WO2013092484A2 - Procédé de coloration par oxydation riche en substances grasses et catalyseur métallique et dispositif correspondant - Google Patents

Procédé de coloration par oxydation riche en substances grasses et catalyseur métallique et dispositif correspondant Download PDF

Info

Publication number
WO2013092484A2
WO2013092484A2 PCT/EP2012/075783 EP2012075783W WO2013092484A2 WO 2013092484 A2 WO2013092484 A2 WO 2013092484A2 EP 2012075783 W EP2012075783 W EP 2012075783W WO 2013092484 A2 WO2013092484 A2 WO 2013092484A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
chosen
process according
compounds
fatty
Prior art date
Application number
PCT/EP2012/075783
Other languages
English (en)
Other versions
WO2013092484A3 (fr
Inventor
Marie MIGNON
Leïla Hercouet
Alain Lagrange
Marie Giafferi
Henri Samain
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Publication of WO2013092484A2 publication Critical patent/WO2013092484A2/fr
Publication of WO2013092484A3 publication Critical patent/WO2013092484A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/22Peroxides; Oxygen; Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/31Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/88Two- or multipart kits
    • A61K2800/884Sequential application

Definitions

  • the present invention relates to a process for the oxidation dyeing of keratin fibres, in particular human keratin fibres such as the hair, which uses one or more metal catalysts and a composition (I) comprising at least 10% by weight of one or more fatty substances, one or more basifying agents, one or more particular benzenic or heterocyclic oxidation bases and one or more oxidizing agents,
  • the fatty substance content representing at least 25% by weight relative to the total weight of the second composition.
  • the invention also relates to a multi-compartment device suitable for performing the process of the invention.
  • the present invention relates to the field of dyeing keratin fibres and more particularly to the field of hair dyeing using oxidation dyes.
  • oxidation bases are small, colourless or weakly coloured compounds, which, when combined with oxidizing agents, produce coloured species within the keratin fibre by means of an oxidative condensation reaction.
  • oxidation bases are chosen from ortho- or para-phenylenediamines, ortho- or para-aminophenols and heterocyclic compounds.
  • the shades obtained with these oxidation bases may be varied by combining them with couplers or colouration modifiers, the latter being chosen especially from aromatic meta-diamines, meta-aminophenols, meta-diphenols and certain heterocyclic compounds such as indole compounds.
  • couplers or colouration modifiers the latter being chosen especially from aromatic meta-diamines, meta-aminophenols, meta-diphenols and certain heterocyclic compounds such as indole compounds.
  • One of the objects of the present invention is to significantly improve the dyeing performance qualities that are obtained with sparingly reactive oxidation bases relative to the qualities that would be obtained if they were present in standard dye compositions.
  • composition (I) comprising:
  • At least one sparingly reactive oxidation base chosen from ionic or nonionic, benzenic or heterocyclic compounds containing at least one amine function; the benzenic compounds also comprise an additional amine or hydroxyl function para or ortho to the first amine function; the said compounds having an HOMO energy value of less than or equal to (-180-a) expressed in kcal/mol with:
  • the metal catalyst(s) may constitute or form part of a composition (A) which is mixed with composition (I) before applying the mixture to keratin fibres or which is applied separately as a pre-treatment or post-treatment with or without intermediate rinsing.
  • the present invention also relates to a multi-compartment device comprising a first compartment containing a cosmetic composition (A) comprising one or more metal catalysts, a second compartment containing a cosmetic composition (B) comprising one or more basifying agents and one or more sparingly reactive oxidation bases, and a third compartment comprising an oxidizing composition (C) comprising one or more chemical oxidizing agents, at least one fatty substance being present in at least one of the compositions (B) or (C) such that, after mixing together compositions (B) and (C), the fatty substance content is greater than or equal to 10% by weight relative to the total weight of the mixture of compositions (B) and (C).
  • the device comprises a fourth compartment comprising a composition (D) comprising one or more fatty substances, the said composition (D) being intended to be mixed with compositions (B) and (C), the fatty substance content being greater than or equal to 10% by weight relative to the total weight of the mixture of compositions (B), (C) and (D), composition (B) or (C) optionally containing one or more fatty substances.
  • the invention also relates to three- or four-compartment devices that are suitable for the use of this composition.
  • composition according to the invention leads to strong colourations, or alternatively to better uptake of dye into the fibre, and sparingly selective colourations.
  • the human keratin fibres treated by the method according to the invention are preferably the hair.
  • Metal catalysts are compounds comprising one or more metals in their structure.
  • the metals are chosen from transition metals, rare-earth metals and alloys thereof.
  • transition metals mention may be made especially of manganese, vanadium, iron, cobalt, copper, zinc, platinum, nickel, titanium, silver, zirconium, chromium, molybdenum, tungsten, platinum, gold and vanadium and alloys thereof, and among these most particularly manganese and vanadium.
  • rare-earth metals mention may be made especially of cerium.
  • the metal catalysts are especially catalysts based on transition metals and rare-earth metals, and more particularly catalysts based on manganese, vanadium or cerium.
  • the metal catalysts used in the process according to the invention may be chosen from metal salts, metal oxides and metal complexes, and mixtures thereof.
  • metal complexes means systems in which the metal ion, i.e. the central atom, is linked to one or more electron donors, known as ligands, via chemical bonds.
  • the metal catalysts used in the first composition are chosen from metal salts.
  • metal salts means salts derived from the action of an acid on a metal.
  • the metal catalysts used in the process according to the invention are chosen from transition metal salts, such as manganese salts, and rare-earth metal salts, such as cerium salts, and also mixtures thereof.
  • the metal salts may be inorganic or organic salts.
  • the inorganic metal salts may be chosen from halides, carbonates, sulfates and phosphates, especially hydrated or anhydrous halides.
  • the organic metal salts may be chosen from organic acid salts such as citrates, lactates, glycolates, gluconates, acetates, propionates, fumarates, oxalates and tartrates, especially gluconates.
  • the metal catalysts are chosen from organic acid salts of transition metals, especially of manganese, and inorganic salts of rare-earth metals, especially of cerium.
  • the metal catalysts are chosen from manganese gluconate, vanadium chloride and cerium chloride, optionally in hydrate form, such as cerium chloride heptahydrate. Even more preferentially, the metal catalyst is manganese gluconate.
  • the metal catalyst(s) may constitute all or part of a composition A.
  • composition A may be anhydrous or aqueous.
  • the metal catalyst(s) may be present in a content ranging from 0.001 % to 10% by weight, preferably in a content ranging from 0.001 % to 1 % by weight and better still ranging from 0.01 % to 0.5% by weight relative to the total weight of the composition applied to the keratin fibres containing them.
  • Composition (I) according to the invention comprises one or more fatty substances.
  • fatty substance means an organic compound that is insoluble in water at ordinary room temperature (25°C) and at atmospheric pressure (760 mmHg) (solubility of less than 5%, preferably 1 % and even more preferentially 0.1 %). They have in their structure at least one hydrocarbon-based chain comprising at least 6 carbon atoms or a sequence of at least two siloxane groups.
  • the fatty substances are generally soluble in organic solvents under the same temperature and pressure conditions, for instance chloroform, ethanol, benzene, liquid petroleum jelly or decamethylcyclopentasiloxane. These fatty substances are neither polyoxyethylenated nor polyglycerolated. They are different from fatty acids, since salified fatty acids constitute soaps that are generally soluble in aqueous media.
  • the fatty substances are chosen from C 6 -Ci 6 hydrocarbons, hydrocarbons containing more than 16 carbon atoms, non-silicone oils of animal origin, plant oils of triglyceride type, synthetic triglycerides, fluoro oils, fatty alcohols, esters of fatty acids and/or of fatty alcohols other than triglycerides and plant waxes, non-silicone waxes and silicones.
  • the fatty alcohols, fatty esters and fatty acids more particularly contain one or more linear or branched, saturated or unsaturated hydrocarbon-based groups comprising 6 to 30 carbon atoms, which are optionally substituted, in particular with one or more (in particular 1 to 4) hydroxyl groups. If they are unsaturated, these compounds may comprise one to three conjugated or unconjugated carbon-carbon double bonds.
  • C 6 -Ci 6 alkanes they are linear or branched, and possibly cyclic, and are preferably alkanes. Examples that may be mentioned include hexane, dodecane and isoparaffins such as isohexadecane and isodecane.
  • a hydrocarbon-based oil of animal origin that may be mentioned is perhydrosqualene.
  • the triglyceride oils of plant or synthetic origin are preferably chosen from liquid fatty acid triglycerides containing from 6 to 30 carbon atoms, for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sunflower oil, corn oil, soybean oil, marrow oil, grapeseed oil, sesame seed oil, hazelnut oil, apricot oil, macadamia oil, arara oil, castor oil, avocado oil, caprylic/capric acid triglycerides, for instance those sold by the company Stearineries Dubois or those sold under the names Miglyol ® 810, 812 and 818 by the company Dynamit Nobel, jojoba oil and shea butter oil.
  • liquid fatty acid triglycerides containing from 6 to 30 carbon atoms for instance heptanoic or octanoic acid triglycerides, or alternatively, for example, sunflower oil, corn oil, soybean oil,
  • the linear or branched hydrocarbons of mineral or synthetic origin containing more than 16 carbon atoms are preferably chosen from liquid paraffins, petroleum jelly, liquid petroleum jelly, polydecenes, and hydrogenated polyisobutene such as Parleam®.
  • the fluoro oils may be chosen from perfluoromethylcyclopentane and perfluoro-1 ,3- dimethylcyclohexane, sold under the names Flutec ® PC1 and Flutec ® PC3 by the company BNFL Fluorochemicals; perfluoro-1 ,2-dimethylcyclobutane; perfluoroalkanes such as dodecafluoropentane and tetradecafluorohexane, sold under the names PF 5050 ® and PF 5060 ® by the company 3M, or bromoperfluorooctyl sold under the name Foralkyl ® by the company Atochem; nonafluoromethoxybutane and nonafluoroethoxyisobutane; perfluoromorpholine derivatives such as 4-trifluoromethyl perfluoromorpholine sold under the name PF 5052 ® by the company 3M.
  • the fatty alcohols that may be used in the composition according to the invention are saturated or unsaturated, and linear or branched, and comprise from 6 to 30 carbon atoms and more particularly from 8 to 30 carbon atoms. Examples that may be mentioned include cetyl alcohol, stearyl alcohol and the mixture thereof (cetylstearyl alcohol), octyldodecanol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol, oleyl alcohol and linoleyl alcohol.
  • the wax(es) that may be used in the cosmetic composition according to the invention are chosen especially from carnauba wax, candelilla wax, esparto grass wax, paraffin wax, ozokerite, plant waxes, for instance olive wax, rice wax, hydrogenated jojoba wax or the absolute waxes of flowers such as the essential wax of blackcurrant blossom sold by the company Bertin (France), animal waxes, for instance beeswaxes, or modified beeswaxes (cerabellina); other waxes or waxy starting materials that may be used according to the invention are especially marine waxes such as the product sold by the company Sophim under the reference M82, and polyethylene waxes or polyolefin waxes in general.
  • esters of a fatty acid and/or of a fatty alcohol which are advantageously different than the triglycerides mentioned above, mention may be made especially of esters of saturated or unsaturated, linear or branched Ci-C 2 6 aliphatic mono- or polyacids and of saturated or unsaturated, linear or branched Ci-C 2 6 aliphatic mono- or polyalcohols, the total carbon number of the esters more particularly being greater than or equal to 10.
  • dihydroabietyl behenate octyldodecyl behenate; isocetyl behenate; cetyl lactate; Ci 2 -Ci 5 alkyl lactate; isostearyl lactate; lauryl lactate; linoleyl lactate; oleyl lactate; (iso)stearyl octanoate; isocetyl octanoate; octyl octanoate; cetyl octanoate; decyl oleate; isocetyl isostearate; isocetyl laurate; isocetyl stearate; isodecyl octanoate; isodecyl oleate; isononyl isononanoate; isostearyl palmitate; methylacetyl ricinoleate; myristyl stearate
  • esters of C4-C22 dicarboxylic or tricarboxylic acids and of C1-C22 alcohols and esters of monocarboxylic, dicarboxylic or tricarboxylic acids and of C 2 -C 2 6 dihydroxy, trihydroxy, tetrahydroxy or pentahydroxy alcohols may also be used.
  • esters mentioned above it is preferred to use ethyl, isopropyl, myristyl, cetyl or stearyl palmitate, 2-ethylhexyl palmitate, 2-octyldecyl palmitate, alkyl myristates such as isopropyl, butyl, cetyl or 2-octyldodecyl myristate, hexyl stearate, butyl stearate, isobutyl stearate; dioctyl malate, hexyl laurate, 2-hexyldecyl laurate, isononyl isononanoate or cetyl octanoate.
  • alkyl myristates such as isopropyl, butyl, cetyl or 2-octyldodecyl myristate, hexyl stearate, butyl stearate, isobutyl stearate
  • composition may also comprise, as fatty ester, sugar esters and diesters of C 6 - C 3 o, and preferably C12-C22 fatty acids.
  • sugar esters and diesters of C 6 - C 3 o, and preferably C12-C22 fatty acids.
  • sugar esters are understood to mean oxygen-comprising hydrocarbon compounds which bear several alcohol functions, with or without an aldehyde or ketone function, and which comprise at least 4 carbon atoms.
  • sugars may be monosaccharides, oligosaccharides or polysaccharides.
  • suitable sugars include sucrose (or saccharose), glucose, galactose, ribose, fucose, maltose, fructose, mannose, arabinose, xylose and lactose, and derivatives thereof, especially alkyl derivatives, such as methyl derivatives, for instance methylglucose.
  • the sugar esters of fatty acids may be chosen especially from the group comprising the esters or mixtures of esters of sugars described previously and of linear or branched, saturated or unsaturated C 6 -C 3 o, and preferably C12-C22 fatty acids. If they are unsaturated, these compounds may comprise one to three conjugated or unconjugated carbon-carbon double bonds.
  • esters according to this variant may also be chosen from monoesters, diesters, triesters, tetraesters and polyesters, and mixtures thereof.
  • esters may be, for example, oleates, laurates, palmitates, myristates, behenates, cocoates, stearates, linoleates, linolenates, caprates and arachidonates, or mixtures thereof such as, especially, oleopalmitate, oleostearate and palmitostearate mixed esters.
  • monoesters and diesters and in particular mono- or dioleate, -stearate, -behenate, -oleate/palmitate, -linoleate, -linolenate or
  • esters or mixtures of esters of sugar and of fatty acid examples include:
  • sucrose monopalmitate/stearate-dipalmitate/stearate sold by the company Goldschmidt under the name Tegosoft ® PSE.
  • the silicones that can be used in the anhydrous cosmetic compositions (B) of the present invention are volatile or non-volatile, cyclic, linear or branched silicones, which are unmodified or modified with organic groups, having a viscosity from 5x10 "6 to 2.5 m 2 /s at 25°C, and preferably 1 x10 "5 to 1 m 2 /s.
  • the silicones that can be used in accordance with the invention may be in the form of oils, waxes, resins or gums.
  • the silicone is chosen from polydialkylsiloxanes, in particular polydimethylsiloxanes (PDMSs), and organomodified polysiloxanes comprising at least one functional group chosen from poly(oxyalkylene) groups, amino groups and alkoxy groups.
  • PDMSs polydimethylsiloxanes
  • organomodified polysiloxanes comprising at least one functional group chosen from poly(oxyalkylene) groups, amino groups and alkoxy groups.
  • Organopolysiloxanes are defined in greater detail in Walter Noll's "Chemistry and Technology of Silicones” (1968), Academic Press. They may be volatile or non-volatile.
  • the silicones are more particularly chosen from those having a boiling point of between 60°C and 260°C, and more particularly still from:
  • cyclic polydialkylsiloxanes containing from 3 to 7 and preferably from 4 to 5 silicon atoms.
  • cyclic polydialkylsiloxanes containing from 3 to 7 and preferably from 4 to 5 silicon atoms.
  • These are, for example, octamethylcyclotetrasiloxane sold in particular under the name Volatile Silicone ® 7207 by Union Carbide or Silbione ® 70045 V2 by Rhodia, decamethylcyclopentasiloxane sold under the name Volatile Silicone ® 7158 by Union Carbide and Silbione ® 70045 V5 by Rhodia, and mixtures thereof.
  • linear volatile polydialkylsiloxanes containing 2 to 9 silicon atoms and having a viscosity of less than or equal to 5x10 "6 m 2 /s at 25°C.
  • An example is decamethyltetrasiloxane sold in particular under the name SH 200 by the company Toray Silicone. Silicones belonging to this category are also described in the article published in Cosmetics and Toiletries, Vol. 91 , Jan. 76, pp. 27-32, Todd & Byers, Volatile Silicone Fluids for Cosmetics.
  • Use is preferably made of non-volatile polydialkylsiloxanes, polydialkylsiloxane gums and resins, polyorganosiloxanes modified with the organofunctional groups above, and mixtures thereof.
  • silicones are more particularly chosen from polydialkylsiloxanes, among which mention may be made mainly of polydimethylsiloxanes having trimethylsilyl end groups.
  • the viscosity of the silicones is measured at 25°C according to ASTM Standard 445 Appendix C.
  • oils of the 200 series from the company Dow Corning such as DC200 with a viscosity of 60 000 mm 2 /s;
  • CTFA dimethiconol
  • the silicone gums that may be used in accordance with the invention are especially polydialkylsiloxanes and preferably polydimethylsiloxanes with high number-average molecular weights of between 200 000 and 1 000 000, used alone or as a mixture in a solvent.
  • This solvent can be chosen from volatile silicones, polydimethylsiloxane (PDMS) oils, polyphenylmethylsiloxane (PPMS) oils, isoparaffins, polyisobutylenes, methylene chloride, pentane, dodecane or tridecane, or mixtures thereof.
  • Products that can be used more particularly in accordance with the invention are mixtures such as:
  • CTFA hydroxy-terminated polydimethylsiloxane or dimethiconol
  • CFA cyclic polydimethylsiloxane
  • product Q2 1401 sold by the company Dow Corning
  • the product SF 1236 is a mixture of a gum SE 30 defined above with a viscosity of 20 m 2 /s and of an oil SF 96 with a viscosity of 5x10 "6 m 2 /s. This product preferably comprises 15% of gum SE 30 and 85% of an oil SF 96.
  • organopolysiloxane resins that can be used in accordance with the invention are crosslinked siloxane systems containing the following units:
  • R represents an alkyl containing 1 to 16 carbon atoms.
  • R denotes a C C 4 lower alkyl group, more particularly methyl.
  • organomodified silicones that can be used in accordance with the invention are silicones as defined above and comprising in their structure one or more organofunctional groups attached via a hydrocarbon group.
  • the organomodified silicones may be polydiarylsiloxanes, in particular polydiphenylsiloxanes, and polyalkylarylsiloxanes functionalized by the organofunctional groups mentioned previously.
  • the polyalkylarylsiloxanes are chosen particularly from linear and/or branched polydimethyl/methylphenylsiloxanes and polydimethyl/diphenylsiloxanes with a viscosity of from 1 *10 "5 to 5*10 "2 m 2 /s at 25°C.
  • oils of the SF series from General Electric such as SF 1023, SF 1 154, SF 1250 and SF 1265.
  • organomodified silicones comprising: - polyethyleneoxy and/or polypropyleneoxy groups optionally comprising C 6 -C 2 4 alkyl groups, such as the products known as dimethicone copolyol sold by the company Dow Corning under the name DC 1248 or the oils Silwet® L 722, L 7500, L 77 and L 71 1 by the company Union Carbide, and the (Ci 2 )alkylmethicone copolyol sold by the company Dow Corning under the name Q2 5200;
  • polyorganosiloxanes comprising: - polyethyleneoxy and/or polypropyleneoxy groups optionally comprising C 6 -C 2 4 alkyl groups, such as the products known as dimethicone copolyol sold by the company Dow Corning under the name DC 1248 or the oils Silwet® L 722, L 7500, L 77 and L 71 1 by the company Union Carbide, and the (Ci 2 )alkylmethicone copolyo
  • substituted or unsubstituted amine groups such as the products sold under the name GP 4 Silicone Fluid and GP 7100 by the company Genesee, or the products sold under the names Q2 8220 and Dow Corning 929 or 939 by the company Dow Corning.
  • the substituted amine groups are, in particular, Ci-C 4 aminoalkyl groups;
  • the fatty substances do not comprise any C 2 -C 3 oxyalkylene units or any glycerol units.
  • the fatty substances are chosen from compounds that are liquid or pasty at ambient temperature (25°C) and at atmospheric pressure.
  • the fatty substance is a compound that is liquid at a temperature of 25°C and at atmospheric pressure.
  • the fatty substances are advantageously chosen from C 6 -Ci 6 hydrocarbons, hydrocarbons containing more than 16 carbon atoms, triglycerides, fatty alcohols, esters of a fatty acid and/or of a fatty alcohol other than triglycerides, and silicones, or mixtures thereof.
  • the fatty substance(s) are chosen from liquid petroleum jelly, polydecenes, fatty alcohols and liquid esters of a fatty acid and/or of a fatty alcohol, or mixtures thereof.
  • the fatty substances are chosen from liquid petroleum jelly and octyldodecanol, alone or as a mixture.
  • the fatty substances are present in a content of greater than or equal to 10% by weight relative to the total weight of the cosmetic composition (I).
  • the cosmetic composition (I) has a fatty substance content preferably ranging from
  • composition (I) 10% to 70% by weight, even more particularly ranging from 20% to 70% by weight and better still from 25% to 70% by weight relative to the weight of composition (I).
  • Composition (I) according to the invention may also comprise one or more surfactants.
  • the surfactant(s) are chosen from anionic, amphoteric, zwitterionic, cationic and nonionic surfactants, and preferentially nonionic surfactants.
  • anionic surfactant means a surfactant comprising, as ionic or ionizable groups, only anionic groups.
  • anionic surfactants that may be used in the composition according to the invention, mention may be made of alkyl sulfates, alkyl ether sulfates, alkylamido ether sulfates, alkylarylpolyether sulfates, monoglyceride sulfates, alkylsulfonates, alkylamidesulfonates, alkylarylsulfonates, oolefin sulfonates, paraffin sulfonates, alkylsulfosuccinates, alkylether sulfosuccinates, alkylamide sulfosuccinates, alkylsulfoacetates, acylsarcosinates, acylglutamates, alkylsulfosuccinamat.es, acylisethionates and N-acyltaurates, salts of alkyl monoesters of polyglycoside- polycarbox
  • These compounds can be oxyethylenated and then preferably comprise from 1 to 50 ethylene oxide units.
  • the salts of C 6 -C 24 alkyl monoesters of polyglycoside-polycarboxylic acids can be chosen from C 6 -C 24 alkyl polyglycoside-citrates, C 6 -C 24 alkyl polyglycoside-tartrates and C 6 -C 24 alkyl polyglycoside-sulfosuccinates.
  • anionic surfactant(s) When the anionic surfactant(s) are in salt form, they may be chosen from alkali metal salts such as the sodium or potassium salt and preferably the sodium salt, ammonium salts, amine salts and in particular amino alcohol salts or alkaline-earth metal salts such as the magnesium salts.
  • alkali metal salts such as the sodium or potassium salt and preferably the sodium salt, ammonium salts, amine salts and in particular amino alcohol salts or alkaline-earth metal salts such as the magnesium salts.
  • aminoalcohol salts examples include monoethanolamine, diethanolamine and triethanolamine salts, monoisopropanolamine, diisopropanolamine or triisopropanolamine salts, 2-amino-2-methyl-1 -propanol salts, 2- amino-2-methyl-1 ,3-propanediol salts and tris(hydroxymethyl)aminomethane salts.
  • Alkali metal or alkaline-earth metal salts and in particular sodium or magnesium salts, are preferably used.
  • anionic surfactants use is preferably made of (C 6 -C 24 )alkyl sulfates, (C 6 -C 24 )alkyl ether sulfates comprising from 2 to 50 ethylene oxide units, especially in the form of alkali metal, ammonium, amino alcohol and alkaline-earth metal salts, or a mixture of these compounds.
  • (Ci 2 -C 20 )alkyl sulfates (Ci 2 -C 20 )alkyl ether sulfates comprising from 2 to 20 ethylene oxide units, especially in the form of alkali metal, ammonium, amino alcohol and alkaline-earth metal salts, or a mixture of these compounds.
  • (Ci 2 -C 20 )alkyl sulfates comprising from 2 to 20 ethylene oxide units, especially in the form of alkali metal, ammonium, amino alcohol and alkaline-earth metal salts, or a mixture of these compounds.
  • sodium lauryl ether sulfate containing 2.2 mol of ethylene oxide.
  • amphoteric or zwitterionic surfactant(s), which are preferably non-silicone surfactant(s), which can be used in the present invention may especially be derivatives of optionally quaternized secondary or tertiary aliphatic amines, in which derivatives the aliphatic group is a linear or branched chain comprising from 8 to 22 carbon atoms, said amine derivatives containing at least one anionic group, for instance a carboxylate, sulfonate, sulfate, phosphate or phosphonate group.
  • R a represents a Ci 0 -C 3 o alkyl or alkenyl group derived from an acid R a COOH preferably present in hydrolysed coconut oil, or a heptyl, nonyl or undecyl group;
  • ⁇ R b represents a ⁇ -hydroxyethyl group
  • ⁇ R c represents a carboxymethyl group
  • ⁇ M + represents a cationic counterion derived from an alkali metal or alkaline- earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine, and
  • ⁇ X " represents an organic or inorganic anionic counterion, such as that chosen from halides, acetates, phosphates, nitrates, (CrC 4 )alkyl sulfates, (Ci-C 4 )alkyl or (d-
  • C 4 )alkylaryl sulfonates in particular methyl sulfate and ethyl sulfate; or alternatively M + and X " are absent;
  • ⁇ B represents the group -CH 2 -CH 2 -0-X'
  • ⁇ X' represents the group -CH 2 -C(0)OH, -CH 2 -C(0)OZ', -CH 2 -CH 2 -C(0)OH or -CH 2 - CH 2 -C(0)OZ', or a hydrogen atom;
  • ⁇ Y' represents the group -C(0)OH, -C(0)OZ' or -CH 2 -CH(OH)-S0 3 H or the group -CH 2 -CH(OH)-S0 3 -Z';
  • ⁇ Z' represents a cationic counterion derived from an alkali metal or alkaline-earth metal, such as sodium, an ammonium ion or an ion derived from an organic amine;
  • ⁇ R a ' represents a C 10 -C30 alkyl or alkenyl group of an acid R a -C(0)OH preferably present in hydrolysed linseed oil or coconut oil, an alkyl group, especially a Ci 7 alkyl group, and its iso form, or an unsaturated Ci 7 group.
  • cocoamphodiacetate sold by the company Rhodia under the trade name Miranol ® C2M Concentrate.
  • amphoteric or zwitterionic surfactants use is preferably made of (C 8 -C 2 o)alkyl betaines such as coco betaine, and (C 8 - C 2 o)alkylamido(C 3 -C 8 )alkyl betaines such as cocamidopropyl betaine, and mixtures thereof. More preferentially, the amphoteric or zwitterionic surfactant(s) are chosen from cocamidopropyl betaine and coco betaine.
  • the cationic surfactant(s) that can be used in the composition according to the invention comprise, for example, salts of optionally polyoxyalkylenated primary, secondary or tertiary fatty amines, quaternary ammonium salts, and mixtures thereof.
  • quaternary ammonium salts examples include:
  • R 8 to Rii which may be identical or different, represent a linear or branched aliphatic group comprising from 1 to 30 carbon atoms, or an aromatic group such as aryl or alkylaryl, it being understood that at least one of the groups R 8 to Rn comprises from 8 to 30 carbon atoms and preferably from 12 to 24 carbon atoms; and
  • ⁇ X " represents an organic or inorganic anionic counterion, such as that chosen from halides, acetates, phosphates, nitrates, (CrC 4 )alkyl sulfates, or (Ci-C 4 )alkyl- or (d- C 4 )alkylarylsulfonates, in particular methyl sulfate and ethyl sulfate.
  • the aliphatic groups of R 8 to Rn may also comprise heteroatoms, especially such as oxygen, nitrogen, sulfur and halogens.
  • the aliphatic groups of R 8 to Rn are chosen, for example, from C 1 -C30 alkyl, C 1 -C30 alkoxy, polyoxy(C 2 -C 6 )alkylene, Ci-C 30 alkylamide, (Ci 2 -C 22 )alkylamido(C 2 -C 6 )alkyl, (C 12 - C 22 )alkyl acetate and hydroxy(CrC 30 )alkyl groups, and X " is an anionic counterion chosen from halides, phosphates, acetates, lactates, (CrC 4 )alkyl sulfates, or (Ci-C 4 )alkyl- or (d- C 4 )alkylarylsulfonates.
  • quaternary ammonium salts of formula (A3) preference is given firstly to tetraalkylammonium chlorides, for instance dialkyldimethylammonium or alkyltrimethylammonium chlorides in which the alkyl group contains approximately from 12 to 22 carbon atoms, in particular behenyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride, benzyldimethylstearylammonium chloride, or else, secondly, distearoylethylhydroxyethylmethylammonium methosulfate, dipalmitoylethylhydroxyethyl- ammonium methosulfate or distearoylethylhydroxyethylammonium methosulfate, or else, lastly, palmitylamidopropyltrimethylammonium chloride or stearamidopropyl- dimethyl(myristyl acetate)ammonium
  • ⁇ Ri 2 represents an alkenyl or alkyl group comprising from 8 to 30 carbon atoms, for example fatty acid derivatives of tallow;
  • ⁇ Ri 3 represents a hydrogen atom, a C C 4 alkyl group or an alkenyl or alkyl group comprising from 8 to 30 carbon atoms;
  • ⁇ Ri4 represents a C C 4 alkyl group
  • ⁇ Ri 5 represents a hydrogen atom or a C C 4 alkyl group
  • ⁇ X " represents an organic or inorganic anionic counterion, such as that chosen from halides, phosphates, acetates, lactates, (Ci-C 4 )alkyl sulfates, or (Ci-C 4 )alkyl- or (d-
  • R-I2 and Ri 3 preferably denote a mixture of alkenyl or alkyl groups comprising from 12 to 21 carbon atoms, for example tallow fatty acid derivatives, Ri 4 denotes a methyl group and Ri 5 denotes a hydrogen atom.
  • a product is sold, for example, under the name Rewoquat® W 75 by the company Rewo,
  • ⁇ R16 denotes an alkyl group comprising approximately from 16 to 30 carbon atoms, which is optionally hydroxylated and/or interrupted with one or more oxygen atoms;
  • Ri 7 is chosen from hydrogen, an alkyl group comprising from 1 to 4 carbon atoms or a -(CH 2 ) 3 -N + (R 16a )(R 17a )(R 18a ),X- group;
  • R 16a , Ri7a, Riea, Ri8, Ri9, R20 and R21 which may be identical or different, are chosen from hydrogen and an alkyl group comprising from 1 to 4 carbon atoms;
  • ⁇ X " which may be identical or different, represents an organic or inorganic anionic counterion, such as that chosen from halides, acetates, phosphates, nitrates, (CrC 4 )alkyl sulfates, or (CrC 4 )alkyl- (d-C 4 )alkylaryl sulfonates, in particular methyl sulfate and ethyl sulfate.
  • Such compounds are, for example, Finquat CT-P, provided by the company Finetex (Quaternium 89), and Finquat CT, provided by the company Finetex (Quaternium 75);
  • R 2 2 is chosen from CrC 6 alkyl and CrC 6 hydroxyalkyl or dihydroxyalkyl groups
  • ⁇ R23 is chosen from:
  • ⁇ R25 is chosen from:
  • Ci-C 6 hydrocarbon-based groups - linear or branched, saturated or unsaturated Ci-C 6 hydrocarbon-based groups
  • R24, R26 and R 2 e which may be identical or different, are chosen from linear or branched, saturated or unsaturated C7-C21 hydrocarbon-based groups;
  • ⁇ r, s and t which are identical or different, are integers having values from 2 to 6,
  • ⁇ x and z which are identical or different, are integers having values from 0 to 10,
  • ⁇ X " represents an organic or inorganic anionic counterion
  • the alkyl groups R 22 may be linear or branched, and more particularly linear.
  • R 22 denotes a methyl, ethyl, hydroxyethyl or dihydroxypropyl group, and more particularly a methyl or ethyl group.
  • the sum x + y + z is from 1 to 10.
  • R 23 is a hydrocarbon-based group R 27 , it may be long and contain from 12 to
  • 22 carbon atoms or may be short and contain from 1 to 3 carbon atoms.
  • R 25 is a hydrocarbon-based group R 29 , it preferably contains 1 to 3 carbon atoms.
  • R 24 , R 26 and R 28 which may be identical or different, are chosen from linear or branched, saturated or unsaturated Cn-C 2 i hydrocarbon-based groups, and more particularly from linear or branched, saturated or unsaturated Cn-C 2 i alkyl and alkenyl groups.
  • x and z which are identical or different, have the value 0 or 1.
  • y is equal to 1.
  • r, s and t which are identical or different, have the value 2 or 3, and even more particularly are equal to 2.
  • the anionic counterion X " is preferably a halide, such as chloride, bromide or iodide; a (CrC 4 )alkyl sulfate or a (CrC 4 )alkyl- or (Ci-C 4 )alkylarylsulfonate.
  • a halide such as chloride, bromide or iodide
  • a (CrC 4 )alkyl sulfate or a (CrC 4 )alkyl- or (Ci-C 4 )alkylarylsulfonate it is possible to use methanesulfonate, phosphate, nitrate, tosylate, an anion derived from an organic acid, such as acetate or lactate, or any other anion that is compatible with the ammonium containing an ester function.
  • the anionic counterion X " is even more particularly chloride, methyl sulfate or ethyl sulfate.
  • R 22 denotes a methyl or ethyl group
  • - R 2 5 is chosen from:
  • R24, R26 and R 2 e which are identical or different, are chosen from saturated or unsaturated and linear or branched C13-C17 hydrocarbon groups, and preferably from saturated or unsaturated and linear or branched C13-C17 alkyl and alkenyl groups.
  • hydrocarbon radicals are linear.
  • examples that may be mentioned include salts, especially the chloride or methyl sulfate, of diacyloxyethyldimethylammonium, diacyloxyethylhydroxyethylmethylammonium,
  • acyl groups preferably contain 14 to 18 carbon atoms and are obtained more particularly from a vegetable oil, such as palm oil or sunflower oil. When the compound contains several acyl groups, these groups may be identical or different.
  • This esterification is followed by a quaternization by means of an alkylating agent such as an alkyl halide, preferably methyl or ethyl halide, a dialkyi sulfate, preferably dimethyl or diethyl sulfate, methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin.
  • an alkylating agent such as an alkyl halide, preferably methyl or ethyl halide, a dialkyi sulfate, preferably dimethyl or diethyl sulfate, methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin.
  • Such compounds are sold, for example, under the names Dehyquart® by the company Henkel, Stepanquat® by the company Stepan, Noxamium® by the company Ceca or Rewoquat® WE 18 by the company Rewo-Witco.
  • composition according to the invention may contain, for example, a mixture of quaternary ammonium monoester, diester and triester salts with a weight majority of diester salts.
  • ammonium salts containing at least one ester function that are described in patents US-A-4 874 554 and US-A-4 137 180.
  • Use may be made of behenoylhydroxypropyltrimethylammonium chloride sold by KAO under the name Quatarmin BTC 131 .
  • the ammonium salts containing at least one ester function contain two ester functions.
  • the cationic surfactants that may be present in the composition according to the invention, it is more particularly preferred to choose cetyltrimethylammonium, behenyltrimethylammonium and dipalmitoylethylhydroxyethylmethylammonium salts, and mixtures thereof, and more particularly behenyltrimethylammonium chloride, cetyltrimethylammonium chloride, and dipalmitoylethylhydroxyethylammonium methosulfate, and mixtures thereof.
  • nonionic surfactants that may be used in the composition used according to the invention are described, for example, in the Handbook of Surfactants by M.R. Porter, published by Blackie & Son (Glasgow and London), 1991 , pp. 1 16-178. They are especially chosen from polyethoxylated, polypropoxylated and/or polyglycerolated alcohols, a-diols and (CrC 2 o)alkylphenols, containing at least one fatty chain comprising, for example, from 8 to 40 carbon atoms, the number of ethylene oxide and/or propylene oxide groups possibly ranging especially from 2 to 200, and the number of glycerol groups possibly ranging especially from 2 to 30.
  • the nonionic surfactants are chosen more particularly from mono- or polyoxyalkylenated or mono- or polyglycerolated nonionic surfactants.
  • the oxyalkylene units are more particularly oxyethylene or oxypropylene units, or their combination, preferably oxyethylene units.
  • oxyalkylenated nonionic surfactants examples include: ⁇ oxyalkylenated (C 8 -C 2 4)alkylphenols;
  • esters of saturated or unsaturated, linear or branched C 8 -C 3 o acids and of polyethylene glycols • esters of saturated or unsaturated, linear or branched C 8 -C 3 o acids and of polyethylene glycols;
  • the surfactants contain a number of moles of ethylene oxide and/or of propylene oxide of between 1 and 100, preferably between 2 and 50 and preferably between 2 and 30.
  • the nonionic surfactants do not comprise oxypropylene units.
  • the oxyalkylenated nonionic surfactants are chosen from oxyethylenated C 8 -C 30 alcohols comprising from 1 to 100 mol of ethylene oxide; and polyoxyethylenated esters of saturated or unsaturated and linear or branched C 8 -C 30 acids and of sorbitol comprising from 1 to 100 mol of ethylene oxide.
  • monoglycerolated or polyglycerolated nonionic surfactants monoglycerolated or polyglycerolated nonionic surfactants.
  • monoglycerolated or polyglycerolated C 8 -C 4 o alcohols are preferably used.
  • R 2 9 represents a linear or branched C 8 -C 40 and preferably C 8 -C 3 o alkyl or alkenyl radical
  • ⁇ m represents a number ranging from 1 to 30 and preferably from 1 to 10.
  • lauryl alcohol containing 4 mol of glycerol (INCI name: Polyglyceryl-4 Lauryl Ether), lauryl alcohol containing 1 .5 mol of glycerol, oleyl alcohol containing 4 mol of glycerol (INCI name: Polyglyceryl-4 Oleyl Ether), oleyl alcohol containing 2 mol of glycerol (INCI name: Polyglyceryl-2 Oleyl Ether), cetearyl alcohol containing 2 mol of glycerol, cetearyl alcohol containing 6 mol of glycerol, oleyl/cetyl alcohol containing 6 mol of glycerol, and octadecanol containing 6 mol of glycerol.
  • the alcohol of formula (A7) may represent a mixture of alcohols in the same way that the value of m represents a statistical value, which means that, in a commercial product, several species of polyglycerolated fatty alcohols may coexist in the form of a mixture.
  • the monoglycerolated or polyglycerolated alcohols it is more particularly preferred to use the C 8 /Ci 0 alcohol containing 1 mol of glycerol, the C1 0 /C12 alcohol containing 1 mol of glycerol and the C12 alcohol containing 1.5 mol of glycerol.
  • the surfactant(s) used in the composition of the invention are chosen from nonionic monooxyalkylenated or polyoxyalkylenated surfactants, more particularly monooxyethylenated or polyoxyethylenated, or monooxypropylenated or polyoxypropylenated, nonionic surfactants, or a combination thereof, more particularly monooxyethylenated or polyoxyethylenated.
  • the surfactant(s) are chosen from nonionic surfactants or from anionic surfactants. More particularly, the surfactant(s) present in the composition are chosen from nonionic surfactants.
  • the nonionic surfactants are chosen from polyoxyethylenated sorbitol esters and polyoxyethylenated fatty alcohols, and mixtures thereof.
  • the amount of surfactant(s) in the composition preferably ranges from 0.1 % to 50% by weight and better still from 0.5% to 20% by weight relative to the total weight of composition (I).
  • Basifying agents :
  • composition (I) according to the invention comprises one or more basifying agents.
  • the basifying agent(s) may be mineral or organic or hybrid.
  • the term “mineral compound” means any compound bearing in its structure one or more elements from columns 1 to 13 of the Periodic Table of the Elements other than hydrogen.
  • the mineral basifying agent contains one or more elements from columns 1 and 2 of the Periodic Table of the Elements other than hydrogen.
  • the mineral basifying agent has the following structure:
  • Z 2 denotes a metal from columns 1 to 13 and preferably 1 or 2 of the Periodic Table of the Elements, such as sodium or potassium;
  • Zi * denotes an anion chosen from the ions C0 3 2" , OH “ , HC0 3 2” , Si0 3 2” , HP0 4 2" ,
  • P0 4 3" and B 4 0 7 2" and preferably from the ions C0 3 2" , OH " and Si0 3 2" ;
  • x denotes 1 , 2 or 3;
  • y denotes 1 , 2, 3 or 4;
  • n and n denote, independently of each other, 1 , 2, 3 or 4;
  • the mineral basifying agent(s) are preferably chosen from aqueous ammonia, alkali metal carbonates or bicarbonates such as sodium or potassium carbonates and sodium or potassium bicarbonates, sodium hydroxide or potassium hydroxide, sodium metasilicate or potassium metasilicate, or mixtures thereof, preferably from aqueous ammonia, alkali metal carbonates or bicarbonates such as sodium or potassium carbonates and sodium or potassium bicarbonates, sodium hydroxide or potassium hydroxide, or mixtures thereof,
  • the basifying agent is chosen from aqueous ammonia, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium metasilicate and potassium metasilicate, and a mixture thereof, and preferably from alkali metal carbonates.
  • the organic basifying agent(s) are preferably chosen from organic amines with a pK b at 25°C of less than 12, preferably less than 10 and even more advantageously less than 6. It should be noted that it is the pK b corresponding to the functional group of highest basicity.
  • the organic amines do not comprise any alkyl or alkenyl fatty chains comprising more than ten carbon atoms.
  • the organic basifying agent(s) are chosen, for example, from alkanolamines, oxyethylenated and/or oxypropylenated ethylenediamines, amino acids and the compounds of formula (i) below:
  • W is a divalent Ci-C 6 alkylene residue optionally substituted with a hydroxyl group or a Ci-C 6 alkyl radical; and/or optionally interrupted with one or more heteroatoms such as O, or NRu; Rx, Ry, Rz, Rt and Ru, which may be identical or different, represent a hydrogen atom or a Ci-C 6 alkyl, Ci-C 6 hydroxyalkyl or CrC 6 aminoalkyl radical.
  • amines of formula (i) examples include 1 ,3- diaminopropane, 1 ,3-diamino-2-propanol, spermine and spermidine.
  • alkanolamine means an organic amine comprising a primary, secondary or tertiary amine function, and one or more linear or branched CrC 8 alkyl groups bearing one or more hydroxyl radicals.
  • Organic amines chosen from alkanolamines such as monoalkanolamines, dialkanolamines or trialkanolamines, comprising one to three identical or different Ci-C 4 hydroxyalkyl radicals, are in particular suitable for implementing the invention.
  • MEA diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, ⁇ , ⁇ -dimethylethanolamine, 2-amino-2-methyl-1 -propanol, triisopropanolamine, 2-amino- 2-methyl-1 ,3-propanediol, 3-amino-1 ,2-propanediol, 3-dimethylamino-1 ,2-propanediol and tris(hydroxymethyl)aminomethane.
  • amino acids that can be used are of natural or synthetic origin, in their L, D or racemic form, and comprise at least one acid function chosen more particularly from carboxylic acid, sulfonic acid, phosphonic acid or phosphoric acid functions.
  • the amino acids may be in neutral or ionic form.
  • the amino acids are basic amino acids comprising an additional amine function optionally included in a ring or in a ureido function.
  • Such basic amino acids are preferably chosen from those corresponding to formula (ii) below:
  • R represents a group chosen from:
  • the compounds corresponding to formula (ii) are histidine, lysine, arginine, ornithine and citrulline.
  • the organic amine may also be chosen from organic amines of heterocyclic type. Besides histidine that has already been mentioned in the amino acids, mention may in particular be made of pyridine, piperidine, imidazole, triazole, tetrazole and benzimidazole.
  • the organic amine may also be chosen from amino acid dipeptides.
  • amino acid dipeptides that can be used in the present invention, mention may be made especially of carnosine, anserine and baleine.
  • the organic amine may also be chosen from compounds comprising a guanidine function.
  • amines of this type that can be used in the present invention, besides arginine, which has already been mentioned as an amino acid, mention may be made especially of creatine, creatinine, 1 ,1 -dimethylguanidine, 1 ,1 -diethylguanidine, glycocyamine, metformin, agmatine, N-amidinoalanine, 3-guanidinopropionic acid, 4- guanidinobutyric acid and 2-([amino(imino)methyl]amino)ethane-1 -sulfonic acid.
  • Hybrid compounds that may be mentioned include the salts of the amines mentioned previously with acids such as carbonic acid or hydrochloric acid.
  • Guanidine carbonate or monoethanolamine hydrochloride may be used in particular.
  • the basifying agent(s) present in the composition of the invention are chosen from aqueous ammonia, alkanolamines, amino acids in neutral or ionic form, in particular basic amino acids, and preferably corresponding to those of formula (ii).
  • composition (I) has a content of basifying agent(s) ranging from 0.01 % to 30% by weight and preferably from 0.1 % to 20% by weight relative to the weight of the said composition.
  • composition (I) according to the invention or else the process according to the invention does not use aqueous ammonia, or a salt thereof, as basifying agent.
  • composition (I) does use aqueous ammonia, or a salt thereof, as basifying agent, its content should advantageously not exceed 0.03% by weight (expressed as NH 3 ), preferably should not exceed 0.01 % by weight, relative to the weight of the composition of the invention.
  • composition (I) comprises aqueous ammonia, or a salt thereof
  • amount of basifying agent(s) other than the aqueous ammonia is greater than that of the aqueous ammonia (expressed as NH 3 ).
  • Composition (I) according to the invention comprises one or more "sparingly reactive" oxidation bases.
  • the sparingly reactive oxidation base(s) are chosen from ionic or nonionic, benzenic or heterocyclic compounds containing at least one amine function; the benzenic compounds also comprise an additional amine or hydroxyl function para or ortho to the first amine function; the said compounds having an HOMO energy value of less than or equal to (-180-a) expressed in kcal/mol with:
  • HOMO energy value calculations are performed using the GEOMOS software (Geometry Optimisation of Molecular Orbitals-Solid/Solvent). It is recalled that HOMO corresponds to the highest occupied molecular orbital (QCPE 584a software; year 1989).
  • the sparingly reactive oxidation base(s) are chosen from:
  • benzenic compounds comprising an amine function non substituted or substituted with a C1-C4 alkyl group optionally bearing a hydroxyl group and also comprising an additional amine function non substituted or substituted with a C1-C4 alkyl group optionally bearing a hydroxyl group, or an additional hydroxyl function;
  • aromatic or non-aromatic 5- to 6-membered heterocyclic compounds containing 1 to 3 heteroatoms, preferably nitrogen, optionally substituted with a hydrogen or C1-C4 alkyl group, the said heterocycle being optionally fused to a heterocyclic or non- heterocyclic 5- or 6-membered nucleus comprising 1 or 2 heteroatoms, advantageously nitrogen, optionally substituted with a hydrogen or C1-C4 alkyl group;
  • the compounds may optionally be substituted with a C1-C2 alkyl group; trifluoromethyl; a halogen such as chlorine or fluorine; nitro; carboxylic in acid form or in the form of an alkali metal, alkaline-earth metal or ammonium salt; sulfonic in acid form or in the form of an alkali metal, alkaline-earth metal or ammonium salt; sulfonamido optionally substituted preferably with one or two identical or different groups, representing a Ci-C 6 alkyl group optionally bearing a hydroxyl group; amido optionally substituted preferably with one or two identical or different groups, representing a Ci-C 6 alkyl group optionally bearing a hydroxyl group; preferably, a Ci-C 2 alkyl group; trifluoromethyl; a halogen such as chlorine or fluorine; carboxylic in acid form or in the form of an alkali metal, alkaline-earth metal or ammonium salt; sulf
  • the sparingly reactive oxidation base(s) comprise at least one primary amine function.
  • Examples of such bases include 2-trifluoromethyl-p- phenylenediamine, 2-amino-5-hydroxybenzoic acid, 2,5-diaminobenzenesulfonic acid, 5- aminosalicylic acid and 3,5-diamino-1 ,2,4-triazole, and the addition salts thereof with acids.
  • the content of oxidation base of this type usually ranges from 0.001 % to 20% by weight relative to the weight of the composition, and more preferentially from 0.1 % to 10% by weight relative to the weight of composition (I).
  • Composition (I) according to the invention may also comprise one or more additional couplers, usually used in oxidation dyeing.
  • additional couplers usually used in oxidation dyeing.
  • couplers mention may be made especially of meta- phenylenediamines, meta-aminophenols, meta-diphenols, naphthalene-based couplers and heterocyclic couplers, and also the addition salts thereof.
  • Composition (I) according to the invention may optionally comprise at least one additional oxidation base, other than the sparingly reactive oxidation base(s) defined previously.
  • Additional oxidation bases include benzenic or heterocyclic oxidation bases and mixtures thereof, such as para-phenylenediamines, bis(phenyl)alkylenediamines, para-aminophenols, ortho-aminophenols and heterocyclic bases, and the addition salts thereof.
  • para-phenylenediamines that may be mentioned, for example, are para- phenylenediamine, para-toluenediamine, 2-chloro-para-phenylenediamine, 2,3-dimethyl- para-phenylenediamine, 2,6-dimethyl-para-phenylenediamine, 2,6-diethyl-para- phenylenediamine, 2,5-dimethyl-para-phenylenediamine, N,N-dimethyl-para- phenylenediamine, ⁇ , ⁇ -diethyl-para-phenylenediamine, N,N-dipropyl-para- phenylenediamine, 4-amino-N,N-diethyl-3-methylaniline, N,N-bis( -hydroxyethyl)-para- phenylenediamine, 4-N,N-bis( -hydroxyethyl)amino-2-methylaniline, 4-N,N-bis( -N-bis
  • para-phenylenediamine para-toluenediamine, 2-isopropyl-para-phenylenediamine, 2- -hydroxyethyl-para- phenylenediamine, 2-p ⁇ hydroxyethyloxy-para-phenylenediamine, 2,6-dimethyl-para- phenylenediamine, 2,6-diethyl-para-phenylenediamine, 2,3-dimethyl-para- phenylenediamine, N,N-bis( -hydroxyethyl)-para-phenylenediamine, 2-chloro-para- phenylenediamine and 2- -acetylaminoethyloxy-para-phenylenediamine, and the addition salts thereof with an acid, are particularly preferred.
  • N,N'-bis( -hydroxyethyl)-N,N'-bis(4'-aminophenyl)-1 ,3-diaminopropanol N,N'-bis-( - hydroxyethyl)-N,N'-bis(4'-aminophenyl)ethylenediamine, N,N'-bis(4-aminophenyl)- tetramethylenediamine, N,N'-bis( -hydroxyethyl)-N,N'-bis(4-aminophenyl)tetramethylene- diamine, N,N'-bis(4-methylaminophenyl)tetramethylenediamine, N,N'-bis(ethyl)-N,N'- bis(4'-amino-3'-methylphenyl)ethylenediamine, 1 ,8-bis(2,5-diaminophenoxy)-3,6-dioxa- octane, and
  • para-aminophenols that may be mentioned, for example, are para- aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 4-amino-3-chlorophenol, 4-amino-3-hydroxymethylphenol, 4-amino-2-methylphenol, 4-amino-2- hydroxymethylphenol, 4-amino-2-methoxymethylphenol, 4-amino-2-aminomethylphenol, 4-amino-2-( -hydroxyethylaminomethyl)phenol and 4-amino-2-fluorophenol, and the addition salts thereof with an acid.
  • ortho-aminophenols that may be mentioned, for example, are 2- aminophenol, 2-amino-5-methylphenol, 2-amino-6-methylphenol and 5-acetamido-2- aminophenol, and the addition salts thereof.
  • heterocyclic bases by way of example, of pyridine derivatives, pyrimidine derivatives and pyrazole derivatives.
  • pyridine derivatives that may be mentioned are the compounds described, for example, in patents GB 1 026 978 and GB 1 153 196, for instance 2,5- diaminopyridine, 2-(4-methoxyphenyl)amino-3-aminopyridine and 3,4-diaminopyridine, and the addition salts thereof.
  • pyridine oxidation bases that are useful in the present invention are the 3- aminopyrazolo[1 ,5-a]pyridine oxidation bases or addition salts thereof described, for example, in patent application FR 2801308.
  • Examples that may be mentioned include pyrazolo[1 ,5-a]pyrid-3-ylamine, 2-acetylaminopyrazolo[1 ,5-a]pyrid-3-ylamine, 2- morpholin-4-ylpyrazolo[1 ,5-a]pyrid-3-ylamine, 3-aminopyrazolo[1 ,5-a]pyridine-2- carboxylic acid, 2-methoxypyrazolo[1 ,5-a]pyrid-3-ylamine, (3-aminopyrazolo[1 ,5-a]pyrid- 7-yl)methanol, 2-(3-aminopyrazolo[1 ,5-a]pyrid-5-yl)ethanol, 2-(3-
  • pyrimidine derivatives that may be mentioned are the compounds described, for example, in patents DE 2359399; JP 88-169571 ; JP 05-63124; EP 0770375 or patent application WO 96/15765, such as 2,4,5,6-tetraaminopyrimidine, 4- hydroxy-2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6- diaminopyrimidine, 2,5,6-triaminopyrimidine and their addition salts and their tautomeric forms, when a tautomeric equilibrium exists.
  • pyrazole derivatives that may be mentioned are the compounds described in patents DE 3843892, DE 4133957 and patent applications WO 94/08969, WO 94/08970, FR-A-2 733 749 and DE 195 43 988, such as 4,5-diamino-1 - methylpyrazole, 4,5-diamino-1-( -hydroxyethyl)pyrazole, 3,4-diaminopyrazole, 4,5- diamino-1 -(4'-chlorobenzyl)pyrazole, 4,5-diamino-1 ,3-dimethylpyrazole, 4,5-diamino-3- methyl-1 -phenylpyrazole, 4,5-diamino-1 -methyl-3-phenylpyrazole, 4-amino-1 ,3-dimethyl- 5-hydrazinopyrazole, 1 -benzyl-4,5-diamino-3-methylpyrazole, 4,5
  • Use will preferably be made of a 4,5-diaminopyrazole and even more preferentially of 4,5-diamino-1-( -hydroxyethyl)pyrazole and/or a salt thereof.
  • Pyrazoles that may also be mentioned include diamino-N,N- dihydropyrazolopyrazolones and especially those described in patent application FR-A- 2 886 136, such as the following compounds and the addition salts thereof: 2,3-diamino- 6,7-dihydro-1 H,5H-pyrazolo[1 ,2-a]pyrazol-1 -one, 2-amino-3-ethylamino-6,7-dihydro- 1 H,5H-pyrazolo[1 ,2-a]pyrazol-1 -one, 2-amino-3-isopropylamino-6,7-dihydro-1 H,5H- pyrazolo[1 ,2-a]pyrazol-1 -one, 2-amino-3-(pyrrolidin-1 -yl)-6,7-dihydro-1 H,5H-pyrazolo[1 ,2- a]pyrazol-1 -one, 4,5-diamino
  • Use will preferably be made of 2,3-diamino-6,7-dihydro-1 H,5H-pyrazolo[1 ,2- a]pyrazol-1 -one and/or one of its salts.
  • Use will preferably be made, as heterocyclic bases, of 4,5-diamino-1-(P- hydroxyethyl)pyrazole and/or 2,3-diamino-6,7-dihydro-1 H,5H-pyrazolo[1 ,2-a]pyrazol-1 - one and/or one of their salts.
  • the additional oxidation base(s) each advantageously represent from 0.0001 % to 10% by weight relative to the total weight of the composition, and preferably from 0.005% to 5% by weight relative to the total weight of composition (I).
  • the addition salts of the oxidation bases (sparingly reactive or additional) and of the couplers that may be used in the context of the invention are especially selected from the addition salts with an acid such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates and acetates.
  • an acid such as the hydrochlorides, hydrobromides, sulfates, citrates, succinates, tartrates, lactates, tosylates, benzenesulfonates, phosphates and acetates.
  • Composition (I) according to the invention may optionally comprise one or more synthetic or natural direct dyes, chosen from ionic or nonionic species, preferably cationic or nonionic species.
  • Suitable synthetic direct dyes include azo direct dyes; (poly)methine dyes such as cyanins, hemicyanins and styryls; carbonyl dyes; azine dyes; nitro(hetero)aryl dyes; tri(hetero)arylmethane dyes; porphyrin dyes; and phthalocyanin dyes, alone or as mixtures.
  • composition (I) is preferably an aqueous composition.
  • aqueous composition is understood to mean a composition comprising more than 5% by weight of water, preferably more than 10% by weight of water and more advantageously still more than 20% by weight of water.
  • Composition (I) according to the invention may optionally comprise one or more organic solvents.
  • organic solvents examples include linear or branched C 2 - C 4 alkanols, such as ethanol and isopropanol; glycerol; polyols and polyol ethers, for instance 2-butoxyethanol, propylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether and monoethyl ether, and also aromatic alcohols, for instance benzyl alcohol or phenoxyethanol, and mixtures thereof.
  • linear or branched C 2 - C 4 alkanols such as ethanol and isopropanol
  • glycerol polyols and polyol ethers
  • 2-butoxyethanol propylene glycol
  • dipropylene glycol propylene glycol monomethyl ether
  • diethylene glycol monomethyl ether and monoethyl ether diethylene glycol monomethyl ether and monoethyl ether
  • aromatic alcohols for instance benzyl alcohol or phenoxyethanol
  • the solvent(s), if they are present, represent a content usually ranging from 1 % to 40% by weight and preferably from 5% to 30% by weight relative to the weight of composition (I).
  • Composition (I) according to the invention may also contain various adjuvants conventionally used in hair dye compositions, such as anionic, cationic, nonionic, amphoteric or zwitterionic polymers or mixtures thereof; mineral thickeners, and in particular fillers such as clays or talc; organic thickeners with, in particular, anionic, cationic, nonionic and amphoteric polymeric associative thickeners other than the polymers mentioned previously; antioxidants; penetrants; sequestrants; fragrances; dispersants; film-forming agents; ceramides; preserving agents; opacifiers.
  • adjuvants conventionally used in hair dye compositions, such as anionic, cationic, nonionic, amphoteric or zwitterionic polymers or mixtures thereof; mineral thickeners, and in particular fillers such as clays or talc; organic thickeners with, in particular, anionic, cationic, nonionic and amphoteric polymeric associative thickeners other than the
  • the above adjuvants are generally present in an amount for each of them of between 0.01 % and 20% by weight relative to the weight of the composition.
  • the composition may also comprise one or more mineral or organic thickeners.
  • the mineral thickeners may be chosen from organophilic clays and mineral fillers.
  • the organophilic clay may be chosen from montmorillonite, bentonite, hectorite, attapulgite and sepiolite, and mixtures thereof.
  • the clay is preferably a bentonite or a hectorite. These clays can be modified with a chemical compound chosen from quaternary ammoniums, tertiary amines, amine acetates, imidazolines, amine soaps, fatty sulfates, alkylarylsulfonates and amine oxides, and their mixtures.
  • quaternium-18 bentonites such as those sold under the names Bentone 3, Bentone 38 and Bentone 38V by Rheox, Tixogel VP by United Catalyst and Claytone 34, Claytone 40 and Claytone XL by Southern Clay; stearalkonium bentonites, such as those sold under the names Bentone 27 by Rheox, Tixogel LG by United Catalyst and Claytone AF and Claytone APA by Southern Clay; quaternium-18/benzalkonium bentonites, such as those sold under the names Claytone HT and Claytone PS by Southern Clay; quaternium-18 hectorites, such as those sold under the names Bentone Gel DOA, Bentone Gel EC05, Bentone Gel EUG, Bentone Gel IPP, Bentone Gel ISD, Bentone Gel SS71 , Bentone Gel VS8 and Bentone Gel VS38 by Rheox, and Simagel M and Simagel SI 345 by Biophil.
  • the mineral thickeners are chosen from inorganic fillers, in particular kaolinite.
  • the organic thickener(s) may be chosen from associative or non-associative thickening polymers, in particular associative thickening polymers.
  • the term "associative thickening polymer” means a thickening polymer comprising at least one C 8 -C 30 fatty chain and at least one hydrophilic unit.
  • the associative thickening polymers are chosen from polyurethane polyethers comprising in their chain both hydrophilic blocks usually of polyoxyethylenated nature and hydrophobic blocks, which may be aliphatic sequences alone and/or cycloaliphatic and/or aromatic sequences.
  • Aculyn 46® is a polycondensate of polyethylene glycol containing 150 or 180 mol of ethylene oxide, of stearyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 15% by weight in a matrix of maltodextrin (4%) and water (81 %);
  • Aculyn 44® is a polycondensate of polyethylene glycol containing 150 or 180 mol of ethylene oxide, of decyl alcohol and of methylenebis(4-cyclohexyl isocyanate) (SMDI), at 35% by weight in a mixture of propylene glycol (39%) and water (26%)].
  • the thickeners represent from 1 % to 30% by weight relative to the weight of composition (I).
  • composition (I) comprises one or more chemical oxidizing agents (in other words, an oxidizing agent which is not only atmospheric oxygen). More particularly, the oxidizing agent(s) are chosen from hydrogen peroxide, urea peroxide, alkali metal bromates or ferricyanides, peroxygenated salts, for instance alkali metal or alkaline-earth metal persulfates, perborates, peracids and precursors thereof, and percarbonates of alkali metals or alkaline-earth metals, and peracids and precursors thereof.
  • the oxidizing agent(s) are chosen from hydrogen peroxide, urea peroxide, alkali metal bromates or ferricyanides, peroxygenated salts, for instance alkali metal or alkaline-earth metal persulfates, perborates, peracids and precursors thereof, and percarbonates of alkali metals or alkaline-earth metals, and peracids and precursors thereof.
  • This chemical oxidizing agent advantageously consists of hydrogen peroxide, in particular in aqueous solution (aqueous hydrogen peroxide solution), the concentration of which may vary, more particularly from 0.1 % to 50% by weight, even more preferentially from 0.5% to 20% by weight and better still from 1 % to 15% by weight relative to composition (I).
  • composition (I) may result from the mixing of a composition (B) comprising one or more alkaline agents and one or more sparingly reactive oxidation bases as defined previously and a composition (C) comprising one or more chemical oxidizing agents as defined previously.
  • Compositions (B) and (C) are preferably aqueous. They may especially be in the form of direct or inverse emulsions.
  • compositions (B) and (C) above may also result from the mixing of three compositions, the first two being compositions (B) and (C) above and the third composition being a composition (D) comprising at least one fatty substance as defined previously.
  • composition (D) may be anhydrous or aqueous. It is preferably anhydrous.
  • the pH of the oxidizing composition (C), when it is aqueous, is less than 7.
  • compositions (A) and (I) are mixed together, and the mixture made is then applied to wet or dry keratin fibres.
  • composition (A) and composition (I) which may result from the extemporaneous mixing of compositions (B), (C) and optionally (D) are applied successively to wet or dry keratin fibres, with or without intermediate rinsing.
  • composition (A) is applied before composition (I).
  • the leave-on time of composition (A) on the keratin fibres may range from 5 to 15 minutes and is preferably 10 minutes.
  • composition (A) is applied to the keratin fibres and is left on for 10 minutes at room temperature.
  • composition (A) is sprayed onto the keratin fibres.
  • composition (I) which may result from the mixing of compositions (B), (C) and optionally (D), may be left in place on the keratin fibres for a time generally from about 1 minute to 1 hour, preferably from 5 minutes to 40 minutes and preferably for 35 minutes.
  • the temperature during the process is conventionally between room temperature (between 15 and 25°C) and 80°C and preferably between room temperature and 60°C.
  • composition (A) is applied to wet or dry keratin fibres and the fibres are then dried at a temperature ranging from room temperature to 60°C, in particular at 50°C, followed by the successive application, without intermediate rinsing, of composition (I) resulting from the extemporaneous mixing before application of compositions (B), (C) and optionally (D).
  • the drying step may last for 5 to 20 minutes and preferably for 5 to 15 minutes, and is especially 10 minutes.
  • the human keratin fibres are optionally rinsed with water, optionally washed with a shampoo and then rinsed with water, before being dried or left to dry.
  • the keratin fibres are dried under a hood at a temperature ranging from 50 to 80°C.
  • the process for dyeing keratin fibres comprises the use:
  • composition (A) comprising one or more metal salts chosen from transition metal salts, in particular organic acid salts and inorganic salts of transition metals, and rare-earth metal salts, in particular inorganic salts, preferably manganese, vanadium and cerium salts,
  • composition (b) comprising one or more alkaline agents chosen from alkanolamines and one or more sparingly reactive oxidation bases,
  • composition (c) of a composition (C) comprising one or more chemical oxidizing agents (d) of a composition (D) comprising one or more fatty substances chosen from liquid petroleum jelly, C 6 -Ci 6 alkanes, polydecenes, liquid esters of fatty acids and/or of fatty alcohols, and liquid fatty alcohols, or mixtures thereof, in which composition (A) is applied to the keratin fibres, followed by applying to the said fibres the composition resulting from the extemporaneous mixing of compositions (B), (C) and (D).
  • the invention relates to a multi-compartment device comprising a first compartment containing a cosmetic composition (A) comprising one or more metal catalysts as defined previously, a second compartment containing a cosmetic composition (B) comprising one or more basifying agents and one or more sparingly reactive oxidation bases as defined previously, and a third compartment containing a composition (C) comprising one or more chemical oxidizing agents as defined previously, at least one fatty substance as defined previously being present in at least one of the compositions (B) or (C) such that, after mixing together compositions (B) and (C), the fatty substance content is greater than or equal to 10% by weight relative to the total weight of the mixture of compositions (B) and (C).
  • the device comprises a fourth compartment comprising a composition (D) comprising one or more fatty substances, the said composition (D) being intended to be mixed with compositions (B) and (C), the fatty substance content being greater than or equal to 10% relative to the total weight of the mixture of compositions (B), (C) and (D), composition (B) or (C) optionally containing one or more fatty substances.
  • a composition (D) comprising one or more fatty substances
  • the said composition (D) being intended to be mixed with compositions (B) and (C), the fatty substance content being greater than or equal to 10% relative to the total weight of the mixture of compositions (B), (C) and (D), composition (B) or (C) optionally containing one or more fatty substances.
  • the device is suitable for implementing the dyeing process according to the invention.
  • a man anese luconate solution "A" is prepared.
  • compositions that follow are prepared; the amounts are expressed in gram%, unless otherwise indicated.
  • Dye compositions (I) at the time of use, 10 g of composition (D), 4 g of composition (B) and 15 g of composition (C) are mixed together to obtain a dye composition (I).
  • the pH of the dye composition obtained is 9.7.
  • Step 1 vaporization of the metal salt solution onto a lock of Caucasian hair containing 90% white hairs, placed vertically on a support.
  • the bath ratio "solution/hair" is 1/1 (w/w).
  • the leave-on time is 10 minutes at room temperature.
  • Step 2 drying of the lock under a hood (60°C) for 10 minutes.
  • Step 3 application of the mixture of the dye compositions (I) by brush.
  • the "mixture/hair" bath ratio is 1/1 (w/w).
  • the colourations obtained are measured using a Minolta CM2600D spectrocolorimeter.
  • the colour build-up (AE ab * ) was evaluated in the CIE L * a * b * system.
  • L * represents the intensity of the colour
  • a * indicates the green/red colour axis
  • b * indicates the blue/yellow colour axis.
  • the lower the value of L * the darker or more intense the colour.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention porte sur un procédé pour la coloration de fibres de kératine, en particulier de fibres de kératine humaines telles que les cheveux, qui utilise : un ou plusieurs catalyseurs métalliques et une composition (I) comprenant (a) au moins 10 % en poids d'une ou plusieurs substances grasses, (b) un ou plusieurs agents alcalins, (c) un ou plusieurs agents oxydants chimiques et (d) une ou plusieurs bases d'oxydation faiblement réactives choisies parmi les composés benzéniques ou hétérocycliques ioniques ou non ioniques contenant au moins une fonction amine ; les composés benzéniques comprenant également une fonction amine ou hydroxyle supplémentaire en position para ou ortho par rapport à la première fonction amine ; lesdits composés ayant une valeur d'énergie de l'HOMO inférieure ou égale à (-180-a) exprimée en kcal/mol avec : pour les composés benzéniques non ioniques portant une fonction amine supplémentaire : a = 0 ; pour les composés benzéniques ioniques portant une fonction amine supplémentaire : a = -4 ; pour les composés benzéniques ioniques ou non ioniques portant une fonction hydroxyle supplémentaire : a = 7 ; et pour les composés hétérocycliques ioniques ou non ioniques : a = 8. L'invention porte également sur un dispositif à plusieurs compartiments.
PCT/EP2012/075783 2011-12-20 2012-12-17 Procédé de coloration par oxydation riche en substances grasses et catalyseur métallique et dispositif correspondant WO2013092484A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1162008A FR2984115A1 (fr) 2011-12-20 2011-12-20 Procede de coloration d'oxydation riche en corps gras et un catalyseur metallique, dispositif
FR1162008 2011-12-20
US201261593425P 2012-02-01 2012-02-01
US61/593,425 2012-02-01

Publications (2)

Publication Number Publication Date
WO2013092484A2 true WO2013092484A2 (fr) 2013-06-27
WO2013092484A3 WO2013092484A3 (fr) 2014-01-16

Family

ID=46022322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075783 WO2013092484A2 (fr) 2011-12-20 2012-12-17 Procédé de coloration par oxydation riche en substances grasses et catalyseur métallique et dispositif correspondant

Country Status (2)

Country Link
FR (1) FR2984115A1 (fr)
WO (1) WO2013092484A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567752B2 (en) 2011-12-21 2017-02-14 James Hardie Technology Limited Facade

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1026978A (en) 1962-03-30 1966-04-20 Schwarzkopf Verwaltung G M B H Method of dyeing hair
GB1153196A (en) 1965-07-07 1969-05-29 Schwarzkopf Verwaltung G M B H Method of Dyeing Hair
DE2359399A1 (de) 1973-11-29 1975-06-12 Henkel & Cie Gmbh Haarfaerbemittel
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
JPS63169571A (ja) 1987-01-06 1988-07-13 Nec Corp ト−ン検出装置
US4874554A (en) 1986-07-10 1989-10-17 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium compounds
DE3843892A1 (de) 1988-12-24 1990-06-28 Wella Ag Oxidationshaarfaerbemittel mit einem gehalt an diaminopyrazolderivaten und neue diaminopyrazolderivate
JPH0563124A (ja) 1991-09-03 1993-03-12 Mitsubishi Electric Corp 混成集積回路装置
DE4133957A1 (de) 1991-10-14 1993-04-15 Wella Ag Haarfaerbemittel mit einem gehalt an aminopyrazolderivaten sowie neue pyrazolderivate
WO1994008970A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Colorants d'oxydation pour cheveux, renfermant des derives du 4,5-diaminopyrazole, nouveaux derives du 4,5-diaminopyrazole et leur procede de fabrication
WO1994008969A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Procede de production de derives de 4,5-diaminopyrazole, leur utilisation pour la teinture des cheveux, et nouveaux derives de pyrazole
WO1996015765A1 (fr) 1994-11-17 1996-05-30 Henkel Kommanditgesellschaft Auf Aktien Colorants d'oxydation
FR2733749A1 (fr) 1995-05-05 1996-11-08 Oreal Compositions pour la teinture des fibres keratiniques contenant des diamino pyrazoles, procede de teinture, nouveaux diamino pyrazoles et leur procede de preparation
EP0770375A1 (fr) 1995-10-21 1997-05-02 GOLDWELL GmbH Composition pour la teinture des cheveux
DE19543988A1 (de) 1995-11-25 1997-05-28 Wella Ag Oxidationshaarfärbemittel mit einem Gehalt an 3,4,5-Triaminopyrazolderivaten sowie neue 3,4,5-Triaminopyrazolderivate
FR2801308A1 (fr) 1999-11-19 2001-05-25 Oreal COMPOSITIONS DE TEINTURE DE FIBRES KERATINIQUES CONTENANT DE DES 3-AMINO PYRAZOLO-[1,(-a]-PYRIDINES, PROCEDE DE TEINTURE, NOUVELLES 3-AMINO PYRAZOLO-[1,5-a]-PYRIDINES
FR2886136A1 (fr) 2005-05-31 2006-12-01 Oreal Composition pour la teinture des fibres keratiniques comprenant au moins un derive de diamino-n,n-dihydro- pyrazolone et un colorant d'oxydation cationique

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720852B2 (ja) * 1988-06-08 1995-03-08 花王株式会社 角質繊維用染色組成物
JPH0413612A (ja) * 1990-04-27 1992-01-17 Kao Corp 角質繊維染色剤組成物
US5368610A (en) * 1993-04-20 1994-11-29 Clairol Incorporated Use of metal salts and chelates together with chlorites as oxidants in hair coloring
FR2730925B1 (fr) * 1995-02-27 1997-04-04 Oreal Composition de teinture d'oxydation des fibres keratiniques et procede de teinture mettant en oeuvre cette composition
FR2735685B1 (fr) * 1995-06-21 1997-08-01 Oreal Compositions pour la teinture des fibres keratiniques comprenant un ortho-diamino pyrazole et un sel de manganese procede de teinture mettant en oeuvre ces compositions
FR2735976B1 (fr) * 1995-06-30 1997-08-14 Oreal Procede de teinture d'oxydation en deux temps des fibres keratiniques avec un sel de manganese et un colorant d'oxydation et kit de teinture
DE20106651U1 (de) * 2001-04-18 2002-08-29 Goldwell Gmbh Haarfärbemittel
DE102006018779A1 (de) * 2006-04-20 2007-10-25 Henkel Kgaa Aufhell- und/oder Färbemittel mit halogenierten Ketonen
FR2910309A1 (fr) * 2006-12-20 2008-06-27 Oreal Composition pour la coloration des fibres keratiniques comprenant un compose silicone particulier et une base d'oxydation
FR2940079B1 (fr) * 2008-12-19 2011-02-18 Oreal Composition comprenant au moins un alcool gras solide, procede de coloration la mettant en oeuvre et dispositifs
EP2332516A1 (fr) * 2009-12-09 2011-06-15 KPSS-Kao Professional Salon Services GmbH Procédé pour coloration oxydative des fibres de kératine

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1026978A (en) 1962-03-30 1966-04-20 Schwarzkopf Verwaltung G M B H Method of dyeing hair
GB1153196A (en) 1965-07-07 1969-05-29 Schwarzkopf Verwaltung G M B H Method of Dyeing Hair
DE2359399A1 (de) 1973-11-29 1975-06-12 Henkel & Cie Gmbh Haarfaerbemittel
US4137180A (en) 1976-07-02 1979-01-30 Lever Brothers Company Fabric treatment materials
US4874554A (en) 1986-07-10 1989-10-17 Henkel Kommanditgesellschaft Auf Aktien Quaternary ammonium compounds
JPS63169571A (ja) 1987-01-06 1988-07-13 Nec Corp ト−ン検出装置
DE3843892A1 (de) 1988-12-24 1990-06-28 Wella Ag Oxidationshaarfaerbemittel mit einem gehalt an diaminopyrazolderivaten und neue diaminopyrazolderivate
JPH0563124A (ja) 1991-09-03 1993-03-12 Mitsubishi Electric Corp 混成集積回路装置
DE4133957A1 (de) 1991-10-14 1993-04-15 Wella Ag Haarfaerbemittel mit einem gehalt an aminopyrazolderivaten sowie neue pyrazolderivate
WO1994008970A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Colorants d'oxydation pour cheveux, renfermant des derives du 4,5-diaminopyrazole, nouveaux derives du 4,5-diaminopyrazole et leur procede de fabrication
WO1994008969A1 (fr) 1992-10-16 1994-04-28 Wella Aktiengesellschaft Procede de production de derives de 4,5-diaminopyrazole, leur utilisation pour la teinture des cheveux, et nouveaux derives de pyrazole
WO1996015765A1 (fr) 1994-11-17 1996-05-30 Henkel Kommanditgesellschaft Auf Aktien Colorants d'oxydation
FR2733749A1 (fr) 1995-05-05 1996-11-08 Oreal Compositions pour la teinture des fibres keratiniques contenant des diamino pyrazoles, procede de teinture, nouveaux diamino pyrazoles et leur procede de preparation
EP0770375A1 (fr) 1995-10-21 1997-05-02 GOLDWELL GmbH Composition pour la teinture des cheveux
DE19543988A1 (de) 1995-11-25 1997-05-28 Wella Ag Oxidationshaarfärbemittel mit einem Gehalt an 3,4,5-Triaminopyrazolderivaten sowie neue 3,4,5-Triaminopyrazolderivate
FR2801308A1 (fr) 1999-11-19 2001-05-25 Oreal COMPOSITIONS DE TEINTURE DE FIBRES KERATINIQUES CONTENANT DE DES 3-AMINO PYRAZOLO-[1,(-a]-PYRIDINES, PROCEDE DE TEINTURE, NOUVELLES 3-AMINO PYRAZOLO-[1,5-a]-PYRIDINES
FR2886136A1 (fr) 2005-05-31 2006-12-01 Oreal Composition pour la teinture des fibres keratiniques comprenant au moins un derive de diamino-n,n-dihydro- pyrazolone et un colorant d'oxydation cationique

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Cosmetics and Toiletries", vol. 91, January 1976, TODD & BYERS, article "Volatile Silicone Fluids for Cosmetics", pages: 27 - 32
"CTFA dictionary", 1993
M.R. PORTER: "Handbook of Surfactants", 1991, BLACKIE & SON, pages: 116 - 178
WALTER NOLL'S: "Chemistry and Technology of Silicones", 1968, ACADEMIC PRESS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567752B2 (en) 2011-12-21 2017-02-14 James Hardie Technology Limited Facade

Also Published As

Publication number Publication date
FR2984115A1 (fr) 2013-06-21
WO2013092484A3 (fr) 2014-01-16

Similar Documents

Publication Publication Date Title
EP2729119B1 (fr) Composition tinctoriale comprenant un éther à longue chaîne d'un alcool gras alcoxylé et un polymère cationique, ainsi que procédés et dispositifs utilisant cette composition
WO2012095398A2 (fr) Procédé de coloration ou d'éclaircissement mettant en oeuvre une composition riche en corps gras comprenant un alcool et un ester solides, compositions et dispositif
EP2701673A1 (fr) Composition de coloration utilisant un coupleur phénolique particulier dans un milieu riche en substances grasses, procédés et dispositifs
WO2013152956A1 (fr) Composition de coloration capillaire utilisant du (2,5-diaminophényl)éthanol, un surfactant amphotère à base de bétaïne ou une amine grasse tertiaire dans un milieu riche en substances grasses
US9789040B2 (en) Oxidation dyeing process using a composition rich in fatty substances which comprises metal catalysts and couplers
WO2012146529A1 (fr) Composition de coloration utilisant un coupleur phénolique particulier dans un milieu riche en substances grasses, procédés et dispositifs
WO2012146527A2 (fr) Composition de coloration mettant en oeuvre un coupleur 2-hydroxynaphtalénique et une base hétérocyclique en milieu riche en corps gras, le procédé de coloration et le dispositif
EP2729115B1 (fr) Composition tinctoriale comprenant un éther d'alcool gras alcoxylé et un alcool gras ou un ester d'acide gras
WO2014202779A1 (fr) Procédé de coloration en présence de bases d'oxydation comprenant au moins un groupe sulfonique, sulfamide, sulfone, amide ou acide et un catalyseur métallique, dispositif et composition prête à l'emploi
EP2841168A2 (fr) Procédé de teinture au moyen d'un mélange comprenant un polyol c6-c12 ramifié, obtenu à partir d'un dispositif aérosol, et dispositif correspondant
EP2701805A1 (fr) Composition de coloration utilisant un coupleur dérivé du phénol dans un milieu riche en substances grasses, procédés et dispositifs
EP3010594B1 (fr) Procede de coloration d'oxydation avec une étape de prétraitement basé d'une composition riche en corps gras et un catalyseur metallique
WO2013004787A1 (fr) Composition de colorant utilisant un éther à longue chaîne d'un alcool gras alcoxylé et de glycérol et procédés et dispositifs l'utilisant
WO2013079528A1 (fr) Composition de colorant utilisant un composé hydrotrope spécifique dans un milieu riche en substances grasses, procédés et dispositif associés
WO2013144244A2 (fr) Composition de teinture utilisant du (2,5-diaminophényl)éthanol et un alcool gras aliphatique dans un milieu riche en substances grasses, procédé et dispositif de teinture
WO2012163898A1 (fr) Composition de coloration utilisant un coupleur (hydroxy)indoline dans un milieu riche en substances grasses, procédé et dispositif
WO2012146526A2 (fr) Composition de coloration mettant en oeuvre un coupleur 2-hydroxynaphtalénique, (acylamino)phénolique ou quinolinique en milieu riche en corps gras, le procédé de coloration et le dispositif
WO2014202713A1 (fr) Procédé de teinture par oxydation à l'aide de substances grasses, de catalyseurs métalliques et de moins de bases d'oxydation que d'agents de couplage
EP2950773B1 (fr) Composition de teinture mettant en oeuvre au moins un coupleur de type méta-phénylènediamine substituée en position 2 dans un milieu comprenant un corps gras, procédés et dispositif
WO2013004786A2 (fr) Composition tinctoriale comprenant un éther à longue chaîne d'un alcool gras alcoxylé et une base d'oxydation pyrazolone, ainsi que procédés et dispositifs utilisant cette composition
WO2017050994A1 (fr) Composition colorante utilisant au moins une base d'oxydation et au moins un coupleur d'aminobenzène spécifique, procédés et dispositif
WO2013092484A2 (fr) Procédé de coloration par oxydation riche en substances grasses et catalyseur métallique et dispositif correspondant
WO2014118231A2 (fr) Composition de teinture mettant en oeuvre au moins un coupleur de type méta-aminophénol dans un milieu comprenant un corps gras, procédés et dispositif
WO2017051020A1 (fr) Composition colorante comprenant un coupleur à base de résorcinol et une base d'oxydation
WO2013092482A2 (fr) Composition de colorant d'oxydation riche en substances grasses, procédés correspondants et dispositif approprié correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810208

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12810208

Country of ref document: EP

Kind code of ref document: A2