WO2013093983A1 - Brushless motor device, motor control device, and origin learning method - Google Patents

Brushless motor device, motor control device, and origin learning method Download PDF

Info

Publication number
WO2013093983A1
WO2013093983A1 PCT/JP2011/007219 JP2011007219W WO2013093983A1 WO 2013093983 A1 WO2013093983 A1 WO 2013093983A1 JP 2011007219 W JP2011007219 W JP 2011007219W WO 2013093983 A1 WO2013093983 A1 WO 2013093983A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor shaft
rotation
origin
magnetic pole
Prior art date
Application number
PCT/JP2011/007219
Other languages
French (fr)
Japanese (ja)
Inventor
友邦 加藤
綿貫 晴夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/007219 priority Critical patent/WO2013093983A1/en
Publication of WO2013093983A1 publication Critical patent/WO2013093983A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the present invention controls the drive of a brushless motor device used as a drive source for an exhaust gas control actuator such as an EGR (Exhaust Gas Recirculation) valve or a VG (Variable Geometric) turbo actuator for a vehicle.
  • an exhaust gas control actuator such as an EGR (Exhaust Gas Recirculation) valve or a VG (Variable Geometric) turbo actuator for a vehicle.
  • the present invention relates to an origin learning method for a motor control device and a brushless motor device.
  • the relative rotational position of the rotor relative to the three-phase (U, V, W) stator coil is determined by sensing the magnetic flux from the position detection magnet provided on the rotor with the position detection Hall IC. It is detected (see, for example, Patent Document 1).
  • the three position detection Hall ICs output high-level “H” and low-level “L” electrical signals in response to switching of the rotation direction of the magnetic poles of the position detection magnet, respectively, while the rotor rotates once.
  • a predetermined output pattern corresponding to three phases (U, V, W) is repeated.
  • a brushless motor used for an EGR valve or the like one end of the motor shaft is screwed into a female screw provided in the rotor, and the motor shaft is pushed out in the axial direction and pulled in as the rotor rotates.
  • the valve is opened and closed by interlocking the rod connected to the valve with the movement of the motor shaft.
  • the stopper formed at the motor shaft retract limit position in the rotor is used as a temporary origin position, and the position where the motor shaft pushed out from this position contacts the rod is the origin of the actuator, that is, the motor shaft.
  • this origin learning process is a process that is performed at the time of system operation or termination. Therefore, in order to perform system operation or termination quickly, it is desired to shorten the origin learning time. .
  • the position of the stopper may change due to wear or the like because the position is specified by moving the motor shaft until it contacts the stopper.
  • the distance from the end surface of the motor shaft to the end surface of the rod is increased, and the movement amount of the motor shaft in the origin learning process is increased, and there is a concern that the origin learning process may take a long time.
  • the relative rotational position of the rotor with respect to the stator coil can be detected by the position detection Hall IC, but from the output pattern of the position detection Hall IC.
  • the position of the motor shaft in the axial direction cannot be accurately detected.
  • the present invention has been made to solve the above-described problems, and is provided with a brushless motor device capable of shortening the learning time of the drive origin, a motor control device for controlling the drive of the brushless motor device, and a brushless motor device.
  • the purpose is to obtain an origin learning method.
  • the brushless motor device is a brushless motor device in which the motor shaft moves in the axial direction as the rotor rotates, and drives the rod of the driven member arranged coaxially with the motor shaft.
  • the output pattern of the position detecting sensor unit that switches with the rotation of the rotor when the motor shaft is moved by a predetermined amount, and From the output pattern of the origin learning sensor unit, the motor shaft contacts the rod and the rotation of the rotor is restricted. Determine the position, and a control unit for learning the position as the origin position.
  • FIG. 4 is a flowchart showing origin learning processing by the brushless motor device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a brushless motor apparatus according to Embodiment 1 of the present invention.
  • the brushless motor apparatus 1 shown in FIG. 1 is used as an actuator that drives the rod 20 of the driven member 2 that is arranged coaxially with the motor shaft 10 when the motor shaft 10 moves in the axial direction by the rotation of the rotor 11.
  • the motor shaft 10 has a male screw formed at one end thereof and is screwed into a female screw formed on the rotor 11. The screw is formed so that the movement amount of the motor shaft 10 per rotation of the rotor 11 becomes a predetermined value.
  • the brushless motor device 1 is driven so that the distance A between the end surface of the motor shaft 10 and the end surface of the rod 20 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11. It is assembled to the housing 21 of the member 2. That is, the motor shaft 10 contacts the end surface of the rod 20 while the rotor 11 rotates once.
  • the rotor 11 is inserted into the hollow portion of the stator 13 in the case 12 and is rotatably supported by the bearing 14.
  • a disk-like magnet 15 is fixed to the rotor 11 on a surface orthogonal to the rotation axis.
  • the magnet 15 is a disk-shaped permanent magnet provided on a surface orthogonal to the rotation axis of the rotor 11, and has a position detection magnetic pole portion 15a and an origin learning magnetic pole portion 15b.
  • the position detecting magnetic pole portion 15a is a magnetic pole portion formed by alternately arranging different magnetic poles around the rotation axis of the rotor 11, and the origin learning magnetic pole portion 15b is used for position detection.
  • the magnetic pole part is formed by extending one of the adjacent magnetic pole pairs of the magnetic pole part 15a in the outer edge direction.
  • the position detection Hall IC 17a and the origin learning Hall IC 17b are mounted on the printed circuit board 16.
  • the position detection Hall IC 17a is disposed to face the position detection magnetic pole portion 15a, detects the magnetic flux of the position detection magnetic pole portion 15a of the magnet 15 rotating together with the rotor 11, and rotates the rotor 11 corresponding to the magnetic pole. A signal indicating the position is output.
  • the origin learning hall IC 17b is arranged on the same surface (printed circuit board 16) as the position detection hall IC 17a with a pitch diameter different from that of the position detection hall IC 17a, and the origin learning magnetic pole part of the magnet 15 that rotates together with the rotor 11 is provided.
  • the stator 13 When the coil wound around the stator 13 is energized, the stator 13 polarized by a plurality of magnetic poles is NS magnetized. Further, on the outer peripheral surface of the rotor 11, a rotor rotating magnet magnetized NS so that the magnetic poles are switched in the rotation direction is provided.
  • the stator 13 is NS magnetized, the rotor 11 is rotated by the electromagnetic action of the stator 13 and the rotor rotating magnet. Further, the motor shaft 10 moves along the axial direction by the rotation of the rotor 11. At this time, according to the rotation direction of the rotor 11, the motor shaft 10 moves in a direction (for example, forward rotation) pulled into the motor side and a direction (for example, reverse rotation) pushed out from the motor side.
  • the motor shaft 10 is formed so that the diameter of the portion that protrudes and protrudes from the motor by the rotation of the rotor 11 is larger than the diameter of the male screw portion that is screwed into the female screw of the rotor 11.
  • 11 is formed with a stopper 11a that abuts against the stepped surface of the motor shaft 10 having a different diameter.
  • the stopper 11a defines a movement upper limit position in the pull-in direction of the motor shaft 10, and the stopper 11a abuts on the stepped surface of the motor shaft 10 moved in the pull-in direction to restrict further movement.
  • the conventional origin learning process will be briefly described. As described above, since the stopper 11a is provided at a predetermined position in the axial direction of the motor shaft 10, the origin position is learned on the basis of the position of the stopper 11a. In this origin learning process, first, (1) the motor shaft 10 is moved in the retracting direction and brought into contact with the stopper 11a. Next, (2) using the position of the stopper 11a as the starting point for the origin learning, the motor shaft 10 is moved in this direction from this position. Thereafter, (3) learning is performed with the position where the motor shaft 10 is in contact with the end face of the rod 20 as the origin. In the above (2), even if the motor shaft 10 contacts the rod 20, the rod 20 is driven with a drive duty ratio that does not move.
  • the EGR valve device of the vehicle requires a time of several seconds to complete the origin learning. For example, in the case of an engine system that performs origin learning when the engine key is turned on, the EGR valve device does not operate until the origin learning is completed. In the case of an engine system that performs origin learning when the engine key is turned off, origin learning is not performed. You will not be able to shut down the system until it is complete.
  • the motor shaft 10 since the motor shaft 10 contacts the stopper 11a every time the origin learning is performed, there is a possibility that the stopper 11a is worn and the starting position of the origin learning changes. For example, if the origin learning start position shifts in the pull-in direction due to wear of the stopper 11a, the motor shaft 10 does not contact the rod 20 even if the motor shaft 10 is pushed out from the position of the stopper 11a with the initial stroke. It takes more time to complete the origin learning.
  • the origin learning process determines the position where the motor shaft 10 contacts the rod 20 from the output pattern of the position detection Hall IC 17a and the output pattern of the origin learning Hall IC 17b.
  • the amount of movement of the motor shaft 10 required for origin learning can be significantly reduced without using a mechanical stopper that may cause a change over time due to wear or the like. Can be shortened.
  • FIG. 2 is a diagram showing a magnet, a position detection Hall IC, and an origin learning Hall IC according to the present invention. Since the magnet 15 illustrated in FIG. 2 has “8” poles, the stator 13 has “9” slots and the rotor 11 has “8” poles. The magnet 15 corresponds to one pole of the rotor 11 with a pair of NS poles.
  • the position detection Hall ICs 17a-1 to 17a-3 are provided corresponding to the three phases (U, V, W) of the stator 13, and are provided for the position detection magnetic pole portion 15a in which the magnetic pole is switched in the rotation direction of the magnet 15. A magnetic level signal corresponding to the polarity is output by detecting the magnetic flux.
  • one of the adjacent magnetic pole pairs of the position detecting magnetic pole portion 15 a is extended in the direction of the outer edge of the magnet 15 as the origin learning magnetic pole portion 15 b.
  • the origin learning Hall IC 17b is provided corresponding to the origin learning magnetic pole portion 17b on the outer edge of the magnet 15, and the magnetic flux of the origin learning magnetic pole portion 15b is generated while the magnet 15 rotates once, that is, the rotor 11 rotates once.
  • a signal having a logic level corresponding to the polarity is detected and output.
  • the distance A between the end surface of the motor shaft 10 and the end surface of the rod 20 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11, and the origin learning hole is used. It is a precondition that the motor shaft 10 contacts the end face of the rod 20 at the timing when the IC 17b is positioned on the origin learning magnetic pole portion 15b. That is, the brushless motor device 1 according to the present invention adjusts the moving amount of the motor shaft 10 by adjusting the male screw of the motor shaft 10 and the female screw of the rotor 11, and sets the rotational phase of the magnet 15 to the position of the origin learning hole IC 17b.
  • the housing of the driven member 2 is moved so that the motor shaft 10 moves from the vicinity of the end face of the rod 20 to the position where the motor shaft 10 comes into contact with the origin learning Hall IC 17b at a position facing the origin learning magnetic pole portion 15b. 21 is assembled.
  • FIG. 3 is a block diagram illustrating a configuration of a motor control device that controls driving of the brushless motor device according to the first embodiment.
  • a motor control device 3 shown in FIG. 3 is a device that drives and controls the brushless motor device 1 and includes an interface 30 with a Hall IC, a control unit 31, and a drive circuit 32 as main components.
  • the brushless motor device 1 has a stator 13 around which windings of U-phase, V-phase, and W-phase are wound, and is located in the vicinity of the stator 13, maintains a magnetic coupling relationship, and is rotatable.
  • the rotor 11 supported by the position, the position detection Hall ICs 17a-1 to 17a-3 for detecting the rotational position (magnetic pole position) of the rotor 11, and the origin learning Hall IC 17b for detecting the magnetic flux of the magnetic pole part for origin learning. is set up.
  • These Hall ICs 17a-1 to 17a-3, 17b are composed of an integrated circuit (IC) in which Hall elements are incorporated, and detect the magnetic pole of the magnet 15 (see FIG. 1) that rotates integrally with the rotor 11. And outputs a signal corresponding to the polarity of the magnetic pole.
  • the interface (hereinafter referred to as I / F) 30 is provided with a Hall IC terminal (U), a Hall IC terminal (V), a Hall IC terminal (W), and an origin learning Hall IC terminal.
  • the I / F 30 receives the rotational position signal of the position detection Hall IC 17a-1 via the Hall IC terminal (U), performs a predetermined amplification process, and outputs the signal to the control unit 31. Further, the I / F 30 receives the rotational position signal of the position detection Hall IC 17a-2 via the Hall IC terminal (V), performs a predetermined amplification process, and outputs the signal to the control unit 31.
  • the I / F 30 receives the rotation position signal of the position detection Hall IC 17a-3 via the Hall IC terminal (W), performs a predetermined amplification process, and outputs the signal to the control unit 31. Further, in the I / F 30 according to the present invention, the signal of the origin learning Hall IC 17b is input via the origin learning Hall IC terminal, and is subjected to predetermined amplification processing and the like and is output to the control unit 31.
  • the control unit 31 is composed of an arithmetic processing circuit such as a microcomputer, and is based on intermittent rotation angles of the rotor 11 indicated by the rotation position signals of the position detection Hall ICs 17a-1 to 17a-3 input via the I / F 30. The continuous rotation angle of the rotor 11 is calculated. Then, from the calculated rotation angle, a PWM (Pulse Width Modulation) control signal indicating a drive duty ratio is generated and applied to the drive circuit 32. In addition, the control unit 31 performs origin learning in which the output level is switched only once until the rotor 11 makes one rotation until the output pattern of the position detection Hall ICs 17a-1 to 17a-3 input via the I / F 30. From the output pattern of the hall IC 17b, a PWM control signal is output to the drive circuit 32 according to an origin learning algorithm which will be described later with reference to FIG.
  • an origin learning algorithm which will be described later with reference to FIG.
  • the drive circuit 32 energizes the windings of the stator 13 via the motor terminal (U), the motor terminal (V), and the motor terminal (W) at a predetermined cycle according to the PWM control signal.
  • a sinusoidal current having a magnitude corresponding to the continuous rotation angle flows through the winding of the stator 13, and the rotor 11 can be efficiently and smoothly rotated.
  • the drive circuit 32 energizes the windings of the stator 13 in accordance with the PWM control signal in accordance with the origin learning algorithm input from the control unit 31 to rotate the rotor 11 and rotate the motor shaft 10 in unit rotation of the rotor 11. It is moved every predetermined amount of movement according to the angle.
  • the PWM control signal from the control unit 31 drives the rod 20 with a drive duty ratio that does not move the rod 20 even when the motor shaft 10 contacts the end of the rod 20. That is, by pressing against the rod 20, the movement of the motor shaft 10 in the axial direction stops, and the rotation of the rotor 11 also stops.
  • the motor control device 3 As an aspect of the motor control device 3 according to the first embodiment, for example, it is mounted as one function of an electronic control unit (ECU) of a vehicle, and a hole is formed between it and the brushless motor device 1 via a wire harness. There is one that performs drive control by exchanging signals and control signals from the IC. Moreover, you may provide the drive circuit 32 as a dedicated circuit (EDU; Electrical actuator Drive Unit). In this configuration, for example, the EDU and the brushless motor device 1 are connected by a wire harness, and an ECU and an EDU on which the control unit 31 is mounted exchange signals via a CAN (Controller Area Network).
  • EDU Electronice control unit
  • EDU Electrical actuator Drive Unit
  • the drive circuit 32 may be built in the brushless motor device 1 and the ECU in which the control unit 31 is mounted and the drive circuit 32 may be connected by CAN.
  • the control unit 31 of the ECU controls the driving of the brushless motor device 1 by inputting the output signal of the Hall IC from the brushless motor device 1 via the CAN.
  • the motor control device 3 itself may be built in the brushless motor device 1.
  • FIG. 4 is a diagram showing output patterns of the position detection Hall IC and the origin learning Hall IC.
  • the number of poles of the magnet 15 shown in FIG. 2 is “8”, the number of slots of the stator 13 is “9”, and the rotor 11 shows the case where the number of poles is “8”.
  • the position detection Hall ICs 17a-1 to 17a-3 are arranged to output HLH, HLL, HHL, LHL, LHH, LLH as output patterns corresponding to the U phase, V phase, and W phase while the rotor 11 makes one rotation. Are sequentially output.
  • the position detection Hall ICs 17a-1 to 17a-3 have the LLH, LHH, LHL, LHL, HHL, and the like output patterns corresponding to the U phase, V phase, and W phase while the rotor 11 rotates once. HLL is repeatedly output sequentially.
  • the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are repeatedly output while the rotor 11 rotates once. Therefore, the arbitrary position in the axial direction of the motor shaft 10 cannot be accurately detected only by the output patterns of the position detection Hall ICs 17a-1 to 17a-3. Therefore, in the brushless motor device 1 according to the present invention, the origin learning magnetic pole portion 15b in which one of the position detecting magnetic pole portions 15a extends in the outer peripheral direction of the magnet 15 is provided, and the motor shaft 10 is in the vicinity of the end face of the rod 20. The magnetic flux of the origin learning magnetic pole portion 15b is detected by the origin learning hall IC 17b at a position from the contact point to the contact point.
  • the origin learning Hall IC 17b is on the origin learning magnetic pole portion 15b, and detects the magnetic flux and outputs an H level signal. . Since the position detection Hall ICs 17a-1 to 17a-3 are arranged at predetermined angles on the magnet 15, when the rotor 11 is rotated at predetermined rotation angles, the origin learning Hall IC 17b becomes the origin. At the timing of positioning on the learning magnetic pole portion 15b, the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are sequentially switched by the output patterns (1) to (5) shown in FIG.
  • the output does not change in any one of the combination patterns (5) to (5), it can be specified that the motor shaft 10 is in contact with the rod 20.
  • the output of the origin learning Hall IC 17b is L level, and the output patterns of the position detection Hall ICs 17a-1 to 17a-3 and the origin learning Hall IC 17b
  • the combination pattern with the output pattern is a pattern other than (1) to (5) shown in FIG.
  • the outputs of the origin learning Hall IC 17b and the position detection Hall ICs 17a-1 to 17a-3 are any one of (1) to (5) shown in FIG. 4, and the position detection Hall ICs 17a-1 to 17a are shown in FIG. If the output pattern of ⁇ 3 does not switch sequentially, it can be determined that the motor shaft 10 has come into contact with the rod 20 and stopped moving, and this position is learned as the origin position of the motor shaft 10.
  • FIG. 5 is a diagram showing a structure of an EGR valve using the brushless motor device according to the first embodiment.
  • the brushless motor device 1 according to Embodiment 1 is used as an actuator of an EGR valve device as shown in FIG. 5, for example.
  • the driven member shown in FIG. 1 corresponds to the valve mechanism 2.
  • the valve mechanism 2 is provided with a valve shaft 20 corresponding to the rod shown in FIG. 1 and arranged so as to be coaxial with the motor shaft 10 of the brushless motor device 1.
  • the brushless motor apparatus 1 includes a housing of the valve mechanism 2 such that the distance A between the end surface of the motor shaft 10 and the end surface of the valve shaft 20 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11. 21 is assembled.
  • a valve body 22a is fixed to the valve shaft 20, and the return spring 23 biases the valve body 22a in a direction (closed direction) in which the valve body 22a is seated on the valve seat 22b. Further, the valve shaft 20 is movable in the axial direction when the motor shaft 10 contacts one end. However, in the origin learning process, even if the motor shaft 10 contacts the valve shaft 20, the reaction force from the return spring 23 stops the axial movement of the motor shaft 10 and the rotation of the rotor 11 is stopped.
  • FIG. 6 is a flowchart showing origin learning processing by the brushless motor device according to the first embodiment, and shows a case where origin learning is started when the engine key is turned on (power on) in the EGR valve device of FIG.
  • the control unit 31 proceeds to a process of learning the origin position of the motor shaft 10 in the axial direction.
  • the control unit 31 outputs a control signal for pushing out the motor shaft 10 for each predetermined movement amount to the drive circuit 32.
  • the drive circuit 32 pushes out the motor shaft 10 for each predetermined movement amount according to the control signal of the control unit 31 (step ST2).
  • step ST3 Each time the controller 31 pushes the motor shaft 10 by a predetermined amount of movement, the output pattern (a) of the origin learning Hall IC 17b input via the I / F 30 and the position detection Hall ICs 17a-1 to 17a-3 The output pattern (b) is collated (step ST3).
  • the output patterns (a) and (b) are any one of the combination patterns (1) to (5) shown in FIG. 4, and the position detection is performed even if drive control for pushing the motor shaft 10 is performed.
  • the control unit 31 causes the motor shaft 10 to abut against the valve shaft 20 to move the motor shaft. It is determined that it is in a stopped state (a state in which the rotation of the rotor 11 is stopped), and the current position of the motor shaft 10 is learned as the origin position (step ST5).
  • the output patterns (a) and (b) are other than the combination patterns (1) to (5) shown in FIG. 4, and even if the drive control for pushing the motor shaft 10 is performed, the position detection Hall IC 17a-1 to When the output pattern of 17a-3 does not change (step ST4-2), the control unit 31 determines that the position of the upper end surface of the valve shaft 20 is in the valve opening direction due to deposits accumulated in the valve seat 22b or wear of the valve shaft 20. It is determined that there is a possibility that the motor shaft 10 is displaced in the pushing direction.
  • the distance A + ⁇ is from the end surface of the motor shaft 10 to the end surface of the valve shaft 20, at the timing when the origin learning Hall IC 17b is on the origin learning magnetic pole portion 15b (the output of the origin learning Hall IC 17b is H level).
  • the motor shaft 10 does not contact the valve shaft 20 and is further pushed out, and the motor shaft 10 contacts the valve shaft 20 at a timing when the origin learning Hall IC 17b is not on the origin learning magnetic pole portion 15b. It is thought that it is in a state.
  • the control unit 31 starts from the position where the motor shaft 10 contacts the valve shaft 20, that is, the position where the output patterns of the position detection Hall ICs 17a-1 to 17a-3 no longer change.
  • the shaft 10 is pulled in every predetermined amount of movement, and counts each time the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are switched until the output of the origin learning Hall IC 17b becomes H level (Step ST6). Then, it is determined whether or not the count value is less than the specified value (step ST7).
  • the position where the motor shaft 10 abuts on the valve shaft 20 is set to a count value 0, and the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are shown in FIG.
  • the count value is incremented each time the LLH ⁇ LHH ⁇ LHL ⁇ .
  • the specified value is that the valve shaft 20 may be displaced in the valve opening direction due to deposits accumulated in the valve seat 22b when the distance A from the lower end surface of the motor shaft 10 to the upper end surface of the valve shaft 20 is set as the distance A. It is a value indicating the capacity (allowable amount at which the distance between the motor shaft 10 and the valve shaft 20 may be separated). For example, since the movement amount of the motor shaft 10 with respect to the rotation angle of the rotor 11 when the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are switched is known, the allowable amount is set to the position detection Hall ICs 17a-1 to 17a-1.
  • the specified value is represented by the output pattern switching count of 17a-3.
  • step ST7 determines that the positional deviation in the valve opening direction of the valve shaft 20 is an allowable amount, pushes out the motor shaft 10 again, and the valve shaft 20 Is learned as the origin position (step ST5). Further, when the count value is equal to or greater than the specified value (step ST7; NO), the control unit 31 indicates that the position deviation in the valve opening direction of the valve shaft 20 exceeds the allowable amount, and deposits accumulated on the valve seat 22b It is determined that the valve body 22a is stuck (valve valve is stuck) (step ST8).
  • the output patterns (a) and (b) are other than the combination patterns (1) to (5) shown in FIG. 4, and the output patterns of the position detection Hall ICs 17a-1 to 17a-3 change.
  • the control unit 31 determines that the motor shaft 10 has not reached the vicinity of the valve shaft 20, returns to step ST2, and moves the motor with a predetermined movement amount. The shaft 10 is pushed out. Even when the internal thread of the rotor 11 is worn and the motor shaft 10 does not move even if the rotor 11 rotates, the same collation result as above can be obtained. Therefore, even if the process from step ST2 is performed a predetermined number of times, it is determined to be abnormal if the collation result is obtained.
  • the position detection Hall ICs 17a-1 to 17a-3 for detecting the rotation position of the rotor 11 and the predetermined rotation position during one rotation of the rotor 11 are detected.
  • the brushless motor device 1 is assembled to the driven member 2 so as to come into contact with the rod 20 at the movement position of the motor shaft 10 at a predetermined rotational position while the rotor 11 makes one rotation with the origin learning Hall IC 17b. From the output patterns of the position detection Hall ICs 17a-1 to 17a-3 and the output pattern of the origin learning Hall IC 17b, which are switched with the rotation of the rotor 11 when the motor shaft 10 is moved by a predetermined amount.
  • the position where the motor shaft 10 abuts on the rod 20 and the rotation of the rotor 11 is restricted is determined, and this position is the origin. And a control unit 31 for learning as location.
  • a control unit 31 for learning as location With this configuration, there is no need to pull the motor shaft 10 to the stopper 11a and then push it to the valve shaft 20 as in the prior art, and the stroke amount of the motor shaft 10 during origin learning can be greatly reduced. Thereby, the learning time of the drive origin can be significantly shortened.
  • the origin learning temporary start position is not shifted due to wear of the stopper 11a, and the origin learning process is stably performed. Can do.
  • the magnet 15 provided on the surface orthogonal to the rotation axis of the rotor 11 and having different magnetic poles alternately arranged around the rotation axis of the rotor 11 and the position detection magnetic pole portion 15a.
  • the position detection magnetic pole portion 15a of the magnet 15 rotating together with the rotor 11 is detected, and a signal indicating the rotation position of the rotor corresponding to the magnetic pole is output.
  • the distance between the motor shaft 10 and the rod 11 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11, and the origin learning Hall IC 17b is used for origin learning.
  • the motor shaft 10 moves from the vicinity of the rod 20 to a position until it abuts at a timing when the motor shaft 10 comes to a position facing the magnetic pole portion 15b.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the brushless motor device according to the present invention is suitable for an actuator such as an EGR valve device of a vehicle because the time required for learning the origin position for driving the motor shaft can be shortened.
  • 1 brushless motor device 1 driven member (valve mechanism), 3 motor control device, 10 motor shaft, 11 rotor, 12 case, 13 stator, 14 bearing, 15 magnet, 15a position detection magnetic pole, 15b origin learning magnetic pole Part, 16 printed circuit board, 17a, 17a-1 to 17a-3 position detection Hall IC, 17b origin learning Hall IC, 20 rod (valve shaft), 21 housing, 22a valve body, 22b valve seat, 23 return spring, 30 interface (I / F), 31 control unit, 32 drive circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

The brushless motor device is equipped with: a position-detecting Hall IC (17a) for detecting a rotational position of a rotor (11); an origin-learning Hall IC (17b) for detecting a predetermined rotational position during one rotation of the rotor (11); and a control unit (31) that, on a condition that the brushless motor device (1) is assembled to a member to be driven (2) in such a manner that a motor shaft (10) moves to a position so as to come in contact with a rod (20) at the predetermined rotational position during the one rotation of the rotor (11), determines the position where the rotation of the rotor (11) becomes restricted as the motor shaft (10) comes in contact with the rod (20) on the basis of an output pattern of the position-detecting Hall IC (17a), which changes with the rotation of the rotor (11) when the motor shaft (10) is moved by a predetermined amount at a time, and an output pattern of the origin-learning Hall IC (17b), and learns said position as an origin position.

Description

ブラシレスモータ装置、モータ制御装置および原点学習方法Brushless motor device, motor control device, and origin learning method
 この発明は、車両用のEGR(Exhaust Gas Recirculation;排ガス再循環)バルブやVG(Variable Geometric)ターボアクチュエータなどの排ガス制御用アクチュエータの駆動源として利用されるブラシレスモータ装置、ブラシレスモータ装置の駆動を制御するモータ制御装置およびブラシレスモータ装置の原点学習方法に関する。 The present invention controls the drive of a brushless motor device used as a drive source for an exhaust gas control actuator such as an EGR (Exhaust Gas Recirculation) valve or a VG (Variable Geometric) turbo actuator for a vehicle. The present invention relates to an origin learning method for a motor control device and a brushless motor device.
 従来のブラシレスモータでは、ロータに設けた位置検出用マグネットからの磁束を位置検出用ホールICで感知することによって、3相(U,V,W)のステータコイルに対するロータの相対的な回転位置を検出している(例えば、特許文献1参照)。
 3個の位置検出用ホールICは、位置検出用マグネットの磁極の回転方向の切り替わりに応じて、ハイレベル“H”、ロウレベル“L”の電気信号をそれぞれ出力して、ロータが1回転する間に、3相(U,V,W)に対応した所定の出力パターンが繰り返される。
In the conventional brushless motor, the relative rotational position of the rotor relative to the three-phase (U, V, W) stator coil is determined by sensing the magnetic flux from the position detection magnet provided on the rotor with the position detection Hall IC. It is detected (see, for example, Patent Document 1).
The three position detection Hall ICs output high-level “H” and low-level “L” electrical signals in response to switching of the rotation direction of the magnetic poles of the position detection magnet, respectively, while the rotor rotates once. In addition, a predetermined output pattern corresponding to three phases (U, V, W) is repeated.
 また、EGRバルブなどに利用されるブラシレスモータでは、ロータに設けた雌ねじにモータシャフトの一端側が螺合されており、ロータの回転に伴ってモータシャフトが軸方向に押し出され、また引き込まれる。例えば、EGRバルブのアクチュエータとしてブラシレスモータを利用する場合、バルブに接続されたロッドをモータシャフトの動きに連動させることにより、バルブが開閉される。 Also, in a brushless motor used for an EGR valve or the like, one end of the motor shaft is screwed into a female screw provided in the rotor, and the motor shaft is pushed out in the axial direction and pulled in as the rotor rotates. For example, when a brushless motor is used as an actuator of an EGR valve, the valve is opened and closed by interlocking the rod connected to the valve with the movement of the motor shaft.
国際公開WO2007/148480明細書International Publication WO2007 / 148480 Specification
 従来のブラシレスモータ装置では、ロータにおけるモータシャフトの引き込み限界位置に形成されたストッパを仮の原点位置として、この位置から押し出したモータシャフトがロッドに当接した位置を、アクチュエータの原点、すなわちモータシャフトの駆動原点としている。車両のEGRシステムなどでは、この原点学習処理がシステムの稼働時または終了時に実施されるプロセスであることから、迅速なシステム稼働または終了を行うために、原点学習時間の短縮化が望まれている。 In the conventional brushless motor device, the stopper formed at the motor shaft retract limit position in the rotor is used as a temporary origin position, and the position where the motor shaft pushed out from this position contacts the rod is the origin of the actuator, that is, the motor shaft. This is the driving origin. In a vehicle EGR system or the like, this origin learning process is a process that is performed at the time of system operation or termination. Therefore, in order to perform system operation or termination quickly, it is desired to shorten the origin learning time. .
 また、原点学習処理を実施するごとに、モータシャフトをストッパに当接するまで移動させてその位置を特定しているため、摩耗などによってストッパの位置が変化する可能性がある。この場合、モータシャフトの端面からロッドの端面までの距離が遠くなり、原点学習処理でのモータシャフト移動量が増加して原点学習処理の長時間化が懸念される。 Also, every time the origin learning process is performed, the position of the stopper may change due to wear or the like because the position is specified by moving the motor shaft until it contacts the stopper. In this case, the distance from the end surface of the motor shaft to the end surface of the rod is increased, and the movement amount of the motor shaft in the origin learning process is increased, and there is a concern that the origin learning process may take a long time.
 なお、従来のブラシレスモータ装置では、特許文献1に示したように位置検出用ホールICによってステータコイルに対するロータの相対的な回転位置を検出することはできるが、位置検出用ホールICの出力パターンから、モータシャフトの軸方向の位置を正確に検出することはできない。 In the conventional brushless motor device, as shown in Patent Document 1, the relative rotational position of the rotor with respect to the stator coil can be detected by the position detection Hall IC, but from the output pattern of the position detection Hall IC. The position of the motor shaft in the axial direction cannot be accurately detected.
 この発明は、上記のような課題を解決するためになされたもので、駆動原点の学習時間を短縮することができるブラシレスモータ装置、ブラシレスモータ装置の駆動を制御するモータ制御装置およびブラシレスモータ装置の原点学習方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and is provided with a brushless motor device capable of shortening the learning time of the drive origin, a motor control device for controlling the drive of the brushless motor device, and a brushless motor device. The purpose is to obtain an origin learning method.
 この発明に係るブラシレスモータ装置は、ロータの回転に伴ってモータシャフトが軸方向に移動し、モータシャフトと同軸に配置された被駆動部材のロッドを駆動させるブラシレスモータ装置において、ロータの回転位置を検出する位置検出用センサ部と、ロータが1回転する間の所定の回転位置を検出する原点学習用センサ部と、ロータが1回転する間の所定の回転位置におけるモータシャフトの移動位置でロッドに当接するように当該ブラシレスモータ装置が被駆動部材に組み付けられていることを条件として、モータシャフトを所定量ごとに移動させたときにロータの回転に伴って切り替わる位置検出用センサ部の出力パターンおよび原点学習用センサ部の出力パターンから、モータシャフトがロッドに当接してロータの回転が規制された位置を判別し、この位置を原点位置として学習する制御部とを備える。 The brushless motor device according to the present invention is a brushless motor device in which the motor shaft moves in the axial direction as the rotor rotates, and drives the rod of the driven member arranged coaxially with the motor shaft. A position detection sensor unit for detecting, an origin learning sensor unit for detecting a predetermined rotation position during one rotation of the rotor, and a motor shaft moving position at a predetermined rotation position during one rotation of the rotor. On the condition that the brushless motor device is assembled to the driven member so as to come into contact, the output pattern of the position detecting sensor unit that switches with the rotation of the rotor when the motor shaft is moved by a predetermined amount, and From the output pattern of the origin learning sensor unit, the motor shaft contacts the rod and the rotation of the rotor is restricted. Determine the position, and a control unit for learning the position as the origin position.
 この発明によれば、駆動原点の学習時間を短縮することができるという効果がある。 According to the present invention, there is an effect that the learning time of the drive origin can be shortened.
この発明の実施の形態1に係るブラシレスモータ装置の構成を示す図である。It is a figure which shows the structure of the brushless motor apparatus which concerns on Embodiment 1 of this invention. この発明に係るマグネット、位置検出用ホールIC、原点学習用ホールICを示す図である。It is a figure which shows the magnet, Hall IC for position detection, and Hall IC for origin learning concerning this invention. 実施の形態1に係るブラシレスモータ装置の駆動を制御するモータ制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the motor control apparatus which controls the drive of the brushless motor apparatus which concerns on Embodiment 1. FIG. 位置検出用ホールICおよび原点学習用ホールICの出力パターンを示す図である。It is a figure which shows the output pattern of Hall IC for position detection, and Hall IC for origin learning. 実施の形態1に係るブラシレスモータ装置を利用したEGRバルブの構造を示す図である。It is a figure which shows the structure of the EGR valve | bulb using the brushless motor apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るブラシレスモータ装置による原点学習処理を示すフローチャートである。4 is a flowchart showing origin learning processing by the brushless motor device according to the first embodiment.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係るブラシレスモータ装置の構成を示す図である。図1に示すブラシレスモータ装置1は、モータシャフト10がロータ11の回転によって軸方向に移動し、モータシャフト10と同軸に配置された被駆動部材2のロッド20を駆動させるアクチュエータとして使用される。
 モータシャフト10は、その一端に雄ねじが形成されており、ロータ11に形成された雌ねじに螺合される。ねじは、ロータ11の1回転あたりのモータシャフト10の移動量が所定の値となるように形成される。
 なお、この発明に係るブラシレスモータ装置1は、ロータ11が1回転する間のモータシャフト10の移動距離よりもモータシャフト10の端面とロッド20の端面との距離Aが短くなるように、被駆動部材2のハウジング21に組み付けられる。すなわち、ロータ11が1回転する間に、モータシャフト10がロッド20の端面に当接する。
Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 is a diagram showing a configuration of a brushless motor apparatus according to Embodiment 1 of the present invention. The brushless motor apparatus 1 shown in FIG. 1 is used as an actuator that drives the rod 20 of the driven member 2 that is arranged coaxially with the motor shaft 10 when the motor shaft 10 moves in the axial direction by the rotation of the rotor 11.
The motor shaft 10 has a male screw formed at one end thereof and is screwed into a female screw formed on the rotor 11. The screw is formed so that the movement amount of the motor shaft 10 per rotation of the rotor 11 becomes a predetermined value.
The brushless motor device 1 according to the present invention is driven so that the distance A between the end surface of the motor shaft 10 and the end surface of the rod 20 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11. It is assembled to the housing 21 of the member 2. That is, the motor shaft 10 contacts the end surface of the rod 20 while the rotor 11 rotates once.
 ロータ11は、ケース12内でステータ13の中空部に挿入されて、ベアリング14によって回転自在に支持される。また、ロータ11には、その回転軸に直交する面に円盤状のマグネット15が固着されている。マグネット15は、ロータ11の回転軸に直交する面に設けた円盤状の永久磁石であり、位置検出用磁極部15aおよび原点学習用磁極部15bを有する。位置検出用磁極部15aは、図2を用いて後述するように、ロータ11の回転軸まわりに異なる磁極を交互に配置してなる磁極部であり、原点学習用磁極部15bは、位置検出用磁極部15aの隣り合った磁極対の1つを外縁方向に延設してなる磁極部である。 The rotor 11 is inserted into the hollow portion of the stator 13 in the case 12 and is rotatably supported by the bearing 14. In addition, a disk-like magnet 15 is fixed to the rotor 11 on a surface orthogonal to the rotation axis. The magnet 15 is a disk-shaped permanent magnet provided on a surface orthogonal to the rotation axis of the rotor 11, and has a position detection magnetic pole portion 15a and an origin learning magnetic pole portion 15b. As will be described later with reference to FIG. 2, the position detecting magnetic pole portion 15a is a magnetic pole portion formed by alternately arranging different magnetic poles around the rotation axis of the rotor 11, and the origin learning magnetic pole portion 15b is used for position detection. The magnetic pole part is formed by extending one of the adjacent magnetic pole pairs of the magnetic pole part 15a in the outer edge direction.
 プリント基板16上には、位置検出用ホールIC17aと原点学習用ホールIC17bが実装される。位置検出用ホールIC17aは、位置検出用磁極部15aに対向して配置され、ロータ11とともに回転するマグネット15の位置検出用磁極部15aの磁束を検出して、その磁極に対応したロータ11の回転位置を示す信号を出力する。原点学習用ホールIC17bは、位置検出用ホールIC17aと同一面(プリント基板16)上に当該位置検出用ホールIC17aとはピッチ径違いで配置され、ロータ11とともに回転するマグネット15の原点学習用磁極部15bの磁束のみを検出して、その磁極に対応したロータ11が1回転する間の所定の回転位置(原点学習用ホールIC17bが原点学習用磁極部15b上にくる位置)を示す信号を出力する。 The position detection Hall IC 17a and the origin learning Hall IC 17b are mounted on the printed circuit board 16. The position detection Hall IC 17a is disposed to face the position detection magnetic pole portion 15a, detects the magnetic flux of the position detection magnetic pole portion 15a of the magnet 15 rotating together with the rotor 11, and rotates the rotor 11 corresponding to the magnetic pole. A signal indicating the position is output. The origin learning hall IC 17b is arranged on the same surface (printed circuit board 16) as the position detection hall IC 17a with a pitch diameter different from that of the position detection hall IC 17a, and the origin learning magnetic pole part of the magnet 15 that rotates together with the rotor 11 is provided. Only the magnetic flux 15b is detected, and a signal indicating a predetermined rotational position (a position where the origin learning Hall IC 17b is located on the origin learning magnetic pole portion 15b) while the rotor 11 corresponding to the magnetic pole rotates once is output. .
 ステータ13に巻回されたコイルに通電することで、複数の磁極に分極されたステータ13がNS磁化する。また、ロータ11の外周面には、回転方向に磁極が切り替わるようにNS着磁されたロータ回転用マグネットが設けられている。ステータ13がNS磁化されると、ステータ13とロータ回転用マグネットとの電磁作用によってロータ11が回転する。また、ロータ11の回転によってモータシャフト10が軸方向に沿って移動する。このとき、ロータ11の回転方向に応じて、モータシャフト10が、モータ側に引き込まれる方向(例えば、正回転)とモータ側から押し出される方向(例えば、逆回転)に移動する。 When the coil wound around the stator 13 is energized, the stator 13 polarized by a plurality of magnetic poles is NS magnetized. Further, on the outer peripheral surface of the rotor 11, a rotor rotating magnet magnetized NS so that the magnetic poles are switched in the rotation direction is provided. When the stator 13 is NS magnetized, the rotor 11 is rotated by the electromagnetic action of the stator 13 and the rotor rotating magnet. Further, the motor shaft 10 moves along the axial direction by the rotation of the rotor 11. At this time, according to the rotation direction of the rotor 11, the motor shaft 10 moves in a direction (for example, forward rotation) pulled into the motor side and a direction (for example, reverse rotation) pushed out from the motor side.
 図1に示すように、モータシャフト10は、ロータ11の雌ねじに螺合する雄ねじ部分の径よりも、ロータ11の回転でモータから出没する部分の径が大きくなるように形成されており、ロータ11には、モータシャフト10の径違い部分の段差面に当接するストッパ11aが形成されている。このストッパ11aは、モータシャフト10の引き込み方向の移動上限位置を規定するものであり、引き込み方向に移動させたモータシャフト10の段差面にストッパ11aが当接してそれ以上の移動を規制する。 As shown in FIG. 1, the motor shaft 10 is formed so that the diameter of the portion that protrudes and protrudes from the motor by the rotation of the rotor 11 is larger than the diameter of the male screw portion that is screwed into the female screw of the rotor 11. 11 is formed with a stopper 11a that abuts against the stepped surface of the motor shaft 10 having a different diameter. The stopper 11a defines a movement upper limit position in the pull-in direction of the motor shaft 10, and the stopper 11a abuts on the stepped surface of the motor shaft 10 moved in the pull-in direction to restrict further movement.
 ここで、従来の原点学習処理を簡単に説明する。
 上述したように、ストッパ11aは、モータシャフト10の軸方向の所定位置に設けられるため、ストッパ11aの位置を基準にして原点位置を学習していた。
 この原点学習処理では、まず、(1)モータシャフト10を引き込み方向に移動させてストッパ11aに当接させる。次に、(2)ストッパ11aの位置を原点学習の開始位置として、この位置からモータシャフト10を押し出し方向へ移動させる。この後、(3)モータシャフト10がロッド20の端面に当接した位置を原点として学習する。
 なお、上記(2)では、モータシャフト10がロッド20に当接しても、ロッド20を動かさない程度の駆動デューティ比で駆動させる。
Here, the conventional origin learning process will be briefly described.
As described above, since the stopper 11a is provided at a predetermined position in the axial direction of the motor shaft 10, the origin position is learned on the basis of the position of the stopper 11a.
In this origin learning process, first, (1) the motor shaft 10 is moved in the retracting direction and brought into contact with the stopper 11a. Next, (2) using the position of the stopper 11a as the starting point for the origin learning, the motor shaft 10 is moved in this direction from this position. Thereafter, (3) learning is performed with the position where the motor shaft 10 is in contact with the end face of the rod 20 as the origin.
In the above (2), even if the motor shaft 10 contacts the rod 20, the rod 20 is driven with a drive duty ratio that does not move.
 従来の原点学習処理では、上記(1)~(3)に示すように、モータシャフト10を、ストッパ11aまで引き込んでから、ロッド20の端面に当接するまで押し出していく。このように引き込みと押し出しによる移動距離が長いため、車両のEGRバルブ装置などでは、原点学習を完了するまでに数秒の時間を必要としていた。これは、例えばエンジンキーオン時に原点学習を行うエンジンシステムの場合は、原点学習が完了するまでEGRバルブ装置が稼働しないことになり、エンジンキーオフ時に原点学習を行うエンジンシステムの場合には、原点学習が完了するまでシステムをシャットダウンすることができないことになる。 In the conventional origin learning process, as shown in the above (1) to (3), after the motor shaft 10 is pulled into the stopper 11a, it is pushed out until it comes into contact with the end face of the rod 20. As described above, since the moving distance by the pull-in and push-out is long, the EGR valve device of the vehicle requires a time of several seconds to complete the origin learning. For example, in the case of an engine system that performs origin learning when the engine key is turned on, the EGR valve device does not operate until the origin learning is completed. In the case of an engine system that performs origin learning when the engine key is turned off, origin learning is not performed. You will not be able to shut down the system until it is complete.
 また、従来では、原点学習が実施されるごとにモータシャフト10がストッパ11aに当接するため、ストッパ11aが摩耗して原点学習の開始位置が変化する可能性がある。
 例えば、ストッパ11aの摩耗で原点学習の開始位置が引き込み方向にずれた場合に、このストッパ11aの位置から初期時のストロークでモータシャフト10を押し出してもモータシャフト10がロッド20に当接せず、原点学習が完了する時間がさらにかかる。
Conventionally, since the motor shaft 10 contacts the stopper 11a every time the origin learning is performed, there is a possibility that the stopper 11a is worn and the starting position of the origin learning changes.
For example, if the origin learning start position shifts in the pull-in direction due to wear of the stopper 11a, the motor shaft 10 does not contact the rod 20 even if the motor shaft 10 is pushed out from the position of the stopper 11a with the initial stroke. It takes more time to complete the origin learning.
 そこで、この発明に係る原点学習処理は、位置検出用ホールIC17aの出力パターンと原点学習用ホールIC17bの出力パターンから、モータシャフト10がロッド20に当接する位置を判別する。これにより、摩耗などに起因した経時変化が発生する可能性があるメカストッパを使用することなく、原点学習に要するモータシャフト10の移動量を格段に低減できるため、原点学習が完了するまでの時間を短縮できる。 Therefore, the origin learning process according to the present invention determines the position where the motor shaft 10 contacts the rod 20 from the output pattern of the position detection Hall IC 17a and the output pattern of the origin learning Hall IC 17b. As a result, the amount of movement of the motor shaft 10 required for origin learning can be significantly reduced without using a mechanical stopper that may cause a change over time due to wear or the like. Can be shortened.
 図2は、この発明に係るマグネット、位置検出用ホールIC、原点学習用ホールICを示す図である。図2に例示したマグネット15は、極数が“8”であるので、ステータ13のスロット数は“9”で、ロータ11の極数は“8”である。なお、マグネット15は、ロータ11の1極に一対のNS極が対応する。
 位置検出用ホールIC17a-1~17a-3は、ステータ13の3相(U,V,W)のそれぞれに対応して設けられ、マグネット15の回転方向に磁極が切り替わる位置検出用磁極部15aの磁束を検出して極性に対応した論理レベルの信号を出力する。
FIG. 2 is a diagram showing a magnet, a position detection Hall IC, and an origin learning Hall IC according to the present invention. Since the magnet 15 illustrated in FIG. 2 has “8” poles, the stator 13 has “9” slots and the rotor 11 has “8” poles. The magnet 15 corresponds to one pole of the rotor 11 with a pair of NS poles.
The position detection Hall ICs 17a-1 to 17a-3 are provided corresponding to the three phases (U, V, W) of the stator 13, and are provided for the position detection magnetic pole portion 15a in which the magnetic pole is switched in the rotation direction of the magnet 15. A magnetic level signal corresponding to the polarity is output by detecting the magnetic flux.
 また、この発明では、図2に示すように、原点学習用磁極部15bとして、位置検出用磁極部15aの隣り合った磁極対の1つをマグネット15の外縁方向に延設している。
 原点学習用ホールIC17bは、マグネット15の外縁部の原点学習用磁極部17bに対応して設けられ、マグネット15が1回転、すなわちロータ11が1回転する間に原点学習用磁極部15bの磁束を検出して極性に対応した論理レベルの信号を出力する。
Further, in the present invention, as shown in FIG. 2, one of the adjacent magnetic pole pairs of the position detecting magnetic pole portion 15 a is extended in the direction of the outer edge of the magnet 15 as the origin learning magnetic pole portion 15 b.
The origin learning Hall IC 17b is provided corresponding to the origin learning magnetic pole portion 17b on the outer edge of the magnet 15, and the magnetic flux of the origin learning magnetic pole portion 15b is generated while the magnet 15 rotates once, that is, the rotor 11 rotates once. A signal having a logic level corresponding to the polarity is detected and output.
 なお、この発明に係る原点学習処理では、ロータ11が1回転する間のモータシャフト10の移動距離よりもモータシャフト10の端面とロッド20の端面との距離Aが短く、かつ、原点学習用ホールIC17bが原点学習用磁極部15b上に位置するタイミングでモータシャフト10がロッド20の端面に当接することを前提条件としている。
 すなわち、この発明に係るブラシレスモータ装置1は、モータシャフト10の雄ねじとロータ11の雌ねじを調整してモータシャフト10の移動量を調整し、原点学習用ホールIC17bの位置にマグネット15の回転位相を合わせ、原点学習用ホールIC17bが原点学習用磁極部15bに対向した位置にくるタイミングで、モータシャフト10がロッド20の端面の近傍から当接するまでの位置に移動するように被駆動部材2のハウジング21に組み付けておく。
In the origin learning process according to the present invention, the distance A between the end surface of the motor shaft 10 and the end surface of the rod 20 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11, and the origin learning hole is used. It is a precondition that the motor shaft 10 contacts the end face of the rod 20 at the timing when the IC 17b is positioned on the origin learning magnetic pole portion 15b.
That is, the brushless motor device 1 according to the present invention adjusts the moving amount of the motor shaft 10 by adjusting the male screw of the motor shaft 10 and the female screw of the rotor 11, and sets the rotational phase of the magnet 15 to the position of the origin learning hole IC 17b. In addition, the housing of the driven member 2 is moved so that the motor shaft 10 moves from the vicinity of the end face of the rod 20 to the position where the motor shaft 10 comes into contact with the origin learning Hall IC 17b at a position facing the origin learning magnetic pole portion 15b. 21 is assembled.
 図3は、実施の形態1に係るブラシレスモータ装置の駆動を制御するモータ制御装置の構成を示すブロック図である。図3に示すモータ制御装置3は、ブラシレスモータ装置1を駆動制御する装置であり、主な構成としてホールICとのインタフェース30、制御部31および駆動回路32を備える。
 ブラシレスモータ装置1には、上述したように、U相、V相、W相の巻線が巻回されたステータ13と、ステータ13に近接した位置にあって磁気的結合関係を保ち、回転自在に支持されたロータ11と、ロータ11の回転位置(磁極位置)を検出する位置検出用ホールIC17a-1~17a-3と、原点学習用の磁極部の磁束を検出する原点学習用ホールIC17bが設置されている。これらのホールIC17a-1~17a-3,17bは、ホール素子が組み込まれた集積回路(IC)から構成されており、ロータ11と一体に回転するマグネット15(図1参照)の磁極を検出して、磁極の極性に対応した信号を出力する。
FIG. 3 is a block diagram illustrating a configuration of a motor control device that controls driving of the brushless motor device according to the first embodiment. A motor control device 3 shown in FIG. 3 is a device that drives and controls the brushless motor device 1 and includes an interface 30 with a Hall IC, a control unit 31, and a drive circuit 32 as main components.
As described above, the brushless motor device 1 has a stator 13 around which windings of U-phase, V-phase, and W-phase are wound, and is located in the vicinity of the stator 13, maintains a magnetic coupling relationship, and is rotatable. , The rotor 11 supported by the position, the position detection Hall ICs 17a-1 to 17a-3 for detecting the rotational position (magnetic pole position) of the rotor 11, and the origin learning Hall IC 17b for detecting the magnetic flux of the magnetic pole part for origin learning. is set up. These Hall ICs 17a-1 to 17a-3, 17b are composed of an integrated circuit (IC) in which Hall elements are incorporated, and detect the magnetic pole of the magnet 15 (see FIG. 1) that rotates integrally with the rotor 11. And outputs a signal corresponding to the polarity of the magnetic pole.
 インタフェース(以下、I/Fと記載する)30には、ホールIC端子(U)、ホールIC端子(V)、ホールIC端子(W)および原点学習用ホールIC端子が設けられる。
 I/F30は、このホールIC端子(U)を介して位置検出用ホールIC17a-1の回転位置信号を入力し、所定の増幅処理などを施して制御部31へ出力する。
 また、I/F30は、ホールIC端子(V)を介して位置検出用ホールIC17a-2の回転位置信号を入力し、所定の増幅処理などを施して制御部31へ出力する。
 I/F30は、ホールIC端子(W)を介して位置検出用ホールIC17a-3の回転位置信号を入力し、所定の増幅処理などを施して制御部31へ出力する。
 さらに、本発明に係るI/F30では、原点学習用ホールIC端子を介して原点学習用ホールIC17bの信号を入力し、所定の増幅処理などを施して制御部31へ出力する。
The interface (hereinafter referred to as I / F) 30 is provided with a Hall IC terminal (U), a Hall IC terminal (V), a Hall IC terminal (W), and an origin learning Hall IC terminal.
The I / F 30 receives the rotational position signal of the position detection Hall IC 17a-1 via the Hall IC terminal (U), performs a predetermined amplification process, and outputs the signal to the control unit 31.
Further, the I / F 30 receives the rotational position signal of the position detection Hall IC 17a-2 via the Hall IC terminal (V), performs a predetermined amplification process, and outputs the signal to the control unit 31.
The I / F 30 receives the rotation position signal of the position detection Hall IC 17a-3 via the Hall IC terminal (W), performs a predetermined amplification process, and outputs the signal to the control unit 31.
Further, in the I / F 30 according to the present invention, the signal of the origin learning Hall IC 17b is input via the origin learning Hall IC terminal, and is subjected to predetermined amplification processing and the like and is output to the control unit 31.
 制御部31は、マイクロコンピュータなどの演算処理回路から構成され、I/F30を介して入力した位置検出用ホールIC17a-1~17a-3の回転位置信号が示すロータ11の断続的な回転角度からロータ11の連続的な回転角度を算出する。そして、算出した回転角度から、駆動デューティ比を示すPWM(Pulse Width Modulation)制御信号を生成して駆動回路32に与える。
 また、制御部31は、I/F30を介して入力した位置検出用ホールIC17a-1~17a-3の出力パターンと、ロータ11が1回転するまでの間に1回だけ出力レベルが切り替わる原点学習用ホールIC17bの出力パターンから、図6を用いて後述する原点学習アルゴリズムに従ってPWM制御信号を駆動回路32へ出力して原点学習処理を実施する。
The control unit 31 is composed of an arithmetic processing circuit such as a microcomputer, and is based on intermittent rotation angles of the rotor 11 indicated by the rotation position signals of the position detection Hall ICs 17a-1 to 17a-3 input via the I / F 30. The continuous rotation angle of the rotor 11 is calculated. Then, from the calculated rotation angle, a PWM (Pulse Width Modulation) control signal indicating a drive duty ratio is generated and applied to the drive circuit 32.
In addition, the control unit 31 performs origin learning in which the output level is switched only once until the rotor 11 makes one rotation until the output pattern of the position detection Hall ICs 17a-1 to 17a-3 input via the I / F 30. From the output pattern of the hall IC 17b, a PWM control signal is output to the drive circuit 32 according to an origin learning algorithm which will be described later with reference to FIG.
 駆動回路32は、PWM制御信号に応じた所定の周期でモータ端子(U)、モータ端子(V)およびモータ端子(W)を経由してステータ13の巻線に通電する。これにより、ステータ13の巻線に、連続的な回転角度に応じた大きさの正弦波状の電流が流れ、ロータ11を効率よくスムーズに回転させることができるようになる。
 また、駆動回路32は、制御部31から入力した原点学習アルゴリズムに従ったPWM制御信号に応じてステータ13の巻線に通電してロータ11を回転させ、モータシャフト10を、ロータ11の単位回転角度に応じた所定の移動量ごとに移動させていく。
 なお、原点学習処理では、制御部31からのPWM制御信号によって、モータシャフト10がロッド20の端部に当接しても、ロッド20を動かさない程度の駆動デューティ比で駆動させる。つまり、ロッド20に押し当たることで、モータシャフト10の軸方向の移動が止まり、ロータ11の回転も止まる。
The drive circuit 32 energizes the windings of the stator 13 via the motor terminal (U), the motor terminal (V), and the motor terminal (W) at a predetermined cycle according to the PWM control signal. As a result, a sinusoidal current having a magnitude corresponding to the continuous rotation angle flows through the winding of the stator 13, and the rotor 11 can be efficiently and smoothly rotated.
Further, the drive circuit 32 energizes the windings of the stator 13 in accordance with the PWM control signal in accordance with the origin learning algorithm input from the control unit 31 to rotate the rotor 11 and rotate the motor shaft 10 in unit rotation of the rotor 11. It is moved every predetermined amount of movement according to the angle.
In the origin learning process, the PWM control signal from the control unit 31 drives the rod 20 with a drive duty ratio that does not move the rod 20 even when the motor shaft 10 contacts the end of the rod 20. That is, by pressing against the rod 20, the movement of the motor shaft 10 in the axial direction stops, and the rotation of the rotor 11 also stops.
 実施の形態1に係るモータ制御装置3の態様としては、例えば車両の電子制御ユニット(ECU;Electronic Control Unit)の1つの機能として搭載し、ワイヤハーネスを介してブラシレスモータ装置1との間でホールICからの信号や制御信号をやり取りして駆動制御を行うものが挙げられる。
 また、駆動回路32を専用回路(EDU;Electrical actuator Drive Unit)として設けてもよい。この構成では、例えばEDUとブラシレスモータ装置1をワイヤハーネスで接続し、CAN(Controller Area Network)を介して、制御部31を搭載するECUとEDUが信号をやり取りする。
 さらに、駆動回路32をブラシレスモータ装置1に内蔵し、制御部31を搭載するECUと駆動回路32とをCANで接続した構成であってもよい。この場合、ECUの制御部31が、CANを介して、ブラシレスモータ装置1からホールICの出力信号を入力してブラシレスモータ装置1の駆動を制御する。
 この他、モータ制御装置3自体を、ブラシレスモータ装置1に内蔵した構成であってもよい。
As an aspect of the motor control device 3 according to the first embodiment, for example, it is mounted as one function of an electronic control unit (ECU) of a vehicle, and a hole is formed between it and the brushless motor device 1 via a wire harness. There is one that performs drive control by exchanging signals and control signals from the IC.
Moreover, you may provide the drive circuit 32 as a dedicated circuit (EDU; Electrical actuator Drive Unit). In this configuration, for example, the EDU and the brushless motor device 1 are connected by a wire harness, and an ECU and an EDU on which the control unit 31 is mounted exchange signals via a CAN (Controller Area Network).
Furthermore, the drive circuit 32 may be built in the brushless motor device 1 and the ECU in which the control unit 31 is mounted and the drive circuit 32 may be connected by CAN. In this case, the control unit 31 of the ECU controls the driving of the brushless motor device 1 by inputting the output signal of the Hall IC from the brushless motor device 1 via the CAN.
In addition, the motor control device 3 itself may be built in the brushless motor device 1.
 図4は、位置検出用ホールICおよび原点学習用ホールICの出力パターンを示す図であり、図2で示したマグネット15の極数が“8”、ステータ13のスロット数は“9”、ロータ11の極数が“8”の場合を示している。
 図4に示すように、ロータ11を正回転させる場合、ステータ13のU相、V相、W相の各巻線に対して、V→U、W→U、W→V、U→V、U→W、V→Wの順番で通電を繰り返す。この場合、位置検出用ホールIC17a-1~17a-3は、ロータ11が1回転する間に、U相、V相、W相に対応した出力パターンとしてHLH、HLL、HHL、LHL、LHH、LLHを順次繰り返し出力する。
 一方、ロータ11を逆回転させる場合は、ステータ13のU相、V相、W相の各巻線に対して、W→V、W→U、V→U、V→W、U→W、U→Vの順番で通電を繰り返す。この場合も、位置検出用ホールIC17a-1~17a-3は、ロータ11が1回転する間に、U相、V相、W相に対応した出力パターンとしてLLH、LHH、LHL、LHL、HHL、HLLを順次繰り返し出力する。
FIG. 4 is a diagram showing output patterns of the position detection Hall IC and the origin learning Hall IC. The number of poles of the magnet 15 shown in FIG. 2 is “8”, the number of slots of the stator 13 is “9”, and the rotor 11 shows the case where the number of poles is “8”.
As shown in FIG. 4, when the rotor 11 is rotated forward, V → U, W → U, W → V, U → V, U, and U windings of the stator 13 for the U-phase, V-phase, and W-phase windings. Repeated energization in order of → W, V → W. In this case, the position detection Hall ICs 17a-1 to 17a-3 are arranged to output HLH, HLL, HHL, LHL, LHH, LLH as output patterns corresponding to the U phase, V phase, and W phase while the rotor 11 makes one rotation. Are sequentially output.
On the other hand, when the rotor 11 is rotated in the reverse direction, W → V, W → U, V → U, V → W, U → W, U for the U-phase, V-phase, and W-phase windings of the stator 13. → Repeat the energization in the order of V. Also in this case, the position detection Hall ICs 17a-1 to 17a-3 have the LLH, LHH, LHL, LHL, HHL, and the like output patterns corresponding to the U phase, V phase, and W phase while the rotor 11 rotates once. HLL is repeatedly output sequentially.
 図4に示すように、位置検出用ホールIC17a-1~17a-3の出力パターンは、ロータ11が1回転する間に同じパターンが繰り返し出力される。このため、位置検出用ホールIC17a-1~17a-3の出力パターンだけでは、モータシャフト10の軸方向の任意位置を正確に検知できない。
 そこで、この発明に係るブラシレスモータ装置1では、位置検出用磁極部15aの1つをマグネット15の外周方向に延設した原点学習用磁極部15bを設け、モータシャフト10がロッド20の端面の近傍から当接するまでの位置で、原点学習用ホールIC17bにより原点学習用磁極部15bの磁束が検出されるように構成している。
As shown in FIG. 4, the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are repeatedly output while the rotor 11 rotates once. Therefore, the arbitrary position in the axial direction of the motor shaft 10 cannot be accurately detected only by the output patterns of the position detection Hall ICs 17a-1 to 17a-3.
Therefore, in the brushless motor device 1 according to the present invention, the origin learning magnetic pole portion 15b in which one of the position detecting magnetic pole portions 15a extends in the outer peripheral direction of the magnet 15 is provided, and the motor shaft 10 is in the vicinity of the end face of the rod 20. The magnetic flux of the origin learning magnetic pole portion 15b is detected by the origin learning hall IC 17b at a position from the contact point to the contact point.
 例えば、モータシャフト10がロッド20の端面の近傍から当接するまでの位置では、原点学習用ホールIC17bが、原点学習用磁極部15b上にあり、その磁束を検出してHレベルの信号を出力する。
 位置検出用ホールIC17a-1~17a-3は、マグネット15上でそれぞれ所定の角度ごとに配置されるので、ロータ11を所定の回転角度ごとに回転させたときに、原点学習用ホールIC17bが原点学習用磁極部15b上に位置するタイミングで、位置検出用ホールIC17a-1~17a-3の出力パターンが、図4に示した(1)~(5)の出力パターンで順次切り替わり、(1)~(5)の組み合わせパターンのいずれかで出力が変化しなくなると、モータシャフト10がロッド20に当接したことを特定できる。
 モータシャフト10がロッド20の端面の近傍にない位置では、原点学習用ホールIC17bの出力がLレベルであって、位置検出用ホールIC17a-1~17a-3の出力パターンと原点学習用ホールIC17bの出力パターンとの組み合わせパターンは、図4に示す(1)~(5)以外のパターンとなる。
For example, at a position until the motor shaft 10 contacts from the vicinity of the end face of the rod 20, the origin learning Hall IC 17b is on the origin learning magnetic pole portion 15b, and detects the magnetic flux and outputs an H level signal. .
Since the position detection Hall ICs 17a-1 to 17a-3 are arranged at predetermined angles on the magnet 15, when the rotor 11 is rotated at predetermined rotation angles, the origin learning Hall IC 17b becomes the origin. At the timing of positioning on the learning magnetic pole portion 15b, the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are sequentially switched by the output patterns (1) to (5) shown in FIG. When the output does not change in any one of the combination patterns (5) to (5), it can be specified that the motor shaft 10 is in contact with the rod 20.
At a position where the motor shaft 10 is not in the vicinity of the end face of the rod 20, the output of the origin learning Hall IC 17b is L level, and the output patterns of the position detection Hall ICs 17a-1 to 17a-3 and the origin learning Hall IC 17b The combination pattern with the output pattern is a pattern other than (1) to (5) shown in FIG.
 また、原点学習処理では、モータシャフト10が当接した際にロッド20を動かさないように、ロッド20に当接すると、モータシャフト10の軸方向の移動が止まり、ロータ11の回転も止まる駆動デューティ比で駆動させる。
 従って、原点学習用ホールIC17bと位置検出用ホールIC17a-1~17a-3の出力が、図4に示す(1)~(5)のいずれかであって、位置検出用ホールIC17a-1~17a-3の出力パターンが順次切り替わらない場合には、モータシャフト10がロッド20に当接してその移動が止まっていると判断することができ、この位置をモータシャフト10の原点位置として学習する。
Further, in the origin learning process, when the motor shaft 10 contacts the rod 20 so that the rod 20 does not move, when the motor shaft 10 contacts the rod 20, the axial movement of the motor shaft 10 stops and the rotation of the rotor 11 stops. Drive in ratio.
Accordingly, the outputs of the origin learning Hall IC 17b and the position detection Hall ICs 17a-1 to 17a-3 are any one of (1) to (5) shown in FIG. 4, and the position detection Hall ICs 17a-1 to 17a are shown in FIG. If the output pattern of −3 does not switch sequentially, it can be determined that the motor shaft 10 has come into contact with the rod 20 and stopped moving, and this position is learned as the origin position of the motor shaft 10.
 図5は、実施の形態1に係るブラシレスモータ装置を利用したEGRバルブの構造を示す図である。実施の形態1に係るブラシレスモータ装置1は、例えば、図5に示すようなEGRバルブ装置のアクチュエータとして利用される。ここでは、図1で示した被駆動部材がバルブ機構2に相当する。バルブ機構2には、図1で示したロッドに相当するバルブシャフト20が設けられ、ブラシレスモータ装置1のモータシャフト10と同軸になるように配置される。なお、ブラシレスモータ装置1は、ロータ11が1回転する間のモータシャフト10の移動距離よりもモータシャフト10の端面とバルブシャフト20の端面との距離Aが短くなるように、バルブ機構2のハウジング21に組み付けられる。 FIG. 5 is a diagram showing a structure of an EGR valve using the brushless motor device according to the first embodiment. The brushless motor device 1 according to Embodiment 1 is used as an actuator of an EGR valve device as shown in FIG. 5, for example. Here, the driven member shown in FIG. 1 corresponds to the valve mechanism 2. The valve mechanism 2 is provided with a valve shaft 20 corresponding to the rod shown in FIG. 1 and arranged so as to be coaxial with the motor shaft 10 of the brushless motor device 1. Note that the brushless motor apparatus 1 includes a housing of the valve mechanism 2 such that the distance A between the end surface of the motor shaft 10 and the end surface of the valve shaft 20 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11. 21 is assembled.
 バルブシャフト20には、弁体22aが固着されており、リターンスプリング23によって弁体22aが弁座22bに着座する方向(閉じる方向)に付勢される。また、バルブシャフト20は、一端にモータシャフト10が当接することで軸方向に移動可能である。
 ただし、原点学習処理では、モータシャフト10がバルブシャフト20に当接しても、リターンスプリング23からの反力で、モータシャフト10の軸方向の移動が止まって、ロータ11の回転も止まるように駆動させる。
A valve body 22a is fixed to the valve shaft 20, and the return spring 23 biases the valve body 22a in a direction (closed direction) in which the valve body 22a is seated on the valve seat 22b. Further, the valve shaft 20 is movable in the axial direction when the motor shaft 10 contacts one end.
However, in the origin learning process, even if the motor shaft 10 contacts the valve shaft 20, the reaction force from the return spring 23 stops the axial movement of the motor shaft 10 and the rotation of the rotor 11 is stopped. Let
 次に動作について説明する。
 図6は、実施の形態1に係るブラシレスモータ装置による原点学習処理を示すフローチャートであり、図5のEGRバルブ装置においてエンジンキーオン時(電源オン)に原点学習を開始する場合を示している。
 ブラシレスモータ装置1へ電力供給が開始(電源オン)されると(ステップST1)、制御部31は、モータシャフト10の軸方向の原点位置を学習する処理に移行する。
 まず、制御部31は、所定の移動量ごとにモータシャフト10を押し出す制御信号を駆動回路32に出力する。駆動回路32は、制御部31の制御信号に従って、所定の移動量ごとにモータシャフト10を押し出す(ステップST2)。
 制御部31は、モータシャフト10を所定の移動量だけ押し出すごとに、I/F30を介して入力した原点学習用ホールIC17bの出力パターン(a)と、位置検出用ホールIC17a-1~17a-3の出力パターン(b)とを照合する(ステップST3)。
Next, the operation will be described.
FIG. 6 is a flowchart showing origin learning processing by the brushless motor device according to the first embodiment, and shows a case where origin learning is started when the engine key is turned on (power on) in the EGR valve device of FIG.
When power supply to the brushless motor apparatus 1 is started (power is turned on) (step ST1), the control unit 31 proceeds to a process of learning the origin position of the motor shaft 10 in the axial direction.
First, the control unit 31 outputs a control signal for pushing out the motor shaft 10 for each predetermined movement amount to the drive circuit 32. The drive circuit 32 pushes out the motor shaft 10 for each predetermined movement amount according to the control signal of the control unit 31 (step ST2).
Each time the controller 31 pushes the motor shaft 10 by a predetermined amount of movement, the output pattern (a) of the origin learning Hall IC 17b input via the I / F 30 and the position detection Hall ICs 17a-1 to 17a-3 The output pattern (b) is collated (step ST3).
 ここで、出力パターン(a)と(b)が、図4に示した組み合わせパターン(1)~(5)のいずれかであって、かつ、モータシャフト10を押し出す駆動制御を行っても位置検出用ホールIC17a-1~17a-3の出力パターンが変化しない(出力パターンが順次切り替わらない)場合(ステップST4-1)、制御部31は、モータシャフト10がバルブシャフト20に当接してその移動が止まった状態(ロータ11の回転が止まった状態)であると判断し、モータシャフト10の現在位置を原点位置として学習する(ステップST5)。
 このように、この発明では、従来のように、モータシャフト10をストッパ11aまで引き込んでからバルブシャフト20まで押し出す必要がなく、原点学習時のモータシャフト10のストローク量を大幅に削減できる。このため、駆動原点の学習時間を格段に短縮できる。
Here, the output patterns (a) and (b) are any one of the combination patterns (1) to (5) shown in FIG. 4, and the position detection is performed even if drive control for pushing the motor shaft 10 is performed. When the output patterns of the hall ICs 17a-1 to 17a-3 do not change (the output patterns do not switch sequentially) (step ST4-1), the control unit 31 causes the motor shaft 10 to abut against the valve shaft 20 to move the motor shaft. It is determined that it is in a stopped state (a state in which the rotation of the rotor 11 is stopped), and the current position of the motor shaft 10 is learned as the origin position (step ST5).
Thus, according to the present invention, it is not necessary to pull the motor shaft 10 to the stopper 11a and then push it to the valve shaft 20 as in the prior art, and the stroke amount of the motor shaft 10 at the time of learning the origin can be greatly reduced. For this reason, the learning time of the drive origin can be remarkably shortened.
 出力パターン(a)と(b)が、図4に示した組み合わせパターン(1)~(5)以外であり、かつ、モータシャフト10を押し出す駆動制御を行っても位置検出用ホールIC17a-1~17a-3の出力パターンが変化しない場合(ステップST4-2)、制御部31は、弁座22bに溜まったデポジットやバルブシャフト20の摩耗などによって、バルブシャフト20の上端面の位置が開弁方向(モータシャフト10の押し出し方向)にずれている可能性があると判断する。
 すなわち、モータシャフト10の端面からバルブシャフト20の端面までが距離A+αとなるので、原点学習用ホールIC17bが原点学習用磁極部15b上にあるタイミング(原点学習用ホールIC17bの出力がHレベル)では、モータシャフト10がバルブシャフト20に当接せず、さらにモータシャフト10が押し出され、原点学習用ホールIC17bが原点学習用磁極部15b上にないタイミングで、モータシャフト10がバルブシャフト20に当接している状態と考えられる。
The output patterns (a) and (b) are other than the combination patterns (1) to (5) shown in FIG. 4, and even if the drive control for pushing the motor shaft 10 is performed, the position detection Hall IC 17a-1 to When the output pattern of 17a-3 does not change (step ST4-2), the control unit 31 determines that the position of the upper end surface of the valve shaft 20 is in the valve opening direction due to deposits accumulated in the valve seat 22b or wear of the valve shaft 20. It is determined that there is a possibility that the motor shaft 10 is displaced in the pushing direction.
That is, since the distance A + α is from the end surface of the motor shaft 10 to the end surface of the valve shaft 20, at the timing when the origin learning Hall IC 17b is on the origin learning magnetic pole portion 15b (the output of the origin learning Hall IC 17b is H level). The motor shaft 10 does not contact the valve shaft 20 and is further pushed out, and the motor shaft 10 contacts the valve shaft 20 at a timing when the origin learning Hall IC 17b is not on the origin learning magnetic pole portion 15b. It is thought that it is in a state.
 上記照合結果であると、制御部31は、モータシャフト10がバルブシャフト20に当接した位置、すなわち、位置検出用ホールIC17a-1~17a-3の出力パターンが変化しなくなった位置から、モータシャフト10を上記所定の移動量ごとに引き込んで、原点学習用ホールIC17bの出力がHレベルになるまで、位置検出用ホールIC17a-1~17a-3の出力パターンが切り替わるごとにカウント(ステップST6)して、カウント値が規定値未満であるか否かを判定する(ステップST7)。
 ここでは、モータシャフト10がバルブシャフト20に当接した位置をカウント値0とし、モータシャフト10の引き込み方向の移動に伴い、位置検出用ホールIC17a-1~17a-3の出力パターンが、図4に示したLLH→LHH→LHL→・・・と順次切り替わるごとにカウント値をカウントアップする。
 なお、規定値は、モータシャフト10の下端面からバルブシャフト20の上端面までを距離Aとしたときに、弁座22bに溜まったデポジットなどによってバルブシャフト20が開弁方向にずれてもよい許容量(モータシャフト10とバルブシャフト20との距離が離れてもよい許容量)を示す値である。
 例えば、位置検出用ホールIC17a-1~17a-3の出力パターンが切り替わる際のロータ11の回転角度に対するモータシャフト10の移動量は既知であるので、許容量を、位置検出用ホールIC17a-1~17a-3の出力パターンの切り替わりカウント数で表したものが上記規定値である。
As a result of the collation, the control unit 31 starts from the position where the motor shaft 10 contacts the valve shaft 20, that is, the position where the output patterns of the position detection Hall ICs 17a-1 to 17a-3 no longer change. The shaft 10 is pulled in every predetermined amount of movement, and counts each time the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are switched until the output of the origin learning Hall IC 17b becomes H level (Step ST6). Then, it is determined whether or not the count value is less than the specified value (step ST7).
Here, the position where the motor shaft 10 abuts on the valve shaft 20 is set to a count value 0, and the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are shown in FIG. The count value is incremented each time the LLH → LHH → LHL →.
The specified value is that the valve shaft 20 may be displaced in the valve opening direction due to deposits accumulated in the valve seat 22b when the distance A from the lower end surface of the motor shaft 10 to the upper end surface of the valve shaft 20 is set as the distance A. It is a value indicating the capacity (allowable amount at which the distance between the motor shaft 10 and the valve shaft 20 may be separated).
For example, since the movement amount of the motor shaft 10 with respect to the rotation angle of the rotor 11 when the output patterns of the position detection Hall ICs 17a-1 to 17a-3 are switched is known, the allowable amount is set to the position detection Hall ICs 17a-1 to 17a-1. The specified value is represented by the output pattern switching count of 17a-3.
 カウント値が規定値未満であると(ステップST7;YES)、制御部31は、バルブシャフト20の開弁方向の位置ずれが許容量であると判断し、モータシャフト10を再び押し出してバルブシャフト20に当接させた位置を、原点位置として学習する(ステップST5)。
 また、カウント値が規定値以上である場合(ステップST7;NO),制御部31は、バルブシャフト20の開弁方向の位置ずれが許容量を超えており、弁座22bに溜まったデポジットなどによって弁体22aが固着(バルブ開弁固着)していると判定する(ステップST8)。
If the count value is less than the specified value (step ST7; YES), the control unit 31 determines that the positional deviation in the valve opening direction of the valve shaft 20 is an allowable amount, pushes out the motor shaft 10 again, and the valve shaft 20 Is learned as the origin position (step ST5).
Further, when the count value is equal to or greater than the specified value (step ST7; NO), the control unit 31 indicates that the position deviation in the valve opening direction of the valve shaft 20 exceeds the allowable amount, and deposits accumulated on the valve seat 22b It is determined that the valve body 22a is stuck (valve valve is stuck) (step ST8).
 一方、出力パターン(a)と(b)が、図4に示した組み合わせパターン(1)~(5)以外であり、かつ、位置検出用ホールIC17a-1~17a-3の出力パターンが変化する(出力パターンが順次切り替わる)場合(ステップST4-3)、制御部31は、モータシャフト10がバルブシャフト20の近傍まで到達していないと判断し、ステップST2に戻って、所定の移動量でモータシャフト10を押し出させる。
 なお、ロータ11の雌ねじが摩耗して、ロータ11が回転してもモータシャフト10が移動しない場合においても、上記と同様の照合結果が得られる。そこで、ステップST2からの処理を所定の回数だけ実施しても、上記照合結果が得られた場合には異常であると判定する。
On the other hand, the output patterns (a) and (b) are other than the combination patterns (1) to (5) shown in FIG. 4, and the output patterns of the position detection Hall ICs 17a-1 to 17a-3 change. When (the output pattern is sequentially switched) (step ST4-3), the control unit 31 determines that the motor shaft 10 has not reached the vicinity of the valve shaft 20, returns to step ST2, and moves the motor with a predetermined movement amount. The shaft 10 is pushed out.
Even when the internal thread of the rotor 11 is worn and the motor shaft 10 does not move even if the rotor 11 rotates, the same collation result as above can be obtained. Therefore, even if the process from step ST2 is performed a predetermined number of times, it is determined to be abnormal if the collation result is obtained.
 以上のように、この実施の形態1によれば、ロータ11の回転位置を検出する位置検出用ホールIC17a-1~17a-3と、ロータ11が1回転する間の所定の回転位置を検出する原点学習用ホールIC17bと、ロータ11が1回転する間の所定の回転位置におけるモータシャフト10の移動位置でロッド20に当接するように当該ブラシレスモータ装置1が被駆動部材2に組み付けられていることを条件として、モータシャフト10を所定量ごとに移動させたときにロータ11の回転に伴って切り替わる位置検出用ホールIC17a-1~17a-3の出力パターンおよび原点学習用ホールIC17bの出力パターンから、モータシャフト10がロッド20に当接してロータ11の回転が規制された位置を判別し、この位置を原点位置として学習する制御部31とを備える。このように構成することで、従来のように、モータシャフト10をストッパ11aまで引き込んでからバルブシャフト20まで押し出す必要がなく、原点学習時のモータシャフト10のストローク量を大幅に削減できる。これにより、駆動原点の学習時間を格段に短縮することができる。また、ストッパ11aによる機械的なモータシャフト10の移動規制を行う必要がないので、ストッパ11aの摩耗による原点学習の仮開始位置のずれが発生することがなく、原点学習処理を安定して行うことができる。 As described above, according to the first embodiment, the position detection Hall ICs 17a-1 to 17a-3 for detecting the rotation position of the rotor 11 and the predetermined rotation position during one rotation of the rotor 11 are detected. The brushless motor device 1 is assembled to the driven member 2 so as to come into contact with the rod 20 at the movement position of the motor shaft 10 at a predetermined rotational position while the rotor 11 makes one rotation with the origin learning Hall IC 17b. From the output patterns of the position detection Hall ICs 17a-1 to 17a-3 and the output pattern of the origin learning Hall IC 17b, which are switched with the rotation of the rotor 11 when the motor shaft 10 is moved by a predetermined amount. The position where the motor shaft 10 abuts on the rod 20 and the rotation of the rotor 11 is restricted is determined, and this position is the origin. And a control unit 31 for learning as location. With this configuration, there is no need to pull the motor shaft 10 to the stopper 11a and then push it to the valve shaft 20 as in the prior art, and the stroke amount of the motor shaft 10 during origin learning can be greatly reduced. Thereby, the learning time of the drive origin can be significantly shortened. In addition, since it is not necessary to restrict the movement of the motor shaft 10 mechanically by the stopper 11a, the origin learning temporary start position is not shifted due to wear of the stopper 11a, and the origin learning process is stably performed. Can do.
 また、この実施の形態1によれば、ロータ11の回転軸に直交する面に設けられ、ロータ11の回転軸まわりに異なる磁極を交互に配置してなるマグネット15と、位置検出用磁極部15aの隣り合った磁極対の1つを外縁方向に延設してなる原点学習用磁極部15bとを有する円盤状のマグネット15を備え、位置検出用ホールIC17aが、位置検出用磁極部15aに対向して配置され、ロータ11とともに回転するマグネット15の位置検出用磁極部15aの磁束を検出して、その磁極に対応したロータの回転位置を示す信号を出力し、原点学習用ホールIC17bが、位置検出用ホールIC17aと同一面上に当該位置検出用ホールIC17aとはピッチ径違いで配置され、ロータ11とともに回転するマグネット15の原点学習用磁極部15bの磁束のみを検出して、その磁極に対応したロータ11が1回転する間の所定の回転位置を示す信号を出力する。このように位置検出用ホールIC17aと原点学習用ホールIC17bを同一平面上に設置することで、同一のプリント基板16上に実装可能となるため、容易に製造できる。 Further, according to the first embodiment, the magnet 15 provided on the surface orthogonal to the rotation axis of the rotor 11 and having different magnetic poles alternately arranged around the rotation axis of the rotor 11 and the position detection magnetic pole portion 15a. A disc-shaped magnet 15 having an origin learning magnetic pole portion 15b formed by extending one of the adjacent magnetic pole pairs in the outer edge direction, and the position detection Hall IC 17a faces the position detection magnetic pole portion 15a. The position detection magnetic pole portion 15a of the magnet 15 rotating together with the rotor 11 is detected, and a signal indicating the rotation position of the rotor corresponding to the magnetic pole is output. Learning the origin of the magnet 15 which is arranged on the same plane as the detection Hall IC 17a with a pitch diameter different from that of the position detection Hall IC 17a and rotates together with the rotor 11. By detecting only the magnetic flux of the magnetic pole portion 15b, a rotor 11 corresponding to the magnetic pole output a signal indicating a predetermined rotational position between one rotation. Since the position detection Hall IC 17a and the origin learning Hall IC 17b are installed on the same plane as described above, they can be mounted on the same printed circuit board 16 and can be easily manufactured.
 さらに、この実施の形態1によれば、ロータ11が1回転する間のモータシャフト10の移動距離よりもモータシャフト10とロッド11との距離が短く、かつ、原点学習用ホールIC17bが原点学習用磁極部15bに対向した位置にくるタイミングで、モータシャフト10がロッド20の近傍から当接するまでの位置に移動する。このように構成することで、原点学習に必要なモータシャフト10の移動ストローク量を低減でき、原点学習に要する時間を短縮化することが可能となる。 Furthermore, according to the first embodiment, the distance between the motor shaft 10 and the rod 11 is shorter than the moving distance of the motor shaft 10 during one rotation of the rotor 11, and the origin learning Hall IC 17b is used for origin learning. The motor shaft 10 moves from the vicinity of the rod 20 to a position until it abuts at a timing when the motor shaft 10 comes to a position facing the magnetic pole portion 15b. With this configuration, the amount of movement stroke of the motor shaft 10 necessary for origin learning can be reduced, and the time required for origin learning can be shortened.
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 この発明に係るブラシレスモータ装置は、モータシャフトを駆動させる原点位置の学習に必要な時間を短縮することができるので、車両のEGRバルブ装置などのアクチュエータに好適である。 The brushless motor device according to the present invention is suitable for an actuator such as an EGR valve device of a vehicle because the time required for learning the origin position for driving the motor shaft can be shortened.
 1 ブラシレスモータ装置、2 被駆動部材(バルブ機構)、3 モータ制御装置、10 モータシャフト、11 ロータ、12 ケース、13 ステータ、14 ベアリング、15 マグネット、15a 位置検出用磁極部、15b 原点学習用磁極部、16 プリント基板、17a,17a-1~17a-3 位置検出用ホールIC、17b 原点学習用ホールIC、20 ロッド(バルブシャフト)、21 ハウジング、22a 弁体、22b 弁座、23 リターンスプリング、30 インタフェース(I/F)、31 制御部、32 駆動回路。 1 brushless motor device, 2 driven member (valve mechanism), 3 motor control device, 10 motor shaft, 11 rotor, 12 case, 13 stator, 14 bearing, 15 magnet, 15a position detection magnetic pole, 15b origin learning magnetic pole Part, 16 printed circuit board, 17a, 17a-1 to 17a-3 position detection Hall IC, 17b origin learning Hall IC, 20 rod (valve shaft), 21 housing, 22a valve body, 22b valve seat, 23 return spring, 30 interface (I / F), 31 control unit, 32 drive circuit.

Claims (5)

  1.  ロータの回転に伴ってモータシャフトが軸方向に移動し、前記モータシャフトと同軸に配置された被駆動部材のロッドを駆動させるブラシレスモータ装置において、
     前記ロータの回転位置を検出する位置検出用センサ部と、
     前記ロータが1回転する間の所定の回転位置を検出する原点学習用センサ部と、
     前記ロータが1回転する間の所定の回転位置における前記モータシャフトの移動位置で前記ロッドに当接するように当該ブラシレスモータ装置が前記被駆動部材に組み付けられていることを条件として、前記モータシャフトを所定量ごとに移動させたときに前記ロータの回転に伴って切り替わる前記位置検出用センサ部の出力パターンおよび前記原点学習用センサ部の出力パターンから、前記モータシャフトが前記ロッドに当接して前記ロータの回転が規制された位置を判別し、この位置を原点位置として学習する制御部とを備えることを特徴とするブラシレスモータ装置。
    In the brushless motor device for driving the rod of the driven member arranged coaxially with the motor shaft, the motor shaft moves in the axial direction as the rotor rotates.
    A position detecting sensor for detecting the rotational position of the rotor;
    An origin learning sensor unit for detecting a predetermined rotational position during one rotation of the rotor;
    The motor shaft is mounted on the condition that the brushless motor device is assembled to the driven member so as to come into contact with the rod at a moving position of the motor shaft at a predetermined rotational position during one rotation of the rotor. From the output pattern of the position detection sensor unit and the output pattern of the origin learning sensor unit, which is switched with the rotation of the rotor when moved by a predetermined amount, the motor shaft comes into contact with the rod and the rotor A brushless motor device comprising: a control unit that determines a position where rotation of the motor is restricted and learns the position as an origin position.
  2.  前記ロータの回転軸に直交する面に設けられ、前記ロータの回転軸まわりに異なる磁極を交互に配置してなる位置検出用磁極部と、前記位置検出用磁極部の隣り合った磁極対の1つを外縁方向に延設してなる原点学習用磁極部とを有する円盤状のマグネットを備え、
     前記位置検出用センサ部は、
     前記位置検出用磁極部に対向して配置され、前記ロータとともに回転する前記マグネットの前記位置検出用磁極部の磁束を検出して、その磁極に対応した前記ロータの回転位置を示す信号を出力し、
     前記原点学習用センサ部は、
     前記位置検出用センサ部と同一面上に当該位置検出用センサ部とはピッチ径違いで配置され、前記ロータとともに回転する前記マグネットの前記原点学習用磁極部の磁束のみを検出して、その磁極に対応した前記ロータが1回転する間の所定の回転位置を示す信号を出力することを特徴とする請求項1記載のブラシレスモータ装置。
    A position detection magnetic pole portion provided on a surface orthogonal to the rotation axis of the rotor and formed by alternately arranging different magnetic poles around the rotation axis of the rotor, and one of the adjacent magnetic pole pairs of the position detection magnetic pole portion A disk-shaped magnet having an origin learning magnetic pole portion formed by extending one in the outer edge direction,
    The sensor unit for position detection is
    Detecting the magnetic flux of the position detection magnetic pole portion of the magnet, which is disposed opposite to the position detection magnetic pole portion and rotates together with the rotor, and outputs a signal indicating the rotation position of the rotor corresponding to the magnetic pole. ,
    The origin learning sensor unit is
    The position detection sensor unit is disposed on the same plane as the position detection sensor unit with a different pitch diameter, and detects only the magnetic flux of the origin learning magnetic pole unit of the magnet that rotates together with the rotor. 2. The brushless motor device according to claim 1, wherein a signal indicating a predetermined rotational position is output while the rotor corresponding to 1 rotates once.
  3.  前記ロータが1回転する間の前記モータシャフトの移動距離よりも前記モータシャフトと前記ロッドとの距離が短く、かつ、前記原点学習用センサ部が前記原点学習用磁極部に対向した位置にくるタイミングで、前記モータシャフトが前記ロッドの近傍から当接するまでの位置に移動することを特徴とする請求項2記載のブラシレスモータ装置。 Timing at which the distance between the motor shaft and the rod is shorter than the moving distance of the motor shaft during one rotation of the rotor, and the origin learning sensor unit comes to a position facing the origin learning magnetic pole unit The brushless motor device according to claim 2, wherein the motor shaft moves to a position from the vicinity of the rod to contact.
  4.  請求項1記載のブラシレスモータ装置の駆動を制御するモータ制御装置において、
     前記ロータが1回転する間の所定の回転位置における前記モータシャフトの移動位置で前記ロッドに当接するように当該ブラシレスモータ装置が前記被駆動部材に組み付けられていることを条件として、前記モータシャフトを所定量ごとに移動させたときに前記ロータの回転に伴って切り替わる前記位置検出用センサ部の出力パターンおよび前記原点学習用センサ部の出力パターンから、前記モータシャフトが前記ロッドに当接して前記ロータの回転が規制された位置を判別し、この位置を原点位置として学習する制御部を備えることを特徴とするモータ制御装置。
    In the motor control device which controls the drive of the brushless motor device according to claim 1,
    The motor shaft is mounted on the condition that the brushless motor device is assembled to the driven member so as to come into contact with the rod at a moving position of the motor shaft at a predetermined rotational position during one rotation of the rotor. From the output pattern of the position detection sensor unit and the output pattern of the origin learning sensor unit, which is switched with the rotation of the rotor when moved by a predetermined amount, the motor shaft comes into contact with the rod and the rotor A motor control device comprising: a control unit that discriminates a position where rotation of the motor is restricted and learns the position as an origin position.
  5.  請求項1記載のブラシレスモータ装置の原点学習方法において、
     前記ロータが1回転する間の所定の回転位置における前記モータシャフトの移動位置で前記ロッドに当接するように当該ブラシレスモータ装置が前記被駆動部材に組み付けられていることを条件として、前記モータシャフトを所定量ごとに移動させたときに前記ロータの回転に伴って切り替わる前記位置検出用センサ部の出力パターンおよび前記原点学習用センサ部の出力パターンから、前記モータシャフトが前記ロッドに当接して前記ロータの回転が規制された位置を判別し、この位置を原点位置として学習することを特徴とする原点学習方法。
    In the origin learning method of the brushless motor device according to claim 1,
    The motor shaft is mounted on the condition that the brushless motor device is assembled to the driven member so as to come into contact with the rod at a moving position of the motor shaft at a predetermined rotational position during one rotation of the rotor. From the output pattern of the position detection sensor unit and the output pattern of the origin learning sensor unit, which is switched with the rotation of the rotor when moved by a predetermined amount, the motor shaft comes into contact with the rod and the rotor An origin learning method characterized by discriminating a position where rotation of the lens is restricted and learning this position as an origin position.
PCT/JP2011/007219 2011-12-22 2011-12-22 Brushless motor device, motor control device, and origin learning method WO2013093983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007219 WO2013093983A1 (en) 2011-12-22 2011-12-22 Brushless motor device, motor control device, and origin learning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007219 WO2013093983A1 (en) 2011-12-22 2011-12-22 Brushless motor device, motor control device, and origin learning method

Publications (1)

Publication Number Publication Date
WO2013093983A1 true WO2013093983A1 (en) 2013-06-27

Family

ID=48667915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007219 WO2013093983A1 (en) 2011-12-22 2011-12-22 Brushless motor device, motor control device, and origin learning method

Country Status (1)

Country Link
WO (1) WO2013093983A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023348A1 (en) * 1995-01-27 1996-08-01 Kabushiki Kaisha Yaskawa Denki Method for starting permanent magnet synchronous motor with rotational position detector, and motor controller
WO2007148480A1 (en) * 2006-06-23 2007-12-27 Mitsubishi Electric Corporation Brushless motor unit
JP2010276417A (en) * 2009-05-27 2010-12-09 Nidec Sankyo Corp Disconnection detecting device and disconnection detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023348A1 (en) * 1995-01-27 1996-08-01 Kabushiki Kaisha Yaskawa Denki Method for starting permanent magnet synchronous motor with rotational position detector, and motor controller
WO2007148480A1 (en) * 2006-06-23 2007-12-27 Mitsubishi Electric Corporation Brushless motor unit
JP2010276417A (en) * 2009-05-27 2010-12-09 Nidec Sankyo Corp Disconnection detecting device and disconnection detecting method

Similar Documents

Publication Publication Date Title
JP4987119B2 (en) Brushless motor device and control device
JP6101511B2 (en) Stepping motor and electric valve using the same
US9417617B2 (en) Control apparatus and shift-by-wire system having the same
US20060138880A1 (en) Position detecting apparatus having electric motor and method for detecting position
CN109075728B (en) Shift gear control device
JP4397352B2 (en) Vehicle control system
US20080297081A1 (en) Brushless motor driving apparatus
JP6351834B2 (en) Actuator control device, actuator, valve drive device, and actuator abnormality detection method
WO2010128538A1 (en) Motor controller
US7173392B2 (en) Switching controller and method for controlling switching position
JP6658416B2 (en) Shift range control device
JP2017227307A (en) Shift range switching device
US9325275B2 (en) Control apparatus and shift-by-wire system using the same
US8421396B2 (en) Motor controlling device
US11448316B2 (en) Shift range control apparatus
CN111512074B (en) Shift gear control device
WO2013093983A1 (en) Brushless motor device, motor control device, and origin learning method
JP5472044B2 (en) Motor control device
CN112368933A (en) Shift gear control device
JP5418889B2 (en) Motor control device and EGR valve control device
JP2004129450A (en) Motor controller
CN114342246A (en) Method for controlling a motor unit and motor unit for carrying out such a method
JP2005299466A (en) Valve lift adjusting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP