ingot, polycrystalline silicon ingot furnace and silicon wafer
CN106048734A (en) * 2016-08-04 2016-10-26 晶科能源有限公司 Polysilicon ingot casting rapid annealing cooling technology
CN106087054A (en) * 2016-08-26 2016-11-09 常熟华融太阳能新型材料有限公司 A kind of Novel polycrystalline silicon quartz crucible for ingot casting card article
DE102016010974A1 (en) 2016-09-13 2018-03-15 Universität Augsburg Material conversion arrangement and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198648A (en) * 2000-01-11 2001-07-24 Mitsubishi Materials Corp Casting mold for casting silicon ingot and method for manufacturing the same
JP2002080215A (en) * 2000-09-04 2002-03-19 Sharp Corp Method of making polycrystalline semiconductor ingot
JP2006007309A (en) * 2004-06-29 2006-01-12 Kyocera Corp Method for casting polycrystal silicon and apparatus for casting polycrystal silicon
JP2011201737A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp Manufacturing method for polycrystalline silicon ingot, and the polycrystalline silicon ingot

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520957B2 (en) * 1997-06-23 2004-04-19 シャープ株式会社 Method and apparatus for manufacturing polycrystalline semiconductor ingot
CN100595352C (en) * 2007-07-17 2010-03-24 佳科太阳能硅(龙岩)有限公司 Method for preparing big ingot of polysilicon in level of solar energy
CN101760779B (en) * 2009-04-17 2011-11-30 南安市三晶阳光电力有限公司 Method for purifying polycrystalline silicon by using liquid filter screen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198648A (en) * 2000-01-11 2001-07-24 Mitsubishi Materials Corp Casting mold for casting silicon ingot and method for manufacturing the same
JP2002080215A (en) * 2000-09-04 2002-03-19 Sharp Corp Method of making polycrystalline semiconductor ingot
JP2006007309A (en) * 2004-06-29 2006-01-12 Kyocera Corp Method for casting polycrystal silicon and apparatus for casting polycrystal silicon
JP2011201737A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp Manufacturing method for polycrystalline silicon ingot, and the polycrystalline silicon ingot

Also Published As

Publication number Publication date
TWI468563B (en) 2015-01-11
CN104010968A (en) 2014-08-27
CN104010968B (en) 2015-12-23
JP5135467B1 (en) 2013-02-06
TW201326475A (en) 2013-07-01
JP2013129580A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
FR2908125A1 (en) PROCESS FOR PURIFYING METALLURGICAL SILICON BY DIRECTED SOLIDIFICATION
JP5135467B1 (en) Method for producing polycrystalline silicon ingot
Ganesh et al. Growth and characterization of multicrystalline silicon ingots by directional solidification for solar cell applications
WO2018008561A1 (en) Single crystal silicon plate-shaped body and production method therefor
WO2020235123A1 (en) Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
JP2014196213A (en) Semiconductor wafer, radiation detection element, radiation detector and method of producing compound semiconductor single crystal
JP2014218411A (en) Manufacturing method of silicon epitaxial wafer and silicon epitaxial wafer
JP5140778B1 (en) Method for producing polycrystalline silicon ingot
JP2006273628A (en) Method for manufacturing polycrystalline silicon ingot
WO2020235124A1 (en) Semiconductor wafer, radiation detection element, radiation detector, and production method for compound semiconductor monocrystalline substrate
JP2022543548A (en) Wafers with regions of low oxygen concentration
TWI460318B (en) Method for heat treatment of solid-phase raw material and device and method for manufacturing ingot, processing material and solar cell
JP7217715B2 (en) Compound semiconductor substrate and manufacturing method thereof
JP6014336B2 (en) Silicon casting mold, silicon casting method, silicon material manufacturing method, and solar cell manufacturing method
JP6487675B2 (en) Polycrystalline silicon ingot manufacturing method, manufacturing method for use of polycrystalline silicon ingot, and polycrystalline silicon ingot
JP2017197413A (en) Compound semiconductor substrate and manufacturing method thereof
JP5194165B1 (en) Method for inspecting refined metal lump and method for producing high purity metal including the same
JP2013147407A (en) Silicon single crystal wafer, method for evaluating in-plane uniformity of oxygen deposit amount thereof, and method for manufacturing silicon single crystal
JP2013220951A (en) Polycrystalline silicon ingot, and method of manufacturing the same, and use thereof
Capper Bulk Growth of Mercury Cadmium Telluride (MCT)
JP5805843B2 (en) Silicon single crystal substrate and manufacturing method thereof
JP2022543358A (en) Fabrication of ribbons or wafers with regions of low oxygen concentration
JP2013133268A (en) Method for producing polycrystalline silicon ingot, and product thereby
JP2004277239A (en) Method for manufacturing plate-like silicon, plate-like silicon, and solar battery
JP2004161565A (en) Method of manufacturing granular silicon crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859508

Country of ref document: EP

Kind code of ref document: A1