WO2013088961A1 - Gas-liquid separator, ozone water device provided with same, and washing apparatus for sanitary fitting provided with same - Google Patents

Gas-liquid separator, ozone water device provided with same, and washing apparatus for sanitary fitting provided with same Download PDF

Info

Publication number
WO2013088961A1
WO2013088961A1 PCT/JP2012/080851 JP2012080851W WO2013088961A1 WO 2013088961 A1 WO2013088961 A1 WO 2013088961A1 JP 2012080851 W JP2012080851 W JP 2012080851W WO 2013088961 A1 WO2013088961 A1 WO 2013088961A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
gas
liquid
peripheral wall
ozone
Prior art date
Application number
PCT/JP2012/080851
Other languages
French (fr)
Japanese (ja)
Inventor
渡邊 圭一郎
藤田 昇
尾崎 正昭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013088961A1 publication Critical patent/WO2013088961A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D13/00Urinals ; Means for connecting the urinal to the flushing pipe and the wastepipe; Splashing shields for urinals
    • E03D13/005Accessories specially adapted for urinals
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/02Devices adding a disinfecting, deodorising, or cleaning agent to the water while flushing
    • E03D9/03Devices adding a disinfecting, deodorising, or cleaning agent to the water while flushing consisting of a separate container with an outlet through which the agent is introduced into the flushing water, e.g. by suction ; Devices for agents in direct contact with flushing water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/62Air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen

Definitions

  • the present invention relates to a gas-liquid separator, an ozone water generating device including the same, and a sanitary equipment cleaning device including the same.
  • Patent Document 1 a gas-liquid separator described in JP 2009-240986 A (hereinafter referred to as Patent Document 1) includes a pressure vessel and a partition member. In the lower part of the pressure vessel, an introduction port for introducing the solution and an outlet port for extracting the solution from the pressure vessel are formed.
  • the flow of the solution is derived by disposing the partition member inside the pressure vessel so that the bottom area of the lead-out space is larger than the bottom area of the introduction space. It can be decelerated in space.
  • the gas can be sufficiently separated from the solution by reducing the flow rate of the solution in the outlet space, the gas can be prevented from flowing out from the outlet.
  • an exhaust valve is attached to the upper part of the pressure vessel.
  • the exhaust valve has a valve box, a valve body, and a spring.
  • An inflow port and an exhaust port are formed in the valve box.
  • the valve body is disposed in the valve box and opens and closes the exhaust port.
  • the spring biases the valve body so as to close the exhaust port.
  • the valve body When the pressure of the gas inside the pressure vessel is equal to or higher than a predetermined pressure, the valve body opens the exhaust port, whereby the gas inside the pressure vessel is discharged from the exhaust port.
  • an object of the present invention is to provide a gas-liquid separator having a relatively simple configuration, which can efficiently separate gas from the liquid supplied to the gas-liquid separator. It is to be.
  • the gas-liquid separator according to the present invention includes a container and a partition member.
  • the container has a ceiling surface, a bottom surface, and a peripheral wall.
  • the peripheral wall extends in the vertical direction between the ceiling surface and the bottom surface.
  • the partition member extends upward from the bottom surface inside the container.
  • the partition member divides the inside of the container into an introduction chamber through which the liquid introduced from the outside of the container flows and a lead-out chamber through which the liquid led out from the inside of the container flows.
  • the volume of the introducing chamber is smaller than the volume of the outlet chamber.
  • a first opening and a second opening are formed in the peripheral wall.
  • the first opening allows communication between the outside of the container and the introduction chamber.
  • the second opening allows communication between the outside of the container and the outlet chamber.
  • a third opening is formed in the container. The third opening is disposed above the first opening and the second opening, and communicates the lead-out chamber and the outside of the container.
  • a space for storing gas is formed inside the container and disposed above the outlet chamber.
  • the space for storing the gas is arranged above the outlet chamber.
  • the volume of the introduction chamber is smaller than the volume of the discharge chamber, the flow rate of the solution that has moved from the introduction chamber to the discharge chamber is reduced in the discharge chamber. Therefore, it is possible to suppress the undissolved gas contained in the solution flowing through the outlet chamber from being discharged to the outside of the container through the second opening together with the solution.
  • a gas-liquid separator having a relatively simple configuration and capable of efficiently separating gas from the liquid supplied to the gas-liquid separator. can do.
  • the first opening and the second opening are preferably opposed to each other.
  • the partition member preferably has a partition peripheral wall having a cylindrical shape.
  • an introduction port facing the first opening is formed on one end side of the partition peripheral wall.
  • the partition member is disposed closer to the first opening than the second opening in a plan view of the container.
  • the distance between the outer surface on the other end side of the partition peripheral wall and the inner surface of the peripheral wall on the other end side of the container can be increased.
  • the volume of the space arranged above the outlet chamber can be enlarged. Therefore, the volume of the outlet chamber can be increased. Therefore, gas can be more efficiently separated from the liquid inside the container before the liquid introduced into the container is discharged from the second opening.
  • the flow rate of the solution flowing through the outlet chamber is accelerated toward the second opening.
  • the solution moving from the introduction chamber to the discharge chamber collides with the liquid level of the solution stored in the discharge chamber by dropping from the vicinity of the upper end of the partition member toward the bottom surface, the air around the liquid level Is mixed with the solution, a large number of bubbles are generated in the solution.
  • the second opening is arranged at a position away from the partition peripheral wall and one end side of the container. That is, the solution that moves from the introduction chamber to the discharge chamber collides with the liquid surface at a position relatively distant from the second opening. Therefore, even when a large number of bubbles are generated by colliding with the liquid surface, the bubbles can be reliably separated from the solution while the solution containing the bubbles moves to the second opening. In this way, according to the configuration of the gas-liquid separator according to the present invention, it is possible to suppress discharge of bubbles to the outside of the container through the second opening.
  • one end side of the partition peripheral wall is fixed to one end side of the peripheral wall of the container.
  • the dimension of the partition peripheral wall along the horizontal direction from the outer surface on one end side of the partition peripheral wall to the outer surface on the other end side is from the outer surface on the other end side of the partition peripheral wall to the other end side of the container. It is smaller than the distance along the horizontal direction to the inner surface of the peripheral wall.
  • the partition member and the container can be easily formed integrally.
  • the partition member can be further brought closer to the first opening, and the partition peripheral wall and the second opening can be further moved away from each other.
  • the volume of the space arranged above the outlet chamber can be further expanded in the width direction and the front-rear direction of the container.
  • the solution moving from the introduction chamber to the discharge chamber can collide with the liquid surface at a position further away from the second opening. Therefore, the bubbles can be more reliably separated from the solution while the solution containing bubbles moves to the second opening.
  • the gas-liquid separator according to the present invention preferably further includes a liquid level adjusting unit for maintaining the liquid level of the liquid stored in the outlet chamber within a predetermined liquid level range.
  • the volume of the space in which air is stored can be maintained within a predetermined range. Therefore, it is possible to continue efficiently separating undissolved gas contained in the solution from the solution.
  • An ozone water generator mixes ozone generated by an ozone generator into any of the gas-liquid separators described above, an ozone generator that generates ozone, and a liquid supplied to a container. It is preferable to provide a gas-liquid mixer.
  • the ozone water generating device can supply a solution having a relatively high ozone dissolution rate.
  • the sanitary appliance cleaning device preferably includes an ozone water generator.
  • the cleaning device for sanitary ware provided with an ozone water generator efficiently separates undissolved gas from the solution before discharging the solution in which ozone is dissolved from the second opening, even if the exhaust valve is not provided. And a solution having a relatively high ozone dissolution rate can be supplied.
  • a gas-liquid separator having a relatively simple configuration which can efficiently separate a gas from a liquid supplied to the gas-liquid separator. Can be provided.
  • FIG. 3 is a cross-sectional view of an example of a gas-liquid mixer according to the present invention cut along line III-III in FIG. 2. It is sectional drawing of another example of the gas-liquid mixer according to this invention. It is a schematic diagram which shows an example of the washing
  • FIG. 1 shows an ozone water generator 100 equipped with a gas-liquid separator according to the present invention.
  • the ozone water generation apparatus 100 is an apparatus that supplies water in which ozone is dissolved.
  • the ozone water generating apparatus 100 includes a gas channel 114, a liquid channel 121, an ozone generator 120, an ejector 130 as an example of a gas-liquid mixing unit, and a gas-liquid separation unit 140 as an example of a gas-liquid separator. And.
  • the ozone water generation apparatus 100 includes a gas introduction unit 110 that introduces a gas from the outside of the apparatus.
  • the gas introduction part 110 has a pipe line 111 and a check valve 112.
  • One end of the pipe line 111 is connected to a gas cylinder (not shown) that stores oxygen or air.
  • a gas cylinder not shown
  • one end of the pipe line 111 may be opened to atmospheric pressure.
  • the pipe line 111, the gas flow path 114, and the liquid flow path 121 are formed with general piping, and are formed with the tubular member which is not shown in figure.
  • the other end of the pipe line 111 is connected to the gas flow path 114 via the connection part 113.
  • the gas flow path 114 is for circulating ozone in a gaseous state.
  • an ozone filter (not shown) having a function of reducing ozone gas may be disposed in the pipe line 111.
  • the ozone filter is a general ozone filter, for example, a catalyst for decomposing ozone attached to paper or aluminum configured in a lattice shape.
  • the ozone generator 120 generates gaseous ozone and supplies the generated ozone to the gas flow path 114.
  • a gas such as air or oxygen introduced by the gas introduction unit 110 is introduced into the ozone generator 120 through the pipe 111 and the gas flow path 114.
  • the ozone generator 120 has an ozone generating element (not shown) formed by a metal electrode.
  • the ozone generating element generates ozone gas using the introduced air or oxygen as a material.
  • the structure of the ozone generator 120 is not specifically limited, What is necessary is just to be comprised so that ozone gas may be produced
  • a general ozone generator can be used as the ozone generator 120.
  • the ozone water generating apparatus 100 In the ozone water generating apparatus 100, water as a liquid flows through the liquid channel 121.
  • the liquid channel 121 circulates water in which ozone is dissolved.
  • the ozone water generating apparatus 100 includes a water supply unit 150.
  • tap water as raw water is supplied from the water supply unit 150 to the ozone water generating apparatus 100.
  • the raw water is not limited to tap water, and may be purified or purified water.
  • the liquid channel 121 is connected to the water supply unit 150.
  • the water supply unit 150 has a solenoid valve (not shown).
  • the water supply part 150 may be arrange
  • the valve of the water supply unit 150 opens and closes a portion of the liquid channel 121 upstream of the ejector 130 in the water flow direction.
  • an ejector type is used as the gas-liquid mixing unit.
  • An ejector 130 as an example of a gas-liquid mixing unit forms part of the liquid channel 121.
  • the ejector 130 is formed with a gas inlet 133, a liquid inlet 131, and an ozone water outlet 132.
  • One end of the gas flow path 114 is connected to the ejector 130 via the inflow port 133.
  • Ozone supplied from the ozone generator 120 to the gas flow path 114 is introduced into the ejector 130 from one end of the gas flow path 114.
  • the ozone introduced into the ejector 130 is mixed with water flowing through the liquid channel 121 and is dissolved in water based on the pressure of the flow in the liquid channel 121. In this way, the ejector 130 dissolves ozone as a gas supplied from the ozone generator 120 to the gas channel 114 in the water flowing through the liquid channel 121.
  • the gas-liquid separator 140 is disposed downstream of the ejector 130 in the flow direction of the water flowing through the liquid channel 121.
  • the gas-liquid separator 140 forms a part of the liquid flow path 121 downstream of the ejector 130 in the water flow direction.
  • a gas outlet 143, an ozone water inlet 141, and an ozone water outlet 142 are formed in the gas-liquid separator 140.
  • the other end of the gas flow path 114 is connected to the outflow port 143.
  • the gas-liquid separator 140 In the ozone water that has flowed into the gas-liquid separator 140 from the inlet 141, ozone bubbles remain without being completely dissolved in the water.
  • the bubbles of ozone and the gas such as air contained in the water are separated from the water flowing through the liquid channel 121 and then discharged from the outlet 143 to the gas channel 114.
  • the gas-liquid separator 140 separates the gas containing ozone bubbles from the water flowing through the liquid channel 121.
  • the gas-liquid separation unit 140 discharges a part of the ozone separated from the water from the other end of the gas channel 114 to the gas channel 114.
  • the gas-liquid separation unit 140 includes a container 104 and an inner cylinder 147 accommodated in the container 104.
  • the container 104 and the inner cylinder 147 are made of, for example, a resin material.
  • the container 104 has a ceiling surface 146, a bottom surface 145, and a peripheral wall 149.
  • the peripheral wall 149 extends vertically between the ceiling surface 146 and the bottom surface 145.
  • the peripheral wall 149 and the inner cylinder 147 each have a substantially cylindrical shape.
  • the ceiling surface 146 and the bottom surface 145 each have a substantially disk shape.
  • the horizontal direction in FIG. 2 or the horizontal direction in FIG. 3 is referred to as the width direction of the container 104.
  • the vertical direction in FIG. 2 substantially coincides with the vertical vertical direction.
  • the inner cylinder 147 as an example of a partition member is disposed inside the container 104 at one end side in the width direction of the container 104. As shown in FIG. 2, an inner cylinder 147 is arranged on the left side inside the container 104.
  • the inner cylinder 147 has a partition peripheral wall 147b having a substantially cylindrical shape.
  • the partition peripheral wall 147 b extends upward from the bottom surface 145 of the container 104.
  • the upper end surface 147c of the partition peripheral wall 147b is disposed below the ceiling surface 146.
  • the upper end surface 147c faces the ceiling surface 146.
  • the direction in which the upper end surface 147c extends is a direction substantially parallel to the direction in which the ceiling surface 146 and the bottom surface 145 extend.
  • the ceiling surface 146 and the bottom surface 145 extend in a substantially horizontal direction. That is, the entire upper end surface 147c is disposed at substantially the same position with respect to the bottom surface 145 without being inclined from the substantially horizontal direction.
  • the inner cylinder 147 partitions the inside of the container 104 into an introduction chamber 41 and an outlet chamber 42.
  • the introduction chamber 41 is a space for circulating water introduced from the outside to the inside of the container 104.
  • the lead-out chamber 42 is a space through which water led out from the inside of the container 104 flows.
  • the volume of the introduction chamber 41 is smaller than the volume of the outlet chamber 42.
  • the introduction chamber 41 includes a space surrounded by the partition peripheral wall 147 b on the left side of the container 104.
  • the lead-out chamber 42 includes a space surrounded by the inner surface 149sa of the peripheral wall 149 of the container 104 and the outer surface of the partition peripheral wall 147b.
  • the introduction chamber 41 and the lead-out chamber 42 are connected to each other by a part of the space near the ceiling surface 146, that is, a space sandwiched between the upper end surface 147c of the partition peripheral wall 147b and the ceiling surface 146.
  • the space sandwiched between the upper end surface 147c of the partition peripheral wall 147b and the ceiling surface 146 may be a part of the introduction chamber 41, a part of the outlet chamber 42, or a space 43 to be described later. It may be a part.
  • the ozone water inlet 141 and the ozone water outlet 142 are formed in the peripheral wall 149.
  • An inflow port 141 as an example of the first opening and an outflow port 142 as an example of the second opening are disposed below the upper end surface 147 c of the inner cylinder 147.
  • the inflow port 141 allows the outside of the container 104 to communicate with the introduction chamber 41.
  • the position of the lower end of the inflow port 141 along the vertical direction is substantially coincident with the position of the bottom surface 145.
  • the outlet chamber 42 and the outside of the container 104 communicate with each other through the outflow port 142.
  • the position of the lower end of the outflow port 142 along the vertical direction substantially matches the position of the bottom surface 145.
  • a cylindrical portion 144 is formed on a part of the upper wall of the container 104.
  • the cylindrical portion 144 is disposed above the space 43.
  • the opening at the lower end of the cylindrical portion 144 is a gas outlet 143.
  • the outlet 143 is formed on the ceiling surface 146 of the container 104.
  • the gas outlet 143 as an example of the third opening is disposed above the inlet 141 and the outlet 142.
  • the lead-out chamber 42 and the outside of the container 104 communicate with each other via the outflow port 143.
  • the space 43 disposed above the outlet chamber 42 and the outside of the container 104 communicate with each other via the outlet 143.
  • a part of the gas flow path 114 (see FIG. 1) is formed from the upper end to the lower end of the cylindrical portion 144. At the other end of the gas flow path 114, the gas flow path 114 and the inside of the container 104 are communicated with each other by an outlet 143 (see FIG. 1).
  • the nozzle 21p is attached to the left peripheral wall 149 of the container 104.
  • the nozzle 21p is inserted into the inflow port 141.
  • a nozzle 22 p is attached to the right peripheral wall 149 of the container 104.
  • the nozzle 21p and the nozzle 22p extend in the width direction of the container 104 in directions substantially parallel to each other.
  • the nozzle 22p is inserted into the outflow port 142.
  • the inside of the nozzle 21p and the inside of the nozzle 22p form a part of the liquid channel 121.
  • One or both of the nozzle 21p and the nozzle 22p may be integrally formed with the container 104.
  • the inflow port 141 and the outflow port 142 are formed in the peripheral wall 149 so as to face each other along the width direction of the container 104. That is, in the plan view of the container 104, the inflow port 141 and the outflow port 142 face each other.
  • the outer surface on one end side of the partition peripheral wall 147 b is fixed to the inner surface 149 sa of the peripheral wall 149 on one end side of the container 104, so that the inner cylinder 147 is in contact with the container 104.
  • the inner cylinder 147 is disposed closer to the inlet 141 than the outlet 142 in the plan view of the container 104.
  • an inlet 147a facing the inflow port 141 is formed on one end side of the partition peripheral wall 147b.
  • the diameter of the introduction port 147a and the diameter of the nozzle 21p at the portion inserted into the inflow port 141 are substantially the same. Further, the end surface of the nozzle 21p at the portion inserted into the inflow port 141 is in contact with the outer surface of the partition peripheral wall 147b surrounding the introduction port 147a.
  • the liquid flow path 121 is continuous between the inside of the nozzle 21p and the inside of the partition peripheral wall 147b.
  • the introduction chamber 41 and the outside of the container 104 communicate with each other via the inflow port 141 and the introduction port 147a.
  • a space 43 for storing gas is formed inside the container 104.
  • the space 43 is formed between the liquid level of the solution inside the container 104 and the ceiling surface 146.
  • the volume of the portion of the space 43 disposed above the outlet chamber 42 is relatively large.
  • the introduction chamber 41, the outlet chamber 42, and a part of the space 43 form a part of the liquid channel 121.
  • a part of the space 43 that forms a part of the liquid flow path 121 serves as a part of the introduction chamber 41 and a part of the outlet chamber 42.
  • the gas-liquid separation unit 140 includes a gas flow restriction unit 70.
  • the gas flow restriction unit 70 is an example of a liquid level adjusting unit that adjusts the liquid level of the solution inside the container 104.
  • the gas flow restriction unit 70 opens and closes the outlet 143 by interlocking with the change in the water level of the ozone water in the outlet chamber 42.
  • the gas flow restriction unit 70 opens and closes the outlet 143 to maintain the level of ozone water stored in the outlet chamber 42 within a predetermined water level.
  • the gas flow restriction part 70 has a float 71 and a plug part 73.
  • the plug portion 73 is formed in a spherical shape by an elastic material such as rubber.
  • the diameter of the sphere of the plug portion 73 is larger than the diameter of the outlet 143.
  • the plug portion 73 is disposed below the outflow port 143.
  • the gas flow restriction unit 70 includes a float guide 75, a support unit 76 on the container 104 side, and a support unit 77 on the float 71 side.
  • the support portion 76 on the container 104 side is fixed to the ceiling surface 146.
  • the support portion 77 on the float 71 side is fixed to the upper surface of the float 71.
  • the float guide 75 is a rod-shaped or plate-shaped member formed of a resin material. One end of the float guide 75 is attached to the support portion 76 so that the float guide 75 is rotatable about the support portion 76. A plug portion 73 is formed at the center of the float guide 75. The other end of the float guide 75 is attached to the support portion 77.
  • the float guide 75 rotates around the support portion 76. As the float guide 75 rotates, the plug 73 moves up and down.
  • the flow of water in the ozone water generator 100 and the flow of gas containing ozone will be described with reference to FIGS.
  • water as a liquid is supplied from the water supply unit 150 to the liquid channel 121.
  • Water flowing through the liquid flow path 121 flows into the ejector 130 from the inlet 131.
  • the water that has circulated through the ejector 130 flows out of the ejector 130 from the outlet 132.
  • the gaseous ozone generated by the ozone generator 120 flows into the ejector 130 from the inlet 133.
  • the gaseous ozone flowing in from the inflow port 133 is mixed with water flowing through the ejector 130 as the liquid flow path 121. Part of the ozone mixed with water is dissolved in water based on the pressure of the water stream. Water containing ozone flows out of the ejector 130 from the outlet 132.
  • Water containing ozone that has flowed out of the ejector 130 from the outlet 132 flows into the gas-liquid separator 140 from the inlet 141.
  • the water containing ozone that has flowed into the container 104 from the inside of the nozzle 21p flows through the introduction chamber 41 upward from the bottom surface 145 along the inner surface of the partition peripheral wall 147b.
  • the solution reaching the upper portion of the introduction chamber 41 moves between the upper end surface 147c of the partition peripheral wall 147b and the ceiling surface 146, and then flows through the outlet chamber 42 downward.
  • the solution that has reached the vicinity of the bottom surface 145 in the lower part of the outlet chamber 42 flows out of the container 104 from the outlet 142.
  • ozone water in which ozone is dissolved in water is generated as water in which a gas such as ozone or air contained in the bubbles of the solution is separated from the solution.
  • the ozone water in which ozone is dissolved in water flows out of the gas-liquid separation unit 140 by flowing out of the outlet port 142 into the nozzle 22p.
  • gas such as ozone or air separated from the solution is collected in the space 43 while circulating inside the container 104.
  • the gas flow restriction part 70 opens the outlet 143, the gas collected in the space 43 flows to the outside of the gas-liquid separation part 140 by flowing through the inside of the cylindrical part 144 from the outlet 143. Discharged.
  • the air and a part of ozone separated from water in the gas-liquid separator 140 flow out from the outlet 143 to the gas flow path 114 (see FIG. 1).
  • Ozone and air that are not dissolved in water flow into the ejector 130 from the inlet 133 after being discharged to the gas flow path 114.
  • the ozone not dissolved in the water in the ejector 130 circulates in the liquid flow path 121 while circulating through the gas flow path 114 and a part of the liquid flow path 121 extending between the ejector 130 and the gas-liquid separation unit 140. It is gradually dissolved in the circulating water.
  • the ozone water in which ozone is dissolved is discharged from the outlet 142 to the outside of the gas-liquid separator 140 and then supplied from the water discharger 160 to the outside of the ozone water generator 100.
  • the plug portion 73 covers the outlet 143 from below, so that the plug 73 becomes the outlet 143. Occlude.
  • the space from the inlet 133 to the pipe 111 (both see FIG. 1) and the space from the connecting portion 113 (see FIG. 1) to the outlet 143 become negative pressure due to the suction of the ejector 130. Therefore, outside air flows into the ejector 130 when the check valve 112 is opened. As a result, outside air flows into the space 43 of the gas-liquid separator 140.
  • the water level can be automatically adjusted by reducing the height of the float 71.
  • the gas-liquid separation unit 140 includes the container 104 and the inner cylinder 147.
  • the container 104 has a ceiling surface 146, a bottom surface 145, and a peripheral wall 149.
  • the peripheral wall 149 extends vertically between the ceiling surface 146 and the bottom surface 145.
  • the inner cylinder 147 extends upward from the bottom surface 145 inside the container 104.
  • the inner cylinder 147 is connected to the introduction chamber 41 through which the solution introduced from the outside of the container 104 flows and the outlet chamber 42 through which the solution led out from the inside of the container 104 flows. Comparting the interior.
  • the volume of the introduction chamber 41 is smaller than the volume of the outlet chamber 42.
  • An inlet 141 and an outlet 142 are formed in the peripheral wall 149.
  • the inflow port 141 allows the outside of the container 104 to communicate with the introduction chamber 41.
  • the outflow port 142 allows the outside of the container 104 to communicate with the outlet chamber 42.
  • a gas outlet 143 is formed in the container 104.
  • the outflow port 143 is disposed above the inflow port 141 and the outflow port 142, and communicates the outlet chamber 42 with the outside of the container 104.
  • a space 43 that is disposed above the outlet chamber 42 and stores gas is formed inside the container 104.
  • the space 43 in which gas is stored is disposed above the outlet chamber 42.
  • the solution flowing into the introduction chamber 41 from the outside of the container 104 passes through the space 43 in which the gas is stored, the solution can easily come into contact with the gas. It can be efficiently separated from the solution.
  • the space 43 in which the gas is stored is disposed above the outlet chamber 42, the solution can be ejected from the outlet 143 even when the solution flows into the inlet chamber 41 from the inlet 141. Can be prevented.
  • the flow rate of the solution that has moved from the introduction chamber 41 to the lead-out chamber 42 is decelerated in the lead-out chamber 42 because the volume of the introduction chamber 41 is smaller than the volume of the lead-out chamber 42. . Therefore, it is possible to suppress the undissolved gas contained in the solution flowing through the outlet chamber 42 from being discharged to the outside of the container through the outlet port 142 together with the solution.
  • the gas-liquid separation unit 140 As described above, according to the gas-liquid separation unit 140, the gas can be efficiently separated from the solution inside the container 104 before the solution introduced into the container 104 is discharged from the outlet 142.
  • the gas-liquid separation unit 140 does not include an exhaust valve and has a relatively simple configuration.
  • the inner cylinder 147 has a partition peripheral wall 147b having a cylindrical shape.
  • an inlet 147a facing the inflow port 141 is formed on one end side of the partition peripheral wall 147b.
  • the inner cylinder 147 is disposed closer to the inlet 141 than the outlet 142.
  • the distance between the outer surface on the other end side of the partition peripheral wall and the inner surface of the peripheral wall on the other end side of the container can be increased.
  • leading-out chamber 42 can be expanded in the width direction of the container 104, and the front-back direction. Therefore, the gas can be more efficiently separated from the solution inside the container 104 before the solution introduced into the container 104 is discharged from the outlet 142.
  • the flow rate of the solution flowing through the outlet chamber 42 is accelerated toward the outlet 142.
  • the solution moving from the introduction chamber 41 to the discharge chamber 42 falls from the vicinity of the upper end of the inner cylinder 147 toward the bottom surface 145 and collides with the liquid level of the solution stored in the discharge chamber 42, As the air around the surface is mixed with the solution, a large number of bubbles are generated in the solution.
  • the outflow port 142 is disposed at a position away from the partition peripheral wall 147 b and the one end side of the container 104. That is, the solution that moves from the introduction chamber 41 to the outlet chamber 42 collides with the liquid level at a position relatively away from the outlet 142. Therefore, even when many bubbles are generated by colliding with the liquid surface, the bubbles can be reliably separated from the solution while the solution containing the bubbles moves to the outflow port 142. In this way, according to the configuration of the gas-liquid separation unit 140, it is possible to prevent bubbles from being discharged to the outside of the container 104 through the outflow port 142.
  • the outer surface on one end side of the partition peripheral wall 147 b is fixed to the inner surface of the peripheral wall 149 on one end side of the container 104.
  • the inner cylinder 147 and the container 104 can be easily formed integrally.
  • the inner cylinder 147 can be brought closer to the inflow port 141, and the partition peripheral wall 147 b of the inner cylinder 147 and the outflow port 142 can be further away.
  • the volume of the space 43 disposed above the outlet chamber 42 can be further expanded in the width direction and the front-rear direction of the container 104.
  • the solution moving from the introduction chamber 41 to the outlet chamber 42 can collide with the liquid surface at a position further away from the outflow port 142. Therefore, the bubbles can be more reliably separated from the solution while the solution containing the bubbles moves to the outlet 142.
  • the gas-liquid separation unit 140 includes a gas flow restriction unit 70 for maintaining the water level of ozone water stored in the outlet chamber 42 within a predetermined water level range.
  • the volume of the space 43 in which air is stored can be maintained within a predetermined range. Therefore, it is possible to continue efficiently separating undissolved gas contained in the solution from the solution.
  • the ozone water generator 100 includes a gas-liquid separator 140, an ozone generator 120 that generates ozone, and an ejector 130 that mixes the ozone supplied by the ozone generator 120 with the water supplied to the container 104. ing.
  • the ozone water generating apparatus 100 can supply a solution having a relatively high ozone dissolution rate.
  • the whole upper end surface 147c is not arrange
  • the height of the upper end surface 147c may change with respect to the bottom surface 145 from one end side to the other end side of the inner cylinder 147.
  • the direction in which the nozzle 21p extends may be different from the direction in which the nozzle 22p extends.
  • the direction in which the nozzle 21p extends and the direction in which the nozzle 22p extends are not limited to being substantially horizontal.
  • the nozzle 22p is preferably attached to the container 104 so that the solution flows out from the inside of the container 104 into the nozzle 22p in a substantially horizontal direction.
  • the inner cylinder 147 may be integrally formed with the container 104. Further, the nozzle 21p may pass through the inflow port 141 and may be partially accommodated in the introduction port 147a. Alternatively, the end surface of the nozzle 21p may be attached to the outer surface 149sb of the peripheral wall 149 so as to contact the outer surface 149sb of the peripheral wall 149 surrounding the inflow port 141. Similarly, the end surface of the nozzle 22p may be attached to the outer surface 149sb of the peripheral wall 149 so as to contact the outer surface 149sb of the peripheral wall 149 surrounding the outflow port 142.
  • the outlet 143 may be formed not on the ceiling surface 146 but on the peripheral wall 149 on the other end side of the container 104.
  • the gas flow restriction unit 70 is not limited to having the configuration shown in FIG.
  • the support unit on the container 104 side may be attached to the peripheral wall 149 according to the position of the outlet 143 in the container 104.
  • the gas introduction part 110 should just be comprised so that gas can be introduce
  • the configuration of the gas introduction unit 110 may include an on-off valve or an electromagnetic valve that can control the amount of gas supplied to the ozone generator 120 instead of the check valve 112.
  • the gas introduction unit 110 may not include the check valve 112 and may have a configuration in which a three-way valve is arranged at the connection unit 113. This three-way valve is electronically controlled, for example, and is controlled by a control unit (not shown).
  • the position of the connecting portion 113 may be between the ozone generator 120 and the ejector 130 in the gas flow path 114. That is, the pipe line 111 may be connected to a portion of the gas flow path 114 that extends between the ozone generator 120 and the ejector 130.
  • the configuration of the gas-liquid mixing unit is not limited to the ejector type, and the ozone introduced from the gas flow channel 114 and the water flowing through the liquid flow channel 121 are mixed and the ozone is dissolved in the water. What is necessary is just to have a structure.
  • the ozone water generating device according to the second embodiment is different from the ozone water generating device 100 according to the first embodiment in that the ozone water generating device according to the second embodiment is a gas-liquid separator. Instead of 140, a gas-liquid separator 240 is provided.
  • the gas-liquid separation unit 240 includes a container 204 and an inner cylinder 247 accommodated in the container 204.
  • the container 204 has a peripheral wall 249.
  • the peripheral wall 249 and the inner cylinder 247 each have a substantially rectangular shape.
  • the container 204 has a ceiling surface and a bottom surface. Each of the ceiling surface and the bottom surface of the container 204 has a substantially rectangular shape.
  • the peripheral wall 249 extends in the vertical direction between the ceiling surface and the bottom surface.
  • the inner cylinder 247 as an example of a partition member is disposed on one end side in the width direction of the container 204 inside the container 204.
  • the inner cylinder 247 is disposed on the left side inside the container 204.
  • the inner cylinder 247 has a partition peripheral wall 247b having a substantially cylindrical shape.
  • the cross section of the partition peripheral wall 247b has a substantially rectangular shape.
  • the partition peripheral wall 247 b extends upward from the bottom surface of the container 204.
  • An upper end surface (not shown) of the partition peripheral wall 247b facing the ceiling surface of the container 204 is disposed below the ceiling surface.
  • the inner cylinder 247 partitions the inside of the container 204 into an introduction chamber 41 and an outlet chamber 42.
  • the introduction chamber 41 includes a space surrounded by the partition peripheral wall 247 b on the left side of the container 204.
  • the lead-out chamber 42 includes a space surrounded by the inner surface 249sa of the peripheral wall 249 of the container 204 and the outer surface of the partition peripheral wall 247b.
  • the introduction chamber 41 and the lead-out chamber 42 are connected to each other by a part of the space near the ceiling surface of the container 204, that is, a space sandwiched between the upper end surface of the partition peripheral wall 247b and the ceiling surface.
  • the ozone water inlet 241 and the ozone water outlet 242 are formed on the peripheral wall 249.
  • An inflow port 241 as an example of the first opening and an outflow port 242 as an example of the second opening are disposed below the upper end surface of the inner cylinder 247.
  • the inflow port 241 allows the outside of the container 204 to communicate with the introduction chamber 41.
  • the position of the lower end of the inflow port 241 along the vertical direction substantially coincides with the position of the bottom surface of the container 204.
  • the outlet chamber 42 and the outside of the container 204 communicate with each other via the outflow port 242.
  • the position of the lower end of the outflow port 242 along the vertical direction substantially matches the position of the bottom surface of the container 204.
  • the gas outlet (not shown) as the third opening is the same as the gas-liquid separator 140 (see FIG. 2) of the ozone water generator 100 according to the first embodiment.
  • it is formed on the upper wall of the container 204.
  • the nozzle 23p is attached to the left peripheral wall 249 of the container 204.
  • the nozzle 23p is inserted into an introduction port 247a described later.
  • a nozzle 24 p is attached to the right peripheral wall 249 of the container 204.
  • the nozzle 23p and the nozzle 24p extend in the width direction of the container 204 in directions substantially parallel to each other.
  • the nozzle 24p is inserted into the outlet 242.
  • the inside of the nozzle 23p and the inside of the nozzle 24p form a part of the liquid channel 121.
  • One or both of the nozzle 23p and the nozzle 24p may be integrally formed with the container 204.
  • the inflow port 241 and the outflow port 242 are formed on the peripheral wall 249 so as to face each other along the width direction of the container 204.
  • the outer surface on one end side of the partition peripheral wall 247 b is fixed to the peripheral wall 249 on one end side of the container 204, so that the inner cylinder 247 is in contact with the container 204.
  • the inner cylinder 247 is disposed closer to the inlet 241 than the outlet 242 in the plan view of the container 204.
  • an inlet 247a is formed on one end side of the partition peripheral wall 247b.
  • the outer surface on one end side of the partition peripheral wall 247 b is continuous with the outer surface 249 sb of the peripheral wall 249 on one end side of the container 204. Since the introduction port 247a is included in the inflow port 241, the introduction port 247a and the inflow port 241 face each other.
  • the diameter of the introduction port 247a and the diameter of the nozzle 23p in the portion inserted into the introduction port 247a are substantially the same.
  • the nozzle 23p is attached to the inner cylinder 247 so that the end surface of the nozzle 23p in the portion inserted into the introduction port 247a is continuous with the inner surface of the partition peripheral wall 247b surrounding the introduction port 247a.
  • the gas-liquid separator 240 includes a gas flow restriction unit that opens and closes the gas outlet by interlocking with the ozone water level in the outlet chamber 42.
  • the gas-liquid separator 240 configured as described above can obtain the same functions and effects as those of the gas-liquid separator 140 of the ozone water generator 100 according to the first embodiment. Moreover, the ozone water generating apparatus provided with the gas-liquid separation part 240 can obtain the same effect as the ozone water generating apparatus 100 according to the first embodiment.
  • the solution inflow port 241 and the gas outflow port may be arranged on a substantially rectangular diagonal line formed by the horizontal cross section of the peripheral wall 249 in a plan view of the container 204.
  • the ozone water generating apparatus 100 can be used for a sanitary appliance cleaning apparatus.
  • Sanitary ware includes, for example, toilets, toilets, large and small urinals used in bathrooms, hand-washers, wash-basins, bathtubs, and the like. That is, the sanitary appliance cleaning device provided with the ozone water generating device 100 is, for example, a device used for a toilet, a toilet, or a bathroom, or a device for cleaning a toilet, a toilet, or a bathroom. .
  • a sanitary appliance cleaning device 950 for cleaning the urinals 901, 902, and 903 is installed in the toilet 900.
  • the toilet 900 is an example of a sanitary equipment facility.
  • the sanitary appliance cleaning device 950 is connected to a pipe 910 for supplying water to the toilet including the urinals 901, 902, and 903.
  • the sanitary appliance cleaning device 950 includes an ozone water generator 100. When water flowing through the pipe 910 passes through the sanitary appliance cleaning device 950, ozone is dissolved in the water, thereby generating ozone water.
  • the ozone water flowing through the pipe 910 after passing through the sanitary appliance cleaning device 950 is supplied to a toilet including the urinals 901, 902, and 903.
  • the urinal 920 includes a sanitary appliance cleaning device 922 for cleaning the sanitary ware 921.
  • the urinal 920 is an example of a sanitary instrument.
  • the sanitary appliance cleaning device 922 is disposed above the urinal 920.
  • the sanitary appliance cleaning device 922 includes an ozone water generator 100.
  • the toilet 940 includes a cleaning toilet seat 930.
  • the cleaning toilet seat 930 includes a cleaning unit 934 provided with the ozone water generating device 100, a toilet seat cover 933, and a toilet seat 932.
  • the cleaning unit 934 is an example of a sanitary appliance cleaning device for cleaning the sanitary ware 931.
  • the toilet 940 is an example of a sanitary instrument.
  • the sanitary appliance cleaning device provided with the ozone water generating device 100 removes the undissolved gas from the solution before the solution in which ozone is dissolved is discharged from the outlet 142 (see FIG. 2), even if the exhaust valve is not provided. A solution that can be separated efficiently and has a relatively high ozone dissolution rate can be supplied.

Abstract

Provided is a gas-liquid separator of comparatively simple configuration, the gas-liquid separator enabling a gas to be separated from a liquid supplied to the gas-liquid separator. A gas-liquid separation unit (140) is provided with a container (104) and an inner cylinder (147). The inner cylinder (147) partitions the interior of the container (104) into an introduction chamber (41) through which flows a solution introduced from the exterior of the container (104) to the interior, and an extraction chamber (42) through which flows a solution extracted from the interior of the container (104) to the exterior. The introduction chamber (41) is of smaller volume than the extraction chamber (42). An inflow port (141) interconnects the exterior of the container (104) and the introduction chamber (41). An outflow port (142) interconnects the exterior of the container (104) and the extraction chamber (42). An outflow port (143) is arranged above the inflow port (141) and the outflow port (142), and interconnects the extraction chamber (42) and the exterior of the container (104). A space (43) for storing gas is formed in the interior of the container (104), the space being arranged above the extraction chamber (42).

Description

気液分離器、それを備えたオゾン水生成装置、および、それを備えた衛生器具用洗浄装置Gas-liquid separator, ozone water generating apparatus including the same, and sanitary equipment cleaning apparatus including the same
 本発明は、気液分離器、それを備えたオゾン水生成装置、および、それを備えた衛生器具用洗浄装置に関する。 The present invention relates to a gas-liquid separator, an ozone water generating device including the same, and a sanitary equipment cleaning device including the same.
 例えば、特開2009-240986号公報(以下、特許文献1という)に記載された気液分離器は、圧力容器と仕切部材とを備えている。圧力容器の下部には、溶解液を導入させる導入口と、圧力容器から溶解液を導出させる導出口とが形成されている。 For example, a gas-liquid separator described in JP 2009-240986 A (hereinafter referred to as Patent Document 1) includes a pressure vessel and a partition member. In the lower part of the pressure vessel, an introduction port for introducing the solution and an outlet port for extracting the solution from the pressure vessel are formed.
 特許文献1に記載された気液分離器においては、導入空間の底面積よりも導出空間の底面積が大きくなるように仕切部材を圧力容器の内部に配置することにより、溶解液の流れを導出空間において減速させることができる。 In the gas-liquid separator described in Patent Document 1, the flow of the solution is derived by disposing the partition member inside the pressure vessel so that the bottom area of the lead-out space is larger than the bottom area of the introduction space. It can be decelerated in space.
 導出空間において溶解液の流速が減速されることにより、気体を溶解液から十分に分離させることができるため、導出口から気体が流出することを抑制することができる。 Since the gas can be sufficiently separated from the solution by reducing the flow rate of the solution in the outlet space, the gas can be prevented from flowing out from the outlet.
 特許文献1に記載の気液分離器においては、圧力容器の上部に、排気弁が取り付けられている。排気弁は、弁箱と弁体とバネとを有している。弁箱には、流入口と排気口とが形成されている。弁体は、弁箱内に配置され且つ排気口を開閉する。バネは、排気口を閉塞するように弁体を付勢する。 In the gas-liquid separator described in Patent Document 1, an exhaust valve is attached to the upper part of the pressure vessel. The exhaust valve has a valve box, a valve body, and a spring. An inflow port and an exhaust port are formed in the valve box. The valve body is disposed in the valve box and opens and closes the exhaust port. The spring biases the valve body so as to close the exhaust port.
 圧力容器の内部の気体の圧力が所定の圧力以上である場合には、弁体が排気口を開放することにより、圧力容器の内部の気体が排気口から排出される。 When the pressure of the gas inside the pressure vessel is equal to or higher than a predetermined pressure, the valve body opens the exhaust port, whereby the gas inside the pressure vessel is discharged from the exhaust port.
特開2009-240986号公報JP 2009-240986 A
 しかしながら、特許文献1に記載の気液分離器においては、排気弁なしでは圧力容器の内部に気体を貯留させることが困難であるため、圧力容器の内部に気体を十分に貯留させることができない。つまり、特許文献1に記載の気液分離器においては、圧力容器の内部に、気体を貯留するための空間を積極的に形成させていない。 However, in the gas-liquid separator described in Patent Document 1, it is difficult to store gas inside the pressure vessel without an exhaust valve, and therefore gas cannot be sufficiently stored inside the pressure vessel. That is, in the gas-liquid separator described in Patent Document 1, a space for storing gas is not actively formed inside the pressure vessel.
 圧力容器の内部において気体の貯留が不十分である場合には、気体が貯留された空間を液体が通過することがほとんどないため、液体から気体が完全に分離しないまま、気体を含む液体が液体とともに導出口から流出する場合がある。そのため、液体から気体を十分に且つ効率よく分離させることができない。一方、排気弁を備えていなくても、比較的簡易な構成によって、圧力容器の内部に導入された液体を導出口から排出させるまでに、容器の内部において液体から気体を効率よく分離させることが可能な気液分離器が望まれている。 When the gas is not sufficiently stored inside the pressure vessel, the liquid hardly passes through the space where the gas is stored, so the liquid containing the gas is not separated from the liquid. At the same time, it may flow out from the outlet. Therefore, gas cannot be separated from the liquid sufficiently and efficiently. On the other hand, even if an exhaust valve is not provided, gas can be efficiently separated from the liquid inside the container before the liquid introduced into the pressure container is discharged from the outlet through a relatively simple configuration. A possible gas-liquid separator is desired.
 そこで、本発明の目的は、比較的簡易な構成を有する気液分離器であって、当該気液分離器に供給される液体から気体を効率よく分離させることが可能な気液分離器を提供することである。 Accordingly, an object of the present invention is to provide a gas-liquid separator having a relatively simple configuration, which can efficiently separate gas from the liquid supplied to the gas-liquid separator. It is to be.
 本発明に従った気液分離器は、容器と仕切部材とを備えている。容器は、天井面と、底面と、周壁とを有している。周壁は、天井面と底面との間を上下方向に延びている。仕切部材は、容器の内部において底面から上方に向かって延びている。仕切部材は、容器の外部から内部に導入された液体が流通するための導入室と、容器の内部から外部に導出される液体が流通するための導出室とに容器の内部を区画する。導入室の容積は、導出室の容積よりも小さい。 The gas-liquid separator according to the present invention includes a container and a partition member. The container has a ceiling surface, a bottom surface, and a peripheral wall. The peripheral wall extends in the vertical direction between the ceiling surface and the bottom surface. The partition member extends upward from the bottom surface inside the container. The partition member divides the inside of the container into an introduction chamber through which the liquid introduced from the outside of the container flows and a lead-out chamber through which the liquid led out from the inside of the container flows. The volume of the introducing chamber is smaller than the volume of the outlet chamber.
 周壁には、第1の開口と第2の開口とが形成されている。第1の開口は、容器の外部と導入室とを連通させる。第2の開口は、容器の外部と導出室とを連通させる。容器には、第3の開口が形成されている。第3の開口は、第1の開口および第2の開口よりも上方に配置され、且つ、導出室と容器の外部とを連通させる。また、容器の内部には、導出室の上方に配置され、且つ、気体を貯留する空間が形成されている。 A first opening and a second opening are formed in the peripheral wall. The first opening allows communication between the outside of the container and the introduction chamber. The second opening allows communication between the outside of the container and the outlet chamber. A third opening is formed in the container. The third opening is disposed above the first opening and the second opening, and communicates the lead-out chamber and the outside of the container. In addition, a space for storing gas is formed inside the container and disposed above the outlet chamber.
 本発明によれば、気体が貯留される空間が導出室の上方に配置されている。これにより、容器の外部から導入室に流入した溶液が、気体が貯留された空間を通過する際に、溶液が気体に容易に触れることができるため、溶液に含まれる未溶解気体を溶液から効率よく分離させることができる。また、気体が貯留される空間が導出室の上方に配置されていることにより、第1の開口から導入室に勢いよく溶液が流入する場合でも、第3の開口から溶液が噴出することを防止することができる。 According to the present invention, the space for storing the gas is arranged above the outlet chamber. As a result, when the solution flowing into the introduction chamber from the outside of the container passes through the space in which the gas is stored, the solution can easily touch the gas, so that the undissolved gas contained in the solution is efficiently removed from the solution. Can be separated well. In addition, since the space for storing the gas is arranged above the outlet chamber, the solution is prevented from being ejected from the third opening even when the solution flows into the introduction chamber from the first opening. can do.
 また、本発明によれば、導入室の容積が導出室の容積よりも小さいことにより、導入室から導出室に移動した溶液の流速は、導出室において減速される。そのため、導出室を流れる溶液に含まれる未溶解の気体が、溶液とともに、第2の開口を通って容器の外部に排出されることを抑制することができる。 Further, according to the present invention, since the volume of the introduction chamber is smaller than the volume of the discharge chamber, the flow rate of the solution that has moved from the introduction chamber to the discharge chamber is reduced in the discharge chamber. Therefore, it is possible to suppress the undissolved gas contained in the solution flowing through the outlet chamber from being discharged to the outside of the container through the second opening together with the solution.
 このように、本発明によれば、排気弁を備えていなくても、比較的簡易な構成によって、容器の内部に導入された液体を第2の開口から排出させるまでに、容器の内部において液体から気体を効率よく分離させることができる。したがって、本発明によれば、比較的簡易な構成を有する気液分離器であって、当該気液分離器に供給される液体から気体を効率よく分離させることが可能な気液分離器を提供することができる。 As described above, according to the present invention, even if no exhaust valve is provided, the liquid introduced into the container is discharged from the second opening with a relatively simple configuration until the liquid is discharged from the second opening. Gas can be efficiently separated from the gas. Therefore, according to the present invention, there is provided a gas-liquid separator having a relatively simple configuration and capable of efficiently separating gas from the liquid supplied to the gas-liquid separator. can do.
 本発明に従った気液分離器の容器の平面視において、好ましくは、第1の開口と第2の開口とは、互いに対向している。仕切部材は、好ましくは、筒形状を持つ仕切周壁を有している。好ましくは、容器の平面視において、仕切周壁の一端側には、第1の開口に面する導入口が形成されている。好ましくは、容器の平面視において、仕切部材は、第2の開口よりも第1の開口の近くに配置されている。 In a plan view of the container of the gas-liquid separator according to the present invention, the first opening and the second opening are preferably opposed to each other. The partition member preferably has a partition peripheral wall having a cylindrical shape. Preferably, in the plan view of the container, an introduction port facing the first opening is formed on one end side of the partition peripheral wall. Preferably, the partition member is disposed closer to the first opening than the second opening in a plan view of the container.
 この構成によれば、仕切周壁の他端側の外面と、容器の他端側の周壁の内面との距離を拡大させることができる。これにより、気液分離部において、導出室の上方に配置された空間の容積を拡大させることができる。そのため、導出室の容積を拡大させることができる。したがって、容器の内部に導入された液体を第2の開口から排出させるまでに、容器の内部において液体から気体をより効率よく分離させることができる。 According to this configuration, the distance between the outer surface on the other end side of the partition peripheral wall and the inner surface of the peripheral wall on the other end side of the container can be increased. Thereby, in the gas-liquid separation part, the volume of the space arranged above the outlet chamber can be enlarged. Therefore, the volume of the outlet chamber can be increased. Therefore, gas can be more efficiently separated from the liquid inside the container before the liquid introduced into the container is discharged from the second opening.
 本発明に従った気液分離器において、導出室を流通する溶液の流速は、第2の開口に向かって加速される。また、導入室から導出室に移動する溶液が、仕切部材の上端付近から底面に向かって落下することによって導出室に貯められた溶液の液面に衝突する場合には、液面の周りの空気が溶液に混合されることにより、溶液に多数の気泡が発生する。 In the gas-liquid separator according to the present invention, the flow rate of the solution flowing through the outlet chamber is accelerated toward the second opening. In addition, when the solution moving from the introduction chamber to the discharge chamber collides with the liquid level of the solution stored in the discharge chamber by dropping from the vicinity of the upper end of the partition member toward the bottom surface, the air around the liquid level Is mixed with the solution, a large number of bubbles are generated in the solution.
 しかしながら、本発明に従った気液分離器においては、仕切周壁および容器の一端側から離れた位置に第2の開口が配置されている。つまり、導入室から導出室に移動する溶液は、第2の開口から比較的離れた位置において液面と衝突する。そのため、液面に衝突することによって多数の気泡が発生する場合でも、気泡を含む溶液が第2の開口まで移動する間に、溶液から気泡を確実に分離させることができる。このようにして、本発明に従った気液分離器の構成によれば、第2の開口を通って容器の外部に気泡が排出されることを抑制することができる。 However, in the gas-liquid separator according to the present invention, the second opening is arranged at a position away from the partition peripheral wall and one end side of the container. That is, the solution that moves from the introduction chamber to the discharge chamber collides with the liquid surface at a position relatively distant from the second opening. Therefore, even when a large number of bubbles are generated by colliding with the liquid surface, the bubbles can be reliably separated from the solution while the solution containing the bubbles moves to the second opening. In this way, according to the configuration of the gas-liquid separator according to the present invention, it is possible to suppress discharge of bubbles to the outside of the container through the second opening.
 本発明に従った気液分離器において、好ましくは、仕切周壁の一端側が容器の周壁の一端側に固定されている。好ましくは、容器の平面視において、仕切周壁の一端側の外面から他端側の外面までの水平方向に沿った仕切周壁の寸法は、仕切周壁の他端側の外面から容器の他端側の周壁の内面までの水平方向に沿った距離よりも小さい。 In the gas-liquid separator according to the present invention, preferably, one end side of the partition peripheral wall is fixed to one end side of the peripheral wall of the container. Preferably, in the plan view of the container, the dimension of the partition peripheral wall along the horizontal direction from the outer surface on one end side of the partition peripheral wall to the outer surface on the other end side is from the outer surface on the other end side of the partition peripheral wall to the other end side of the container. It is smaller than the distance along the horizontal direction to the inner surface of the peripheral wall.
 この構成によれば、仕切部材と容器とを容易に一体に形成することができる。また、第1の開口に仕切部材をさらに近づけることができるとともに、仕切周壁と第2の開口とをさらに遠ざけることができる。これにより、気液分離部において、導出室の上方に配置された空間の容積を容器の幅方向および前後方向にさらに拡大させることができる。また、この構成によれば、導入室から導出室に移動する溶液は、第2の開口からより離れた位置において液面と衝突することができる。そのため、気泡を含む溶液が第2の開口まで移動する間に、溶液から気泡をより確実に分離させることができる。 According to this configuration, the partition member and the container can be easily formed integrally. In addition, the partition member can be further brought closer to the first opening, and the partition peripheral wall and the second opening can be further moved away from each other. Thereby, in the gas-liquid separation part, the volume of the space arranged above the outlet chamber can be further expanded in the width direction and the front-rear direction of the container. Further, according to this configuration, the solution moving from the introduction chamber to the discharge chamber can collide with the liquid surface at a position further away from the second opening. Therefore, the bubbles can be more reliably separated from the solution while the solution containing bubbles moves to the second opening.
 本発明に従った気液分離器は、好ましくは、導出室に溜められた液体の液位を所定の液位の範囲に維持するための液位調整部をさらに備えている。 The gas-liquid separator according to the present invention preferably further includes a liquid level adjusting unit for maintaining the liquid level of the liquid stored in the outlet chamber within a predetermined liquid level range.
 この構成によれば、所定の範囲において、空気が貯められた空間の容積の大きさを維持することができる。そのため、溶液に含まれる未溶解気体を溶液から効率よく分離させることを持続することができる。 According to this configuration, the volume of the space in which air is stored can be maintained within a predetermined range. Therefore, it is possible to continue efficiently separating undissolved gas contained in the solution from the solution.
 本発明に従ったオゾン水生成装置は、上記のいずれかの気液分離器と、オゾンを発生させるオゾン発生器と、容器に供給される液体に、オゾン発生器が発生させたオゾンを混合させる気液混合器とを備えていることが好ましい。 An ozone water generator according to the present invention mixes ozone generated by an ozone generator into any of the gas-liquid separators described above, an ozone generator that generates ozone, and a liquid supplied to a container. It is preferable to provide a gas-liquid mixer.
 本発明に従ったオゾン水生成装置は、排気弁を備えていなくても、容器の内部に導入された液体としてのオゾンが溶解した溶液を第2の開口から排出させるまでに、未溶解気体を溶液から効率よく分離させることができる。また、本発明に従ったオゾン水生成装置は、気液分離の性能の向上と、液体中のオゾン溶解率の向上とを図ることができる。そのため、本発明に従ったオゾン水生成装置は、オゾンの溶解率が比較的高い溶液を供給することができる。 Even if the ozone water generating device according to the present invention is not provided with an exhaust valve, an ozone gas as a liquid introduced into the container is discharged before the solution in which ozone is dissolved is discharged from the second opening. It can be efficiently separated from the solution. Moreover, the ozone water generator according to the present invention can improve the performance of gas-liquid separation and improve the ozone dissolution rate in the liquid. Therefore, the ozone water generating apparatus according to the present invention can supply a solution having a relatively high ozone dissolution rate.
 本発明に従った衛生器具用洗浄装置は、オゾン水生成装置を備えていることが好ましい。 The sanitary appliance cleaning device according to the present invention preferably includes an ozone water generator.
 オゾン水生成装置を備えた衛生器具用洗浄装置は、排気弁を備えていなくても、オゾンが溶解した溶液を第2の開口から排出させるまでに、未溶解気体を溶液から効率よく分離させることができ、且つ、オゾンの溶解率が比較的高い溶液を供給することができる。 The cleaning device for sanitary ware provided with an ozone water generator efficiently separates undissolved gas from the solution before discharging the solution in which ozone is dissolved from the second opening, even if the exhaust valve is not provided. And a solution having a relatively high ozone dissolution rate can be supplied.
 以上のように、本発明によれば、比較的簡易な構成を有する気液分離器であって、当該気液分離器に供給される液体から気体を効率よく分離させることが可能な気液分離器を提供することができる。 As described above, according to the present invention, a gas-liquid separator having a relatively simple configuration, which can efficiently separate a gas from a liquid supplied to the gas-liquid separator. Can be provided.
本発明に従った気液混合器を備えたオゾン水生成装置を模式的に示す図である。It is a figure which shows typically the ozone water production | generation apparatus provided with the gas-liquid mixer according to this invention. 本発明に従った気液混合器の一例の断面図である。It is sectional drawing of an example of the gas-liquid mixer according to this invention. 図2のIII-III線によって切断される本発明に従った気液混合器の一例の断面図である。FIG. 3 is a cross-sectional view of an example of a gas-liquid mixer according to the present invention cut along line III-III in FIG. 2. 本発明に従った気液混合器の別の一例の断面図である。It is sectional drawing of another example of the gas-liquid mixer according to this invention. 衛生器具設備の一例としての便所を洗浄するためのオゾン水生成装置を備えた衛生器具用洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of the washing | cleaning apparatus for sanitary equipment provided with the ozone water production | generation apparatus for wash | cleaning the toilet as an example of sanitary equipment equipment. 衛生器具の一例としての小便器を洗浄するためのオゾン水生成装置を備えた衛生器具用洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of the washing | cleaning apparatus for sanitary instruments provided with the ozone water production | generation apparatus for wash | cleaning the urinal as an example of a sanitary instrument. 衛生器具の一例としての大便器を洗浄するためのオゾン水生成装置を備えた衛生器具用洗浄装置の一例を示す模式図である。It is a schematic diagram which shows an example of the washing | cleaning apparatus for sanitary instruments provided with the ozone water production | generation apparatus for wash | cleaning the toilet bowl as an example of a sanitary instrument.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 図1に、本発明に係る気液分離器を備えたオゾン水生成装置100を示す。オゾン水生成装置100は、オゾンが溶解した水を供給する装置である。オゾン水生成装置100は、気体流路114と、液体流路121と、オゾン発生器120と、気液混合部の一例としてのエジェクタ130と、気液分離器の一例としての気液分離部140とを備えている。
(First embodiment)
FIG. 1 shows an ozone water generator 100 equipped with a gas-liquid separator according to the present invention. The ozone water generation apparatus 100 is an apparatus that supplies water in which ozone is dissolved. The ozone water generating apparatus 100 includes a gas channel 114, a liquid channel 121, an ozone generator 120, an ejector 130 as an example of a gas-liquid mixing unit, and a gas-liquid separation unit 140 as an example of a gas-liquid separator. And.
 オゾン水生成装置100は、当該装置の外部から気体を導入する気体導入部110を備えている。気体導入部110は、管路111と逆止弁112とを有している。管路111の一端は、酸素または空気を貯蔵したガスボンベ(図示せず)等と接続している。ただし、管路111の一端は、大気圧に開放されていてもよい。なお、管路111と気体流路114と液体流路121とは、一般的な配管によって形成されており、図示しない管状部材によって形成されている。 The ozone water generation apparatus 100 includes a gas introduction unit 110 that introduces a gas from the outside of the apparatus. The gas introduction part 110 has a pipe line 111 and a check valve 112. One end of the pipe line 111 is connected to a gas cylinder (not shown) that stores oxygen or air. However, one end of the pipe line 111 may be opened to atmospheric pressure. In addition, the pipe line 111, the gas flow path 114, and the liquid flow path 121 are formed with general piping, and are formed with the tubular member which is not shown in figure.
 管路111の他端は、接続部113を介して気体流路114に接続されている。気体流路114は、気体状態のオゾンを流通させるためのものである。 The other end of the pipe line 111 is connected to the gas flow path 114 via the connection part 113. The gas flow path 114 is for circulating ozone in a gaseous state.
 なお、管路111には、オゾンガスを還元する機能を有するオゾンフィルタ(図示せず)が配置されていてもよい。オゾンフィルタは、例えば、オゾンを分解するための触媒が、格子状に構成された紙またはアルミニウムに付着されたもの等、一般的なオゾンフィルタである。 Note that an ozone filter (not shown) having a function of reducing ozone gas may be disposed in the pipe line 111. The ozone filter is a general ozone filter, for example, a catalyst for decomposing ozone attached to paper or aluminum configured in a lattice shape.
 オゾン発生器120は、気体状態のオゾンを生成し且つ生成したオゾンを気体流路114に供給する。気体導入部110によって導入された空気または酸素等の気体は、管路111と気体流路114とを通ってオゾン発生器120に導入される。オゾン発生器120は、金属電極によって形成されたオゾン発生素子(図示せず)を有している。オゾン発生素子は、導入された空気または酸素を材料にしてオゾンガスを発生させる。なお、オゾン発生器120の構成は、特に限定されず、気体流路114から導入される空気または酸素等の気体からオゾンガスを生成するように構成されていればよい。オゾン発生器120としては、一般的なオゾン発生器を用いることが可能である。 The ozone generator 120 generates gaseous ozone and supplies the generated ozone to the gas flow path 114. A gas such as air or oxygen introduced by the gas introduction unit 110 is introduced into the ozone generator 120 through the pipe 111 and the gas flow path 114. The ozone generator 120 has an ozone generating element (not shown) formed by a metal electrode. The ozone generating element generates ozone gas using the introduced air or oxygen as a material. In addition, the structure of the ozone generator 120 is not specifically limited, What is necessary is just to be comprised so that ozone gas may be produced | generated from gas, such as air introduced from the gas flow path 114, or oxygen. As the ozone generator 120, a general ozone generator can be used.
 オゾン水生成装置100において、液体としての水は液体流路121を流通する。液体流路121は、オゾンが溶解される水を流通させる。オゾン水生成装置100は、給水部150を備えている。オゾン水生成装置100の使用者が図示しない水道蛇口を開放することにより、原水としての水道水が給水部150からオゾン水生成装置100に供給される。ただし、原水は、水道水に限定されず、浄化もしくは精製された水であってもよい。 In the ozone water generating apparatus 100, water as a liquid flows through the liquid channel 121. The liquid channel 121 circulates water in which ozone is dissolved. The ozone water generating apparatus 100 includes a water supply unit 150. When the user of the ozone water generating apparatus 100 opens a water tap (not shown), tap water as raw water is supplied from the water supply unit 150 to the ozone water generating apparatus 100. However, the raw water is not limited to tap water, and may be purified or purified water.
 液体流路121は、給水部150に接続している。給水部150は、図示しない電磁弁を有している。給水部150は、オゾン水生成装置100の本体(図示せず)の外部に配置されていてもよく、本体の内部に収容されていてもよい。給水部150の弁は、液体流路121のうちのエジェクタ130よりも水の流れ方向の上流の部分を開閉する。 The liquid channel 121 is connected to the water supply unit 150. The water supply unit 150 has a solenoid valve (not shown). The water supply part 150 may be arrange | positioned outside the main body (not shown) of the ozone water production | generation apparatus 100, and may be accommodated in the inside of a main body. The valve of the water supply unit 150 opens and closes a portion of the liquid channel 121 upstream of the ejector 130 in the water flow direction.
 オゾン水生成装置100においては、気液混合部として、エジェクタ型のものが利用されている。気液混合部の一例としてのエジェクタ130は、液体流路121の一部を形成している。エジェクタ130には、気体の流入口133と液体の流入口131とオゾン水の流出口132とが形成されている。気体流路114の一端は、流入口133を介してエジェクタ130に接続されている。 In the ozone water generating apparatus 100, an ejector type is used as the gas-liquid mixing unit. An ejector 130 as an example of a gas-liquid mixing unit forms part of the liquid channel 121. The ejector 130 is formed with a gas inlet 133, a liquid inlet 131, and an ozone water outlet 132. One end of the gas flow path 114 is connected to the ejector 130 via the inflow port 133.
 オゾン発生器120から気体流路114に供給されるオゾンは、気体流路114の一端からエジェクタ130に導入される。エジェクタ130に導入されるオゾンは、液体流路121を流通する水に混合され、且つ、液体流路121の流れの圧力に基づいて水に溶解される。このようにして、エジェクタ130は、液体流路121を流通する水に、オゾン発生器120から気体流路114に供給される気体としてのオゾンを溶解させる。 Ozone supplied from the ozone generator 120 to the gas flow path 114 is introduced into the ejector 130 from one end of the gas flow path 114. The ozone introduced into the ejector 130 is mixed with water flowing through the liquid channel 121 and is dissolved in water based on the pressure of the flow in the liquid channel 121. In this way, the ejector 130 dissolves ozone as a gas supplied from the ozone generator 120 to the gas channel 114 in the water flowing through the liquid channel 121.
 エジェクタ130よりも、液体流路121を流通する水の流れ方向の下流には、気液分離部140が配置されている。気液分離部140は、液体流路121のうちのエジェクタ130よりも水の流れ方向の下流の一部を形成している。気液分離部140には、気体の流出口143とオゾン水の流入口141とオゾン水の流出口142とが形成されている。流出口143には、気体流路114の他端が接続されている。 The gas-liquid separator 140 is disposed downstream of the ejector 130 in the flow direction of the water flowing through the liquid channel 121. The gas-liquid separator 140 forms a part of the liquid flow path 121 downstream of the ejector 130 in the water flow direction. In the gas-liquid separator 140, a gas outlet 143, an ozone water inlet 141, and an ozone water outlet 142 are formed. The other end of the gas flow path 114 is connected to the outflow port 143.
 流入口141から気液分離部140の内部に流入したオゾン水には、オゾンの気泡が、水に完全に溶解しないまま残っている。気液分離部140において、オゾンの気泡と水中に含まれる空気等の気体とは、液体流路121を流通する水から分離された後に、流出口143から気体流路114に排出される。気液分離部140は、液体流路121を流通する水からオゾンの気泡を含む気体を分離させる。また、気液分離部140は、水から分離されたオゾンの一部を気体流路114の他端から気体流路114に排出する。 In the ozone water that has flowed into the gas-liquid separator 140 from the inlet 141, ozone bubbles remain without being completely dissolved in the water. In the gas-liquid separation unit 140, the bubbles of ozone and the gas such as air contained in the water are separated from the water flowing through the liquid channel 121 and then discharged from the outlet 143 to the gas channel 114. The gas-liquid separator 140 separates the gas containing ozone bubbles from the water flowing through the liquid channel 121. In addition, the gas-liquid separation unit 140 discharges a part of the ozone separated from the water from the other end of the gas channel 114 to the gas channel 114.
 図2に示すように、気液分離部140は、容器104と、容器104に収容された内筒147とを備えている。容器104と内筒147とは、例えば樹脂材料によって形成されている。容器104は、天井面146と、底面145と、周壁149とを有している。周壁149は、天井面146と底面145との間を上下方向に延びている。図2と図3とを参照するように、周壁149と内筒147とは、それぞれ略円筒形状を有している。天井面146と底面145とは、それぞれ略円盤形状を有している。 As shown in FIG. 2, the gas-liquid separation unit 140 includes a container 104 and an inner cylinder 147 accommodated in the container 104. The container 104 and the inner cylinder 147 are made of, for example, a resin material. The container 104 has a ceiling surface 146, a bottom surface 145, and a peripheral wall 149. The peripheral wall 149 extends vertically between the ceiling surface 146 and the bottom surface 145. As shown in FIG. 2 and FIG. 3, the peripheral wall 149 and the inner cylinder 147 each have a substantially cylindrical shape. The ceiling surface 146 and the bottom surface 145 each have a substantially disk shape.
 例えば、図2の左右方向または図3の左右方向のことを容器104の幅方向という。また、図2の上下方向は、鉛直上下方向と略一致している。 For example, the horizontal direction in FIG. 2 or the horizontal direction in FIG. 3 is referred to as the width direction of the container 104. In addition, the vertical direction in FIG. 2 substantially coincides with the vertical vertical direction.
 仕切部材の一例としての内筒147は、容器104の内部において容器104の幅方向の一端側に配置されている。図2に示すように、容器104の内部の左側に内筒147が配置されている。内筒147は、略円筒形状を持つ仕切周壁147bを有している。仕切周壁147bは、容器104の底面145から上方に向かって延びている。 The inner cylinder 147 as an example of a partition member is disposed inside the container 104 at one end side in the width direction of the container 104. As shown in FIG. 2, an inner cylinder 147 is arranged on the left side inside the container 104. The inner cylinder 147 has a partition peripheral wall 147b having a substantially cylindrical shape. The partition peripheral wall 147 b extends upward from the bottom surface 145 of the container 104.
 仕切周壁147bの上端面147cは、天井面146よりも下方に配置されている。上端面147cは、天井面146に面している。上端面147cが延びる方向は、天井面146および底面145が延びる方向と略平行な方向である。天井面146および底面145は、略水平方向に延びている。つまり、上端面147cの全体は、略水平方向から傾斜することなく、底面145に対して略同一位置に配置されている。 The upper end surface 147c of the partition peripheral wall 147b is disposed below the ceiling surface 146. The upper end surface 147c faces the ceiling surface 146. The direction in which the upper end surface 147c extends is a direction substantially parallel to the direction in which the ceiling surface 146 and the bottom surface 145 extend. The ceiling surface 146 and the bottom surface 145 extend in a substantially horizontal direction. That is, the entire upper end surface 147c is disposed at substantially the same position with respect to the bottom surface 145 without being inclined from the substantially horizontal direction.
 内筒147は、導入室41と導出室42とに容器104の内部を区画する。導入室41は、容器104の外部から内部に導入された水が流通するための空間である。導出室42は、容器104の内部から外部に導出される水が流通するための空間である。 The inner cylinder 147 partitions the inside of the container 104 into an introduction chamber 41 and an outlet chamber 42. The introduction chamber 41 is a space for circulating water introduced from the outside to the inside of the container 104. The lead-out chamber 42 is a space through which water led out from the inside of the container 104 flows.
 導入室41の容積は、導出室42の容積よりも小さい。導入室41は、容器104の左側において、仕切周壁147bに囲まれた空間を含む。導出室42は、容器104の周壁149の内面149saと仕切周壁147bの外面とに囲まれた空間を含む。導入室41と導出室42とは、天井面146付近の空間の一部、つまり、仕切周壁147bの上端面147cと天井面146とに挟まれた空間によって互いに接続されている。仕切周壁147bの上端面147cと天井面146とに挟まれた空間は、導入室41の一部であってもよく、導出室42の一部であってもよく、または、後述する空間43の一部であってもよい。 The volume of the introduction chamber 41 is smaller than the volume of the outlet chamber 42. The introduction chamber 41 includes a space surrounded by the partition peripheral wall 147 b on the left side of the container 104. The lead-out chamber 42 includes a space surrounded by the inner surface 149sa of the peripheral wall 149 of the container 104 and the outer surface of the partition peripheral wall 147b. The introduction chamber 41 and the lead-out chamber 42 are connected to each other by a part of the space near the ceiling surface 146, that is, a space sandwiched between the upper end surface 147c of the partition peripheral wall 147b and the ceiling surface 146. The space sandwiched between the upper end surface 147c of the partition peripheral wall 147b and the ceiling surface 146 may be a part of the introduction chamber 41, a part of the outlet chamber 42, or a space 43 to be described later. It may be a part.
 オゾン水の流入口141とオゾン水の流出口142とは、周壁149に形成されている。第1の開口の一例としての流入口141と、第2の開口の一例としての流出口142とは、内筒147の上端面147cよりも下方に配置されている。流入口141は、容器104の外部と導入室41とを連通させる。上下方向に沿った流入口141の下端の位置は、底面145の位置と略一致している。 The ozone water inlet 141 and the ozone water outlet 142 are formed in the peripheral wall 149. An inflow port 141 as an example of the first opening and an outflow port 142 as an example of the second opening are disposed below the upper end surface 147 c of the inner cylinder 147. The inflow port 141 allows the outside of the container 104 to communicate with the introduction chamber 41. The position of the lower end of the inflow port 141 along the vertical direction is substantially coincident with the position of the bottom surface 145.
 一方、導出室42と容器104の外部とは、流出口142を介して互いに連通する。上下方向に沿った流出口142の下端の位置は、底面145の位置と略一致している。 On the other hand, the outlet chamber 42 and the outside of the container 104 communicate with each other through the outflow port 142. The position of the lower end of the outflow port 142 along the vertical direction substantially matches the position of the bottom surface 145.
 容器104の上壁の一部には、筒状部144が形成されている。筒状部144は、空間43の上方に配置されている。筒状部144の下端の開口は、気体の流出口143である。流出口143は、容器104の天井面146に形成されている。第3の開口の一例としての気体の流出口143は、流入口141および流出口142よりも上方に配置されている。導出室42と容器104の外部とは、流出口143を介して連通する。詳細には、導出室42の上方に配置された空間43と容器104の外部とが、流出口143を介して互いに連通する。 A cylindrical portion 144 is formed on a part of the upper wall of the container 104. The cylindrical portion 144 is disposed above the space 43. The opening at the lower end of the cylindrical portion 144 is a gas outlet 143. The outlet 143 is formed on the ceiling surface 146 of the container 104. The gas outlet 143 as an example of the third opening is disposed above the inlet 141 and the outlet 142. The lead-out chamber 42 and the outside of the container 104 communicate with each other via the outflow port 143. Specifically, the space 43 disposed above the outlet chamber 42 and the outside of the container 104 communicate with each other via the outlet 143.
 筒状部144の上端から下端までは、気体流路114(図1参照)の一部を形成している。気体流路114の他端において、気体流路114と容器104の内部とは、流出口143によって連通されている(図1参照)。 A part of the gas flow path 114 (see FIG. 1) is formed from the upper end to the lower end of the cylindrical portion 144. At the other end of the gas flow path 114, the gas flow path 114 and the inside of the container 104 are communicated with each other by an outlet 143 (see FIG. 1).
 容器104の左側の周壁149にはノズル21pが取り付けられている。ノズル21pは、流入口141に挿入されている。容器104の右側の周壁149にはノズル22pが取り付けられている。ノズル21pと、ノズル22pは、互いに略平行な方向であって、容器104の幅方向に延びている。 The nozzle 21p is attached to the left peripheral wall 149 of the container 104. The nozzle 21p is inserted into the inflow port 141. A nozzle 22 p is attached to the right peripheral wall 149 of the container 104. The nozzle 21p and the nozzle 22p extend in the width direction of the container 104 in directions substantially parallel to each other.
 ノズル22pは、流出口142に挿入されている。ノズル21pの内部とノズル22pの内部とは、液体流路121の一部を形成している。なお、ノズル21pとノズル22pのいずれかまたは両方は、容器104と一体成型されていてもよい。 The nozzle 22p is inserted into the outflow port 142. The inside of the nozzle 21p and the inside of the nozzle 22p form a part of the liquid channel 121. One or both of the nozzle 21p and the nozzle 22p may be integrally formed with the container 104.
 図3に示すように、流入口141と流出口142とは、容器104の幅方向に沿って互いに対向するように周壁149に形成されている。つまり、容器104の平面視において、流入口141と流出口142とは、互いに対向している。 As shown in FIG. 3, the inflow port 141 and the outflow port 142 are formed in the peripheral wall 149 so as to face each other along the width direction of the container 104. That is, in the plan view of the container 104, the inflow port 141 and the outflow port 142 face each other.
 仕切周壁147bの一端側の外面が容器104の一端側の周壁149の内面149saに固定されることにより、内筒147は、容器104に接触している。容器104の平面視において、仕切周壁147bの一端側の外面から他端側の外面までの水平方向に沿った仕切周壁147bの寸法Lは、仕切周壁147bの他端側の外面から容器104の他端側の周壁149の内面149saまでの水平方向に沿った距離Lよりも小さい。このように、容器104の平面視において、内筒147は、流出口142よりも流入口141の近くに配置されている。 The outer surface on one end side of the partition peripheral wall 147 b is fixed to the inner surface 149 sa of the peripheral wall 149 on one end side of the container 104, so that the inner cylinder 147 is in contact with the container 104. In a plan view of the container 104, the dimensions L 1 of the partition wall 147b along the horizontal direction from one end side of the outer surface of the partition wall 147b to the outer surface of the other end, the container 104 from the other end of the outer surface of the partition wall 147b smaller than the distance L 2 along the horizontal direction to the inner surface 149sa the other end of the peripheral wall 149. Thus, the inner cylinder 147 is disposed closer to the inlet 141 than the outlet 142 in the plan view of the container 104.
 容器104の平面視において、仕切周壁147bの一端側には、流入口141に面する導入口147aが形成されている。導入口147aの口径と、流入口141に挿入された部分のノズル21pの口径とは、略同一である。また、流入口141に挿入された部分のノズル21pの端面は、導入口147aを囲む仕切周壁147bの外面に接触している。 In the plan view of the container 104, an inlet 147a facing the inflow port 141 is formed on one end side of the partition peripheral wall 147b. The diameter of the introduction port 147a and the diameter of the nozzle 21p at the portion inserted into the inflow port 141 are substantially the same. Further, the end surface of the nozzle 21p at the portion inserted into the inflow port 141 is in contact with the outer surface of the partition peripheral wall 147b surrounding the introduction port 147a.
 このように、液体流路121は、ノズル21pの内部と、仕切周壁147bの内側との間において連続している。導入室41と容器104の外部とは、流入口141および導入口147aを介して互いに連通する。 Thus, the liquid flow path 121 is continuous between the inside of the nozzle 21p and the inside of the partition peripheral wall 147b. The introduction chamber 41 and the outside of the container 104 communicate with each other via the inflow port 141 and the introduction port 147a.
 図2に示すように、容器104の内部には、気体を貯留する空間43が形成されている。空間43は、容器104の内部の溶液の液面と天井面146との間に形成されている。気液分離部140においては、内筒147が流出口142よりも流入口141の近くに配置されているため、空間43のうち、導出室42の上方に配置された部分の容積が比較的大きい。導入室41と、導出室42と、空間43の一部とは、液体流路121の一部を形成している。なお、液体流路121の一部を形成する空間43の一部は、導入室41の一部と導出室42の一部とを兼用する。 As shown in FIG. 2, a space 43 for storing gas is formed inside the container 104. The space 43 is formed between the liquid level of the solution inside the container 104 and the ceiling surface 146. In the gas-liquid separation unit 140, since the inner cylinder 147 is disposed closer to the inlet 141 than the outlet 142, the volume of the portion of the space 43 disposed above the outlet chamber 42 is relatively large. . The introduction chamber 41, the outlet chamber 42, and a part of the space 43 form a part of the liquid channel 121. A part of the space 43 that forms a part of the liquid flow path 121 serves as a part of the introduction chamber 41 and a part of the outlet chamber 42.
 気液分離部140は、気体流通制限部70を備えている。気体流通制限部70は、容器104の内部の溶液の液位を調整する液位調整部の一例である。気体流通制限部70は、導出室42のオゾン水の水位の変化に連動することによって流出口143を開閉する。気体流通制限部70は、流出口143を開閉することにより、導出室42に溜められたオゾン水の水位を所定の水位の範囲に維持する。 The gas-liquid separation unit 140 includes a gas flow restriction unit 70. The gas flow restriction unit 70 is an example of a liquid level adjusting unit that adjusts the liquid level of the solution inside the container 104. The gas flow restriction unit 70 opens and closes the outlet 143 by interlocking with the change in the water level of the ozone water in the outlet chamber 42. The gas flow restriction unit 70 opens and closes the outlet 143 to maintain the level of ozone water stored in the outlet chamber 42 within a predetermined water level.
 気体流通制限部70は、フロート71と、栓部73とを有している。栓部73は、ゴム等の弾性材料によって球体状に形成されている。 The gas flow restriction part 70 has a float 71 and a plug part 73. The plug portion 73 is formed in a spherical shape by an elastic material such as rubber.
 栓部73の球の径は、流出口143の径よりも大きい。栓部73は、流出口143の下方に配置されている。 The diameter of the sphere of the plug portion 73 is larger than the diameter of the outlet 143. The plug portion 73 is disposed below the outflow port 143.
 また、気体流通制限部70は、フロートガイド75と、容器104側の支持部76と、フロート71側の支持部77とを有している。容器104側の支持部76は、天井面146に固定されている。フロート71側の支持部77は、フロート71の上面に固定されている。 Further, the gas flow restriction unit 70 includes a float guide 75, a support unit 76 on the container 104 side, and a support unit 77 on the float 71 side. The support portion 76 on the container 104 side is fixed to the ceiling surface 146. The support portion 77 on the float 71 side is fixed to the upper surface of the float 71.
 フロートガイド75は、樹脂材料によって形成されたロッド状または板状の部材である。フロートガイド75が支持部76を中心に回転自在であるように、フロートガイド75の一端は、支持部76に取り付けられている。また、フロートガイド75の中央部には、栓部73が形成されている。フロートガイド75の他端は、支持部77に取り付けられている。 The float guide 75 is a rod-shaped or plate-shaped member formed of a resin material. One end of the float guide 75 is attached to the support portion 76 so that the float guide 75 is rotatable about the support portion 76. A plug portion 73 is formed at the center of the float guide 75. The other end of the float guide 75 is attached to the support portion 77.
 オゾン水の水位の変化に応じてフロート71が上下に移動する場合に、フロートガイド75が支持部76を中心に回転する。このフロートガイド75の回転に伴って、栓部73が上下に移動する。 When the float 71 moves up and down according to the change in the ozone water level, the float guide 75 rotates around the support portion 76. As the float guide 75 rotates, the plug 73 moves up and down.
 次に、図1~図2を用いて、オゾン水生成装置100の水の流れと、オゾンを含む気体の流れとを説明する。オゾン水生成装置100において、液体としての水は、給水部150から液体流路121に供給される。液体流路121を流れる水は、流入口131からエジェクタ130の内部に流入する。エジェクタ130の内部を流通した水は、流出口132からエジェクタ130の外部に流出する。 Next, the flow of water in the ozone water generator 100 and the flow of gas containing ozone will be described with reference to FIGS. In the ozone water generating apparatus 100, water as a liquid is supplied from the water supply unit 150 to the liquid channel 121. Water flowing through the liquid flow path 121 flows into the ejector 130 from the inlet 131. The water that has circulated through the ejector 130 flows out of the ejector 130 from the outlet 132.
 エジェクタ130の内部には、オゾン発生器120が発生させた気体のオゾンが流入口133から流入する。流入口133から流入した気体のオゾンは、液体流路121としてエジェクタ130の内部を流通する水に混合される。水に混合されたオゾンの一部は、水流の圧力に基づいて水に溶解される。オゾンを含む水は、流出口132からエジェクタ130の外部に流出する。 The gaseous ozone generated by the ozone generator 120 flows into the ejector 130 from the inlet 133. The gaseous ozone flowing in from the inflow port 133 is mixed with water flowing through the ejector 130 as the liquid flow path 121. Part of the ozone mixed with water is dissolved in water based on the pressure of the water stream. Water containing ozone flows out of the ejector 130 from the outlet 132.
 流出口132からエジェクタ130の外部に流出したオゾンを含む水は、流入口141から気液分離部140の内部に流入する。図2に示すように、ノズル21pの内部から容器104の内部に流入したオゾンを含む水は、仕切周壁147bの内面に沿って、底面145から上方に向かって導入室41を流通する。導入室41の上部に達した溶液は、仕切周壁147bの上端面147cと天井面146との間を移動した後に、下方に向かって導出室42を流通する。導出室42の下部のうちの底面145の近傍に達した溶液は、流出口142から容器104の外部に流出する。 Water containing ozone that has flowed out of the ejector 130 from the outlet 132 flows into the gas-liquid separator 140 from the inlet 141. As shown in FIG. 2, the water containing ozone that has flowed into the container 104 from the inside of the nozzle 21p flows through the introduction chamber 41 upward from the bottom surface 145 along the inner surface of the partition peripheral wall 147b. The solution reaching the upper portion of the introduction chamber 41 moves between the upper end surface 147c of the partition peripheral wall 147b and the ceiling surface 146, and then flows through the outlet chamber 42 downward. The solution that has reached the vicinity of the bottom surface 145 in the lower part of the outlet chamber 42 flows out of the container 104 from the outlet 142.
 溶液の気泡に含まれるオゾンまたは空気等の気体は、容器104の内部を流通する間に、溶液から分離される。このように、溶液の気泡に含まれるオゾンまたは空気等の気体が溶液から分離された水として、オゾンが水に溶解したオゾン水が生成される。オゾンが水に溶解したオゾン水は、流出口142からノズル22pの内部に流出することにより、気液分離部140の外部に流出する。 Gas such as ozone or air contained in the bubbles of the solution is separated from the solution while flowing inside the container 104. Thus, ozone water in which ozone is dissolved in water is generated as water in which a gas such as ozone or air contained in the bubbles of the solution is separated from the solution. The ozone water in which ozone is dissolved in water flows out of the gas-liquid separation unit 140 by flowing out of the outlet port 142 into the nozzle 22p.
 一方、溶液から分離されたオゾンまたは空気等の気体は、容器104の内部を流通する間に、空間43に集められる。空間43に集められた気体は、気体流通制限部70が流出口143を開放している場合に、流出口143から筒状部144の内部を流通することにより、気液分離部140の外部に排出される。 On the other hand, gas such as ozone or air separated from the solution is collected in the space 43 while circulating inside the container 104. When the gas flow restriction part 70 opens the outlet 143, the gas collected in the space 43 flows to the outside of the gas-liquid separation part 140 by flowing through the inside of the cylindrical part 144 from the outlet 143. Discharged.
 気液分離部140において水から分離された空気とオゾンの一部とは、流出口143から気体流路114に流出する(図1参照)。水に溶解されていないオゾンと空気とは、気体流路114に排出された後に流入口133からエジェクタ130の内部に再び流入する。エジェクタ130において水に溶解されなかったオゾンは、気体流路114と、エジェクタ130と気液分離部140との間に延びる液体流路121の一部とを循環する間に、液体流路121を流通する水に次第に溶解される。オゾンが溶解したオゾン水は、流出口142から気液分離部140の外部に排出された後に、吐水部160からオゾン水生成装置100の外部に供給される。 The air and a part of ozone separated from water in the gas-liquid separator 140 flow out from the outlet 143 to the gas flow path 114 (see FIG. 1). Ozone and air that are not dissolved in water flow into the ejector 130 from the inlet 133 after being discharged to the gas flow path 114. The ozone not dissolved in the water in the ejector 130 circulates in the liquid flow path 121 while circulating through the gas flow path 114 and a part of the liquid flow path 121 extending between the ejector 130 and the gas-liquid separation unit 140. It is gradually dissolved in the circulating water. The ozone water in which ozone is dissolved is discharged from the outlet 142 to the outside of the gas-liquid separator 140 and then supplied from the water discharger 160 to the outside of the ozone water generator 100.
 図2に示すように、導出室42に貯められたオゾン水の水位が所定の上限位に達する場合には、栓部73が流出口143を下方から覆うことにより、栓部73が流出口143を閉塞する。これにより、エジェクタ130の吸引の作動によって流入口133から管路111(いずれも図1参照)に至る空間と、接続部113(図1参照)から流出口143に至る空間とが負圧となるため、逆止弁112が開くことによってエジェクタ130に外気が流入する。その結果、気液分離部140の空間43に外気が流れ込む。これにより、導出室42の上方に配置された空間43の容積が拡大するため、フロート71の高さが下がることによって水位を自動的に調整することができる。 As shown in FIG. 2, when the water level of the ozone water stored in the outlet chamber 42 reaches a predetermined upper limit, the plug portion 73 covers the outlet 143 from below, so that the plug 73 becomes the outlet 143. Occlude. As a result, the space from the inlet 133 to the pipe 111 (both see FIG. 1) and the space from the connecting portion 113 (see FIG. 1) to the outlet 143 become negative pressure due to the suction of the ejector 130. Therefore, outside air flows into the ejector 130 when the check valve 112 is opened. As a result, outside air flows into the space 43 of the gas-liquid separator 140. Thereby, since the volume of the space 43 arranged above the outlet chamber 42 is enlarged, the water level can be automatically adjusted by reducing the height of the float 71.
 以上のように、気液分離部140は、容器104と内筒147とを備えている。容器104は、天井面146と、底面145と、周壁149とを有している。周壁149は、天井面146と底面145との間を上下方向に延びている。内筒147は、容器104の内部において底面145から上方に向かって延びている。内筒147は、容器104の外部から内部に導入された溶液が流通するための導入室41と、容器104の内部から外部に導出される溶液が流通するための導出室42とに容器104の内部を区画する。導入室41の容積は、導出室42の容積よりも小さい。 As described above, the gas-liquid separation unit 140 includes the container 104 and the inner cylinder 147. The container 104 has a ceiling surface 146, a bottom surface 145, and a peripheral wall 149. The peripheral wall 149 extends vertically between the ceiling surface 146 and the bottom surface 145. The inner cylinder 147 extends upward from the bottom surface 145 inside the container 104. The inner cylinder 147 is connected to the introduction chamber 41 through which the solution introduced from the outside of the container 104 flows and the outlet chamber 42 through which the solution led out from the inside of the container 104 flows. Comparting the interior. The volume of the introduction chamber 41 is smaller than the volume of the outlet chamber 42.
 周壁149には、流入口141と流出口142とが形成されている。流入口141は、容器104の外部と導入室41とを連通させる。流出口142は、容器104の外部と導出室42とを連通させる。容器104には、気体の流出口143が形成されている。流出口143は、流入口141および流出口142よりも上方に配置され、且つ、導出室42と容器104の外部とを連通させる。また、容器104の内部には、導出室42の上方に配置され、且つ、気体を貯留する空間43が形成されている。 An inlet 141 and an outlet 142 are formed in the peripheral wall 149. The inflow port 141 allows the outside of the container 104 to communicate with the introduction chamber 41. The outflow port 142 allows the outside of the container 104 to communicate with the outlet chamber 42. A gas outlet 143 is formed in the container 104. The outflow port 143 is disposed above the inflow port 141 and the outflow port 142, and communicates the outlet chamber 42 with the outside of the container 104. In addition, a space 43 that is disposed above the outlet chamber 42 and stores gas is formed inside the container 104.
 気液分離部140によれば、気体が貯留される空間43が導出室42の上方に配置されている。これにより、容器104の外部から導入室41に流入した溶液が、気体が貯留された空間43を通過する際に、溶液が気体に容易に触れることができるため、溶液に含まれる未溶解気体を溶液から効率よく分離させることができる。また、気体が貯留される空間43が導出室42の上方に配置されていることにより、流入口141から導入室41に勢いよく溶液が流入する場合でも、流出口143から溶液が噴出することを防止することができる。 According to the gas-liquid separation unit 140, the space 43 in which gas is stored is disposed above the outlet chamber 42. Thereby, when the solution flowing into the introduction chamber 41 from the outside of the container 104 passes through the space 43 in which the gas is stored, the solution can easily come into contact with the gas. It can be efficiently separated from the solution. Further, since the space 43 in which the gas is stored is disposed above the outlet chamber 42, the solution can be ejected from the outlet 143 even when the solution flows into the inlet chamber 41 from the inlet 141. Can be prevented.
 また、気液分離部140によれば、導入室41の容積が導出室42の容積よりも小さいことにより、導入室41から導出室42に移動した溶液の流速は、導出室42において減速される。そのため、導出室42を流れる溶液に含まれる未溶解の気体が、溶液とともに、流出口142を通って容器の外部に排出されることを抑制することができる。 Further, according to the gas-liquid separation unit 140, the flow rate of the solution that has moved from the introduction chamber 41 to the lead-out chamber 42 is decelerated in the lead-out chamber 42 because the volume of the introduction chamber 41 is smaller than the volume of the lead-out chamber 42. . Therefore, it is possible to suppress the undissolved gas contained in the solution flowing through the outlet chamber 42 from being discharged to the outside of the container through the outlet port 142 together with the solution.
 このように、気液分離部140によれば、容器104の内部に導入された溶液を流出口142から排出させるまでに、容器104の内部において溶液から気体を効率よく分離させることができる。また、気液分離部140は、排気弁を備えておらず、比較的簡易な構成を有している。 As described above, according to the gas-liquid separation unit 140, the gas can be efficiently separated from the solution inside the container 104 before the solution introduced into the container 104 is discharged from the outlet 142. The gas-liquid separation unit 140 does not include an exhaust valve and has a relatively simple configuration.
 気液分離部140の容器104の平面視において、流入口141と流出口142とは、互いに対向している。内筒147は、筒形状を持つ仕切周壁147bを有している。容器104の平面視において、仕切周壁147bの一端側には、流入口141に面する導入口147aが形成されている。容器104の平面視において、内筒147は、流出口142よりも流入口141の近くに配置されている。 In the plan view of the container 104 of the gas-liquid separator 140, the inflow port 141 and the outflow port 142 face each other. The inner cylinder 147 has a partition peripheral wall 147b having a cylindrical shape. In the plan view of the container 104, an inlet 147a facing the inflow port 141 is formed on one end side of the partition peripheral wall 147b. In the plan view of the container 104, the inner cylinder 147 is disposed closer to the inlet 141 than the outlet 142.
 この構成によれば、仕切周壁の他端側の外面と、容器の他端側の周壁の内面との距離を拡大させることができる。これにより、気液分離部140において、導出室42の上方に配置された空間43の容積を容器104の幅方向および前後方向に拡大させることができる。したがって、容器104の内部に導入された溶液を流出口142から排出させるまでに、容器104の内部において溶液から気体をより効率よく分離させることができる。 According to this configuration, the distance between the outer surface on the other end side of the partition peripheral wall and the inner surface of the peripheral wall on the other end side of the container can be increased. Thereby, in the gas-liquid separation part 140, the volume of the space 43 arrange | positioned above the derivation | leading-out chamber 42 can be expanded in the width direction of the container 104, and the front-back direction. Therefore, the gas can be more efficiently separated from the solution inside the container 104 before the solution introduced into the container 104 is discharged from the outlet 142.
 気液分離部140において、導出室42を流通する溶液の流速は、流出口142に向かって加速される。また、導入室41から導出室42に移動する溶液が、内筒147の上端付近から底面145に向かって落下することによって導出室42に貯められた溶液の液面に衝突する場合には、液面の周りの空気が溶液に混合されることにより、溶液に多数の気泡が発生する。 In the gas-liquid separator 140, the flow rate of the solution flowing through the outlet chamber 42 is accelerated toward the outlet 142. In addition, when the solution moving from the introduction chamber 41 to the discharge chamber 42 falls from the vicinity of the upper end of the inner cylinder 147 toward the bottom surface 145 and collides with the liquid level of the solution stored in the discharge chamber 42, As the air around the surface is mixed with the solution, a large number of bubbles are generated in the solution.
 しかしながら、気液分離部140においては、仕切周壁147bおよび容器104の一端側から離れた位置に流出口142が配置されている。つまり、導入室41から導出室42に移動する溶液は、流出口142から比較的離れた位置において液面と衝突する。そのため、液面に衝突することによって多数の気泡が発生する場合でも、気泡を含む溶液が流出口142まで移動する間に、溶液から気泡を確実に分離させることができる。このようにして、気液分離部140の構成によれば、流出口142を通って容器104の外部に気泡が排出されることを抑制することができる。 However, in the gas-liquid separation unit 140, the outflow port 142 is disposed at a position away from the partition peripheral wall 147 b and the one end side of the container 104. That is, the solution that moves from the introduction chamber 41 to the outlet chamber 42 collides with the liquid level at a position relatively away from the outlet 142. Therefore, even when many bubbles are generated by colliding with the liquid surface, the bubbles can be reliably separated from the solution while the solution containing the bubbles moves to the outflow port 142. In this way, according to the configuration of the gas-liquid separation unit 140, it is possible to prevent bubbles from being discharged to the outside of the container 104 through the outflow port 142.
 気液分離部140において、仕切周壁147bの一端側の外面は、容器104の一端側の周壁149の内面に固定されている。容器104の平面視において、仕切周壁147bの一端側の外面から他端側の外面までの水平方向に沿った仕切周壁147bの寸法Lは、仕切周壁147bの他端側の外面から容器104の他端側の周壁149の内面149saまでの水平方向に沿った距離Lよりも小さい。 In the gas-liquid separator 140, the outer surface on one end side of the partition peripheral wall 147 b is fixed to the inner surface of the peripheral wall 149 on one end side of the container 104. In a plan view of the container 104, the dimensions L 1 of the partition wall 147b along the horizontal direction from one end side of the outer surface of the partition wall 147b to the outer surface of the other end, the container 104 from the other end of the outer surface of the partition wall 147b smaller than the distance L 2 along the horizontal direction to the inner surface 149sa the other end of the peripheral wall 149.
 この構成によれば、内筒147と容器104とを容易に一体に形成することができる。また、流入口141に内筒147をさらに近づけることができるとともに、内筒147の仕切周壁147bと流出口142とをさらに遠ざけることができる。これにより、気液分離部140において、導出室42の上方に配置された空間43の容積を容器104の幅方向および前後方向にさらに拡大させることができる。また、この構成によれば、導入室41から導出室42に移動する溶液は、流出口142からより離れた位置において液面と衝突することができる。そのため、気泡を含む溶液が流出口142まで移動する間に、溶液から気泡をより確実に分離させることができる。 According to this configuration, the inner cylinder 147 and the container 104 can be easily formed integrally. In addition, the inner cylinder 147 can be brought closer to the inflow port 141, and the partition peripheral wall 147 b of the inner cylinder 147 and the outflow port 142 can be further away. Thereby, in the gas-liquid separator 140, the volume of the space 43 disposed above the outlet chamber 42 can be further expanded in the width direction and the front-rear direction of the container 104. Further, according to this configuration, the solution moving from the introduction chamber 41 to the outlet chamber 42 can collide with the liquid surface at a position further away from the outflow port 142. Therefore, the bubbles can be more reliably separated from the solution while the solution containing the bubbles moves to the outlet 142.
 気液分離部140は、導出室42に溜められたオゾン水の水位を所定の水位の範囲に維持するための気体流通制限部70を備えている。 The gas-liquid separation unit 140 includes a gas flow restriction unit 70 for maintaining the water level of ozone water stored in the outlet chamber 42 within a predetermined water level range.
 この構成によれば、所定の範囲において、空気が貯められた空間43の容積の大きさを維持することができる。そのため、溶液に含まれる未溶解気体を溶液から効率よく分離させることを持続することができる。 According to this configuration, the volume of the space 43 in which air is stored can be maintained within a predetermined range. Therefore, it is possible to continue efficiently separating undissolved gas contained in the solution from the solution.
 オゾン水生成装置100は、気液分離部140と、オゾンを発生させるオゾン発生器120と、容器104に供給される水に、オゾン発生器120が発生させたオゾンを混合させるエジェクタ130とを備えている。 The ozone water generator 100 includes a gas-liquid separator 140, an ozone generator 120 that generates ozone, and an ejector 130 that mixes the ozone supplied by the ozone generator 120 with the water supplied to the container 104. ing.
 オゾン水生成装置100は、排気弁を備えていなくても、容器104の内部に導入された液体としてのオゾン水を流出口142から排出させるまでに、未溶解気体をオゾン水から効率よく分離させることができる。また、オゾン水生成装置100は、気液分離の性能の向上と、溶液中のオゾン溶解率の向上とを図ることができる。そのため、オゾン水生成装置100は、オゾンの溶解率が比較的高い溶液を供給することができる。 Even if the ozone water generating apparatus 100 does not include an exhaust valve, the ozone water as the liquid introduced into the container 104 is efficiently separated from the ozone water before the ozone water is discharged from the outlet 142. be able to. Moreover, the ozone water production | generation apparatus 100 can aim at the improvement of the performance of gas-liquid separation, and the improvement of the ozone dissolution rate in a solution. Therefore, the ozone water generating apparatus 100 can supply a solution having a relatively high ozone dissolution rate.
 なお、上端面147cの全体は、底面145に対して略同一位置に配置されておらず、略水平方向から傾斜していてもよい。上端面147cの全体において、例えば、内筒147の一端側から他端側に向かって底面145に対して、上端面147cの高さが変化していてもよい。 In addition, the whole upper end surface 147c is not arrange | positioned in the substantially the same position with respect to the bottom face 145, and may incline from a substantially horizontal direction. In the entire upper end surface 147c, for example, the height of the upper end surface 147c may change with respect to the bottom surface 145 from one end side to the other end side of the inner cylinder 147.
 なお、ノズル21pが延びる方向と、ノズル22pが延びる方向とは、それぞれ異なっていてもよい。ノズル21pが延びる方向と、ノズル22pが延びる方向とは、略水平方向であることに限定されない。ただし、ノズル21pは、ノズル21pの内部から容器104の内部に略水平方向に溶液が流入するように、容器104に取り付けられていることが好ましい。また、ノズル22pは、容器104の内部からノズル22pの内部に略水平方向に溶液が流出するように、容器104に取り付けられていることが好ましい。 The direction in which the nozzle 21p extends may be different from the direction in which the nozzle 22p extends. The direction in which the nozzle 21p extends and the direction in which the nozzle 22p extends are not limited to being substantially horizontal. However, it is preferable that the nozzle 21p is attached to the container 104 so that the solution flows from the inside of the nozzle 21p into the container 104 in a substantially horizontal direction. The nozzle 22p is preferably attached to the container 104 so that the solution flows out from the inside of the container 104 into the nozzle 22p in a substantially horizontal direction.
 なお、内筒147は、容器104と一体成型されていてもよい。また、ノズル21pは、流入口141を貫通し且つ導入口147aに一部が収容されていてもよい。あるいは、ノズル21pの端面は、流入口141を囲む周壁149の外面149sbに接触するように、周壁149の外面149sbに取り付けられていてもよい。同様に、ノズル22pの端面は、流出口142を囲む周壁149の外面149sbに接触するように、周壁149の外面149sbに取り付けられていてもよい。 Note that the inner cylinder 147 may be integrally formed with the container 104. Further, the nozzle 21p may pass through the inflow port 141 and may be partially accommodated in the introduction port 147a. Alternatively, the end surface of the nozzle 21p may be attached to the outer surface 149sb of the peripheral wall 149 so as to contact the outer surface 149sb of the peripheral wall 149 surrounding the inflow port 141. Similarly, the end surface of the nozzle 22p may be attached to the outer surface 149sb of the peripheral wall 149 so as to contact the outer surface 149sb of the peripheral wall 149 surrounding the outflow port 142.
 流出口143は、天井面146ではなく、容器104の他端側の周壁149に形成されていてもよい。 The outlet 143 may be formed not on the ceiling surface 146 but on the peripheral wall 149 on the other end side of the container 104.
 気体流通制限部70は、図2に示す構成を備えていることに限定されない。気体流通制限部70は、例えば容器104においての流出口143の位置に応じて、容器104側の支持部が周壁149に取り付けられていてもよい。 The gas flow restriction unit 70 is not limited to having the configuration shown in FIG. In the gas flow restriction unit 70, for example, the support unit on the container 104 side may be attached to the peripheral wall 149 according to the position of the outlet 143 in the container 104.
 なお、気体導入部110は、オゾン水生成装置100の外部から内部に気体を導入させることが可能であるように構成されていればよい。例えば、気体導入部110の構成は、逆止弁112の代わりにオゾン発生器120に供給される気体量を制御することが可能な開閉バルブまたは電磁弁等を備えていてもよい。あるいは、気体導入部110は、逆止弁112を備えていなくてもよく、接続部113に三方向弁が配置されたような構成であってもよい。この三方向弁は、例えば、電子的に制御されるものであって、図示しない制御部によって制御される。 In addition, the gas introduction part 110 should just be comprised so that gas can be introduce | transduced into the inside from the outside of the ozone water production | generation apparatus 100. FIG. For example, the configuration of the gas introduction unit 110 may include an on-off valve or an electromagnetic valve that can control the amount of gas supplied to the ozone generator 120 instead of the check valve 112. Alternatively, the gas introduction unit 110 may not include the check valve 112 and may have a configuration in which a three-way valve is arranged at the connection unit 113. This three-way valve is electronically controlled, for example, and is controlled by a control unit (not shown).
 接続部113の位置は、気体流路114のうち、オゾン発生器120とエジェクタ130との間であってもよい。つまり、管路111は、気体流路114のうち、オゾン発生器120とエジェクタ130との間を延びる部分に接続されていてもよい。 The position of the connecting portion 113 may be between the ozone generator 120 and the ejector 130 in the gas flow path 114. That is, the pipe line 111 may be connected to a portion of the gas flow path 114 that extends between the ozone generator 120 and the ejector 130.
 なお、気液混合部の構成は、エジェクタ型のものに限定されず、気体流路114から導入されたオゾンと液体流路121を流通する水とを混合させ、且つ、オゾンを水に溶解させる構成を有していればよい。 The configuration of the gas-liquid mixing unit is not limited to the ejector type, and the ozone introduced from the gas flow channel 114 and the water flowing through the liquid flow channel 121 are mixed and the ozone is dissolved in the water. What is necessary is just to have a structure.
 (第2実施形態)
 以下では、第2実施形態に係るオゾン水生成装置について、図4を用いて説明する。なお、以下において、第1実施形態に係るオゾン水生成装置100の構成と同様の機能を有する構成には同符号を付し、その説明を省略する。
(Second Embodiment)
Below, the ozone water generating apparatus which concerns on 2nd Embodiment is demonstrated using FIG. In addition, below, the same code | symbol is attached | subjected to the structure which has a function similar to the structure of the ozone water generating apparatus 100 which concerns on 1st Embodiment, and the description is abbreviate | omitted.
 以下に説明するように、第2実施形態に係るオゾン水生成装置が第1実施形態に係るオゾン水生成装置100と異なる点は、第2実施形態に係るオゾン水生成装置は、気液分離部140の代わりに、気液分離部240を備えている。 As will be described below, the ozone water generating device according to the second embodiment is different from the ozone water generating device 100 according to the first embodiment in that the ozone water generating device according to the second embodiment is a gas-liquid separator. Instead of 140, a gas-liquid separator 240 is provided.
 図4に示すように、気液分離部240は、容器204と、容器204に収容された内筒247とを備えている。容器204は、周壁249を有している。周壁249と内筒247とは、それぞれ略長方形状を有している。図4には図示されていないが、容器204は、天井面と底面とを有している。容器204の天井面と底面とは、それぞれ略長方形状を有している。周壁249は、天井面と底面との間を上下方向に延びている。 As shown in FIG. 4, the gas-liquid separation unit 240 includes a container 204 and an inner cylinder 247 accommodated in the container 204. The container 204 has a peripheral wall 249. The peripheral wall 249 and the inner cylinder 247 each have a substantially rectangular shape. Although not shown in FIG. 4, the container 204 has a ceiling surface and a bottom surface. Each of the ceiling surface and the bottom surface of the container 204 has a substantially rectangular shape. The peripheral wall 249 extends in the vertical direction between the ceiling surface and the bottom surface.
 仕切部材の一例としての内筒247は、容器204の内部において容器204の幅方向の一端側に配置されている。内筒247は、容器204の内部の左側に配置されている。内筒247は、略筒形状を持つ仕切周壁247bを有している。仕切周壁247bの断面は、略長方形状を有している。仕切周壁247bは、容器204の底面から上方に向かって延びている。容器204の天井面に面する仕切周壁247bの上端面(図示せず)は、天井面よりも下方に配置されている。 The inner cylinder 247 as an example of a partition member is disposed on one end side in the width direction of the container 204 inside the container 204. The inner cylinder 247 is disposed on the left side inside the container 204. The inner cylinder 247 has a partition peripheral wall 247b having a substantially cylindrical shape. The cross section of the partition peripheral wall 247b has a substantially rectangular shape. The partition peripheral wall 247 b extends upward from the bottom surface of the container 204. An upper end surface (not shown) of the partition peripheral wall 247b facing the ceiling surface of the container 204 is disposed below the ceiling surface.
 内筒247は、導入室41と導出室42とに容器204の内部を区画する。導入室41は、容器204の左側において、仕切周壁247bに囲まれた空間を含む。導出室42は、容器204の周壁249の内面249saと仕切周壁247bの外面とに囲まれた空間を含む。導入室41と導出室42とは、容器204の天井面付近の空間の一部、つまり、仕切周壁247bの上端面と天井面とに挟まれた空間によって互いに接続されている。 The inner cylinder 247 partitions the inside of the container 204 into an introduction chamber 41 and an outlet chamber 42. The introduction chamber 41 includes a space surrounded by the partition peripheral wall 247 b on the left side of the container 204. The lead-out chamber 42 includes a space surrounded by the inner surface 249sa of the peripheral wall 249 of the container 204 and the outer surface of the partition peripheral wall 247b. The introduction chamber 41 and the lead-out chamber 42 are connected to each other by a part of the space near the ceiling surface of the container 204, that is, a space sandwiched between the upper end surface of the partition peripheral wall 247b and the ceiling surface.
 オゾン水の流入口241とオゾン水の流出口242とは、周壁249に形成されている。第1の開口の一例としての流入口241と、第2の開口の一例としての流出口242とは、内筒247の上端面よりも下方に配置されている。流入口241は、容器204の外部と導入室41とを連通させる。上下方向に沿った流入口241の下端の位置は、容器204の底面の位置と略一致している。一方、導出室42と容器204の外部とは、流出口242を介して互いに連通する。上下方向に沿った流出口242の下端の位置は、容器204の底面の位置と略一致している。 The ozone water inlet 241 and the ozone water outlet 242 are formed on the peripheral wall 249. An inflow port 241 as an example of the first opening and an outflow port 242 as an example of the second opening are disposed below the upper end surface of the inner cylinder 247. The inflow port 241 allows the outside of the container 204 to communicate with the introduction chamber 41. The position of the lower end of the inflow port 241 along the vertical direction substantially coincides with the position of the bottom surface of the container 204. On the other hand, the outlet chamber 42 and the outside of the container 204 communicate with each other via the outflow port 242. The position of the lower end of the outflow port 242 along the vertical direction substantially matches the position of the bottom surface of the container 204.
 なお、気液分離部240において、第3の開口としての気体の流出口(図示せず)は、第1実施形態に係るオゾン水生成装置100の気液分離部140(図2参照)と同様に、容器204の上壁に形成されている。 In the gas-liquid separator 240, the gas outlet (not shown) as the third opening is the same as the gas-liquid separator 140 (see FIG. 2) of the ozone water generator 100 according to the first embodiment. In addition, it is formed on the upper wall of the container 204.
 容器204の左側の周壁249にはノズル23pが取り付けられている。ノズル23pは、後述する導入口247aに挿入されている。容器204の右側の周壁249にはノズル24pが取り付けられている。ノズル23pと、ノズル24pは、互いに略平行な方向であって、容器204の幅方向に延びている。 The nozzle 23p is attached to the left peripheral wall 249 of the container 204. The nozzle 23p is inserted into an introduction port 247a described later. A nozzle 24 p is attached to the right peripheral wall 249 of the container 204. The nozzle 23p and the nozzle 24p extend in the width direction of the container 204 in directions substantially parallel to each other.
 ノズル24pは、流出口242に挿入されている。ノズル23pの内部とノズル24pの内部とは、液体流路121の一部を形成している。なお、ノズル23pとノズル24pのいずれかまたは両方は、容器204と一体成型されていてもよい。 The nozzle 24p is inserted into the outlet 242. The inside of the nozzle 23p and the inside of the nozzle 24p form a part of the liquid channel 121. One or both of the nozzle 23p and the nozzle 24p may be integrally formed with the container 204.
 流入口241と流出口242とは、容器204の幅方向に沿って互いに対向するように周壁249に形成されている。仕切周壁247bの一端側の外面が容器204の一端側の周壁249に固定されることにより、内筒247は、容器204に接触している。容器204の平面視において、仕切周壁247bの一端側の外面から他端側の外面までの水平方向に沿った仕切周壁247bの寸法Lは、仕切周壁247bの他端側の外面から容器204の他端側の周壁249の内面249saまでの水平方向に沿った距離Lよりも小さい。このように、容器204の平面視において、内筒247は、流出口242よりも流入口241の近くに配置されている。 The inflow port 241 and the outflow port 242 are formed on the peripheral wall 249 so as to face each other along the width direction of the container 204. The outer surface on one end side of the partition peripheral wall 247 b is fixed to the peripheral wall 249 on one end side of the container 204, so that the inner cylinder 247 is in contact with the container 204. In a plan view of the container 204, the partition wall 247b dimension L 3 of along the horizontal direction from the outer surface of one end side of the partition wall 247b to the outer surface of the other end, the container 204 from the outer surface of the other end side of the partition wall 247b smaller than the distance L 4 along the horizontal direction to the inner surface 249sa the other end of the peripheral wall 249. Thus, the inner cylinder 247 is disposed closer to the inlet 241 than the outlet 242 in the plan view of the container 204.
 容器204の平面視において、仕切周壁247bの一端側には、導入口247aが形成されている。仕切周壁247bの一端側の外面は、容器204の一端側の周壁249の外面249sbと連続している。導入口247aが流入口241に含まれていることにより、導入口247aと流入口241とは互いに面している。導入口247aの口径と、導入口247aに挿入された部分のノズル23pの口径とは、略同一である。ノズル23pは、導入口247aに挿入された部分のノズル23pの端面が、導入口247aを囲む仕切周壁247bの内面と連続するように、内筒247に取り付けられている。 In the plan view of the container 204, an inlet 247a is formed on one end side of the partition peripheral wall 247b. The outer surface on one end side of the partition peripheral wall 247 b is continuous with the outer surface 249 sb of the peripheral wall 249 on one end side of the container 204. Since the introduction port 247a is included in the inflow port 241, the introduction port 247a and the inflow port 241 face each other. The diameter of the introduction port 247a and the diameter of the nozzle 23p in the portion inserted into the introduction port 247a are substantially the same. The nozzle 23p is attached to the inner cylinder 247 so that the end surface of the nozzle 23p in the portion inserted into the introduction port 247a is continuous with the inner surface of the partition peripheral wall 247b surrounding the introduction port 247a.
 図4には図示されていないが、気液分離部240において、気液分離部140(図2参照)と同様に、導出室42の上方には、気体を貯留する空間が形成されている。また、気液分離部140と同様に、気液分離部240は、導出室42のオゾン水の水位に連動することによって気体の流出口を開閉する気体流通制限部を備えている。 Although not shown in FIG. 4, in the gas-liquid separator 240, a space for storing gas is formed above the outlet chamber 42, similarly to the gas-liquid separator 140 (see FIG. 2). Similarly to the gas-liquid separation unit 140, the gas-liquid separation unit 240 includes a gas flow restriction unit that opens and closes the gas outlet by interlocking with the ozone water level in the outlet chamber 42.
 以上のように構成された気液分離部240は、第1実施形態に係るオゾン水生成装置100の気液分離部140と同様の作用効果を得ることができる。また、気液分離部240を備えたオゾン水生成装置は、第1実施形態に係るオゾン水生成装置100と同様の作用効果を得ることができる。 The gas-liquid separator 240 configured as described above can obtain the same functions and effects as those of the gas-liquid separator 140 of the ozone water generator 100 according to the first embodiment. Moreover, the ozone water generating apparatus provided with the gas-liquid separation part 240 can obtain the same effect as the ozone water generating apparatus 100 according to the first embodiment.
 なお、気液分離部240において、溶液の流入口241と気体の流出口とは、容器204の平面視において、周壁249の水平断面が形成する略長方形の対角線上に配置されていてもよい。 In the gas-liquid separation unit 240, the solution inflow port 241 and the gas outflow port may be arranged on a substantially rectangular diagonal line formed by the horizontal cross section of the peripheral wall 249 in a plan view of the container 204.
 第1実施形態に係るオゾン水生成装置100と第2実施形態に係るオゾン水生成装置とのうち、例えばオゾン水生成装置100は、衛生器具用洗浄装置に用いることができる。衛生器具には、例えば、便所、洗面所、または、浴室に用いられた大小便器、手洗い器、洗面器、または、浴槽等が含まれる。つまり、オゾン水生成装置100を備えた衛生器具用洗浄装置は、例えば、便所、洗面所、もしくは、浴室に用いられる器具、または、便所、洗面所、もしくは、浴室を洗浄するための装置である。 Among the ozone water generating apparatus 100 according to the first embodiment and the ozone water generating apparatus according to the second embodiment, for example, the ozone water generating apparatus 100 can be used for a sanitary appliance cleaning apparatus. Sanitary ware includes, for example, toilets, toilets, large and small urinals used in bathrooms, hand-washers, wash-basins, bathtubs, and the like. That is, the sanitary appliance cleaning device provided with the ozone water generating device 100 is, for example, a device used for a toilet, a toilet, or a bathroom, or a device for cleaning a toilet, a toilet, or a bathroom. .
 例えば、図5に示すように、小便器901,902,903を洗浄するための衛生器具用洗浄装置950が便所900に設置されている。便所900は、衛生器具設備の一例である。衛生器具用洗浄装置950は、小便器901,902,903を含む便器に水を供給するための配管910に接続されている。衛生器具用洗浄装置950は、オゾン水生成装置100を備えている。配管910を流通する水が衛生器具用洗浄装置950を通過するときに水にオゾンが溶解されることにより、オゾン水が生成される。衛生器具用洗浄装置950を通過した後に配管910を流通するオゾン水は、小便器901,902,903を含む便器に供給される。 For example, as shown in FIG. 5, a sanitary appliance cleaning device 950 for cleaning the urinals 901, 902, and 903 is installed in the toilet 900. The toilet 900 is an example of a sanitary equipment facility. The sanitary appliance cleaning device 950 is connected to a pipe 910 for supplying water to the toilet including the urinals 901, 902, and 903. The sanitary appliance cleaning device 950 includes an ozone water generator 100. When water flowing through the pipe 910 passes through the sanitary appliance cleaning device 950, ozone is dissolved in the water, thereby generating ozone water. The ozone water flowing through the pipe 910 after passing through the sanitary appliance cleaning device 950 is supplied to a toilet including the urinals 901, 902, and 903.
 また例えば、図6に示すように、小便器920は、衛生陶器921を洗浄するための衛生器具用洗浄装置922を備えている。小便器920は、衛生器具の一例である。衛生器具用洗浄装置922は、小便器920の上部に配置されている。衛生器具用洗浄装置922は、オゾン水生成装置100を備えている。 For example, as shown in FIG. 6, the urinal 920 includes a sanitary appliance cleaning device 922 for cleaning the sanitary ware 921. The urinal 920 is an example of a sanitary instrument. The sanitary appliance cleaning device 922 is disposed above the urinal 920. The sanitary appliance cleaning device 922 includes an ozone water generator 100.
 さらに例えば、図7に示すように、大便器940は、洗浄便座930を備えている。洗浄便座930は、オゾン水生成装置100を備えた洗浄ユニット934と、便座カバー933と、便座932とを有する。洗浄ユニット934は、衛生陶器931を洗浄するための衛生器具用洗浄装置の一例である。大便器940は、衛生器具の一例である。 Further, for example, as shown in FIG. 7, the toilet 940 includes a cleaning toilet seat 930. The cleaning toilet seat 930 includes a cleaning unit 934 provided with the ozone water generating device 100, a toilet seat cover 933, and a toilet seat 932. The cleaning unit 934 is an example of a sanitary appliance cleaning device for cleaning the sanitary ware 931. The toilet 940 is an example of a sanitary instrument.
 オゾン水生成装置100を備えた衛生器具用洗浄装置は、排気弁を備えていなくても、オゾンが溶解した溶液を流出口142(図2参照)から排出させるまでに、未溶解気体を溶液から効率よく分離させることができ、且つ、オゾンの溶解率が比較的高い溶液を供給することができる。 The sanitary appliance cleaning device provided with the ozone water generating device 100 removes the undissolved gas from the solution before the solution in which ozone is dissolved is discharged from the outlet 142 (see FIG. 2), even if the exhaust valve is not provided. A solution that can be separated efficiently and has a relatively high ozone dissolution rate can be supplied.
 以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものである。 It should be considered that the embodiments disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments but by the scope of claims, and includes all modifications and variations within the meaning and scope equivalent to the scope of claims.
 41:導入室、42:導出室、43:空間、70:気体流通制限部、100:オゾン水生成装置、104:容器、120:オゾン発生器、140:気液分離部、141:流入口、142:流出口、143:流出口、145:底面、146:天井面、147:内筒、147a:導入口、147b:仕切周壁、149:周壁、149sa:内面 41: introduction chamber, 42: outlet chamber, 43: space, 70: gas flow restriction unit, 100: ozone water generator, 104: container, 120: ozone generator, 140: gas-liquid separator, 141: inlet 142: Outlet, 143: Outlet, 145: Bottom, 146: Ceiling, 147: Inner cylinder, 147a: Inlet, 147b: Partition peripheral wall, 149: Peripheral wall, 149sa: Inner surface

Claims (6)

  1.  天井面と、底面と、前記天井面と前記底面との間を上下方向に延びる周壁とを有する容器と、
     前記容器の内部において前記底面から上方に向かって延び、且つ、前記容器の外部から内部に導入された液体が流通するための導入室と、前記容器の内部から外部に導出される液体が流通するための導出室とに前記容器の内部を区画する仕切部材とを備え、
     前記導入室の容積は、前記導出室の容積よりも小さく、
     前記周壁には、前記容器の外部と前記導入室とを連通させる第1の開口と、前記容器の外部と前記導出室とを連通させる第2の開口とが形成され、
     前記容器には、前記第1の開口および前記第2の開口よりも上方に配置され、且つ、前記導出室と前記容器の外部とを連通させる第3の開口が形成され、
     前記容器の内部には、前記導出室の上方に配置され、且つ、気体を貯留する空間が形成されている、気液分離器。
    A container having a ceiling surface, a bottom surface, and a peripheral wall extending vertically between the ceiling surface and the bottom surface;
    Inside the container, it extends upward from the bottom surface, and an introduction chamber for the liquid introduced into the inside from the outside of the container, and the liquid led out from the inside of the container circulates. A partition member for partitioning the inside of the container in the outlet chamber for
    The volume of the introduction chamber is smaller than the volume of the outlet chamber,
    The peripheral wall is formed with a first opening for communicating the outside of the container and the introduction chamber, and a second opening for communicating the exterior of the container and the outlet chamber,
    The container is provided with a third opening that is disposed above the first opening and the second opening and that communicates the lead-out chamber and the outside of the container.
    A gas-liquid separator, wherein a space for storing gas is formed inside the container and disposed above the outlet chamber.
  2.  前記容器の平面視において、前記第1の開口と前記第2の開口とは、互いに対向し、
     前記仕切部材は、筒形状を持つ仕切周壁を有し、
     前記容器の平面視において、前記仕切周壁の一端側には、前記第1の開口に面する導入口が形成され、
     前記容器の平面視において、前記仕切部材は、前記第2の開口よりも前記第1の開口の近くに配置されている、請求項1に記載の気液分離器。
    In the plan view of the container, the first opening and the second opening face each other,
    The partition member has a partition peripheral wall having a cylindrical shape,
    In a plan view of the container, an introduction port facing the first opening is formed on one end side of the partition peripheral wall,
    The gas-liquid separator according to claim 1, wherein the partition member is disposed closer to the first opening than the second opening in a plan view of the container.
  3.  前記仕切周壁の前記一端側が前記容器の一端側の前記周壁に固定され、
     前記容器の平面視において、前記仕切周壁の前記一端側の外面から他端側の外面までの水平方向に沿った前記仕切周壁の寸法は、前記仕切周壁の前記他端側の外面から前記容器の他端側の前記周壁の内面までの水平方向に沿った距離よりも小さい、
    請求項2に記載の気液分離器。
    The one end side of the partition peripheral wall is fixed to the peripheral wall on one end side of the container,
    In plan view of the container, the dimension of the partition peripheral wall along the horizontal direction from the outer surface on the one end side to the outer surface on the other end side of the partition peripheral wall is determined from the outer surface on the other end side of the partition peripheral wall. Less than the distance along the horizontal direction to the inner surface of the peripheral wall on the other end side,
    The gas-liquid separator according to claim 2.
  4.  前記導出室に溜められた液体の液位を所定の液位の範囲に維持するための液位調整部をさらに備えた、請求項1から請求項3までのいずれか1項に記載の気液分離器。 The gas-liquid according to any one of claims 1 to 3, further comprising a liquid level adjusting unit for maintaining a liquid level of the liquid stored in the outlet chamber within a predetermined liquid level range. Separator.
  5.  請求項1から請求項4までのいずれか1項に記載の気液分離器と、
     オゾンを発生させるオゾン発生器と、
     前記容器に供給される液体に、前記オゾン発生器が発生させたオゾンを混合させる気液混合器とを備えた、オゾン水生成装置。
    The gas-liquid separator according to any one of claims 1 to 4,
    An ozone generator for generating ozone;
    An ozone water generator comprising: a gas-liquid mixer that mixes ozone generated by the ozone generator with liquid supplied to the container.
  6.  請求項5に記載のオゾン水生成装置を備えた、衛生器具用洗浄装置。 A cleaning device for sanitary ware, comprising the ozone water generating device according to claim 5.
PCT/JP2012/080851 2011-12-14 2012-11-29 Gas-liquid separator, ozone water device provided with same, and washing apparatus for sanitary fitting provided with same WO2013088961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011273451A JP2013123674A (en) 2011-12-14 2011-12-14 Gas-liquid separator, ozone water generator with the same, and washing apparatus for sanitary fitting with the same
JP2011-273451 2011-12-14

Publications (1)

Publication Number Publication Date
WO2013088961A1 true WO2013088961A1 (en) 2013-06-20

Family

ID=48612416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080851 WO2013088961A1 (en) 2011-12-14 2012-11-29 Gas-liquid separator, ozone water device provided with same, and washing apparatus for sanitary fitting provided with same

Country Status (2)

Country Link
JP (1) JP2013123674A (en)
WO (1) WO2013088961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121168A (en) * 1999-08-18 2001-05-08 Yaskawa Electric Corp Water treating apparatus
JP2002028635A (en) * 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water producer
JP2002052301A (en) * 2000-08-10 2002-02-19 Max Co Ltd Ozone water producer
JP2004092278A (en) * 2002-09-03 2004-03-25 Toto Ltd Flush toilet bowl

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834133A (en) * 1972-12-22 1974-09-10 Foster Wheeler Corp Direct contact condenser having an air removal system
JP2002307053A (en) * 2001-04-12 2002-10-22 Daikin Ind Ltd Ozone water producing apparatus, and gas-liquid separator thereof
JP2003047951A (en) * 2001-08-01 2003-02-18 Daikin Ind Ltd Gas-liquid separation apparatus and ozone water generation apparatus
JP2009240987A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Gas-liquid separator of fine air bubble supply device
JP2009240986A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Gas-liquid separator of fine bubble supplying apparatus
JP2009240988A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Gas-liquid separator of fine air bubble supply device
CN101288813A (en) * 2008-04-28 2008-10-22 徐名勇 Gas-water separation device of ozone water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121168A (en) * 1999-08-18 2001-05-08 Yaskawa Electric Corp Water treating apparatus
JP2002028635A (en) * 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water producer
JP2002052301A (en) * 2000-08-10 2002-02-19 Max Co Ltd Ozone water producer
JP2004092278A (en) * 2002-09-03 2004-03-25 Toto Ltd Flush toilet bowl

Also Published As

Publication number Publication date
JP2013123674A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
WO2014027510A1 (en) Toilet flush tank
JP2010155192A (en) Gas-liquid separator and gas dissolving vessel equipped therewith
JP2009240988A (en) Gas-liquid separator of fine air bubble supply device
JP2011025223A (en) Gas-liquid separator and gas-liquid separation method
JP2011521780A (en) Fluid processing apparatus and fluid processing method
KR100755747B1 (en) Foam type toilet
WO2013088961A1 (en) Gas-liquid separator, ozone water device provided with same, and washing apparatus for sanitary fitting provided with same
JP4925889B2 (en) Western style flush toilet
JP5959860B2 (en) Gas-liquid separator, dissolution liquid generating apparatus including the same, and sanitary instrument cleaning apparatus including the same
JP2013123675A (en) Solution generator and cleaning apparatus for sanitary fixture equipped with the same
KR101781727B1 (en) Control system of generatimg apparatus for micro-bubble
JP2009255039A (en) Gas dissolving vessel
JP2019013882A (en) Gas separator
WO2013001926A1 (en) Ozone liquid generator, method for generating ozone liquid, and toilet
JP2009240987A (en) Gas-liquid separator of fine air bubble supply device
JP2013091051A (en) Gas-liquid separator, ozone water generator with the same and cleaning device for sanitary fixture with the same
JP2015100428A (en) Washing machine
JP2015182001A (en) Solution generating apparatus, and washing device for sanitary tool including the same
JP2003047951A (en) Gas-liquid separation apparatus and ozone water generation apparatus
JP2011206691A (en) Functional water spraying device
JP2014083509A (en) Gas-liquid separator, solution production device with the same and washing device for sanitary equipment with the solution production device
JP2013123650A (en) Ozone water generator and cleaning apparatus for sanitary fixture equipped with the same
JPH11216481A (en) Ozone water generating device
KR200351198Y1 (en) A bidet installed bubble generator with water line
JP6842654B2 (en) Water equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856677

Country of ref document: EP

Kind code of ref document: A1