WO2013091155A1 - Carrier frequency offset estimation method and device - Google Patents

Carrier frequency offset estimation method and device Download PDF

Info

Publication number
WO2013091155A1
WO2013091155A1 PCT/CN2011/084198 CN2011084198W WO2013091155A1 WO 2013091155 A1 WO2013091155 A1 WO 2013091155A1 CN 2011084198 W CN2011084198 W CN 2011084198W WO 2013091155 A1 WO2013091155 A1 WO 2013091155A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
frame
estimation
cfo
synchronization
Prior art date
Application number
PCT/CN2011/084198
Other languages
French (fr)
Chinese (zh)
Inventor
李焱
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2011/084198 priority Critical patent/WO2013091155A1/en
Priority to CN201180075419.8A priority patent/CN103988475B/en
Publication of WO2013091155A1 publication Critical patent/WO2013091155A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a carrier frequency offset (CF0) estimation method and apparatus.
  • Background technique CF0
  • the CFO can seriously affect the performance of the receiver, so the initial CFO estimate is very important.
  • the correlation is usually performed by using the Primary Synchronization Signal (PSS), and the timing of 5 ms can be obtained.
  • PSS Primary Synchronization Signal
  • the frequency offset estimation can be performed by using an autocorrelation method, which is also a commonly used method in the OFDM system.
  • an autocorrelation method which is also a commonly used method in the OFDM system.
  • each subframe is composed of 14 OFDM symbols.
  • the correlation result on the majority of the OFDM symbols is noise, and the estimation performance is seriously degraded.
  • the main object of the present invention is to provide a CFO estimation method and apparatus, which can solve the problem of reduced CFO estimation performance when there is no downlink traffic scheduling.
  • a carrier frequency offset (CFO) estimation method comprising: Perform autocorrelation estimation and accumulation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes, respectively;
  • the method further includes:
  • the user equipment UE performs frame synchronization on the received subframe according to different frame timings and CP modes;
  • the frame timing includes a 10 ms frame timing of a start position of a frame header of a radio frame when a primary synchronization sequence (PSS) position is known.
  • PSS primary synchronization sequence
  • the performing auto-correlation estimation on the non-service downlink signals in the received downlink subframes and accumulating is:
  • the results of the autocorrelation corresponding to the OFDM symbols are accumulated.
  • the non-service downlink signal includes one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
  • a CFO estimating device including a CFO estimating module, further comprising: an autocorrelation module, an accumulation module, and a selection module;
  • the auto-correlation module is configured to perform autocorrelation estimation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes, respectively.
  • the accumulation module is configured to separately accumulate results of the autocorrelation estimation to obtain a cumulative result
  • the selection module is configured to compare the modulus values of the accumulation result, and select a cumulative result with a large modulus value to perform CFO estimation by the CFO estimation module. Further, the device further includes: a frame synchronization module and a judging module; wherein the frame synchronization module is configured to respectively perform frame synchronization on the received subframe according to different frame timings and CP modes;
  • the determining module is configured to determine whether the signal transmitted by the subframe after synchronization in different frame timings and CP modes is a non-service downlink signal.
  • the frame timing includes a 10 ms frame timing of a start position of a frame header of a radio frame when the PSS position of the main synchronization sequence is known.
  • the auto-correlation module is configured to perform autocorrelation with a CP of the OFDM symbol in the received non-service downlink signal and a corresponding part of the CP in the OFDM symbol.
  • the accumulation module is specifically configured to accumulate results of autocorrelation of corresponding OFDM symbols.
  • the non-service downlink signal includes one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
  • the CFO estimation is performed by using the non-service downlink signal in the downlink subframe, which can solve the problem that the CFO estimation performance is degraded when there is no downlink service scheduling, and can avoid affecting the subsequent secondary synchronization signal (Secondary Synchronization Signal, SSS) detection.
  • SSS Secondary Synchronization Signal
  • FIG. 1 is a schematic diagram showing an implementation flow of a CFO estimation method according to the present invention
  • FIG. 2 is a schematic diagram of selection of an OFDM symbol in a CFO estimation method according to the present invention
  • Fig. 3 is a schematic structural view of a CFO estimating apparatus of the present invention. detailed description
  • the basic idea of the present invention is: Since the detection of the CFO is after the PSS, the uplink and downlink configuration of the base station is unknown, at this time, the UE has only a half frame timing of 5 ms, and the 10 ms frame timing needs to be determined after the SSS detection; and some signals, such as Broadcast Broadcast Channel (PBCH) The transmission period is 10 ms, but the UE has not yet obtained the frame timing. Therefore, in order to make the best use of the available signals, it is also necessary to preset the frame timing to perform frame synchronization on the received subframes, and perform correlation and accumulation separately, and finally select a CFO estimation with a larger modulus value;
  • PBCH Broadcast Broadcast Channel
  • auto-correlation estimation and accumulation are performed on the non-service downlink signals in the received downlink subframes respectively; comparing the obtained modular values of the cumulative results, and selecting a cumulative result with a large modulus value to perform CFO estimation .
  • FIG. 1 shows an implementation flow of a CFO estimation method according to the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Perform autocorrelation estimation and accumulation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes.
  • the CP of the OFDM symbol in the non-service downlink signal in the received downlink subframe may be auto-correlated with the corresponding part of the CP in the OFDM symbol, where the CP is to copy a part of the OFDM symbol.
  • the non-service downlink signal includes one or more of a Cell-Specific Reference Signal (Cell RS), a Broadcast Broadcast Channel (PBCH), a PSS, and an SSS.
  • the method further includes: performing, by the UE, frame synchronization on the received subframe according to different frame timings and the CP mode, where the different frame timing includes a 5 ms half frame timing and a known primary synchronization sequence PSS.
  • Step 102 Compare the modulus values of the obtained cumulative results, and select a cumulative result with a large modulus value. CFO estimates.
  • Step 1 performing frame synchronization on the received subframes according to two frame timings, and selecting a signal from the correlation estimation;
  • the CP mode of OFDM includes normal CP (Normal CP) and extended CP (Extended CP). Therefore, it is necessary to simultaneously detect multiple possibilities. In each of the possible cases, it is determined whether the received OFDM symbol belongs to a downlink signal that must be transmitted, such as Cdl RS, PBCH, PSS, SSS or other non-traffic signals;
  • hy represents the OFDM symbol corresponding to different frame timings
  • Step 2 performing autocorrelation estimation and accumulation on the selected OFDM signal
  • Rxx'hy R xx ,h y + x sym hy (k)x sym hy (k) - x sym hy (k - n cp )x sym hy (k - n cp - n FFT )
  • represents the received
  • the signal, n FFT , and ncp represent the number of samples of the OFDM symbol and the CP, respectively, and the correlation length is the number of CP points.
  • Step 3 Compare the cumulative results of the autocorrelation estimation results obtained at the above two frame timings, and select the cumulative result for which the CFO estimation is to be performed.
  • the selected cumulative result is calculated by the following formula, and the correct CFO estimation is obtained.
  • the specific process is basically the same as the existing CFO estimation, and will not be described again.
  • is the time interval of the two sampling points for autocorrelation, here the length of the OFDM symbol.
  • the apparatus includes: a CFO estimating module 31, an autocorrelation module 32, an accumulating module 33, and a selecting module 34; wherein the autocorrelation module 32 And performing auto-correlation estimation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes;
  • the accumulating module 33 is configured to accumulate results of the autocorrelation estimation respectively to obtain a cumulative result
  • the selection module 34 is configured to compare the modulus values of the accumulation result, and select a cumulative result with a large modulus value to be estimated by the CFO estimation module 31 for the CFO.
  • the device further includes: a frame synchronization module 35 and a judging module 36; wherein the frame synchronization module 35 is configured to respectively perform frame synchronization on the received subframe according to different frame timings and CP modes;
  • the determining module 36 is configured to determine whether the signal transmitted by the subframe after the synchronization of the frame timing and the CP mode is a non-service downlink signal, where the different frame timing includes a 5 ms half frame timing and is a known primary synchronization sequence. 10ms frame setting of the start position of the frame header of the radio frame at the PSS position Time.
  • the auto-correlation module 32 is configured to perform auto-correlation with a CP in an OFDM symbol in the received non-service downlink signal and a corresponding part of the CP in the OFDM symbol; Accumulating the results of the autocorrelation of the corresponding OFDM symbols;
  • the non-service downlink signal includes one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

Disclosed is a carrier frequency offset (CFO) estimation method. The method includes: according to different frame timings and CP modes, respectively performing self-relevance estimation and accumulation on a non-service downlink signal in a received downlink subframe; and comparing the modulus value of the obtained accumulation result and selecting an accumulation result with a bigger modulus value to perform CFO estimation. The present invention uses a non-service downlink signal in a downlink subframe to perform CFO estimation according to the features of an LTE system and can solve the problem that the CFO estimation performance is reduced if there is no downlink service scheduling and can avoid affecting subsequent SSS detection.

Description

一种载波频偏估计方法及装置 技术领域  Carrier frequency offset estimation method and device
本发明涉及无线通信领域, 尤其涉及一种载波频偏( Carrier Frequency Offset, CF0 )估计方法及装置。 背景技术  The present invention relates to the field of wireless communications, and in particular, to a carrier frequency offset (CF0) estimation method and apparatus. Background technique
无线通信系统中, 当基站与用户设备(UE ) 的载波频率不一致时, 会 在接收机上表现为 CF0。 大多数无线系统, 尤其正交频分复用 (Orthogonal Frequency Division Multiplexing , OFDM ) 系统, 对于 CFO非常敏感。  In a wireless communication system, when the carrier frequency of the base station and the user equipment (UE) is inconsistent, it will be represented as CF0 on the receiver. Most wireless systems, especially Orthogonal Frequency Division Multiplexing (OFDM) systems, are very sensitive to CFOs.
CFO会严重影响接收机的性能, 因此初始 CFO的估计非常重要。 在长 期演进(LTE ) 系统中的初始同步时, 通常先利用主同步信号 (Primary Synchronization Signal, PSS )进行相关, 可以得到 5ms的定时。  The CFO can seriously affect the performance of the receiver, so the initial CFO estimate is very important. In the initial synchronization in the Long Term Evolution (LTE) system, the correlation is usually performed by using the Primary Synchronization Signal (PSS), and the timing of 5 ms can be obtained.
由于 OFDM符号具有循环前缀(Cyclic Prefix, CP ), 可以利用自相关 的方式进行频偏估计, 这也是 OFDM系统中常用的方法。 LTE系统中在正 常 CP ( Normal CP )模式时, 每个子帧由 14个 OFDM符号组成, 当没有业 务调度时, 只有几个 OFDM符号上面有数据发送, 其它的位置没有信号发 送。 此时采用整个子帧 0或 5中的所有 OFDM符号进行估计时, 会导致多 数 OFDM符号上面的相关结果都是噪声, 从而使得估计性能严重下降。 发明内容  Since the OFDM symbol has a Cyclic Prefix (CP), the frequency offset estimation can be performed by using an autocorrelation method, which is also a commonly used method in the OFDM system. In the normal CP (Normal CP) mode in the LTE system, each subframe is composed of 14 OFDM symbols. When there is no traffic scheduling, only a few OFDM symbols have data transmission thereon, and no other locations transmit signals. At this time, when all the OFDM symbols in the entire subframe 0 or 5 are used for estimation, the correlation result on the majority of the OFDM symbols is noise, and the estimation performance is seriously degraded. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种 CFO估计方法及装置, 能 够解决在无下行业务调度时 CFO估计性能下降的问题。  In view of this, the main object of the present invention is to provide a CFO estimation method and apparatus, which can solve the problem of reduced CFO estimation performance when there is no downlink traffic scheduling.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
一种载波频偏(CFO )估计方法, 所述方法包括: 根据不同的帧定时和 CP模式,分别对接收到的下行子帧中的非业务下 行信号进行自相关估计并累积; A carrier frequency offset (CFO) estimation method, the method comprising: Perform autocorrelation estimation and accumulation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes, respectively;
比较得到的累积结果的模值,选择模值大的累积结果进行 CFO的估计。 进一步地, 所述方法还包括:  Compare the modulus values of the obtained cumulative results, and select the cumulative result with large modulus values to estimate the CFO. Further, the method further includes:
用户设备 UE根据不同帧定时和 CP模式分别对接收到的子帧进行帧同 步;  The user equipment UE performs frame synchronization on the received subframe according to different frame timings and CP modes;
分别判断不同帧定时和 CP模式下同步后子帧传输的信号是否为非业 务下行信号。  It is judged whether the signals transmitted by the subframes after synchronization in different frame timings and CP modes are non-service downlink signals, respectively.
其中, 所述帧定时包括已知主同步序列 (PSS )位置时的无线帧的帧头 起始位置的 10ms帧定时。  The frame timing includes a 10 ms frame timing of a start position of a frame header of a radio frame when a primary synchronization sequence (PSS) position is known.
其中, 所述对接收到的下行子帧中的非业务下行信号进行自相关估计 并累积为:  The performing auto-correlation estimation on the non-service downlink signals in the received downlink subframes and accumulating is:
利用接收到的非业务下行信号中的正交频分复用 OFDM符号的循环前 缀 CP与所述 CP在 OFDM符号中对应的部分进行自相关;  And using a cyclic prefix OFDM of the OFDM symbol in the received non-traffic downlink signal to perform autocorrelation with a portion of the CP corresponding to the OFDM symbol;
将对应 OFDM符号的自相关的结果进行累积。  The results of the autocorrelation corresponding to the OFDM symbols are accumulated.
其中, 所述非业务下行信号包括小区参考信号、 广播信道、 主同步信 号、 辅同步信号的一种或多种。  The non-service downlink signal includes one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
一种 CFO估计装置, 包括 CFO估计模块, 还包括: 自相关模块、 累积 模块和选择模块; 其中,  A CFO estimating device, including a CFO estimating module, further comprising: an autocorrelation module, an accumulation module, and a selection module; wherein
所述自相关模块, 用于根据不同的帧定时和 CP模式, 分别对接收到的 下行子帧中的非业务下行信号进行自相关估计;  The auto-correlation module is configured to perform autocorrelation estimation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes, respectively.
所述累积模块, 用于分别对自相关估计的结果进行累积, 得到累积结 果;  The accumulation module is configured to separately accumulate results of the autocorrelation estimation to obtain a cumulative result;
所述选择模块, 用于比较所述累积结果的模值, 选择模值大的累积结 果由 CFO估计模块进行 CFO的估计。 进一步地, 所述装置还包括: 帧同步模块和判断模块; 其中, 所述帧同步模块,用于根据不同帧定时和 CP模式分别对接收到的子帧 进行帧同步; The selection module is configured to compare the modulus values of the accumulation result, and select a cumulative result with a large modulus value to perform CFO estimation by the CFO estimation module. Further, the device further includes: a frame synchronization module and a judging module; wherein the frame synchronization module is configured to respectively perform frame synchronization on the received subframe according to different frame timings and CP modes;
所述判断模块,用于分别判断不同帧定时和 CP模式下同步后子帧传输 的信号是否为非业务下行信号。  The determining module is configured to determine whether the signal transmitted by the subframe after synchronization in different frame timings and CP modes is a non-service downlink signal.
其中, 所述帧定时包括已知主同步序列 PSS位置时的无线帧的帧头起 始位置的 10ms帧定时。  The frame timing includes a 10 ms frame timing of a start position of a frame header of a radio frame when the PSS position of the main synchronization sequence is known.
其中, 所述自相关模块, 具体用于利用接收到的非业务下行信号中的 OFDM符号的 CP与所述 CP在 OFDM符号中对应的部分进行自相关;  The auto-correlation module is configured to perform autocorrelation with a CP of the OFDM symbol in the received non-service downlink signal and a corresponding part of the CP in the OFDM symbol.
所述累积模块, 具体用于将对应的 OFDM符号的自相关的结果进行累 积。  The accumulation module is specifically configured to accumulate results of autocorrelation of corresponding OFDM symbols.
其中, 所述非业务下行信号包括小区参考信号、 广播信道、 主同步信 号、 辅同步信号的一种或多种。  The non-service downlink signal includes one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
本发明根据 LTE系统的特点, 利用下行子帧中的非业务下行信号进行 CFO估计, 可以解决在无下行业务调度时 CFO估计性能下降的问题, 能够 避免影响后续的辅同步信号( Secondary Synchronization Signal, SSS )检测。 附图说明  According to the characteristics of the LTE system, the CFO estimation is performed by using the non-service downlink signal in the downlink subframe, which can solve the problem that the CFO estimation performance is degraded when there is no downlink service scheduling, and can avoid affecting the subsequent secondary synchronization signal (Secondary Synchronization Signal, SSS) detection. DRAWINGS
图 1为本发明 CFO估计方法的实现流程示意图;  1 is a schematic diagram showing an implementation flow of a CFO estimation method according to the present invention;
图 2为本发明 CFO估计方法中 OFDM符号的选择示意图;  2 is a schematic diagram of selection of an OFDM symbol in a CFO estimation method according to the present invention;
图 3为本发明 CFO估计装置的结构示意图。 具体实施方式  Fig. 3 is a schematic structural view of a CFO estimating apparatus of the present invention. detailed description
本发明的基本思想是: 由于在 CFO的检测是在 PSS之后, 基站的上下 行配置未知, 此时 UE只有 5ms的半帧定时, 10ms帧定时需要在 SSS检测 后才能确定; 而有些信号,如广播信道( Physical Broadcast CHannel, PBCH ) 是以 10ms为发送周期进行, 但此时 UE还未得到帧定时。 因此, 为了最大 限度的利用可用信号, 还需要预先设置帧定时对接收到的子帧进行帧同步, 并分别进行相关和累积, 最终从中选择模值较大的进行 CFO估计; The basic idea of the present invention is: Since the detection of the CFO is after the PSS, the uplink and downlink configuration of the base station is unknown, at this time, the UE has only a half frame timing of 5 ms, and the 10 ms frame timing needs to be determined after the SSS detection; and some signals, such as Broadcast Broadcast Channel (PBCH) The transmission period is 10 ms, but the UE has not yet obtained the frame timing. Therefore, in order to make the best use of the available signals, it is also necessary to preset the frame timing to perform frame synchronization on the received subframes, and perform correlation and accumulation separately, and finally select a CFO estimation with a larger modulus value;
根据不同的帧定时和 CP模式,分别对接收到的下行子帧中的非业务下 行信号进行自相关估计并累积; 比较得到的累积结果的模值, 选择模值大 的累积结果进行 CFO的估计。  According to different frame timings and CP modes, auto-correlation estimation and accumulation are performed on the non-service downlink signals in the received downlink subframes respectively; comparing the obtained modular values of the cumulative results, and selecting a cumulative result with a large modulus value to perform CFO estimation .
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。  The present invention will be further described in detail below with reference to the accompanying drawings.
图 1示出了本发明 CFO估计方法的实现流程, 如图 1所示, 所述方法 包括下述步驟:  FIG. 1 shows an implementation flow of a CFO estimation method according to the present invention. As shown in FIG. 1, the method includes the following steps:
步驟 101 , 根据不同的帧定时和 CP模式, 分别对接收到的下行子帧中 的非业务下行信号进行自相关估计并累积;  Step 101: Perform autocorrelation estimation and accumulation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes.
具体地, 可以利用接收到的下行子帧中的非业务下行信号中的 OFDM 符号的 CP与所述 CP在 OFDM符号中对应的部分进行自相关,这里,所述 CP是把 OFDM符号的一部分复制过来, 放在所述 OFDM符号的前面, 因 此 CP通常比 OFDM符号短, 所述对应的部分是指 OFDM符合复制作为 CP的部分; 并将对应 OFDM符号的自相关的结果进行累积。 这里, 非业务 下行信号包括小区参考信号 (Cell-Specific Reference Signal, Cell RS )、 广 播信道(Physical broadcast channel, PBCH )、 PSS、 SSS、 的一种或多种。  Specifically, the CP of the OFDM symbol in the non-service downlink signal in the received downlink subframe may be auto-correlated with the corresponding part of the CP in the OFDM symbol, where the CP is to copy a part of the OFDM symbol. Come over, placed in front of the OFDM symbol, so the CP is generally shorter than the OFDM symbol, the corresponding portion refers to the OFDM conforming to the copy as part of the CP; and the result of the autocorrelation of the corresponding OFDM symbol is accumulated. Here, the non-service downlink signal includes one or more of a Cell-Specific Reference Signal (Cell RS), a Broadcast Broadcast Channel (PBCH), a PSS, and an SSS.
其中, 本步驟之前, 所述方法还包括: UE根据不同帧定时和 CP模式 分别对接收到的子帧进行帧同步; 其中, 所述不同帧定时包括 5ms半帧定 时和已知主同步序列 PSS位置时的无线帧的帧头起始位置的 10ms帧定时。  Before the step, the method further includes: performing, by the UE, frame synchronization on the received subframe according to different frame timings and the CP mode, where the different frame timing includes a 5 ms half frame timing and a known primary synchronization sequence PSS. The 10 ms frame timing of the start position of the frame header of the radio frame at the time of the position.
分别判断不同帧定时和 CP模式下同步后子帧传输的信号是否为非业 务下行信号。  It is judged whether the signals transmitted by the subframes after synchronization in different frame timings and CP modes are non-service downlink signals, respectively.
步驟 102, 比较得到的累积结果的模值, 选择模值大的累积结果进行 CFO的估计。 Step 102: Compare the modulus values of the obtained cumulative results, and select a cumulative result with a large modulus value. CFO estimates.
下面结合图 2示出的上述 CFO估计方法中 OFDM符号的选择示意,对 上述方法进行进一步详细说明:  The above method will be further described in detail below with reference to the selection of OFDM symbols in the above CFO estimation method shown in FIG. 2:
步驟一, 对接收到的子帧分别按照两种帧定时进行帧同步, 选择自相 关估计的信号;  Step 1: performing frame synchronization on the received subframes according to two frame timings, and selecting a signal from the correlation estimation;
由于 CFO检测是在 PSS之后, 此时上下行配置未知。 UE只能使用子 帧 0、 1和子帧 5、 6进行 CFO检测, 因为这些子帧是下行或者特殊子帧。 由于此时并未进行帧同步, UE也无法确定当前的下行子帧是子帧 0还是子 帧 5。 又 OFDM的 CP模式包括正常 CP ( Normal CP )和扩展 CP ( Extended CP )。 故此时需要对多种可能性同时进行检测。 在每种可能的情况下, 分别 判断接收 OFDM符号是否属于必须发送的下行信号, 如 Cdl RS、 PBCH、 PSS、 SSS或其它非业务信号; 具体如下式表示:  Since the CFO detection is after the PSS, the uplink and downlink configuration is unknown at this time. The UE can only perform CFO detection using subframes 0, 1, and subframes 5, 6, because these subframes are downlink or special subframes. Since no frame synchronization is performed at this time, the UE cannot determine whether the current downlink subframe is subframe 0 or subframe 5. The CP mode of OFDM includes normal CP (Normal CP) and extended CP (Extended CP). Therefore, it is necessary to simultaneously detect multiple possibilities. In each of the possible cases, it is determined whether the received OFDM symbol belongs to a downlink signal that must be transmitted, such as Cdl RS, PBCH, PSS, SSS or other non-traffic signals;
^sym,hy ^here hy ^ -N^ ^sy m ,hy ^ here h y ^ - N ^
其中 hy代表不同帧定时对应的 OFDM符号, N为各种可能性。通常情 况下, 有 2种 CP模式和 2种帧定时, 因此 N=4。 如图 2所示。  Where hy represents the OFDM symbol corresponding to different frame timings, and N is various possibilities. Normally, there are 2 CP modes and 2 frame timings, so N=4. as shown in picture 2.
步驟二, 对选中的 OFDM信号进行自相关估计和累积;  Step 2: performing autocorrelation estimation and accumulation on the selected OFDM signal;
对选中的每个 OFDM符号 "S 利用自身的 CP进行自相关:  For each selected OFDM symbol "S uses its own CP for autocorrelation:
Rxx'hy = Rxx,hy + xsym hy (k)xsym hy (k) - xsym hy (k - ncp )xsym hy (k - ncp - nFFT ) 其中^ 代表接收到的信号, nFFT , ncp 分别代表 OFDM符号与 CP 的采样点数, 相关长度为 CP点数。 Rxx'hy = R xx ,h y + x sym hy (k)x sym hy (k) - x sym hy (k - n cp )x sym hy (k - n cp - n FFT ) where ^ represents the received The signal, n FFT , and ncp represent the number of samples of the OFDM symbol and the CP, respectively, and the correlation length is the number of CP points.
根据每种可能性,将对应的 OFDM符号的自相关估计的结果进行累加:
Figure imgf000006_0001
The results of the autocorrelation estimates of the corresponding OFDM symbols are accumulated according to each possibility:
Figure imgf000006_0001
其中^代表累加的 OFDM符号个数; 这里, 进行累加的 OFDM符号 可以是子帧内的, 也可以是多个子帧的。 步驟三, 比较上述两种帧定时下得到的自相关估计的结果的累积结果, 选择要进行 CFO估计的累积结果。 Where ^ represents the number of accumulated OFDM symbols; here, the accumulated OFDM symbols may be within a subframe, or may be multiple subframes. Step 3: Compare the cumulative results of the autocorrelation estimation results obtained at the above two frame timings, and select the cumulative result for which the CFO estimation is to be performed.
对两种帧定时和两种 CP模式所得到累积结果的模值进行比较,选择模 值最大的一组相关结果进行载波频偏估计, 具体参考下式:  Compare the modulus values of the two frame timings and the cumulative results obtained by the two CP modes, and select a set of correlation results with the largest modulus to estimate the carrier frequency offset. For details, refer to the following formula:
腿 = ax(abs(Rhy )) 步驟四 , 对选择得到的累积结果进行 CFO估计; Leg = ax(abs(R hy )) Step 4, perform CFO estimation on the cumulative result obtained by the selection;
根据前面一步对选取的累积结果利用下式进行计算, 得到正确的 CFO 估计, 具体过程与现有的 CFO估计基本相同, 不再赘述。  According to the previous step, the selected cumulative result is calculated by the following formula, and the correct CFO estimation is obtained. The specific process is basically the same as the existing CFO estimation, and will not be described again.
Δ/ = LarctK ,腿) ) Δ / = L arct K , leg) )
2π - ΑΤ Re 腿)  2π - ΑΤ Re legs)
其中 ΔΓ为做自相关的两个采样点的时间间隔,这里为 OFDM符号的长 度。  Where ΔΓ is the time interval of the two sampling points for autocorrelation, here the length of the OFDM symbol.
图 3示出了本发明 CFO估计装置的结构,如图 3所示,所述装置包括: CFO估计模块 31、 自相关模块 32、 累积模块 33和选择模块 34; 其中, 所述自相关模块 32, 用于根据不同的帧定时和 CP模式, 分别对接收 到的下行子帧中的非业务下行信号进行自相关估计;  3 shows the structure of the CFO estimating apparatus of the present invention. As shown in FIG. 3, the apparatus includes: a CFO estimating module 31, an autocorrelation module 32, an accumulating module 33, and a selecting module 34; wherein the autocorrelation module 32 And performing auto-correlation estimation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes;
所述累积模块 33 , 用于分别对自相关估计的结果进行累积, 得到累积 结果;  The accumulating module 33 is configured to accumulate results of the autocorrelation estimation respectively to obtain a cumulative result;
所述选择模块 34, 用于比较所述累积结果的模值, 选择模值大的累积 结果由 CFO估计模块 31进行 CFO的估计。  The selection module 34 is configured to compare the modulus values of the accumulation result, and select a cumulative result with a large modulus value to be estimated by the CFO estimation module 31 for the CFO.
进一步地, 所述装置还包括: 帧同步模块 35和判断模块 36; 其中, 所述帧同步模块 35 , 用于根据不同帧定时和 CP模式分别对接收到的 子帧进行帧同步;  Further, the device further includes: a frame synchronization module 35 and a judging module 36; wherein the frame synchronization module 35 is configured to respectively perform frame synchronization on the received subframe according to different frame timings and CP modes;
所述判断模块 36, 用于分别判断不同帧定时和 CP模式下同步后子帧 传输的信号是否为非业务下行信号; 其中, 所述不同帧定时包括 5ms半帧 定时和为已知主同步序列 PSS位置时的无线帧的帧头起始位置的 10ms帧定 时。 The determining module 36 is configured to determine whether the signal transmitted by the subframe after the synchronization of the frame timing and the CP mode is a non-service downlink signal, where the different frame timing includes a 5 ms half frame timing and is a known primary synchronization sequence. 10ms frame setting of the start position of the frame header of the radio frame at the PSS position Time.
其中, 所述自相关模块 32, 具体用于利用接收到的非业务下行信号中 的 OFDM符号中的 CP与所述 CP在 OFDM符号中对应的部分进行自相关; 所述累积模块 33,具体用于将对应的 OFDM符号的自相关的结果进行 累积;  The auto-correlation module 32 is configured to perform auto-correlation with a CP in an OFDM symbol in the received non-service downlink signal and a corresponding part of the CP in the OFDM symbol; Accumulating the results of the autocorrelation of the corresponding OFDM symbols;
其中, 所述非业务下行信号包括小区参考信号、 广播信道、 主同步信 号、 辅同步信号的一种或多种。  The non-service downlink signal includes one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Claims

权利要求书 Claim
1、 一种载波频偏 CFO估计方法, 其特征在于, 所述方法包括: 根据不同的帧定时和循环前缀 CP模式,分别对接收到的下行子帧中的 非业务下行信号进行自相关估计并累积;  A carrier frequency offset CFO estimation method, the method includes: performing autocorrelation estimation on a non-service downlink signal in a received downlink subframe according to different frame timings and a cyclic prefix CP mode, respectively Accumulate
比较得到的累积结果的模值,选择模值大的累积结果进行 CFO的估计。 Compare the modulus values of the obtained cumulative results, and select the cumulative result with large modulus values to estimate the CFO.
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 用户设备 UE根据不同帧定时和 CP模式分别对接收到的子帧进行帧同 步; The method according to claim 1, wherein the method further comprises: the user equipment UE separately performing frame synchronization on the received subframe according to different frame timings and CP modes;
分别判断不同帧定时和 CP模式下同步后子帧传输的信号是否为非业 务下行信号。  It is judged whether the signals transmitted by the subframes after synchronization in different frame timings and CP modes are non-service downlink signals, respectively.
3、 根据权利要求 2所述的方法, 其特征在于, 所述帧定时包括已知主 同步序列 PSS位置时的无线帧的帧头起始位置的 10ms帧定时。  3. The method according to claim 2, wherein the frame timing comprises a 10 ms frame timing of a start position of a frame header of a radio frame when a PSS position of the main synchronization sequence is known.
4、 根据权利要求 1所述的方法, 其特征在于, 所述对接收到的下行子 帧中的非业务下行信号进行自相关估计并累积为:  The method according to claim 1, wherein the auto-correlation estimation is performed on the non-service downlink signals in the received downlink subframes and accumulated as:
利用接收到的非业务下行信号中的正交频分复用 OFDM符号的 CP与 所述 CP在 OFDM符号中对应的部分进行自相关;  And utilizing the OFDM of the OFDM symbol in the received non-service downlink signal to perform autocorrelation with the corresponding part of the CP in the OFDM symbol;
将对应 OFDM符号的自相关的结果进行累积。  The results of the autocorrelation corresponding to the OFDM symbols are accumulated.
5、 根据权利要求 1所述的方法, 其特征在于, 所述非业务下行信号包 括小区参考信号、 广播信道、 主同步信号、 辅同步信号的一种或多种。  The method according to claim 1, wherein the non-service downlink signal comprises one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
6、 一种 CFO估计装置, 包括 CFO估计模块, 其特征在于, 所述装置 还包括: 自相关模块、 累积模块和选择模块; 其中,  A CFO estimating device, comprising a CFO estimating module, wherein the device further comprises: an autocorrelation module, an accumulation module, and a selection module;
所述自相关模块, 用于根据不同的帧定时和 CP模式, 分别对接收到的 下行子帧中的非业务下行信号进行自相关估计;  The auto-correlation module is configured to perform autocorrelation estimation on the non-service downlink signals in the received downlink subframes according to different frame timings and CP modes, respectively.
所述累积模块, 用于分别对自相关估计的结果进行累积, 得到累积结 果; 所述选择模块, 用于比较所述累积结果的模值, 选择模值大的累积结 果由 CFO估计模块进行 CFO的估计。 The accumulation module is configured to separately accumulate results of the autocorrelation estimation to obtain a cumulative result; The selection module is configured to compare the modulus values of the accumulation result, and select a cumulative result with a large modulus value to perform CFO estimation by the CFO estimation module.
7、 根据权利要求 6所述的装置, 其特征在于, 所述装置还包括: 帧同 步模块和判断模块; 其中,  The device according to claim 6, wherein the device further comprises: a frame synchronization module and a determination module; wherein
所述帧同步模块,用于根据不同帧定时和 CP模式分别对接收到的子帧 进行帧同步;  The frame synchronization module is configured to separately perform frame synchronization on the received subframe according to different frame timings and CP modes;
所述判断模块,用于分别判断不同帧定时和 CP模式下同步后子帧传输 的信号是否为非业务下行信号。  The determining module is configured to determine whether the signal transmitted by the subframe after synchronization in different frame timings and CP modes is a non-service downlink signal.
8、 根据权利要求 7所述的装置, 其特征在于, 所述帧定时包括已知主 同步序列 PSS位置时的无线帧的帧头起始位置的 10ms帧定时。  8. The apparatus according to claim 7, wherein the frame timing comprises a 10 ms frame timing of a start position of a frame header of a radio frame when a PSS position of the main synchronization sequence is known.
9、 根据权利要求 6所述的装置, 其特征在于, 所述自相关模块, 具体 用于利用接收到的非业务下行信号中的 OFDM符号的循环前缀 CP与所述 CP在 OFDM符号中对应的部分进行自相关;  The apparatus according to claim 6, wherein the auto-correlation module is specifically configured to utilize a cyclic prefix CP of an OFDM symbol in the received non-service downlink signal and the CP corresponding to the OFDM symbol. Partially autocorrelated;
所述累积模块, 具体用于将对应的 OFDM符号的自相关的结果进行累 积。  The accumulation module is specifically configured to accumulate results of autocorrelation of corresponding OFDM symbols.
10、 根据权利要求 6所述的装置, 其特征在于, 所述非业务下行信号 包括小区参考信号、 广播信道、 主同步信号、 辅同步信号的一种或多种。  10. The apparatus according to claim 6, wherein the non-service downlink signal comprises one or more of a cell reference signal, a broadcast channel, a primary synchronization signal, and a secondary synchronization signal.
PCT/CN2011/084198 2011-12-19 2011-12-19 Carrier frequency offset estimation method and device WO2013091155A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/084198 WO2013091155A1 (en) 2011-12-19 2011-12-19 Carrier frequency offset estimation method and device
CN201180075419.8A CN103988475B (en) 2011-12-19 2011-12-19 A kind of carrier frequency bias estimation and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084198 WO2013091155A1 (en) 2011-12-19 2011-12-19 Carrier frequency offset estimation method and device

Publications (1)

Publication Number Publication Date
WO2013091155A1 true WO2013091155A1 (en) 2013-06-27

Family

ID=48667618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084198 WO2013091155A1 (en) 2011-12-19 2011-12-19 Carrier frequency offset estimation method and device

Country Status (2)

Country Link
CN (1) CN103988475B (en)
WO (1) WO2013091155A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105933262A (en) * 2016-05-23 2016-09-07 华信咨询设计研究院有限公司 CFO (Carrier Frequency Offset) method based on double training sequences
WO2018103036A1 (en) * 2016-12-05 2018-06-14 北京邮电大学 Doppler frequency offset estimation method and device and doppler frequency offset elimination method and device in ofdm system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105721378A (en) * 2016-01-15 2016-06-29 华信咨询设计研究院有限公司 CFO estimation method based on unitary matrix training sequence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022443A (en) * 2007-03-26 2007-08-22 重庆邮电大学 OFDM frequency-offset estimating method based on allocycly adjacent structure
CN101217525A (en) * 2008-01-16 2008-07-09 中兴通讯股份有限公司 A downlink frame synchronization method and device in orthogonal frequency division multiplexing system
US20090103667A1 (en) * 2007-10-17 2009-04-23 Augusta Technology, Inc. Methods for Modified Signal Acquisition for OFDM Schemes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195888A1 (en) * 2004-03-05 2005-09-08 Wen-Sheng Hou Carrier frequency offset estimation in preambled systems
CN100444526C (en) * 2004-06-28 2008-12-17 中兴通讯股份有限公司 Method and device for correcting frequency deviation
CN102256298B (en) * 2011-07-05 2014-03-26 展讯通信(上海)有限公司 Mobile terminal and synchronization method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022443A (en) * 2007-03-26 2007-08-22 重庆邮电大学 OFDM frequency-offset estimating method based on allocycly adjacent structure
US20090103667A1 (en) * 2007-10-17 2009-04-23 Augusta Technology, Inc. Methods for Modified Signal Acquisition for OFDM Schemes
CN101217525A (en) * 2008-01-16 2008-07-09 中兴通讯股份有限公司 A downlink frame synchronization method and device in orthogonal frequency division multiplexing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105933262A (en) * 2016-05-23 2016-09-07 华信咨询设计研究院有限公司 CFO (Carrier Frequency Offset) method based on double training sequences
CN105933262B (en) * 2016-05-23 2018-12-14 华信咨询设计研究院有限公司 CFO estimation method based on double training sequences
WO2018103036A1 (en) * 2016-12-05 2018-06-14 北京邮电大学 Doppler frequency offset estimation method and device and doppler frequency offset elimination method and device in ofdm system

Also Published As

Publication number Publication date
CN103988475A (en) 2014-08-13
CN103988475B (en) 2017-06-09

Similar Documents

Publication Publication Date Title
US8576810B2 (en) Method and apparatus for detecting secondary synchronization signal
JP5597705B2 (en) Pilot time offset estimation apparatus and method
KR101253447B1 (en) Methods and systems for timing acquisition robust to channel fading
EP2987370B1 (en) Secondary cell synchronization for carrier aggregation
CN102413079B (en) Initial fraction frequency offset estimation method used in downlink of 3 generation partnership project long term evolution (3GPP-LTE) system
KR101505091B1 (en) Apparatus and method for initial synchronization wireless communication system based on ofdm
CN101719890B (en) District searching method and d device applied to long-period evolution system
KR101656083B1 (en) Apparatus and method for obtaining reception synchronization in wireless communication system
US20100157833A1 (en) Methods and systems for improved timing acquisition for varying channel conditions
CN104717174B (en) A kind of OFDM anti-interference synchronous methods under complexity multipath channel
CN101267419B (en) A time advance adjustment method and device for OFDM symbol timing
US9729377B2 (en) Coarse symbol boundary detection in OFDM receivers
CN108989259B (en) Time offset estimation method and system for narrow-band physical uplink shared channel of wireless comprehensive measurement instrument
US20100046359A1 (en) Wireless Terminal, Base Station and Channel Characteristic Estimating Method
WO2011147181A1 (en) Method and device for estimating channel and frequency offset
CN109328452B (en) Adaptive selection of signal detection modes
WO2013091155A1 (en) Carrier frequency offset estimation method and device
US20140270024A1 (en) Apparatus and method for detection of time tracking failure
WO2012171407A1 (en) Method and device for determining time synchronization location
CN101741800B (en) Synchronous searching method
CN112205059B (en) Method, apparatus and computer readable medium for signal detection
CN108738124B (en) Timing synchronization method and device
US10212679B1 (en) Method and apparatus for delay spread estimation
CN101674280B (en) When detecting OFDM symbol partially and the method for frequency deviation
Kadambar et al. Low Complexity ML Synchronization for 3GPP NB-IoT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877942

Country of ref document: EP

Kind code of ref document: A1