WO2013094226A1 - Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber - Google Patents

Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber Download PDF

Info

Publication number
WO2013094226A1
WO2013094226A1 PCT/JP2012/053489 JP2012053489W WO2013094226A1 WO 2013094226 A1 WO2013094226 A1 WO 2013094226A1 JP 2012053489 W JP2012053489 W JP 2012053489W WO 2013094226 A1 WO2013094226 A1 WO 2013094226A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas blowing
blowing chamber
hull
chamber
Prior art date
Application number
PCT/JP2012/053489
Other languages
French (fr)
Japanese (ja)
Inventor
千春 川北
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280047728.9A priority Critical patent/CN103826967A/en
Priority to KR1020147007900A priority patent/KR20140054360A/en
Publication of WO2013094226A1 publication Critical patent/WO2013094226A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a technique for reducing the resistance between the hull and water by covering the surface of the hull with gas.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-248611
  • FIG. 1 is a perspective view conceptually showing the structure of the air outlet 121 of the frictional resistance reduction device.
  • the air sent from the blower through the air supply pipe 116 is bent at a right angle by the chamber portion 170 of the air outlet 121 connected to the air supply pipe 116.
  • a distribution part 171 having a triangular cross-section for dispersing the supplied air is provided immediately below the connection part of the air supply pipe 116, and is bent at a right angle at this part. The configuration is distributed to the left and right.
  • the air is bent at a right angle, the air tends to spread uniformly in the horizontal direction, but the air tends to flow only to the front perforated plates 172 and 173 due to the inner side of the chamber part 170 and the back and left and right and top and bottom.
  • the distribution of the air in the left-right direction of the perforated plates 172 and 173 is further uniformed by the presence of the distribution component 171 at this time.
  • the perforated plates 172 and 173 a large number of holes 174 and 175 are formed. However, the positions of the holes in the left and right directions are shifted in the perforated plates 172 and 173, and the aperture positions are shifted. In this example, two porous plates 172 and 173 are used, but a plurality of other porous plates such as three and four may be used. Since the perforated plates 172 and 173 are arranged with their opening positions shifted, the perforated plates 172 and 173 act as a so-called baffle plate that bends the flow of air and adds resistance, and further in the left-right direction. In addition to uniforming the air, the vertical air is also uniformed and can be ejected from the ejection opening 176 on the front surface.
  • the perforated plates 172 and 173 are made of a sheet metal having corrosion resistance such as stainless steel by continuously making round holes with a press, and an arrangement in which the opening positions are shifted by cutting can be realized, so that the productivity is excellent. It will be a thing. When this stainless steel material is used, the edges are eliminated due to the round holes, and stress concentration during pressing is unlikely to occur like square holes. Can be reduced.
  • the perforated plates 172 and 173 may be produced by molding using resin. When this resin is used, the shape of the hole is not particularly concerned from the corroded surface, but a round hole is also preferred from the mold.
  • FIG. 2 is a cross-sectional view in which the air outlet 121 is attached to the ship bottom 103.
  • the chamber part 170 is provided so as to protrude from the plane of the ship bottom 103, the air supply pipe 116 penetrates the ship bottom 103, is connected to the chamber part 170, and the ejection opening 176 opens downstream with respect to the water flow.
  • a resistance reduction plate 180 is provided on the front surface of the chamber portion 170 and is configured so that the chamber portion 170 does not become a resistance due to a water flow.
  • An object of the present invention is to provide a gas lubricated ship manufacturing method, a gas blowing chamber manufacturing method, a gas lubricated ship, and a gas blowing chamber in which it is easy to reduce the resistance of a gas lubricated ship to which the gas blowing chamber is externally attached to the hull. Is to provide.
  • a gas lubricated ship manufacturing method comprising: preparing an integrally formed gas blowing chamber; and providing the gas blowing chamber so as to cover a gas supply hole penetrating the outer plate of the hull from the outside. Attaching to the hull.
  • the gas blowing chamber is integrally molded, it is easy to impart a streamline shape with low resistance to the gas blowing chamber. Therefore, it is easy to reduce the resistance of the gas lubricated ship.
  • the gas blowing chamber includes an outer cover, and a porous plate that partitions a space surrounded by the outer plate and the outer cover into a first space and a second space.
  • the outer cover includes an outer cover first portion that covers the first space and an outer cover second portion that covers the second space.
  • the gas blowing chamber is attached to the hull so that the first portion of the outer cover covers the gas supply hole.
  • the second outer cover portion includes a gas blowing portion for blowing gas from the second space into the water.
  • the plurality of through holes formed in the perforated plate are larger in size as they are farther from the gas supply hole.
  • the gas blowing chamber includes an outer cover, a bow side wall plate and a stern side wall plate facing the bow stern direction, and a baffle plate disposed between the bow side wall plate and the stern side wall plate.
  • a first slit hole is formed between the baffle plate and the bow side wall plate.
  • a second slit hole is formed between the baffle plate and the stern side wall plate.
  • the outer cover includes a gas blowing portion for blowing the gas that has passed through the first slit hole or the second slit hole into water. In attaching the gas blowing chamber to the hull, the gas blowing chamber is attached to the hull so that the baffle plate faces the gas supply hole.
  • the gas blowing chamber blows gas into water by a shear blowing method.
  • the gas blowing chamber blows gas into water by a jet blowing method.
  • the gas blowing chamber includes a gas blowing unit that blows gas into water by a jet blowing method.
  • the gas blowing portion includes a curved plate-like gas blowing flow path forming portion curved in an S shape. A gas is blown into water from a gas blowing channel formed between the gas blowing channel forming part and the outer plate.
  • At least a part of the gas blowing chamber has a streamline shape.
  • the gas blowing chamber is integrally formed of resin. In attaching the gas blowing chamber to the hull, the gas blowing chamber is bonded to the hull.
  • the gas blowing chamber includes a mounting seat in which a bolt hole is formed. In attaching the gas blowing chamber to the hull, the gas blowing chamber is attached to the hull with bolts.
  • a method for manufacturing a gas blowing chamber according to another aspect of the present invention includes integrally forming a gas blowing chamber to be externally attached to a hull.
  • the gas blowing chamber is integrally formed of a casting.
  • the gas blowing chamber is integrally formed with a resin.
  • a gas lubricated ship includes a hull and an integrally formed gas blowing chamber.
  • the gas blowing chamber is attached to the hull so as to cover a gas supply hole penetrating the outer plate of the hull from the outside.
  • Integrally molded gas blowing chamber for external hull according to another aspect of the present invention.
  • the manufacturing method of the gas lubrication ship the manufacturing method of a gas blowing chamber, a gas lubrication ship, and a gas blowing chamber with which it is easy to make small resistance of the gas lubrication ship with which a gas blowing chamber is externally attached to a hull Is provided.
  • FIG. 1 is a perspective view of an air outlet of a conventional frictional resistance reduction device.
  • FIG. 2 is a cross-sectional view of the air jet outlet attached to the ship bottom.
  • FIG. 3 is a side view of the gas lubricated ship according to the first embodiment of the present invention.
  • FIG. 4 shows a top view (a) and a side view (b) of the gas blowing chamber according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the gas blowing chamber according to the first embodiment.
  • FIG. 6 is a cross-sectional view of the gas lubrication ship according to the first embodiment at a gas blowing chamber mounting position.
  • FIG. 7 shows a top view (a) and a side view (b) of a gas blowing chamber according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the gas lubrication ship according to the second embodiment at a gas blowing chamber mounting position.
  • FIG. 9 shows a top view (a) and a side view (b) of a gas blowing chamber according to the third embodiment.
  • FIG. 10 is a cross-sectional view of the gas lubrication ship according to the third embodiment at a gas blowing chamber mounting position.
  • FIG. 11 shows a top view (a) and a side view (b) of a gas blowing chamber according to the fourth embodiment.
  • FIG. 12 is a bottom view of the gas blowing chamber according to the fourth embodiment.
  • FIG. 13 is sectional drawing in the gas blowing chamber attachment position of the gas lubrication ship which concerns on 4th Embodiment.
  • FIG. 14 is sectional drawing in the gas blowing chamber attachment position of the gas lubrication ship which concerns on 5th Embodiment.
  • the gas lubricated ship which concerns on the 1st Embodiment of this invention is demonstrated.
  • the gas lubricated ship according to the present embodiment includes a hull 1, a gas supply device 7, a gas supply pipe 8, a gas blowing chamber 11, a propeller 5, and a rudder 6.
  • the propeller 5 and the rudder 6 are disposed on the stern 3 of the hull 1.
  • X, Y, and Z directions orthogonal to each other are defined for the hull 1.
  • the X direction is parallel to the bow stern direction
  • the Y direction is parallel to the ship width direction
  • the Z direction is parallel to the water depth direction.
  • the gas supply pipe 8 connects the gas supply device 7 and the gas blowing chamber 11.
  • the gas blowing chamber 11 is attached to the part below the waterline of the hull 1 from the outside.
  • the gas blowing chamber 11 is preferably disposed in the vicinity of the bow 2 of the hull 1.
  • the case where the gas blowing chamber 11 is attached to the ship bottom 4 will be described.
  • the gas supply device 7 includes, for example, a compressor or a blower. During the navigation of the gas lubricated ship, the gas supply device 7 supplies air to the gas blowing chamber 11 via the gas supply pipe 8. The gas blowing chamber 11 blows air into the water. Since the surface of the hull 1 is covered with air, the frictional resistance between the hull 1 and water is reduced. In this embodiment, since the gas blowing chamber 11 is integrally formed, it is easy to give the gas blowing chamber 11 a streamline shape with low resistance. Therefore, it is easy to reduce the resistance of the gas lubricated ship.
  • the gas blowing chamber 11 includes an outer cover 20 and a porous plate 50.
  • the outer cover 20 includes a bow side portion 21 and a stern side portion 22.
  • the bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces.
  • the perforated plate 50 is disposed along the boundary between the bow side portion 21 and the stern side portion 22.
  • a gas blowing portion 31 is formed on the stern side portion 22.
  • the gas blowing unit 31 is configured to blow gas into water by a shear blowing method.
  • the gas blowing portion 31 includes a plurality of gas blowing holes 41 formed in the stern side portion 22 of the outer cover 20.
  • the position of the gas supply pipe 8 when the gas blowing chamber 11 is attached to the hull 1 is indicated by a two-dot chain line.
  • a plurality of through holes 51 are formed in the perforated plate 50.
  • the plurality of through holes 51 are larger in size toward the outside.
  • a method for manufacturing the gas blowing chamber 11 will be described.
  • a mold is prepared, and a material is molded using the mold to manufacture the gas blowing chamber 11.
  • the gas blowing chamber 11 may be integrally formed with a casting or may be integrally formed with a resin. It is easy to impart a streamline shape with a small resistance to the bow side portion 21 and the stern side portion 22 by integrally molding with a casting or a resin. On the other hand, it is difficult to form a streamline shape by bending a plate material having a sufficient thickness to ensure the required strength.
  • the gas blowing chamber 11 integrally formed has a lower production cost than a gas blowing chamber produced by assembling a plurality of plate members by welding or the like. By producing the gas blowing chamber 11 by integral molding, many standard gas blowing chambers of the same type can be produced.
  • a gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4.
  • the gas supply pipe 8 is connected to the gas supply hole 4b.
  • the gas blowing chamber 11 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside.
  • the gas blowing chamber 11 is hulled so that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the bow side portion 21 covers the gas supply hole 4b. Attach to 1. Since the gas blowing chamber 11 is an integral object, the gas blowing chamber 11 can be easily attached to the hull 1.
  • the resin gas blowing chamber 11 is lightweight, it is very easy to mount.
  • the gas blowing chamber 11 is welded to the hull 1.
  • the gas blowing chamber 11 is made of resin, the gas blowing chamber 11 is bonded to the hull 1 with an adhesive.
  • the gas blowing chamber 11 is attached by adhesion, it is possible to prevent thermal stress from acting on the hull 1 at the time of attachment.
  • the method for manufacturing a gas-lubricated ship according to this embodiment is suitable for the case where a gas-lubricated ship is manufactured by remodeling a service ship.
  • the perforated plate 50 is disposed inside the outer cover 20, and a space surrounded by the outer plate 4 a and the outer cover 20 is defined as a space 20 a. Partition into space 20b.
  • the bow side portion 21 of the outer cover 20 covers the space 20a, and the stern side portion 22 of the outer cover 20 covers the space 20b.
  • the plurality of through holes 51 of the perforated plate 50 and the plurality of gas blowing holes 41 of the gas blowing portion 31 are arranged along the Y direction.
  • the air supplied to the gas blowing chamber 11 via the gas supply pipe 8 first flows into the space 20 a, flows into the space 20 b through the plurality of through holes 51 of the perforated plate 50, and passes through the gas blowing portion 31. Be blown into the water.
  • the gas blowing unit 31 blows air in a direction intersecting with the water flow.
  • the porous plate 50 since the porous plate 50 is provided, the amount of air blown out from the gas blowing portion 31 is equalized along the Y direction. Since the size of the plurality of through holes 51 of the perforated plate 50 increases as the distance from the gas supply hole 4b (gas supply pipe 8) increases, the amount of air blown out from the gas blowing portion 31 is further equalized along the Y direction.
  • the porous plate 50 and the outer cover 20 for performing air blowing evenly are formed as a single body, a structure for blowing air evenly can be easily manufactured.
  • a gas blowing chamber 12 is used instead of the gas blowing chamber 11.
  • the gas blowing chamber 12 includes an outer cover 20 and a perforated plate 50.
  • the outer cover 20 includes a bow side portion 21 and a stern side portion 22.
  • the bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces.
  • the perforated plate 50 is disposed along the boundary between the bow side portion 21 and the stern side portion 22.
  • a gas blowing portion 32 is formed in the stern side portion 22.
  • the gas blowing unit 32 is configured to blow gas into water by a jet blowing method.
  • the gas blowing portion 32 includes a gas blowing flow path forming portion 42 formed in the stern side portion 22 of the outer cover 20.
  • the position of the gas supply pipe 8 when the gas blowing chamber 12 is attached to the hull 1 is indicated by a two-dot chain line.
  • the gas blowing chamber 12 is integrally formed with a casting or resin in the same manner as the gas blowing chamber 11.
  • a gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4.
  • the gas supply pipe 8 is connected to the gas supply hole 4b.
  • the gas blowing chamber 12 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside.
  • the gas blowing chamber 12 is hulled so that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the bow side portion 21 covers the gas supply hole 4b. Attach to 1.
  • the attachment method is the same as that in the first embodiment.
  • the perforated plate 50 is disposed inside the outer cover 20, and a space surrounded by the outer plate 4a and the outer cover 20 is defined as a space 20a. Partition into space 20b.
  • the bow side portion 21 of the outer cover 20 covers the space 20a, and the stern side portion 22 of the outer cover 20 covers the space 20b.
  • the plurality of through holes 51 of the perforated plate 50 are arranged along the Y direction.
  • a gas blowing channel 42a is formed between the gas blowing channel forming portion 42 of the gas blowing unit 32 and the outer plate 4a.
  • the gas blowing channel 42 a is narrowed toward the stern 3.
  • An end of the gas blowing flow path 42a on the stern 3 side forms a slit-shaped blowing opening extending in the Y direction.
  • the air supplied to the gas blowing chamber 12 via the gas supply pipe 8 first flows into the space 20 a, flows into the space 20 b through the plurality of through holes 51 of the perforated plate 50, and passes through the gas blowing portion 32. Be blown into the water.
  • the gas blowing unit 32 blows air in the direction of the water flow.
  • the porous plate 50 is provided, the amount of air blown out from the gas blowing portion 32 is equalized along the Y direction.
  • the size of the plurality of through holes 51 of the perforated plate 50 increases as the distance from the gas supply hole 4b (the gas supply pipe 8) increases, the amount of air blown from the gas blowing portion 32 is further equalized along the Y direction. According to the present embodiment, since the porous plate 50 and the outer cover 20 for performing air blowing evenly are formed as a single body, a structure for blowing air evenly can be easily manufactured.
  • a gas blowing chamber 13 is used instead of the gas blowing chamber 11.
  • the gas blowing chamber 13 includes an outer cover 20 and a perforated plate 50.
  • the outer cover 20 includes a bow side portion 21 and a stern side portion 22.
  • the bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces.
  • the perforated plate 50 is disposed along the boundary between the bow side portion 21 and the stern side portion 22.
  • a gas blowing portion 33 is formed on the stern side portion 22.
  • the gas blowing unit 33 is configured to blow gas into water by a jet blowing method.
  • the gas blowing portion 33 includes a gas blowing flow path forming portion 43 formed in the stern side portion 22 of the outer cover 20.
  • the position of the gas supply pipe 8 when the gas blowing chamber 13 is attached to the hull 1 is indicated by a two-dot chain line.
  • the gas blowing chamber 13 is integrally formed with a casting or a resin in the same manner as the gas blowing chamber 11.
  • a gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4.
  • the gas supply pipe 8 is connected to the gas supply hole 4b.
  • the gas blowing chamber 13 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside.
  • the gas blowing chamber 13 is hulled so that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the bow side portion 21 covers the gas supply hole 4b. Attach to 1.
  • the attachment method is the same as that in the first embodiment.
  • the perforated plate 50 is disposed inside the outer cover 20, and a space surrounded by the outer plate 4a and the outer cover 20 is defined as a space 20a. Partition into space 20b.
  • the bow side portion 21 of the outer cover 20 covers the space 20a, and the stern side portion 22 of the outer cover 20 covers the space 20b.
  • the plurality of through holes 51 of the perforated plate 50 are arranged along the Y direction.
  • a gas blowing channel 43a is formed between the gas blowing channel forming portion 43 of the gas blowing unit 33 and the outer plate 4a.
  • the gas blowing channel 43 a is narrowed toward the stern 3.
  • An end of the gas blowing channel 43a on the stern 3 side forms a slit-shaped blowing opening extending in the Y direction.
  • the air supplied to the gas blowing chamber 13 via the gas supply pipe 8 first flows into the space 20 a, flows into the space 20 b through the plurality of through holes 51 of the perforated plate 50, and passes through the gas blowing portion 33. Be blown into the water.
  • the gas blowing unit 33 blows air in the direction of the water flow.
  • the porous plate 50 is provided, the amount of air blown from the gas blowing portion 33 is equalized along the Y direction.
  • the amount of air blown from the gas blowing portion 33 is further equalized along the Y direction.
  • the porous plate 50 and the outer cover 20 for performing air blowing evenly are formed as a single body, a structure for blowing air evenly can be easily manufactured.
  • the gas blowing flow path forming portion 43 is formed in a curved plate shape curved in an S shape, the air blown into the water from the gas blowing portion 33 is likely to follow along the outer plate 4 a of the ship bottom 4.
  • a gas blowing chamber 14 is used instead of the gas blowing chamber 11.
  • the gas blowing chamber 14 includes an external cover 20, a wall plate 61, a wall plate 62, and a baffle plate 63.
  • the outer cover 20 includes a bow side portion 21, a stern side portion 22, and an intermediate portion 23 disposed between the bow side portion 21 and the stern side portion 22.
  • the bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces.
  • the wall plate 61 is disposed along the boundary between the bow side portion 21 and the intermediate portion 23.
  • the wall plate 62 is disposed along the boundary between the intermediate portion 23 and the stern side portion 22.
  • the wall plate 61 and the wall plate 62 face each other.
  • the baffle plate 63 is disposed between the wall plate 61 and the wall plate 62.
  • a gas blowing part 34 is formed in the intermediate part 23.
  • the gas blowing unit 34 is configured to blow gas into water by a shear blowing method.
  • the gas blowing part 34 includes a plurality of gas blowing holes 44 formed in the intermediate portion 23 of the outer cover 20.
  • the baffle plate 63 is disposed so as to face the portion of the intermediate portion 23 where the gas blowing portion 34 is formed.
  • a slit hole 65 is formed between the baffle plate 63 and the wall plate 61, and a slit hole 66 is formed between the baffle plate 63 and the wall plate 62.
  • the position of the gas supply pipe 8 when the gas blowing chamber 14 is attached to the hull 1 is indicated by a two-dot chain line.
  • the gas blowing chamber 14 is integrally formed with a casting or a resin in the same manner as the gas blowing chamber 11.
  • a gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4.
  • the gas supply pipe 8 is connected to the gas supply hole 4b.
  • the gas blowing chamber 14 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside.
  • the gas is so arranged that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the baffle plate 63 faces the gas supply hole 4b (gas supply pipe 8).
  • the blowout chamber 14 is attached to the hull 1.
  • the attachment method is the same as that in the first embodiment.
  • the wall plate 61, the wall plate 62, and the baffle plate 63 are disposed inside the outer cover 20 in a state where the gas blowing chamber 14 is attached to the hull 1.
  • the wall plate 61 and the wall plate 62 face each other in the X direction.
  • the slit holes 65 and 66 are parallel to the Y direction.
  • the plurality of gas blowing holes 44 of the gas blowing portion 34 are arranged along the Y direction.
  • the air supplied to the gas blowing chamber 14 via the gas supply pipe 8 strikes the baffle plate 63 and changes the flow direction, then passes through the slit hole 65 or 66, and blows into the water through the gas blowing portion 34. Is done.
  • the gas blowing part 34 blows air in the direction intersecting with the water flow.
  • the wall plate 61, the wall plate 62, and the baffle plate 63 are provided, the amount of air blown from the gas blowing portion 34 is equalized along the Y direction.
  • the wall plate 61, the wall plate 62, and the baffle plate 63 and the outer cover 20 for uniformly blowing out air are formed as a single body, and thus a structure for blowing out air evenly. Can be easily manufactured.
  • a gas blowing chamber 15 is used instead of the gas blowing chamber 11.
  • the gas blowing chamber 15 includes an outer cover 20, a perforated plate 50, and a mounting seat 70. Bolt holes are formed in the mounting seat 70.
  • the gas blowing chamber 15 corresponds to the gas blowing chamber 11 to which a mounting seat 70 is added.
  • the gas blowing chamber 15 is integrally formed with a casting or a resin. According to this embodiment, since the mounting seat 70 for attaching the gas blowing chamber 15 to the hull 1 and the outer cover 20 are formed as a single body, a structure for mounting can be easily manufactured.
  • the gas blowing chamber 15 since the gas blowing chamber 15 is attached to the hull 1 with the bolt 75, the gas blowing chamber 15 can be detached from the hull 1. Therefore, maintenance inside the gas blowing chamber 15 is easy.
  • the method for manufacturing a gas lubricated ship, the method for manufacturing a gas blowing chamber, the gas lubricated ship, and the gas blowing chamber according to the present invention have been described above with reference to the embodiment.
  • the manufacturing method of a blowing chamber, a gas lubrication ship, and a gas blowing chamber are not limited to the said embodiment. It is possible to add a change to the said embodiment or to combine the said embodiment. For example, instead of blowing air into the water, the exhaust gas of the main engine may be blown into the water.
  • the gas blowing chambers 11 to 15 may be attached to the ship side, and the air blown into the water from the gas blowing chambers 11 to 15 may be sent to the ship bottom 4 by a water flow.
  • the mounting seat 70 may be applied to the gas blowing chambers 12-14.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Nozzles (AREA)
  • Sealing Of Bearings (AREA)
  • Wind Motors (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

In a method for manufacturing a gas-lubricated ship, an integrally formed gas-discharging chamber is provided. The gas-discharging chamber is attached to the ship's hull so as to cover the outside of a gas supply hole penetrating the outer plate of the ship's hull. The gas-discharging chamber can be equipped with an outer cover and a multi-holed plate that separates the space enclosed by the outer plate and the outer cover into a first space and a second space. The outer cover is equipped with a first outer cover part that covers the first space and a second outer cover part that covers the second space. The gas-discharging chamber is attached to the ship's hull such that the first outer cover part covers the gas supply hole. The second outer cover part is equipped with a gas-discharging part for discharging gas into the water from the second space.

Description

気体潤滑船の製造方法及び気体吹出チャンバーの製造方法Method for manufacturing gas lubrication ship and method for manufacturing gas blowing chamber
 本発明は、船体の表面を気体で覆うことにより船体と水との間の抵抗を低減する技術に関する。 The present invention relates to a technique for reducing the resistance between the hull and water by covering the surface of the hull with gas.
 図1及び図2を参照して、特許文献1(特開2009-248611号公報)に開示された船舶の摩擦抵抗低減装置を説明する。 Referring to FIG. 1 and FIG. 2, a marine frictional resistance reducing device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2009-248611) will be described.
 図1は、摩擦抵抗低減装置の空気噴出口121の構造を概念的に示す斜視図である。送気管116を通ってブロワーから送られた空気は、送気管116に接続された空気噴出口121のチャンバー部170で直角に曲げられる。この送気管116の接続部の直下には、送気された空気を分散させる三角形の断面を有した分配部品171が設けられていて、この部分で直角に曲げられるとともに、分配部品171によって空気が左右に分散される構成をとっている。空気は直角に曲げられることで、水平方向に一様に広がろうとするが、チャンバー部170の奥と左右、上下の内壁により、空気は前方の多孔板172、173の方にのみ流れようとするが、この際に分配部品171の存在により、一層、多孔板172、173の左右方向の空気の分布が均一化される。 FIG. 1 is a perspective view conceptually showing the structure of the air outlet 121 of the frictional resistance reduction device. The air sent from the blower through the air supply pipe 116 is bent at a right angle by the chamber portion 170 of the air outlet 121 connected to the air supply pipe 116. A distribution part 171 having a triangular cross-section for dispersing the supplied air is provided immediately below the connection part of the air supply pipe 116, and is bent at a right angle at this part. The configuration is distributed to the left and right. Although the air is bent at a right angle, the air tends to spread uniformly in the horizontal direction, but the air tends to flow only to the front perforated plates 172 and 173 due to the inner side of the chamber part 170 and the back and left and right and top and bottom. However, the distribution of the air in the left-right direction of the perforated plates 172 and 173 is further uniformed by the presence of the distribution component 171 at this time.
 多孔板172、173には、多数の孔174、175が開けられているが、多孔板172、173で孔の左右方向の位置がずれていて、開孔位置をずらした配列となっている。この多孔板172、173は、2枚使用した例を示しているが、3枚、4枚といったこれ以外の複数枚であってもよい。多孔板172、173が、その開孔位置をずらして配置されることにより、多孔板172、173が、空気の流れを屈曲させ抵抗を付けるいわゆる邪魔板の作用をすることとなり、さらなる左右方向の空気の均一化に加えて、上下方向の空気も均一化されて、前面の噴出開口176から噴出させることが可能となる。 In the perforated plates 172 and 173, a large number of holes 174 and 175 are formed. However, the positions of the holes in the left and right directions are shifted in the perforated plates 172 and 173, and the aperture positions are shifted. In this example, two porous plates 172 and 173 are used, but a plurality of other porous plates such as three and four may be used. Since the perforated plates 172 and 173 are arranged with their opening positions shifted, the perforated plates 172 and 173 act as a so-called baffle plate that bends the flow of air and adds resistance, and further in the left-right direction. In addition to uniforming the air, the vertical air is also uniformed and can be ejected from the ejection opening 176 on the front surface.
 ここで、多孔板172、173はステンレス等の耐食性を有した板金を連続的にプレスで丸孔をあけて生産し、カッティングによって開孔位置をずらした配列を実現できるので、生産性にすぐれたものとなる。このステンレス材で構成された場合、開孔が丸孔であることにより、エッジ部がなくなり、角孔などのようにプレス時の応力集中が起こりにくく、海水中で用いてもエッジ部から応力腐食が進行することが軽減できる。多孔板172、173は、樹脂を使用し、成型によって生産してもよい。この樹脂を用いた場合は、腐食面からは特に孔の形状はこだわらないが、成形型からも丸孔が好ましい。 Here, the perforated plates 172 and 173 are made of a sheet metal having corrosion resistance such as stainless steel by continuously making round holes with a press, and an arrangement in which the opening positions are shifted by cutting can be realized, so that the productivity is excellent. It will be a thing. When this stainless steel material is used, the edges are eliminated due to the round holes, and stress concentration during pressing is unlikely to occur like square holes. Can be reduced. The perforated plates 172 and 173 may be produced by molding using resin. When this resin is used, the shape of the hole is not particularly concerned from the corroded surface, but a round hole is also preferred from the mold.
 図2は、空気噴出口121を船底103に取り付けた、断面図を示す。チャンバー部170は、船底103の平面より突出して設けられ、送気管116が船底103を貫通して、チャンバー部170に接続され、噴出開口176が水流に対して下流側に開いている。チャンバー部170の前面には、抵抗低減板180が設けられ、水流によってチャンバー部170が抵抗にならないように配慮されて構成されている。 FIG. 2 is a cross-sectional view in which the air outlet 121 is attached to the ship bottom 103. The chamber part 170 is provided so as to protrude from the plane of the ship bottom 103, the air supply pipe 116 penetrates the ship bottom 103, is connected to the chamber part 170, and the ejection opening 176 opens downstream with respect to the water flow. A resistance reduction plate 180 is provided on the front surface of the chamber portion 170 and is configured so that the chamber portion 170 does not become a resistance due to a water flow.
特開2009-248611号公報JP 2009-248611 A
 本発明の目的は、気体吹出チャンバーが船体に外付けされる気体潤滑船の抵抗を小さくすることが容易な気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを提供することである。 An object of the present invention is to provide a gas lubricated ship manufacturing method, a gas blowing chamber manufacturing method, a gas lubricated ship, and a gas blowing chamber in which it is easy to reduce the resistance of a gas lubricated ship to which the gas blowing chamber is externally attached to the hull. Is to provide.
 本発明の一の観点による気体潤滑船の製造方法は、一体成形された気体吹出チャンバーを準備することと、船体の外板を貫通する気体供給孔を外側から覆うように前記気体吹出チャンバーを前記船体に取り付けることとを具備する。 According to one aspect of the present invention, there is provided a gas lubricated ship manufacturing method comprising: preparing an integrally formed gas blowing chamber; and providing the gas blowing chamber so as to cover a gas supply hole penetrating the outer plate of the hull from the outside. Attaching to the hull.
 気体吹出チャンバーが一体成形されるため、抵抗の小さい流線形状を気体吹出チャンバーに付与することが容易である。したがって、気体潤滑船の抵抗を小さくすることが容易である。 Since the gas blowing chamber is integrally molded, it is easy to impart a streamline shape with low resistance to the gas blowing chamber. Therefore, it is easy to reduce the resistance of the gas lubricated ship.
 好ましくは、前記気体吹出チャンバーは、外部カバーと、前記外板と前記外部カバーとで囲まれる空間を第1空間と第2空間とに仕切る多孔板とを備える。前記外部カバーは、前記第1空間を覆う外部カバー第1部分と、前記第2空間を覆う外部カバー第2部分とを備える。前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記外部カバー第1部分が前記気体供給孔を覆うように前記気体吹出チャンバーを前記船体に取り付ける。前記外部カバー第2部分は、前記第2空間から水中に気体を吹き出すための気体吹出部を備える。 Preferably, the gas blowing chamber includes an outer cover, and a porous plate that partitions a space surrounded by the outer plate and the outer cover into a first space and a second space. The outer cover includes an outer cover first portion that covers the first space and an outer cover second portion that covers the second space. In attaching the gas blowing chamber to the hull, the gas blowing chamber is attached to the hull so that the first portion of the outer cover covers the gas supply hole. The second outer cover portion includes a gas blowing portion for blowing gas from the second space into the water.
 好ましくは、前記多孔板に形成された複数の貫通孔は、前記気体供給孔から遠いほどサイズが大きい。 Preferably, the plurality of through holes formed in the perforated plate are larger in size as they are farther from the gas supply hole.
 好ましくは、前記気体吹出チャンバーは、外部カバーと、船首船尾方向に向かい合う船首側壁板及び船尾側壁板と、前記船首側壁板及び前記船尾側壁板の間に配置された邪魔板とを備える。前記邪魔板と前記船首側壁板との間に第1のスリット孔が形成される。前記邪魔板と前記船尾側壁板との間に第2のスリット孔が形成される。前記外部カバーは、前記第1のスリット孔又は前記第2のスリット孔を通過した気体を水中に吹き出すための気体吹出部を備える。前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記邪魔板が前記気体供給孔と向かい合うように前記気体吹出チャンバーを前記船体に取り付ける。 Preferably, the gas blowing chamber includes an outer cover, a bow side wall plate and a stern side wall plate facing the bow stern direction, and a baffle plate disposed between the bow side wall plate and the stern side wall plate. A first slit hole is formed between the baffle plate and the bow side wall plate. A second slit hole is formed between the baffle plate and the stern side wall plate. The outer cover includes a gas blowing portion for blowing the gas that has passed through the first slit hole or the second slit hole into water. In attaching the gas blowing chamber to the hull, the gas blowing chamber is attached to the hull so that the baffle plate faces the gas supply hole.
 好ましくは、前記気体吹出チャンバーは、せん断吹出方式で気体を水中に吹き出す。 Preferably, the gas blowing chamber blows gas into water by a shear blowing method.
 好ましくは、前記気体吹出チャンバーは、ジェット吹出方式で気体を水中に吹き出す。 Preferably, the gas blowing chamber blows gas into water by a jet blowing method.
 好ましくは、前記気体吹出チャンバーは、ジェット吹出方式で気体を水中に吹き出す気体吹出部を備える。前記気体吹出部は、S字に湾曲した曲板状の気体吹出流路形成部分を備える。前記気体吹出流路形成部と前記外板との間に形成される気体吹出流路から水中に気体が吹き出される。 Preferably, the gas blowing chamber includes a gas blowing unit that blows gas into water by a jet blowing method. The gas blowing portion includes a curved plate-like gas blowing flow path forming portion curved in an S shape. A gas is blown into water from a gas blowing channel formed between the gas blowing channel forming part and the outer plate.
 好ましくは、前記気体吹出チャンバーの少なくとも一部は、流線形状を有する。 Preferably, at least a part of the gas blowing chamber has a streamline shape.
 好ましくは、前記気体吹出チャンバーは樹脂で一体成形される。前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記気体吹出チャンバーを前記船体に接着する。 Preferably, the gas blowing chamber is integrally formed of resin. In attaching the gas blowing chamber to the hull, the gas blowing chamber is bonded to the hull.
 好ましくは、前記気体吹出チャンバーは、ボルト孔が形成された取付座を備える。前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記気体吹出チャンバーを前記船体にボルトで取り付ける。 Preferably, the gas blowing chamber includes a mounting seat in which a bolt hole is formed. In attaching the gas blowing chamber to the hull, the gas blowing chamber is attached to the hull with bolts.
 本発明の他の観点による気体吹出チャンバーの製造方法は、船体に外付けされるべき気体吹出チャンバーを一体成形することを具備する。 A method for manufacturing a gas blowing chamber according to another aspect of the present invention includes integrally forming a gas blowing chamber to be externally attached to a hull.
 好ましくは、前記気体吹出チャンバーを一体成形することにおいて、前記気体吹出チャンバーを鋳物で一体成形する。 Preferably, in integrally forming the gas blowing chamber, the gas blowing chamber is integrally formed of a casting.
 好ましくは、前記気体吹出チャンバーを一体成形することにおいて、前記気体吹出チャンバーを樹脂で一体成形する。 Preferably, in integrally forming the gas blowing chamber, the gas blowing chamber is integrally formed with a resin.
 本発明の他の観点による気体潤滑船は、船体と、一体成形された気体吹出チャンバーとを具備する。前記気体吹出チャンバーは、前記船体の外板を貫通する気体供給孔を外側から覆うように前記船体に取り付けられる。 A gas lubricated ship according to another aspect of the present invention includes a hull and an integrally formed gas blowing chamber. The gas blowing chamber is attached to the hull so as to cover a gas supply hole penetrating the outer plate of the hull from the outside.
 本発明の他の観点による一体成形された船体外付け用気体吹出チャンバー。 Integrally molded gas blowing chamber for external hull according to another aspect of the present invention.
 本発明によれば、気体吹出チャンバーが船体に外付けされる気体潤滑船の抵抗を小さくすることが容易な気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーが提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the gas lubrication ship, the manufacturing method of a gas blowing chamber, a gas lubrication ship, and a gas blowing chamber with which it is easy to make small resistance of the gas lubrication ship with which a gas blowing chamber is externally attached to a hull Is provided.
 本発明の上記目的、他の目的、効果、及び特徴は、添付される図面として連携して実施の形態の記述から、より明らかになる。
図1は、従来の摩擦抵抗低減装置の空気噴出口の斜視図である。 図2は、空気噴出口を船底に取り付けた状態における断面図である。 図3は、本発明の第1の実施形態に係る気体潤滑船の側面図である。 図4は、第1の実施形態に係る気体吹出チャンバーの上面図(a)及び側面図(b)を示す。 図5は、第1の実施形態に係る気体吹出チャンバーの断面図である。 図6は、第1の実施形態に係る気体潤滑船の気体吹出チャンバー取り付け位置における断面図である。 図7は、第2の実施形態に係る気体吹出チャンバーの上面図(a)及び側面図(b)を示す。 図8は、第2の実施形態に係る気体潤滑船の気体吹出チャンバー取り付け位置における断面図である。 図9は、第3の実施形態に係る気体吹出チャンバーの上面図(a)及び側面図(b)を示す。 図10は、第3の実施形態に係る気体潤滑船の気体吹出チャンバー取り付け位置における断面図である。 図11は、第4の実施形態に係る気体吹出チャンバーの上面図(a)及び側面図(b)を示す。 図12は、第4の実施形態に係る気体吹出チャンバーの下面図である。 図13は、第4の実施形態に係る気体潤滑船の気体吹出チャンバー取り付け位置における断面図である。 図14は、第5の実施形態に係る気体潤滑船の気体吹出チャンバー取り付け位置における断面図である。
The above object, other objects, effects, and features of the present invention will become more apparent from the description of the embodiments in conjunction with the accompanying drawings.
FIG. 1 is a perspective view of an air outlet of a conventional frictional resistance reduction device. FIG. 2 is a cross-sectional view of the air jet outlet attached to the ship bottom. FIG. 3 is a side view of the gas lubricated ship according to the first embodiment of the present invention. FIG. 4 shows a top view (a) and a side view (b) of the gas blowing chamber according to the first embodiment. FIG. 5 is a cross-sectional view of the gas blowing chamber according to the first embodiment. FIG. 6 is a cross-sectional view of the gas lubrication ship according to the first embodiment at a gas blowing chamber mounting position. FIG. 7 shows a top view (a) and a side view (b) of a gas blowing chamber according to the second embodiment. FIG. 8 is a cross-sectional view of the gas lubrication ship according to the second embodiment at a gas blowing chamber mounting position. FIG. 9 shows a top view (a) and a side view (b) of a gas blowing chamber according to the third embodiment. FIG. 10 is a cross-sectional view of the gas lubrication ship according to the third embodiment at a gas blowing chamber mounting position. FIG. 11 shows a top view (a) and a side view (b) of a gas blowing chamber according to the fourth embodiment. FIG. 12 is a bottom view of the gas blowing chamber according to the fourth embodiment. FIG. 13: is sectional drawing in the gas blowing chamber attachment position of the gas lubrication ship which concerns on 4th Embodiment. FIG. 14: is sectional drawing in the gas blowing chamber attachment position of the gas lubrication ship which concerns on 5th Embodiment.
 添付図面を参照して、本発明による気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを実施するための形態を以下に説明する。 Referring to the accompanying drawings, a gas lubricated ship manufacturing method, a gas blowing chamber manufacturing method, a gas lubricating ship, and a mode for carrying out a gas blowing chamber according to the present invention will be described below.
 (第1の実施形態)
 図3を参照して、本発明の第1の実施形態に係る気体潤滑船を説明する。本実施形態に係る気体潤滑船は、船体1と、気体供給装置7と、気体供給パイプ8と、気体吹出チャンバー11と、プロペラ5と、舵6とを備える。プロペラ5及び舵6は船体1の船尾3に配置される。船体1に対し、互いに直交するX、Y、Z方向が定義されている。X方向は船首船尾方向に平行、Y方向は船幅方向に平行、Z方向は水深方向に平行である。気体供給パイプ8は、気体供給装置7と気体吹出チャンバー11とを接続する。気体吹出チャンバー11は、船体1の喫水線より下の部分に外側から取り付けられている。気体吹出チャンバー11は、船体1の船首2近傍に配置されることが好ましい。以下、気体吹出チャンバー11が船底4に取り付けられる場合を説明する。
(First embodiment)
With reference to FIG. 3, the gas lubrication ship which concerns on the 1st Embodiment of this invention is demonstrated. The gas lubricated ship according to the present embodiment includes a hull 1, a gas supply device 7, a gas supply pipe 8, a gas blowing chamber 11, a propeller 5, and a rudder 6. The propeller 5 and the rudder 6 are disposed on the stern 3 of the hull 1. X, Y, and Z directions orthogonal to each other are defined for the hull 1. The X direction is parallel to the bow stern direction, the Y direction is parallel to the ship width direction, and the Z direction is parallel to the water depth direction. The gas supply pipe 8 connects the gas supply device 7 and the gas blowing chamber 11. The gas blowing chamber 11 is attached to the part below the waterline of the hull 1 from the outside. The gas blowing chamber 11 is preferably disposed in the vicinity of the bow 2 of the hull 1. Hereinafter, the case where the gas blowing chamber 11 is attached to the ship bottom 4 will be described.
 気体供給装置7は、例えば、コンプレッサ又はブロワを備える。気体潤滑船の航行中、気体供給装置7は、気体供給パイプ8を介して空気を気体吹出チャンバー11に供給する。気体吹出チャンバー11は空気を水中に吹き出す。船体1の表面が空気で覆われるため、船体1と水との間の摩擦抵抗が低減される。本実施形態では、気体吹出チャンバー11が一体成形されているため、抵抗の小さい流線形状を気体吹出チャンバー11に付与することが容易である。したがって、気体潤滑船の抵抗を小さくすることが容易である。 The gas supply device 7 includes, for example, a compressor or a blower. During the navigation of the gas lubricated ship, the gas supply device 7 supplies air to the gas blowing chamber 11 via the gas supply pipe 8. The gas blowing chamber 11 blows air into the water. Since the surface of the hull 1 is covered with air, the frictional resistance between the hull 1 and water is reduced. In this embodiment, since the gas blowing chamber 11 is integrally formed, it is easy to give the gas blowing chamber 11 a streamline shape with low resistance. Therefore, it is easy to reduce the resistance of the gas lubricated ship.
 図4を参照して、気体吹出チャンバー11は、外部カバー20と、多孔板50とを備える。外部カバー20は、船首側部分21と、船尾側部分22とを備える。船首側部分21及び船尾側部分22は、曲面により構成された流線形状を有する。多孔板50は船首側部分21と船尾側部分22の境目に沿って配置される。船尾側部分22に気体吹出部31が形成されている。気体吹出部31は、せん断吹出方式で気体を水中に吹き出すように構成されている。気体吹出部31は、外部カバー20の船尾側部分22に形成された複数の気体吹出孔41を備える。気体吹出チャンバー11を船体1に取り付けた際の気体供給パイプ8の位置が二点鎖線で示されている。 Referring to FIG. 4, the gas blowing chamber 11 includes an outer cover 20 and a porous plate 50. The outer cover 20 includes a bow side portion 21 and a stern side portion 22. The bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces. The perforated plate 50 is disposed along the boundary between the bow side portion 21 and the stern side portion 22. A gas blowing portion 31 is formed on the stern side portion 22. The gas blowing unit 31 is configured to blow gas into water by a shear blowing method. The gas blowing portion 31 includes a plurality of gas blowing holes 41 formed in the stern side portion 22 of the outer cover 20. The position of the gas supply pipe 8 when the gas blowing chamber 11 is attached to the hull 1 is indicated by a two-dot chain line.
 図5を参照して、多孔板50には複数の貫通孔51が形成されている。複数の貫通孔51は、外側ほどサイズが大きくなっている。 Referring to FIG. 5, a plurality of through holes 51 are formed in the perforated plate 50. The plurality of through holes 51 are larger in size toward the outside.
 気体吹出チャンバー11の製造方法を説明する。型を準備し、その型を用いて材料を成形して気体吹出チャンバー11を製造する。気体吹出チャンバー11は、鋳物で一体成形されてもよく、樹脂で一体成形されてもよい。鋳物や樹脂で一体成形することにより、抵抗の小さい流線形状を船首側部分21及び船尾側部分22に付与することが容易である。これに対し、必要な強度を確保するために十分な厚みを有する板材を曲げて流線形状を形成することは難しい。一体成形される気体吹出チャンバー11は、複数の板材を溶接等により組立てて製作される気体吹出チャンバーに比べて制作費が安くなる。気体吹出チャンバー11を一体成形で製作することにより、同型で標準的な気体吹出チャンバーを多数製作できる。 A method for manufacturing the gas blowing chamber 11 will be described. A mold is prepared, and a material is molded using the mold to manufacture the gas blowing chamber 11. The gas blowing chamber 11 may be integrally formed with a casting or may be integrally formed with a resin. It is easy to impart a streamline shape with a small resistance to the bow side portion 21 and the stern side portion 22 by integrally molding with a casting or a resin. On the other hand, it is difficult to form a streamline shape by bending a plate material having a sufficient thickness to ensure the required strength. The gas blowing chamber 11 integrally formed has a lower production cost than a gas blowing chamber produced by assembling a plurality of plate members by welding or the like. By producing the gas blowing chamber 11 by integral molding, many standard gas blowing chambers of the same type can be produced.
 図6を参照して、本実施形態に係る気体潤滑船の製造方法を説明する。船底4の外板4aを貫通するように気体供給孔4bを形成する。気体供給パイプ8を気体供給孔4bに接続する。予め準備しておいた気体吹出チャンバー11を、気体供給孔4bを外側から覆うように船体1に取り付ける。このとき、船首側部分21が気体供給孔4bを覆うように、船首側部分21が船首2側に配置されて船尾側部分22が船尾3側に配置されるように、気体吹出チャンバー11を船体1に取り付ける。気体吹出チャンバー11が一体物であるため、気体吹出チャンバー11の船体1への取り付けが容易である。樹脂製の気体吹出チャンバー11は軽量であるため、取り付けが非常に容易である。気体吹出チャンバー11が鋳物の場合、気体吹出チャンバー11は船体1に溶接される。気体吹出チャンバー11が樹脂製の場合、気体吹出チャンバー11は船体1に接着剤で接着される。気体吹出チャンバー11を接着により取り付ける場合、取り付け時に船体1に熱応力が作用することが防がれる。 With reference to FIG. 6, the manufacturing method of the gas lubrication ship which concerns on this embodiment is demonstrated. A gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4. The gas supply pipe 8 is connected to the gas supply hole 4b. The gas blowing chamber 11 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside. At this time, the gas blowing chamber 11 is hulled so that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the bow side portion 21 covers the gas supply hole 4b. Attach to 1. Since the gas blowing chamber 11 is an integral object, the gas blowing chamber 11 can be easily attached to the hull 1. Since the resin gas blowing chamber 11 is lightweight, it is very easy to mount. When the gas blowing chamber 11 is a casting, the gas blowing chamber 11 is welded to the hull 1. When the gas blowing chamber 11 is made of resin, the gas blowing chamber 11 is bonded to the hull 1 with an adhesive. When the gas blowing chamber 11 is attached by adhesion, it is possible to prevent thermal stress from acting on the hull 1 at the time of attachment.
 気体吹出チャンバー11を船体1に外付けする上記工法を用いれば、外板4aに気体供給孔4bを形成し、気体吹出チャンバー11を船体1に取り付けるだけでよいため、工期が短縮される。したがって、本実施形態に係る気体潤滑船の製造方法は、就航船を改造して気体潤滑船を製造する場合に好適である。 If the above method of attaching the gas blowing chamber 11 to the hull 1 is used, the gas supply hole 4b is formed in the outer plate 4a and the gas blowing chamber 11 is simply attached to the hull 1, so that the construction period is shortened. Therefore, the method for manufacturing a gas-lubricated ship according to this embodiment is suitable for the case where a gas-lubricated ship is manufactured by remodeling a service ship.
 図6に示すように、気体吹出チャンバー11を船体1に取り付けた状態において、多孔板50は、外部カバー20の内側に配置され、外板4aと外部カバー20とで囲まれる空間を空間20aと空間20bとに仕切る。外部カバー20の船首側部分21は空間20aを覆い、外部カバー20の船尾側部分22は空間20bを覆う。多孔板50の複数の貫通孔51及び気体吹出部31の複数の気体吹出孔41は、Y方向に沿って配置される。気体供給パイプ8を介して気体吹出チャンバー11に供給される空気は、はじめに空間20aに流入し、多孔板50の複数の貫通孔51を通って空間20bに流入し、気体吹出部31を通って水中に吹き出される。気体吹出部31は、水流と交差する方向に空気を吹き出す。ここで、多孔板50が設けられているため、気体吹出部31から吹き出される空気量がY方向に沿って均等化される。多孔板50の複数の貫通孔51が気体供給孔4b(気体供給パイプ8)から遠いほどサイズが大きいため、気体吹出部31から吹き出される空気量がY方向に沿って更に均等化される。本実施形態によれば、空気の吹き出しを均等に行うための多孔板50と外部カバー20とが一体物として形成されるため、均等に空気を吹き出すための構造が容易に製作できる。 As shown in FIG. 6, in a state where the gas blowing chamber 11 is attached to the hull 1, the perforated plate 50 is disposed inside the outer cover 20, and a space surrounded by the outer plate 4 a and the outer cover 20 is defined as a space 20 a. Partition into space 20b. The bow side portion 21 of the outer cover 20 covers the space 20a, and the stern side portion 22 of the outer cover 20 covers the space 20b. The plurality of through holes 51 of the perforated plate 50 and the plurality of gas blowing holes 41 of the gas blowing portion 31 are arranged along the Y direction. The air supplied to the gas blowing chamber 11 via the gas supply pipe 8 first flows into the space 20 a, flows into the space 20 b through the plurality of through holes 51 of the perforated plate 50, and passes through the gas blowing portion 31. Be blown into the water. The gas blowing unit 31 blows air in a direction intersecting with the water flow. Here, since the porous plate 50 is provided, the amount of air blown out from the gas blowing portion 31 is equalized along the Y direction. Since the size of the plurality of through holes 51 of the perforated plate 50 increases as the distance from the gas supply hole 4b (gas supply pipe 8) increases, the amount of air blown out from the gas blowing portion 31 is further equalized along the Y direction. According to the present embodiment, since the porous plate 50 and the outer cover 20 for performing air blowing evenly are formed as a single body, a structure for blowing air evenly can be easily manufactured.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを説明する。尚、第1の実施形態と共通する事項の説明を省略する。
(Second Embodiment)
Next, a method for manufacturing a gas lubricated ship, a method for manufacturing a gas blowing chamber, a gas lubricated ship, and a gas blowing chamber according to a second embodiment of the present invention will be described. Note that description of matters common to the first embodiment is omitted.
 図7を参照して、第2の実施形態においては、気体吹出チャンバー11のかわりに気体吹出チャンバー12が用いられる。気体吹出チャンバー12は、外部カバー20と、多孔板50とを備える。外部カバー20は、船首側部分21と、船尾側部分22とを備える。船首側部分21及び船尾側部分22は、曲面により構成された流線形状を有する。多孔板50は船首側部分21と船尾側部分22の境目に沿って配置される。船尾側部分22に気体吹出部32が形成されている。気体吹出部32は、ジェット吹出方式で気体を水中に吹き出すように構成されている。気体吹出部32は、外部カバー20の船尾側部分22に形成された気体吹出流路形成部分42を備える。気体吹出チャンバー12を船体1に取り付けた際の気体供給パイプ8の位置が二点鎖線で示されている。 Referring to FIG. 7, in the second embodiment, a gas blowing chamber 12 is used instead of the gas blowing chamber 11. The gas blowing chamber 12 includes an outer cover 20 and a perforated plate 50. The outer cover 20 includes a bow side portion 21 and a stern side portion 22. The bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces. The perforated plate 50 is disposed along the boundary between the bow side portion 21 and the stern side portion 22. A gas blowing portion 32 is formed in the stern side portion 22. The gas blowing unit 32 is configured to blow gas into water by a jet blowing method. The gas blowing portion 32 includes a gas blowing flow path forming portion 42 formed in the stern side portion 22 of the outer cover 20. The position of the gas supply pipe 8 when the gas blowing chamber 12 is attached to the hull 1 is indicated by a two-dot chain line.
 気体吹出チャンバー12は、気体吹出チャンバー11と同様に鋳物や樹脂で一体成形される。 The gas blowing chamber 12 is integrally formed with a casting or resin in the same manner as the gas blowing chamber 11.
 図8を参照して、本実施形態に係る気体潤滑船の製造方法を説明する。船底4の外板4aを貫通するように気体供給孔4bを形成する。気体供給パイプ8を気体供給孔4bに接続する。予め準備しておいた気体吹出チャンバー12を、気体供給孔4bを外側から覆うように船体1に取り付ける。このとき、船首側部分21が気体供給孔4bを覆うように、船首側部分21が船首2側に配置されて船尾側部分22が船尾3側に配置されるように、気体吹出チャンバー12を船体1に取り付ける。取り付け方法は第1の実施形態の場合と同様である。 Referring to FIG. 8, a method for manufacturing a gas lubricated ship according to the present embodiment will be described. A gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4. The gas supply pipe 8 is connected to the gas supply hole 4b. The gas blowing chamber 12 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside. At this time, the gas blowing chamber 12 is hulled so that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the bow side portion 21 covers the gas supply hole 4b. Attach to 1. The attachment method is the same as that in the first embodiment.
 図8に示すように、気体吹出チャンバー12を船体1に取り付けた状態において、多孔板50は、外部カバー20の内側に配置され、外板4aと外部カバー20とで囲まれる空間を空間20aと空間20bとに仕切る。外部カバー20の船首側部分21は空間20aを覆い、外部カバー20の船尾側部分22は空間20bを覆う。多孔板50の複数の貫通孔51は、Y方向に沿って配置される。気体吹出部32の気体吹出流路形成部分42と外板4aとの間に気体吹出流路42aが形成される。気体吹出流路42aは、船尾3に向かって狭くなっている。気体吹出流路42aの船尾3側の端部はY方向に延びるスリット状の吹出開口を形成している。気体供給パイプ8を介して気体吹出チャンバー12に供給される空気は、はじめに空間20aに流入し、多孔板50の複数の貫通孔51を通って空間20bに流入し、気体吹出部32を通って水中に吹き出される。気体吹出部32は、水流の方向に空気を吹き出す。ここで、多孔板50が設けられているため、気体吹出部32から吹き出される空気量がY方向に沿って均等化される。多孔板50の複数の貫通孔51が気体供給孔4b(気体供給パイプ8)から遠いほどサイズが大きいため、気体吹出部32から吹き出される空気量がY方向に沿って更に均等化される。本実施形態によれば、空気の吹き出しを均等に行うための多孔板50と外部カバー20とが一体物として形成されるため、均等に空気を吹き出すための構造が容易に製作できる。 As shown in FIG. 8, in a state where the gas blowing chamber 12 is attached to the hull 1, the perforated plate 50 is disposed inside the outer cover 20, and a space surrounded by the outer plate 4a and the outer cover 20 is defined as a space 20a. Partition into space 20b. The bow side portion 21 of the outer cover 20 covers the space 20a, and the stern side portion 22 of the outer cover 20 covers the space 20b. The plurality of through holes 51 of the perforated plate 50 are arranged along the Y direction. A gas blowing channel 42a is formed between the gas blowing channel forming portion 42 of the gas blowing unit 32 and the outer plate 4a. The gas blowing channel 42 a is narrowed toward the stern 3. An end of the gas blowing flow path 42a on the stern 3 side forms a slit-shaped blowing opening extending in the Y direction. The air supplied to the gas blowing chamber 12 via the gas supply pipe 8 first flows into the space 20 a, flows into the space 20 b through the plurality of through holes 51 of the perforated plate 50, and passes through the gas blowing portion 32. Be blown into the water. The gas blowing unit 32 blows air in the direction of the water flow. Here, since the porous plate 50 is provided, the amount of air blown out from the gas blowing portion 32 is equalized along the Y direction. Since the size of the plurality of through holes 51 of the perforated plate 50 increases as the distance from the gas supply hole 4b (the gas supply pipe 8) increases, the amount of air blown from the gas blowing portion 32 is further equalized along the Y direction. According to the present embodiment, since the porous plate 50 and the outer cover 20 for performing air blowing evenly are formed as a single body, a structure for blowing air evenly can be easily manufactured.
 (第3の実施形態)
 次に、本発明の第3の実施形態に係る気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを説明する。尚、第1の実施形態と共通する事項の説明を省略する。
(Third embodiment)
Next, a method for manufacturing a gas lubricated ship, a method for manufacturing a gas blowing chamber, a gas lubricated ship, and a gas blowing chamber according to a third embodiment of the present invention will be described. Note that description of matters common to the first embodiment is omitted.
 図9を参照して、第3の実施形態においては、気体吹出チャンバー11のかわりに気体吹出チャンバー13が用いられる。気体吹出チャンバー13は、外部カバー20と、多孔板50とを備える。外部カバー20は、船首側部分21と、船尾側部分22とを備える。船首側部分21及び船尾側部分22は、曲面により構成された流線形状を有する。多孔板50は船首側部分21と船尾側部分22の境目に沿って配置される。船尾側部分22に気体吹出部33が形成されている。気体吹出部33は、ジェット吹出方式で気体を水中に吹き出すように構成されている。気体吹出部33は、外部カバー20の船尾側部分22に形成された気体吹出流路形成部分43を備える。気体吹出チャンバー13を船体1に取り付けた際の気体供給パイプ8の位置が二点鎖線で示されている。 Referring to FIG. 9, in the third embodiment, a gas blowing chamber 13 is used instead of the gas blowing chamber 11. The gas blowing chamber 13 includes an outer cover 20 and a perforated plate 50. The outer cover 20 includes a bow side portion 21 and a stern side portion 22. The bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces. The perforated plate 50 is disposed along the boundary between the bow side portion 21 and the stern side portion 22. A gas blowing portion 33 is formed on the stern side portion 22. The gas blowing unit 33 is configured to blow gas into water by a jet blowing method. The gas blowing portion 33 includes a gas blowing flow path forming portion 43 formed in the stern side portion 22 of the outer cover 20. The position of the gas supply pipe 8 when the gas blowing chamber 13 is attached to the hull 1 is indicated by a two-dot chain line.
 気体吹出チャンバー13は、気体吹出チャンバー11と同様に鋳物や樹脂で一体成形される。 The gas blowing chamber 13 is integrally formed with a casting or a resin in the same manner as the gas blowing chamber 11.
 図10を参照して、本実施形態に係る気体潤滑船の製造方法を説明する。船底4の外板4aを貫通するように気体供給孔4bを形成する。気体供給パイプ8を気体供給孔4bに接続する。予め準備しておいた気体吹出チャンバー13を、気体供給孔4bを外側から覆うように船体1に取り付ける。このとき、船首側部分21が気体供給孔4bを覆うように、船首側部分21が船首2側に配置されて船尾側部分22が船尾3側に配置されるように、気体吹出チャンバー13を船体1に取り付ける。取り付け方法は第1の実施形態の場合と同様である。 With reference to FIG. 10, the manufacturing method of the gas lubrication ship which concerns on this embodiment is demonstrated. A gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4. The gas supply pipe 8 is connected to the gas supply hole 4b. The gas blowing chamber 13 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside. At this time, the gas blowing chamber 13 is hulled so that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the bow side portion 21 covers the gas supply hole 4b. Attach to 1. The attachment method is the same as that in the first embodiment.
 図10に示すように、気体吹出チャンバー13を船体1に取り付けた状態において、多孔板50は、外部カバー20の内側に配置され、外板4aと外部カバー20とで囲まれる空間を空間20aと空間20bとに仕切る。外部カバー20の船首側部分21は空間20aを覆い、外部カバー20の船尾側部分22は空間20bを覆う。多孔板50の複数の貫通孔51は、Y方向に沿って配置される。気体吹出部33の気体吹出流路形成部分43と外板4aとの間に気体吹出流路43aが形成される。気体吹出流路43aは、船尾3に向かって狭くなっている。気体吹出流路43aの船尾3側の端部はY方向に延びるスリット状の吹出開口を形成している。気体供給パイプ8を介して気体吹出チャンバー13に供給される空気は、はじめに空間20aに流入し、多孔板50の複数の貫通孔51を通って空間20bに流入し、気体吹出部33を通って水中に吹き出される。気体吹出部33は、水流の方向に空気を吹き出す。ここで、多孔板50が設けられているため、気体吹出部33から吹き出される空気量がY方向に沿って均等化される。多孔板50の複数の貫通孔51が気体供給孔4b(気体供給パイプ8)から遠いほどサイズが大きいため、気体吹出部33から吹き出される空気量がY方向に沿って更に均等化される。本実施形態によれば、空気の吹き出しを均等に行うための多孔板50と外部カバー20とが一体物として形成されるため、均等に空気を吹き出すための構造が容易に製作できる。更に、気体吹出流路形成部分43がS字に湾曲した曲板状に形成されるため、気体吹出部33から水中に吹き出された空気が船底4の外板4aに沿いやすくなる。 As shown in FIG. 10, in a state where the gas blowing chamber 13 is attached to the hull 1, the perforated plate 50 is disposed inside the outer cover 20, and a space surrounded by the outer plate 4a and the outer cover 20 is defined as a space 20a. Partition into space 20b. The bow side portion 21 of the outer cover 20 covers the space 20a, and the stern side portion 22 of the outer cover 20 covers the space 20b. The plurality of through holes 51 of the perforated plate 50 are arranged along the Y direction. A gas blowing channel 43a is formed between the gas blowing channel forming portion 43 of the gas blowing unit 33 and the outer plate 4a. The gas blowing channel 43 a is narrowed toward the stern 3. An end of the gas blowing channel 43a on the stern 3 side forms a slit-shaped blowing opening extending in the Y direction. The air supplied to the gas blowing chamber 13 via the gas supply pipe 8 first flows into the space 20 a, flows into the space 20 b through the plurality of through holes 51 of the perforated plate 50, and passes through the gas blowing portion 33. Be blown into the water. The gas blowing unit 33 blows air in the direction of the water flow. Here, since the porous plate 50 is provided, the amount of air blown from the gas blowing portion 33 is equalized along the Y direction. Since the size of the plurality of through holes 51 of the perforated plate 50 increases as the distance from the gas supply hole 4b (gas supply pipe 8) increases, the amount of air blown from the gas blowing portion 33 is further equalized along the Y direction. According to the present embodiment, since the porous plate 50 and the outer cover 20 for performing air blowing evenly are formed as a single body, a structure for blowing air evenly can be easily manufactured. Furthermore, since the gas blowing flow path forming portion 43 is formed in a curved plate shape curved in an S shape, the air blown into the water from the gas blowing portion 33 is likely to follow along the outer plate 4 a of the ship bottom 4.
 (第4の実施形態)
 次に、本発明の第4の実施形態に係る気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを説明する。尚、第1の実施形態と共通する事項の説明を省略する。
(Fourth embodiment)
Next, a gas lubricated ship manufacturing method, a gas blowing chamber manufacturing method, a gas lubricated ship, and a gas blowing chamber according to a fourth embodiment of the present invention will be described. Note that description of matters common to the first embodiment is omitted.
 図11及び図12を参照して、第4の実施形態においては、気体吹出チャンバー11のかわりに気体吹出チャンバー14が用いられる。気体吹出チャンバー14は、外部カバー20と、壁板61と、壁板62と、邪魔板63とを備える。外部カバー20は、船首側部分21と、船尾側部分22と、船首側部分21及び船尾側部分22の間に配置された中間部分23とを備える。船首側部分21及び船尾側部分22は、曲面により構成された流線形状を有する。壁板61は、船首側部分21と中間部分23の境目に沿って配置される。壁板62は、中間部分23と船尾側部分22の境目に沿って配置される。壁板61及び壁板62は、互いに向かい合う。邪魔板63は、壁板61及び壁板62の間に配置される。中間部分23に気体吹出部34が形成されている。気体吹出部34は、せん断吹出方式で気体を水中に吹き出すように構成される。気体吹出部34は、外部カバー20の中間部分23に形成された複数の気体吹出孔44を備える。邪魔板63は、中間部分23の気体吹出部34が形成された部分と向かい合うように配置される。邪魔板63と壁板61との間にスリット孔65が形成され、邪魔板63と壁板62との間にスリット孔66が形成される。気体吹出チャンバー14を船体1に取り付けた際の気体供給パイプ8の位置が二点鎖線で示されている。 11 and 12, in the fourth embodiment, a gas blowing chamber 14 is used instead of the gas blowing chamber 11. The gas blowing chamber 14 includes an external cover 20, a wall plate 61, a wall plate 62, and a baffle plate 63. The outer cover 20 includes a bow side portion 21, a stern side portion 22, and an intermediate portion 23 disposed between the bow side portion 21 and the stern side portion 22. The bow side portion 21 and the stern side portion 22 have a streamline shape formed by curved surfaces. The wall plate 61 is disposed along the boundary between the bow side portion 21 and the intermediate portion 23. The wall plate 62 is disposed along the boundary between the intermediate portion 23 and the stern side portion 22. The wall plate 61 and the wall plate 62 face each other. The baffle plate 63 is disposed between the wall plate 61 and the wall plate 62. A gas blowing part 34 is formed in the intermediate part 23. The gas blowing unit 34 is configured to blow gas into water by a shear blowing method. The gas blowing part 34 includes a plurality of gas blowing holes 44 formed in the intermediate portion 23 of the outer cover 20. The baffle plate 63 is disposed so as to face the portion of the intermediate portion 23 where the gas blowing portion 34 is formed. A slit hole 65 is formed between the baffle plate 63 and the wall plate 61, and a slit hole 66 is formed between the baffle plate 63 and the wall plate 62. The position of the gas supply pipe 8 when the gas blowing chamber 14 is attached to the hull 1 is indicated by a two-dot chain line.
 気体吹出チャンバー14は、気体吹出チャンバー11と同様に鋳物や樹脂で一体成形される。 The gas blowing chamber 14 is integrally formed with a casting or a resin in the same manner as the gas blowing chamber 11.
 図13を参照して、本実施形態に係る気体潤滑船の製造方法を説明する。船底4の外板4aを貫通するように気体供給孔4bを形成する。気体供給パイプ8を気体供給孔4bに接続する。予め準備しておいた気体吹出チャンバー14を、気体供給孔4bを外側から覆うように船体1に取り付ける。このとき、邪魔板63が気体供給孔4b(気体供給パイプ8)と向かい合うように、船首側部分21が船首2側に配置されて船尾側部分22が船尾3側に配置されるように、気体吹出チャンバー14を船体1に取り付ける。取り付け方法は第1の実施形態の場合と同様である。 With reference to FIG. 13, the manufacturing method of the gas lubrication ship which concerns on this embodiment is demonstrated. A gas supply hole 4 b is formed so as to penetrate the outer plate 4 a of the ship bottom 4. The gas supply pipe 8 is connected to the gas supply hole 4b. The gas blowing chamber 14 prepared in advance is attached to the hull 1 so as to cover the gas supply hole 4b from the outside. At this time, the gas is so arranged that the bow side portion 21 is arranged on the bow 2 side and the stern side portion 22 is arranged on the stern 3 side so that the baffle plate 63 faces the gas supply hole 4b (gas supply pipe 8). The blowout chamber 14 is attached to the hull 1. The attachment method is the same as that in the first embodiment.
 図13に示すように、気体吹出チャンバー14を船体1に取り付けた状態において、壁板61、壁板62、及び邪魔板63は、外部カバー20の内側に配置される。壁板61及び壁板62は、X方向に向かい合う。スリット孔65及び66はY方向に平行である。気体吹出部34の複数の気体吹出孔44は、Y方向に沿って配置される。気体供給パイプ8を介して気体吹出チャンバー14に供給される空気は、邪魔板63に突き当たって流れの方向を変えてからスリット孔65又は66を通過し、気体吹出部34を通って水中に吹き出される。気体吹出部34は、水流と交差する方向に空気を吹き出す。ここで、壁板61、壁板62、及び邪魔板63が設けられているため、気体吹出部34から吹き出される空気量がY方向に沿って均等化される。本実施形態によれば、空気の吹き出しを均等に行うための壁板61、壁板62、及び邪魔板63と外部カバー20とが一体物として形成されるため、均等に空気を吹き出すための構造が容易に製作できる。 As shown in FIG. 13, the wall plate 61, the wall plate 62, and the baffle plate 63 are disposed inside the outer cover 20 in a state where the gas blowing chamber 14 is attached to the hull 1. The wall plate 61 and the wall plate 62 face each other in the X direction. The slit holes 65 and 66 are parallel to the Y direction. The plurality of gas blowing holes 44 of the gas blowing portion 34 are arranged along the Y direction. The air supplied to the gas blowing chamber 14 via the gas supply pipe 8 strikes the baffle plate 63 and changes the flow direction, then passes through the slit hole 65 or 66, and blows into the water through the gas blowing portion 34. Is done. The gas blowing part 34 blows air in the direction intersecting with the water flow. Here, since the wall plate 61, the wall plate 62, and the baffle plate 63 are provided, the amount of air blown from the gas blowing portion 34 is equalized along the Y direction. According to the present embodiment, the wall plate 61, the wall plate 62, and the baffle plate 63 and the outer cover 20 for uniformly blowing out air are formed as a single body, and thus a structure for blowing out air evenly. Can be easily manufactured.
 (第5の実施形態)
 次に、本発明の第5の実施形態に係る気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを説明する。尚、第1の実施形態と共通する事項の説明を省略する。
(Fifth embodiment)
Next, a gas lubricated ship manufacturing method, a gas blowing chamber manufacturing method, a gas lubricated ship, and a gas blowing chamber according to a fifth embodiment of the present invention will be described. Note that description of matters common to the first embodiment is omitted.
 図14を参照して、第5の実施形態においては、気体吹出チャンバー11のかわりに気体吹出チャンバー15が用いられる。気体吹出チャンバー15は、外部カバー20と、多孔板50と、取付座70とを備える。取付座70にはボルト孔が形成されている。気体吹出チャンバー15は、気体吹出チャンバー11に取付座70が追加されたものに対応する。気体吹出チャンバー15は、気体吹出チャンバー11と同様に鋳物や樹脂で一体成形される。本実施形態によれば、気体吹出チャンバー15を船体1に取り付けるための取付座70と外部カバー20とが一体物として形成されるため、取り付けるための構造が容易に製作できる。 Referring to FIG. 14, in the fifth embodiment, a gas blowing chamber 15 is used instead of the gas blowing chamber 11. The gas blowing chamber 15 includes an outer cover 20, a perforated plate 50, and a mounting seat 70. Bolt holes are formed in the mounting seat 70. The gas blowing chamber 15 corresponds to the gas blowing chamber 11 to which a mounting seat 70 is added. Similarly to the gas blowing chamber 11, the gas blowing chamber 15 is integrally formed with a casting or a resin. According to this embodiment, since the mounting seat 70 for attaching the gas blowing chamber 15 to the hull 1 and the outer cover 20 are formed as a single body, a structure for mounting can be easily manufactured.
 本実施形態においては、気体吹出チャンバー15が船体1にボルト75で取り付けられるため、気体吹出チャンバー15を船体1から取り外すことが可能である。したがって、気体吹出チャンバー15の内側のメンテナンスが容易である。 In this embodiment, since the gas blowing chamber 15 is attached to the hull 1 with the bolt 75, the gas blowing chamber 15 can be detached from the hull 1. Therefore, maintenance inside the gas blowing chamber 15 is easy.
 以上、実施の形態を参照して本発明による気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーを説明したが、本発明による気体潤滑船の製造方法、気体吹出チャンバーの製造方法、気体潤滑船、及び気体吹出チャンバーは上記実施形態に限定されない。上記実施形態に変更を加えたり上記実施形態どうしを組み合わせたりすることが可能である。例えば、空気を水中に吹き出すかわりに主機の排ガスを水中に吹き出してもよい。気体吹出チャンバー11~15を船底4に取り付けるかわりに船体1の船側に取り付け、気体吹出チャンバー11~15が水中に吹き出した空気を水流によって船底4に送り込んでもよい。取付座70を気体吹出チャンバー12~14に適用してもよい。 The method for manufacturing a gas lubricated ship, the method for manufacturing a gas blowing chamber, the gas lubricated ship, and the gas blowing chamber according to the present invention have been described above with reference to the embodiment. The manufacturing method of a blowing chamber, a gas lubrication ship, and a gas blowing chamber are not limited to the said embodiment. It is possible to add a change to the said embodiment or to combine the said embodiment. For example, instead of blowing air into the water, the exhaust gas of the main engine may be blown into the water. Instead of attaching the gas blowing chambers 11 to 15 to the ship bottom 4, the gas blowing chambers 11 to 15 may be attached to the ship side, and the air blown into the water from the gas blowing chambers 11 to 15 may be sent to the ship bottom 4 by a water flow. The mounting seat 70 may be applied to the gas blowing chambers 12-14.
 この出願は、2011年12月21日に出願された日本出願特願2011-280352号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-280352 filed on Dec. 21, 2011, the entire disclosure of which is incorporated herein.

Claims (15)

  1.  一体成形された気体吹出チャンバーを準備することと、
     船体の外板を貫通する気体供給孔を外側から覆うように前記気体吹出チャンバーを前記船体に取り付けることと
    を具備する
     気体潤滑船の製造方法。
    Providing an integrally formed gas blowing chamber;
    A method for producing a gas lubricated ship, comprising: attaching the gas blowing chamber to the hull so as to cover a gas supply hole penetrating the outer plate of the hull from the outside.
  2.  請求項1の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは、
     外部カバーと、
     前記外板と前記外部カバーとで囲まれる空間を第1空間と第2空間とに仕切る多孔板とを備え、
     前記外部カバーは、
     前記第1空間を覆う外部カバー第1部分と、
     前記第2空間を覆う外部カバー第2部分と
    を備え、
     前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記外部カバー第1部分が前記気体供給孔を覆うように前記気体吹出チャンバーを前記船体に取り付け、
     前記外部カバー第2部分は、前記第2空間から水中に気体を吹き出すための気体吹出部を備える
     気体潤滑船の製造方法。
    A method of manufacturing a gas lubricated ship according to claim 1,
    The gas blowing chamber is
    An outer cover,
    A perforated plate for partitioning a space surrounded by the outer plate and the outer cover into a first space and a second space;
    The outer cover is
    An outer cover first portion covering the first space;
    An outer cover second portion covering the second space,
    In attaching the gas blowing chamber to the hull, the gas blowing chamber is attached to the hull so that the first portion of the outer cover covers the gas supply hole,
    The outer cover second portion includes a gas blowing portion for blowing gas from the second space into the water.
  3.  請求項2の気体潤滑船の製造方法であって、
     前記多孔板に形成された複数の貫通孔は、前記気体供給孔から遠いほどサイズが大きい
     気体潤滑船の製造方法。
    A method for manufacturing a gas lubricated ship according to claim 2,
    The plurality of through holes formed in the perforated plate are larger in size as they are farther from the gas supply hole.
  4.  請求項1の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは、
     外部カバーと、
     船首船尾方向に向かい合う船首側壁板及び船尾側壁板と、
     前記船首側壁板及び前記船尾側壁板の間に配置された邪魔板と
    を備え、
     前記邪魔板と前記船首側壁板との間に第1のスリット孔が形成され、
     前記邪魔板と前記船尾側壁板との間に第2のスリット孔が形成され、
     前記外部カバーは、前記第1のスリット孔又は前記第2のスリット孔を通過した気体を水中に吹き出すための気体吹出部を備え、
     前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記邪魔板が前記気体供給孔と向かい合うように前記気体吹出チャンバーを前記船体に取り付ける
     気体潤滑船の製造方法。
    A method of manufacturing a gas lubricated ship according to claim 1,
    The gas blowing chamber is
    An outer cover,
    A bow side wall plate and a stern side wall plate facing the bow stern direction;
    A baffle plate disposed between the bow side wall plate and the stern side wall plate,
    A first slit hole is formed between the baffle plate and the bow side wall plate,
    A second slit hole is formed between the baffle plate and the stern side wall plate,
    The outer cover includes a gas blowing part for blowing the gas that has passed through the first slit hole or the second slit hole into water,
    A method of manufacturing a gas lubricated ship, wherein the gas blowing chamber is attached to the hull so that the baffle plate faces the gas supply hole in attaching the gas blowing chamber to the hull.
  5.  請求項1乃至4のいずれかに記載の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは、せん断吹出方式で気体を水中に吹き出す
     気体潤滑船の製造方法。
    A method for producing a gas lubricated ship according to any one of claims 1 to 4,
    The gas blowing chamber blows gas into water by a shear blowing method.
  6.  請求項1乃至4のいずれかに記載の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは、ジェット吹出方式で気体を水中に吹き出す
     気体潤滑船の製造方法。
    A method for producing a gas lubricated ship according to any one of claims 1 to 4,
    The gas blowing chamber blows gas into water by a jet blowing method.
  7.  請求項1の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは、ジェット吹出方式で気体を水中に吹き出す気体吹出部を備え、
     前記気体吹出部は、S字に湾曲した曲板状の気体吹出流路形成部分を備え、
     前記気体吹出流路形成部と前記外板との間に形成される気体吹出流路から水中に気体が吹き出される
     気体潤滑船の製造方法。
    A method of manufacturing a gas lubricated ship according to claim 1,
    The gas blowing chamber includes a gas blowing unit for blowing gas into water by a jet blowing method,
    The gas blowing portion includes a curved plate-like gas blowing flow path forming portion curved in an S shape,
    A method for manufacturing a gas lubricated ship, wherein gas is blown out into water from a gas blowing channel formed between the gas blowing channel forming part and the outer plate.
  8.  請求項1乃至7のいずれかに記載の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーの少なくとも一部は、流線形状を有する
     気体潤滑船の製造方法。
    A method for manufacturing a gas lubricated ship according to any one of claims 1 to 7,
    At least a part of the gas blowing chamber has a streamline shape.
  9.  請求項1乃至8のいずれかに記載の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは樹脂で一体成形され、
     前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記気体吹出チャンバーを前記船体に接着する
     気体潤滑船の製造方法。
    A method for manufacturing a gas-lubricated ship according to any one of claims 1 to 8,
    The gas blowing chamber is integrally formed of resin,
    A method for manufacturing a gas lubricated ship, wherein the gas blowing chamber is attached to the hull in attaching the gas blowing chamber to the hull.
  10.  請求項1乃至8のいずれかに記載の気体潤滑船の製造方法であって、
     前記気体吹出チャンバーは、ボルト孔が形成された取付座を備え、
     前記気体吹出チャンバーを前記船体に取り付けることにおいて、前記気体吹出チャンバーを前記船体にボルトで取り付ける
     気体潤滑船の製造方法。
    A method for manufacturing a gas-lubricated ship according to any one of claims 1 to 8,
    The gas blowing chamber includes a mounting seat in which a bolt hole is formed,
    A method of manufacturing a gas lubricated ship, wherein the gas blowing chamber is attached to the hull by attaching the gas blowing chamber to the hull.
  11.  船体に外付けされるべき気体吹出チャンバーを一体成形することを具備する
     気体吹出チャンバーの製造方法。
    A method for producing a gas blowing chamber comprising integrally forming a gas blowing chamber to be externally attached to a hull.
  12.  請求項11の気体吹出チャンバーの製造方法であって、
     前記気体吹出チャンバーを一体成形することにおいて、前記気体吹出チャンバーを鋳物で一体成形する
     気体吹出チャンバーの製造方法。
    It is a manufacturing method of the gas blowing chamber of Claim 11,
    A method for producing a gas blowing chamber, wherein the gas blowing chamber is integrally formed of a casting in the integral molding of the gas blowing chamber.
  13.  請求項11の気体吹出チャンバーの製造方法であって、
     前記気体吹出チャンバーを一体成形することにおいて、前記気体吹出チャンバーを樹脂で一体成形する
     気体吹出チャンバーの製造方法。
    It is a manufacturing method of the gas blowing chamber of Claim 11,
    The method for producing a gas blowing chamber, wherein the gas blowing chamber is integrally formed with a resin in integrally molding the gas blowing chamber.
  14.  船体と、
     一体成形された気体吹出チャンバーと
    を具備し、
     前記気体吹出チャンバーは、前記船体の外板を貫通する気体供給孔を外側から覆うように前記船体に取り付けられた
     気体潤滑船。
    The hull,
    An integrally formed gas blowing chamber,
    The gas blowout chamber is attached to the hull so as to cover a gas supply hole penetrating the outer plate of the hull from the outside.
  15.  一体成形された船体外付け用気体吹出チャンバー。 Integral molded gas blowing chamber for external hull.
PCT/JP2012/053489 2011-12-21 2012-02-15 Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber WO2013094226A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280047728.9A CN103826967A (en) 2011-12-21 2012-02-15 Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber
KR1020147007900A KR20140054360A (en) 2011-12-21 2012-02-15 Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011280352A JP2013129323A (en) 2011-12-21 2011-12-21 Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber
JP2011-280352 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094226A1 true WO2013094226A1 (en) 2013-06-27

Family

ID=48668139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053489 WO2013094226A1 (en) 2011-12-21 2012-02-15 Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber

Country Status (4)

Country Link
JP (1) JP2013129323A (en)
KR (1) KR20140054360A (en)
CN (1) CN103826967A (en)
WO (1) WO2013094226A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163912A (en) * 2014-04-02 2016-11-23 现代重工业株式会社 Base plate at boats and ships protrudes from the air jet system of sea water
WO2018142805A1 (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Friction reducing device for ship
CN110498006A (en) * 2018-05-17 2019-11-26 上海轻航气膜减阻船舶有限公司 Air layers reducing resistance energy conservation ship

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152601A1 (en) * 2014-04-02 2015-10-08 현대중공업 주식회사 Air injection apparatus protruding toward seawater from bottom plate of vessel
KR101733868B1 (en) * 2015-04-27 2017-05-11 현대중공업 주식회사 Air lubrication device for ships
CN108128401A (en) * 2017-11-23 2018-06-08 中国船舶科学研究中心上海分部 The general voltage-stablizer of gas lid
CN112238921A (en) * 2019-07-17 2021-01-19 章洪 Supercavitation hydrofoil ship
CN111959675B (en) * 2020-08-21 2021-05-04 中国船舶科学研究中心 Ship downstream jet air layer resistance reduction generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024891A (en) * 1996-07-08 1998-01-27 Ishikawajima Harima Heavy Ind Co Ltd Friction resistance reducing device for ship
JPH1159561A (en) * 1997-08-22 1999-03-02 Ishikawajima Harima Heavy Ind Co Ltd Friction reducing boat
JP2001328584A (en) * 2000-05-22 2001-11-27 Ishikawajima Harima Heavy Ind Co Ltd Frictional resistance-reduced ship
JP2008143345A (en) * 2006-12-08 2008-06-26 National Maritime Research Institute Hull frictional resistance reduction device
JP2009248611A (en) * 2008-04-01 2009-10-29 National Maritime Research Institute Frictional resistance reduction device for ship
JP2010023631A (en) * 2008-07-17 2010-02-04 National Maritime Research Institute Jet gas supplying method and jet gas control device for marine vessel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296795A (en) * 1999-04-13 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Frictional resistance reducing ship
KR100424543B1 (en) * 2000-03-14 2004-03-27 이시카와지마-하리마 주고교 가부시키가이샤 Frictional resistance reducing vessel
JP2008149209A (en) * 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024891A (en) * 1996-07-08 1998-01-27 Ishikawajima Harima Heavy Ind Co Ltd Friction resistance reducing device for ship
JPH1159561A (en) * 1997-08-22 1999-03-02 Ishikawajima Harima Heavy Ind Co Ltd Friction reducing boat
JP2001328584A (en) * 2000-05-22 2001-11-27 Ishikawajima Harima Heavy Ind Co Ltd Frictional resistance-reduced ship
JP2008143345A (en) * 2006-12-08 2008-06-26 National Maritime Research Institute Hull frictional resistance reduction device
JP2009248611A (en) * 2008-04-01 2009-10-29 National Maritime Research Institute Frictional resistance reduction device for ship
JP2010023631A (en) * 2008-07-17 2010-02-04 National Maritime Research Institute Jet gas supplying method and jet gas control device for marine vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163912A (en) * 2014-04-02 2016-11-23 现代重工业株式会社 Base plate at boats and ships protrudes from the air jet system of sea water
WO2018142805A1 (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Friction reducing device for ship
CN110498006A (en) * 2018-05-17 2019-11-26 上海轻航气膜减阻船舶有限公司 Air layers reducing resistance energy conservation ship

Also Published As

Publication number Publication date
KR20140054360A (en) 2014-05-08
JP2013129323A (en) 2013-07-04
CN103826967A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2013094226A1 (en) Method for manufacturing gas-lubricated ship, and method for manufacturing gas-discharging chamber
EP2353992B1 (en) Device for reducing frictional resistance of ship body
EP2347951B1 (en) Device for reducing frictional resistance of ship body
EP2351686B1 (en) Hull frictional resistance reducing device
JP5314565B2 (en) Ship resistance reduction device
EP2554469B1 (en) Ship encountering less frictional resistance
JP2009274704A (en) Frictional resistance-reduced ship, and operation method thereof
KR101532852B1 (en) Frictional resistance reduction ship and frictional resistance reduction apparatus for ship
US8985041B2 (en) Air lubrication system of ship
US9102383B2 (en) Air lubrication system of ship
EP2902309B1 (en) Ship having reduced frictional resistance
JP6413176B2 (en) Ship
JP2000296795A (en) Frictional resistance reducing ship
JP5448741B2 (en) Ship resistance reduction device
JP5695952B2 (en) Manufacturing method of ship with reduced frictional resistance
JP6655564B2 (en) Ship friction reduction device
JP5829664B2 (en) Ship resistance reduction device
JP5653703B2 (en) Gas recovery device and frictional resistance reduction type ship
JP6103432B2 (en) Ship frictional resistance reduction device
JP2018122717A (en) Friction reduction device of ship
JP2009274464A (en) Frictional resistance-reduced ship, and method for operation thereof
WO2014087717A1 (en) Ship
JP2012071785A (en) Gas collection device and frictional resistance reducing type ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007900

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858987

Country of ref document: EP

Kind code of ref document: A1