WO2013089880A1 - Methods for forming fiber-reinforced structures with segments formed from different types of fiber - Google Patents

Methods for forming fiber-reinforced structures with segments formed from different types of fiber Download PDF

Info

Publication number
WO2013089880A1
WO2013089880A1 PCT/US2012/057394 US2012057394W WO2013089880A1 WO 2013089880 A1 WO2013089880 A1 WO 2013089880A1 US 2012057394 W US2012057394 W US 2012057394W WO 2013089880 A1 WO2013089880 A1 WO 2013089880A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fiber
wireless device
recited
region
Prior art date
Application number
PCT/US2012/057394
Other languages
French (fr)
Inventor
John C. Difonzo
Amy W. NG
Robert Michael MERRITT
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to JP2014547224A priority Critical patent/JP5783654B2/en
Priority to CN201280060780.8A priority patent/CN103974644A/en
Priority to KR1020147017167A priority patent/KR20140102244A/en
Priority to EP12858301.0A priority patent/EP2790547A4/en
Priority to US13/711,489 priority patent/US20130147330A1/en
Publication of WO2013089880A1 publication Critical patent/WO2013089880A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/302Details of the edges of fibre composites, e.g. edge finishing or means to avoid delamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1698Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a sending/receiving arrangement to establish a cordless communication link, e.g. radio or infrared link, integrated cellular phone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3888Arrangements for carrying or protecting transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • A45C2011/003Receptacles for purposes not provided for in groups A45C1/00-A45C9/00 for portable computing devices, e.g. laptop, tablet, netbook, game boy, navigation system, calculator
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/02Interior fittings; Means, e.g. inserts, for holding and packing articles
    • A45C2013/025Interior fittings; Means, e.g. inserts, for holding and packing articles for holding portable computers or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1628Carrying enclosures containing additional elements, e.g. case for a laptop and a printer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1633Protecting arrangement for the entire housing of the computer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material

Definitions

  • This relates to fiber-reinforced materials and, more particularly, to structures formed from fiber-reinforced materials.
  • Electronic devices sometimes use wireless circuitry.
  • portable electronic devices such as cellular telephones and tablet computers may contain antennas for handling wireless communications.
  • antennas for handling wireless communications.
  • structures such as housings for electronic devices and removable covers for electronic devices, it may be desirable to reduce or eliminate the presence of radio-opaque materials that might interfere with antenna operation.
  • unreinforced plastic is used as a radio-transparent material that is compatible with the presence of antennas. In many applications, however, unreinforced plastic may be undesirably weak.
  • plastic may be reinforced using fibers.
  • fibers formed from glass and carbon may be used in reinforcing plastic.
  • Carbon fiber reinforced plastic is strong, but is not radio transparent.
  • Glass-fiber reinforced plastic is radio transparent, but may not be sufficiently rigid in certain applications.
  • Fiber-reinforced plastic structures may be used in forming support structures and electronic device housing members.
  • the fiber-reinforced plastic structures may include multiple types of fiber.
  • a first portion of the structures may be formed from a first type of fiber such as glass fiber and may be radio transparent.
  • a second portion of the structures may be formed from a second type of fiber such as carbon fiber.
  • the second portion of the structures may be more rigid than the first portion and may be radio opaque.
  • the second portion of the structures may be used to selectively add stiffness to the fiber-reinforced plastic structures.
  • the first portion of the structures may be used to maintain radio transparency for compatibility with wireless electronic device operations. For example, the first portion may be placed in the vicinity of antennas in a wireless electronic device to allow the antennas to operate without being blocked by the second portion of the structures.
  • the fiber-reinforced structures may be formed by rolling a sheet of prepreg material to form a roll that is cured in a heated mold.
  • the sheet of prepreg material may include a first area formed using the first type of fiber and a second area formed using the second type of fiber.
  • the shapes of the first and second areas of prepreg material may be configured so that the rolled prepreg material exhibits gradual transitions between the first and second types of fiber and so that the fiber- reinforced plastic structures have strong joints following curing.
  • FIG. 1 is a perspective view of an illustrative fiber-reinforced plastic structure in accordance with an embodiment of the present invention.
  • FIG. 2 is a perspective view of an illustrative electronic device and an associated cover in accordance with an embodiment of the present invention.
  • FIG. 3 is a cross-sectional side view of an illustrative electronic device in a cover showing how a fiber-reinforced structure in the cover may have radio- transparent and non-radio-transparent portions in accordance with an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a portion of a fiber-reinforced structure of the type shown in FIG. 1 in which the fiber-reinforced structure has a triangular cross section in accordance with an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a portion of a fiber-reinforced structure of the type shown in FIG. 1 in which the fiber-reinforced structure has a rectangular cross section in accordance with an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a portion of a fiber-reinforced structure of the type shown in FIG. 1 in which the fiber-reinforced structure has an L-shaped cross section in accordance with an embodiment of the present invention.
  • FIG. 7 is a diagram showing how a fiber-reinforced plastic structure of the type shown in FIG. 1 may be constructed and incorporated into a finished assembly in accordance with an embodiment of the present invention.
  • plastic for use in electronic device housing components, support structures for covers, and other items
  • fibers can be incorporated into plastics such as epoxy resins and other polymers to enhance their strength.
  • plastics such as epoxy resins and other polymers
  • Examples in which fiber- reinforced plastic structures have been formed from fibers in an epoxy binder are sometimes described herein as an example.
  • any suitable type of plastic may be reinforced with fibers including plastics such as polycarbonate (PC), acrylonitrile butadiene styrene (ABS), PC/ABS blends, epoxy, etc.
  • PC polycarbonate
  • ABS acrylonitrile butadiene styrene
  • PC/ABS blends epoxy, etc.
  • fiber-reinforced plastic structure 10 has a rectangular ring shape. This is merely illustrative. Fiber-reinforced structure 10 may be formed in a circular ring, a ring having straight and curved sides, may be formed into an L-shaped bar, a straight bar, a curved bar, or may be formed into other suitable shapes.
  • Fiber-reinforced structure 10 may include multiple portions such as segment 12 and segment 14, each of which may be formed using a different type of fiber.
  • segment 12 may be formed from a non-radio-transparent (i.e., radio-opaque) material such as a carbon- fiber-reinforced plastic and segment 14 may be formed from a radio-transparent material such as glass— fiber-reinforced plastic.
  • other fiber-reinforced materials may be used in forming segments 12 and 14 of structure 10.
  • more than two different segments may be formed in structure 10. These segments may be located at any suitable locations on structures 10.
  • segment 12 may be located on any of the four sides of a rectangular ring structure, may include any of the four corners of a rectangular ring structure, may extend past one, two, three, or four corners of a rectangular ring structure, may include multiple segments along one side of a rectangular ring structure, may include multiple segments on opposing sides of a rectangular ring structure, may include multiple segments on a circular ring or a ring or strip of material of other shapes, may include segments of the same size or different size in a multi-segment configuration on a rectangular ring, circular ring, straight or curved portion of material, or may include any other pattern of radio-transparent and radio-opaque fiber-reinforced portions.
  • FIG. 1 is merely illustrative.
  • fiber-reinforced structure 10 may be incorporated within a product such as electronic device cover 32.
  • Cover 32 may have an upper flap such as flap 22 and a lower flap such as flap 24. Flaps 22 and 24 may be formed from plastic, leather, or other suitable materials. If desired, cover 32 may have no flaps.
  • cover 32 may be implemented using a slip case design that receives a component such as an electrical device within a slot or other recess within the cover.
  • Cover 32 of FIG. 2 is merely an illustrative example.
  • Electronic device 26 may be mounted within cover 32.
  • Electronic device 26 may be, for example, a tablet computer or other electronic equipment having a housing such as housing 28 and a display such as display 30.
  • Housing 28 may be formed from metal, glass, ceramic, fiber-reinforced plastic, other materials, or combinations of these materials. If desired, housing 28 may be formed from multiple portions of fiber-reinforced plastic (e.g., one or more segments or other portions of glass-fiber-reinforced plastic, one or more segments or other portions of carbon-fiber- reinforced plastic, etc.).
  • Illustrative arrangements in which fiber-reinforced plastic structure 10 is used in providing support for structures such as cover 32 are sometimes described herein as an example. This is, however, merely illustrative.
  • Fiber- reinforced plastic structure 10 may be incorporated into any suitable apparatus (e.g., electrical equipment, computer accessories, other products, etc.).
  • Upper flap 22 and lower flap 24 may be joined by a flexible portion of cover 32 along hinge axis 20.
  • a user may lift front flap 22 in direction 16, so that front flap 22 rotates about axis 20 relative to rear flap 24.
  • the user may lower front flap 22 in direction 18.
  • One or both flaps of cover 32 may be provided with structures such as fiber-reinforced structure 10 of FIG. 1. These fiber-reinforced structures may serve as internal supporting ribs that help hold the potentially flexible plastic or leather material of cover 32 in place. Because segment 12 of structure 10 is formed from carbon- fiber-reinforced plastic (in this example), segment 12 will tend to be stiffer (more rigid) than segment 14 and will therefore help create a stiff, inflexible portion of flap 22, so that flap 22 does not flex excessively when opened and closed by a user.
  • FIG. 3 is a cross-sectional side view of cover 32 and electronic device 26 taken along line 38 and viewed in direction 40 of FIG. 2 in a configuration in which flap 22 is in its closed position.
  • electronic device 26 may contain antenna structures such as antennas 34 that transmit and receive radio-frequency wireless signals 36.
  • Wireless signals 36 may pass through radio-transparent portion 14 of fiber-reinforced structure 10 and the material of cover 32. Because antennas 34 are not located under carbon-fiber-reinforced portion 12 of fiber-reinforced structure 10, antennas 34 and associated radio-frequency antenna signals 36 will not be blocked by conductive materials.
  • Fiber-reinforced structure 10 may have any suitable cross sectional shape.
  • fiber-reinforced structure 10 e.g., segment 12 and/or segment 14
  • fiber-reinforced plastic structure 10 may have a rectangular cross-sectional shape, as shown in FIG. 5.
  • FIG. 6 is a cross-sectional view of fiber-reinforced plastic structure 10 in an illustrative configuration having an L-shaped cross section.
  • Other cross- sectional shapes e.g., T-shapes, etc.
  • segments having combinations of these cross-sectional shapes may be used if desired.
  • Fiber-reinforced plastic structures 10 may be provided with a desired cross-sectional shape using a mold with a
  • machining e.g., to grind rough structures into a desired finished shape
  • molding and machining techniques or using other suitable fabrication techniques.
  • FIG. 7 is a diagram showing how fiber-reinforced plastic structures such as structure 10 may be formed and incorporated into an assembly.
  • Glass fiber and carbon fiber may be incorporated into respective sheets of uncured plastic resin such as epoxy. Sheets of this glass-fiber material and carbon- fiber material (sometimes referred to as prepreg sheets) may be cut into appropriate shapes and arranged on a work surface adjacent to each other using layout tool 42. As shown in FIG. 7, for example, prepreg material 46 may include left glass-fiber prepreg sheet 14L and right glass-fiber prepreg sheet 14R and central carbon-fiber prepreg sheet 12M. There may, in general, be any suitable number of sheets of material with different types of fiber (e.g., one or more, two or more, three or more, four or more, or five or more distinct sheets each with a potentially different type of fiber). The example of FIG. 7 in which there are two sheets of glass-fiber prepreg and a single sheet of carbon-fiber prepreg is merely illustrative.
  • Prepreg material 46 may have a length L parallel to longitudinal axis (dimension) 44 and a height H parallel to perpendicular lateral dimension 50.
  • Length L may be, as an example, 0.1 to 3 m, less than 3 m, more than 3 m, 0.5 to 1 m, 0.5 to 2 m, less than 0.5 m, more than 0.5 m, more than 1 m, less than 2 m, more than 5 m, less than 5 m, or any other suitable length.
  • Height H may be, as an example, 50-100 mm, less than 10 mm, more than 10 mm, less than 50 mm, more than 50 mm, less than 200 mm, more than 200 mm, less than 300 mm, more than 300 mm, etc.
  • the thickness (into the page in the origination of FIG. 7) of prepreg material 46 may be, for example, 0.05 mm, less than 0.1 mm, more than 0.1 mm, 0.1 mm, between 0.05 and 0.2 mm, less than 0.3 mm, more than 0.1 mm, less than 0.4 mm, more than 0.4 mm, etc.
  • prepreg material 46 has an elongated rectangular layout. If desired, prepreg material 46 may have other shapes.
  • the example of FIG. 7 is merely illustrative.
  • edges 48 of sheets 14L, 14M, and 14R may have curved portions, zigzag portions, straight and curved portions, or other configurations that spread out the interface between the different types of prepreg material along longitudinal dimension 44.
  • edges 48 may span the height H of prepreg material 46 in lateral dimension 50 and may cover at least some longitudinal distance W along the length of prepreg material 46.
  • the value of W may be, as an example, 10-80 mm, less than 80 mm, more than 10 mm, etc.
  • the glass fibers in portions 14L and 14R and the carbon fibers in portion 12M may be oriented parallel to longitudinal axis 44, as indicated by fibers 56 in FIG. 7.
  • the illustrative orientation of fibers 56 of FIG. 7 in which fibers 56 run predominantly along the length of the layout may help enhance product strength. If desired, however, woven prepreg or prepreg with fibers that are oriented in different directions can be used.
  • woven prepreg may be used in situations in which strength and/or stiffness through the cross-section is needed or in situations in which it is desirable to hold the prepreg together during manufacturing.
  • Multiple layers of prepreg with different characteristics may also be used (i.e., some layers may be provided with longitudinally oriented fibers, some layers may have woven fibers, etc.).
  • prepreg material 46 e.g., a single layer or multiple layers
  • fabrication equipment such as rolling tool 52 may be used to roll prepreg material 46 (e.g., a single layer or multiple layers) onto itself around longitudinal axis 46 to form a roll of prepreg (i.e., an elongated rod or strand of prepreg) such as prepreg roll 58.
  • an optional fiber such as fiber 54 may be incorporated into the center of prepreg material 46 during the rolling process.
  • Fiber 54 may be formed from a material such as glass or other dielectric or may be formed from other suitable material.
  • the diameter of fiber 54 may be about 1 mm, less than 2 mm, more than 1 mm, between 0.5 and 2 mm, or other suitable size.
  • the presence of fiber 54 may help reduce the amount of carbon fiber that is incorporated into the roll (potentially saving cost) and may facilitate handling of the roll.
  • the glass-fiber and carbon- fiber prepreg of roll 58 may be characterized by a length LI for the exposed portion of left-hand glass-fiber portion 14L, length W + L2 for the exposed (outermost) portion of carbon-fiber portion 12M, and length W + LI for the exposed portion of right-hand glass-fiber portion 14R. Due to the presence of the non-zero angle of edges 48, there is a gradual transition between glass fibers and carbon fibers throughout the cross-section of roll 58 along widths W.
  • region LI of portion 14L for example, only glass fibers will be present.
  • region L2 of portion 12M only carbon fibers will be present.
  • transition region W between region LI of portion 14L and region L2 of portion 12M there will be a smooth changeover as a function of distance along the length of roll 58 between the fully glass fiber section of roll 58 and the fully carbon fiber section of roll 58.
  • the transition between portion 12M and portion 14R of roll 58 will likewise exhibit a smooth transition between carbon fiber and glass fiber.
  • mold tool 60 may include a heated and pressurized mold having two or more portions.
  • the mold may have a lower metal plate with a groove that has a rectangular ring layout and a V-shaped cross section and may have an upper metal plate that is flat.
  • other types of cross-sectional shapes may be used (e.g., U-shaped, semi-circular, rectangular, etc.).
  • the ends of sections 14L and 14M of roll 58 may abut one another within mold 60, so that a completed ring shape will be formed after molding.
  • the mold may apply pressure and an elevated temperature to cure the epoxy (or other plastic).
  • heated and pressurized mold equipment 60 may apply heat to elevate the temperature of mold 60 and the prepreg material to 120-200°C for 3-90 minutes, 0.1 to 200 minutes, less than 1 minute, more than 1 minute, less than 4 minutes, more than 4 minutes, 1-50 minutes, 5-20 minutes, less than 20 minutes, more than 20 minutes, 30-45 minutes, less than 45 minutes, or more than 45 minutes (as examples).
  • the heat and pressure of mold 60 will cure the prepreg roll to produce a cured fiber- reinforced plastic part. Stray pieces of plastic may be removed following curing using a deflash process (e.g., using a scraper, blade, or other equipment), thereby producing finished fiber-reinforced plastic structure 10 of FIG. 7.
  • fiber-reinforced plastic structure 10 may have a radio- transparent section such as glass-fiber-reinforced segment 14 and may have a rigid radio-opaque section such as carbon-fiber-reinforced segment 12 (i.e., segment 12 may be less radio-transparent than segment 14).
  • Segment 14 may be formed from portions 14L and 14R of roll 58 and may have a joint (where the ends of portions 14L and 14R abutted one another in the mold) such as joint 62.
  • Assembly equipment 64 may be used to incorporate fiber-reinforced plastic structure 10 into finished product 66.
  • Product 66 may be an accessory such as a flexible cover for an electronic device (e.g., a tablet computer), may be a housing wall or internal housing structure in a tablet computer, computer, portable telephone or other handheld device, portable computer, music player, television, or other electronic equipment, or may be associated with any other suitable assembly or equipment.
  • an electronic device e.g., a tablet computer
  • portable telephone or other handheld device e.g., portable telephone or other handheld device
  • portable computer e.g., music player, television, or other electronic equipment, or may be associated with any other suitable assembly or equipment.

Abstract

Fiber-reinforced structures for use in forming support structures and electronic device housing members may include multiple types of fiber. A first portion of the structures formed from a first type of fiber such as glass fiber may be radio transparent. A second portion of the structures formed from a second type of fiber such as carbon fiber may be more rigid than the first type of fiber and may be radio opaque. The second portion of the structures may be used to selectively add strength to the fiber-reinforced structures. The first portion of the structures may be used to maintain radio transparency for compatibility with wireless electronic device operations. The fiber-reinforced structures may be formed by rolling a sheet of prepreg material that includes a first area with the first type of fiber and a second area with the second type of fiber.

Description

METHODS FOR FORMING FIBER-REINFORCED STRUCTURES WITH SEGMENTS FORMED FROM DIFFERENT TYPES OF FIBER
BACKGROUND OF THE INVENTION
[0001] This relates to fiber-reinforced materials and, more particularly, to structures formed from fiber-reinforced materials.
[0002] Electronic devices sometimes use wireless circuitry. For example, portable electronic devices such as cellular telephones and tablet computers may contain antennas for handling wireless communications. In forming structures such as housings for electronic devices and removable covers for electronic devices, it may be desirable to reduce or eliminate the presence of radio-opaque materials that might interfere with antenna operation.
[0003] In some structures, unreinforced plastic is used as a radio-transparent material that is compatible with the presence of antennas. In many applications, however, unreinforced plastic may be undesirably weak.
[0004] To address this issue, plastic may be reinforced using fibers. For example, fibers formed from glass and carbon may be used in reinforcing plastic. Carbon fiber reinforced plastic is strong, but is not radio transparent. Glass-fiber reinforced plastic is radio transparent, but may not be sufficiently rigid in certain applications.
[0005] It would therefore be desirable to be able to provide fiber-reinforced structures with desired stiffness and radio-frequency transparency attributes.
SUMMARY
[0006] Fiber-reinforced plastic structures may be used in forming support structures and electronic device housing members. The fiber-reinforced plastic structures may include multiple types of fiber. A first portion of the structures may be formed from a first type of fiber such as glass fiber and may be radio transparent. A second portion of the structures may be formed from a second type of fiber such as carbon fiber. The second portion of the structures may be more rigid than the first portion and may be radio opaque.
[0007] The second portion of the structures may be used to selectively add stiffness to the fiber-reinforced plastic structures. The first portion of the structures may be used to maintain radio transparency for compatibility with wireless electronic device operations. For example, the first portion may be placed in the vicinity of antennas in a wireless electronic device to allow the antennas to operate without being blocked by the second portion of the structures. [0008] The fiber-reinforced structures may be formed by rolling a sheet of prepreg material to form a roll that is cured in a heated mold. The sheet of prepreg material may include a first area formed using the first type of fiber and a second area formed using the second type of fiber. The shapes of the first and second areas of prepreg material may be configured so that the rolled prepreg material exhibits gradual transitions between the first and second types of fiber and so that the fiber- reinforced plastic structures have strong joints following curing.
[0009] Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 is a perspective view of an illustrative fiber-reinforced plastic structure in accordance with an embodiment of the present invention.
[0011] FIG. 2 is a perspective view of an illustrative electronic device and an associated cover in accordance with an embodiment of the present invention.
[0012] FIG. 3 is a cross-sectional side view of an illustrative electronic device in a cover showing how a fiber-reinforced structure in the cover may have radio- transparent and non-radio-transparent portions in accordance with an embodiment of the present invention.
[0013] FIG. 4 is a cross-sectional view of a portion of a fiber-reinforced structure of the type shown in FIG. 1 in which the fiber-reinforced structure has a triangular cross section in accordance with an embodiment of the present invention.
[0014] FIG. 5 is a cross-sectional view of a portion of a fiber-reinforced structure of the type shown in FIG. 1 in which the fiber-reinforced structure has a rectangular cross section in accordance with an embodiment of the present invention.
[0015] FIG. 6 is a cross-sectional view of a portion of a fiber-reinforced structure of the type shown in FIG. 1 in which the fiber-reinforced structure has an L-shaped cross section in accordance with an embodiment of the present invention.
[0016] FIG. 7 is a diagram showing how a fiber-reinforced plastic structure of the type shown in FIG. 1 may be constructed and incorporated into a finished assembly in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION
[0017] The strength of plastic for use in electronic device housing components, support structures for covers, and other items can be enhanced by incorporating fibers into the plastic. For example, fibers can be incorporated into plastics such as epoxy resins and other polymers to enhance their strength. Examples in which fiber- reinforced plastic structures have been formed from fibers in an epoxy binder are sometimes described herein as an example. In general, any suitable type of plastic may be reinforced with fibers including plastics such as polycarbonate (PC), acrylonitrile butadiene styrene (ABS), PC/ABS blends, epoxy, etc.
[0018] An illustrative fiber-reinforced plastic structure is shown in FIG. 1. In the example of FIG. 1, fiber-reinforced plastic structure 10 has a rectangular ring shape. This is merely illustrative. Fiber-reinforced structure 10 may be formed in a circular ring, a ring having straight and curved sides, may be formed into an L-shaped bar, a straight bar, a curved bar, or may be formed into other suitable shapes.
[0019] Fiber-reinforced structure 10 may include multiple portions such as segment 12 and segment 14, each of which may be formed using a different type of fiber. As an example, segment 12 may be formed from a non-radio-transparent (i.e., radio-opaque) material such as a carbon- fiber-reinforced plastic and segment 14 may be formed from a radio-transparent material such as glass— fiber-reinforced plastic. If desired, other fiber-reinforced materials may be used in forming segments 12 and 14 of structure 10. Moreover, more than two different segments may be formed in structure 10. These segments may be located at any suitable locations on structures 10. For example, segment 12 may be located on any of the four sides of a rectangular ring structure, may include any of the four corners of a rectangular ring structure, may extend past one, two, three, or four corners of a rectangular ring structure, may include multiple segments along one side of a rectangular ring structure, may include multiple segments on opposing sides of a rectangular ring structure, may include multiple segments on a circular ring or a ring or strip of material of other shapes, may include segments of the same size or different size in a multi-segment configuration on a rectangular ring, circular ring, straight or curved portion of material, or may include any other pattern of radio-transparent and radio-opaque fiber-reinforced portions. The example of FIG. 1 is merely illustrative.
[0020] As shown in FIG. 2, fiber-reinforced structure 10 may be incorporated within a product such as electronic device cover 32. Cover 32 may have an upper flap such as flap 22 and a lower flap such as flap 24. Flaps 22 and 24 may be formed from plastic, leather, or other suitable materials. If desired, cover 32 may have no flaps. For example, cover 32 may be implemented using a slip case design that receives a component such as an electrical device within a slot or other recess within the cover. Cover 32 of FIG. 2 is merely an illustrative example.
[0021] Electronic device 26 may be mounted within cover 32. Electronic device 26 may be, for example, a tablet computer or other electronic equipment having a housing such as housing 28 and a display such as display 30. Housing 28 may be formed from metal, glass, ceramic, fiber-reinforced plastic, other materials, or combinations of these materials. If desired, housing 28 may be formed from multiple portions of fiber-reinforced plastic (e.g., one or more segments or other portions of glass-fiber-reinforced plastic, one or more segments or other portions of carbon-fiber- reinforced plastic, etc.). Illustrative arrangements in which fiber-reinforced plastic structure 10 is used in providing support for structures such as cover 32 are sometimes described herein as an example. This is, however, merely illustrative. Fiber- reinforced plastic structure 10 may be incorporated into any suitable apparatus (e.g., electrical equipment, computer accessories, other products, etc.).
[0022] Upper flap 22 and lower flap 24 may be joined by a flexible portion of cover 32 along hinge axis 20. When it is desired to open cover 32, a user may lift front flap 22 in direction 16, so that front flap 22 rotates about axis 20 relative to rear flap 24. When it is desired to close cover 32, the user may lower front flap 22 in direction 18.
[0023] One or both flaps of cover 32 may be provided with structures such as fiber-reinforced structure 10 of FIG. 1. These fiber-reinforced structures may serve as internal supporting ribs that help hold the potentially flexible plastic or leather material of cover 32 in place. Because segment 12 of structure 10 is formed from carbon- fiber-reinforced plastic (in this example), segment 12 will tend to be stiffer (more rigid) than segment 14 and will therefore help create a stiff, inflexible portion of flap 22, so that flap 22 does not flex excessively when opened and closed by a user.
[0024] FIG. 3 is a cross-sectional side view of cover 32 and electronic device 26 taken along line 38 and viewed in direction 40 of FIG. 2 in a configuration in which flap 22 is in its closed position. As shown in FIG. 3, electronic device 26 may contain antenna structures such as antennas 34 that transmit and receive radio-frequency wireless signals 36. Wireless signals 36 may pass through radio-transparent portion 14 of fiber-reinforced structure 10 and the material of cover 32. Because antennas 34 are not located under carbon-fiber-reinforced portion 12 of fiber-reinforced structure 10, antennas 34 and associated radio-frequency antenna signals 36 will not be blocked by conductive materials.
[0025] Fiber-reinforced structure 10 may have any suitable cross sectional shape. As an example, fiber-reinforced structure 10 (e.g., segment 12 and/or segment 14) may have a triangular cross-sectional shape as shown in FIG. 4. As another example, fiber-reinforced plastic structure 10 may have a rectangular cross-sectional shape, as shown in FIG. 5. FIG. 6 is a cross-sectional view of fiber-reinforced plastic structure 10 in an illustrative configuration having an L-shaped cross section. Other cross- sectional shapes (e.g., T-shapes, etc.) and segments having combinations of these cross-sectional shapes may be used if desired. Fiber-reinforced plastic structures 10 may be provided with a desired cross-sectional shape using a mold with a
corresponding cross-sectional shape, using machining (e.g., to grind rough structures into a desired finished shape), using a combination of molding and machining techniques, or using other suitable fabrication techniques.
[0026] FIG. 7 is a diagram showing how fiber-reinforced plastic structures such as structure 10 may be formed and incorporated into an assembly.
[0027] Glass fiber and carbon fiber may be incorporated into respective sheets of uncured plastic resin such as epoxy. Sheets of this glass-fiber material and carbon- fiber material (sometimes referred to as prepreg sheets) may be cut into appropriate shapes and arranged on a work surface adjacent to each other using layout tool 42. As shown in FIG. 7, for example, prepreg material 46 may include left glass-fiber prepreg sheet 14L and right glass-fiber prepreg sheet 14R and central carbon-fiber prepreg sheet 12M. There may, in general, be any suitable number of sheets of material with different types of fiber (e.g., one or more, two or more, three or more, four or more, or five or more distinct sheets each with a potentially different type of fiber). The example of FIG. 7 in which there are two sheets of glass-fiber prepreg and a single sheet of carbon-fiber prepreg is merely illustrative.
[0028] Prepreg material 46 may have a length L parallel to longitudinal axis (dimension) 44 and a height H parallel to perpendicular lateral dimension 50. Length L may be, as an example, 0.1 to 3 m, less than 3 m, more than 3 m, 0.5 to 1 m, 0.5 to 2 m, less than 0.5 m, more than 0.5 m, more than 1 m, less than 2 m, more than 5 m, less than 5 m, or any other suitable length. Height H may be, as an example, 50-100 mm, less than 10 mm, more than 10 mm, less than 50 mm, more than 50 mm, less than 200 mm, more than 200 mm, less than 300 mm, more than 300 mm, etc. The thickness (into the page in the origination of FIG. 7) of prepreg material 46 may be, for example, 0.05 mm, less than 0.1 mm, more than 0.1 mm, 0.1 mm, between 0.05 and 0.2 mm, less than 0.3 mm, more than 0.1 mm, less than 0.4 mm, more than 0.4 mm, etc. In the illustrative configuration of FIG. 7, prepreg material 46 has an elongated rectangular layout. If desired, prepreg material 46 may have other shapes. The example of FIG. 7 is merely illustrative.
[0029] To ensure that the joints between glass-fiber-reinforced segment 14 and carbon- fiber-reinforced segment 12 are satisfactorily strong, it may be desirable to cut edges 48 of sheets 14L, 14M, and 14R at a non-zero angle with respect to lateral dimension 50. If desired, edges 48 may have curved portions, zigzag portions, straight and curved portions, or other configurations that spread out the interface between the different types of prepreg material along longitudinal dimension 44.
[0030] As shown in FIG. 7, edges 48 may span the height H of prepreg material 46 in lateral dimension 50 and may cover at least some longitudinal distance W along the length of prepreg material 46. The value of W may be, as an example, 10-80 mm, less than 80 mm, more than 10 mm, etc. The glass fibers in portions 14L and 14R and the carbon fibers in portion 12M may be oriented parallel to longitudinal axis 44, as indicated by fibers 56 in FIG. 7. The illustrative orientation of fibers 56 of FIG. 7 in which fibers 56 run predominantly along the length of the layout may help enhance product strength. If desired, however, woven prepreg or prepreg with fibers that are oriented in different directions can be used. As an example, woven prepreg may be used in situations in which strength and/or stiffness through the cross-section is needed or in situations in which it is desirable to hold the prepreg together during manufacturing. Multiple layers of prepreg with different characteristics may also be used (i.e., some layers may be provided with longitudinally oriented fibers, some layers may have woven fibers, etc.).
[0031] After laying out prepreg material 46 (e.g., a single layer or multiple layers) using tool 42, fabrication equipment such as rolling tool 52 may be used to roll prepreg material 46 (e.g., a single layer or multiple layers) onto itself around longitudinal axis 46 to form a roll of prepreg (i.e., an elongated rod or strand of prepreg) such as prepreg roll 58. If desired, an optional fiber such as fiber 54 may be incorporated into the center of prepreg material 46 during the rolling process. Fiber 54 may be formed from a material such as glass or other dielectric or may be formed from other suitable material. The diameter of fiber 54 may be about 1 mm, less than 2 mm, more than 1 mm, between 0.5 and 2 mm, or other suitable size. The presence of fiber 54 may help reduce the amount of carbon fiber that is incorporated into the roll (potentially saving cost) and may facilitate handling of the roll.
[0032] In its rolled state, the glass-fiber and carbon- fiber prepreg of roll 58 may be characterized by a length LI for the exposed portion of left-hand glass-fiber portion 14L, length W + L2 for the exposed (outermost) portion of carbon-fiber portion 12M, and length W + LI for the exposed portion of right-hand glass-fiber portion 14R. Due to the presence of the non-zero angle of edges 48, there is a gradual transition between glass fibers and carbon fibers throughout the cross-section of roll 58 along widths W.
[0033] In region LI of portion 14L, for example, only glass fibers will be present. In region L2 of portion 12M, only carbon fibers will be present. In transition region W between region LI of portion 14L and region L2 of portion 12M, however, there will be a smooth changeover as a function of distance along the length of roll 58 between the fully glass fiber section of roll 58 and the fully carbon fiber section of roll 58. The transition between portion 12M and portion 14R of roll 58 will likewise exhibit a smooth transition between carbon fiber and glass fiber. Because there are smooth transitions in the respective concentrations of carbon fiber and glass fiber at the joints between the carbon fiber and glass fiber segments of roll 58, the resulting strength of these joints in the finished (cured) fiber-reinforced plastic parts that are formed will be enhanced. The smooth transition will also generally be visibly smoother and may exhibit reduced warpage, which may improve aesthetics.
[0034] To cure uncured prepreg roll 58, uncured prepreg roll 58 may be inserted into a groove or other shape in mold tool 60. Mold tool 60 may include a heated and pressurized mold having two or more portions. As an example, the mold may have a lower metal plate with a groove that has a rectangular ring layout and a V-shaped cross section and may have an upper metal plate that is flat. If desired, other types of cross-sectional shapes may be used (e.g., U-shaped, semi-circular, rectangular, etc.). The ends of sections 14L and 14M of roll 58 may abut one another within mold 60, so that a completed ring shape will be formed after molding.
[0035] After inserting uncured prepreg roll 58 into the mold, the mold may apply pressure and an elevated temperature to cure the epoxy (or other plastic). As an example, heated and pressurized mold equipment 60 may apply heat to elevate the temperature of mold 60 and the prepreg material to 120-200°C for 3-90 minutes, 0.1 to 200 minutes, less than 1 minute, more than 1 minute, less than 4 minutes, more than 4 minutes, 1-50 minutes, 5-20 minutes, less than 20 minutes, more than 20 minutes, 30-45 minutes, less than 45 minutes, or more than 45 minutes (as examples). The heat and pressure of mold 60 will cure the prepreg roll to produce a cured fiber- reinforced plastic part. Stray pieces of plastic may be removed following curing using a deflash process (e.g., using a scraper, blade, or other equipment), thereby producing finished fiber-reinforced plastic structure 10 of FIG. 7.
[0036] As shown in FIG. 7, fiber-reinforced plastic structure 10 may have a radio- transparent section such as glass-fiber-reinforced segment 14 and may have a rigid radio-opaque section such as carbon-fiber-reinforced segment 12 (i.e., segment 12 may be less radio-transparent than segment 14). Segment 14 may be formed from portions 14L and 14R of roll 58 and may have a joint (where the ends of portions 14L and 14R abutted one another in the mold) such as joint 62.
[0037] Assembly equipment 64 may be used to incorporate fiber-reinforced plastic structure 10 into finished product 66. Product 66 may be an accessory such as a flexible cover for an electronic device (e.g., a tablet computer), may be a housing wall or internal housing structure in a tablet computer, computer, portable telephone or other handheld device, portable computer, music player, television, or other electronic equipment, or may be associated with any other suitable assembly or equipment.
[0038] The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A wireless device cover, comprising:
a front flap including a support frame;
a rear cover; and
a flexible portion coupled to an edge of the front flap and an edge of the rear cover, wherein the flexible portion forms a hinge allowing the front flap to rotate relative to the rear cover;
the support frame further comprising:
a first region comprising a plastic material reinforced by a first set of fibers, a second region comprising a plastic material reinforced by a second set of fibers, the second set of fibers further comprising a radio-transparent material, wherein the second region is configured to align with an antenna included in a wireless device intended to be placed within the wireless device cover, and
a third region disposed between the first and second regions, in which the first set of fibers gradually transitions to the second set of fibers.
2. The wireless device cover as recited in claim 1, wherein the support frame is formed in the shape of a ring, disposed along a periphery of the front flap.
3. The wireless device cover as recited in claim 2, wherein the ring further comprises a rectangle with rounded corners.
4. The wireless device as recited in claim 2, wherein the first and second sets of fibers are oriented in the direction of the ring.
5. The wireless device as recited in claim 2, wherein the first and second sets of fibers are oriented in a multi-directional weave.
6. The wireless device cover as recited in claim 1, wherein the first set of fibers are comprised of carbon fiber.
7. The wireless device cover as recited in claim 6, wherein the second set of fibers are comprised of glass fibers.
8. The wireless device as recited in claim 7, wherein the plastic material is comprised of an epoxy resin.
9. The wireless device as recited in claim 2, wherein the ring has a rectangular cross-section.
10. The wireless device as recited in claim 2, wherein the ring has an L-shaped cross-section.
11. The wireless device as recited in claim 2, wherein the ring has a triangular cross-section.
12. The wireless device as recited in claim 1, wherein the rear cover includes a second support frame, the second support frame further comprising:
a first region comprising a plastic material reinforced by a first set of fibers, a second region comprising a plastic material reinforced by a second set of fibers, the second set of fibers further comprising a radio-transparent material, wherein the second region is configured to align with an antenna included in a wireless device intended to be placed within the wireless device cover, and
a third region disposed between the first and second regions, in which the first set of fibers gradually transitions to the second set of fibers.
13. A method for forming a support frame for a wireless device cover, the method comprising:
receiving a first set of fibers and positioning the first set of fibers in a first region of a layout tool;
receiving a second set of fibers formed from a radio-transparent material and positioning the second set of fibers in a second region of a layout tool, wherein a portion of the second set of fibers is allowed to overlap with the first set of fibers to create a third region in which the first set of fibers gradually transitions to the second set of fibers;
creating a prepreg layer by impregnating the first and second sets of fibers with a resin and curing agent;
placing at least one prepreg layer within a mold, wherein the mold is configured to shape the at least one prepreg layer into a support frame;
curing the at least one prepreg layer;
trimming any excess material from the resulting support frame; and coupling the support frame to a flexible front flap of a wireless device cover.
14. The method as recited in claim 13, wherein the second region is configured to align with an antenna in a wireless device intended to be positioned within the wireless device cover.
15. The method as recited in claim 14, further comprising placing the at least one prepreg layer under pressure during the curing process.
16. The method as recited in claim 15, wherein curing the at least one prepreg layer further comprises applying heat to the prepreg layers for a pre-determined amount of time.
17. The method as recited in claim 15, wherein curing the at least one prepreg layer further comprises exposing the at least one prepreg layer to ultraviolet radiation.
18. The method as recited in claim 14, wherein the first set of fibers are comprised of carbon fiber.
19. The method as recited in claim 18, wherein the second set of fibers are comprised of glass fibers.
20. The method as recited in claim 19, wherein the plastic material is comprised of an epoxy resin.
PCT/US2012/057394 2011-12-12 2012-09-26 Methods for forming fiber-reinforced structures with segments formed from different types of fiber WO2013089880A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014547224A JP5783654B2 (en) 2011-12-12 2012-09-26 Method for forming a fiber reinforced structure having segments formed from different types of fibers
CN201280060780.8A CN103974644A (en) 2011-12-12 2012-09-26 Methods for forming fiber-reinforced structures with segments formed from different types of fiber
KR1020147017167A KR20140102244A (en) 2011-12-12 2012-09-26 Methods for forming fiber-reinforced structures with segments formed from different types of fiber
EP12858301.0A EP2790547A4 (en) 2011-12-12 2012-09-26 Methods for forming fiber-reinforced structures with segments formed from different types of fiber
US13/711,489 US20130147330A1 (en) 2011-12-12 2012-12-11 Methods for forming fiber-reinforced structures with segments formed from different types of fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161569714P 2011-12-12 2011-12-12
US61/569,714 2011-12-12

Publications (1)

Publication Number Publication Date
WO2013089880A1 true WO2013089880A1 (en) 2013-06-20

Family

ID=48613073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/057394 WO2013089880A1 (en) 2011-12-12 2012-09-26 Methods for forming fiber-reinforced structures with segments formed from different types of fiber

Country Status (7)

Country Link
US (1) US20130147330A1 (en)
EP (1) EP2790547A4 (en)
JP (1) JP5783654B2 (en)
KR (1) KR20140102244A (en)
CN (1) CN103974644A (en)
TW (1) TWI516191B (en)
WO (1) WO2013089880A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047659A1 (en) * 2019-09-12 2021-03-18 华为技术有限公司 Middle frame, rear cover and preparation method therefor, and electronic device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315004B2 (en) 2012-03-06 2016-04-19 Apple Inc. Accessory units for consumer electronic devices and related assemblies and methods
US11786146B1 (en) 2012-09-25 2023-10-17 Micro Mobio Corporation Wireless hub system and method
US10437295B1 (en) * 2012-09-25 2019-10-08 Micro Mobio Corporation Personal cloud case cover with a plurality of modular capabilities
US11553857B1 (en) 2012-09-25 2023-01-17 Micro Mobio Corporation System and method for through window personal cloud transmission
US11642045B1 (en) 2012-09-25 2023-05-09 Micro Mobio Corporation Personal health and environmental monitoring device and method
US11058326B1 (en) 2012-09-25 2021-07-13 Micro Mobio Corporation Cloud communication antenna panel system and method
KR101993805B1 (en) * 2012-10-05 2019-06-27 삼성전자 주식회사 Case of portable terminal and manufacturing method thereof
KR102066482B1 (en) * 2013-07-16 2020-01-15 삼성전자주식회사 Fiber reinforced plastic material and electronic device including the same
JP6216068B2 (en) 2013-09-04 2017-10-18 アップル インコーポレイテッド Case for electronic device and manufacturing method for making case
US9485338B2 (en) 2013-09-04 2016-11-01 Apple Inc. Features and manufacturing methods for a case for a portable electronic device
US10042395B2 (en) * 2013-10-11 2018-08-07 Dell Products, Lp Method of forming composite fiber laminate with variable elasticity and device thereof
CN105226372B (en) * 2014-05-30 2018-06-26 联想(北京)有限公司 Electronic equipment and casting of electronic device production method
US10472277B2 (en) * 2014-07-28 2019-11-12 Dell Products L.P. Composite plastic display cover
US10737467B2 (en) 2014-08-25 2020-08-11 Dell Products L.P. Multilayer glass composite display cover
US11076664B1 (en) 2014-09-22 2021-08-03 Apple Inc. Fabric cases for electronic devices
US9432074B2 (en) * 2014-09-26 2016-08-30 Incipio, Llc Protective case for mobile device with reinforcing support member
US10019029B1 (en) * 2015-07-06 2018-07-10 Amazon Technologies, Inc. Multi-layer injection molded device housings
CN106915124B (en) * 2015-12-24 2020-05-26 联想(北京)有限公司 Protective layer, electronic equipment and manufacturing method
WO2019209263A1 (en) 2018-04-24 2019-10-31 Hewlett-Packard Development Company, L.P. Antenna windows in carbon fiber enclosures
US20210328336A1 (en) * 2018-11-01 2021-10-21 Hewlett-Packard Development Company, L.P. Housings for electronic devices
US11388968B2 (en) * 2018-12-18 2022-07-19 Snap Inc. RF transparent structural support member for consumer electronics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122924A1 (en) * 2008-11-20 2010-05-20 John Andrews Case and stand for a portable computer
KR20100105038A (en) * 2009-03-20 2010-09-29 김동선 Iphone ipodtouch dmb battry dock leather case
US20100289390A1 (en) * 2009-05-18 2010-11-18 Apple Inc. Reinforced device housing
US20110077061A1 (en) * 2009-07-03 2011-03-31 Alex Danze Cell phone or pda compact case
US20110297581A1 (en) * 2010-06-08 2011-12-08 Timothy Charles Angel Portable, adjustable protective case for electronic devices and methods of use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5201979A (en) * 1987-05-08 1993-04-13 Research Association For New Technology Development Of High Performance Polymer Method of manufacturing a sheet-prepreg reinforced with fibers
JP2850227B2 (en) * 1997-02-24 1999-01-27 ▲ヤオンジュ▼ 李 Radio wave shielding case for mobile phone and method of manufacturing the same
EP1603735B1 (en) * 2003-03-06 2007-03-07 Vestas Wind System A/S Connection between composites with non-compatible properties and method for preparation
US7790637B2 (en) * 2007-10-31 2010-09-07 Apple Inc. Composite laminate having an improved cosmetic surface and method of making same
JP5105361B2 (en) * 2008-01-11 2012-12-26 レノボ・シンガポール・プライベート・リミテッド Electronics
TWI432124B (en) * 2009-11-13 2014-03-21 Advanced Int Multitech Co Ltd A method of forming a notebook computer case and a product thereof
US8672126B2 (en) * 2010-01-06 2014-03-18 Apple Inc. Foldable case for use with an electronic device
US20110281044A1 (en) * 2010-05-17 2011-11-17 Spyros Michail Composite structures with unidirectional fibers
FR2968137B1 (en) * 2010-11-30 2013-01-04 Calicea TEXTILE SURFACE AND TEXTILE MATERIAL FOR ABSORBING ELECTROMAGNETIC WAVES, AND PROTECTIVE DEVICE COMPRISING A TEXTILE SURFACE OR A TEXTILE MATERIAL
CN102228334A (en) * 2011-07-15 2011-11-02 廖锦强 Electronic product protecting jacket and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122924A1 (en) * 2008-11-20 2010-05-20 John Andrews Case and stand for a portable computer
KR20100105038A (en) * 2009-03-20 2010-09-29 김동선 Iphone ipodtouch dmb battry dock leather case
US20100289390A1 (en) * 2009-05-18 2010-11-18 Apple Inc. Reinforced device housing
US20110077061A1 (en) * 2009-07-03 2011-03-31 Alex Danze Cell phone or pda compact case
US20110297581A1 (en) * 2010-06-08 2011-12-08 Timothy Charles Angel Portable, adjustable protective case for electronic devices and methods of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790547A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047659A1 (en) * 2019-09-12 2021-03-18 华为技术有限公司 Middle frame, rear cover and preparation method therefor, and electronic device

Also Published As

Publication number Publication date
CN103974644A (en) 2014-08-06
EP2790547A1 (en) 2014-10-22
JP5783654B2 (en) 2015-09-24
US20130147330A1 (en) 2013-06-13
EP2790547A4 (en) 2015-08-26
KR20140102244A (en) 2014-08-21
JP2015503245A (en) 2015-01-29
TWI516191B (en) 2016-01-01
TW201325388A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
US20130147330A1 (en) Methods for forming fiber-reinforced structures with segments formed from different types of fiber
US9011623B2 (en) Composite enclosure
US8165624B2 (en) Case for an electronic device with a wireless communication function and method for forming the same
US10543669B2 (en) Accessory units for consumer electronic devices and related assemblies
US9326396B2 (en) Electronic equipment casing
JP6167537B2 (en) Manufacturing method of fiber-reinforced plastic molded product and manufacturing method of integrally molded product
US20120049702A1 (en) Methods for forming composite housing frames
US9490528B2 (en) Electronic device and method of manufacturing a housing for the same
CN111329204A (en) Hard-sided luggage article and method of manufacture
JP2013075447A (en) Composite laminated plate, integrated molded article using composite laminated plate, and method of manufacturing these items
JP2016136586A (en) Material for housing, electronic apparatus and manufacturing method of material for housing
US9529389B1 (en) Variable plated device enclosure
CN110545994A (en) thin, high stiffness laminate, portable electronic device housing including the same, and methods of making the laminate and portable electronic device housing
EP2845632A1 (en) Ski, snowboard and associated method of fabricating
CN205040121U (en) Back lid and terminal
EP3578331A1 (en) Method for producing fiber-reinforced plastic
EP3568740B1 (en) Composite unibody keyboard
WO2015191076A1 (en) Composite bonded leather cases
CN108367508B (en) Apparatus and method for preparing semi-finished sheet
KR101776493B1 (en) Preform layer and manufacturing method of the same, preform layer lamination
KR102631916B1 (en) A radome for an aircraft having a double core structure and a method for manufacturing the same
CN204305120U (en) Protective sleeve
CN102229166B (en) Bamboo chassis of electronic device and manufacturing method thereof
US20230231254A1 (en) Composite cover and method of manufacturing the cover
KR20230142040A (en) Method for manufacturing back cover of display device with enhanced impact resistance of bent portion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147017167

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012858301

Country of ref document: EP