WO2013030973A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2013030973A1
WO2013030973A1 PCT/JP2011/069745 JP2011069745W WO2013030973A1 WO 2013030973 A1 WO2013030973 A1 WO 2013030973A1 JP 2011069745 W JP2011069745 W JP 2011069745W WO 2013030973 A1 WO2013030973 A1 WO 2013030973A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
surface light
lighting mode
unit
temperature
Prior art date
Application number
PCT/JP2011/069745
Other languages
French (fr)
Japanese (ja)
Inventor
平沢 明
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012507534A priority Critical patent/JP4976604B1/en
Priority to PCT/JP2011/069745 priority patent/WO2013030973A1/en
Publication of WO2013030973A1 publication Critical patent/WO2013030973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

A lighting device includes a lighting panel comprising a plurality of surface light emitters arranged in parallel with one another, and a drive unit for illuminating the lighting panel in a bright-light mode or in a low-light mode that is darker than the bright-light mode. The lighting device also includes a temperature detector for detecting the temperature of each of the surface light emitters and creating detection outputs. The drive unit stores the detection outputs created by the temperature detector during the bright-light mode for each of the surface light emitters. During the low-light mode, the drive unit selects a brightness level for each surface light emitter according to the stored detection outputs, and illuminates the surface light emitters to the selected brightness levels.

Description

照明装置Lighting device
 本発明は、面発光部を含む照明装置に関する。 This invention relates to the illuminating device containing a surface light emission part.
 従来、照明装置の面発光部として、例えば、複数のLEDを平面上にマトリックス状に配列させて実質的に平面状に発光するLED面発光部が知られている。さらに、有機エレクトロルミネッセンス(以下、有機ELという)を利用した有機EL素子を用いたフィルム状又は板状の自発光型平面発光素子である有機ELパネルも面発光部として知られている。 Conventionally, as a surface light emitting unit of a lighting device, for example, an LED surface light emitting unit that emits light in a substantially planar shape by arranging a plurality of LEDs in a matrix on a plane is known. Furthermore, an organic EL panel which is a film-like or plate-like self-luminous planar light emitting element using an organic EL element utilizing organic electroluminescence (hereinafter referred to as organic EL) is also known as a surface light emitting unit.
 かかる面発光部においては経時変化による劣化の問題があり、かかる問題を解決する技術の1つが特許文献1に記載されている。特許文献1は、画像表示パネルを構成する発光素子から発せられる光を受光し、その素子毎の発光量を測定する受光素子と、測定された発光量を記憶するメモリ装置と、測定された発光量が所定基準値に近付くように画像信号の強度を補正する補正回路と、を備え発光素子の劣化による輝度低下を補償する画像表示装置を開示している。 In such a surface light emitting portion, there is a problem of deterioration due to aging, and one technique for solving such a problem is described in Patent Document 1. Patent Document 1 discloses a light receiving element that receives light emitted from a light emitting element that constitutes an image display panel, measures a light emission amount for each element, a memory device that stores the measured light emission amount, and a measured light emission. An image display device is disclosed that includes a correction circuit that corrects the intensity of an image signal so that the amount approaches a predetermined reference value, and compensates for a decrease in luminance due to deterioration of a light emitting element.
特開2003-317944号公報JP 2003-317944 A
 しかしながら、特許文献1に開示された発光素子の輝度低下の補償方式によれば、劣化の進行した発光素子に対してより大なる駆動電力が供給されることになり、劣化の進んだ発光素子においてはより急速に劣化が進行してしまうという問題がある。 However, according to the compensation method for the luminance reduction of the light emitting element disclosed in Patent Document 1, more driving power is supplied to the light emitting element that has deteriorated. Has a problem that the deterioration proceeds more rapidly.
 仮に特許文献1に開示された発光素子の輝度低下の補償方式を、互いに並置された複数の面発光部から構成された照明パネルを含む照明装置に適用すると、劣化の進んだ面発光部はより大なる駆動電力が供給されて増々劣化が進行してしまうのである。 If the compensation method for luminance reduction of the light emitting element disclosed in Patent Document 1 is applied to an illumination device including an illumination panel composed of a plurality of surface light emitting units juxtaposed with each other, the surface light emitting unit with advanced deterioration is more As the driving power is increased, the deterioration further proceeds.
 そこで、本発明は、複数の面発光部を含む照明装置であって当該面発光部の経時変化による輝度低下の進行速度のバラツキを抑制しつつ面発光部間の輝度ムラを抑制できる照明装置を提供することを課題の一例としている。 Therefore, the present invention provides an illumination device that includes a plurality of surface light emitting units, and is capable of suppressing unevenness in luminance between surface light emitting units while suppressing variations in the speed of decrease in luminance due to changes over time of the surface light emitting units. Providing is an example of the problem.
 本発明の照明装置は、互いに並置された複数の面発光部からなる照明パネルと、明点灯モード又は該明点灯モードに比して暗い暗点灯モードにて前記照明パネルを点灯駆動する駆動部と、を含む照明装置であって、
 前記面発光部の各々の温度を検知して検知出力を生成する温度検出部を更に含み、
 前記駆動部は、前記明点灯モードの間に前記温度検出部によって生成される検知出力を前記面発光部毎に記憶しておいて、前記暗点灯モードの間は、当該記憶した検知出力に応じて前記面発光部毎に輝度を選定して、当該選定した輝度にて前記面発光部を点灯駆動することを特徴とする。
An illumination device of the present invention includes an illumination panel composed of a plurality of surface light emitting units juxtaposed to each other, and a drive unit that drives the illumination panel to light in a bright lighting mode or a darker lighting mode compared to the bright lighting mode. A lighting device comprising:
A temperature detection unit that detects a temperature of each of the surface light emitting units and generates a detection output;
The drive unit stores a detection output generated by the temperature detection unit for each of the surface light emitting units during the bright lighting mode, and according to the stored detection output during the dark lighting mode. Then, a luminance is selected for each of the surface light emitting units, and the surface light emitting unit is driven to be lit at the selected luminance.
 以上の構成によれば、例えば夜間の就寝前の明るい「通常点灯」の他に就寝後の「常夜灯」という薄暗い点灯モード機能を有する複数の面発光部からなる照明装置において、「常夜灯モード」においては、劣化が進んだ面発光部への駆動電力を抑制して、通常点灯モードの照明パネルの発光ムラの進行を低減させることができる。 According to the above configuration, for example, in a lighting device including a plurality of surface light emitting units having a dim lighting mode function of “nightlight” after sleeping in addition to bright “normal lighting” before sleeping at night, in “nightlight mode” Can suppress the driving power to the surface light emitting portion that has deteriorated, and can reduce the progress of light emission unevenness of the lighting panel in the normal lighting mode.
本発明の実施例としての複数の面発光部からなる照明パネルとこの照明パネルを駆動する駆動部とを含む照明装置を示すブロック図である。It is a block diagram which shows the illuminating device containing the illumination panel which consists of a some surface light emission part as an Example of this invention, and the drive part which drives this illumination panel. 本発明の実施例の図1の照明装置の照明パネルの一部分の平面図である。It is a top view of a part of lighting panel of the lighting device of FIG. 1 according to an embodiment of the present invention. 本発明の他の実施例の照明装置の照明パネルの一部分の平面図である。It is a top view of a part of the illumination panel of the illuminating device of the other Example of this invention. 図1の照明装置の制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part of the illuminating device of FIG. 図1の照明装置の面発光部に用いられる有機ELパネルにおける累積駆動時間をパラメータとする輝度変化を示すグラフである。It is a graph which shows the luminance change which uses the cumulative drive time in the organic electroluminescent panel used for the surface light emission part of the illuminating device of FIG. 1 as a parameter. 図1の照明装置の明点灯モードの面発光部(番号No.)毎の輝度Lの分布を示すグラフ(A)と当該面発光部毎の温度Tの分布を示すグラフ(B)である。It is a graph (A) which shows distribution of the brightness | luminance L for every surface light emission part (number No.) of the bright lighting mode of the illuminating device of FIG. 1, and a graph (B) which shows distribution of the temperature T for the said surface light emission part. 図6(A)のグラフにおける温度Tの高い順に面発光部No.を並べ変えた場合の当該面発光部毎の温度Tの分布を示すグラフ(A)と面発光部の輝度分布を暗点灯モードの基準値として設定するための基準線を説明するための面発光部(番号No.)と輝度Lを示すグラフ(B)である。In the graph of FIG. The surface emission for explaining the reference line for setting the graph (A) showing the distribution of the temperature T for each surface light emitting portion when the light sources are rearranged and the luminance distribution of the surface light emitting portion as the reference value of the dark lighting mode It is a graph (B) which shows a part (number No.) and the brightness | luminance L. FIG. 図6(A)のグラフにおける温度Tの高い順に面発光部No.を並べ変えた場合の当該面発光部毎の温度Tの分布を示すグラフ(A)と本発明の他の実施例の照明装置の面発光部の輝度分布を暗点灯モードの基準値として設定するための基準線を説明するための面発光部(番号No.)と輝度Lを示すグラフ(B)である。In the graph of FIG. The graph (A) showing the distribution of the temperature T for each surface light emitting portion when the light sources are rearranged and the luminance distribution of the surface light emitting portion of the illumination device of another embodiment of the present invention are set as the reference values for the dark lighting mode. 5 is a graph (B) showing a surface light emitting part (number No.) and a luminance L for explaining a reference line for the purpose. 図6(A)のグラフにおける温度Tの高い順に面発光部No.を並べ変えた場合の当該面発光部毎の温度Tの分布を示すグラフ(A)と本発明の他の実施例の照明装置の面発光部の輝度分布を暗点灯モードの基準値として設定するための基準線を説明するための面発光部(番号No.)と輝度Lを示すグラフ(B)である。In the graph of FIG. The graph (A) showing the distribution of the temperature T for each surface light emitting portion when the light sources are rearranged and the luminance distribution of the surface light emitting portion of the illumination device of another embodiment of the present invention are set as the reference values for the dark lighting mode. 5 is a graph (B) showing a surface light emitting part (number No.) and a luminance L for explaining a reference line for the purpose. 図6(A)のグラフにおける温度Tの高い順に面発光部No.を並べ変えた場合の当該面発光部毎の温度Tの分布を示すグラフ(A)と本発明の他の実施例の照明装置の面発光部の輝度分布を暗点灯モードの基準値として設定するための基準線を説明するための面発光部(番号No.)と輝度Lを示すグラフ(B)である。In the graph of FIG. The graph (A) showing the distribution of the temperature T for each surface light emitting portion when the light sources are rearranged and the luminance distribution of the surface light emitting portion of the illumination device of another embodiment of the present invention are set as the reference values for the dark lighting mode. 5 is a graph (B) showing a surface light emitting part (number No.) and a luminance L for explaining a reference line for the purpose.
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明による照明装置11の構成を示している。照明装置11は、例えば二次元的に並べられた複数の面発光部21を含む照明パネル23と、ドライバ部25と、複数の温度センサ29と、温度検出部31と、記憶部33と、制御部35と、コンソール27と、を含む。なお、ドライバ部25と、温度センサ29と、温度検出部31と、記憶部33と、制御部35と、コンソール27と、は駆動部を構成する。 FIG. 1 shows a configuration of a lighting device 11 according to the present invention. The illumination device 11 includes, for example, an illumination panel 23 including a plurality of surface light emitting units 21 arranged two-dimensionally, a driver unit 25, a plurality of temperature sensors 29, a temperature detection unit 31, a storage unit 33, and a control. Part 35 and console 27. The driver unit 25, the temperature sensor 29, the temperature detection unit 31, the storage unit 33, the control unit 35, and the console 27 constitute a drive unit.
 照明パネル23は互いに並置された複数の面発光部21からなり、例えば図2に示すように、面発光部21は基盤22の主表面に沿って並設されている。面発光部21の各々には有機EL素子を用いることができる。面発光部は絶縁膜で発光エリアを区切った構成でも良いし、別々に作製した発光パネルでも良い。面発光部が発光パネルの場合、照明パネル23は複数の発光パネルをタイリングした構成でも良い。 The illumination panel 23 includes a plurality of surface light emitting units 21 juxtaposed with each other. For example, as shown in FIG. 2, the surface light emitting units 21 are arranged along the main surface of the base 22. An organic EL element can be used for each of the surface light emitting portions 21. The surface light emitting unit may have a configuration in which the light emitting area is divided by an insulating film, or may be a separately manufactured light emitting panel. When the surface light emitting unit is a light emitting panel, the illumination panel 23 may have a configuration in which a plurality of light emitting panels are tiled.
 ドライバ部25は、例えば基盤22の主裏面側に設けられ、複数の面発光部21の各々に個別に接続され、面発光部21毎に発光のための電力を供給して駆動する。ドライバ部25はさらに制御部35に接続され、制御部35からの信号に応じて複数の面発光部21の各々の輝度制御を伴った点灯及び消灯を個別に制御する。すなわち、制御部35は、通常点灯モード(明点灯モードという)又は該明点灯モードに比して暗い常夜灯モード(暗点灯モードという)で照明パネル23を発光せしめる輝度制御信号をドライバ部25へ供給して、ドライバ部25は照明パネル23を明点灯モード又は暗点灯モードにて点灯駆動する。 The driver unit 25 is provided, for example, on the main back surface side of the base 22 and is individually connected to each of the plurality of surface light emitting units 21 to drive each surface light emitting unit 21 by supplying electric power for light emission. The driver unit 25 is further connected to the control unit 35, and individually controls lighting and extinction accompanied by luminance control of each of the plurality of surface light emitting units 21 according to a signal from the control unit 35. That is, the control unit 35 supplies the driver unit 25 with a luminance control signal for causing the lighting panel 23 to emit light in the normal lighting mode (referred to as the bright lighting mode) or the dark nightlight mode (referred to as the dark lighting mode) compared to the bright lighting mode. Then, the driver unit 25 drives the lighting panel 23 to be lit in the bright lighting mode or the dark lighting mode.
 コンソール27は、制御部35に接続され、使用者による照明装置11の点灯及び消灯や点灯モード切り替えなどの操作に応じた操作出力を制御部へ供給するための開閉スイッチを含むリモコンや部屋内に取り付けられる有線モジュールなどの装置である。 The console 27 is connected to the control unit 35, and is provided in a remote control or a room including an open / close switch for supplying an operation output to the control unit according to an operation such as turning on / off the lighting device 11 or switching a lighting mode by the user. A device such as a wired module to be attached.
 温度検出部31は制御部35からの測定指令に応じて温度センサ29からの温度信号を順次A/D変換し温度の測定値を測定データとして制御部35へ供給する。 The temperature detection unit 31 sequentially A / D converts the temperature signal from the temperature sensor 29 in accordance with a measurement command from the control unit 35 and supplies the temperature measurement value to the control unit 35 as measurement data.
 図2に示すように、温度センサ29の各々は、複数の面発光部21の温度を検知できるように、例えば、面発光部21と基盤22との間の間隙に面発光部21の裏面に対向する又は接触するように配置される。さらに、図3に示すように、様々な位置において温度センサ29を矩形の面発光部21の間(図3(A)では面発光部の対角に、図3(B)では面発光部の長手方向の対向辺に、図3(C)では面発光部の短手方向の対向辺に、)に配置することができる。温度センサは面発光部21の温度をそれぞれ検知できるように配置されていればよく、図示しないが、基盤や封止部材の外側に配置しても、基盤と封止部材と間に配置しても良い。温度センサは面発光部毎に1つに限定されず、面発光部の数より少ない数の温度センサを設けても良い。例えば、図3(D)に示すように、4個の面発光部21に囲まれるように配置された1つの温度センサ29を用いて、その周辺の面発光部21を面発光部A→面発光部B→面発光部C→面発光部Dと順に光らせて各面発光部21の温度を測定することでも、各面発光部の温度を測定できる。 As shown in FIG. 2, each of the temperature sensors 29 is, for example, on the back surface of the surface light emitting unit 21 in the gap between the surface light emitting unit 21 and the base 22 so that the temperature of the plurality of surface light emitting units 21 can be detected. It arrange | positions so that it may oppose or contact. Further, as shown in FIG. 3, the temperature sensor 29 is placed between the rectangular surface light emitting portions 21 at various positions (in FIG. 3A, diagonally to the surface light emitting portion, and in FIG. It can be arranged on the opposite side in the longitudinal direction, on the opposite side in the short side direction of the surface light emitting portion in FIG. The temperature sensor only needs to be arranged so as to be able to detect the temperature of the surface light emitting unit 21, and although not shown, even if it is arranged outside the board or the sealing member, it is arranged between the board and the sealing member. Also good. The number of temperature sensors is not limited to one for each surface light emitting unit, and a smaller number of temperature sensors than the number of surface light emitting units may be provided. For example, as shown in FIG. 3 (D), using one temperature sensor 29 arranged so as to be surrounded by four surface light emitting units 21, the surface light emitting unit 21 in the vicinity thereof is converted into a surface light emitting unit A → surface. The temperature of each surface light emitting part can also be measured by measuring the temperature of each surface light emitting part 21 by sequentially emitting light from the light emitting part B → the surface light emitting part C → the surface light emitting part D.
 制御部35はCPUなどで構成され、ドライバ部25を介して面発光部21それぞれの発光を独立に制御し、各面発光部21の輝度及び点灯/消灯の制御を司る点灯制御ルーティンを実行する。制御部35に接続された記憶部33には制御部35の制御で必要なプログラムや温度検出部31からの測定データなどが保存される。制御部35は、温度検出部31からの測定データに基づき演算して、通常点灯モード中の照明パネル23の複数の面発光部21の測定値を生成する。例えば、図3(A)に示す配置の場合、面発光部21Aの測定値は、面発光部周辺のセンサ29A,29B,29C,29Dの測定値の平均値とする。また、制御部35は、ドライバ部25を介して、面発光部21の有機EL素子各々に供給する駆動電流を制御して、点灯時の照明パネル21の発光分布を規定して調光する。 The control unit 35 is configured by a CPU or the like, and independently controls the light emission of each surface light emitting unit 21 via the driver unit 25 and executes a lighting control routine for controlling the luminance and lighting / lighting off of each surface light emitting unit 21. . The storage unit 33 connected to the control unit 35 stores programs necessary for the control of the control unit 35, measurement data from the temperature detection unit 31, and the like. The control part 35 calculates based on the measurement data from the temperature detection part 31, and produces | generates the measured value of the some surface light emission part 21 of the illumination panel 23 in normal lighting mode. For example, in the arrangement shown in FIG. 3A, the measured value of the surface light emitting unit 21A is the average value of the measured values of the sensors 29A, 29B, 29C, and 29D around the surface light emitting unit. Further, the control unit 35 controls the drive current supplied to each organic EL element of the surface light emitting unit 21 via the driver unit 25 to regulate the light emission distribution of the lighting panel 21 at the time of lighting.
 制御部35は、明点灯モードの複数の面発光部21の平均輝度よりも低い平均輝度となる暗点灯モードで照明パネル23を発光せしめる輝度制御信号をドライバ部25へ供給する。駆動部35は、明点灯モードにおける温度検出部31によって生成される検知出力(測定値)を面発光部毎に記憶しておいて、暗点灯モードにおいては、当該記憶した検知出力に応じて面発光部毎に所定輝度(基準値)を算出し選定して、当該選定した所定輝度にて面発光部を個別に点灯駆動する。 The control unit 35 supplies the driver unit 25 with a luminance control signal that causes the illumination panel 23 to emit light in the dark lighting mode that has an average luminance lower than the average luminance of the plurality of surface light emitting units 21 in the bright lighting mode. The drive unit 35 stores the detection output (measured value) generated by the temperature detection unit 31 in the bright lighting mode for each surface light emitting unit. In the dark lighting mode, the driving unit 35 responds to the stored detection output. A predetermined luminance (reference value) is calculated and selected for each light emitting unit, and the surface light emitting units are individually driven to be lit at the selected predetermined luminance.
 また更に、制御部35は、記憶部33で保存された測定値に基づいて面発光部毎の輝度の基準値を算出する際に、制御部35は、明点灯モードにおける面発光部の測定値(現在)温度に応じた基準値の設定のみならず、当該測定値(現在)温度の変化率(劣化速度に対応すると考えられる)に応じて基準値の大きさを変化させることもできる。例えば、制御部35は面発光部毎の保存された前回測定値と今回測定値との差分を検知温度変化率として算出し、当該検知温度変化率を用いて今回測定値と演算して、パネル毎の劣化速度を考慮して、面発光部毎の輝度の新たな基準値を算出する。 Furthermore, when the control unit 35 calculates the luminance reference value for each surface light emitting unit based on the measurement value stored in the storage unit 33, the control unit 35 measures the measurement value of the surface light emitting unit in the bright lighting mode. In addition to setting the reference value according to the (current) temperature, the size of the reference value can be changed according to the rate of change of the measured value (current) temperature (which is considered to correspond to the deterioration rate). For example, the control unit 35 calculates a difference between the previous measured value and the current measured value stored for each surface light emitting unit as the detected temperature change rate, calculates the current measured value using the detected temperature change rate, and calculates the panel A new reference value of luminance for each surface light emitting unit is calculated in consideration of the deterioration rate for each.
 次に、かかる構成の照明装置の動作を制御部35の実行する点灯制御フローに従って説明する。 Next, the operation of the lighting device having such a configuration will be described in accordance with a lighting control flow executed by the control unit 35.
 図4に示すように、制御部35は先ず、使用者によりモード制御としてコンソール27(図1)が操作された時、点灯入力か否か判断する(ステップS1)。点灯入力が無ければ、制御部35はドライバ部25へ消灯指令を送り、面発光部21すべての発光を停止させる(ステップS2)。ステップS1で点灯入力があれば、指定された点灯モード、すなわち明点灯モード入力か否かを判別する(ステップS3)。明点灯モード入力があれば、制御部35はドライバ部25へ明点灯指令を送り(ステップS4)、ドライバ部25は複数の面発光部21へ電力を供給し駆動する。この場合、照明パネル23は明点灯モードとして例えば単一レベルの通常輝度で白色点灯する。 As shown in FIG. 4, the control unit 35 first determines whether or not a lighting input is made when the user operates the console 27 (FIG. 1) as mode control (step S1). If there is no lighting input, the control unit 35 sends a turn-off command to the driver unit 25, and stops the light emission of all the surface light emitting units 21 (step S2). If there is a lighting input in step S1, it is determined whether or not it is a designated lighting mode, that is, a bright lighting mode input (step S3). If there is a bright lighting mode input, the control unit 35 sends a bright lighting command to the driver unit 25 (step S4), and the driver unit 25 supplies power to the plurality of surface light emitting units 21 to drive them. In this case, the illumination panel 23 is lit white as a bright lighting mode, for example, with a single level of normal luminance.
 明点灯モード開始の後、制御部35は照明パネルの温度が飽和する時間などの閾値時間の経過を監視する(ステップS5)。閾値時間を経過したならば、制御部35は測定指令信号を温度検出部31へ送り、測定開始信号に応じて温度検出部31が温度測定を実行する(ステップS6)。温度検出部31は温度センサ29からの温度信号を測定データとし生成し、制御部35はこれを取り込んで、記憶部33内の測定データマップ(図示せず)を更新する。続いて、制御部35は、記憶部33に保存された測定データ(測定値)に基づいて暗点灯モードのための基準値を面発光部21毎に算出して生成し、得られた基準値を例えば基準値データマップ(図示せず)として記憶部33に記憶する(ステップS7)。 After starting the bright lighting mode, the control unit 35 monitors the passage of a threshold time such as the time when the temperature of the lighting panel is saturated (step S5). If the threshold time has elapsed, the control unit 35 sends a measurement command signal to the temperature detection unit 31, and the temperature detection unit 31 performs temperature measurement according to the measurement start signal (step S6). The temperature detection unit 31 generates a temperature signal from the temperature sensor 29 as measurement data, and the control unit 35 captures this and updates a measurement data map (not shown) in the storage unit 33. Subsequently, the control unit 35 calculates and generates a reference value for the dark lighting mode for each surface light emitting unit 21 based on the measurement data (measurement value) stored in the storage unit 33, and the obtained reference value Is stored in the storage unit 33 as a reference value data map (not shown), for example (step S7).
 ステップS3でコンソール27からの暗点灯モード指令入力という判別結果が得られたならば、制御部35は基準値データマップを取り込み(ステップS8)、ドライバ部25へ暗点灯指令を送り(ステップS9)、ドライバ部25が複数の面発光部21の各々を上記の基準値に応じて多様な輝度レベルの常夜灯パターンで点灯させる。 If a determination result of dark lighting mode command input from the console 27 is obtained in step S3, the control unit 35 takes in the reference value data map (step S8) and sends a dark lighting command to the driver unit 25 (step S9). The driver unit 25 turns on each of the plurality of surface light emitting units 21 with a nightlight pattern having various luminance levels according to the reference value.
 なお、上記温度測定の閾値時間は例えば数分程度である。また、上記例では、明点灯モード毎に温度測定を行っているが、これには限定されず、温度測定を、照明パネルの一部若しくは全部の交換又は照明パネルの設置場所の変更を行った場合に、手動又は自動で1回行うように構成することも出来る。 Note that the temperature measurement threshold time is, for example, several minutes. In the above example, temperature measurement is performed for each bright lighting mode. However, the present invention is not limited to this, and the temperature measurement was performed by replacing part or all of the lighting panel or changing the installation location of the lighting panel. In some cases, it may be configured to be performed manually or automatically once.
 つぎに、制御部35における基準値の設定方法の一例を以下に説明する。 Next, an example of a reference value setting method in the control unit 35 will be described below.
 一般的に、図5に示すように、有機EL素子など発光素子は駆動時間とともに高抵抗化し明るさ(輝度L)が低下すなわち劣化する。よって、例えば、初期電流供給量で得られた発光素子の輝度を、同じに保つためには時間経過後では供給電流を増やす必要がある。例えばマトリクス(10×10)に並べた100個の有機EL素子の面発光部を長時間駆動した場合において、かかる高抵抗化や輝度低下にはバラツキが存在する。図6(A)に示すように、明点灯モードで経時劣化したこれらの面発光部を定電流駆動して、ほぼ均一輝度Loavで発光させた場合に、劣化のバラツキにより、図6(B)に示すように、複数の面発光部に発熱(温度T)のバラツキが生じる。 Generally, as shown in FIG. 5, the light emitting element such as an organic EL element becomes highly resistive with the driving time, and the brightness (luminance L) is reduced, that is, deteriorated. Therefore, for example, in order to keep the luminance of the light emitting element obtained with the initial current supply amount the same, it is necessary to increase the supply current after elapse of time. For example, in the case where the surface light emitting portions of 100 organic EL elements arranged in a matrix (10 × 10) are driven for a long time, there are variations in such high resistance and low luminance. As shown in FIG. 6A, when these surface light emitting portions deteriorated with time in the bright lighting mode are driven with a constant current to emit light with substantially uniform luminance Loav, due to variation in deterioration, FIG. As shown in FIG. 4, the variation in heat generation (temperature T) occurs in the plurality of surface emitting portions.
 そこで、明点灯モードで測定した温度に関して降順に面発光部を並べ替えると、図7(A)に示すように、複数の面発光部の測定温度の右下がりのフィット又は包絡線Fが得られる。かかる右下がりの包絡線F(点灯モードでの測定温度データ)に基づいて、図7(B)に示すような右上がりの基準線Lrefを算出して、暗点灯モードの面発光部の各々の輝度を基準値として設定する。図7に示すように面発光部の明点灯モードの測定温度データと暗点灯モードの輝度分布を反比例関係とすることにより、明点灯モードで温度が高かった面発光部ほど暗点灯モードに輝度を下げることができる。例えば、右上がりの基準線Lrefをなす面発光部毎の基準値LrはLr=α・1/(測定温度T)を満たすように算定できる(ただし、αは所定係数である)。結果として、明点灯モードで温度が高く劣化が進みやすい面発光部ほど、暗点灯モードに低負荷にすることにより、面発光部毎の劣化度合いがそれらの平均値に近付き、明点灯モードの照度ムラが低減する。ただし、明点灯モードでの平均輝度Loavと暗点灯モードでの平均輝度LavとはLoav>Lavとなされる。基準値は、例えば、複数の面発光部のすべてにおいて、暗点灯モードでは明点灯モードに比べて輝度が低くなるように、設定されている。 Therefore, when the surface light emitting units are rearranged in descending order with respect to the temperature measured in the bright lighting mode, as shown in FIG. . Based on the downward-sloping envelope F (measured temperature data in the lighting mode), a upward-sloping reference line Lref as shown in FIG. 7B is calculated, and each of the surface light emitting units in the dark lighting mode is calculated. Set the brightness as the reference value. As shown in FIG. 7, by making the measured temperature data in the bright lighting mode of the surface light emitting part and the luminance distribution in the dark lighting mode in inverse proportion, the surface light emitting part having a higher temperature in the bright lighting mode has a higher luminance in the dark lighting mode. Can be lowered. For example, the reference value Lr for each surface emitting part forming the reference line Lref that rises to the right can be calculated so as to satisfy Lr = α · 1 / (measured temperature T) (where α is a predetermined coefficient). As a result, the surface light emitting part where the temperature is high and the deterioration tends to progress in the bright lighting mode, the lower the load in the dark lighting mode, the degree of deterioration of each surface light emitting part approaches their average value, and the illuminance of the bright lighting mode Unevenness is reduced. However, the average luminance Loav in the bright lighting mode and the average luminance Lav in the dark lighting mode are Loav> Lav. The reference value is set so that, for example, the luminance in the dark lighting mode is lower than that in the bright lighting mode in all of the plurality of surface light emitting units.
 更に、図8(A)に示すような複数の面発光部の輝度の測定温度が右下がりのフィット又は包絡線Fの照明パネルの場合、暗点灯モードにおいて、図8(B)に示すように、直線的でなく指数関数的な右上がりの基準線Lrefにおける面発光部の各々の輝度を基準値(暗点灯モードのための基準値データマップ)として設定することもできる。 Furthermore, in the case of a lighting panel having a fitting temperature or envelope F whose brightness measurement temperature of a plurality of surface light emitting units is lower right as shown in FIG. 8A, in the dark lighting mode, as shown in FIG. The brightness of each of the surface light emitting portions on the reference line Lref that is not linear but exponentially increased can also be set as a reference value (reference value data map for the dark lighting mode).
 更に、図9(A)に示すような複数の面発光部の輝度の測定温度が右下がりのフィット又は包絡線Fの照明パネルの場合、暗点灯モードにおいて、図9(B)に示すように、直線又は曲線的でなく幾つかに区画して階段的な右上がりの基準線Lrefにおける面発光部の各々の輝度を基準値として設定することもできる。予め測定温度を幾つかの範囲に例えば3つの範囲に分けて、当該範囲毎に輝度を基準値として設定しておく。このように、暗点灯モードの面発光部に設定した輝度は、記憶した明点灯モードの測定温度データに対して直線的若しくは非直線的な反比例関係にある。 Further, in the case of a lighting panel having a fitting temperature or envelope F where the brightness measurement temperature of a plurality of surface emitting units is lower right as shown in FIG. 9A, in the dark lighting mode, as shown in FIG. 9B. The brightness of each of the surface light emitting portions on the reference line Lref that rises to the right in a stepwise manner divided into several parts instead of a straight line or a curve can be set as a reference value. The measurement temperature is divided into several ranges in advance, for example, into three ranges, and the brightness is set as a reference value for each range. Thus, the luminance set for the surface light emitting unit in the dark lighting mode is in a linear or non-linear inverse proportional relationship with the stored measured temperature data in the bright lighting mode.
 更に、図10(A)に示すような複数の面発光部の輝度の測定温度が右下がりのフィット又は包絡線Fの照明パネルの場合、暗点灯モードにおいて、図10(B)に示すように、予め測定温度を2つの範囲に設定し、範囲ごとに面発光部の各々の輝度を基準値として設定することもできる。例えば、図10(A)に示す閾値測定温度Sh以下では図7(B)に示すような暗点灯モードで点灯させ、明点灯モードにて最高温度(又は閾値測定温度Sh以上)の面発光部場合には完全に消灯(少なくとも1つ)するように(Lref-1)、又は、明点灯モードで最低温度(又はその近傍の所定温度範囲)の面発光部を監視し暗点灯モードで最低温度又はその近傍温度の面発光部を例えば明点灯モードより輝度の高い輝度で少なくとも1つ点灯するように(Lref-2)、設定することもできる。なお、かかる基準線Lref-2の場合を除き、基準値は、暗点灯モードにおけるいずれの面発光部の輝度は、0≦(暗点灯モードでの面発光部の輝度)/(最も明るい明点灯モードの輝度)≦1の範囲内に収められるように設定される。 Further, in the case of a lighting panel with a fitting or envelope F where the brightness measurement temperature of the plurality of surface light emitting units is lower right as shown in FIG. 10 (A), in the dark lighting mode, as shown in FIG. 10 (B). The measurement temperature can be set in two ranges in advance, and the luminance of each surface light emitting unit can be set as a reference value for each range. For example, a surface emitting unit that is turned on in the dark lighting mode as shown in FIG. 7B below the threshold measurement temperature Sh shown in FIG. 10A and has the highest temperature (or higher than the threshold measurement temperature Sh) in the bright lighting mode. In such a case, turn off completely (at least one) (Lref-1), or monitor the surface light emitting part at the lowest temperature (or a predetermined temperature range in the vicinity) in the bright lighting mode and check the lowest temperature in the dark lighting mode. Alternatively, it is possible to set so that at least one of the surface light emitting portions at a temperature near that is lit at a luminance higher than that in the bright lighting mode (Lref-2). Except for the case of the reference line Lref-2, the reference value is that the luminance of any surface light emitting unit in the dark lighting mode is 0 ≦ (the luminance of the surface light emitting unit in the dark lighting mode) / (the brightest bright lighting) The brightness of the mode is set to fall within a range of ≦ 1.
 また、上記した各実施例においては、白色発光の有機EL素子(例えば、Iridium(III)bis[(4,6-di-nuoropheny)-pyridinato-N,C2']picolinate(FIrpic)などの青色発光層上に黄色蛍光層を用いたもの)からなる面発光部が用いられ得るが、カラー面発光部を用いても良い。たとえば、カラー面発光部は、ガラス基板上に陽極、ホール注入層、ホール輸送層、RGB発光層、電子注入輸送層、及び陰極の順に積層された構造を有している。陽極は例えばITO膜からなる。ホール注入層はCuPc膜からなる。ホール輸送層はNPB膜からなる。RGB発光層は、R(赤)発光層はCPBをホスト材料とし、Ir(phq)2tpyをドーパントとしており、G(緑)発光層はCPBをホスト材料とし、Ir(ppy)3をドーパントとしており、B(青)発光層はPANDをホスト材料とし、DPAVBiをドーパントとした3層である。電子輸送層はAlq3膜からなる。電子注入材料はLiFからなる。陰極はAl膜からなる。なお、この面発光部21の内部構造は一例であり、本発明はこれに限定されない。 In each of the above-described embodiments, a white light-emitting organic EL element (for example, blue light emission such as Iridium (III) bis [(4,6-di-nuoropheny) -pyridinato-N, C2 ′] picolinate (FIrpic)) Although a surface light emitting portion made of a yellow fluorescent layer on the layer can be used, a color surface light emitting portion may be used. For example, the color surface light emitting portion has a structure in which an anode, a hole injection layer, a hole transport layer, an RGB light emission layer, an electron injection transport layer, and a cathode are stacked in this order on a glass substrate. The anode is made of, for example, an ITO film. The hole injection layer is made of a CuPc film. The hole transport layer is made of an NPB film. The RGB light emitting layer has an R (red) light emitting layer with CPB as a host material and Ir (phq) 2tpy as a dopant, and a G (green) light emitting layer with CPB as a host material and Ir (ppy) 3 as a dopant. , B (blue) light emitting layer is a triple layer using PAND as a host material and DPAVBi as a dopant. The electron transport layer is made of an Alq3 film. The electron injection material is made of LiF. The cathode is made of an Al film. In addition, the internal structure of this surface light emission part 21 is an example, and this invention is not limited to this.
 さらに、本発明は、有機EL素子の面発光部だけでなく、複数の無機EL素子からなる面発光部や複数のLED等の発光ダイオードの発光素子を用いた面発光部にも適用できる。 Furthermore, the present invention can be applied not only to a surface light emitting portion of an organic EL element, but also to a surface light emitting portion using a light emitting element of a light emitting diode such as a surface light emitting portion composed of a plurality of inorganic EL elements or a plurality of LEDs.
11 照明装置
21 面発光部
22 基盤
23 照明パネル
25 ドライバ部
27 コンソール
29 温度センサ
31 温度検出部
33 記憶部
35 制御部
DESCRIPTION OF SYMBOLS 11 Illuminating device 21 Surface light emission part 22 Base 23 Illumination panel 25 Driver part 27 Console 29 Temperature sensor 31 Temperature detection part 33 Memory | storage part 35 Control part

Claims (12)

  1.  互いに並置された複数の面発光部からなる照明パネルと、
     明点灯モード又は該明点灯モードに比して暗い暗点灯モードにて前記照明パネルを点灯駆動する駆動部と、を含む照明装置であって、
     前記面発光部の各々の温度を検知して検知出力を生成する温度検出部を更に含み、
     前記駆動部は、前記明点灯モードの間に前記温度検出部によって生成される検知出力を前記面発光部毎に記憶しておいて、前記暗点灯モードの間は、当該記憶した検知出力に応じて前記面発光部毎に輝度を選定して、当該選定した輝度にて前記面発光部を点灯駆動することを特徴とする照明装置。
    An illumination panel comprising a plurality of surface light emitting units juxtaposed with each other;
    A lighting unit including a driving unit that drives the lighting panel in a bright lighting mode or a dark lighting mode that is darker than the bright lighting mode,
    A temperature detection unit that detects a temperature of each of the surface light emitting units and generates a detection output;
    The drive unit stores a detection output generated by the temperature detection unit for each of the surface light emitting units during the bright lighting mode, and according to the stored detection output during the dark lighting mode. A luminance is selected for each surface light emitting unit, and the surface light emitting unit is driven to be lit at the selected luminance.
  2.  前記明点灯モードでは前記面発光部が全体として単一輝度レベルであり、前記暗点灯モードでは前記面発光部が前記明点灯モードの輝度レベルよりも全体として低輝度で且つ多様な輝度レベルであることを特徴とする請求項1に記載の照明装置。 In the bright lighting mode, the surface light emitting unit as a whole has a single luminance level, and in the dark lighting mode, the surface light emitting unit as a whole has a lower luminance and various luminance levels than the luminance level of the bright lighting mode. The lighting device according to claim 1.
  3.  前記駆動部は、前記記憶した検知出力に応じた基準値を前記面発光部毎に生成しておいて、前記基準値の大きさに応じて前記選定した輝度を選定することを特徴とする請求項1に記載の照明装置。 The drive unit generates a reference value corresponding to the stored detection output for each surface light emitting unit, and selects the selected luminance according to the size of the reference value. Item 2. The lighting device according to Item 1.
  4.  前記基準値は、前記明点灯モードで温度が高い面発光部ほど、前記暗点灯モードでは前記明点灯モードに比べて前記選定した輝度が低くなるように、設定されることを特徴とする請求項3に記載の照明装置。 The reference value is set so that a surface light emitting unit having a higher temperature in the bright lighting mode has a lower brightness in the dark lighting mode than in the bright lighting mode. 3. The lighting device according to 3.
  5.  前記選定した輝度は、前記記憶した検知出力に対して直線的若しくは非直線的な反比例関係にあることを特徴とする請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the selected luminance has a linear or non-linear inverse proportional relationship with respect to the stored detection output.
  6.  前記駆動部は、前記明点灯モード毎に記憶した検知出力の前回値と今回値との差分を検知温度変化率として算出し、当該検知温度変化率と当該今回値とに応じた基準値を生成することを特徴とする請求項4に記載の照明装置。 The drive unit calculates a difference between the previous value and the current value of the detected output stored for each bright lighting mode as a detected temperature change rate, and generates a reference value corresponding to the detected temperature change rate and the current value The lighting device according to claim 4, wherein:
  7.  前記温度検出部は、前記面発光部の各々の発光面の中央部若しくは側方に設けられた少なくとも1つの温度センサを含むことを特徴とする請求項1乃至6のいずれか1項に記載の照明装置。 The said temperature detection part contains the at least 1 temperature sensor provided in the center part or side of each light emission surface of the said surface light emission part, The any one of Claim 1 thru | or 6 characterized by the above-mentioned. Lighting device.
  8.  前記温度検出部は、前記複数の面発光部の内のいくつかに対して1つの温度センサが対応しているように前記面発光部の数より少ない数の温度センサを含むことを特徴とする請求項1乃至6のいずれか1項に記載の照明装置。 The temperature detecting unit includes a number of temperature sensors smaller than the number of the surface light emitting units so that one temperature sensor corresponds to some of the plurality of surface light emitting units. The lighting device according to any one of claims 1 to 6.
  9.  前記面発光部が少なくとも1つの有機EL素子からなることを特徴とする請求項1乃至8のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 8, wherein the surface light-emitting portion includes at least one organic EL element.
  10.  前記面発光部は発光エリアを絶縁膜で区切って作成された面発光部であることを特徴とする請求項1乃至9のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 9, wherein the surface light emitting unit is a surface light emitting unit formed by dividing a light emitting area with an insulating film.
  11.  前記面発光部は個別に作成された面発光部であることを特徴とする請求項1乃至9のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 9, wherein the surface light emitting unit is a surface light emitting unit created individually.
  12.  互いに並置された複数の面発光部からなる照明パネルと、明点灯モード又は該明点灯モードに比して暗い暗点灯モードにて前記照明パネルを点灯駆動する駆動部と、前記面発光部の各々の温度を検知して検知出力を生成する温度検出部と、を含む照明装置による照明方法であって、
     前記明点灯モードの間に前記温度検出部によって生成される検知出力を前記面発光部毎に記憶するステップと、前記暗点灯モードの間は、当該記憶した検知出力に応じて前記面発光部毎に輝度を選定して、当該選定した輝度にて前記面発光部を点灯駆動するステップと、を含むことを特徴とする照明方法。
     
    Each of the lighting panel comprising a plurality of surface light emitting units juxtaposed to each other, a driving unit that drives the lighting panel to light in a bright lighting mode or a dark lighting mode darker than the bright lighting mode, and each of the surface light emitting units A temperature detection unit that detects the temperature of and generates a detection output;
    During the bright lighting mode, the step of storing the detection output generated by the temperature detection unit for each surface light emitting unit, and during the dark lighting mode, for each surface light emitting unit according to the stored detection output And a step of selecting the luminance and driving the surface light emitting unit to light at the selected luminance.
PCT/JP2011/069745 2011-08-31 2011-08-31 Lighting device WO2013030973A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012507534A JP4976604B1 (en) 2011-08-31 2011-08-31 Lighting device
PCT/JP2011/069745 WO2013030973A1 (en) 2011-08-31 2011-08-31 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069745 WO2013030973A1 (en) 2011-08-31 2011-08-31 Lighting device

Publications (1)

Publication Number Publication Date
WO2013030973A1 true WO2013030973A1 (en) 2013-03-07

Family

ID=46678858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069745 WO2013030973A1 (en) 2011-08-31 2011-08-31 Lighting device

Country Status (2)

Country Link
JP (1) JP4976604B1 (en)
WO (1) WO2013030973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080790A1 (en) * 2015-11-10 2017-05-18 Osram Oled Gmbh Organic light-emitting component device, method for producing an organic light-emitting component device and method for operating an organic light-emitting component device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097396A1 (en) * 2012-12-18 2014-06-26 パイオニア株式会社 Light-emitting device and method for controlling light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273881A (en) * 1998-03-25 1999-10-08 Toshiba Lighting & Technology Corp Lamp lighting device
JP2002229513A (en) * 2001-02-06 2002-08-16 Tohoku Pioneer Corp Device for driving organic el display panel
JP2003317944A (en) * 2002-04-26 2003-11-07 Seiko Epson Corp Electro-optic element and electronic apparatus
JP2004205704A (en) * 2002-12-24 2004-07-22 Toshiba Matsushita Display Technology Co Ltd Organic el display
JP2008010174A (en) * 2006-06-27 2008-01-17 Toshiba Lighting & Technology Corp Discharge lamp lighting device and lighting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273881A (en) * 1998-03-25 1999-10-08 Toshiba Lighting & Technology Corp Lamp lighting device
JP2002229513A (en) * 2001-02-06 2002-08-16 Tohoku Pioneer Corp Device for driving organic el display panel
JP2003317944A (en) * 2002-04-26 2003-11-07 Seiko Epson Corp Electro-optic element and electronic apparatus
JP2004205704A (en) * 2002-12-24 2004-07-22 Toshiba Matsushita Display Technology Co Ltd Organic el display
JP2008010174A (en) * 2006-06-27 2008-01-17 Toshiba Lighting & Technology Corp Discharge lamp lighting device and lighting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080790A1 (en) * 2015-11-10 2017-05-18 Osram Oled Gmbh Organic light-emitting component device, method for producing an organic light-emitting component device and method for operating an organic light-emitting component device
US10334691B2 (en) 2015-11-10 2019-06-25 Osram Oled Gmbh Organic light-emitting component device, method for producing an organic light-emitting component device and method for operating an organic light-emitting component device

Also Published As

Publication number Publication date
JP4976604B1 (en) 2012-07-18
JPWO2013030973A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
US9155157B2 (en) Electroluminescent device having a variable color point
KR20050062537A (en) Organic light emitting devices for illumination
JP4560494B2 (en) Operation method of organic light emitting component and organic light emitting component
US20080210847A1 (en) Illumination Device
JP4976605B1 (en) Lighting device
JP5256623B2 (en) Lighting device
KR101877195B1 (en) Method for driving organic electroluminescent element
JP2014505352A (en) Electroluminescent device with adjustable color point
JP4976604B1 (en) Lighting device
JP4987177B1 (en) Illumination device and light emission control method
KR20080024323A (en) Liquid crystal display device and driving method of liquid crystal display device
WO2012164683A1 (en) Illuminating apparatus and brightness control method
WO2013054622A1 (en) Light emitting device and method for driving organic el element
JP2008191539A (en) Driving device of organic el element, and driving method of organic el element
WO2014013586A1 (en) Surface light-emitting device
US9173268B2 (en) Current determination apparatus
WO2013094009A1 (en) Light-emitting device and method for controlling same
KR101723621B1 (en) EL controle divice capable of keeping luminance constant and method thereof
JP6139827B2 (en) Method for determining ratio of output of each light source among a plurality of light sources having different color temperatures, lighting device, and manufacturing device of lighting device
WO2013061405A1 (en) Illumination device
WO2013128565A1 (en) Illumination correction device
WO2014097396A1 (en) Light-emitting device and method for controlling light-emitting device
KR20130043808A (en) Lighting apparatus
JP2011134469A (en) Light emission driving device of organic el panel, and lighting system
WO2013164891A1 (en) Light-emitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012507534

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871782

Country of ref document: EP

Kind code of ref document: A1