WO2013094009A1 - Light-emitting device and method for controlling same - Google Patents

Light-emitting device and method for controlling same Download PDF

Info

Publication number
WO2013094009A1
WO2013094009A1 PCT/JP2011/079498 JP2011079498W WO2013094009A1 WO 2013094009 A1 WO2013094009 A1 WO 2013094009A1 JP 2011079498 W JP2011079498 W JP 2011079498W WO 2013094009 A1 WO2013094009 A1 WO 2013094009A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
command
luminance
light emitting
unit
Prior art date
Application number
PCT/JP2011/079498
Other languages
French (fr)
Japanese (ja)
Inventor
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/079498 priority Critical patent/WO2013094009A1/en
Publication of WO2013094009A1 publication Critical patent/WO2013094009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light

Definitions

  • the present invention relates to a light emitting device including a plurality of light emitting units and a control method thereof.
  • Patent Document 1 discloses a technique for controlling the brightness step by step from a lighting operation.
  • Patent Documents 2 and 3 disclose a technique for performing dimming control when ambient illuminance is less than a certain value by an illuminance sensor.
  • Patent Document 4 discloses a technique for dimming control by detecting the presence of a person using a human sensor.
  • Patent Document 5 discloses a technique for controlling light control according to the lighting history of illumination.
  • an object of the present invention is to provide a light-emitting device that can cope with a delay in response to change in illuminance of human visual characteristics and a control method thereof.
  • the light emitting device of the present invention drives each of the light emitting units according to the control command and the control unit that issues a control command according to the operation command, the light emitting panel that includes a plurality of light emitting units that emit light with different emission colors.
  • a light emitting device comprising a drive unit,
  • the controller is An operation detection unit for detecting that the operation command is a sudden change command for commanding a rapid change in brightness of each of the light emitting units; When the sudden change command is detected, the luminance of the light emitting units is changed according to different luminance time change functions so that the color temperature of the light emitting panel changes at a different speed from the change of the luminance of the light emitting units.
  • a command unit that issues a control command to be controlled.
  • a light emitting panel composed of a plurality of light emitting units that emit light with different emission colors, a control unit that issues a control command in accordance with an operation command, and each of the light emitting units in response to the control command are driven.
  • a method of controlling a light emitting device comprising a drive unit, An operation detection step for detecting that the operation command is a sudden change command for commanding a rapid change in brightness of each of the light emitting units; When the sudden change command is detected, the luminance of the light emitting units is changed according to different luminance time change functions so that the color temperature of the light emitting panel changes at a different speed from the change of the luminance of the light emitting units. And a command step for issuing a control command to be controlled.
  • the light emitting device having the above configuration and the control method thereof, for example, by changing the color temperature by controlling the light emission luminance of a plurality of colors, it is possible to reduce the dazzling feeling for the user in the dark place.
  • the present invention there is an effect that it is possible to obtain an illuminance that can immediately recognize the surrounding situation by emitting strong red light that is less likely to be dazzling to human eyes immediately after the start of lighting.
  • the luminance change is made to follow this quickly in response to the sudden change command and the change in the color temperature is made gentle, a fresh sensation lighting effect can be obtained.
  • FIG. 1 is a block diagram showing a schematic configuration of a light emitting device according to an embodiment of the present invention.
  • FIG. 2A shows an example of a change in luminance time of an organic electroluminescence element in response to a lighting command for instructing a rapid change in luminance of the organic electroluminescence panel
  • FIG. 2B shows a rapid increase in luminance of the organic electroluminescence panel
  • FIG. 2C shows an example of a change in luminance time of an organic electroluminescence element that responds to a turn-off command that instructs a change
  • FIG. 2D is a graph showing an example of a change in luminance time of an organic electroluminescence element in response to a brightening command for instructing a rapid change in luminance of the organic electroluminescence panel.
  • FIG. 3 (A) is a graph showing an example of the spectral intensity distribution of organic electroluminescence elements of the three primary colors
  • FIG. 3 (B) is white light in the light emission color mixture of the entire organic electroluminescence panel composed of the organic electroluminescence element groups of the three primary colors. It is a graph which shows an example of the relationship between the color temperature of white light when it controls on the conditions with constant brightness
  • FIG. 3 (A) is a graph showing an example of the spectral intensity distribution of organic electroluminescence elements of the three primary colors
  • FIG. 3 (B) is white light in the light emission color mixture of the entire organic electroluminescence panel composed of the organic electroluminescence element groups of the three primary colors.
  • FIG. 4 is a graph showing an example of temporal changes in color temperature and luminance of an organic electroluminescence element in response to a lighting command for the organic electroluminescence panel.
  • FIG. 5 is a flowchart showing the operation of the control unit of the light emitting device according to the embodiment of the present invention.
  • 6 is a partially cutaway plan view of the organic electroluminescence panel of the light emitting device shown in FIG.
  • FIG. 7 is a cross-sectional view taken along line CC in FIG.
  • FIG. 8 is a graph showing an example of the temporal change in color temperature and luminance of the organic electroluminescence element in response to a command to turn off the organic electroluminescence panel.
  • organic EL organic electroluminescence
  • FIG. 1 is a block diagram showing a schematic configuration of a light emitting device as an embodiment of the present invention.
  • the light emitting device includes a drive unit 12 connected to the control unit 11 and an organic EL panel 13 connected to the drive unit.
  • the light emitting device further includes an illuminance sensor 14, a timer 15, a storage unit 16, and an operation unit 17 connected to the control unit 11.
  • the organic EL panel 13 is a set of a plurality of red (R) light emitting organic EL elements R, green (G) light emitting organic EL elements G, and blue (B) light emitting organic EL elements B having different light emission colors. A plurality of color light emitting portions.
  • the control unit 11 includes a microcomputer that includes a CPU, a ROM, a RAM, an internal timer, and the like that execute program codes such as processing procedures for generating various signals including a luminance designation signal, and each of the light emitting elements of the organic EL panel 13.
  • a lighting control routine for controlling brightness and lighting / extinguishing is executed.
  • the control unit 11 generates a luminance designation signal for each color for the organic EL panel 13 and supplies it to the drive unit 12.
  • the driving unit 12 includes a red driving unit 12R, a green driving unit 12G, and a blue driving unit 12B, which are driving circuits for RGB light emission connected to the organic EL elements R, G, and B of the organic EL panel 13, respectively.
  • the red driving unit 12R, the green driving unit 12G, and the blue driving unit 12B are individually supplied to the organic EL elements R, G, and B or for each of the R group, the G group, and the B group. Drive power is supplied to each of them, and each of them is caused to emit light with a designated luminance.
  • the driving unit 12 In response to the luminance designation signal of each color from the control unit 11, the driving unit 12 emits a light source color (light, etc.) such as white by mixing the light emission of predetermined luminance of the organic EL elements R, G, and B in various lighting modes of the organic EL panel 13. Color).
  • the light color white light is “color temperature” when the chromaticity is on the black body radiation locus indicated by the XYZ color system of the CIE chromaticity diagram, and “correlated color temperature” when the chromaticity is not within that range. (Unit: K (Kelvin)).
  • the illuminance sensor 14 is provided on the exterior of the light emitting device and detects the illuminance around the device.
  • the illuminance sensor 14 performs A / D conversion on the detected measurement value of illuminance and supplies it to the control unit 11 as illuminance data.
  • the timer 15 always measures the time and outputs the measured value to the control unit 11 as time data.
  • the storage unit 16 is constituted by, for example, a semiconductor memory, and in cooperation with the control unit 11, writing and reading of various data such as measurement data of the illuminance sensor 14 and the timer 15, white light toning data, threshold time data are performed. .
  • the operation unit 17 is a device such as a remote controller including an open / close switch and a wired module attached in the room.
  • the operation unit 17 supplies an operation command such as a lighting command for the light emitting device by the user, a switching to a lighting mode, and a stop command to the control unit 11.
  • the operation unit 17 can receive operation commands such as a turn-off command, a dark turn command, and a bright turn command in addition to the above-described turn-on command from the user.
  • the lighting command, the extinguishing command, the dark command, and the bright command are sudden change commands that command a rapid change in the luminance of the organic EL panel 13.
  • the control unit 11 In response to the sudden change command, the control unit 11 rapidly changes to the normal luminance of the organic EL panel 13 (total luminance of each color organic EL element group) as shown in FIG. 2 (A), (B), (C) and (D) show the rapid change in luminance of the organic EL panel 13 corresponding to the sudden change command time point t0, for example, the turn-on command, the turn-off command, the dark turn command, and the bright turn command.
  • the change is shown schematically.
  • the horizontal axis represents time (t)
  • the vertical axis represents luminance (I).
  • the controller 11 detects such a sudden change command from the operation unit 17, the organic EL elements R, G, and so that the color temperature of the organic EL panel 13 changes at a speed slower than the luminance change of the organic EL panel 13.
  • the toning is controlled in accordance with the luminance time changes of the respective B different luminances.
  • White light toning data is obtained by causing the organic EL elements R, G, and B to emit light at a specific luminance, and various kinds of the organic EL panel 13.
  • This is table data of luminance values (luminance designation signal) for each element sent to the red driving unit 12R, the green driving unit 12G, and the blue driving unit 12B for obtaining white light having a color temperature in a mixed color.
  • FIG. 3A shows an example of the spectral intensity distribution of the organic EL element of the three primary colors.
  • FIG. 3B shows the color temperature of white light and the individual luminance R (k) of the organic EL element when the luminance of the white light in the mixed light emission of the entire organic EL panel composed of the organic EL element group of the three primary colors is controlled under a constant condition. ), G (k), and B (k) are shown as examples of the relationship.
  • the organic EL elements R, G, and B of the three primary colors (RGB) to be used adopt the spectrum intensity distribution shown in FIG. 3A (the example calculated by normalizing the maximum value of each spectrum intensity to 1)
  • the organic EL elements R (k), G (k), G (k) with respect to the color temperature of white light (1500K to 5000K).
  • a set of individual luminances of B (k) is required.
  • the color temperature stages are divided into a plurality of color temperature stages, and the luminance designation signals (color temperature luminance curves R (k), G () for each of the organic EL elements R, G, and B for each color temperature 100K. k) and brightness temperature data at the intersections with B (k)) are prepared in advance. Further, white light toning data, that is, luminance time change R (t), G (t), and B (t) functions are created in advance by associating the temperature rise threshold value ⁇ t for each color temperature of 100K (see FIG. 4). ). Then, the color temperature luminance data and white light toning data are stored in the storage unit 16.
  • the control unit 11 Based on the acquired color temperature luminance data and white light toning data, the control unit 11 sets the luminance value for each of the organic EL elements R, G, and B at a predetermined timing from the lower one of the color temperature steps to the higher one.
  • R (t), G (t), and B (t) are sent to the red drive unit 12R, the green drive unit 12G, and the blue drive unit 12B, respectively.
  • the above-described constant white light brightness condition is that the threshold illuminance stored in the storage unit 16 can be easily seen when the user performs a lighting operation, for example, in the normal lighting mode. It is preferable to set the sum of the luminances of the organic EL elements R, G, and B that can usually obtain illuminance.
  • control unit 11 maintains the brightness so that the surrounding conditions can be easily visually recognized within the light adaptation period in which a person is likely to feel dazzling as the initial period before the normal lighting mode of the organic EL panel 13. Lights up.
  • the human light adaptation period is, for example, 2 minutes or less, 40 seconds to 1 minute, or the like.
  • a person's loss of light order is 30 minutes to 1 hour longer than the light adaptation period. Therefore, for example, it is preferable to set a light order loss period in which a person is in a dark place as a designated time (a normal lighting mode start time) that can exhibit an effect of preventing the glare of the person.
  • the threshold time data is data for designating the time interval (threshold time ⁇ t) of the timing signal for sequentially switching the luminance designation signal from the lower to the higher color temperature of the white light every threshold time.
  • the threshold time data is also stored in the storage unit 16.
  • the control unit 11 sends luminance designation signals R (t), G (t), and B (t) that define white light having a desired color temperature to the red drive unit 12R, the green drive unit 12G, and the blue drive unit 12B, respectively.
  • the light colors of the organic EL panel 13 are adjusted by controlling the luminance of the organic EL elements R, G, and B. That is, the control unit 11 controls the light color and color temperature of the organic EL panel 13 by individually adjusting the light emission intensity (luminance) of each color organic EL element of the organic EL panel 13, for example, the light bulb color, White light such as daylight is emitted.
  • the subsequent normal luminance and color temperature are schematically shown.
  • the horizontal axis is time (t)
  • the vertical axis (left) is color temperature (K)
  • the vertical axis (right) is luminance (I).
  • the control unit 11 detects such a lighting start command from the operation unit 17, the luminances of the organic EL elements R, G, B are changed to different luminance time changes R (t), G (t), B (t). Control independently.
  • the control unit 11 gradually increases the color temperature of the organic EL panel 13 to the normal color temperature Ct at a speed slower than the luminance change while instantaneously increasing the luminance to the normal luminance L of the organic EL panel 13.
  • the control unit 11 maintains the total luminance (normal luminance) of all the organic EL elements R, G, and B while adjusting the color from a light bulb color to a daylight color, for example. Then, the organic EL panel 13 is driven.
  • the control unit 11 first determines whether or not it is a lighting input (lighting switch ON) by a user operation in the operation unit 17 (step S1).
  • the control unit 11 stores luminance data (such as normal illuminance) of a predetermined color temperature in the normal lighting mode stored in the storage unit 16, white light toning data in the initial period, a specified time, Threshold time, day / night data, threshold illuminance, and the like are read and captured (step S2).
  • luminance data such as normal illuminance
  • the control unit 11 detects the previous turn-off time (initial value is, for example, the manufacturing date) of the organic EL panel 13 stored in advance in the storage unit 16 and turns on from the turn-off time.
  • the elapsed time up to the start time is calculated and held (step S3).
  • control unit 11 acquires illuminance data detected by the illuminance sensor 14 (step S4).
  • control unit 11 compares whether or not the elapsed time calculated in step S3 is longer than the specified time stored in advance (step S5).
  • step S5 the control unit 11 compares the lighting start time acquired from the timer 15 with the day / night data stored in advance, and determines whether the lighting start time is night (step S6).
  • step S6 When the lighting start time is night (predetermined time) in step S6, the control unit 11 compares the illuminance data detected by the illuminance sensor 14 captured in step S4, that is, the ambient illuminance with the threshold illuminance stored in advance. Then, it is determined whether or not it is low (step S7).
  • the control unit 11 When the ambient illuminance is lower than the threshold illuminance in step S7, the control unit 11 outputs a luminance designation signal for instructing the color temperature of the first stage of the white light toning data captured in step S2 to each color driving unit of the driving unit 12.
  • the organic EL panel 13 is lit at an initial color temperature Ct0 in a state where the color temperature of the organic EL panel 13 is low (for example, 1500 K) (step S8).
  • control unit 11 determines whether or not a threshold time ⁇ t stored in advance in the storage unit 16 has elapsed (step S9).
  • the control unit 11 sends luminance designation signals R (t), G (t), and B (t) that indicate the color temperature of the second stage of the white light toning data to the driving units for the respective colors. Then, the color temperature is increased by one step, and the organic EL panel 13 is turned on at the next highest color temperature (for example, 1600 K color temperature) (step S10). Thereafter, the control unit 11 increases the color temperature of the panel by one step each time the threshold time elapses.
  • control unit 11 monitors whether or not the user switches from the initial period to the normal lighting mode, that is, inputs an instruction to cancel the initial period (step S11). Note that step S11 and step S1 serve as an operation detection unit of the control unit 11.
  • step S11 If there is no cancel input in step S11, it is determined whether or not the color temperature of the organic EL panel 13 is equal to the value of the predetermined color temperature in the normal lighting mode that has been captured in advance. (Step S12).
  • step S9 If the color temperature of the panel does not reach the predetermined color temperature in the normal lighting mode, the control unit 11 returns to step S9.
  • steps S8, S9, S10, and S12 serve as a command unit of the control unit 11, and the control unit 11 causes the color temperature of the organic EL panel 13 to be slower than the change in luminance of the organic EL panel 13 by the loop of such steps. To change.
  • step S12 When the color temperature of the panel reaches the predetermined color temperature in the normal lighting mode in step S12, the control unit 11 turns on the organic EL panel 13 at the predetermined color temperature as it is (step S13). That is, lighting is continued with normal brightness and chromaticity in the normal lighting mode.
  • the normal lighting mode is started by turning on / off the lighting each time there is a large number of people entering and exiting the room, for example, when the elapsed time from the previous extinction by the user in step S5 is shorter than the specified time stored in advance. In the case of repetition, or when the person who moves from the outdoors to the daytime in step S6 is often photopic, it is switched when the lighting of the warm color system feels uncomfortable at the time of lighting.
  • the normal lighting mode is started when the illuminance detected by the illuminance sensor 14 in step S7 is higher than the threshold illuminance, for example, when outside light is falling from a window in a room during the daytime, or in step S11. Is switched from the initial period to the normal lighting mode.
  • step S1 When it is detected in step S1 that the operation unit 17 has been turned off (switch OFF), the control unit 11 writes the turn-off operation time to the storage unit 16 based on the output of the timer 15 and stores it (step S14). Thereafter, the control unit 11 sends a turn-off command to the drive unit 12 (step S15), stops turning on all the organic EL elements R, G, and B, and turns off the organic EL panel 13.
  • control unit 11 controls the white light of the light-emitting panel according to the elapsed time from the start of lighting. For example, during the light adaptation period (40 seconds to 1 minute), while maintaining the brightness (illuminance), for example, the white light of the organic EL panel 13 is gradually changed from a light bulb color to a daylight color. Can be suppressed.
  • the control unit 11 gradually increases the color temperature of the organic EL panel 13 in the normal lighting mode toward the end of the initial period (or changes the color of the organic EL panel 13). Move closer to a cool color).
  • the normal color of the organic EL panel 13 can be a daylight color (a color having a large blue wavelength component), and the color temperature can be about 6500K to 7000K.
  • the white light of the organic EL panel 13 can be gradually changed during the initial period, and the desired white light of the organic EL panel 13 can be obtained without giving a sense of discomfort or discomfort in the illuminance that allows the user to easily recognize the surrounding situation. You can get used to it.
  • the color temperature and light color of the organic EL panel 13 in the initial lighting mode and the normal lighting mode can be changed according to the user's preference.
  • the color temperature of the organic EL panel 13 and identification data for specifying the user can be associated and stored in the storage unit 16.
  • the control unit 11 acquires user identification information through the operation unit 17, the control unit 11 lights the organic EL panel 13 at a color temperature corresponding to the acquired identification information. Accordingly, even when the user feels the light color differently, the light color of the organic EL panel 13 can be set according to the user's preference, thereby preventing the user from feeling uncomfortable or uncomfortable. be able to.
  • the embodiment it is not necessary to change the color temperature in the initial period when it is not always necessary to illuminate cold white light, such as when it is likely to become bright from an early time such as summer, and therefore, it is not necessary to change the color temperature in the initial period.
  • the power can be reduced by setting the time.
  • FIG. 6 is a partially cutaway plan view of the organic EL panel 13 viewed from the substrate side direction (panel normal direction z) constituting the light emitting device of the present embodiment.
  • FIG. 7 is a cross-sectional view taken along the line CC in FIG. 6 showing the configuration of the organic EL panel 13.
  • the organic EL panel 13 includes a light-transmitting substrate 20, such as glass and resin, a transparent electrode 30, a bus line 40, an organic layer 50 including a light emitting layer, and a reflective electrode 60. It is constructed by stacking.
  • the organic EL panel 13 is a so-called bottom emission type organic EL panel that takes out light generated in the light emitting layer from the surface of the substrate 20 by applying a voltage between the transparent electrode 30 and the reflective electrode 60.
  • the light extraction surface of the substrate 20 is a flat surface, and the organic EL elements R, G, and B are provided on the surface opposite to the light extraction surface of the substrate 20.
  • the plurality of transparent electrodes 30 constituting the anode each have a strip shape, extend along the y direction on the substrate 20, and are juxtaposed in parallel with the x direction at regular intervals.
  • Each of the transparent electrodes 30 is made of a metal oxide conductor such as ITO (IndiumITOTin Oxide) or IZO (Indium Zinc Oxide).
  • a bus line 40 for supplying a power supply voltage to the transparent electrode 30 is formed extending along the y direction.
  • An insulating film BK is formed on the bus line 40 of the substrate 20 and the transparent electrode 30.
  • stripe-shaped openings each extending in the y direction are formed.
  • a plurality of banks are formed by providing a plurality of openings on the surface of the insulating film BK. Each of the openings reaches the transparent electrode 30, and the surface of each transparent electrode 30 is in contact with the organic layer 50 at the bottom of the opening.
  • a hole injection layer 51, a hole transport layer 52, light emitting layers 53R, 53G, and 53B, an electron transport layer 54, and an electron injection layer 55 are stacked in this order.
  • An organic layer 50 configured as described above is formed.
  • a hole blocking layer may be provided between the light emitting layer and the electron transport layer.
  • the light emitting layers 53R, 53G, and 53B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 53R, 53G, and 53B are juxtaposed in a state of being separated from each other by an insulating film BK (bank). That is, the organic layer 50 forms a plurality of light emitting regions separated by the bank BK.
  • These light emitting regions and the like can be formed by applying and drying droplets of light emitting materials of at least two colors corresponding to the respective light emitting color light emitting layers individually by an ink jet method.
  • An electron transport layer 54 and an electron injection layer 55 are sequentially formed so as to cover the surfaces of the light emitting layers 53R, 53G, 53B and the insulating film BK.
  • a strip-like reflective electrode 60 constituting a cathode is formed so as to extend in the x direction so as to cover the surface of the electron injection layer 55.
  • the reflective electrode 60 is made of a metal such as Al or an alloy having a low work function and high reflectivity.
  • the reflective electrode 60 constitutes a light reflecting film.
  • a cap made of metal, glass or the like covering all the organic EL elements R, G, B in a nitrogen-substituted glove box (Not shown).
  • a desiccant (not shown) may be attached to the inner wall of the cap. Or you may form the sealing film (not shown) which consists of an organic compound or an inorganic compound so that the whole surface (all the organic EL elements R, G, B) of the organic EL panel 13 may be coat
  • the organic functional layer such as the light emitting layer described above, it is possible to stack the constituent elements other than the substrate in the reverse order.
  • the structure of the organic layer and the electrode including the charge transport layer that includes at least the light emitting layer or can also be used is included in the present invention, without being limited to these stacked structures.
  • the light emitting layers 53R, 53G, and 53B that emit red, green, and blue light emission colors are repeatedly arranged in stripes, and the red, green, and blue light is emitted from the surface of the substrate 20 that serves as a light extraction surface.
  • the red, green, and blue light is emitted from the surface of the substrate 20 that serves as a light extraction surface.
  • the shape of the stripe organic EL element is an example, and the organic EL element may have a rectangular shape in plan view, the luminance of the element, the number of colors of the element, the mixing ratio of the number of the elements, There is no limitation as long as the light color can be obtained by color mixing by adjusting the matrix arrangement of the elements.
  • the present invention provides an illumination panel using not only an organic EL panel comprising a light emitting part of an organic EL element as a light emitting panel, but also a light emitting part comprising a light emitting diode comprising a plurality of inorganic EL elements and a plurality of LEDs. It can also be applied to.
  • the lighting start command is used as the operation command to the light emitting device.
  • a program, data, or the like can be set for another lighting command, turn-off command, dark turn command, or bright turn command.
  • the light emitting device can be configured similarly.
  • the color temperature change can be achieved with substantially the same configuration as the case of the lighting start command.
  • a turn-off period t1 that gradually decreases from the turn-off start time t0 of the normal luminance is provided, and in this turn-off period, the control unit 11
  • the luminance of each of the organic EL elements R, G, B is independently controlled according to different luminance time changes R (t), G (t), B (t).
  • the color temperature of the organic EL panel 13 can be gradually lowered to a predetermined color temperature at a speed faster than the brightness change while the brightness of the organic EL panel 13 is lowered. That is, when the light is turned off, the high color temperature of the organic EL panel 13 can be lowered (the color of the organic EL panel 13 is changed from a cold color to a warm color).
  • the color of the organic EL panel 13 can be gradually changed from a daylight color (a color having a large blue wavelength component) to a light bulb color (a color having a large red wavelength component).
  • a daylight color a color having a large blue wavelength component
  • a light bulb color a color having a large red wavelength component
  • the control unit 11 detects such a light reduction command from the operation unit 17, the luminances of the organic EL elements R, G, B are different from each other in luminance time changes R (t), G ( t) and B (t) are independently controlled to gradually lower the color temperature of the organic EL panel 13 to a predetermined color temperature at a speed faster than the brightness change while lowering the brightness of the organic EL panel 13. be able to.
  • the user feels uncomfortable even if the brightness of the organic EL panel 13 changes suddenly before and after the operation by turning off, darkening or brightening while changing the color temperature as well as the lighting operation.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A light-emitting device, provided with: a light-emitting panel comprising a plurality of light-emitting parts that emit light having mutually different colors; a controller for generating a control command in response to an operation command; and a driver for driving each of the light-emitting parts in accordance with the control command. The controller includes: an operation detector for detecting that the operation command is a rapid change command for a rapid change in the brightness of each of the light-emitting parts; and a command unit for generating, upon the detection of a rapid change command, a control command for controlling the brightness of each of the light-emitting parts according to mutually different brightness-time-change functions so that the color temperature of the light-emitting panel changes at a speed that is different from that of the change in the brightness of each of the light-emitting parts.

Description

発光装置及びその制御方法Light emitting device and control method thereof
 本発明は、複数の発光部を含む発光装置及びその制御方法に関する。 The present invention relates to a light emitting device including a plurality of light emitting units and a control method thereof.
 夜間、屋内照明を減灯して就寝中の人が突然の騒音、地震による揺れなどにより覚醒すると、まず発光装置を点灯させることが多い。しかし、真暗な部屋でいきなり発光装置が点灯すると、暗所視である目が明るさの変化についていけず、眩しくて痛くなるほどの不快を覚えることがある。 At night, when a person sleeping is awakened by sudden noise, shaking due to an earthquake, etc., the indoor lighting is turned off. However, when the light emitting device is suddenly turned on in a dark room, the eyes in darkness cannot keep up with the change in brightness, and may feel uncomfortable enough to become dazzling and painful.
 発光装置の点灯、消灯時のみならず暗転もしくは明転時など照度が急変すると、人間の視覚が追従できないことがあり、このような照度変化追従遅れによる不都合を解消するために、周囲の明るさに応じて発光装置の点灯状態を制御して、眩しさを感じさせない技術が知られている(特許文献1~5、参照)。 If the illuminance changes abruptly, such as when the light emitting device is turned on or off, as well as when it is dark or bright, human vision may not be able to follow. A technique is known in which the lighting state of the light emitting device is controlled in accordance with the above so as not to feel glare (see Patent Documents 1 to 5).
 特許文献1には、点灯操作から段階的に明るさを制御する技術が開示されている。また、特許文献2及び3には、照度センサにより周辺照度が一定値未満である場合に調光制御をする技術が開示されている。特許文献4には、人感センサにより人の存在を検知することで調光制御する技術が開示されている。また、特許文献5には、照明の点灯履歴に応じて調光制御する技術が開示されている。 Patent Document 1 discloses a technique for controlling the brightness step by step from a lighting operation. Patent Documents 2 and 3 disclose a technique for performing dimming control when ambient illuminance is less than a certain value by an illuminance sensor. Patent Document 4 discloses a technique for dimming control by detecting the presence of a person using a human sensor. Patent Document 5 discloses a technique for controlling light control according to the lighting history of illumination.
特開平8-055550号公報Japanese Patent Laid-Open No. 8-05550 特開平9-007771号公報JP-A-9-007771 特開平9-017576号公報Japanese Patent Laid-Open No. 9-017576 特開平10-189255号公報Japanese Patent Laid-Open No. 10-189255 特開2003-272878号公報JP 2003-272878 A
 しかしながら、特許文献記載の従来技術では発光装置の照度や輝度を点灯当初から低く抑えるため、使用者周辺の照度が使用者に認知できるまでに時間がかかり、周りの状況の認識が遅れるという問題があった。 However, in the prior art described in the patent document, since the illuminance and luminance of the light emitting device are kept low from the beginning of lighting, it takes time until the illuminance around the user can be recognized by the user, and there is a problem that recognition of the surrounding situation is delayed. there were.
 そこで、本発明は、人間の視覚特性の照度変化応答遅れに対処し得る発光装置及びその制御方法を提供することを課題の一例としている。 Therefore, an object of the present invention is to provide a light-emitting device that can cope with a delay in response to change in illuminance of human visual characteristics and a control method thereof.
 本発明の発光装置は、互いに異なる発光色にて発光する発光部の複数からなる発光パネルと操作指令に応じて制御指令を発する制御部と前記制御指令に応じて前記発光部の各々を駆動する駆動部とからなる発光装置であって、
 前記制御部は、
 操作指令が前記発光部の各々の輝度の急速な変化を指令する急変指令であることを検知する操作検知部と、
 前記急変指令を検知したとき、前記発光部の各々の輝度の変化と異なる速度にて前記発光パネルの色温度が変化するように前記発光部の各々の輝度を互いに異なる輝度時間変化関数に応じて制御する制御指令を発する指令部と、を含むことを特徴とする。
The light emitting device of the present invention drives each of the light emitting units according to the control command and the control unit that issues a control command according to the operation command, the light emitting panel that includes a plurality of light emitting units that emit light with different emission colors. A light emitting device comprising a drive unit,
The controller is
An operation detection unit for detecting that the operation command is a sudden change command for commanding a rapid change in brightness of each of the light emitting units;
When the sudden change command is detected, the luminance of the light emitting units is changed according to different luminance time change functions so that the color temperature of the light emitting panel changes at a different speed from the change of the luminance of the light emitting units. And a command unit that issues a control command to be controlled.
 本発明の制御方法は、互いに異なる発光色にて発光する発光部の複数からなる発光パネルと操作指令に応じて制御指令を発する制御部と前記制御指令に応じて前記発光部の各々を駆動する駆動部とからなる発光装置の制御方法であって、
 操作指令が前記発光部の各々の輝度の急速な変化を指令する急変指令であることを検知する操作検知ステップと、
 前記急変指令を検知したとき、前記発光部の各々の輝度の変化と異なる速度にて前記発光パネルの色温度が変化するように前記発光部の各々の輝度を互いに異なる輝度時間変化関数に応じて制御する制御指令を発する指令ステップと、を含むことを特徴とする。
According to the control method of the present invention, a light emitting panel composed of a plurality of light emitting units that emit light with different emission colors, a control unit that issues a control command in accordance with an operation command, and each of the light emitting units in response to the control command are driven. A method of controlling a light emitting device comprising a drive unit,
An operation detection step for detecting that the operation command is a sudden change command for commanding a rapid change in brightness of each of the light emitting units;
When the sudden change command is detected, the luminance of the light emitting units is changed according to different luminance time change functions so that the color temperature of the light emitting panel changes at a different speed from the change of the luminance of the light emitting units. And a command step for issuing a control command to be controlled.
 以上の構成の発光装置及びその制御方法によれば、例えば、複数色の発光輝度の制御により色温度を変化させることで暗所視の使用者への眩しさ感を低減させることができる。本発明によれば点灯開始直後から人の目にまぶしく感じることの少ない赤色を強く発光させることで直ぐに周りの状況が認識できる照度を得られるという効果がある。また、急変指令に応じて輝度変化はこれに素早く追従させつつ色温度の変化は緩やかとするので、新鮮な感覚の照明効果が得られる。 According to the light emitting device having the above configuration and the control method thereof, for example, by changing the color temperature by controlling the light emission luminance of a plurality of colors, it is possible to reduce the dazzling feeling for the user in the dark place. According to the present invention, there is an effect that it is possible to obtain an illuminance that can immediately recognize the surrounding situation by emitting strong red light that is less likely to be dazzling to human eyes immediately after the start of lighting. In addition, since the luminance change is made to follow this quickly in response to the sudden change command and the change in the color temperature is made gentle, a fresh sensation lighting effect can be obtained.
図1は本発明の実施例である発光装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a light emitting device according to an embodiment of the present invention. 図2(A)は有機エレクトロルミネッセンスパネルの輝度の急速な変化を指令する点灯指令に応答する有機エレクトロルミネッセンス素子の輝度時間変化の例を、図2(B)は有機エレクトロルミネッセンスパネルの輝度の急速な変化を指令する消灯指令に応答する有機エレクトロルミネッセンス素子の輝度時間変化の例を、図2(C)は有機エレクトロルミネッセンスパネルの輝度の急速な変化を指令する暗転指令に応答する有機エレクトロルミネッセンス素子の輝度時間変化の例を、図2(D)は有機エレクトロルミネッセンスパネルの輝度の急速な変化を指令する明転指令に応答する有機エレクトロルミネッセンス素子の輝度時間変化の例を、それぞれ示すグラフである。FIG. 2A shows an example of a change in luminance time of an organic electroluminescence element in response to a lighting command for instructing a rapid change in luminance of the organic electroluminescence panel, and FIG. 2B shows a rapid increase in luminance of the organic electroluminescence panel. FIG. 2C shows an example of a change in luminance time of an organic electroluminescence element that responds to a turn-off command that instructs a change, and FIG. FIG. 2D is a graph showing an example of a change in luminance time of an organic electroluminescence element in response to a brightening command for instructing a rapid change in luminance of the organic electroluminescence panel. . 図3(A)は三原色の有機エレクトロルミネッセンス素子のスペクトル強度分布の一例を示すグラフであり、図3(B)は三原色の有機エレクトロルミネッセンス素子群からなる有機エレクトロルミネッセンスパネル全体の発光混色おける白色光の輝度一定の条件で制御した時の白色光の色温度と有機エレクトロルミネッセンス素子の個別輝度変化との関係の一例を示すグラフである。FIG. 3 (A) is a graph showing an example of the spectral intensity distribution of organic electroluminescence elements of the three primary colors, and FIG. 3 (B) is white light in the light emission color mixture of the entire organic electroluminescence panel composed of the organic electroluminescence element groups of the three primary colors. It is a graph which shows an example of the relationship between the color temperature of white light when it controls on the conditions with constant brightness | luminance, and the separate luminance change of an organic electroluminescent element. 図4は有機エレクトロルミネッセンスパネルの点灯指令に応答する有機エレクトロルミネッセンス素子の色温度と輝度の時間変化の例を示すグラフである。FIG. 4 is a graph showing an example of temporal changes in color temperature and luminance of an organic electroluminescence element in response to a lighting command for the organic electroluminescence panel. 図5は本発明の実施例である発光装置の制御部の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the control unit of the light emitting device according to the embodiment of the present invention. 図6は図1に示す発光装置の有機エレクトロルミネッセンスパネルの一部分切欠平面図である。6 is a partially cutaway plan view of the organic electroluminescence panel of the light emitting device shown in FIG. 図7は図6におけるC-C線に沿った断面図である。FIG. 7 is a cross-sectional view taken along line CC in FIG. 図8は有機エレクトロルミネッセンスパネルの消灯指令に応答する有機エレクトロルミネッセンス素子の色温度と輝度の時間変化の例を示すグラフである。FIG. 8 is a graph showing an example of the temporal change in color temperature and luminance of the organic electroluminescence element in response to a command to turn off the organic electroluminescence panel.
 以下、本発明の実施例として、例えば、有機エレクトロルミネッセンス(以下、有機ELという)パネルを発光パネルとした発光装置を、図面を参照しつつ詳細に説明する。 Hereinafter, as an example of the present invention, for example, a light emitting device using an organic electroluminescence (hereinafter referred to as organic EL) panel as a light emitting panel will be described in detail with reference to the drawings.
 図1は本発明の実施例として発光装置の概略構成を示すブロック図である。この発光装置は、制御部11に接続された駆動部12と該駆動部に接続された有機ELパネル13とを含む。さらに、発光装置は、制御部11に接続された照度センサ14、タイマ15、記憶部16及び操作部17を含む。 FIG. 1 is a block diagram showing a schematic configuration of a light emitting device as an embodiment of the present invention. The light emitting device includes a drive unit 12 connected to the control unit 11 and an organic EL panel 13 connected to the drive unit. The light emitting device further includes an illuminance sensor 14, a timer 15, a storage unit 16, and an operation unit 17 connected to the control unit 11.
 有機ELパネル13は、互いに異なる発光色の例えば、複数の赤色(R)発光の有機EL素子Rと緑色(G)発光の有機EL素子Gと青色(B)発光の有機EL素子Bとの組のカラー発光部の複数からなる。 The organic EL panel 13 is a set of a plurality of red (R) light emitting organic EL elements R, green (G) light emitting organic EL elements G, and blue (B) light emitting organic EL elements B having different light emission colors. A plurality of color light emitting portions.
 制御部11は輝度指定信号を含む各種信号を生成する処理手順などのプログラムコードを実行するCPU,ROM,RAM,内部タイマなどから構成されるマイクロコンピュータからなり、有機ELパネル13の各発光素子の輝度及び点灯/消灯の制御を司る点灯制御ルーティンを実行する。制御部11は有機ELパネル13のための各色の輝度指定信号を生成し駆動部12へ供給する。 The control unit 11 includes a microcomputer that includes a CPU, a ROM, a RAM, an internal timer, and the like that execute program codes such as processing procedures for generating various signals including a luminance designation signal, and each of the light emitting elements of the organic EL panel 13. A lighting control routine for controlling brightness and lighting / extinguishing is executed. The control unit 11 generates a luminance designation signal for each color for the organic EL panel 13 and supplies it to the drive unit 12.
 駆動部12は、有機ELパネル13のそれぞれ有機EL素子R,G,Bに接続されたRGB発光用の駆動回路である赤駆動部12R、緑駆動部12G及び青駆動部12Bを含む。制御部11から供給される輝度指定信号に応じて、赤駆動部12R、緑駆動部12G及び青駆動部12Bは有機EL素子R,G,Bへ個別に若しくはR群、G群、B群ごとに駆動電力を供給し、それぞれ指定輝度で発光させる。駆動部12は、制御部11からの各色の輝度指定信号に応じて有機ELパネル13の各種点灯モードの有機EL素子R,G,Bの所定輝度の発光の混色により白色などの光源色(光色)を調色する。なお、光色の白色光は、その色度がCIE色度図のXYZ表色系で示される黒体放射軌跡上にある場合には「色温度」で、それから外れる場合には「相関色温度」で表される(単位:K(ケルビン))。 The driving unit 12 includes a red driving unit 12R, a green driving unit 12G, and a blue driving unit 12B, which are driving circuits for RGB light emission connected to the organic EL elements R, G, and B of the organic EL panel 13, respectively. Depending on the luminance designation signal supplied from the control unit 11, the red driving unit 12R, the green driving unit 12G, and the blue driving unit 12B are individually supplied to the organic EL elements R, G, and B or for each of the R group, the G group, and the B group. Drive power is supplied to each of them, and each of them is caused to emit light with a designated luminance. In response to the luminance designation signal of each color from the control unit 11, the driving unit 12 emits a light source color (light, etc.) such as white by mixing the light emission of predetermined luminance of the organic EL elements R, G, and B in various lighting modes of the organic EL panel 13. Color). The light color white light is “color temperature” when the chromaticity is on the black body radiation locus indicated by the XYZ color system of the CIE chromaticity diagram, and “correlated color temperature” when the chromaticity is not within that range. (Unit: K (Kelvin)).
 照度センサ14は発光装置の外装に設けられ、装置の周囲の照度を検出する。照度センサ14は検出した照度の測定値をA/D変換し照度データとして制御部11へ供給する。 The illuminance sensor 14 is provided on the exterior of the light emitting device and detects the illuminance around the device. The illuminance sensor 14 performs A / D conversion on the detected measurement value of illuminance and supplies it to the control unit 11 as illuminance data.
 タイマ15は、常時、時刻を計測し、その測定値を時刻データとして制御部11へ出力する。 The timer 15 always measures the time and outputs the measured value to the control unit 11 as time data.
 記憶部16は例えば半導体メモリで構成され、制御部11と協働して照度センサ14やタイマ15の測定データ、白色光調色データ、閾値時間データなど各種のデータの書込、読出が行われる。 The storage unit 16 is constituted by, for example, a semiconductor memory, and in cooperation with the control unit 11, writing and reading of various data such as measurement data of the illuminance sensor 14 and the timer 15, white light toning data, threshold time data are performed. .
 操作部17は、開閉スイッチを含むリモコンや部屋内に取り付けられる有線モジュールなどの装置である。操作部17は、使用者による発光装置の点灯指令などの操作指令や、点灯モードへ切り替えや中止指令を制御部11へ供給する。 The operation unit 17 is a device such as a remote controller including an open / close switch and a wired module attached in the room. The operation unit 17 supplies an operation command such as a lighting command for the light emitting device by the user, a switching to a lighting mode, and a stop command to the control unit 11.
 操作部17は、使用者から上記の点灯指令の他に、消灯指令、暗転指令及び明転指令などの操作指令を入力され得る。上記の点灯指令、消灯指令、暗転指令及び明転指令は、有機ELパネル13の輝度の急速な変化を指令する急変指令である。 The operation unit 17 can receive operation commands such as a turn-off command, a dark turn command, and a bright turn command in addition to the above-described turn-on command from the user. The lighting command, the extinguishing command, the dark command, and the bright command are sudden change commands that command a rapid change in the luminance of the organic EL panel 13.
 かかる急変指令に応じて、制御部11は、図2に示すように有機ELパネル13の通常輝度(各色有機EL素子群の合計輝度)まで急速に変化させる。図2(A),(B),(C)及び(D)は、かかる急変指令時点t0、例えば点灯指令、消灯指令、暗転指令及び明転指令に対応した有機ELパネル13の輝度の急速な変化を概略的に示す。図2において横軸は時間(t)であり、縦軸は輝度(I)である。 In response to the sudden change command, the control unit 11 rapidly changes to the normal luminance of the organic EL panel 13 (total luminance of each color organic EL element group) as shown in FIG. 2 (A), (B), (C) and (D) show the rapid change in luminance of the organic EL panel 13 corresponding to the sudden change command time point t0, for example, the turn-on command, the turn-off command, the dark turn command, and the bright turn command. The change is shown schematically. In FIG. 2, the horizontal axis represents time (t), and the vertical axis represents luminance (I).
 制御部11は、かかる急変指令を操作部17から検知したとき、有機ELパネル13の輝度の変化よりも遅い速度にて有機ELパネル13の色温度が変化するように有機EL素子R,G,B各々の輝度を互いに異なる輝度時間変化に応じて調色を制御する。 When the controller 11 detects such a sudden change command from the operation unit 17, the organic EL elements R, G, and so that the color temperature of the organic EL panel 13 changes at a speed slower than the luminance change of the organic EL panel 13. The toning is controlled in accordance with the luminance time changes of the respective B different luminances.
 [調色]
 次に、一例として、R,G,B有機EL素子群の発光混色により有機ELパネル全体の通常輝度が一定であっても白色光の色温度のみが変化する場合の有機EL素子毎の輝度値の白色光調色データを用いた場合の調色の一例を説明する
 白色光調色データは、有機EL素子R,G,Bをそれぞれの特定の輝度で発光させて有機ELパネル13の様々な色温度の白色光を混色で得るための赤駆動部12R、緑駆動部12G及び青駆動部12Bへ送る素子毎の輝度値(輝度指定信号)の表データである。
[Toning]
Next, as an example, the luminance value for each organic EL element in the case where only the color temperature of white light changes due to the light emission color mixture of the R, G, B organic EL element group even if the normal luminance of the entire organic EL panel is constant. An example of toning in the case of using white light toning data will be described. White light toning data is obtained by causing the organic EL elements R, G, and B to emit light at a specific luminance, and various kinds of the organic EL panel 13. This is table data of luminance values (luminance designation signal) for each element sent to the red driving unit 12R, the green driving unit 12G, and the blue driving unit 12B for obtaining white light having a color temperature in a mixed color.
 図3(A)は三原色の有機EL素子のスペクトル強度分布の例を示す。図3(B)はかかる三原色の有機EL素子群からなる有機ELパネル全体の発光混色おける白色光の輝度一定の条件で制御した時の白色光の色温度と有機EL素子の個別輝度R(k),G(k),B(k)の変化との関係の例を示す。使用される三原色(RGB)の有機EL素子R,G,Bが図3(A)に示すスペクトル強度分布(各スペクトル強度の最大値を1に正規化して計算した例)を採用した場合、当該パネル全体の白色光の輝度を一定として発光させるためには図3(B)に示すように白色光の色温度(1500K~5000K)に対して有機EL素子R(k),G(k),B(k)の個別輝度の組が必要となる。 FIG. 3A shows an example of the spectral intensity distribution of the organic EL element of the three primary colors. FIG. 3B shows the color temperature of white light and the individual luminance R (k) of the organic EL element when the luminance of the white light in the mixed light emission of the entire organic EL panel composed of the organic EL element group of the three primary colors is controlled under a constant condition. ), G (k), and B (k) are shown as examples of the relationship. When the organic EL elements R, G, and B of the three primary colors (RGB) to be used adopt the spectrum intensity distribution shown in FIG. 3A (the example calculated by normalizing the maximum value of each spectrum intensity to 1), In order to emit light with constant brightness of white light of the entire panel, as shown in FIG. 3B, the organic EL elements R (k), G (k), G (k), with respect to the color temperature of white light (1500K to 5000K). A set of individual luminances of B (k) is required.
 図3(B)の有機EL素子R,G,Bの色温度輝度曲線R(k),G(k),B(k)から明らかなように、例えば2000Kの白色光を得るためには有機EL素子R,G,Bの個別輝度出力が7000cd/m、3000cd/m、10cd/mが必要であり、また、4500Kの白色光を得るためには3500cd/m、5000cd/m、2000cd/mが必要であることを示す。よって、図3(B)の有機EL素子R,G,Bの色温度輝度曲線R(k),G(k),B(k)に基づいて、有機ELパネル13の白色光の色温度を低い方から高い方へ例えば100Kごとに順に複数の色温度段階に分けて、色温度100Kごとの有機EL素子R,G,B毎の輝度指定信号(色温度輝度曲線R(k),G(k),B(k)との交点における輝度値)の色温度輝度データを予め作成する。さらに、色温度100Kごとの昇温する閾値時間Δtとを関連づけて白色光調色データすなわち輝度時間変化R(t),G(t),B(t)関数を予め作成する(図4、参照)。そして、当該色温度輝度データや白色光調色データを記憶部16に格納しておく。 As is clear from the color temperature luminance curves R (k), G (k), and B (k) of the organic EL elements R, G, and B in FIG. EL elements R, G, separate luminance output of B is required 7000cd / m 2, 3000cd / m 2, 10cd / m 2, in order to obtain white light 4500K is 3500cd / m 2, 5000cd / m 2 indicates that 2000 cd / m 2 is necessary. Therefore, based on the color temperature luminance curves R (k), G (k), and B (k) of the organic EL elements R, G, and B in FIG. From the lowest to the highest, for example, every 100K, the color temperature stages are divided into a plurality of color temperature stages, and the luminance designation signals (color temperature luminance curves R (k), G () for each of the organic EL elements R, G, and B for each color temperature 100K. k) and brightness temperature data at the intersections with B (k)) are prepared in advance. Further, white light toning data, that is, luminance time change R (t), G (t), and B (t) functions are created in advance by associating the temperature rise threshold value Δt for each color temperature of 100K (see FIG. 4). ). Then, the color temperature luminance data and white light toning data are stored in the storage unit 16.
 制御部11は、取り込んだ色温度輝度データや白色光調色データに基づいて、色温度段階の低い方から高い方へ所定タイミングで有機EL素子R,G,B毎の輝度値を輝度指定信号R(t),G(t),B(t)として赤駆動部12R、緑駆動部12G及び青駆動部12Bのそれぞれへ送る。ただし、上記の白色光の輝度一定の条件は、記憶部16に記憶してある閾照度として、使用者が点灯操作をしたとき周囲の状況が容易に視認できるような、例えば通常点灯モード時の通常照度を得られる有機EL素子R,G,Bの輝度の合計とすることが好ましい。つまり、制御部11は、有機ELパネル13の通常点灯モード前の初期期間として人が眩しさを感じ易い明順応期間内にて周囲の状況が容易に視認できる明るさを維持するように発光パネルを点灯させる。人の明順応期間は、例えば、2分間以下、40秒間~1分間などである。 Based on the acquired color temperature luminance data and white light toning data, the control unit 11 sets the luminance value for each of the organic EL elements R, G, and B at a predetermined timing from the lower one of the color temperature steps to the higher one. R (t), G (t), and B (t) are sent to the red drive unit 12R, the green drive unit 12G, and the blue drive unit 12B, respectively. However, the above-described constant white light brightness condition is that the threshold illuminance stored in the storage unit 16 can be easily seen when the user performs a lighting operation, for example, in the normal lighting mode. It is preferable to set the sum of the luminances of the organic EL elements R, G, and B that can usually obtain illuminance. In other words, the control unit 11 maintains the brightness so that the surrounding conditions can be easily visually recognized within the light adaptation period in which a person is likely to feel dazzling as the initial period before the normal lighting mode of the organic EL panel 13. Lights up. The human light adaptation period is, for example, 2 minutes or less, 40 seconds to 1 minute, or the like.
 なお、人の明順喪失期間は明順応期間より長く30分間~1時間である。よって、例えば人が暗所視となっている明順喪失期間を、人の眩しさを防止する効果を発揮できる指定時間(通常点灯モード開始時間)として設定することが好ましい。 It should be noted that a person's loss of light order is 30 minutes to 1 hour longer than the light adaptation period. Therefore, for example, it is preferable to set a light order loss period in which a person is in a dark place as a designated time (a normal lighting mode start time) that can exhibit an effect of preventing the glare of the person.
 閾値時間データは閾値時間ごと上記輝度指定信号を白色光の色温度を低い方から高い方へ順次の切り替えるタイミング信号の時間間隔(閾値時間Δt)を指定するデータである。なお、閾値時間データも記憶部16に格納される。 The threshold time data is data for designating the time interval (threshold time Δt) of the timing signal for sequentially switching the luminance designation signal from the lower to the higher color temperature of the white light every threshold time. The threshold time data is also stored in the storage unit 16.
 制御部11は、所望の色温度の白色光を規定する輝度指定信号R(t),G(t),B(t)をそれぞれ赤駆動部12R、緑駆動部12G及び青駆動部12Bへ送り、有機EL素子R,G,Bの輝度を制御して、有機ELパネル13の光色を調色する。すなわち、制御部11は、有機ELパネル13の各色有機EL素子の発光強度(輝度)を個別に調整することにより、有機ELパネル13の光色、色温度を制御して、例えば、電球色、昼光色などの白色光を発光させる。 The control unit 11 sends luminance designation signals R (t), G (t), and B (t) that define white light having a desired color temperature to the red drive unit 12R, the green drive unit 12G, and the blue drive unit 12B, respectively. The light colors of the organic EL panel 13 are adjusted by controlling the luminance of the organic EL elements R, G, and B. That is, the control unit 11 controls the light color and color temperature of the organic EL panel 13 by individually adjusting the light emission intensity (luminance) of each color organic EL element of the organic EL panel 13, for example, the light bulb color, White light such as daylight is emitted.
 例えば、図4は、使用者の操作による点灯開始時点t0から通常輝度時点t1まで有機ELパネルの通常輝度L及び通常色温度Ct(初期色温度1500K~Ct=5000K)までのそれぞれの変化とそれ以後の通常の輝度及び色温度を概略的に示す。図4において横軸は時間(t)であり、縦軸(左)は色温度(K)であり、縦軸(右)は輝度(I)である。制御部11は、かかる点灯開始指令を操作部17から検知したとき、有機EL素子R,G,B各々の輝度を互いに異なる輝度時間変化R(t),G(t),B(t)に応じて独立に制御する。制御部11は、有機ELパネル13の通常輝度Lまでの瞬時に輝度を上昇させつつ当該輝度変化よりも遅い速度にて有機ELパネル13の色温度を通常色温度Ctまで、漸次上昇させる。制御部11は、有機ELパネル13の通常輝度時点t1前の初期期間として、例えば電球色から昼光色へ調色しつつ、有機EL素子R,G,Bすべての輝度の合計(通常輝度)を維持して、有機ELパネル13を駆動する。 For example, FIG. 4 shows changes in the normal luminance L and the normal color temperature Ct (initial color temperature 1500K to Ct = 5000K) of the organic EL panel from the lighting start time t0 to the normal luminance time t1 by the user's operation. The subsequent normal luminance and color temperature are schematically shown. In FIG. 4, the horizontal axis is time (t), the vertical axis (left) is color temperature (K), and the vertical axis (right) is luminance (I). When the control unit 11 detects such a lighting start command from the operation unit 17, the luminances of the organic EL elements R, G, B are changed to different luminance time changes R (t), G (t), B (t). Control independently. The control unit 11 gradually increases the color temperature of the organic EL panel 13 to the normal color temperature Ct at a speed slower than the luminance change while instantaneously increasing the luminance to the normal luminance L of the organic EL panel 13. As an initial period before the normal luminance time t1 of the organic EL panel 13, the control unit 11 maintains the total luminance (normal luminance) of all the organic EL elements R, G, and B while adjusting the color from a light bulb color to a daylight color, for example. Then, the organic EL panel 13 is driven.
 [点灯動作]
 次に、一例として、図5に示す制御部11の実行する点灯制御フローに従って屋内における実施例の発光装置の点灯動作を説明する。
[Lighting operation]
Next, as an example, the lighting operation of the light emitting device of the embodiment indoors will be described according to the lighting control flow executed by the control unit 11 shown in FIG.
 制御部11は先ず、操作部17における使用者の操作による、点灯入力(点灯スイッチON)か否か判断する(ステップS1)。 The control unit 11 first determines whether or not it is a lighting input (lighting switch ON) by a user operation in the operation unit 17 (step S1).
 ステップS1で点灯入力があれば、制御部11は記憶部16に記憶されている通常点灯モード時の所定色温度の輝度データ(通常照度など)、初期期間の白色光調色データ、指定時間、閾値時間、昼夜データ、閾照度などを読み出し取り込む(ステップS2)。 If there is a lighting input in step S1, the control unit 11 stores luminance data (such as normal illuminance) of a predetermined color temperature in the normal lighting mode stored in the storage unit 16, white light toning data in the initial period, a specified time, Threshold time, day / night data, threshold illuminance, and the like are read and captured (step S2).
 次に、制御部11はタイマ15の出力に基づいて記憶部16に予め記憶されている有機ELパネル13の前回の消灯時刻(初期値は例えば製造日時とする)を検出して消灯時刻から点灯開始時刻までの経過時間を算出して保持する(ステップS3)。 Next, based on the output of the timer 15, the control unit 11 detects the previous turn-off time (initial value is, for example, the manufacturing date) of the organic EL panel 13 stored in advance in the storage unit 16 and turns on from the turn-off time. The elapsed time up to the start time is calculated and held (step S3).
 次に、制御部11は照度センサ14で検出した照度データとして取得する(ステップS4)。 Next, the control unit 11 acquires illuminance data detected by the illuminance sensor 14 (step S4).
 次に、制御部11はステップS3にて算出した経過時間が予め記憶されている指定時間より長いか否か比較する(ステップS5)。 Next, the control unit 11 compares whether or not the elapsed time calculated in step S3 is longer than the specified time stored in advance (step S5).
 ステップS5で当該経過時間が長い場合、制御部11はタイマ15から取り込んだ点灯開始時刻が予め記憶されている昼夜データと比較して、点灯開始時点は夜間か否か判別する(ステップS6)。 When the elapsed time is long in step S5, the control unit 11 compares the lighting start time acquired from the timer 15 with the day / night data stored in advance, and determines whether the lighting start time is night (step S6).
 ステップS6で点灯開始時点が夜間(所定時刻)である場合、制御部11はステップS4にて取り込んだ照度センサ14で検出した照度データ、すなわち周囲の照度が予め記憶されている閾照度と比較して、低いか否か判別する(ステップS7)。 When the lighting start time is night (predetermined time) in step S6, the control unit 11 compares the illuminance data detected by the illuminance sensor 14 captured in step S4, that is, the ambient illuminance with the threshold illuminance stored in advance. Then, it is determined whether or not it is low (step S7).
 ステップS7で周囲の照度が閾照度より低い場合、制御部11はステップS2にて取り込んだ白色光調色データの1段階目の色温度を指示する輝度指定信号を駆動部12の各色の駆動部へ送り、有機ELパネル13の色温度が低い状態(例えば1500K)の初期色温度Ct0で点灯させる(ステップS8)。 When the ambient illuminance is lower than the threshold illuminance in step S7, the control unit 11 outputs a luminance designation signal for instructing the color temperature of the first stage of the white light toning data captured in step S2 to each color driving unit of the driving unit 12. The organic EL panel 13 is lit at an initial color temperature Ct0 in a state where the color temperature of the organic EL panel 13 is low (for example, 1500 K) (step S8).
 点灯開始の後、制御部11は記憶部16に予め記憶された閾値時間Δtを経過したか否かを判別する(ステップS9)。 After the start of lighting, the control unit 11 determines whether or not a threshold time Δt stored in advance in the storage unit 16 has elapsed (step S9).
 閾値時間を経過したならば、制御部11は白色光調色データの2段階目の色温度を指示する輝度指定信号R(t),G(t),B(t)を各色の駆動部へ供給し、色温度を1段階上げ有機ELパネル13を次に高い状態(例えば1600Kの色温度)の色温度で点灯させる(ステップS10)。以下、制御部11は閾値時間を経過するごとに該パネルの色温度を1段階ずつ上げていく。 If the threshold time has elapsed, the control unit 11 sends luminance designation signals R (t), G (t), and B (t) that indicate the color temperature of the second stage of the white light toning data to the driving units for the respective colors. Then, the color temperature is increased by one step, and the organic EL panel 13 is turned on at the next highest color temperature (for example, 1600 K color temperature) (step S10). Thereafter, the control unit 11 increases the color temperature of the panel by one step each time the threshold time elapses.
 次に、制御部11は、使用者が操作部17にて初期期間から通常点灯モードへ切り替え、すなわち初期期間の中止指令の入力をしたか否かを監視する(ステップS11)。なお、ステップS11とステップS1が制御部11の操作検知部となる。 Next, the control unit 11 monitors whether or not the user switches from the initial period to the normal lighting mode, that is, inputs an instruction to cancel the initial period (step S11). Note that step S11 and step S1 serve as an operation detection unit of the control unit 11.
 ステップS11でキャンセル入力がない場合、有機ELパネル13の色温度が予め取り込んである通常点灯モード時の所定色温度の値に等しいか否かを判別する。(ステップS12)。 If there is no cancel input in step S11, it is determined whether or not the color temperature of the organic EL panel 13 is equal to the value of the predetermined color temperature in the normal lighting mode that has been captured in advance. (Step S12).
 上記の通常点灯モード時の所定色温度にパネルの色温度が達していない場合、制御部11はステップS9に戻る。なお、ステップS8,S9,S10,S12が制御部11の指令部となり、かかるステップのループにより、制御部11は有機ELパネル13の輝度の変化よりも遅い速度にて有機ELパネル13の色温度を変化させる。 If the color temperature of the panel does not reach the predetermined color temperature in the normal lighting mode, the control unit 11 returns to step S9. Note that steps S8, S9, S10, and S12 serve as a command unit of the control unit 11, and the control unit 11 causes the color temperature of the organic EL panel 13 to be slower than the change in luminance of the organic EL panel 13 by the loop of such steps. To change.
 ステップS12で通常点灯モード時の所定色温度にパネルの色温度が達した場合、制御部11は、そのまま、有機ELパネル13を当該所定色温度で点灯させる(ステップS13)。すなわち、通常点灯モードで通常の輝度と色度で点灯を継続する。 When the color temperature of the panel reaches the predetermined color temperature in the normal lighting mode in step S12, the control unit 11 turns on the organic EL panel 13 at the predetermined color temperature as it is (step S13). That is, lighting is continued with normal brightness and chromaticity in the normal lighting mode.
 通常点灯モードの開始は、上記のステップS5にて使用者による前回消灯時からの経過時間が予め記憶されている指定時間より短い、例えば部屋への人の出入りが多くその度に照明のオンオフを繰り返す場合や、ステップS6にて昼間に屋外から屋内へ移動する人は明所視であることが多く点灯時に暖色系の照明では違和感を覚える場合に、切り替えられる。 The normal lighting mode is started by turning on / off the lighting each time there is a large number of people entering and exiting the room, for example, when the elapsed time from the previous extinction by the user in step S5 is shorter than the specified time stored in advance. In the case of repetition, or when the person who moves from the outdoors to the daytime in step S6 is often photopic, it is switched when the lighting of the warm color system feels uncomfortable at the time of lighting.
 また、通常点灯モードの開始は、上記のステップS7にて照度センサ14で検出した照度が閾照度より高い、例えば昼間の部屋の窓から外光が降り注いでいる場合や、ステップS11にて使用者が初期期間から通常点灯モードへ切り替えを望む場合に、切り替えられる。 In addition, the normal lighting mode is started when the illuminance detected by the illuminance sensor 14 in step S7 is higher than the threshold illuminance, for example, when outside light is falling from a window in a room during the daytime, or in step S11. Is switched from the initial period to the normal lighting mode.
 ステップS1にて、操作部17からの消灯入力(スイッチOFF)を検知した場合、制御部11はタイマ15の出力に基づいて消灯操作時刻を記憶部16へ書き出し、記憶する(ステップS14)。その後、制御部11は駆動部12へ消灯指令を送り(ステップS15)、有機EL素子R,G,Bすべての点灯を停止させ有機ELパネル13が消灯する。 When it is detected in step S1 that the operation unit 17 has been turned off (switch OFF), the control unit 11 writes the turn-off operation time to the storage unit 16 based on the output of the timer 15 and stores it (step S14). Thereafter, the control unit 11 sends a turn-off command to the drive unit 12 (step S15), stops turning on all the organic EL elements R, G, and B, and turns off the organic EL panel 13.
 以上のように、制御部11は、点灯開始の時点からの経過時間に応じて発光パネルの白色光を制御する。例えば、明順応期間(40秒乃至1分間時間)には、明るさ(照度)を維持しつつ、例えば、電球色などから昼光色へ有機ELパネル13の白色光を段階的に変化させてまぶしさを抑えることができる。 As described above, the control unit 11 controls the white light of the light-emitting panel according to the elapsed time from the start of lighting. For example, during the light adaptation period (40 seconds to 1 minute), while maintaining the brightness (illuminance), for example, the white light of the organic EL panel 13 is gradually changed from a light bulb color to a daylight color. Can be suppressed.
 明順応期間においても、実施例の発光装置においては、制御部11は、初期期間終了時点に向けて通常点灯モードの有機ELパネル13の色温度まで徐々に上げる(又は有機ELパネル13の色を寒色系の色に近づける)。例えば、有機ELパネル13の通常色を昼光色(青の波長成分が多い色)、色温度を6500K~7000K程度とすることができる。初期期間に有機ELパネル13の白色光を徐々に変化させることができ、使用者にとって周囲の状況が容易に視認できる照度において違和感又は不快感を与えることなく有機ELパネル13の所望の白色光に慣れるようにすることができる。 Even in the light adaptation period, in the light emitting device of the embodiment, the control unit 11 gradually increases the color temperature of the organic EL panel 13 in the normal lighting mode toward the end of the initial period (or changes the color of the organic EL panel 13). Move closer to a cool color). For example, the normal color of the organic EL panel 13 can be a daylight color (a color having a large blue wavelength component), and the color temperature can be about 6500K to 7000K. The white light of the organic EL panel 13 can be gradually changed during the initial period, and the desired white light of the organic EL panel 13 can be obtained without giving a sense of discomfort or discomfort in the illuminance that allows the user to easily recognize the surrounding situation. You can get used to it.
 なお、初期点灯及び通常点灯モードにおける有機ELパネル13の色温度、光色は使用者の好みに応じて変更することもできる。例えば、有機ELパネル13の色温度と使用者を特定する識別データとを関連付けて記憶部16に記憶しておくこともできる。制御部11は、操作部17を通じて使用者の識別情報を取得した場合、取得した識別情報に対応する色温度で有機ELパネル13を点灯させる。これにより、使用者により光色の感じ方が異なる場合でも、使用者の好みに併せて有機ELパネル13の光色を設定することができ、使用者に違和感や不快感を与えることを防止することができる。 It should be noted that the color temperature and light color of the organic EL panel 13 in the initial lighting mode and the normal lighting mode can be changed according to the user's preference. For example, the color temperature of the organic EL panel 13 and identification data for specifying the user can be associated and stored in the storage unit 16. When the control unit 11 acquires user identification information through the operation unit 17, the control unit 11 lights the organic EL panel 13 at a color temperature corresponding to the acquired identification information. Accordingly, even when the user feels the light color differently, the light color of the organic EL panel 13 can be set according to the user's preference, thereby preventing the user from feeling uncomfortable or uncomfortable. be able to.
 実施例によれば、夏のように早い時刻から明るくなり易い場合など、寒色系の白色光の照明が必ずしも必要ない場合には初期期間での色温度変化をさせる必要がないので、タイマによる所定の時刻設定により低電力化が図れる。 According to the embodiment, it is not necessary to change the color temperature in the initial period when it is not always necessary to illuminate cold white light, such as when it is likely to become bright from an early time such as summer, and therefore, it is not necessary to change the color temperature in the initial period. The power can be reduced by setting the time.
 [有機ELパネル]
 図6は、本実施例の発光装置を構成する基板側方向(パネル法線方向z)から見た有機ELパネル13の一部分切欠平面図である。図7は、有機ELパネル13の構成を示す図6におけるC-C線に沿った断面図である。
[Organic EL panel]
FIG. 6 is a partially cutaway plan view of the organic EL panel 13 viewed from the substrate side direction (panel normal direction z) constituting the light emitting device of the present embodiment. FIG. 7 is a cross-sectional view taken along the line CC in FIG. 6 showing the configuration of the organic EL panel 13.
 図6に示すように、有機ELパネル13においては、平行にストライプ状に並置された赤色発光有機EL素子R、緑色発光有機EL素子G及び青色発光有機EL素子Bの互いに異なる発光色の組を順次並べて構成される。すなわち、有機EL素子R、G及びBは、発光色ごと一定の周期間隔おいてx方向に並置されている。 As shown in FIG. 6, in the organic EL panel 13, different sets of emission colors of the red light-emitting organic EL element R, the green light-emitting organic EL element G, and the blue light-emitting organic EL element B that are juxtaposed in a parallel stripe pattern. Sequentially arranged. That is, the organic EL elements R, G, and B are juxtaposed in the x direction with a constant periodic interval for each emission color.
 図7に示すように、有機ELパネル13は、ガラスや樹脂などの光透過性を有する光透過性の基板20、透明電極30、バスライン40、発光層を含む有機層50、反射電極60が積層されて構成される。有機ELパネル13は、透明電極30と反射電極60との間に電圧を印加することにより発光層において生成される光を基板20の表面から取り出す所謂ボトムエミッション型の有機ELパネルである。基板20の光取り出し面は平坦面となり、基板20の光取り出し面とは反対側の面に有機EL素子R、G及びBを有する。 As shown in FIG. 7, the organic EL panel 13 includes a light-transmitting substrate 20, such as glass and resin, a transparent electrode 30, a bus line 40, an organic layer 50 including a light emitting layer, and a reflective electrode 60. It is constructed by stacking. The organic EL panel 13 is a so-called bottom emission type organic EL panel that takes out light generated in the light emitting layer from the surface of the substrate 20 by applying a voltage between the transparent electrode 30 and the reflective electrode 60. The light extraction surface of the substrate 20 is a flat surface, and the organic EL elements R, G, and B are provided on the surface opposite to the light extraction surface of the substrate 20.
 陽極を構成する複数の透明電極30は、それぞれ帯状をなしており、基板20上においてy方向に沿って伸長し、互いに一定間隔おいてx方向に平行に並置されている。透明電極30の各々は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体などからなる。 The plurality of transparent electrodes 30 constituting the anode each have a strip shape, extend along the y direction on the substrate 20, and are juxtaposed in parallel with the x direction at regular intervals. Each of the transparent electrodes 30 is made of a metal oxide conductor such as ITO (IndiumITOTin Oxide) or IZO (Indium Zinc Oxide).
 透明電極30の各々の端側上には、透明電極30に電源電圧を供給する為のバスライン40がy方向に沿って伸長して形成されている。 On each end side of the transparent electrode 30, a bus line 40 for supplying a power supply voltage to the transparent electrode 30 is formed extending along the y direction.
 基板20及び透明電極30のバスライン40上には絶縁膜BKが形成されている。絶縁膜BKには、各々がy方向に伸張するストライプ状の開口部が形成されている。絶縁膜BKの表面に複数の開口部を設けることにより複数のバンク(隔壁)が形成される。開口部の各々は、透明電極30に達しており、開口部の底面において透明電極30各々の表面が有機層50に接している。 An insulating film BK is formed on the bus line 40 of the substrate 20 and the transparent electrode 30. In the insulating film BK, stripe-shaped openings each extending in the y direction are formed. A plurality of banks (partition walls) are formed by providing a plurality of openings on the surface of the insulating film BK. Each of the openings reaches the transparent electrode 30, and the surface of each transparent electrode 30 is in contact with the organic layer 50 at the bottom of the opening.
 絶縁膜BKの各開口部内における透明電極30上には、正孔注入層51、正孔輸送層52、発光層53R,53G,53B、電子輸送層54、電子注入層55がこの順序で積層されて構成される有機層50が形成されている。発光層と電子輸送層の間に正孔阻止層を設けることもできる。 On the transparent electrode 30 in each opening of the insulating film BK, a hole injection layer 51, a hole transport layer 52, light emitting layers 53R, 53G, and 53B, an electron transport layer 54, and an electron injection layer 55 are stacked in this order. An organic layer 50 configured as described above is formed. A hole blocking layer may be provided between the light emitting layer and the electron transport layer.
 発光層53R,53G,53Bは、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物などからなる。発光層53R,53G,53Bは、絶縁膜BK(バンク)によって互いに隔てられた状態で並置されている。すなわち、有機層50は、バンクBKによって隔てられた複数の発光領域を形成している。これら発光領域などはインクジェット法により、それぞれの発光色発光層に対応する少なくとも2色以上の発光材料の液滴を個別に塗布し乾燥させて成膜できる。 The light emitting layers 53R, 53G, and 53B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively. The light emitting layers 53R, 53G, and 53B are juxtaposed in a state of being separated from each other by an insulating film BK (bank). That is, the organic layer 50 forms a plurality of light emitting regions separated by the bank BK. These light emitting regions and the like can be formed by applying and drying droplets of light emitting materials of at least two colors corresponding to the respective light emitting color light emitting layers individually by an ink jet method.
 発光層53R,53G,53Bおよび絶縁膜BKの表面を覆うように電子輸送層54及び電子注入層55が順に形成されている。電子注入層55の表面を覆うように陰極を構成する帯状の反射電極60がx方向に伸張するように形成されている。反射電極60は、仕事関数が低くかつ高反射率を有するAlなどの金属または合金などからなる。反射電極60は、光反射膜を構成するものである。陰極成膜後に、有機EL素子を大気中の酸素や水分から保護する目的で、窒素置換されたグローブボックス内で、全ての有機EL素子R,G,Bを覆う金属やガラスなどからなるキャップ(図示せず)で封止が施される。この時、キャップ内壁に乾燥剤(図示せず)を取り付けてもよい。または、有機ELパネル13の全面(全ての有機EL素子R,G,B)を被覆するように有機化合物もしくは無機化合物からなる封止膜(図示せず)を形成しておいてもよい。 An electron transport layer 54 and an electron injection layer 55 are sequentially formed so as to cover the surfaces of the light emitting layers 53R, 53G, 53B and the insulating film BK. A strip-like reflective electrode 60 constituting a cathode is formed so as to extend in the x direction so as to cover the surface of the electron injection layer 55. The reflective electrode 60 is made of a metal such as Al or an alloy having a low work function and high reflectivity. The reflective electrode 60 constitutes a light reflecting film. In order to protect the organic EL elements from oxygen and moisture in the atmosphere after the cathode film is formed, a cap made of metal, glass or the like covering all the organic EL elements R, G, B in a nitrogen-substituted glove box ( (Not shown). At this time, a desiccant (not shown) may be attached to the inner wall of the cap. Or you may form the sealing film (not shown) which consists of an organic compound or an inorganic compound so that the whole surface (all the organic EL elements R, G, B) of the organic EL panel 13 may be coat | covered.
 なお、以上説明した発光層などの有機機能層の層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む有機層及び電極の構成は本発明に含まれる。 In the layer configuration of the organic functional layer such as the light emitting layer described above, it is possible to stack the constituent elements other than the substrate in the reverse order. In any case, the structure of the organic layer and the electrode including the charge transport layer that includes at least the light emitting layer or can also be used is included in the present invention, without being limited to these stacked structures.
 このように、赤、緑、青の発光色をそれぞれ発する発光層53R,53G,53Bは、ストライプ状に繰り返し配置されており、光取り出し面となる基板20の表面からは、赤、緑、青の光が任意の割合で混色されて単一の光源色として認識される。 In this way, the light emitting layers 53R, 53G, and 53B that emit red, green, and blue light emission colors are repeatedly arranged in stripes, and the red, green, and blue light is emitted from the surface of the substrate 20 that serves as a light extraction surface. Are mixed at an arbitrary ratio and recognized as a single light source color.
 なお、上記ストライプ状有機EL素子の形状は一例であって、有機EL素子は平面視で矩形などの形状も良く、当該素子の輝度、当該素子の色数、当該素子の数の混合割合、当該素子のマトリクス配置などを調節することによって混色により光色を得られるならば、限定されない。 The shape of the stripe organic EL element is an example, and the organic EL element may have a rectangular shape in plan view, the luminance of the element, the number of colors of the element, the mixing ratio of the number of the elements, There is no limitation as long as the light color can be obtained by color mixing by adjusting the matrix arrangement of the elements.
 さらに、本発明は、発光パネルとして有機EL素子の発光部からなる有機ELパネルだけでなく、複数の無機EL素子からなる発光部や複数のLEDなどの発光ダイオードからなる発光部を用いた照明パネルにも適用できる。 Furthermore, the present invention provides an illumination panel using not only an organic EL panel comprising a light emitting part of an organic EL element as a light emitting panel, but also a light emitting part comprising a light emitting diode comprising a plurality of inorganic EL elements and a plurality of LEDs. It can also be applied to.
 なお、上記例では発光装置への操作指令として、点灯開始指令の場合を説明したが、他の点灯指令、消灯指令、暗転指令又は明転指令の操作指令においても、プログラム、データなどを設定すれば、同様に発光装置を構成できる。明転指令の場合は上記の点灯開始指令の場合とほぼ同様な構成で色温度変化を達成できる。また、例えば、操作指令として消灯開始指令の場合は、図8に示すように、通常輝度の消灯開始時点t0から漸次減少する消灯期間t1を設け、かかる消灯期間において、制御部11は、かかる消灯指令を操作部17から検知したとき(t0)、有機EL素子R,G,B各々の輝度を互いに異なる輝度時間変化R(t),G(t),B(t)に応じて独立に制御して、有機ELパネル13の輝度を下降させつつ当該輝度変化よりも早い速度にて有機ELパネル13の色温度を所定色温度まで漸次下降させることができる。すなわち、消灯際に、有機ELパネル13の高い色温度を下げる(有機ELパネル13の色を寒色系から暖色系の色に近づける)ことができる。例えば、有機ELパネル13の色を昼光色(青の波長成分が多い色)から電球色(赤の波長成分が多い色)へ徐々に変えることができる。このようにして、輝度変化は緩やかに変化させつつ色温度はそれよりも素早く追従するので、色変化による安心感などの新鮮な感覚の消灯効果が得られる。 In the above example, the case where the lighting start command is used as the operation command to the light emitting device has been described. However, a program, data, or the like can be set for another lighting command, turn-off command, dark turn command, or bright turn command. Thus, the light emitting device can be configured similarly. In the case of the bright rotation command, the color temperature change can be achieved with substantially the same configuration as the case of the lighting start command. Further, for example, in the case of the turn-off start command as the operation command, as shown in FIG. 8, a turn-off period t1 that gradually decreases from the turn-off start time t0 of the normal luminance is provided, and in this turn-off period, the control unit 11 When a command is detected from the operation unit 17 (t0), the luminance of each of the organic EL elements R, G, B is independently controlled according to different luminance time changes R (t), G (t), B (t). Thus, the color temperature of the organic EL panel 13 can be gradually lowered to a predetermined color temperature at a speed faster than the brightness change while the brightness of the organic EL panel 13 is lowered. That is, when the light is turned off, the high color temperature of the organic EL panel 13 can be lowered (the color of the organic EL panel 13 is changed from a cold color to a warm color). For example, the color of the organic EL panel 13 can be gradually changed from a daylight color (a color having a large blue wavelength component) to a light bulb color (a color having a large red wavelength component). In this way, since the luminance change is gradually changed and the color temperature follows faster than that, a fresh feeling extinction effect such as a sense of security due to the color change can be obtained.
 さらに、減灯の場合も、制御部11は、かかる減灯指令を操作部17から検知したとき、有機EL素子R,G,B各々の輝度を互いに異なる輝度時間変化R(t),G(t),B(t)に応じて独立に制御して、有機ELパネル13の輝度を下降させつつ当該輝度変化よりも早い速度にて有機ELパネル13の色温度を所定色温度まで漸次下降させることができる。 Further, also in the case of light reduction, when the control unit 11 detects such a light reduction command from the operation unit 17, the luminances of the organic EL elements R, G, B are different from each other in luminance time changes R (t), G ( t) and B (t) are independently controlled to gradually lower the color temperature of the organic EL panel 13 to a predetermined color temperature at a speed faster than the brightness change while lowering the brightness of the organic EL panel 13. be able to.
 このように、実施例によれば、点灯操作だけでなく、色温度を変えつつ消灯、暗転又は明転の操作をして操作前後で有機ELパネル13の輝度が急変しても使用者にとって違和感又は不快感を与えない状況や、有機ELパネル13の所望の白色光に慣れるようにする状況などを創出することができる。 Thus, according to the embodiment, the user feels uncomfortable even if the brightness of the organic EL panel 13 changes suddenly before and after the operation by turning off, darkening or brightening while changing the color temperature as well as the lighting operation. Alternatively, it is possible to create a situation where no discomfort is given or a situation where the user is used to the desired white light of the organic EL panel 13.
 11 制御部
 12 駆動部
 13 有機ELパネル
 14 照度センサ
 15 タイマ
 16 記憶部
 17 操作部
 R,G,B 有機EL素子
 20 基板
 30 透明電極
 40 バスライン
 50 有機層
 53R,53G,53B 発光層
 60 反射電極
 BK 絶縁膜
DESCRIPTION OF SYMBOLS 11 Control part 12 Drive part 13 Organic EL panel 14 Illuminance sensor 15 Timer 16 Memory | storage part 17 Operation part R, G, B Organic EL element 20 Board | substrate 30 Transparent electrode 40 Bus line 50 Organic layer 53R, 53G, 53B Light emitting layer 60 Reflective electrode BK insulation film

Claims (13)

  1.  互いに異なる発光色にて発光する発光部の複数からなる発光パネルと操作指令に応じて制御指令を発する制御部と前記制御指令に応じて前記発光部の各々を駆動する駆動部とからなる発光装置であって、
     前記制御部は、
     操作指令が前記発光部の各々の輝度の急速な変化を指令する急変指令であることを検知する操作検知部と、
     前記急変指令を検知したとき、前記発光部の各々の輝度の変化と異なる速度にて前記発光パネルの色温度が変化するように前記発光部の各々の輝度を互いに異なる輝度時間変化関数に応じて制御する制御指令を発する指令部と、を含むことを特徴とする発光装置。
    A light-emitting device comprising a light-emitting panel composed of a plurality of light-emitting units that emit light of different colors, a control unit that issues a control command in response to an operation command, and a drive unit that drives each of the light-emitting units in response to the control command Because
    The controller is
    An operation detection unit for detecting that the operation command is a sudden change command for commanding a rapid change in brightness of each of the light emitting units;
    When the sudden change command is detected, the luminance of the light emitting units is changed according to different luminance time change functions so that the color temperature of the light emitting panel changes at a different speed from the change of the luminance of the light emitting units. And a command unit that issues a control command for control.
  2.  前記急変指令は、点灯指令、消灯指令、暗転指令又は明転指令であることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the sudden change command is a turn-on command, a turn-off command, a dark turn command, or a bright turn command.
  3.  前記急変指令が点灯指令である場合、前記制御部は、前記発光パネルの点灯開始時点の前記発光パネルの色温度を、通常輝度の色温度まで徐々に変化させることを特徴とする請求項2に記載の発光装置。 3. The control unit according to claim 2, wherein when the sudden change command is a lighting command, the control unit gradually changes the color temperature of the light-emitting panel at the start of lighting of the light-emitting panel to a color temperature of normal luminance. The light-emitting device of description.
  4.  前記指令部は前記発光部の各々の輝度を直ちに通常輝度にする制御指令を発することを特徴とする請求項3に記載の発光装置。 4. The light emitting device according to claim 3, wherein the command unit issues a control command to immediately set the luminance of each light emitting unit to normal luminance.
  5.  前記操作検知部は前記操作指令が中止指令であることを検知し、該中止指令を検知するとき、前記指令部は前記発光部の各々の輝度を直ちに通常輝度にする制御指令を発することを特徴とする請求項3に記載の発光装置。 The operation detection unit detects that the operation command is a stop command, and when the stop command is detected, the command unit issues a control command to immediately set each luminance of the light emitting unit to normal brightness. The light-emitting device according to claim 3.
  6.  前記発光装置の周辺の照度を検出して出力する照度センサを更に含み、前記指令部は前記照度センサの出力に応じて前記発光部の各々の輝度を直ちに通常輝度にする制御指令を発することを特徴とする請求項3に記載の発光装置。 An illuminance sensor that detects and outputs illuminance around the light emitting device is further included, and the command unit issues a control command to immediately set the luminance of each of the light emitting units to normal luminance according to the output of the illuminance sensor. The light-emitting device according to claim 3.
  7.  時刻を計時するタイマを更に含み、前記指令部は前記タイマによる時刻が所定時刻であるとき前記発光部の各々の輝度を直ちに通常輝度にする制御指令を発することを特徴とする請求項3に記載の発光装置。 4. The timer according to claim 3, further comprising a timer for measuring time, wherein the command unit issues a control command for immediately setting each luminance of the light emitting unit to normal luminance when the time by the timer is a predetermined time. Light-emitting device.
  8.  前記指令部は前記タイマの出力に基づいて前記発光パネルの前回の消灯時刻を検出して前記消灯時刻から前記点灯開始時点までの経過時間を算出し、前記経過時間が指定時間以上のとき前記発光部の各々の輝度を直ちに通常輝度にする制御指令を発することを特徴とする請求項7に記載の発光装置。 The command unit detects a previous turn-off time of the light-emitting panel based on an output of the timer, calculates an elapsed time from the turn-off time to the turn-on start time, and emits the light when the elapsed time is equal to or longer than a specified time. The light-emitting device according to claim 7, wherein a control command for immediately setting the luminance of each unit to normal luminance is issued.
  9.  前記発光パネルの輝度の変化よりも遅い速度にて前記発光パネルの色温度が変化することを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the color temperature of the light emitting panel changes at a speed slower than the change in luminance of the light emitting panel.
  10.  前記初期期間が明順応期間であることを特徴とする請求項9に記載の発光装置。 10. The light emitting device according to claim 9, wherein the initial period is a light adaptation period.
  11.  前記発光パネルの輝度の変化よりも早い速度にて前記発光パネルの色温度が変化することを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the color temperature of the light emitting panel changes at a speed faster than the change in luminance of the light emitting panel.
  12.  前記発光部は有機エレクトロルミネッセンス素子であることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein the light-emitting unit is an organic electroluminescence element.
  13.  互いに異なる発光色にて発光する発光部の複数からなる発光パネルと操作指令に応じて制御指令を発する制御部と前記制御指令に応じて前記発光部の各々を駆動する駆動部とからなる発光装置の制御方法であって、
     操作指令が前記発光部の各々の輝度の急速な変化を指令する急変指令であることを検知する操作検知ステップと、
     前記急変指令を検知したとき、前記発光部の各々の輝度の変化と異なる速度にて前記発光パネルの色温度が変化するように前記発光部の各々の輝度を互いに異なる輝度時間変化関数に応じて制御する制御指令を発する指令ステップと、を含むことを特徴とする発光装置の制御方法。
    A light-emitting device comprising a light-emitting panel composed of a plurality of light-emitting units that emit light of different colors, a control unit that issues a control command in response to an operation command, and a drive unit that drives each of the light-emitting units in response to the control command Control method,
    An operation detection step for detecting that the operation command is a sudden change command for commanding a rapid change in brightness of each of the light emitting units;
    When the sudden change command is detected, the luminance of the light emitting units is changed according to different luminance time change functions so that the color temperature of the light emitting panel changes at a different speed from the change of the luminance of the light emitting units. And a command step for issuing a control command to control the light-emitting device control method.
PCT/JP2011/079498 2011-12-20 2011-12-20 Light-emitting device and method for controlling same WO2013094009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079498 WO2013094009A1 (en) 2011-12-20 2011-12-20 Light-emitting device and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079498 WO2013094009A1 (en) 2011-12-20 2011-12-20 Light-emitting device and method for controlling same

Publications (1)

Publication Number Publication Date
WO2013094009A1 true WO2013094009A1 (en) 2013-06-27

Family

ID=48667939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079498 WO2013094009A1 (en) 2011-12-20 2011-12-20 Light-emitting device and method for controlling same

Country Status (1)

Country Link
WO (1) WO2013094009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110602819A (en) * 2019-08-09 2019-12-20 漳州立达信光电子科技有限公司 Color temperature smoothing output system and controller
JP2021051975A (en) * 2019-09-26 2021-04-01 シャープ株式会社 Lighting control system, lighting device, and lighting control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121173A (en) * 1991-10-28 1993-05-18 Matsushita Electric Works Ltd Illumination device
JP2012028189A (en) * 2010-07-23 2012-02-09 Panasonic Electric Works Co Ltd Luminaire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121173A (en) * 1991-10-28 1993-05-18 Matsushita Electric Works Ltd Illumination device
JP2012028189A (en) * 2010-07-23 2012-02-09 Panasonic Electric Works Co Ltd Luminaire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110602819A (en) * 2019-08-09 2019-12-20 漳州立达信光电子科技有限公司 Color temperature smoothing output system and controller
EP3772873A1 (en) * 2019-08-09 2021-02-10 Xiamen Leedarson Lighting Co., Ltd. Color temperature smoothing output system
CN110602819B (en) * 2019-08-09 2022-01-07 漳州立达信光电子科技有限公司 Color temperature smoothing output system and controller
JP2021051975A (en) * 2019-09-26 2021-04-01 シャープ株式会社 Lighting control system, lighting device, and lighting control method
JP7273677B2 (en) 2019-09-26 2023-05-15 シャープ株式会社 LIGHTING CONTROL SYSTEM, LIGHTING DEVICE, AND LIGHTING CONTROL METHOD

Similar Documents

Publication Publication Date Title
US11209138B2 (en) Skylight fixture emulating natural exterior light
US10451229B2 (en) Skylight fixture
US8766555B2 (en) Tunable white color methods and uses thereof
JP4335210B2 (en) Display device
EP3308605B1 (en) Lighting device with adjustable operation
US8988005B2 (en) Illumination control through selective activation and de-activation of lighting elements
WO2013047784A1 (en) Lighted make-up mirror set
WO2003026012A3 (en) Organic light emitting diode light source
JP2009259639A (en) Illumination device
JP2010092993A (en) Illuminating apparatus
JP2006210848A (en) Light-emitting device and driving method of organic electroluminescent element
US20150305114A1 (en) Energy Saving OLED Lighting System and Method
WO2013094009A1 (en) Light-emitting device and method for controlling same
JP4976605B1 (en) Lighting device
US20130278156A1 (en) Light-emitting diode lighting apparatus, illuminating apparatus and illuminating method
WO2012164683A1 (en) Illuminating apparatus and brightness control method
WO2011070907A1 (en) Illumination apparatus
KR20160110280A (en) Led lighting device controlling color temperature
US20150179716A1 (en) Surface light-emitting device
JP5479142B2 (en) Display device
WO2013030973A1 (en) Lighting device
WO2013168215A1 (en) Organic electroluminescence device
WO2013168228A1 (en) Organic electroluminescence device
JP5575564B2 (en) Interior lighting system
JP2003314880A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP