WO2013090079A1 - Limited slip planetary gear transmission - Google Patents

Limited slip planetary gear transmission Download PDF

Info

Publication number
WO2013090079A1
WO2013090079A1 PCT/US2012/067841 US2012067841W WO2013090079A1 WO 2013090079 A1 WO2013090079 A1 WO 2013090079A1 US 2012067841 W US2012067841 W US 2012067841W WO 2013090079 A1 WO2013090079 A1 WO 2013090079A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
gear
limited slip
carrier
transmission
Prior art date
Application number
PCT/US2012/067841
Other languages
French (fr)
Inventor
Peter Ward
Dean Schneider
Alexander Serkh
Imtiaz Ali
Original Assignee
The Gates Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Gates Corporation filed Critical The Gates Corporation
Priority to CN201280061598.4A priority Critical patent/CN103987999A/en
Priority to CA2857591A priority patent/CA2857591A1/en
Priority to MX2014007110A priority patent/MX2014007110A/en
Priority to KR1020147019309A priority patent/KR20140112021A/en
Priority to JP2014543639A priority patent/JP2014533818A/en
Priority to RU2014128540A priority patent/RU2014128540A/en
Priority to EP12806761.8A priority patent/EP2791549A1/en
Priority to BR112014014743A priority patent/BR112014014743A2/en
Publication of WO2013090079A1 publication Critical patent/WO2013090079A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/721Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with an energy dissipating device, e.g. regulating brake or fluid throttle, in order to vary speed continuously

Definitions

  • the invention relates to a limited slip planetary gear transmission, and in particular, to a limited slip planetary gear transmission having a brake member engaging a rotating portion of a planetary gear set for controlling an output torque of the planetary gear transmission .
  • the invention relates to planetary gear sets.
  • Planetary gear sets are typically unitary assemblies comprising a sun gear, carrier, pinions, and a ring gear.
  • the planetary gear set subassembly is then incorporated into a larger mechanical device, such as an automotive transmission.
  • the output power or torque of the larger device into which a planetary gear set is incorporated is routinely controllable.
  • it would be desirable to control the torque output of the planetary gear set proper by directly controlling the torque of one or more of the planetary gear set components such as the sun gear or carrier.
  • US patent no. 5,106,351 discloses a transfer case for a four wheel drive vehicle providing a central shaft defining a first output concentrically surrounded by a forward high/low drive range gear set and an aft dual planetary inter-axle differential gear set.
  • a range clutch collar is disposed between the gear sets for selectively providing four wheel drive low range, neutral, and full-time four wheel drive high range.
  • a mode sleeve is disposed between the gear sets for selectively locking the differential gear set when the vehicle is shifted into its four wheel low range.
  • Inner and outer relatively rotational drum housings surround the aft dual planetary differential gear set for defining an annular viscous fluid coupling chamber therebetween.
  • the inner drum is formed with internal annulus gear teeth meshed with a portion of the dual planetary gear set for rotation with the first output shaft while the outer drum is interconnected to a second output for providing full-time four wheel drive differentiation with limited slip between the first and second outputs.
  • the primary aspect of the invention is to provide a limited slip planetary gear transmission having a brake member engaging a rotating portion of a planetary gear set for controlling an output torque of the planetary gear transmission.
  • the invention comprises a limited slip planetary gear transmission comprising an input member, an output member, a planetary gear set coupled between the input member and the output member, the planetary gear set having a sun gear, and a brake member directly coupled to the sun gear, the brake member controls an output torque of the planetary gear set by controlling a speed of the sun gear.
  • Figure 1 is a cross-sectional view of the preferred embodiment .
  • Figure 2 is an exploded view of the embodiment in Figure 1.
  • Figure 3 is a cross-sectional view of an alternate embodiment.
  • Figure 4 is an exploded view of the embodiment in Figure 3.
  • Figure 1 is a cross sectional view of the inventive transmission.
  • Carrier 20 rotates about an axis A-A.
  • Carrier 20 may be press fit on a rotating shaft (not shown) .
  • a plurality of pinion gears 90 are journalled to carrier 20. Each pinion gear 90 meshes with ring gear 30 and sun gear 10.
  • Sun gear member 11 further comprises a shaft which is coaxial with carrier 20 about axis A-A. In this embodiment sun gear 10 is frictionally engaged with brake 40 through sun gear member 11.
  • Brake 40 comprises a housing 50, and interleaved plates 60 and 70. Plates 60 comprise a frictional material known in the clutch and brake arts. Plates 70 comprise a frictional material known in the clutch and brake arts. Plates 60 are mounted to housing 50. Plates 70 are mounted to sun gear member 11. Piston 41 urges plates 60 into frictional engagement with plates 70. Frictional engagement between plates 60 and plates 70 applies a drag torque to sun gear member 11, thereby slowing rotation of sun gear 10, which in turn reduces the output torque of the device. Brake 40 may also comprise other types of brakes as known in the art, such as a cone or band brake. In an alternate embodiment piston 41 may further comprise a pneumatic or hydraulic cylinder connected to a control system (not shown) .
  • the device is configured as a planetary gear set where sun 10 is the reaction gear and the carrier 20 is the input to create an output speed increase at ring 30.
  • ring 30 could be the input resulting in a speed reduction at output carrier 20.
  • Sun 10 would be held fixed to create the speed ratio, but could also be slipped to vary the output speed, each selected speed using brake 40.
  • S is number of teeth on sun 10
  • R is the number of teeth on ring 30
  • sun 10 has 12 teeth and ring 30 has 60 teeth so that the ratio is 0.83:1.
  • carrier 20 is spinning at 1, 000RP with 12Nm torque and sun 10 is not rotating due to application of brake 40 then ring 30 spins at 1,200RPM and at a torque of lONm.
  • slip brake 40 it is possible to slip brake 40 to have any speed less than 1,200RPM at ring 30. If the desired speed of ring 30 is 1100RPM the applied force to brake 40 can be reduced to allow sun 10 to slip.
  • CDRING is the speed of the ring
  • coSUN is the speed of the sun
  • the slip speed of sun 10 is 500 RPM to slow ring 30 to 1100 RPM from 1200 RPM.
  • the power loss is simply the product of the change in speed at ring 30 and the torque at ring 30 as shown in the equation:
  • the power lost from slipping ring 30 is approximately 105 Watts.
  • the torque at sun 10 is lower at 2Nm because the speed at sun 10 is higher at 500RPM.
  • the power loss is easier to manage at a higher speed because the required force applied to plate 60 and plate 70 is lower.
  • the lower applied force allows reduction of the overall physical size of plate 60, plate 70, and housing 50.
  • FIG. 2 is an exploded view of the embodiment in Figure 1.
  • O-rings 51 prevent debris from entering the housing and reaching the plates 60, 70.
  • O-rings 51 are also used to seal piston 41 as a pressure boundary.
  • Housing cover 52 is fixed to the housing 50 using bolts 53.
  • a plate 60 bears upon an end plate 54.
  • Snap ring 82 retains bearing 81 in ring carrier 31.
  • Deflector 33 directs oil into the gear mesh interface between pinion 90 and sun 10.
  • Ring gear 30 is retained between ring carrier 31 and ring carrier 32.
  • Snap ring 83 retains bearing 80 in ring carrier 32.
  • sun gear 10 is press fit on an outer surface of sun gear member 11.
  • Figure 3 is a cross-sectional view of an alternate configuration.
  • the brake mechanism is applied to the carrier 300, wherein the embodiment in Figure 1 the brake mechanism is applied to the sun gear 10.
  • two ring gears (100, 500) share a common carrier 300 with a compound pinion 200, where the carrier is the reaction element.
  • Ring 100 is the input to create a speed increase at output ring 500.
  • Carrier 300 is the reaction member that is prevented from rotating or is slipped using brake 400.
  • the power flow may be in either direction, namely, with input through ring carrier 501 and output through ring carrier 101 for a speed decrease transmission .
  • Ring gear 100 is disposed on an inner surface of ring carrier 101. Ring gear 100 meshes with a plurality of compound pinions 200. Compound pinions 200 are journalled around carrier 300. Each compound pinion 200 comprises two gears, namely, gear 201 and gear 202. Each gear 201 and gear 202 has a different number of teeth. Ring gear 100 meshes with each gear 201.
  • Ring gear 500 is disposed on an inner surface of a ring carrier 501. Ring gear 500 meshes with each gear 202 on each compound pinion 200.
  • Band brake 400 frictionally engages an outer circumferential surface 301 of carrier 300.
  • Band brake comprises a band 401 upon which is mounted frictional material 402. Frictional material 402 frictionally engages surface 301.
  • Band brake 400 operates in a manner known in the art using a mechanical means to constrict the band upon surface 301, thereby increasing the frictional force applied to the carrier.
  • Such means can include but are not limited to an electric actuator, a pneumatic or hydraulic piston, an Acme-type screw or simple lever (none shown) .
  • each gear comprises a predetermined number of teeth.
  • Each gear may have any number of teeth as known in the art as required by a user.
  • ring 100 has 107 teeth.
  • Compound pinion 200 has two gear teeth profiles.
  • Gear 201 has 13 teeth that mesh with ring 100 and gear 202 has 17 teeth that mesh with ring 500.
  • Ring 500 has 111 teeth.
  • ring 500 will spin at 1, 260 RPM.
  • the speed of ring 500 can be decreased by allowing carrier 300 to slip by partially releasing brake 400.
  • carrier 300 must be slipped so that carrier 300 spins at 485RPM.
  • the change in speed at ring 500 and ring carrier 501 is 126 RPM, but the increase in speed of carrier 300 allowed by the 10% slip means a lower torque must be managed by brake 400 making it possible to have a smaller applied force to the braking mechanism.
  • Figure 4 is an exploded view of the embodiment in
  • FIG. 3 In this embodiment, three compound pinions 200 are journalled to carrier 300.
  • Band brake 400 is disposed radially outwardly of carrier 300. This arrangement allows the transmission to have a thin profile thickness T, allowing use in confined areas.
  • the inventive device makes speed control simple and precise.
  • the control system can monitor the speed and/or torque at the output and at the reaction member enabling the slipping element to constantly be varied to enable a constant speed at the output.
  • torque measurement There are several methods that can be used to measure the torque of the slipping or braked element. Some examples of torque measurement are load cells and the use of an elastic element such as torsion or compression springs.
  • the elastic element has a known spring rate which can be used with a measured angular or linear displacement to measure torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Structure Of Transmissions (AREA)
  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Abstract

A limited slip planetary gear transmission comprising: an input member, an output member coaxial with the input member, a planetary gear set coupled between the input member and the output member, and a brake member coupled to the planetary gear set for controlling an output member torque.

Description

Title
Limited Slip Planetary Gear Transmission
Field of the Invention
The invention relates to a limited slip planetary gear transmission, and in particular, to a limited slip planetary gear transmission having a brake member engaging a rotating portion of a planetary gear set for controlling an output torque of the planetary gear transmission .
Background of the Invention
The invention relates to planetary gear sets. Planetary gear sets are typically unitary assemblies comprising a sun gear, carrier, pinions, and a ring gear. The planetary gear set subassembly is then incorporated into a larger mechanical device, such as an automotive transmission. The output power or torque of the larger device into which a planetary gear set is incorporated is routinely controllable. For certain applications it would be desirable to control the torque output of the planetary gear set proper by directly controlling the torque of one or more of the planetary gear set components such as the sun gear or carrier.
Representative of the art is US patent no. 5,106,351 which discloses a transfer case for a four wheel drive vehicle providing a central shaft defining a first output concentrically surrounded by a forward high/low drive range gear set and an aft dual planetary inter-axle differential gear set. A range clutch collar is disposed between the gear sets for selectively providing four wheel drive low range, neutral, and full-time four wheel drive high range. Likewise, a mode sleeve is disposed between the gear sets for selectively locking the differential gear set when the vehicle is shifted into its four wheel low range. Inner and outer relatively rotational drum housings surround the aft dual planetary differential gear set for defining an annular viscous fluid coupling chamber therebetween. The inner drum is formed with internal annulus gear teeth meshed with a portion of the dual planetary gear set for rotation with the first output shaft while the outer drum is interconnected to a second output for providing full-time four wheel drive differentiation with limited slip between the first and second outputs.
What is needed is a limited slip planetary gear transmission having a brake member engaging a rotating portion of a planetary gear set for controlling an output torque of the planetary gear transmission. The present invention meets this need.
Summary of the Invention
The primary aspect of the invention is to provide a limited slip planetary gear transmission having a brake member engaging a rotating portion of a planetary gear set for controlling an output torque of the planetary gear transmission.
Other aspects of the invention will be pointed out or made obvious by the following description of the invention and the accompanying drawings.
The invention comprises a limited slip planetary gear transmission comprising an input member, an output member, a planetary gear set coupled between the input member and the output member, the planetary gear set having a sun gear, and a brake member directly coupled to the sun gear, the brake member controls an output torque of the planetary gear set by controlling a speed of the sun gear.
Brief Description of the Drawings The accompanying drawings, which are incorporated in and form a part of the specification, illustrate preferred embodiments of the present invention, and together with a description, serve to explain the principles of the invention.
Figure 1 is a cross-sectional view of the preferred embodiment .
Figure 2 is an exploded view of the embodiment in Figure 1.
Figure 3 is a cross-sectional view of an alternate embodiment.
Figure 4 is an exploded view of the embodiment in Figure 3.
Detailed Description of the Preferred Embodiment
Figure 1 is a cross sectional view of the inventive transmission. Carrier 20 rotates about an axis A-A. Carrier 20 may be press fit on a rotating shaft (not shown) .
A plurality of pinion gears 90 are journalled to carrier 20. Each pinion gear 90 meshes with ring gear 30 and sun gear 10. Sun gear member 11 further comprises a shaft which is coaxial with carrier 20 about axis A-A. In this embodiment sun gear 10 is frictionally engaged with brake 40 through sun gear member 11.
Ring gear 30 rotates upon sun gear member 11 through bearing 81. Ring gear 30 rotates upon carrier 20 through bearing 80. In this embodiment the power output is through ring gear 30 and the power input is through carrier 20. Brake 40 comprises a housing 50, and interleaved plates 60 and 70. Plates 60 comprise a frictional material known in the clutch and brake arts. Plates 70 comprise a frictional material known in the clutch and brake arts. Plates 60 are mounted to housing 50. Plates 70 are mounted to sun gear member 11. Piston 41 urges plates 60 into frictional engagement with plates 70. Frictional engagement between plates 60 and plates 70 applies a drag torque to sun gear member 11, thereby slowing rotation of sun gear 10, which in turn reduces the output torque of the device. Brake 40 may also comprise other types of brakes as known in the art, such as a cone or band brake. In an alternate embodiment piston 41 may further comprise a pneumatic or hydraulic cylinder connected to a control system (not shown) .
In Figure 1 the device is configured as a planetary gear set where sun 10 is the reaction gear and the carrier 20 is the input to create an output speed increase at ring 30. In an alternative embodiment ring 30 could be the input resulting in a speed reduction at output carrier 20. Sun 10 would be held fixed to create the speed ratio, but could also be slipped to vary the output speed, each selected speed using brake 40.
To illustrate operation, assume that the transmission is used as a speed increaser wherein ring 30 is the output and carrier 20 is the input. The ratio of the transmission when sun 10 is held to no rotation by brake 40 is:
Figure imgf000006_0001
Where,
S is number of teeth on sun 10
R is the number of teeth on ring 30 In this example sun 10 has 12 teeth and ring 30 has 60 teeth so that the ratio is 0.83:1. If carrier 20 is spinning at 1, 000RP with 12Nm torque and sun 10 is not rotating due to application of brake 40 then ring 30 spins at 1,200RPM and at a torque of lONm. It is possible to slip brake 40 to have any speed less than 1,200RPM at ring 30. If the desired speed of ring 30 is 1100RPM the applied force to brake 40 can be reduced to allow sun 10 to slip.
To calculate the slip speed required at sun 10 the following calculation is used:
(i? + S) coCARRIER = RCDRING + So)SUN aCARRIER is the speed of the carrier
CDRING is the speed of the ring
coSUN is the speed of the sun
In this case the slip speed of sun 10 is 500 RPM to slow ring 30 to 1100 RPM from 1200 RPM. The power loss is simply the product of the change in speed at ring 30 and the torque at ring 30 as shown in the equation:
Ploss = (Aa)RlNG) (TRing)
Figure imgf000007_0001
The power lost from slipping ring 30 is approximately 105 Watts. The torque at sun 10 is lower at 2Nm because the speed at sun 10 is higher at 500RPM. The power loss is easier to manage at a higher speed because the required force applied to plate 60 and plate 70 is lower. The lower applied force allows reduction of the overall physical size of plate 60, plate 70, and housing 50.
Figure 2 is an exploded view of the embodiment in Figure 1. O-rings 51 prevent debris from entering the housing and reaching the plates 60, 70. O-rings 51 are also used to seal piston 41 as a pressure boundary. Housing cover 52 is fixed to the housing 50 using bolts 53. A plate 60 bears upon an end plate 54. Snap ring 82 retains bearing 81 in ring carrier 31. Deflector 33 directs oil into the gear mesh interface between pinion 90 and sun 10. Ring gear 30 is retained between ring carrier 31 and ring carrier 32. Snap ring 83 retains bearing 80 in ring carrier 32.
In this embodiment, three pinion gears 90 are journalled to carrier 20, although more pinions may be used depending upon the needs of a user. Sun gear 10 is press fit on an outer surface of sun gear member 11.
Figure 3 is a cross-sectional view of an alternate configuration. In this embodiment, the brake mechanism is applied to the carrier 300, wherein the embodiment in Figure 1 the brake mechanism is applied to the sun gear 10.
In this embodiment two ring gears (100, 500) share a common carrier 300 with a compound pinion 200, where the carrier is the reaction element. Ring 100 is the input to create a speed increase at output ring 500. Carrier 300 is the reaction member that is prevented from rotating or is slipped using brake 400. As noted for the embodiment in Figure 1, the power flow may be in either direction, namely, with input through ring carrier 501 and output through ring carrier 101 for a speed decrease transmission .
Ring gear 100 is disposed on an inner surface of ring carrier 101. Ring gear 100 meshes with a plurality of compound pinions 200. Compound pinions 200 are journalled around carrier 300. Each compound pinion 200 comprises two gears, namely, gear 201 and gear 202. Each gear 201 and gear 202 has a different number of teeth. Ring gear 100 meshes with each gear 201.
Ring gear 500 is disposed on an inner surface of a ring carrier 501. Ring gear 500 meshes with each gear 202 on each compound pinion 200. Band brake 400 frictionally engages an outer circumferential surface 301 of carrier 300. Band brake comprises a band 401 upon which is mounted frictional material 402. Frictional material 402 frictionally engages surface 301. Band brake 400 operates in a manner known in the art using a mechanical means to constrict the band upon surface 301, thereby increasing the frictional force applied to the carrier. Such means can include but are not limited to an electric actuator, a pneumatic or hydraulic piston, an Acme-type screw or simple lever (none shown) .
In operation, each gear comprises a predetermined number of teeth. Each gear may have any number of teeth as known in the art as required by a user. In the instant embodiment ring 100 has 107 teeth. Compound pinion 200 has two gear teeth profiles. Gear 201 has 13 teeth that mesh with ring 100 and gear 202 has 17 teeth that mesh with ring 500. Ring 500 has 111 teeth.
If ring 100 is rotated at 1,000 RPM and carrier 300 is held fixed (no rotation) by brake 400 then ring 500 will spin at 1, 260 RPM. The speed of ring 500 can be decreased by allowing carrier 300 to slip by partially releasing brake 400. For example, to achieve 10% slip at ring 500, carrier 300 must be slipped so that carrier 300 spins at 485RPM. The change in speed at ring 500 and ring carrier 501 is 126 RPM, but the increase in speed of carrier 300 allowed by the 10% slip means a lower torque must be managed by brake 400 making it possible to have a smaller applied force to the braking mechanism.
Figure 4 is an exploded view of the embodiment in
Figure 3. In this embodiment, three compound pinions 200 are journalled to carrier 300. Band brake 400 is disposed radially outwardly of carrier 300. This arrangement allows the transmission to have a thin profile thickness T, allowing use in confined areas.
The inventive device makes speed control simple and precise. The control system can monitor the speed and/or torque at the output and at the reaction member enabling the slipping element to constantly be varied to enable a constant speed at the output.
There are several methods that can be used to measure the torque of the slipping or braked element. Some examples of torque measurement are load cells and the use of an elastic element such as torsion or compression springs. The elastic element has a known spring rate which can be used with a measured angular or linear displacement to measure torque.
Although forms of the invention has been described herein, it will be obvious to those skilled in the art that variations may be made in the construction and relation of parts without departing from the spirit and scope of the invention described herein.

Claims

Claims We claim:
1. A limited slip planetary gear transmission comprising :
an input member;
an output member;
a planetary gear set coupled between the input member and the output member, the planetary gear set having a sun gear; and
a brake member directly coupled to the sun gear, the brake member controls an output torque of the planetary gear set by controlling a speed of the sun gear.
2. The limited slip planetary gear transmission as in claim 1, wherein the output member comprises a ring gear.
3. The limited slip planetary gear transmission as in claim 1, wherein the input member comprises a planetary gear carrier.
4. The limited slip planetary gear transmission as in claim 1, wherein the brake member comprises a plurality of plates.
5. The limited slip planetary gear transmission as in claim 1, wherein the output member comprises a planetary gear carrier.
6. The limited slip planetary gear transmission as in claim 1, wherein the input member comprises a ring gear.
7. Ά limited slip planetary gear transmission comprising : an input member;
an output member coaxial with the input member;
a planetary gear set coupled between the input member and the output member; and
a brake member coupled to the planetary gear set for controlling an output member torque.
8. The limited slip planetary gear transmission as in claim 7, wherein:
the brake member is coupled to a sun gear;
the brake member comprises a plurality of interleaved plates alternatively connected to a housing and the sun gear; and
an urging member which exerts a predetermined force on the interleaved plates.
9. The limited slip planetary gear set transmission as in claim 7 comprising:
a carrier;
a first ring gear and a second ring gear;
a compound pinion journalled to the carrier and in meshing engagement with the first ring gear and the second ring gear;
the brake member is coupled to the carrier;
the compound pinion having a first gear and a second gear, wherein the number of teeth on the first gear are not equal to the number of teeth on the second gear.
10. The limited slip planetary gear set transmission as in claim 9, wherein the brake member comprises a band brake .
11. The limited slip planetary gear set transmission as in claim 10, wherein the band brake engages a carrier surface .
12. The limited slip planetary gear set transmission as in claim 11, wherein the band brake is disposed radially outwardly of the carrier surface.
13. A limited slip planetary gear transmission comprising :
an input member;
an output member that is coaxial with the input member;
a planetary gear set coupled between the input member and the output member, the planetary gear set having a carrier;
a brake member coupled to the carrier; and
an urging member exerting a force whereby the brake member controls a torque output of the planetary gear set .
14. The limited slip planetary gear set transmission as in claim 13 comprising:
a first ring gear and a second ring gear;
a compound pinion journalled to the carrier and in meshing engagement with the first ring gear and the second ring gear;
the compound pinion having a first gear and a second gear, wherein the number of teeth on the first gear are not equal to the number of teeth on the second gear.
15. The limited slip planetary gear set transmission as in claim 14, wherein the brake member comprises a band brake.
16. The limited slip planetary gear set transmission as in claim 15, wherein the band brake engages a carrier surface .
17. The limited slip planetary gear set transmission as in claim 16, wherein the band brake is disposed radially outwardly of the carrier surface.
PCT/US2012/067841 2011-12-14 2012-12-05 Limited slip planetary gear transmission WO2013090079A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280061598.4A CN103987999A (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission
CA2857591A CA2857591A1 (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission
MX2014007110A MX2014007110A (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission.
KR1020147019309A KR20140112021A (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission
JP2014543639A JP2014533818A (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission
RU2014128540A RU2014128540A (en) 2011-12-14 2012-12-05 RESTRICTED PLANETARY GEAR
EP12806761.8A EP2791549A1 (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission
BR112014014743A BR112014014743A2 (en) 2011-12-14 2012-12-05 limited slip planetary gear transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/325,302 2011-12-14
US13/325,302 US20130157800A1 (en) 2011-12-14 2011-12-14 Limited Slip Planetary Gear Transmission

Publications (1)

Publication Number Publication Date
WO2013090079A1 true WO2013090079A1 (en) 2013-06-20

Family

ID=47436196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/067841 WO2013090079A1 (en) 2011-12-14 2012-12-05 Limited slip planetary gear transmission

Country Status (10)

Country Link
US (1) US20130157800A1 (en)
EP (1) EP2791549A1 (en)
JP (1) JP2014533818A (en)
KR (1) KR20140112021A (en)
CN (1) CN103987999A (en)
BR (1) BR112014014743A2 (en)
CA (1) CA2857591A1 (en)
MX (1) MX2014007110A (en)
RU (1) RU2014128540A (en)
WO (1) WO2013090079A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124874B1 (en) * 2015-01-26 2018-11-13 Brunswick Corporation Systems and methods for controlling planetary transmission arrangements for marine propulsion devices
US10745118B2 (en) * 2016-09-23 2020-08-18 Sikorsky Aircraft Corporation Variable ratio gearbox for a rotary wing aircraft tail rotor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB425031A (en) * 1933-02-08 1935-03-04 Georges Raymond Cassagne Improvements in and relating to variable speed gearing
EP0257132A1 (en) * 1986-08-29 1988-03-02 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Four-wheel drive locking device in the drive train of an automotive vehicle
WO1990004118A1 (en) * 1988-10-05 1990-04-19 Zahnradfabrik Friedrichshafen Ag Lockable differential
US5106351A (en) 1991-04-23 1992-04-21 New Venture Gear, Inc. Transfer case limited slip planetary differential
GB2261040A (en) * 1991-10-22 1993-05-05 Fuji Heavy Ind Ltd Power transmission system for a motor vehicle
US6071208A (en) * 1998-06-22 2000-06-06 Koivunen; Erkki Compact multi-ratio automatic transmission
DE10348959A1 (en) * 2003-10-22 2005-05-25 Zf Friedrichshafen Ag Transmission train for vehicle has two planetary gear stages with friction brakes to vary the relative torque distribution to two output shafts especially for two driven axles
US20080300086A1 (en) * 2004-07-30 2008-12-04 Jonathan Charles Wheals Variable Torque Biasing Device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114478A (en) * 1977-01-03 1978-09-19 Borg-Warner Corporation Planetary transmission mechanism
DE3616236C1 (en) * 1986-05-14 1987-06-25 Porsche Ag All-wheel lock system in the drive train of a motor vehicle
DE3924340A1 (en) * 1989-07-22 1991-01-31 Viscodrive Gmbh Drive train blocking arrangement - for four-wheel-drive, vehicle and uses three member planetary drive
JPH03117752A (en) * 1989-09-30 1991-05-20 Aisin Seiki Co Ltd Automatic trans-axle
US6962227B1 (en) * 2004-05-07 2005-11-08 Magna Drivetrain Of America, Inc. Torque vectoring drive axle assembly
GB0417067D0 (en) * 2004-07-30 2004-09-01 Ricardo Uk Ltd Variable torque bias ratio devices
JP4930751B2 (en) * 2005-11-30 2012-05-16 日本精工株式会社 Steering device
US8226512B2 (en) * 2009-03-25 2012-07-24 GM Global Technology Operations LLC 8-speed hybrid transmission

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB425031A (en) * 1933-02-08 1935-03-04 Georges Raymond Cassagne Improvements in and relating to variable speed gearing
EP0257132A1 (en) * 1986-08-29 1988-03-02 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Four-wheel drive locking device in the drive train of an automotive vehicle
WO1990004118A1 (en) * 1988-10-05 1990-04-19 Zahnradfabrik Friedrichshafen Ag Lockable differential
US5106351A (en) 1991-04-23 1992-04-21 New Venture Gear, Inc. Transfer case limited slip planetary differential
GB2261040A (en) * 1991-10-22 1993-05-05 Fuji Heavy Ind Ltd Power transmission system for a motor vehicle
US6071208A (en) * 1998-06-22 2000-06-06 Koivunen; Erkki Compact multi-ratio automatic transmission
DE10348959A1 (en) * 2003-10-22 2005-05-25 Zf Friedrichshafen Ag Transmission train for vehicle has two planetary gear stages with friction brakes to vary the relative torque distribution to two output shafts especially for two driven axles
US20080300086A1 (en) * 2004-07-30 2008-12-04 Jonathan Charles Wheals Variable Torque Biasing Device

Also Published As

Publication number Publication date
CA2857591A1 (en) 2013-06-20
BR112014014743A2 (en) 2017-06-13
JP2014533818A (en) 2014-12-15
KR20140112021A (en) 2014-09-22
RU2014128540A (en) 2016-02-10
EP2791549A1 (en) 2014-10-22
MX2014007110A (en) 2014-09-08
CN103987999A (en) 2014-08-13
US20130157800A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US20140323259A1 (en) Electric drive device for vehicle
KR20170119744A (en) Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
WO2014074481A2 (en) A clutch management system
JP2636229B2 (en) Differential limit mechanism of four-wheel drive central differential
CN110036222B (en) Traction transmission and drive unit for a motor vehicle
CN105697573B (en) Assembly with friction device
WO2014126205A1 (en) Motive-power transmission device
US20100032260A1 (en) Frictional engagement device for automatic transmission
KR102258744B1 (en) Traction System For Hybrid Vehicles
US20090114501A1 (en) Frictional engagement device
WO2013090079A1 (en) Limited slip planetary gear transmission
KR20160057301A (en) Continuously variable transmission with direction selection mechanism
JP2016070479A (en) Vehicular stepless speed change device
US10024429B2 (en) Automatic transmission
JP5234015B2 (en) Continuously variable transmission
CN103967961B (en) Clutch and vehicle speed variation assembly based on planetary mechanism
KR101371729B1 (en) Structure for assembling brake in automatic transmission
CN206503920U (en) A kind of power does not interrupt two gear speed change gears and multi-shifting speed variator
JP2014119047A (en) Torque limiter
US10234005B2 (en) Device for continuously variable transmission
JP6296937B2 (en) Power split type continuously variable transmission
EP3019772A1 (en) A gear assembly
WO2024029081A1 (en) Differential device
KR20230074295A (en) Transmission assembly and method
ITMO20080326A1 (en) POWER TAKE-UP FOR COMPRESSORS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543639

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2857591

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007110

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019309

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014128540

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012806761

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014014743

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014014743

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140616