WO2013093921A1 - Fibres de polymère synthétique enrobées de collagène - Google Patents
Fibres de polymère synthétique enrobées de collagène Download PDFInfo
- Publication number
- WO2013093921A1 WO2013093921A1 PCT/IL2012/050543 IL2012050543W WO2013093921A1 WO 2013093921 A1 WO2013093921 A1 WO 2013093921A1 IL 2012050543 W IL2012050543 W IL 2012050543W WO 2013093921 A1 WO2013093921 A1 WO 2013093921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collagen
- fiber
- fibers
- synthetic polymer
- isolated
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 182
- 108010035532 Collagen Proteins 0.000 title claims abstract description 138
- 102000008186 Collagen Human genes 0.000 title claims abstract description 138
- 229920001436 collagen Polymers 0.000 title claims abstract description 138
- 229920001059 synthetic polymer Polymers 0.000 title claims abstract description 37
- 229920002678 cellulose Polymers 0.000 claims abstract description 24
- 239000001913 cellulose Substances 0.000 claims abstract description 24
- 239000002159 nanocrystal Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 84
- 210000004027 cell Anatomy 0.000 claims description 46
- 239000008273 gelatin Substances 0.000 claims description 37
- 229920000159 gelatin Polymers 0.000 claims description 37
- 108010010803 Gelatin Proteins 0.000 claims description 35
- 235000019322 gelatine Nutrition 0.000 claims description 35
- 235000011852 gelatine desserts Nutrition 0.000 claims description 35
- -1 poly(vinyl phenol) Polymers 0.000 claims description 33
- 239000010410 layer Substances 0.000 claims description 24
- 230000008439 repair process Effects 0.000 claims description 20
- 102000004190 Enzymes Human genes 0.000 claims description 17
- 108090000790 Enzymes Proteins 0.000 claims description 17
- 206010019909 Hernia Diseases 0.000 claims description 14
- 229920001610 polycaprolactone Polymers 0.000 claims description 14
- 239000004632 polycaprolactone Substances 0.000 claims description 14
- 229920000954 Polyglycolide Polymers 0.000 claims description 12
- 239000012867 bioactive agent Substances 0.000 claims description 11
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 11
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 11
- 239000004744 fabric Substances 0.000 claims description 10
- 229920001184 polypeptide Polymers 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 210000000130 stem cell Anatomy 0.000 claims description 9
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 7
- 238000004132 cross linking Methods 0.000 claims description 7
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 7
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 206010046830 Uterovaginal prolapse Diseases 0.000 claims description 6
- 229940088710 antibiotic agent Drugs 0.000 claims description 6
- 239000004973 liquid crystal related substance Substances 0.000 claims description 6
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 6
- 239000000622 polydioxanone Substances 0.000 claims description 6
- 229920002223 polystyrene Polymers 0.000 claims description 6
- 239000002246 antineoplastic agent Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 150000004676 glycans Chemical class 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229920001282 polysaccharide Polymers 0.000 claims description 5
- 239000005017 polysaccharide Substances 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 239000012790 adhesive layer Substances 0.000 claims description 4
- 229940035676 analgesics Drugs 0.000 claims description 4
- 239000000730 antalgic agent Substances 0.000 claims description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 4
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 4
- 230000002921 anti-spasmodic effect Effects 0.000 claims description 4
- 229940124575 antispasmodic agent Drugs 0.000 claims description 4
- 239000003102 growth factor Substances 0.000 claims description 4
- 230000002163 immunogen Effects 0.000 claims description 4
- 239000004081 narcotic agent Substances 0.000 claims description 4
- 239000004633 polyglycolic acid Substances 0.000 claims description 4
- 239000004626 polylactic acid Substances 0.000 claims description 4
- 150000003431 steroids Chemical class 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920003232 aliphatic polyester Polymers 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229940035674 anesthetics Drugs 0.000 claims description 3
- 239000003242 anti bacterial agent Substances 0.000 claims description 3
- 230000000844 anti-bacterial effect Effects 0.000 claims description 3
- 230000000843 anti-fungal effect Effects 0.000 claims description 3
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 3
- 230000000118 anti-neoplastic effect Effects 0.000 claims description 3
- 229940121375 antifungal agent Drugs 0.000 claims description 3
- 239000004599 antimicrobial Substances 0.000 claims description 3
- 229940034982 antineoplastic agent Drugs 0.000 claims description 3
- 239000003443 antiviral agent Substances 0.000 claims description 3
- 210000000481 breast Anatomy 0.000 claims description 3
- 229920002301 cellulose acetate Polymers 0.000 claims description 3
- 239000002158 endotoxin Substances 0.000 claims description 3
- 239000003193 general anesthetic agent Substances 0.000 claims description 3
- 229940088597 hormone Drugs 0.000 claims description 3
- 239000005556 hormone Substances 0.000 claims description 3
- 229960003444 immunosuppressant agent Drugs 0.000 claims description 3
- 239000003018 immunosuppressive agent Substances 0.000 claims description 3
- 150000002632 lipids Chemical class 0.000 claims description 3
- 229920006008 lipopolysaccharide Polymers 0.000 claims description 3
- 210000002901 mesenchymal stem cell Anatomy 0.000 claims description 3
- 229940035363 muscle relaxants Drugs 0.000 claims description 3
- 239000003158 myorelaxant agent Substances 0.000 claims description 3
- 210000003903 pelvic floor Anatomy 0.000 claims description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 claims description 3
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 3
- 208000034347 Faecal incontinence Diseases 0.000 claims description 2
- 206010046543 Urinary incontinence Diseases 0.000 claims description 2
- 230000000181 anti-adherent effect Effects 0.000 claims description 2
- 238000013131 cardiovascular procedure Methods 0.000 claims description 2
- 238000002316 cosmetic surgery Methods 0.000 claims description 2
- 230000002485 urinary effect Effects 0.000 claims description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 62
- 210000002381 plasma Anatomy 0.000 description 49
- 241000196324 Embryophyta Species 0.000 description 43
- 210000001519 tissue Anatomy 0.000 description 34
- 239000000243 solution Substances 0.000 description 32
- 239000011248 coating agent Substances 0.000 description 29
- 238000000576 coating method Methods 0.000 description 29
- 239000007943 implant Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 22
- 108010043005 Prolyl Hydroxylases Proteins 0.000 description 21
- 235000010980 cellulose Nutrition 0.000 description 21
- 102000004079 Prolyl Hydroxylases Human genes 0.000 description 20
- 102000035195 Peptidases Human genes 0.000 description 16
- 108091005804 Peptidases Proteins 0.000 description 16
- 239000004365 Protease Substances 0.000 description 16
- 229940088598 enzyme Drugs 0.000 description 16
- 241001465754 Metazoa Species 0.000 description 15
- 108010050808 Procollagen Proteins 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 15
- 239000013078 crystal Substances 0.000 description 14
- 229920001046 Nanocellulose Polymers 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 10
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 238000010899 nucleation Methods 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 239000003292 glue Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000011162 core material Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 235000019419 proteases Nutrition 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000000502 dialysis Methods 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 5
- 102100035199 Procollagen glycosyltransferase Human genes 0.000 description 5
- 101710102040 Procollagen glycosyltransferase Proteins 0.000 description 5
- 208000012287 Prolapse Diseases 0.000 description 5
- 239000012620 biological material Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229960002591 hydroxyproline Drugs 0.000 description 5
- 229920001245 poly(D,L-lactide-co-caprolactone) Polymers 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 238000002166 wet spinning Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 108090000270 Ficain Proteins 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 108010045569 atelocollagen Proteins 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000000578 dry spinning Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001523 electrospinning Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 235000013930 proline Nutrition 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000017423 tissue regeneration Effects 0.000 description 4
- 210000003934 vacuole Anatomy 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 3
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 108090000787 Subtilisin Proteins 0.000 description 3
- 238000005903 acid hydrolysis reaction Methods 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000007605 air drying Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 239000001961 anticonvulsive agent Substances 0.000 description 3
- 229940125715 antihistaminic agent Drugs 0.000 description 3
- 239000000739 antihistaminic agent Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000035557 fibrillogenesis Effects 0.000 description 3
- 235000019836 ficin Nutrition 0.000 description 3
- POTUGHMKJGOKRI-UHFFFAOYSA-N ficin Chemical compound FI=CI=N POTUGHMKJGOKRI-UHFFFAOYSA-N 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000001891 gel spinning Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000009940 knitting Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 210000001724 microfibril Anatomy 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 208000032274 Encephalopathy Diseases 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000150 Sympathomimetic Substances 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229940125681 anticonvulsant agent Drugs 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 239000002327 cardiovascular agent Substances 0.000 description 2
- 229940125692 cardiovascular agent Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 125000001547 cellobiose group Chemical group 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229940125697 hormonal agent Drugs 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000000640 hydroxylating effect Effects 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 108010009355 microbial metalloproteinases Proteins 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000002324 minimally invasive surgery Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000000807 solvent casting Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- LZHUBCULTHIFNO-UHFFFAOYSA-N 2,4-dihydroxy-1,5-bis[4-(2-hydroxyethoxy)phenyl]-2,4-dimethylpentan-3-one Chemical compound C=1C=C(OCCO)C=CC=1CC(C)(O)C(=O)C(O)(C)CC1=CC=C(OCCO)C=C1 LZHUBCULTHIFNO-UHFFFAOYSA-N 0.000 description 1
- 102000008490 2-Oxoglutarate 5-Dioxygenase Procollagen-Lysine Human genes 0.000 description 1
- 108010020504 2-Oxoglutarate 5-Dioxygenase Procollagen-Lysine Proteins 0.000 description 1
- HLXHCNWEVQNNKA-UHFFFAOYSA-N 5-methoxy-2,3-dihydro-1h-inden-2-amine Chemical group COC1=CC=C2CC(N)CC2=C1 HLXHCNWEVQNNKA-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 108010004032 Bromelains Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 108090001069 Chymopapain Proteins 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 101710096389 Collagen alpha chain Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- XIQVNETUBQGFHX-UHFFFAOYSA-N Ditropan Chemical compound C=1C=CC=CC=1C(O)(C(=O)OCC#CCN(CC)CC)C1CCCCC1 XIQVNETUBQGFHX-UHFFFAOYSA-N 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000030902 Galactosyltransferase Human genes 0.000 description 1
- 108060003306 Galactosyltransferase Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- AZKVWQKMDGGDSV-BCMRRPTOSA-N Genipin Chemical compound COC(=O)C1=CO[C@@H](O)[C@@H]2C(CO)=CC[C@H]12 AZKVWQKMDGGDSV-BCMRRPTOSA-N 0.000 description 1
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 1
- 102000000340 Glucosyltransferases Human genes 0.000 description 1
- 108010055629 Glucosyltransferases Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 1
- 101710127797 Macrophage colony-stimulating factor 1 Proteins 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 102000013967 Monokines Human genes 0.000 description 1
- 108010050619 Monokines Proteins 0.000 description 1
- 229940121948 Muscarinic receptor antagonist Drugs 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229940123257 Opioid receptor antagonist Drugs 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 101001091368 Rattus norvegicus Glandular kallikrein-7, submandibular/renal Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101000898773 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharopepsin Proteins 0.000 description 1
- 241000583552 Scleranthus annuus Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 108010013296 Sericins Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 206010066218 Stress Urinary Incontinence Diseases 0.000 description 1
- ISWQCIVKKSOKNN-UHFFFAOYSA-L Tiron Chemical compound [Na+].[Na+].OC1=CC(S([O-])(=O)=O)=CC(S([O-])(=O)=O)=C1O ISWQCIVKKSOKNN-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 206010046814 Uterine prolapse Diseases 0.000 description 1
- 206010046940 Vaginal prolapse Diseases 0.000 description 1
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 210000002934 adrenergic neuron Anatomy 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 230000001022 anti-muscarinic effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940125684 antimigraine agent Drugs 0.000 description 1
- 239000002282 antimigraine agent Substances 0.000 description 1
- 229940125688 antiparkinson agent Drugs 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 description 1
- 235000019835 bromelain Nutrition 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 230000000718 cholinopositive effect Effects 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 229960002976 chymopapain Drugs 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000000942 confocal micrograph Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 210000001608 connective tissue cell Anatomy 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000003218 coronary vasodilator agent Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229960004193 dextropropoxyphene Drugs 0.000 description 1
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000007787 electrohydrodynamic spraying Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 108060002894 fibrillar collagen Proteins 0.000 description 1
- 102000013373 fibrillar collagen Human genes 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 210000000630 fibrocyte Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000576 food coloring agent Substances 0.000 description 1
- 239000000989 food dye Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000004083 gastrointestinal agent Substances 0.000 description 1
- 229940127227 gastrointestinal drug Drugs 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- AZKVWQKMDGGDSV-UHFFFAOYSA-N genipin Natural products COC(=O)C1=COC(O)C2C(CO)=CCC12 AZKVWQKMDGGDSV-UHFFFAOYSA-N 0.000 description 1
- 230000036252 glycation Effects 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 229940094892 gonadotropins Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000002944 hormone and hormone analog Substances 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 229940124541 immunological agent Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 206010023497 kuru Diseases 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 238000012830 laparoscopic surgical procedure Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003149 muscarinic antagonist Substances 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 1
- 229960003086 naltrexone Drugs 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 229960005434 oxybutynin Drugs 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000000734 parasympathomimetic agent Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 229960000482 pethidine Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960002895 phenylbutazone Drugs 0.000 description 1
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003148 prolines Chemical class 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 229940076376 protein agonist Drugs 0.000 description 1
- 229940076372 protein antagonist Drugs 0.000 description 1
- 238000012514 protein characterization Methods 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 210000000513 rotator cuff Anatomy 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000004799 sedative–hypnotic effect Effects 0.000 description 1
- 229920006126 semicrystalline polymer Polymers 0.000 description 1
- 239000012781 shape memory material Substances 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002520 smart material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 208000022170 stress incontinence Diseases 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229940127230 sympathomimetic drug Drugs 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 229940064707 sympathomimetics Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 125000003508 trans-4-hydroxy-L-proline group Chemical group 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 230000001173 tumoral effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/03—Polysaccharides or derivatives thereof
- D06M15/05—Cellulose or derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3834—Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/01—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
- D06M15/15—Proteins or derivatives thereof
Definitions
- the present invention in some embodiments thereof, relates to collagen coated synthetic polymers for tissue repair and regenerative medicine and fabrics comprising same.
- Synthetic biomaterials are generally more biologically inert than natural biomaterials. They have more predictable properties and batch-batch uniformity as well as having the unique advantage of having tailored property profiles for specific applications.
- Polymeric fibers are considered attractive materials for the fabrication of biomedical devices such as temporary prostheses, sensors and drug and enzymes carriers due to their flexibility and reliability. It is believed that it is the combination of the interconnected pores of the polymeric fibers, the high versatility of the fiber surface and the ability to control fiber and textile processing to a high degree, which enables the tailoring of specific textile engineering design to provide the desired mechanical properties.
- PLA Poly(lactic acid)
- PLA is a relevant bio-absorbable polymer that has been used as a scaffold material due to its biocompatibility and thermoplastic characteristics.
- PLA has good tensile strength, low extension and a high modulus (approximately 4.8 GPa). Accordingly, it has been considered as an ideal biomaterial for load bearing applications, such as orthopaedic fixation devices.
- PLA polymers may form a range of different desired shapes by various techniques including molding, fiber extrusion, and solvent casting depending on the application. Compared with other popular bio- absorbable polymers such as Poly(glycolic acid) (PGA), it is relatively more hydrophobic with a longer degradation period (more than 24 months).
- PGA Poly(glycolic acid)
- Poly(glycolic acid) was one of the first biodegradable synthetic polymers investigated for biomedical applications.
- This polymer is a highly crystalline polymer and therefore exhibits a high tensile modulus with very low solubility in organic solvents.
- PGA has been fabricated into a variety of forms and structures. Extrusion, injection and compression molding as well as particulate leaching and solvent casting, are some of the techniques used to develop PGA-based structures for biomedical applications. Due to its high rate of degradation, acidic degradation products and low solubility, several copolymers of lactides and glycolides have been developed so as to form polymers with increased property modulation.
- PCL Polycaprolactone
- a drawback of fabrication of biomedical devices from synthetic polymers is their lack of necessary specific bioactive abilities to accelerate extra cellular matrix (ECM) secretion and regeneration of cultured cells.
- ECM extra cellular matrix
- natural biomaterials such as collagen, allow rapid cell expansion.
- Collagen is the most widely utilized natural polymer for biomedical applications and tissue engineering due to its excellent biocompatibility, biodegradability and safety.
- animal-derived collagen is problematic due to the possible risks of contamination by non-conventional infectious agents. While the risks raised by bacterial or viral contamination can be fully controlled, prions are less containable and present considerable health risks. These infectious agents which appear to have a protein-like nature, are involved in the development of degenerative animal encephalopathy (sheep trembling disease, bovine spongiform encephalopathy) and human encephalopathy (Creutzfeld-Jacob disease, Gerstmann-Straussler syndrome, and kuru disease). Due to the lengthy time before onset of the disease, formal controls are difficult to conduct.
- Cellulose is one of the most abundant polymers on earth. It can be found in all plants and it can also be produced by certain bacteria and sea animals. Cellulose is a polysaccharide mainly composed of cellobiose units linked together by ⁇ - 1,4- glycosidic linkages. Various models have been proposed to explain the structure of cellulose in the plant cell wall, but the most accepted explanation is that due to the linearity of the cellulose backbone, chains form a framework of elementary microfibrils with crystalline and amorphous regions.
- cellulose nanocrystals Due to its high modulus of elasticity (MOE), calculated as 138 GPa, crystalline cellulose has been exploited as a reinforcement agent for a variety of composites during acid hydrolysis, the amorphous domains of the microfibrils are degraded, resulting in the preservation of crystallites which are called cellulose nanocrystals (CNs).
- the size of these nanocrystals varies, depending upon the source from which they were obtained; but usually they are in the size range of 100- 1000 nm in length and 3-50 nm in width.
- the reinforcing ability of CNs lies in their high surface area and good mechanical properties.
- Cellulose nanocrystals have a broad variety of applications such as reinforcement agents for plastic composites, use in sensors, smart materials, membranes, textiles, electro-optic devices as well as biomedical purposes.
- U.S. Patent application No. 20020131989 teaches implanted degradable devices fabricated from a polymeric fibrous matrix.
- the matrix may be coated with a number of alternative adhesive biological factors including collagen.
- an internal core which comprises a synthetic polymer
- a method for treating a hernia or uterovaginal prolapse in a subject in need thereof comprising making an incision into an affected area of the subject, placing the implantable device of the present invention onto the affected area, and securing the device to the affected area, thereby treating the hernia or uterovaginal prolapse.
- a method of generating the fiber the present invention comprising:
- a fabric comprising the isolated fibers described herein.
- a scaffold comprising the isolated fibers described herein.
- an electrospun element comprising the isolated fiber described herein.
- an implantable device comprising the fiber described herein.
- the collagen comprises recombinant collagen.
- the isolated fiber further comprises an adhesive layer situated between the internal core and the intermediate layer.
- the adhesive layer comprises gelatin.
- a diameter of the internal core is between 50-150 ⁇ .
- the thickness of the intermediate layer is between 0.1-10 ⁇ .
- the thickness of the outer layer is between 1-11 ⁇ .
- the recombinant collagen is human collagen.
- the recombinant collagen is generated in plants.
- the synthetic polymer is biodegradable.
- the biodegradable synthetic polymer is selected from the group consisting of polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly(Lactide-co-Glycolide) (PLGA), polydioxanone (PDO), trimethylene carbonate (TMC), polyethyleneglycol (PEG) and a combination of same.
- the synthetic polymer is nonbiodegradable.
- the non-biodegradable synthetic polymer is selected from the group consisting of polyurethane, polycarbonate, polyacrylonitrile, polyethyleneoxide, polyaniline, polyvinyl carbazole, polyvinyl chloride, polyvinyl fluoride, polyvinyl imidazole, polyvinyl alcohol, polystyrene and poly(vinyl phenol), aliphatic polyesters, polyacrylates, polymethacrylate, acyl- sutostituted cellulose acetates, non-biodegradable polyurethanes, polystyrenes, chlorosulphonated polyolifins, polyethylene oxide and polytetrafluoroethylene.
- the collagen comprises liquid crystal collagen.
- the collagen comprises recombinant collagen.
- the method further comprises crosslinking the collagen following step (b).
- the method further comprises fibrillating the collagen following step (b). According to some embodiments of the invention, the method further comprises contacting the synthetic polymer fiber with gelatin prior to step (a).
- the method further comprises plasma treating the outer surface of the synthetic polymer fiber prior to step (a).
- the plasma treating comprises oxygen plasma treating or ammonia plasma treating.
- the scaffold is seeded with cells.
- the cells comprise stem cells.
- the stem cells comprise mesenchymal stem cells.
- the implantable device is a surgical mesh.
- the implantable device is configured for pelvic floor repair.
- the implantable device is configured for hernia repair.
- the implantable device is configured for plastic surgery.
- the implantable device is configured for breast reconstruction.
- the implantable device is configured for urinary or fecal incontinence repair.
- the implantable device is configured for cardiovascular procedures.
- the implantable device further comprises a bioactive agent selected from the group consisting of antimicrobials, antibacterials, anti-fungals, antibiotics, anti-viral agents, analgesics, antiadhesives, anesthetics, anti-inflammatories, antispasmodics, hormones, growth factors, muscle relaxants, antineoplastics, immunogenic agents, immunosuppressants, steroids, lipids, narcotics, lipopolysaccharides, polysaccharides, polypeptides, enzymes, and combinations thereof.
- a bioactive agent selected from the group consisting of antimicrobials, antibacterials, anti-fungals, antibiotics, anti-viral agents, analgesics, antiadhesives, anesthetics, anti-inflammatories, antispasmodics, hormones, growth factors, muscle relaxants, antineoplastics, immunogenic agents, immunosuppressants, steroids, lipids, narcotics, lipopolysacchari
- FIGs. 1A-E are scanning electron microscopy (SEM) micrographs of PLA fibers (A) poly(lactic acid) (PLA) fiber with nanocellulose crystal (NCC) coating without gelatin coating (B), gelatin-coated PLA fiber (C), gelatin/NCC-coated PLA fiber (D) and gelatin/NCC/rhcollagen -coated PLA fiber (E).
- SEM scanning electron microscopy
- the present invention in some embodiments thereof, relates to collagen coated synthetic polymers for tissue repair and regenerative medicine and fabrics comprising same.
- Biodegradable synthetic polymers offer a number of advantages over other materials for developing scaffolds in tissue engineering.
- the key advantages include the ability to tailor mechanical properties and degradation kinetics to suit various applications.
- Synthetic polymers are also attractive because they can be fabricated into various shapes with desired pore morphologic features conducive to tissue in-growth.
- polymers can be designed with chemical functional groups that can induce tissue in-growth.
- the present inventors propose coating synthetic polymers with nano cellulose crystals (NCC) followed by coating with collagen.
- NCC nano cellulose crystals
- an isolated fiber comprising:
- fiber refers to an elongated, thread-like structure having a characteristic longitudinal dimension, typically a "length”, and a characteristic transverse dimension, typically a “diameter” or a “width”, wherein the ratio of the characteristic longitudinal dimension to the characteristic transverse dimension is greater than or equal to about 50, more typically greater than or equal to about 100.
- synthetic polymer fibers are initially coated in cellulose nanocrystals and subsequently in collagen.
- the synthetic fibers are composed of polymers which may be a biodegradable or non-biodegradable or a mixture of both.
- biodegradable synthetic polymers include, but are not limited to polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly(Lactide-co-Glycolide) (PLGA), polydioxanone (PDO), trimethylene carbonate (TMC), polyethyleneglycol (PEG) and a combination of same.
- non-biodegradable polymer examples include, but are not limited to polycarbonate, polyacrylonitrile, polyethyleneoxide, polyaniline, polyvinyl carbazole, polyvinyl chloride, polyvinyl fluoride, polyvinyl imidazole, polyvinyl alcohol, polystyrene and poly(vinyl phenol), aliphatic polyesters, polyacrylates, polymethacrylate, acyl- sutostituted cellulose acetates, non-biodegradable polyurethanes, polystyrenes, chlorosulphonated polyolifins, polyethylene oxide and polytetrafluoroethylene.
- Fibers are created by forcing, usually through extrusion, synthetic polymers through holes (i.e. spinnerets) into the air, forming a thread.
- the elongate fibers for use in the present invention can be formed by a number of methods well known in the art, including, but not limited to, melt- spinning, wet- spinning, dry-spinning, dry-jet wet spinning, electro spinning, or extrusion (Ziabicki, A. "Fundamentals of Fiber Formation,” Wiley, New York (1976); Kroschwitz, J. I., “Encyclopedia of Polymer Science and Engineering. Second Edition, Vol. 6. John Wiley & Sons. New York (1986), which are hereby incorporated by reference in their entirety).
- melt- spinning the fiber material is usually melted and pumped through a spinneret (die) with numerous holes (one to thousands).
- the molten fibers are cooled, solidified, and can be collected on a stick or on a take-up wheel.
- a classic article which discusses structure development during melt spinning is: Dees et al., J. Appl. Polym. Sci., 18: 1053-1078 (1974).
- Dry spinning also can be used to form fibers from a solution.
- the fiber material is dissolved in a volatile solvent and the solution is pumped through a spinneret (die) with numerous holes (one to thousands).
- a spinneret die
- numerous holes one to thousands.
- air is used to evaporate the solvent so that the fibers solidify and can be collected on a take-up wheel.
- Stretching of the fibers provides for orientation of the polymer chains along the fiber axis.
- a more detailed study of dry spinning is provided in Ohzawa et al. J. Appl. Polym. Sci., 13, pp. 257-283 (1969).
- Fibers for the purposes of the present invention can also be produced by wet spinning.
- Wet spinning is the one of the earliest process of producing fibers and can be used to make the fibers of the present invention. It is used for fiber-forming substances that have been dissolved in a solvent. The spinnerets are submerged in a chemical bath, and, as the filaments emerge, they precipitate from solution and solidify. Because the solution is extruded directly into the precipitating liquid, this process for making fibers is called wet spinning.
- dry-wet spinning is a special process which can be used to obtain high strength or other special fiber properties.
- the polymer is not in a true liquid state during extrusion. Not completely separated, as they would be in a true solution, the polymer chains are bound together at various points in liquid crystal form. This produces strong inter-chain forces in the resulting filaments that can significantly increase the tensile strength of the fibers.
- the liquid crystals are aligned along the fiber axis by the shear forces during extrusion. The filaments emerge with an unusually high degree of orientation relative to each other, further enhancing strength.
- the process can also be described as dry-wet spinning, since the filaments first pass through air and then are cooled further in a liquid bath.
- Electro spinning can also be used for making fibers of the present invention.
- the high surface area and high porosity of electrospun fibers allow favorable cell interactions and hence make them potential candidates for tissue engineering applications. It uses an electrical charge to draw very fine (typically on the micro or nano scale) fibers from a liquid.
- Electro spinning shares characteristics of both electrospraying and conventional solution dry spinning of fibers. The process is non-invasive and does not require the use of coagulation chemistry or high temperatures to produce solid threads from solution. This makes the process particularly suited to the production of fibers using large and complex molecules.
- the diameter of the synthetic polymer fiber is between 10-500 ⁇ , more preferably between 20-200 ⁇ and more preferably between 50-100 ⁇ ,
- the next stage in the generation of the fibers of this aspect of the invention involves coating with nano cellulose crystals.
- cellulose refers to the polysaccharide mainly composed of cellobiose units linked together by ⁇ - 1,4- glycosidic linkages and derivatives thereof.
- exemplary derivatives include, but are not limited to carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose or combinations thereof.
- the cellulose may be derived from plants, bacteria or certain sea animals. According to a preferred embodiment, the cellulose is derived from plants - e.g. cotton or wood pulp.
- Nanocrystals are typically generated during acid hydrolysis of the cellulose, wherein the amorphous domains of the microfibrils are degraded, resulting in the preservation of crystallites.
- Exemplary acids that can be used to generate nano cellulose crystals from cellulose include, but are not limited to sulfuric, nitric and hydrochloric acid. According to one embodiment, the acid is sulfuric acid. Acid type, acid concentration, hydrolysis time and hydrolysis temperature are factors that have been shown to govern the products of the hydrolysis process. An exemplary protocol for generating nanocrystals from cellulose is described in the Examples section herein below.
- the nanocellulose crystals may be chemically modified and subsequently dispersed in organic solvents.
- the nanocellulose crystals may be dispersed in polar aprotic organic solvents, such as DMF and DMSO.
- nanocellulose crystals to the outer surface of the synthetic polymeric fibers may be effected using any method known in the art, including for example, spraying, spreading, wetting, immersing, dipping, painting, ultrasonic welding, welding, bonding or adhering.
- a typical layer of nanocellulose crystals may be between 0.1-10 ⁇ thick.
- the synthetic polymeric fibers may optionally be pre-treated in order to enhance the ability of the CN to coat the fibers.
- the polymeric fibers are pre-treated by coating with gelatin.
- Gelatin is a derivative of collagen, a principal structural and connective protein in animals.
- Gelatin can be derived from denaturation of collagen and contains polypeptide sequences having Gly-X-Y repeats, where X and Y are most often proline and hydroxyproline residues. These sequences contribute to triple helical structure and affect the gelling ability of gelatin polypeptides.
- Gelatin can be obtained from an animal collagen source (e.g., bovine, porcine, chicken, equine, marine) sources, e.g., bones, skin, and tendons or may be recombinantly produced, as described herein below.
- the gelatin is derived from a recombinant human collagen, generated in plants.
- Methods, processes, and techniques of producing gelatin from collagen include denaturing the triple helical structure of the collagen utilizing detergents, heat or denaturing agents. Additionally, these methods, processes, and techniques include, but are not limited to, treatments with strong alkali or strong acids, heat extraction in aqueous solution, ion exchange chromatography, cross-flow filtration and heat drying, and other methods that may be applied to collagen to produce the gelatin.
- the synthetic polymer fibers are pre-treated by exposure of the surface to a plasma.
- a plasma is a partially ionized gas generated by applying an electrical field to a gas under at least a partial vacuum.
- the plasma is generated by introducing the gas into a vacuum chamber and electromagnetic field.
- the resulting plasma consists of ions and free electrons, free radicals, excited state species, photons and neutrals.
- both the ions and electrons experience the same force and are accelerated. Collisions occur between these particles which transfer kinetic energy from one to the other. Since energy transfer in two body collisions favors the lighter particle (electrons in the case of plasma), the electrons soon have much greater velocity (i.e. temperature) than the ions.
- the plasma is selected such that it incorporates high concentrations of positive charge on the fiber surface so as to create a stable bond the synthetic fiber and the negatively charged nano cellulose crystal layer.
- exemplary plasmas include ammonia plasmas, nitrogen plasmas, oxygen plasmas and halogen plasmas.
- the external layer of the fibers of the present invention comprises collagen.
- collagen refers to a polypeptide having a triple helix structure and containing a repeating Gly-X-Y triplet, where X and Y can be any amino acid but are frequently the amino acids proline and hydroxyproline. According to one embodiment, the collagen is a type I, II, III, V, XI, or biologically active fragments therefrom.
- a collagen of the present invention also refers to homologs (e.g., polypeptides which are at least 50 , at least 55 , at least 60 , at least 65 , at least 70 , at least 75 %, at least 80 %, at least 85 %, at least 87 %, at least 89 %, at least 91 %, at least 93 , at least 95 % or more say 100 % homologous to collagen sequences listed in Table 1 as determined using BlastP software of the National Center of Biotechnology Information (NCBI) using default parameters).
- the homolog may also refer to a deletion, insertion, or substitution variant, including an amino acid substitution, thereof and biologically active polypeptide fragments thereof
- the collagen of the present invention comprises a sufficient portion of its telopeptides such that under suitable conditions it is capable of forming fibrils.
- the collagen may be atelocollagen, a telocollagen or procollagen.
- atelocollagen refers to collagen molecules lacking both the N- and C-terminal propeptides typically comprised in procollagen, but including a sufficient portion of its telopeptides such that under suitable conditions it is capable of forming fibrils.
- procollagen refers to a collagen molecule (e.g. human) that comprises either an N-terminal propeptide, a C-terminal propeptide or both.
- exemplary human procollagen amino acid sequences are set forth by SEQ ID NOs: 3, 4, 5 and 6.
- telocollagen refers to collagen molecules that lack both the N- and C-terminal propeptides typically comprised in procollagen but still contain the telopeptides.
- the telopeptides of fibrillar collagen are the remnants of the N-and C-terminal propeptides following digestion with native N/C proteinases.
- the collagen is a mixture of the types of collagen above.
- the collagen may be isolated from an animal (e.g. bovine or pig) or from human cadavers or may be genetically engineered using recombinant DNA technology as further described herein below. According to a specific embodiment, the collagen is devoid of animal-derived (i.e. non-human) collagen.
- the collagen is recombinant human collagen.
- the recombinant human collagen is generated in plants, as further described herein below.
- collagen is typically solubilized in an acid solution where it is present in its monomeric form (i.e. non-fibrillated form) prior to coating.
- exemplary acids for solubilizing monomeric collagen include, but are not limited to hydrochloric acid (HC1) and acetic acid.
- collagen monomers refers to monomeric collagen that has not undergone the process of polymerization.
- the collagen may be present in the acid solution at a concentration of about 1- 100 mg/ml.
- An exemplary concentration of HC1 which may be used to solubilize collagen monomers and generate liquid crystal collagen is about 10 mM HC1.
- a concentration of about 0.05 mM - 50 mM acetic acid is used to solubilize the collagen monomers.
- An exemplary concentration of acetic acid which may be used to solubilize collagen monomers is about 0.5 M acetic acid.
- Generating solutions of liquid crystalline collagen monomers may be effected by concentrating a liquid collagen solution.
- the liquid collagen solution may be concentrated using any means known in the art, including but not limited to filtration, rotary evaporation and dialysis membrane.
- Dialysis may be effected against a hygroscopic polymer, for example, PEG, a polyethylene oxide, amylose or sericin.
- PEG is of a molecular weight of 10,000-30,000 g/mol and has a concentration of 25-50 %.
- a slide-a-lyzer dialysis cassette (Pierce, MW CO 3500) is used.
- the dialysis is effected in the cold (e.g. at about 4 °C).
- the dialysis is effected for a time period sufficient to result in a final concentration of aqueous collagen solution of about 10 mg/ml or more.
- the solution of monomeric collagen is at a concentration of about 100-200 mg/ml or between 0.7-0.3mM.
- the solution of liquid crystalline collagen comprises high concentrations (5-30 mg/ml, depending on the collagen type) of collagen molecules in physiological buffer. It has been shown that such solutions develop long range nematic and precholesteric liquid crystal ordering extending over 100 ⁇ domains, while remaining in solution (R. Martin et al., J. Mol. Biol. 301: 11-17 (2000)).
- the starting collagen material may be prepared by ultrasonic treatment. Brown E. M. et al. Journal of American Leather Chemists Association, 101:274-283 (2006), herein incorporated by reference by its entirety.
- a typical thickness of the outer collagen layer is between 1 - 1 ⁇ .
- the collagen may optionally be fibrillated so as to generate fibrils and/or crosslinked.
- fibrillogenesis refers to the precipitation of soluble collagen in the form of fibrils
- Fibrillogenesis is entropy driven - the loss of water molecules from monomer surfaces drives the collagen monomers out of solution and into assemblies with a circular cross-section, so as to minimize surface area. Fibrillogenesis may be performed in a variety of ways including neutralization of the pH, increasing the temperature and/or the ionic strength.
- An exemplary alkaline solution that may be added to increase the pH of the collagen is Na 2 HP0 4 (pH-11.2).
- the amount of alkaline solution is calculated such that the final pH of the collagen is about 7-7.5 (e.g. 7.4).
- the present invention further contemplates crosslinking the collagen following coating of the fibers using any one of the below methods: 1. by glutaraldehyde, N-ethyl- N'-[3-dimethylaminopropyl] carbodiimide (EDC) in the presence or absence of N- hydroxy sue cinimide (NHS), genipin or other chemical crosslinking agents; 2. by glycation using different sugars; 3. by Fenton reaction using metal ions such as copper; 4. by lysine oxidase; or 5. by UV radiation (for example in the presence of a photoinitiator such as 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone - Irgacure 2959).
- a photoinitiator such as 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone - Irgacure 2959.
- the fibers of the present invention may be braided, twisted, aligned, or otherwise joined to form a fabric.
- at least two fibers may form a yarn for use in forming the fabric.
- multiple fibers may be braided, twisted, aligned, or otherwise joined to form a multifiber yarn.
- the fabric may be assembled from a plurality of fibers or yarns.
- the fibers/yarns may be woven, knitted, interlaced, braided, or formed into a surgical mesh by non-woven techniques.
- the fibers of the present invention may be used to fabricate a scaffold.
- the term "scaffold” refers to a 3D matrix upon which cells may be cultured (i.e., survive and preferably proliferate for a predetermined time period).
- the scaffolds of the present invention are typically sterilized, for example by oxygen plasma, following which they may be seeded with cells.
- seeding refers to plating, placing and/or dropping the cells of the present invention into the scaffold of the present invention. It will be appreciated that the concentration of cells which are seeded on or within the scaffold depends on the type of cells used and the precise composition of the scaffold. Techniques for seeding cells onto or into a scaffold are well known in the art, and include, without being limited to, static seeding, filtration seeding and centrifugation seeding.
- Static seeding includes incubation of a cell-medium suspension in the presence of the scaffold under static conditions and results in non-uniformity cell distribution (depending on the volume of the cell suspension); filtration seeding results in a more uniform cell distribution; and centrifugation seeding is an efficient and brief seeding method (see for example EP19980203774).
- the cells may be seeded directly onto the scaffold, or alternatively, the cells may be mixed with a gel which is then absorbed onto the interior and exterior surfaces of the scaffold and which may fill some of the pores of the scaffold. Capillary forces will retain the gel on the scaffold before hardening, or the gel may be allowed to harden on the scaffold to become more self-supporting.
- the cells may be combined with a cell support substrate in the form of a gel optionally including extracellular matrix components.
- the cells may comprise a heterogeneous population of cells or alternatively the cells may comprise a homogeneous population of cells.
- Such cells can be for example, stem cells (such as embryonic stem cells, bone marrow stem cells, cord blood cells, mesenchymal stem cells, adult tissue stem cells), progenitor cells (e.g. progenitor bone cells), or differentiated cells such as chondrocytes, osteoblasts, connective tissue cells (e.g., fibrocytes, fibroblasts and adipose cells), endothelial and epithelial cells.
- the cells may be of autologous origin or non-autologous origin, such as postpartum-derived cells (as described in U.S. Application Nos. 10/887,012 and 10/887,446). Typically the cells are selected according to the tissue being generated.
- stem cell refers to cells which are capable of differentiating into other cell types having a particular, specialized function (i.e., “fully differentiated” cells) or remaining in an undifferentiated state hereinafter “pluripotent stem cells”.
- the fibers of the present invention may be used to fabricate an implantable device.
- the fibers of the present invention may be used for pelvic floor reconstruction, urethral suspension (to prevent stress incontinence using the mesh as a sling), pericardial repair, cardiovascular patching, cardiac support (as a sock that fits over the heart to provide reinforcement), organ salvage, elevation of the small bowel during radiation of the colon in colorectal cancer patients, retentive devices for bone graft or cartilage, guided tissue regeneration, vascular grafting, dural substitution, nerve guide repair, as well as in procedures needing anti-adhesion membranes and tissue engineering scaffolds.
- the fibers of the present invention could also find other uses, for example, in synthetic ligament and tendon devices or scaffolds. Further uses include combinations with other synthetic and natural fibers, meshes and patches.
- the fibers and devices such as meshes and tubes derived from the fibers could be combined with autologous tissue, allogenic tissue, and/or xenogenic tissues to provide reinforcement, strengthening and/or stiffening of the tissue.
- Such combinations could facilitate implantation of the autologous, allogenic and/or xenogenic tissues, as well as provide improved mechanical and biological properties.
- Combination devices could be used for example in hernia repair, mastopexy/breast reconstruction, rotator cuff repair, vascular grafting/fistulae, tissue flaps, pericardial patching, tissue heart valve implants, bowel interposition, and dura patching.
- the implantable device is a surgical mesh.
- surgical mesh refers to a class of flexible sheets that permit the growth of tissue through openings in the mesh after the surgery has been completed to enhance attachment to surrounding tissue.
- the fabric of the present disclosure may be incorporated (e.g. attached to, coated on, embedded or impregnated) with a bioactive agent.
- a bioactive agent as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use.
- a bioactive agent is any agent which provides a therapeutic or prophylactic effect; a compound that affects or participates in tissue growth, cell growth and/or cell differentiation; a compound that may be able to invoke or prevent a biological action such as an immune response; or a compound that could play any other role in one or more biological processes.
- any agent which may enhance tissue repair, limit the risk of sepsis, and modulate the mechanical properties of the fabric may be added during the preparation of the mesh or may be coated on or into the major spaces or pores of the fabric.
- bioactive agents examples include antimicrobials, analgesics, antipyretics, anesthetics, antiepileptics, antihistamines, anti-inflammatories, cardiovascular drugs, diagnostic agents, sympathomimetics, cholinomimetics, antimuscarinics, antispasmodics, hormones, growth factors, muscle relaxants, adrenergic neuron blockers, antineoplastics, immunogenic agents, immunosuppressants, gastrointestinal drugs, diuretics, steroids, lipids, lipopolysaccharides, polysaccharides, and enzymes. It is also intended that combinations of bioactive agents may be used.
- bioactive agents which may be in the present disclosure include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g., oxybutynin); antitussives; bronchodilators; cardiovascular agents such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists such as n
- bioactive agents include: viruses and cells; peptides, polypeptides and proteins, as well as analogs, muteins, and active fragments thereof; immunoglobulins; antibodies; cytokines (e.g., lymphokines, monokines, chemokines); blood clotting factors; hemopoietic factors; interleukins (IL-2, IL-3, IL-4, IL-6); interferons (.beta.-IFN, (.alpha.-IFN and .gamma.-IFN)); erythropoietin; nucleases; tumor necrosis factor; colony stimulating factors (e.g., GCSF, GM-CSF, MCSF); insulin; anti-tumor agents and tumor suppressors; blood proteins; gonadotropins (e.g., FSH, LH, CG, etc.); hormones and hormone analogs (e.g., growth hormone); vaccines (e.g.
- a single bioactive agent may be utilized or, in alternate embodiments, any combination of bioactive agents may be utilized.
- the structure of the mesh will vary depending upon the assembling technique utilized to form the mesh, as well as other factors, such as the type of fibers used, the tension at which the fibers are held, and the mechanical properties required of the mesh.
- a mesh should have sufficient tensile strength to support a fascial wall during repair of a defect in the fascial wall causing a hernia.
- knitting may be utilized to form a mesh of the present disclosure.
- Knitting involves, in embodiments, the intermeshing of fibers or yarns to form loops or inter-looping of the fibers or yarns.
- fibers and/or yarns may be warp-knitted thereby creating vertical interlocking loop chains and/or may be weft-knitted thereby creating rows of interlocking loop stitches across the mesh.
- weaving may be utilized to a mesh of the present disclosure. Weaving may include, in embodiments, the intersection of two sets of straight yarns, warp and weft, which cross and interweave at right angles to each other, or the interlacing of two yarns at right angles to each other.
- the strands may be arranged to form a net mesh which has isotropic or near isotropic tensile strength and elasticity.
- the fibers/yarns may be nonwoven and formed by mechanically, chemically, or thermally bonding the fibers/yarns into a sheet or web.
- fibers/yarns may be mechanically bound by entangling the fibers/yarns to form the mesh by means other than knitting or weaving, such as matting, pressing, stitch-bonding, needlepunching, or otherwise interlocking the fibers/yarns to form a binderless network of fibers/yarns.
- the fibers/yarns of the mesh may be chemically bound by use of an adhesive, such as a hot melt adhesive, or thermally bound by applying a binder, such as a powder, paste, or melt, and melting the binder on the sheet or web of fibers/yarns.
- the mesh of the present invention may comprise a backing strip which may be releasably attached to the mesh.
- the backing strip may be formed from a range of materials, including plastics, and may be releasably attached by an adhesive.
- the releasable attachment of a backing strip to the mesh may provide a more substantial and less flexible surgical implant, which may be more easily handled by a surgeon.
- the backing strip can be removed from the surgical implant, the surgical implant being retained in the body and the backing material being removed by the surgeon.
- the surgical implant can therefore benefit from reduced mass while still providing characteristics required for surgical handling.
- a surgical mesh formed from the multi-layered fibers of the present invention may be applied during open surgery.
- the rigidity of the surgical mesh will allow for ease of handling by the surgeon.
- the absorbable surface material may dissolve leaving behind a sufficiently strong mesh needed to maintain the long term integrity of the hernia repair.
- the remaining mesh will be flexible, forming to the abdominal wall.
- the mesh may also be used, in embodiments, to prevent and/or reduce adhesions which may otherwise occur between a mesh and tissue.
- the surgical mesh may be applied during minimally invasive surgery.
- Laparoscopic surgical procedures are minimally invasive procedures in which operations are carried out within the body by using elongated deployment devices, inserted through small entrance openings in the body.
- the initial opening in the body tissue to allow passage of the endoscopic or laparoscopic devices to the interior of the body may be a natural passageway of the body, or it can be created by a tissue piercing device such as a trocar.
- narrow punctures or incisions may be made, thereby minimizing trauma to the body cavity and reducing patient recovery time.
- Laparoscopic deployment devices may be used for transferring a mesh into a body cavity. Such devices are within the purview of those skilled in the art and include, for example, the devices disclosed in U.S. Patent Application Publication Nos. 2006/0229640, 2006/0200170, and/or 2006/0200169, the entire disclosures of each of which are incorporated herein by reference.
- a mesh according to the present disclosure can be inserted through a small incision (e.g., from about 1 cm to about 2 cm in length) with the use of a laparoscopic deployment device, trocar, or other device.
- the mesh may be rolled or folded so as to fit within the device for transfer into the body cavity.
- the absorbable surface material of the bicomponent microfiber Upon exiting the transfer device, the absorbable surface material of the bicomponent microfiber provides sufficient stiffness to reopen the rolled or folded mesh into its original geometric shape.
- the mesh can be cut to any desired size.
- the cutting may be carried out by a surgeon or nurse under sterile conditions such that the surgeon need not have many differently sized implants on hand, but can simply cut a mesh to the desired size of the implant after assessment of the patient.
- the implant may be supplied in a large size and be capable of being cut to a smaller size, as desired.
- Different shapes are suitable for repairing different defects in fascial tissue, and thus by providing a surgical implant which can be cut to a range of shapes, a wide range of defects in fascial tissue can be treated.
- the implant can have any shape that conforms with an anatomical surface of a human or animal body that may be subject to a defect to be repaired by the implant.
- an anterior uterovaginal prolapse is elliptical in shape or a truncated ellipse
- a posterior prolapse is circular or ovoid in shape
- the implant shape may be any one of elliptical or truncated ellipse, round, circular, oval, ovoid or some similar shape to be used depending on the hernia or prolapse to be treated.
- the surgical implant of the present disclosure may be useful for the repair of uterovaginal prolapse, it may also be used in a variety of surgical procedures including the repair of hernias.
- the mesh in place once it has been suitably located in the patient.
- the mesh can be secured in any manner known to those skilled in the art. Some examples include suturing the mesh to strong lateral tissue, gluing the mesh in place using a biocompatible glue, or using a surgical fastener, e.g., a tack, to hold the mesh securely in place.
- the mesh may include at least one capsule containing a biocompatible glue for securing the implant in place.
- a biocompatible glue within the purview of one skilled in the art may be used.
- useful glues include fibrin glues and cyanoacrylate glues.
- the mesh of the present disclosure may be secured to tissue using a surgical fastener such as a surgical tack.
- a surgical fastener such as a surgical tack.
- Other surgical fasteners which may be used are within the purview of one skilled in the art, including staples, clips, helical fasteners, and the like.
- Tacks are known to resist larger removal forces compared with other fasteners.
- tacks only create one puncture as compared to the multiple punctures created by staples.
- Tacks can also be used from only one side of the repair site, unlike staples, clips or other fasteners which require access to both sides of the repair site. This may be especially useful in the repair of a vaginal prolapse, where accessing the prolapse is difficult enough without having to access both sides of the prolapse.
- Suitable tacks which may be utilized to secure the mesh of the present disclosure to tissue include, but are not limited to, the tacks described in U.S. Patent Application Publication No. 2004/0204723, the entire disclosure of which is incorporated by reference herein.
- Suitable structures for other fasteners which may be utilized in conjunction with the mesh of the present disclosure to secure same to tissue are known in the art and can include, for example, the suture anchor disclosed in U.S. Pat. No. 5,964,783 to Grafton et al., the entire disclosure of which is incorporated by reference herein. Additional fasteners which may be utilized and tools for their insertion include the helical fasteners disclosed in U.S. Pat. No. 6,562,051.
- the surgical fasteners useful with the mesh herein may be made from bioabsorbable materials, non-bioabsorbable materials, and combinations thereof. Suitable materials which may be utilized include those described in U.S. Patent Application Publication No. 2004/0204723. Examples of absorbable materials which may be utilized include trimethylene carbonate, caprolactone, dioxanone, glycolic acid, lactic acid, glycolide, lactide, homopolymers thereof, copolymers thereof, and combinations thereof. Examples of non-absorbable materials which may be utilized include stainless steel, titanium, nickel, chrome alloys, and other biocompatible implantable metals. In embodiments, a shape memory alloy may be utilized as a fastener. Suitable shape memory materials include nitinol.
- Surgical fasteners utilized with the mesh of the present disclosure may be made into any size or shape to enhance their use depending on the size, shape and type of tissue located at the repair site.
- the surgical fasteners e.g., tacks
- the mesh may be tacked and glued, or sutured and tacked, into place.
- the surgical fasteners may be attached to the mesh in various ways.
- the ends of the mesh may be directly attached to the fastener(s).
- the mesh may be curled around the fastener(s) prior to implantation.
- the fastener may be placed inside the outer edge of the mesh and implanted in a manner which pinches the mesh up against the fastener and into the site of the injury.
- Dispersal and solubilization of native animal collagen can be achieved using various proteolytic enzymes (such as porcine mucosal pepsin, bromelain, chymopapain, chymotrypsin, collagenase, ficin, papain, peptidase, proteinase A, proteinase K, trypsin, microbial proteases, and, similar enzymes or combinations of such enzymes) which disrupt the intermolecular bonds and remove the immunogenic non-helical telopeptides without affecting the basic, rigid triple-helical structure which imparts the desired characteristics of collagen (see U.S. Pat. Nos.
- proteolytic enzymes such as porcine mucosal pepsin, bromelain, chymopapain, chymotrypsin, collagenase, ficin, papain, peptidase, proteinase A, proteinase K, trypsin, microbial proteases, and, similar enzymes or
- the present invention also contemplates genetically modified forms of collagen/atelocollagen - for example collagenase-resistant collagens and the like [Wu et al., Proc Natl. Acad Sci, Vol. 87, p.5888-5892, 1990].
- Recombinant collagen may be expressed in any non-animal cell, including but not limited to plant cells and other eukaryotic cells such as yeast and fungus.
- Plants in which human collagen may be produced may be of lower (e.g. moss and algae) or higher (vascular) plant species, including tissues or isolated cells and extracts thereof (e.g. cell suspensions).
- Preferred plants are those which are capable of accumulating large amounts of collagen chains, collagen and/or the processing enzymes described herein below. Such plants may also be selected according to their resistance to stress conditions and the ease at which expressed components or assembled collagen can be extracted.
- Examples of plants in which human procollagen may be expressed include, but are not limited to tobacco, maize, alfalfa, rice, potato, soybean, tomato, wheat, barley, canola, carrot, lettuce and cotton.
- Production of recombinant procollagen is typically effected by stable or transient transformation with an exogenous polynucleotide sequence encoding human procollagen.
- Exemplary polynucleotide sequences encoding human procollagen are set forth by SEQ ID NOs: 7, 8, 9 and 10.
- Production of human telocollagen is typically effected by stable or transient transformation with an exogenous polynucleotide sequence encoding human procollagen and at least one exogenous polynucleotide sequence encoding the relevant protease.
- the stability of the triple-helical structure of collagen requires the hydroxylation of prolines by the enzyme prolyl-4-hydroxylase (P4H) to form residues of hydroxyproline within the collagen chain.
- P4H prolyl-4-hydroxylase
- plants are capable of synthesizing hydroxyproline-containing proteins
- the prolyl hydroxylase that is responsible for synthesis of hydroxyproline in plant cells exhibits relatively loose substrate sequence specificity as compared with mammalian P4H.
- production of collagen containing hydroxyproline only in the Y position of Gly -X-Y triplets requires co-expression of collagen and human or mammalian P4H genes [Olsen et al, Adv Drug Deliv Rev. 2003 Nov 28;55(12): 1547-67].
- the collagen is directed to a subcellular compartment of a plant that is devoid of endogenous P4H activity so as to avoid incorrect hydroxylation thereof.
- the phrase "subcellular compartment devoid of endogenous P4H activity" refers to any compartmentalized region of the cell which does not include plant P4H or an enzyme having plant-like P4H activity.
- the subcellular compartment is a vacuole.
- Accumulation of the expressed collagen in a subcellular compartment devoid of endogenous P4H activity can be effected via any one of several approaches.
- the expressed collagen can include a signal sequence for targeting the expressed protein to a subcellular compartment such as the vacuole. Since it is essential that P4H co-accumulates with the expressed collagen chain, the coding sequence thereof is preferably modified accordingly (e.g. by addition or deletion of signal sequences). Thus, P4H is co-expressed with the collagen in the plant, whereby the P4H also includes a signal sequence for targeting to the same subcellular compartment such as the vacuole.
- both the collagen sequence and the P4H sequence are devoid of an endoplasmic reticulum retention signal, such that it passes through the ER and is retained in the vacuole, where it is hydroxylated.
- the present invention therefore contemplates genetically modified cells co- expressing both human collagen and a P4H, capable of correctly hydroxylating the collagen alpha chain(s) [i.e. hydroxylating only the proline (Y) position of the Gly -X- Y triplets].
- P4H is an enzyme composed of two subunits, alpha and beta as set forth in Genbank Nos. P07237 and P13674. Both subunits are necessary to form an active enzyme, while the beta subunit also possesses a chaperon function.
- the P4H expressed by the genetically modified cells of the present invention is preferably a human P4H which is encoded by, for example, SEQ ID Nos: 11 and 12.
- P4H mutants which exhibit enhanced substrate specificity, or P4H homologues can also be used.
- collagen is also modified by Lysyl hydroxylase, galactosyltransferase and glucosyltransferase. These enzymes sequentially modify lysyl residues in specific positions to hydroxylysyl, galactosylhydroxylysyl and glucosylgalactosyl hydroxylysyl residues at specific positions.
- Lysyl hydroxylase 3 LH3
- Genbank No. 060568 can catalyze all three consecutive modifying steps as seen in hydroxylysine-linked carbohydrate formation.
- the genetically modified cells of the present invention may also express mammalian LH3.
- An LH3 encoding sequence such as that set forth by SEQ ID No: 13, can be used for such purposes.
- the procollagen(s) and modifying enzymes described above can be expressed from a stably integrated or a transiently expressed nucleic acid construct which includes polynucleotide sequences encoding the procollagen alpha chains and/or modifying enzymes (e.g. P4H and LH3) positioned under the transcriptional control of functional promoters.
- a nucleic acid construct (which is also termed herein as an expression construct) can be configured for expression throughout the whole organism (e.g. plant, defined tissues or defined cells), and/or at defined developmental stages of the organism.
- Such a construct may also include selection markers (e.g. antibiotic resistance), enhancer elements and an origin of replication for bacterial replication.
- nucleic acid constructs into both monocotyledonous and dicotyledenous plants
- Potrykus I., Annu. Rev. Plant. Physiol., Plant. Mol. Biol. (1991) 42:205-225; Shimamoto et al., Nature (1989) 338:274-276.
- Such methods rely on either stable integration of the nucleic acid construct or a portion thereof into the genome of the plant, or on transient expression of the nucleic acid construct, in which case these sequences are not inherited by the plant's progeny.
- a nucleic acid construct can be directly introduced into the DNA of a DNA-containing organelle such as a chloroplast.
- the telopeptide-comprising collagen is typically harvested.
- Plant tissues/cells are preferably harvested at maturity, and the procollagen molecules are isolated using extraction approaches.
- the harvesting is effected such that the procollagen remains in a state that it can be cleaved by protease enzymes.
- a crude extract is generated from the transgenic plants of the present invention and subsequently contacted with the protease enzymes.
- the propeptide or telopeptide- comprising collagen may be purified from the genetically engineered cells prior to incubation with protease, or alternatively may be purified following incubation with the protease. Still alternatively, the propeptide or telopeptide-comprising collagen may be partially purified prior to protease treatment and then fully purified following protease treatment. Yet alternatively, the propeptide or telopeptide-comprising collagen may be treated with protease concomitant with other extraction/purification procedures.
- Exemplary methods of purifying or semi-purifying the telopeptide-comprising collagen of the present invention include, but are not limited to salting out with ammonium sulfate or the like and/or removal of small molecules by ultrafiltration.
- the protease used for cleaving the recombinant propeptide or telopeptide comprising collagen is not derived from an animal.
- Exemplary proteases include, but are not limited to certain plant derived proteases e.g. ficin (EC 3.4.22.3) and certain bacterial derived proteases e.g. subtilisin (EC 3.4.21.62), neutrase.
- plant derived proteases e.g. ficin (EC 3.4.22.3) and certain bacterial derived proteases e.g. subtilisin (EC 3.4.21.62), neutrase.
- the present inventors also contemplate the use of recombinant enzymes such as rhTrypsin and rhPepsin. Several such enzymes are commercially available e.g.
- Ficin from Fig tree latex (Sigma, catalog #F4125 and Europe Biochem), Subtilisin from Bacillus licheniformis (Sigma, catalog #P5459) Neutrase from bacterium Bacillus amyloliquefaciens (Novozymes, catalog # PW201041) and TrypZeanTM, a recombinant human trypsin expressed in corn (Sigma catalog #T3449).
- compositions, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
- range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
- the term "method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
- the term “treating” includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition or substantially preventing the appearance of clinical or aesthetical symptoms of a condition.
- Nano Cellulose Crystals were produced by H 2 SO 4 hydrolysis of 200 ⁇ Micro Crystalline Cellulose (MCC, Avicel). The process involved suspension of the NCC powder in water, hydrolysis in controlled temperatures and acid concentration, washing cycles in water and followed by sonication until a clear was achieved.
- MCC Micro Crystalline Cellulose
- Cellulose micro-crystals were suspended in DDW at a very low temperature (iced water). Acid hydrolysis of the cellulose was carried out using sulfuric acid at a final concentration of 45 % at a temperature of 40 °C for 45 minutes followed by 30 minutes at 60 °C. After the hydrolysis process, the suspension was centrifuged at 8000 rpm for 10 minutes. Excess aqueous acid was removed and the resultant precipitate was resuspended in DDW. The washing procedure was repeated 4 to 5 times, until the supernatant emerging from the centrifuge was turbid. The resultant precipitate was resuspended in DDW and dialyzed against DDW until neutral pH is achieved. The cellulose suspension was then sonicated until the solution become optically clear.
- gelatin solution 20 % w/v rhCollagen (CollPlant, Ltd.) was dissolved in 1 mL 10 mM hydrochloric acid in a water bath at 70 °C. The resulting degradation product was gelatin.
- Plasma pretreated PLA fibers The oxygen and nitrogen plasma treatment was carried out on PICO low pressure plasma system (DIENER, 13.56 MHz: Power 0 - 300 W) PLA fiber was placed over the electrode in the plasma chamber. The chamber was evacuated to 10 Pa before filling with the desired gas. After the pressure of the chamber had stabilized to a proper value, glow discharge plasma was created by controlling the electrical power at a radio frequency of 13.56 MHz for a predetermined time. The plasma-treated sample was further exposed to the desired gas for another 10 minutes before the sample was taken out from the chamber.
- PICO low pressure plasma system DIENER, 13.56 MHz: Power 0 - 300 W
- PLA fibers (number 002, 6.7 Tex) were supplied by Centexbel (Belgium).
- PLA fibers were coated by the following stages, first PLA fibers were immersed in 20 % (w/v) gelatin solution at RT for 1 hour, followed by air-drying. Then, the gelatin coated PLA fibers were immersed in 2.5 % (w/v) NCC solution for 40 minutes at room temperature. Next, the gelatin/NCC coated PLA fibers were air-dried. Finally, for the shell layer, PLA fibers reinforced by NCC coating as core materials were immersed in 18 % (w/v) collagen solution for 1 hour at room temperature (RT). Finally, the obtained core-shell fibers were air-dried. Every coating treatment was repeated at least 5 times.
- the microarchitecture of the prepared fibers was evaluated by scanning electron microscopy (SEM).
- Figure 1 demonstrates that the PLA fiber has a ridge surface morphology (Figure 1A). The same morphology was obtained when the PLA fiber was apparently coated with the NCC particles (Figure IB) in the absence of gelatin, indicating that the fiber was not coated with the NCC composites. NCC-coated PLA fiber was obtained (Figure ID) only when the fiber was first coated with gelatin ( Figure 1C). Moreover, Figure ID clearly indicates that a thin smooth layer of gelatin/NCC with a densely packed structure was obtained. Figure IE also demonstrated smooth surface morphology of the obtained gelatin/NCC/rhcollagen-PLA fiber, but with a thicker layer comparison to the gelatin/NCC coating layer (Figure 1C).
- Gelatin solution coloring procedure 2.5 ⁇ 1 of 0.1 % blue food dye was added to 350 ⁇ of 20 % (w/v) gelatin solution. Then the PLA fiber was immersed in this solution for 1 hr at RT. Next, the gelatin coated PLA fibers were immersed in 2.5 % (w/v) NCC solution for 40 min at RT. Finally the resulting fibers were air-dried.
- PLA fibers (number 002, 6.7 Tex, were pretreated with N 2 plasma jet at Centexbel, Belgium) were immersed in 2.5 % (w/v) NCC solution for 40 min at RT. Finally the fibers were air-dried.
- Rhcollagen coating on pretreated PLA fibers First PLA fibers were pretreated by 0 2 plasma jet (10 min 500W) and subsequently stored under nitrogen gas atmosphere until further use. Next, the pretreated PLA fibers were immersed in 4.5 % (w/v) Rhcollagen solution for 1 hour at RT. Finally, the fibers were air-dried.
- EDC/NHS crosslinking of collagen coated PLA/PCL fibers PLA/PCL fibers were pretreated by 0 2 plasma jet (10 min 500W, 1 min 300W, respectively) stored under nitrogen gas atmosphere until further use. Next, the pretreated PLA/ PCL fibers were immersed in 4.5 % (w/v) RhcoUagen solution for 1 hr at RT and subsequently air- dried. Afterward, two crosslinking methods were studied. First, RhcoUagen coated pretreated PLA/PCL fibers were immersed in 1.1 M EDC solution (90 % ethanol) for 3 hrs at RT under constant shaking followed by DDW washing and finally air-drying. In the second method, RhcoUagen coated pretreated PLA/PCL fibers were immersed in 1.1 M EDC and 0.55 M NHS solution (90 % ethanol) for 3 hrs at RT under constant shaking followed by DDW washing and finally air-drying.
- Plasma technique is a convenient method for modifying polymeric materials without altering their bulk properties. This treatment results in incorporation of positively charged groups on the PLA fiber surface. It allows direct coating of the NCC composite due to the interaction between PLA fiber surface and the negatively charged NCC coating (NCC contains sulphate group).
- Figures 3A-C displays SEM micrographs of a pretreated PLA fiber with N 2 plasma jet (A), NCC coated naked PLA fiber (B) and NCC coated, N 2 plasma jet- pretreated PLA fiber (C).
- Figure 3C demonstrates that direct NCC coating of approximately 3 ⁇ thickness on pretreated PLA fiber with N 2 plasma jet may be successfully performed
- Plasma pretreatment 0 2 plasma jet
- This pretreatment resulted in negatively charged groups that are incorporated on the PLA fiber surface. It allows direct coating of the collagen due to the interaction PLA between fiber surface and the positively charged collagen coating.
- Figures 4A-B displays SEM micrographs of pretreated PLA fiber with 0 2 plasma jet (A), and RhcoUagen coated pretreated PLA fiber with 0 2 plasma jet (B).
- Figure 4B demonstrates that direct RhcoUagen coating of approximately 1 ⁇ thickness on pretreated PLA fiber with 0 2 plasma jet may be successfully performed. Different Rhcollagen concentrations were studied in order to achieve uniform coating.
- Figures 5A-B display HRSEM micrographs of pretreated PLA fibers with 0 2 plasma jet that were coated with different Rhcollagen concentrations: 18 % (w/v) (A), and 4.5% (w/v) (B).
- Rhcollagen concentrations 18 % (w/v) (A), and 4.5% (w/v) (B).
- a collagen concentration of 18 % (w/v) was used, a thick homogenous Rhcollagen coating (of 5 ⁇ ) was obtained.
- Figure 5B a 1 ⁇ thickness Rhcollagen coating was obtained.
- Figures 6 and 7 demonstrate that crosslinking of RhCollagen (4.5 %) coating on pretreated PLA or PCL fibers with 0 2 plasma jet, respectively may be successfully performed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Transplantation (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Textile Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Vascular Medicine (AREA)
- Developmental Biology & Embryology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Botany (AREA)
- General Chemical & Material Sciences (AREA)
- Materials For Medical Uses (AREA)
Abstract
L'invention concerne une fibre isolée comprenant : i. une âme interne qui contient un polymère synthétique; ii. une couche externe qui contient du collagène; et iii. une couche intermédiaire qui est placée entre l'âme interne et la couche externe et qui contient des nanocristaux de cellulose.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161577711P | 2011-12-20 | 2011-12-20 | |
US61/577,711 | 2011-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013093921A1 true WO2013093921A1 (fr) | 2013-06-27 |
Family
ID=47630453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2012/050543 WO2013093921A1 (fr) | 2011-12-20 | 2012-12-20 | Fibres de polymère synthétique enrobées de collagène |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013093921A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104629276A (zh) * | 2013-11-12 | 2015-05-20 | 珠海市红旌发展有限公司 | 一种纳米晶体纤维素复合材料的制备方法、由其制成的产品及其用途 |
WO2015077262A1 (fr) * | 2013-11-19 | 2015-05-28 | Guill Tool & Engineering | Entrées d'impression 3d coextrudées, multicouche et multicomposant |
WO2016042211A1 (fr) | 2014-09-17 | 2016-03-24 | University Of Helsinki | Matériaux implantables et leur utilisation |
CN105758911A (zh) * | 2016-03-30 | 2016-07-13 | 中国科学院兰州化学物理研究所 | 基于纳米纤维素和半胱氨酸修饰的金电极及其应用 |
WO2016123207A1 (fr) * | 2015-01-29 | 2016-08-04 | University Of Connecticut | Fibres composites et matrices formées avec celles-ci |
EP3159017A1 (fr) * | 2015-10-19 | 2017-04-26 | Bioenergy Capital AG | Matrice resorbable destinee au recouvrement de plaie |
JP2017516601A (ja) * | 2014-03-14 | 2017-06-22 | スクリップス ヘルス | 軟骨および半月板のマトリックスポリマーのエレクトロスピニング |
CN108210994A (zh) * | 2018-03-06 | 2018-06-29 | 福建工程学院 | 一种均匀化聚多巴胺涂层修饰生物支架的制备方法 |
WO2019237267A1 (fr) * | 2018-06-13 | 2019-12-19 | 浙江晶通塑胶有限公司 | Plancher dégradable utilisant une résine de pla et son procédé de production |
WO2020035703A1 (fr) * | 2018-08-17 | 2020-02-20 | Raft Enterprises Ltd. | Échafaudage tissulaire |
US10617787B2 (en) | 2017-05-16 | 2020-04-14 | Embody Inc. | Biopolymer compositions, scaffolds and devices |
US10653817B2 (en) | 2017-10-24 | 2020-05-19 | Embody Inc. | Method for producing an implantable ligament and tendon repair device |
US11020509B2 (en) | 2019-02-01 | 2021-06-01 | Embody, Inc. | Microfluidic extrusion |
CN113183594A (zh) * | 2021-04-07 | 2021-07-30 | 广东工业大学 | 用于表皮修复的静电纺丝功能性纳米纤维薄膜的制备方法 |
WO2021222699A1 (fr) | 2020-04-30 | 2021-11-04 | Board Of Regents Of The University Of Nebraska | Mailles pour hernie multicouches et leurs procédés de fabrication et d'utilisation |
CN113730557A (zh) * | 2021-09-03 | 2021-12-03 | 山西锦波生物医药股份有限公司 | 重组i型人源化胶原蛋白在盆底修复中的用途 |
US11352614B2 (en) * | 2017-06-14 | 2022-06-07 | R.J. Reynolds Tobacco Company | RuBisCO protein fibers |
US11369465B2 (en) | 2013-01-14 | 2022-06-28 | Scripps Health | Tissue array printing |
US11634448B2 (en) | 2016-06-15 | 2023-04-25 | The General Hospital Corporation | Metabolic labeling and molecular enhancement of biological materials using bioorthogonal reactions |
US12115276B2 (en) | 2017-06-09 | 2024-10-15 | Collplant Ltd. | Additive manufacturing using recombinant collagen-containing formulation |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3121049A (en) | 1960-09-19 | 1964-02-11 | Nihon Hikaku | Method for colloidally dispersing collagen |
US3131130A (en) | 1961-07-31 | 1964-04-28 | Ethicon Inc | Method of producing soluble collagen |
US3146168A (en) * | 1962-04-10 | 1964-08-25 | Fmc Corp | Manufacture of pharmaceutical preparations containing cellulose crystallite aggregates |
GB970112A (en) * | 1960-02-23 | 1964-09-16 | Fmc Corp | Coatings of cellulose crystallite aggregates |
US3314861A (en) | 1963-05-11 | 1967-04-18 | Fujii Tadahiko | Method for solubilizing insoluble collagen fibers |
US3530037A (en) | 1967-03-20 | 1970-09-22 | Tomio Nishihara | Method for solubilization of collagen fibers with proteolytic enzymes |
US3791932A (en) | 1971-02-10 | 1974-02-12 | Akzona Inc | Process for the demonstration and determination of reaction components having specific binding affinity for each other |
US3839153A (en) | 1970-12-28 | 1974-10-01 | Akzona Inc | Process for the detection and determination of specific binding proteins and their corresponding bindable substances |
US3850578A (en) | 1973-03-12 | 1974-11-26 | H Mcconnell | Process for assaying for biologically active molecules |
US3850752A (en) | 1970-11-10 | 1974-11-26 | Akzona Inc | Process for the demonstration and determination of low molecular compounds and of proteins capable of binding these compounds specifically |
US3853987A (en) | 1971-09-01 | 1974-12-10 | W Dreyer | Immunological reagent and radioimmuno assay |
US3867517A (en) | 1971-12-21 | 1975-02-18 | Abbott Lab | Direct radioimmunoassay for antigens and their antibodies |
US3879262A (en) | 1972-05-11 | 1975-04-22 | Akzona Inc | Detection and determination of haptens |
US3901654A (en) | 1971-06-21 | 1975-08-26 | Biological Developments | Receptor assays of biologically active compounds employing biologically specific receptors |
US3934852A (en) | 1975-08-11 | 1976-01-27 | Wesbar Corporation | Trailer tongue jack |
US3935074A (en) | 1973-12-17 | 1976-01-27 | Syva Company | Antibody steric hindrance immunoassay with two antibodies |
US3949073A (en) | 1974-11-18 | 1976-04-06 | The Board Of Trustees Of Leland Stanford Junior University | Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution |
US3984533A (en) | 1975-11-13 | 1976-10-05 | General Electric Company | Electrophoretic method of detecting antigen-antibody reaction |
US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
US4034074A (en) | 1974-09-19 | 1977-07-05 | The Board Of Trustees Of Leland Stanford Junior University | Universal reagent 2-site immunoradiometric assay using labelled anti (IgG) |
US4098876A (en) | 1976-10-26 | 1978-07-04 | Corning Glass Works | Reverse sandwich immunoassay |
US4233360A (en) | 1975-10-22 | 1980-11-11 | Collagen Corporation | Non-antigenic collagen and articles of manufacture |
US4488911A (en) | 1975-10-22 | 1984-12-18 | Luck Edward E | Non-antigenic collagen and articles of manufacture |
US4666828A (en) | 1984-08-15 | 1987-05-19 | The General Hospital Corporation | Test for Huntington's disease |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4801531A (en) | 1985-04-17 | 1989-01-31 | Biotechnology Research Partners, Ltd. | Apo AI/CIII genomic polymorphisms predictive of atherosclerosis |
US4879219A (en) | 1980-09-19 | 1989-11-07 | General Hospital Corporation | Immunoassay utilizing monoclonal high affinity IgM antibodies |
US5011771A (en) | 1984-04-12 | 1991-04-30 | The General Hospital Corporation | Multiepitopic immunometric assay |
US5192659A (en) | 1989-08-25 | 1993-03-09 | Genetype Ag | Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes |
US5272057A (en) | 1988-10-14 | 1993-12-21 | Georgetown University | Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase |
US5281521A (en) | 1992-07-20 | 1994-01-25 | The Trustees Of The University Of Pennsylvania | Modified avidin-biotin technique |
US5964783A (en) | 1997-11-07 | 1999-10-12 | Arthrex, Inc. | Suture anchor with insert-molded suture |
US20020098578A1 (en) | 1992-10-22 | 2002-07-25 | Darwin J. Prockop | Synthesis of human procollagens and collagens in recombinant dna systems |
US20020131989A1 (en) | 2000-12-22 | 2002-09-19 | Brown Kelly R. | Implantable biodegradable devices for musculoskeletal repair or regeneration |
US20020142391A1 (en) | 1991-06-12 | 2002-10-03 | Kivirikko Kari I. | Synthesis of human procollagens and collagens in recombinant DNA systems |
US6562051B1 (en) | 1994-08-05 | 2003-05-13 | Sherwood Services Ag | Surgical helical fastener with applicator |
US6617431B1 (en) | 1996-12-17 | 2003-09-09 | Meristem Therapeutics S.A. | Recombinant collagen and derived proteins produced by plants, methods for obtaining them and uses |
US20040204723A1 (en) | 2001-10-23 | 2004-10-14 | Helmut Kayan | Surgical fasteners |
WO2006035442A2 (fr) | 2004-09-29 | 2006-04-06 | Collplant Ltd. | Collagene de recombinaison produit dans une plante |
US20060200170A1 (en) | 2005-03-07 | 2006-09-07 | Ernest Aranyi | Specimen retrieval apparatus and method of use |
US20060200169A1 (en) | 2005-03-07 | 2006-09-07 | Kevin Sniffin | Specimen retrieval apparatus and method of use |
US20060229640A1 (en) | 2005-03-29 | 2006-10-12 | Whitfield Kenneth H | Specimen retrieval apparatus |
WO2011119742A2 (fr) * | 2010-03-26 | 2011-09-29 | Tepha, Inc. | Revêtements utilisés dans le cadre de la fabrication de dispositifs médicaux en polyhydroxyalcanoate en vue de leur application sur ceux-ci |
-
2012
- 2012-12-20 WO PCT/IL2012/050543 patent/WO2013093921A1/fr active Application Filing
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB970112A (en) * | 1960-02-23 | 1964-09-16 | Fmc Corp | Coatings of cellulose crystallite aggregates |
US3121049A (en) | 1960-09-19 | 1964-02-11 | Nihon Hikaku | Method for colloidally dispersing collagen |
US3131130A (en) | 1961-07-31 | 1964-04-28 | Ethicon Inc | Method of producing soluble collagen |
US3146168A (en) * | 1962-04-10 | 1964-08-25 | Fmc Corp | Manufacture of pharmaceutical preparations containing cellulose crystallite aggregates |
US3314861A (en) | 1963-05-11 | 1967-04-18 | Fujii Tadahiko | Method for solubilizing insoluble collagen fibers |
US3530037A (en) | 1967-03-20 | 1970-09-22 | Tomio Nishihara | Method for solubilization of collagen fibers with proteolytic enzymes |
US3850752A (en) | 1970-11-10 | 1974-11-26 | Akzona Inc | Process for the demonstration and determination of low molecular compounds and of proteins capable of binding these compounds specifically |
US3839153A (en) | 1970-12-28 | 1974-10-01 | Akzona Inc | Process for the detection and determination of specific binding proteins and their corresponding bindable substances |
US3791932A (en) | 1971-02-10 | 1974-02-12 | Akzona Inc | Process for the demonstration and determination of reaction components having specific binding affinity for each other |
US3901654A (en) | 1971-06-21 | 1975-08-26 | Biological Developments | Receptor assays of biologically active compounds employing biologically specific receptors |
US3853987A (en) | 1971-09-01 | 1974-12-10 | W Dreyer | Immunological reagent and radioimmuno assay |
US3867517A (en) | 1971-12-21 | 1975-02-18 | Abbott Lab | Direct radioimmunoassay for antigens and their antibodies |
US3879262A (en) | 1972-05-11 | 1975-04-22 | Akzona Inc | Detection and determination of haptens |
US3850578A (en) | 1973-03-12 | 1974-11-26 | H Mcconnell | Process for assaying for biologically active molecules |
US3935074A (en) | 1973-12-17 | 1976-01-27 | Syva Company | Antibody steric hindrance immunoassay with two antibodies |
US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
US4034074A (en) | 1974-09-19 | 1977-07-05 | The Board Of Trustees Of Leland Stanford Junior University | Universal reagent 2-site immunoradiometric assay using labelled anti (IgG) |
US3949073A (en) | 1974-11-18 | 1976-04-06 | The Board Of Trustees Of Leland Stanford Junior University | Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution |
US3934852A (en) | 1975-08-11 | 1976-01-27 | Wesbar Corporation | Trailer tongue jack |
US4488911A (en) | 1975-10-22 | 1984-12-18 | Luck Edward E | Non-antigenic collagen and articles of manufacture |
US4233360A (en) | 1975-10-22 | 1980-11-11 | Collagen Corporation | Non-antigenic collagen and articles of manufacture |
US3984533A (en) | 1975-11-13 | 1976-10-05 | General Electric Company | Electrophoretic method of detecting antigen-antibody reaction |
US4098876A (en) | 1976-10-26 | 1978-07-04 | Corning Glass Works | Reverse sandwich immunoassay |
US4879219A (en) | 1980-09-19 | 1989-11-07 | General Hospital Corporation | Immunoassay utilizing monoclonal high affinity IgM antibodies |
US5011771A (en) | 1984-04-12 | 1991-04-30 | The General Hospital Corporation | Multiepitopic immunometric assay |
US4666828A (en) | 1984-08-15 | 1987-05-19 | The General Hospital Corporation | Test for Huntington's disease |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683202B1 (fr) | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US4801531A (en) | 1985-04-17 | 1989-01-31 | Biotechnology Research Partners, Ltd. | Apo AI/CIII genomic polymorphisms predictive of atherosclerosis |
US5272057A (en) | 1988-10-14 | 1993-12-21 | Georgetown University | Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase |
US5192659A (en) | 1989-08-25 | 1993-03-09 | Genetype Ag | Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes |
US20020142391A1 (en) | 1991-06-12 | 2002-10-03 | Kivirikko Kari I. | Synthesis of human procollagens and collagens in recombinant DNA systems |
US5281521A (en) | 1992-07-20 | 1994-01-25 | The Trustees Of The University Of Pennsylvania | Modified avidin-biotin technique |
US20020098578A1 (en) | 1992-10-22 | 2002-07-25 | Darwin J. Prockop | Synthesis of human procollagens and collagens in recombinant dna systems |
US6562051B1 (en) | 1994-08-05 | 2003-05-13 | Sherwood Services Ag | Surgical helical fastener with applicator |
US6617431B1 (en) | 1996-12-17 | 2003-09-09 | Meristem Therapeutics S.A. | Recombinant collagen and derived proteins produced by plants, methods for obtaining them and uses |
US5964783A (en) | 1997-11-07 | 1999-10-12 | Arthrex, Inc. | Suture anchor with insert-molded suture |
US20020131989A1 (en) | 2000-12-22 | 2002-09-19 | Brown Kelly R. | Implantable biodegradable devices for musculoskeletal repair or regeneration |
US20040204723A1 (en) | 2001-10-23 | 2004-10-14 | Helmut Kayan | Surgical fasteners |
WO2006035442A2 (fr) | 2004-09-29 | 2006-04-06 | Collplant Ltd. | Collagene de recombinaison produit dans une plante |
US20060200170A1 (en) | 2005-03-07 | 2006-09-07 | Ernest Aranyi | Specimen retrieval apparatus and method of use |
US20060200169A1 (en) | 2005-03-07 | 2006-09-07 | Kevin Sniffin | Specimen retrieval apparatus and method of use |
US20060229640A1 (en) | 2005-03-29 | 2006-10-12 | Whitfield Kenneth H | Specimen retrieval apparatus |
WO2011119742A2 (fr) * | 2010-03-26 | 2011-09-29 | Tepha, Inc. | Revêtements utilisés dans le cadre de la fabrication de dispositifs médicaux en polyhydroxyalcanoate en vue de leur application sur ceux-ci |
Non-Patent Citations (49)
Title |
---|
"Immobilized Cells and Enzymes", 1986, IRL PRESS |
"Methods in Enzymology", ACADEMIC PRESS |
"PCR Protocols: A Guide To Methods And Applications", 1990, ACADEMIC PRESS |
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1989, JOHN WILEY AND SONS |
AUSUBEL, R. M.,: "Current Protocols in Molecular Biology", vol. I-III, 1999 |
BIORESOURCE TECHNOLOGY, vol. 100, no. 7, April 2009 (2009-04-01), pages 2259 - 2264 |
BIRREN ET AL.: "Genome Analysis: A Laboratory Manual Series", 1998, COLD SPRING HARBOR LABORATORY PRESS |
BROWN E. M. ET AL., JOURNAL OF AMERICAN LEATHER CHEMISTS ASSOCIATION, vol. 101, 2006, pages 274 - 283 |
CELLIS, J. E.,: "Cell Biology: A Laboratory Handbook", vol. I-III, 1994, FRESHNEY, WILEY-LISS, article "Culture of Animal Cells - A Manual of Basic Technique" |
COLIGAN J. E.,: "Current Protocols in Immunology", vol. 1, 1994 |
DEES ET AL., J. APPL. POLYM. SCI., vol. 18, 1974, pages 1053 - 1078 |
DEWET ET AL.: "Experimental Manipulation of Ovule Tissue", 1985, LONGMAN, pages: 197 - 209 |
FRESHNEY, R. I.,: "Animal Cell Culture", 1986 |
FROMM ET AL., NATURE, vol. 319, 1986, pages 791 - 793 |
GAIT, M. J.,: "Oligonucleotide Synthesis", 1984 |
GATENBY: "Plant Biotechnology", 1989, BUTTERWORTH PUBLISHERS, pages: 93 - 112 |
HAMES, B. D., AND HIGGINS S. J.,: "Nucleic Acid Hybridization", 1985 |
HAMES, B. D., AND HIGGINS S. J.,: "Transcription and Translation", 1984 |
HONG ET AL., BIOMATERIALS, vol. 26, no. 32, November 2005 (2005-11-01), pages 6305 - 6313 |
KIM ET AL., JOURNAL OF APPLIED POLYMER SCIENCE, vol. 92, no. 4, 2004, pages 2082 - 2092 |
KLEE ET AL., ANNU. REV. PLANT PHYSIOL., vol. 38, 1987, pages 467 - 486 |
KLEE; ROGERS: "Molecular Biology of Plant Nuclear Genes", vol. 6, 1989, ACADEMIC PUBLISHERS, article "Cell Culture and Somatic Cell Genetics of Plants", pages: 2 - 25 |
KLEIN ET AL., BIO/TECHNOLOGY, vol. 6, 1988, pages 559 - 563 |
KROSCHWITZ, J. I.: "Encyclopedia of Polymer Science and Engineering. Second Edition,", vol. 6, 1986, JOHN WILEY & SONS |
MARSHAK ET AL.: "Strategies for Protein Purification and Characterization - A Laboratory Course Manual", 1996, CSHL PRESS |
MCCABE ET AL., BIO/TECHNOLOGY, vol. 6, 1988, pages 923 - 926 |
MERLE ET AL., FEBS LETT., vol. 515, no. 1-3, 27 March 2002 (2002-03-27), pages 114 - 8 |
MISHELL AND SHIIGI: "Selected Methods in Cellular Immunology", 1980, W. H. FREEMAN AND CO. |
NEUHAUS ET AL., THEOR. APPL. GENET, vol. 75, 1987, pages 30 - 36 |
NEUHAUS; SPANGENBERG, PHYSIOL. PLANT, vol. 79, 1990, pages 213 - 217 |
OHTA, PROC. NATL. ACAD. SCI. USA, vol. 83, 1986, pages 715 - 719 |
OHZAWA ET AL., J. APPL. POLYM. SCI., vol. 13, 1969, pages 257 - 283 |
OLSEN ET AL., ADV DRUG DELIV REV., vol. 55, no. 12, 28 November 2003 (2003-11-28), pages 1547 - 67 |
PASZKOWSKI ET AL.: "Cell Culture and Somatic Cell Genetics of Plants", vol. 6, 1989, ACADEMIC PUBLISHERS, article "Molecular Biology of Plant Nuclear Genes", pages: 52 - 68 |
PERBAL, B.: "A Practical Guide to Molecular Cloning", 1984 |
PERBAL: "A Practical Guide to Molecular Cloning", 1988, JOHN WILEY & SONS |
POTRYKUS, I.: "Annu. Rev. Plant. Physiol.", PLANT. MOL. BIOL, vol. 42, 1991, pages 205 - 225 |
R. MARTIN ET AL., J. MOL. BIOL., vol. 301, 2000, pages 11 - 17 |
RUGGIERO ET AL., FEBS LETT., vol. 469, no. 1, 3 March 2000 (2000-03-03), pages 132 - 6 |
SAMBROOK ET AL.: "Molecular Cloning: A laboratory Manual", 1989 |
SANFORD, PHYSIOL. PLANT, vol. 79, 1990, pages 206 - 209 |
SHIMAMOTO ET AL., NATURE, vol. 338, 1989, pages 274 - 276 |
STITES ET AL.: "Basic and Clinical Immunology(8th Edition)", 1994, APPLETON & LANGE |
TORIYAMA, K. ET AL., BIO/TECHNOLOGY, vol. 6, 1988, pages 1072 - 1074 |
WATSON ET AL.: "Recombinant DNA", SCIENTIFIC AMERICAN BOOKS |
WU ET AL., PROC NATL. ACAD SCI, vol. 87, 1990, pages 5888 - 5892 |
XIANG ET AL., JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, vol. 3, no. 2, June 2009 (2009-06-01), pages 147 - 155 |
ZHANG ET AL., PLANT CELL REP., vol. 7, 1988, pages 379 - 384 |
ZIABICKI, A.: "Fundamentals of Fiber Formation", 1976, WILEY |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11369465B2 (en) | 2013-01-14 | 2022-06-28 | Scripps Health | Tissue array printing |
CN104629276A (zh) * | 2013-11-12 | 2015-05-20 | 珠海市红旌发展有限公司 | 一种纳米晶体纤维素复合材料的制备方法、由其制成的产品及其用途 |
WO2015077262A1 (fr) * | 2013-11-19 | 2015-05-28 | Guill Tool & Engineering | Entrées d'impression 3d coextrudées, multicouche et multicomposant |
US20160297104A1 (en) * | 2013-11-19 | 2016-10-13 | Guill Tool & Engineering | Coextruded, multilayer and multicomponent 3d printing inputs field |
JP2017516601A (ja) * | 2014-03-14 | 2017-06-22 | スクリップス ヘルス | 軟骨および半月板のマトリックスポリマーのエレクトロスピニング |
US11497830B2 (en) | 2014-03-14 | 2022-11-15 | Scripps Health | Electrospinning of cartilage and meniscus matrix polymers |
WO2016042211A1 (fr) | 2014-09-17 | 2016-03-24 | University Of Helsinki | Matériaux implantables et leur utilisation |
WO2016123207A1 (fr) * | 2015-01-29 | 2016-08-04 | University Of Connecticut | Fibres composites et matrices formées avec celles-ci |
EP3159017A1 (fr) * | 2015-10-19 | 2017-04-26 | Bioenergy Capital AG | Matrice resorbable destinee au recouvrement de plaie |
CN105758911A (zh) * | 2016-03-30 | 2016-07-13 | 中国科学院兰州化学物理研究所 | 基于纳米纤维素和半胱氨酸修饰的金电极及其应用 |
US11634448B2 (en) | 2016-06-15 | 2023-04-25 | The General Hospital Corporation | Metabolic labeling and molecular enhancement of biological materials using bioorthogonal reactions |
US10617787B2 (en) | 2017-05-16 | 2020-04-14 | Embody Inc. | Biopolymer compositions, scaffolds and devices |
US11116870B2 (en) | 2017-05-16 | 2021-09-14 | Embody Inc. | Biopolymer compositions, scaffolds and devices |
US10835639B1 (en) | 2017-05-16 | 2020-11-17 | Embody Inc. | Biopolymer compositions, scaffolds and devices |
US11331410B2 (en) | 2017-05-16 | 2022-05-17 | Embody, Inc. | Biopolymer compositions, scaffolds and devices |
US12115276B2 (en) | 2017-06-09 | 2024-10-15 | Collplant Ltd. | Additive manufacturing using recombinant collagen-containing formulation |
US11352614B2 (en) * | 2017-06-14 | 2022-06-07 | R.J. Reynolds Tobacco Company | RuBisCO protein fibers |
US12065681B2 (en) | 2017-06-14 | 2024-08-20 | R.J. Reynolds Tobacco Company | Method of producing ribulose-1,5-bisphosphate oxygenase protein fibers |
US10653817B2 (en) | 2017-10-24 | 2020-05-19 | Embody Inc. | Method for producing an implantable ligament and tendon repair device |
US11213610B2 (en) | 2017-10-24 | 2022-01-04 | Embody Inc. | Biopolymer scaffold implants and methods for their production |
CN108210994A (zh) * | 2018-03-06 | 2018-06-29 | 福建工程学院 | 一种均匀化聚多巴胺涂层修饰生物支架的制备方法 |
WO2019237267A1 (fr) * | 2018-06-13 | 2019-12-19 | 浙江晶通塑胶有限公司 | Plancher dégradable utilisant une résine de pla et son procédé de production |
WO2020035703A1 (fr) * | 2018-08-17 | 2020-02-20 | Raft Enterprises Ltd. | Échafaudage tissulaire |
JP2021533908A (ja) * | 2018-08-17 | 2021-12-09 | ラフト エンタープライジズ リミテッド | 組織足場 |
US11338056B2 (en) | 2019-02-01 | 2022-05-24 | Embody, Inc. | Microfluidic extrusion |
US11020509B2 (en) | 2019-02-01 | 2021-06-01 | Embody, Inc. | Microfluidic extrusion |
US11338057B2 (en) | 2019-02-01 | 2022-05-24 | Embody, LLC | Microfluidic extrusion |
WO2021222699A1 (fr) | 2020-04-30 | 2021-11-04 | Board Of Regents Of The University Of Nebraska | Mailles pour hernie multicouches et leurs procédés de fabrication et d'utilisation |
EP4142645A4 (fr) * | 2020-04-30 | 2024-03-27 | Board of Regents of the University of Nebraska | Mailles pour hernie multicouches et leurs procédés de fabrication et d'utilisation |
CN113183594A (zh) * | 2021-04-07 | 2021-07-30 | 广东工业大学 | 用于表皮修复的静电纺丝功能性纳米纤维薄膜的制备方法 |
CN113730557B (zh) * | 2021-09-03 | 2023-12-22 | 山西锦波生物医药股份有限公司 | 重组i型人源化胶原蛋白在盆底修复中的用途 |
CN113730557A (zh) * | 2021-09-03 | 2021-12-03 | 山西锦波生物医药股份有限公司 | 重组i型人源化胶原蛋白在盆底修复中的用途 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013093921A1 (fr) | Fibres de polymère synthétique enrobées de collagène | |
Coenen et al. | Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers | |
Ciardelli et al. | Materials for peripheral nerve regeneration | |
JP5579904B2 (ja) | 不織状の組織支持骨格 | |
JP7529567B2 (ja) | 生体高分子足場移植片およびその生成のための方法 | |
JP6172471B2 (ja) | 医療用途のためのセグメント化された、ε−カプロラクトンを多く含むポリ(ε−カプロラクトン−コ−p−ジオキサン)コポリマー及びそれから得られる用具 | |
US20090163936A1 (en) | Coated Tissue Engineering Scaffold | |
US20110293685A1 (en) | Scaffolds for tissue engineering and regenerative medicine | |
US9821089B2 (en) | Composites comprising collagen extracted from sarcophyton sp. coral | |
US20120273993A1 (en) | Method of generating collagen fibers | |
Thomas et al. | Electrospinning of Biosyn®-based tubular conduits: structural, morphological, and mechanical characterizations | |
Chang et al. | Medical fibers and biotextiles | |
US20130096610A1 (en) | Biopolymer microthreads with microscale surface topographies | |
JP4417909B2 (ja) | エラスチン成形体およびその製造法 | |
WO2012047338A2 (fr) | Greffe de tissus renforcée | |
US20130230573A1 (en) | Collagen structures and method of fabricating the same | |
EP3804771B1 (fr) | Corps poreux et matériau à usage médical | |
Yu et al. | Scaffold design considerations for peripheral nerve regeneration | |
CN104721886A (zh) | 一种具有纤维结构的组织修复膜及其制备方法、使用方法和应用 | |
Leung et al. | Nanofibers for ligament and tendon tissue regeneration | |
Stankus | Functional Elastomeric Scaffold Development for Tissue Engineering | |
CN117379594A (zh) | 一种多尺度结构设计的多孔支架及其制备方法与应用 | |
CN118806992A (zh) | 一种用于肩袖修复的复合补片及其制备方法 | |
Solanki et al. | 17 Nanopolymer Scaffolds | |
Lim | Biofunctionalised Electrospun Scaffolds for Cartilage Tissue Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12820939 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12820939 Country of ref document: EP Kind code of ref document: A1 |