WO2013088894A1 - Method for molding float glass sheet and device for molding float glass sheet - Google Patents

Method for molding float glass sheet and device for molding float glass sheet Download PDF

Info

Publication number
WO2013088894A1
WO2013088894A1 PCT/JP2012/079407 JP2012079407W WO2013088894A1 WO 2013088894 A1 WO2013088894 A1 WO 2013088894A1 JP 2012079407 W JP2012079407 W JP 2012079407W WO 2013088894 A1 WO2013088894 A1 WO 2013088894A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat generating
generating portion
refrigerant pipe
molten metal
molten
Prior art date
Application number
PCT/JP2012/079407
Other languages
French (fr)
Japanese (ja)
Inventor
正信 白井
近藤 晃
誠也 野仲
大樹 秋江
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147013846A priority Critical patent/KR20140107210A/en
Priority to CN201280061967.XA priority patent/CN103998384A/en
Publication of WO2013088894A1 publication Critical patent/WO2013088894A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • C03B18/22Controlling or regulating the temperature of the atmosphere above the float tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for forming a float glass plate and a device for forming a float glass plate.
  • the method for forming a float glass plate is to form a strip by flowing molten glass continuously supplied onto molten metal (for example, molten tin) in a bathtub on the molten metal.
  • molten metal for example, molten tin
  • the molten glass gradually decreases in temperature while flowing in a predetermined direction on the molten metal, and becomes a temperature at which the molten glass can be pulled up from the molten metal.
  • the glass pulled up from the molten metal is gradually cooled in a slow cooling furnace and then cut into a predetermined size and shape to obtain a product float glass plate.
  • Patent Document 1 A technique for supplying hydrogen gas into molten tin has been proposed (for example, see Patent Document 1).
  • a supply pipe supplying hydrogen gas is submerged in the molten tin.
  • the supply pipe is composed of a double pipe, and the refrigerant flows in the annular space between the outer cylinder and the inner cylinder constituting the double pipe, and the hydrogen gas flows in the inner space of the inner cylinder. .
  • the amount of molten glass supplied into the bathtub increases. For this reason, since the temperature becomes higher at the most upstream part of the molten metal, the saturated concentration of the dissolved gas component becomes higher, and the actual concentration of the dissolved gas component becomes higher. Accordingly, the gas is supersaturated in the process of gradually decreasing the temperature while the molten metal flows together with the molten glass, and bubbles are generated in the molten metal. When the bubbles rise to the lower surface of the molten glass, a concave defect is formed on the bottom surface of the float glass plate.
  • This invention was made in view of the said subject, Comprising: It aims at provision of the shaping
  • a method for forming a float glass sheet according to an aspect of the present invention includes: In the method for forming a float glass plate in which molten glass continuously supplied onto the molten metal in the bathtub is flowed on the molten metal and formed into a strip shape, The most upstream part of the molten metal is cooled by a first refrigerant pipe disposed outside the molten metal, The first refrigerant pipe is disposed at a position that does not overlap the molten glass in a top view.
  • the first refrigerant pipe is placed on a side wall of the bathtub.
  • the refrigerant flowing in the first refrigerant pipe is water.
  • a plurality of heat generating portions for heating the molten glass is provided above the molten metal, and the plurality of heat generating portions are divided into a plurality of heat generating portion groups, and output control is performed.
  • the heat generating part group forms a heat generating part array side by side in the width direction of the molten glass, and a plurality of the heat generating part arrays are aligned in the flow direction of the molten glass, and each of the heat generating part arrays included in the most upstream heat generating part array
  • the output of the heat generating part is set smaller when the second refrigerant pipe for cooling the molten glass is arranged between the uppermost heat generating part row and the molten glass compared to the case where the second refrigerant pipe is not arranged. It is preferable.
  • the second exothermic part row from the upstream side is composed of three or more exothermic part groups, and among the three or more exothermic part groups, in each exothermic part group other than the exothermic part group, The output of the heat generating part is set smaller when the second refrigerant pipe is arranged than when the second refrigerant pipe is not arranged.
  • the second heat generating part from the upstream side is set.
  • the output of each heat generating part included in the heat generating part group at both ends is set larger than the output of each heat generating part included in the heat generating part group other than the heat generating part group at both ends.
  • a float glass sheet molding apparatus includes: In a forming apparatus for a float glass plate, comprising a bathtub containing molten metal, and flowing molten glass continuously supplied onto the molten metal in the bathtub to form a belt plate shape on the molten metal, A first refrigerant pipe that is disposed outside the molten metal and cools the most upstream part of the molten metal; The first refrigerant pipe is disposed at a position that does not overlap the molten glass in a top view.
  • the first refrigerant pipe is placed on a side wall of the bathtub.
  • the refrigerant flowing in the first refrigerant pipe is water.
  • a plurality of heat generating portions for heating the molten glass are provided above the molten metal, and the plurality of heat generating portions are divided into a plurality of heat generating portion groups, and output control is performed.
  • the heat generating part group forms a heat generating part array side by side in the width direction of the molten glass, and a plurality of the heat generating part arrays are aligned in the flow direction of the molten glass, and each of the heat generating part arrays included in the most upstream heat generating part array
  • the output of the heat generating part is preferably set smaller than when not arranged.
  • the second exothermic part row from the upstream side is composed of three or more exothermic part groups, and among the three or more exothermic part groups, in each exothermic part group other than the exothermic part group, The output of the heat generating part is set smaller when the second refrigerant pipe is arranged than when the second refrigerant pipe is not arranged.
  • the second heat generating part from the upstream side is set.
  • the output of each heat generating part included in the heat generating part group at both ends is set larger than the output of each heat generating part included in the heat generating part group other than the heat generating part group at both ends.
  • a float glass plate forming method and a float glass plate forming apparatus capable of reducing defects on the bottom surface.
  • FIG. 1 is a cross-sectional view taken along the line II of FIG. 2 showing a float glass sheet forming apparatus according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a top view showing a positional relationship among the heat generating unit group, the first and second cooling pipes, and the top roll.
  • FIG. 1 is a cross-sectional view taken along the line II of FIG. 2 showing a float glass sheet forming apparatus according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • the forming apparatus 10 includes a bathtub 22 that accommodates a molten metal (for example, molten tin) M.
  • a molten metal for example, molten tin
  • the float bath 20 is composed of a bathtub 22, an annular upper side wall 24 installed along the outer peripheral upper edge of the bathtub 22, a ceiling 26 connected to the upper side wall 24 and covering the upper side of the bathtub 22.
  • a gas supply path 30 for supplying a reducing gas to a space 28 in the float bath 20 is provided on the ceiling 26, a gas supply path 30 for supplying a reducing gas to a space 28 in the float bath 20 is provided.
  • a heater 32 is inserted into the gas supply path 30, and a heat generating portion 32 a of the heater 32 is disposed in the space 28 in the float bath 20.
  • the gas supply path 30 supplies a reducing gas to the space 28 in the float bath 20 in order to prevent the molten metal M from being oxidized.
  • the reducing gas contains, for example, 85 to 99% by volume of nitrogen gas and 1 to 15% by volume of hydrogen gas.
  • the space 28 in the float bath 20 is set to a pressure higher than the atmospheric pressure in order to prevent air from being mixed in through a gap between bricks constituting the upper side wall 24.
  • the plurality of heaters 32 heat the molten glass G passing below under the control of the control device 34.
  • the molten glass G gradually decreases in temperature while flowing in a predetermined direction on the molten metal M, and reaches a temperature at which the molten glass G can be pulled up from the molten metal M.
  • the molding apparatus 10 further includes a top roll 40 that supports the molten glass G in order to suppress the molten glass G from shrinking in the width direction on the molten metal M.
  • a plurality of pairs (only one pair is shown in FIG. 2) of the top roll 40 are arranged on both sides of the molten glass G in the width direction, and tension is applied to the molten glass G in the width direction.
  • the top roll 40 has a rotating member 41 in contact with the molten glass G at the tip.
  • the rotating member 41 bites into the upper surface of the molten glass G and supports the end in the width direction of the molten glass G so that the molten glass G does not shrink in the width direction.
  • the rotating member 41 rotates, the molten glass G is sent out in a predetermined direction.
  • the forming apparatus 10 includes a first refrigerant pipe 50 that cools the most upstream part of the molten metal M and a second refrigerant pipe 60 that cools the most upstream part of the molten glass G.
  • the first and second refrigerant tubes 50, 60 are used when the amount of molten glass G supplied into the bathtub 22 is large and the amount of heat that the molten glass G brings into the bathtub 22 is large.
  • the first and second refrigerant pipes 50, 60 it is possible to limit the temperature rise of the most upstream part of the molten metal M and the temperature of the most upstream part of the molten glass G.
  • the first refrigerant pipe 50 exchanges heat with the most upstream part of the molten metal M to cool the most upstream part of the molten metal M.
  • the first refrigerant pipe 50 is disposed outside the molten metal M in order to prevent erosion by the molten metal M.
  • 1st refrigerant pipe 50 is arranged in the position which does not overlap with molten glass G in the top view. That is, the first refrigerant pipe 50 is disposed on the side of the molten glass G in a top view. Therefore, the most upstream part of the molten metal M can be selectively cooled. Since the temperature is lowered at the most upstream part of the molten metal M, the saturated concentration of dissolved gas components (oxygen, hydrogen, water, etc.) is lowered, and the actual concentration of dissolved gas components is lowered. Therefore, it is possible to suppress the supersaturated precipitation of the gas in the process of the molten metal M flowing together with the molten glass G and becoming a low temperature. As a result, since the amount of bubbles contained in the molten metal M can be reduced, the depression of the bottom surface of the float glass plate can be reduced.
  • the saturated concentration of dissolved gas components oxygen, hydrogen, water, etc.
  • the first refrigerant pipe 50 is placed on the side wall portion 23 of the bathtub 22, and for example, as shown in FIG.
  • a plurality of first refrigerant tubes 50 may be stacked on the side wall portion 23 for the purpose of increasing the cooling efficiency.
  • tube 50 since the 1st refrigerant
  • tube 50 may be provided away from the side wall part 23, and the 1st refrigerant
  • the first refrigerant pipe 50 is composed of an outgoing pipe 51 and a return pipe 52.
  • the forward path pipe 51 and the return path pipe 52 penetrate the upper side wall 24, extend along the side wall portion 23 of the bathtub 22, and are connected at the tip.
  • the refrigerant flowing through the first refrigerant pipe 50 passes through the forward pipe 51, passes through the return pipe 52, and is discharged to the outside of the float bath 20.
  • the refrigerant discharged to the outside may be cooled by a cooler and returned to the first refrigerant pipe 50 again.
  • the forward pipe 51 may be disposed closer to the molten metal M than the backward pipe 52.
  • a liquid such as water or a gas such as air is used.
  • water having a large specific heat and excellent heat transfer efficiency is preferable. Water is also excellent in terms of cost.
  • the second refrigerant pipe 60 cools the most upstream part of the molten glass G.
  • the second refrigerant pipe 60 is provided above the molten glass G and is disposed between the molten glass G and the heater 32.
  • the second refrigerant pipe 60 is disposed away from the side wall portion 23 of the bathtub 22 so as not to cool the molten metal M as much as possible.
  • the temperature of the molten metal M and the temperature of the molten glass G can be adjusted independently.
  • the second refrigerant pipe 60 absorbs heat radiated from the molten glass G. The absorbed heat is conveyed to the outside by the refrigerant flowing through the second refrigerant pipe 60.
  • the second refrigerant pipe 60 is arranged in parallel with the width direction of the molten glass G.
  • the pair of second refrigerant tubes 60 penetrates the pair of opposing walls 24 a and 24 b constituting the upper side wall 24, and the ends thereof face each other above the center portion in the width direction of the molten glass G. Therefore, the molten glass G can be cooled over substantially the entire width direction.
  • the length of the 2nd refrigerant pipe 60 is short compared with the width
  • the second refrigerant pipe 60 is composed of a forward pipe and a backward pipe (not shown), like the first refrigerant pipe 50.
  • the forward pipe and the backward pipe penetrate the upper side wall 24, are arranged in parallel with the width direction of the molten glass G, and are connected at the tip.
  • the refrigerant flowing through the second refrigerant pipe 60 passes through the outward pipe, passes through the return pipe, and is discharged to the outside of the float bath 20.
  • the refrigerant discharged to the outside may be cooled by a cooler and returned to the second refrigerant pipe 60 again.
  • the refrigerant flowing through the second refrigerant pipe 60 a liquid such as water or a gas such as air is used.
  • the refrigerant flowing through the second refrigerant pipe 60 and the refrigerant flowing through the first refrigerant pipe 50 are preferably supplied from the same refrigerant supply source.
  • the forming apparatus 10 forms a strip plate by causing the molten glass G continuously supplied onto the molten metal M to flow on the molten metal M.
  • the molten glass G is supported by the top roll 40 so as not to shrink in the width direction.
  • the molten glass G gradually decreases in temperature while flowing in a predetermined direction, and reaches a temperature at which it can be pulled up from the molten metal M.
  • the temperature in the float bath 20 is adjusted by the plurality of heaters 32 and the first and second refrigerant tubes 50 and 60.
  • the molten glass G is pulled up from the molten metal M by a lift-out roll, and is gradually cooled in a slow cooling furnace to become a sheet glass.
  • the plate-like glass is carried out of the slow cooling furnace, it is cut into a predetermined size and shape by a cutting machine to become a product float glass plate.
  • the float glass plate may be a glass substrate for a display such as a liquid crystal display (LCD), a plasma display (PDP), or an organic EL display.
  • a float glass plate may be a window glass for vehicles, a window glass for buildings, etc., and is not specifically limited.
  • the type of glass on the float glass plate is selected according to the application.
  • a glass substrate for LCD alkali-free glass is used.
  • aluminosilicate glass is used in the case of a glass substrate for PDP.
  • FIG. 3 is a top view showing a positional relationship among the heat generating portion group, the first and second cooling pipes, and the top roll.
  • L indicates a dividing line that divides the plurality of heat generating portions 32a into a plurality of heat generating portion groups 111 to 115, 121 to 125.
  • the output control of the plurality of heat generating portions 32a may be performed one by one, it is preferable that the output control is performed separately for the plurality of heat generating portion groups 111 to 115 and 121 to 125 in order to facilitate output control.
  • the plurality of heat generating unit groups 111 to 115 and 121 to 125 may be arranged symmetrically about the center line in the width direction of the molten glass G.
  • the heat generating portion groups 111 to 115 form a heat generating portion row 110 that is aligned in the width direction of the molten glass G.
  • the heat generating portion groups 121 to 125 form a heat generating portion row 120 aligned in the width direction of the molten glass G.
  • a plurality of heat generating portion rows 110 to 120 are arranged in the flow direction of the molten glass G.
  • the number of the heating part rows 110 and 120 is, for example, 4 to 15 (only two are shown in FIG. 3).
  • the number of heat generating unit groups included in each of the heat generating unit rows 110 and 120 is, for example, 4 to 15.
  • the number of heating unit groups included in each heating unit row 110, 120 may be different for each heating unit row 110, 120, or may be the same.
  • Each of the heat generating unit groups 111 to 115 and 121 to 125 includes a plurality of heat generating units 32a, and the same power is supplied to the plurality of heat generating units 32a constituting one heat generating unit group (for example, the heat generating unit group 111). .
  • the power supplied to each heat generating part 32a is set for each heat generating part group 111-115, 121-125.
  • the plurality of heat generating portions 32a are output-controlled by being divided into a plurality of heat generating portion groups 111 to 115 and 121 to 125. Output control of the plurality of heat generating units 32 a is performed by the control device 34.
  • the control device 34 is composed of, for example, a microcomputer including a CPU, ROM, RAM, and the like.
  • the control device 34 controls the output of the plurality of heat generating units 32a by causing the CPU to execute a program recorded in a ROM or the like.
  • each heat generating part 32a included in the most upstream heat generating part row 110 is obtained when the second refrigerant pipe 60 for cooling the molten glass G is disposed between the most upstream heat generating part array 110 and the molten glass G (FIG. 1 and FIG. 3), it is set smaller than the case where the second refrigerant pipe 60 is not disposed, for example, 0 (W). Therefore, the cooling by the second refrigerant pipe 60 can be performed efficiently.
  • the second exothermic part row 120 from the upstream side is composed of three or more (in this embodiment, five) exothermic part groups 121-125.
  • the output of each heat generating part 32a is when the second refrigerant pipe 60 is disposed ( 1 and FIG. 3), it is set smaller than the case where the second refrigerant pipe 60 is not disposed, and is set to 0 (W), for example. Therefore, cooling by the second refrigerant pipe 60 can be performed more efficiently.
  • the outputs of the heat generating portions 32a included in the heat generating portion groups 121 and 125 at both ends are as follows.
  • the output is set to be larger than the output of each heat generating part 32a included in the heat generating part groups 122 to 124 other than the heat generating part groups 121 and 125 at both ends.
  • the second refrigerant pipe 60 when the second refrigerant pipe 60 is disposed, it is preferable to dispose the most upstream top roll 40 below the second heat generating portion row 120 from the upstream side. Since the temperature distribution in the width direction of the molten glass G is made uniform below the second heat generating portion row 120 from the upstream side, the tension in the width direction applied to the molten glass G by the top roll 40 is stabilized. To do.
  • output control of the heat generating section 32a is performed based on the temperature in the float bath 20, for example.
  • the first refrigerant pipe 50 and the second refrigerant pipe 60 are used in combination, but each may be used alone. That is, the first refrigerant pipe 50 may be used alone, or the second refrigerant pipe 60 may be used alone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)

Abstract

The present invention relates to a method for molding a float glass sheet in which molten glass that is supplied continuously on molten metal in a bath is made to flow on the molten metal and formed into a strip sheet shape, wherein an uppermost flow part of the molten metal is cooled by a first refrigerant tube disposed outside of the molten metal and the first refrigerant tube is disposed in a position that does not overlap the molten glass in a top view.

Description

フロートガラス板の成形方法、及びフロートガラス板の成形装置Float glass plate forming method and float glass plate forming apparatus
 本発明は、フロートガラス板の成形方法、及びフロートガラス板の成形装置に関する。 The present invention relates to a method for forming a float glass plate and a device for forming a float glass plate.
 フロートガラス板の成形方法は、浴槽内の溶融金属(例えば、溶融スズ)上に連続的に供給される溶融ガラスを溶融金属上で流動させ帯板状に成形する。溶融ガラスは、溶融金属上で所定方向に流動しながら徐々に低温になり、溶融金属から引き上げ可能な温度となる。溶融金属から引き上げられたガラスは、徐冷炉内で徐冷された後、所定の寸法形状に切断され、製品であるフロートガラス板が得られる。 The method for forming a float glass plate is to form a strip by flowing molten glass continuously supplied onto molten metal (for example, molten tin) in a bathtub on the molten metal. The molten glass gradually decreases in temperature while flowing in a predetermined direction on the molten metal, and becomes a temperature at which the molten glass can be pulled up from the molten metal. The glass pulled up from the molten metal is gradually cooled in a slow cooling furnace and then cut into a predetermined size and shape to obtain a product float glass plate.
 従来から、溶融スズ中の酸化スズを低減するため、溶融スズ中に水素ガスを供給する技術が提案されている(例えば、特許文献1参照)。水素ガスを供給する供給管は溶融スズ中に沈められる。供給管の冷却のため、供給管は、2重管で構成され、2重管を構成する外筒と内筒との間の環状空間に冷媒を流し、内筒の内側空間に水素ガスを流す。 Conventionally, in order to reduce tin oxide in molten tin, a technique for supplying hydrogen gas into molten tin has been proposed (for example, see Patent Document 1). A supply pipe supplying hydrogen gas is submerged in the molten tin. In order to cool the supply pipe, the supply pipe is composed of a double pipe, and the refrigerant flows in the annular space between the outer cylinder and the inner cylinder constituting the double pipe, and the hydrogen gas flows in the inner space of the inner cylinder. .
日本国特開平11-11959号公報Japanese Laid-Open Patent Publication No. 11-11959
 フロートガラス板の生産効率を高めるため、浴槽内への溶融ガラスの供給量を増やすと、フロートガラス板のボトム面(浴槽内において溶融金属と接していた面)に凹状の欠陥が多数生じることがあった。この欠陥の形成には、溶融金属中に溶存する酸素や水素、水等のガス成分が関与していると考えられる。 In order to increase the production efficiency of the float glass plate, increasing the amount of molten glass supplied into the bathtub may cause many concave defects on the bottom surface of the float glass plate (the surface in contact with the molten metal in the bathtub). there were. It is considered that the formation of this defect involves gas components such as oxygen, hydrogen, and water dissolved in the molten metal.
 浴槽内への溶融ガラスの供給量が増えると、溶融ガラスが浴槽内に持ち込む熱量が増える。そのため、溶融金属の最上流部において、温度が高くなるので、溶存ガス成分の飽和濃度が高くなり、溶存ガス成分の実際の濃度が高くなる。よって、溶融金属が溶融ガラスと共に流動しながら徐々に低温になる過程でガスが過飽和析出し、溶融金属中に気泡が生じる。この気泡が溶融ガラスの下面まで浮上することによって、フロートガラス板のボトム面に凹状の欠陥が形成される。 As the amount of molten glass supplied into the bathtub increases, the amount of heat that the molten glass brings into the bathtub increases. For this reason, since the temperature becomes higher at the most upstream part of the molten metal, the saturated concentration of the dissolved gas component becomes higher, and the actual concentration of the dissolved gas component becomes higher. Accordingly, the gas is supersaturated in the process of gradually decreasing the temperature while the molten metal flows together with the molten glass, and bubbles are generated in the molten metal. When the bubbles rise to the lower surface of the molten glass, a concave defect is formed on the bottom surface of the float glass plate.
 本発明は、上記課題に鑑みてなされたものであって、ボトム面の欠陥を低減できるフロートガラス板の成形方法及びフロートガラス板の成形装置の提供を目的とする。 This invention was made in view of the said subject, Comprising: It aims at provision of the shaping | molding method of a float glass plate and the shaping | molding apparatus of a float glass plate which can reduce the defect of a bottom face.
 上記目的を解決するため、本発明の一の態様によるフロートガラス板の成形方法は、
 浴槽内の溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させて帯板状に成形するフロートガラス板の成形方法において、
 前記溶融金属の最上流部は、前記溶融金属の外に配置される第1冷媒管によって冷却され、
 前記第1冷媒管は、上面視で前記溶融ガラスと重ならない位置に配置される。
In order to solve the above object, a method for forming a float glass sheet according to an aspect of the present invention includes:
In the method for forming a float glass plate in which molten glass continuously supplied onto the molten metal in the bathtub is flowed on the molten metal and formed into a strip shape,
The most upstream part of the molten metal is cooled by a first refrigerant pipe disposed outside the molten metal,
The first refrigerant pipe is disposed at a position that does not overlap the molten glass in a top view.
 本発明のフロートガラス板の成形方法において、前記第1冷媒管が前記浴槽の側壁部上に載置されることが好ましい。 In the method for forming a float glass plate of the present invention, it is preferable that the first refrigerant pipe is placed on a side wall of the bathtub.
 本発明のフロートガラス板の成形方法において、前記第1冷媒管内を流れる冷媒が水であることが好ましい。 In the method for forming a float glass sheet of the present invention, it is preferable that the refrigerant flowing in the first refrigerant pipe is water.
 本発明のフロートガラス板の成形方法において、前記溶融金属の上方に、前記溶融ガラスを加熱する複数の発熱部が設けられ、該複数の発熱部は複数の発熱部群に分けて出力制御され、前記発熱部群は前記溶融ガラスの幅方向に並んで発熱部列を形成し、複数の前記発熱部列が前記溶融ガラスの流動方向に並んでおり、最上流の前記発熱部列に含まれる各発熱部の出力は、最上流の前記発熱部列と前記溶融ガラスとの間に前記溶融ガラスを冷却する第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定されることが好ましい。 In the method for forming a float glass sheet of the present invention, a plurality of heat generating portions for heating the molten glass is provided above the molten metal, and the plurality of heat generating portions are divided into a plurality of heat generating portion groups, and output control is performed. The heat generating part group forms a heat generating part array side by side in the width direction of the molten glass, and a plurality of the heat generating part arrays are aligned in the flow direction of the molten glass, and each of the heat generating part arrays included in the most upstream heat generating part array The output of the heat generating part is set smaller when the second refrigerant pipe for cooling the molten glass is arranged between the uppermost heat generating part row and the molten glass compared to the case where the second refrigerant pipe is not arranged. It is preferable.
 ここで、上流側から2番目の前記発熱部列は、3つ以上の前記発熱部群からなり、該3つ以上の発熱部群のうち、両端の発熱部群以外の発熱部群において、各発熱部の出力は、前記第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定され、前記第2冷媒管を配置する場合、上流側から2番目の前記発熱部列において、前記両端の発熱部群に含まれる各発熱部の出力は、前記両端の発熱部群以外の発熱部群に含まれる各発熱部の出力よりも大きく設定されることが好ましい。 Here, the second exothermic part row from the upstream side is composed of three or more exothermic part groups, and among the three or more exothermic part groups, in each exothermic part group other than the exothermic part group, The output of the heat generating part is set smaller when the second refrigerant pipe is arranged than when the second refrigerant pipe is not arranged. When the second refrigerant pipe is arranged, the second heat generating part from the upstream side is set. In the row, it is preferable that the output of each heat generating part included in the heat generating part group at both ends is set larger than the output of each heat generating part included in the heat generating part group other than the heat generating part group at both ends.
 また、本発明の他の態様によるフロートガラス板の成形装置は、
 溶融金属を収容する浴槽を備え、該浴槽内の前記溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させて帯板状に成形するフロートガラス板の成形装置において、
 前記溶融金属の外に配置され、前記溶融金属の最上流部を冷却する第1冷媒管を備え、
 該第1冷媒管は、上面視で前記溶融ガラスと重ならない位置に配置される。
In addition, a float glass sheet molding apparatus according to another aspect of the present invention includes:
In a forming apparatus for a float glass plate, comprising a bathtub containing molten metal, and flowing molten glass continuously supplied onto the molten metal in the bathtub to form a belt plate shape on the molten metal,
A first refrigerant pipe that is disposed outside the molten metal and cools the most upstream part of the molten metal;
The first refrigerant pipe is disposed at a position that does not overlap the molten glass in a top view.
 本発明のフロートガラス板の成形装置において、前記第1冷媒管が前記浴槽の側壁部上に載置されることが好ましい。 In the float glass sheet forming apparatus of the present invention, it is preferable that the first refrigerant pipe is placed on a side wall of the bathtub.
 本発明のフロートガラス板の成形装置において、前記第1冷媒管内を流れる冷媒が水であることが好ましい。 In the float glass sheet forming apparatus of the present invention, it is preferable that the refrigerant flowing in the first refrigerant pipe is water.
 本発明のフロートガラス板の成形装置において、前記溶融金属の上方に、前記溶融ガラスを加熱する複数の発熱部が設けられ、該複数の発熱部は複数の発熱部群に分けて出力制御され、前記発熱部群は前記溶融ガラスの幅方向に並んで発熱部列を形成し、複数の前記発熱部列が前記溶融ガラスの流動方向に並んでおり、最上流の前記発熱部列に含まれる各発熱部の出力は、最上流の前記発熱部列と前記溶融ガラスとの間に前記溶融ガラスを冷却する第2冷媒管を配置する場合、配置しない場合に比べて小さく設定されることが好ましい。 In the float glass sheet forming apparatus of the present invention, a plurality of heat generating portions for heating the molten glass are provided above the molten metal, and the plurality of heat generating portions are divided into a plurality of heat generating portion groups, and output control is performed. The heat generating part group forms a heat generating part array side by side in the width direction of the molten glass, and a plurality of the heat generating part arrays are aligned in the flow direction of the molten glass, and each of the heat generating part arrays included in the most upstream heat generating part array When the second refrigerant pipe for cooling the molten glass is arranged between the most upstream heating element row and the molten glass, the output of the heat generating part is preferably set smaller than when not arranged.
 ここで、上流側から2番目の前記発熱部列は、3つ以上の前記発熱部群からなり、該3つ以上の発熱部群のうち、両端の発熱部群以外の発熱部群において、各発熱部の出力は、前記第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定され、前記第2冷媒管を配置する場合、上流側から2番目の前記発熱部列において、前記両端の発熱部群に含まれる各発熱部の出力は、前記両端の発熱部群以外の発熱部群に含まれる各発熱部の出力よりも大きく設定されることが好ましい。 Here, the second exothermic part row from the upstream side is composed of three or more exothermic part groups, and among the three or more exothermic part groups, in each exothermic part group other than the exothermic part group, The output of the heat generating part is set smaller when the second refrigerant pipe is arranged than when the second refrigerant pipe is not arranged. When the second refrigerant pipe is arranged, the second heat generating part from the upstream side is set. In the row, it is preferable that the output of each heat generating part included in the heat generating part group at both ends is set larger than the output of each heat generating part included in the heat generating part group other than the heat generating part group at both ends.
 本発明によれば、ボトム面の欠陥を低減できるフロートガラス板の成形方法及びフロートガラス板の成形装置が提供される。 According to the present invention, there is provided a float glass plate forming method and a float glass plate forming apparatus capable of reducing defects on the bottom surface.
図1は、本発明の一実施形態によるフロートガラス板の成形装置を示す図2のI-I断面図である。1 is a cross-sectional view taken along the line II of FIG. 2 showing a float glass sheet forming apparatus according to an embodiment of the present invention. 図2は、図1のII-II断面図である。2 is a cross-sectional view taken along the line II-II in FIG. 図3は、発熱部群と、第1及び第2冷却管と、トップロールとの位置関係を示す上面図である。FIG. 3 is a top view showing a positional relationship among the heat generating unit group, the first and second cooling pipes, and the top roll.
 以下、本発明を実施するための形態について図面を参照して説明する。なお、以下の図面において、同一のまたは対応する構成には、同一のまたは対応する符号を付して、説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 図1は、本発明の一実施形態によるフロートガラス板の成形装置を示す図2のI-I断面図である。図2は、図1のII-II断面図である。 FIG. 1 is a cross-sectional view taken along the line II of FIG. 2 showing a float glass sheet forming apparatus according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line II-II in FIG.
 成形装置10は、溶融金属(例えば、溶融スズ)Mを収容する浴槽22を備える。この成形装置10は、浴槽22内の溶融金属M上に連続的に供給される溶融ガラスGを溶融金属M上で流動させて帯板状に成形する。 The forming apparatus 10 includes a bathtub 22 that accommodates a molten metal (for example, molten tin) M. This shaping | molding apparatus 10 shape | molds the molten glass G continuously supplied on the molten metal M in the bathtub 22 on the molten metal M, and forms in a strip | belt plate shape.
 浴槽22、浴槽22の外周上縁に沿って設置される環状の上部側壁24、及び上部側壁24に連結され浴槽22の上方を覆う天井26等でフロートバス20が構成される。 The float bath 20 is composed of a bathtub 22, an annular upper side wall 24 installed along the outer peripheral upper edge of the bathtub 22, a ceiling 26 connected to the upper side wall 24 and covering the upper side of the bathtub 22.
 天井26には、フロートバス20内の空間28に、還元性ガスを供給するガス供給路30が設けられている。ガス供給路30には、ヒータ32が挿通されており、ヒータ32の発熱部32aがフロートバス20内の空間28に配置されている。 On the ceiling 26, a gas supply path 30 for supplying a reducing gas to a space 28 in the float bath 20 is provided. A heater 32 is inserted into the gas supply path 30, and a heat generating portion 32 a of the heater 32 is disposed in the space 28 in the float bath 20.
 ガス供給路30は、溶融金属Mの酸化を防止するため、フロートバス20内の空間28に還元性ガスを供給する。還元性ガスは、例えば窒素ガスを85~99体積%、水素ガスを1~15体積%含んでいる。フロートバス20内の空間28は、上部側壁24を構成する煉瓦同士の隙間等から大気が混入するのを防止するため、大気圧よりも高い気圧に設定されている。 The gas supply path 30 supplies a reducing gas to the space 28 in the float bath 20 in order to prevent the molten metal M from being oxidized. The reducing gas contains, for example, 85 to 99% by volume of nitrogen gas and 1 to 15% by volume of hydrogen gas. The space 28 in the float bath 20 is set to a pressure higher than the atmospheric pressure in order to prevent air from being mixed in through a gap between bricks constituting the upper side wall 24.
 複数のヒータ32は、制御装置34による制御下で、下方を通過する溶融ガラスGを加熱する。溶融ガラスGは、溶融金属M上で所定方向に流動しながら徐々に低温になり、溶融金属Mから引き上げ可能な温度となる。 The plurality of heaters 32 heat the molten glass G passing below under the control of the control device 34. The molten glass G gradually decreases in temperature while flowing in a predetermined direction on the molten metal M, and reaches a temperature at which the molten glass G can be pulled up from the molten metal M.
 また、成形装置10は、溶融金属M上で溶融ガラスGが幅方向に収縮するのを抑制するため、溶融ガラスGを支持するトップロール40をさらに備える。トップロール40は、溶融ガラスGの幅方向両側に複数対(図2には一対のみ図示)配置され、溶融ガラスGに対し幅方向に張力を加える。 Further, the molding apparatus 10 further includes a top roll 40 that supports the molten glass G in order to suppress the molten glass G from shrinking in the width direction on the molten metal M. A plurality of pairs (only one pair is shown in FIG. 2) of the top roll 40 are arranged on both sides of the molten glass G in the width direction, and tension is applied to the molten glass G in the width direction.
 トップロール40は、溶融ガラスGと接触する回転部材41を先端部に有する。回転部材41は、溶融ガラスGの上面に食い込み、溶融ガラスGが幅方向に収縮しないように、溶融ガラスGの幅方向端部を支持する。回転部材41が回転することによって、溶融ガラスGが所定方向に送り出される。 The top roll 40 has a rotating member 41 in contact with the molten glass G at the tip. The rotating member 41 bites into the upper surface of the molten glass G and supports the end in the width direction of the molten glass G so that the molten glass G does not shrink in the width direction. As the rotating member 41 rotates, the molten glass G is sent out in a predetermined direction.
 さらに、成形装置10は、溶融金属Mの最上流部を冷却する第1冷媒管50、及び溶融ガラスGの最上流部を冷却する第2冷媒管60を備える。第1及び第2冷媒管50、60は、浴槽22内への溶融ガラスGの供給量が多く、溶融ガラスGが浴槽22内に持ち込む熱量が多い場合に使用される。第1及び第2冷媒管50、60を使用することで、溶融金属Mの最上流部の温度、及び溶融ガラスGの最上流部の温度の上昇を制限することができる。 Furthermore, the forming apparatus 10 includes a first refrigerant pipe 50 that cools the most upstream part of the molten metal M and a second refrigerant pipe 60 that cools the most upstream part of the molten glass G. The first and second refrigerant tubes 50, 60 are used when the amount of molten glass G supplied into the bathtub 22 is large and the amount of heat that the molten glass G brings into the bathtub 22 is large. By using the first and second refrigerant pipes 50, 60, it is possible to limit the temperature rise of the most upstream part of the molten metal M and the temperature of the most upstream part of the molten glass G.
 第1冷媒管50は、溶融金属Mの最上流部と熱交換して、溶融金属Mの最上流部を冷却する。第1冷媒管50は、溶融金属Mによる侵食を防止するため、溶融金属Mの外に配置される。 The first refrigerant pipe 50 exchanges heat with the most upstream part of the molten metal M to cool the most upstream part of the molten metal M. The first refrigerant pipe 50 is disposed outside the molten metal M in order to prevent erosion by the molten metal M.
 第1冷媒管50は、上面視で溶融ガラスGと重ならない位置に配置される。即ち、第1冷媒管50は、上面視で溶融ガラスGの側方に配置される。よって、溶融金属Mの最上流部を選択的に冷却することができる。溶融金属Mの最上流部において、温度が低くなるので、溶存ガス成分(酸素や水素、水等)の飽和濃度が低くなり、溶存ガス成分の実際の濃度が低くなる。よって、溶融金属Mが溶融ガラスGと共に流動しながら低温になる過程でガスが過飽和析出するのを抑えることができる。その結果、溶融金属M中に含まれる気泡の量を低減できるので、フロートガラス板のボトム面の凹みを低減できる。 1st refrigerant pipe 50 is arranged in the position which does not overlap with molten glass G in the top view. That is, the first refrigerant pipe 50 is disposed on the side of the molten glass G in a top view. Therefore, the most upstream part of the molten metal M can be selectively cooled. Since the temperature is lowered at the most upstream part of the molten metal M, the saturated concentration of dissolved gas components (oxygen, hydrogen, water, etc.) is lowered, and the actual concentration of dissolved gas components is lowered. Therefore, it is possible to suppress the supersaturated precipitation of the gas in the process of the molten metal M flowing together with the molten glass G and becoming a low temperature. As a result, since the amount of bubbles contained in the molten metal M can be reduced, the depression of the bottom surface of the float glass plate can be reduced.
 第1冷媒管50は、浴槽22の側壁部23上に載置され、例えば図2に示すように環状の側壁部23のうち、上流側の両隅部にそれぞれ1つずつ載置される。尚、冷却効率を高める目的で、側壁部23上に複数の第1冷媒管50を積み重ねてもよい。 The first refrigerant pipe 50 is placed on the side wall portion 23 of the bathtub 22, and for example, as shown in FIG. A plurality of first refrigerant tubes 50 may be stacked on the side wall portion 23 for the purpose of increasing the cooling efficiency.
 このように、第1冷媒管50は、側壁部23上に載置されているので、側壁部23を介して溶融金属Mから伝わる熱、及び溶融金属Mから放射された熱の両方を吸収する。よって、熱交換率が良い。また、第1冷媒管50が側壁部23上に載置されているので、第1冷媒管50の設置や撤去が容易である。 Thus, since the 1st refrigerant | coolant pipe | tube 50 is mounted on the side wall part 23, it absorbs both the heat | fever transmitted from the molten metal M via the side wall part 23, and the heat | fever radiated | emitted from the molten metal M. FIG. . Therefore, the heat exchange rate is good. Moreover, since the 1st refrigerant | coolant pipe | tube 50 is mounted on the side wall part 23, installation and removal of the 1st refrigerant | coolant pipe | tube 50 are easy.
 尚、第1冷媒管50は、側壁部23から離間して設けられてもよく、この場合、第1冷媒管50は、溶融金属Mから放射された熱を吸収する。 In addition, the 1st refrigerant | coolant pipe | tube 50 may be provided away from the side wall part 23, and the 1st refrigerant | coolant pipe | tube 50 absorbs the heat | fever radiated | emitted from the molten metal M in this case.
 第1冷媒管50は、往路管51と復路管52とで構成される。往路管51及び復路管52は、上部側壁24を貫通し、浴槽22の側壁部23に沿って延びており、先端で接続される。 The first refrigerant pipe 50 is composed of an outgoing pipe 51 and a return pipe 52. The forward path pipe 51 and the return path pipe 52 penetrate the upper side wall 24, extend along the side wall portion 23 of the bathtub 22, and are connected at the tip.
 第1冷媒管50を流れる冷媒は、往路管51を通った後、復路管52を通り、フロートバス20の外部に排出される。外部に排出された冷媒は、冷却器で冷却され、再び、第1冷媒管50に還流されてよい。溶融金属Mの冷却効率を高めるため、往路管51が復路管52よりも溶融金属Mに近い側に配置されてよい。 The refrigerant flowing through the first refrigerant pipe 50 passes through the forward pipe 51, passes through the return pipe 52, and is discharged to the outside of the float bath 20. The refrigerant discharged to the outside may be cooled by a cooler and returned to the first refrigerant pipe 50 again. In order to increase the cooling efficiency of the molten metal M, the forward pipe 51 may be disposed closer to the molten metal M than the backward pipe 52.
 第1冷媒管50を流れる冷媒としては、水等の液体、空気等の気体が用いられる。これらの中でも、比熱が大きく、熱の運搬効率に優れた水が好ましい。水はコストの点でも優れている。 As the refrigerant flowing through the first refrigerant pipe 50, a liquid such as water or a gas such as air is used. Among these, water having a large specific heat and excellent heat transfer efficiency is preferable. Water is also excellent in terms of cost.
 第2冷媒管60は、溶融ガラスGの最上流部を冷却する。第2冷媒管60は、溶融ガラスGの上方に設けられ、溶融ガラスGとヒータ32との間に配置される。 The second refrigerant pipe 60 cools the most upstream part of the molten glass G. The second refrigerant pipe 60 is provided above the molten glass G and is disposed between the molten glass G and the heater 32.
 第2冷媒管60は、第1冷媒管50と異なり、溶融金属Mをできるだけ冷却しないように、浴槽22の側壁部23から離間して配置される。第1冷媒管50と第2冷媒管60とを組み合わせて用いることで、溶融金属Mの温度と、溶融ガラスGの温度とを独立に調節することができる。 Unlike the first refrigerant pipe 50, the second refrigerant pipe 60 is disposed away from the side wall portion 23 of the bathtub 22 so as not to cool the molten metal M as much as possible. By using the first refrigerant pipe 50 and the second refrigerant pipe 60 in combination, the temperature of the molten metal M and the temperature of the molten glass G can be adjusted independently.
 第2冷媒管60は、溶融ガラスGから放射された熱を吸収する。吸収された熱は、第2冷媒管60を流れる冷媒によって外部に運搬される。 The second refrigerant pipe 60 absorbs heat radiated from the molten glass G. The absorbed heat is conveyed to the outside by the refrigerant flowing through the second refrigerant pipe 60.
 第2冷媒管60は、溶融ガラスGの幅方向と平行に配置される。一対の第2冷媒管60は、上部側壁24を構成する一対の対向壁24a、24bを貫通し、先端同士が溶融ガラスGの幅方向中央部の上方で向かい合う。よって、溶融ガラスGを幅方向略全体にわたって冷却することができる。また、溶融ガラスGの幅に比べて第2冷媒管60の長さが短いので、第2冷媒管60の設置や撤去が容易である。 The second refrigerant pipe 60 is arranged in parallel with the width direction of the molten glass G. The pair of second refrigerant tubes 60 penetrates the pair of opposing walls 24 a and 24 b constituting the upper side wall 24, and the ends thereof face each other above the center portion in the width direction of the molten glass G. Therefore, the molten glass G can be cooled over substantially the entire width direction. Moreover, since the length of the 2nd refrigerant pipe 60 is short compared with the width | variety of the molten glass G, installation and removal of the 2nd refrigerant pipe 60 are easy.
 第2冷媒管60は、第1冷媒管50と同様に、図示されない往路管と復路管とで構成される。往路管及び復路管は、上部側壁24を貫通し、溶融ガラスGの幅方向に平行に配置され、先端で接続される。 The second refrigerant pipe 60 is composed of a forward pipe and a backward pipe (not shown), like the first refrigerant pipe 50. The forward pipe and the backward pipe penetrate the upper side wall 24, are arranged in parallel with the width direction of the molten glass G, and are connected at the tip.
 第2冷媒管60を流れる冷媒は、往路管を通った後、復路管を通り、フロートバス20の外部に排出される。外部に排出された冷媒は、冷却器で冷却され、再び、第2冷媒管60に還流されてよい。 The refrigerant flowing through the second refrigerant pipe 60 passes through the outward pipe, passes through the return pipe, and is discharged to the outside of the float bath 20. The refrigerant discharged to the outside may be cooled by a cooler and returned to the second refrigerant pipe 60 again.
 第2冷媒管60を流れる冷媒としては、水等の液体、空気等の気体が用いられる。第2冷媒管60を流れる冷媒と、第1冷媒管50を流れる冷媒とは、同じ冷媒供給源から供給されることが好ましい。 As the refrigerant flowing through the second refrigerant pipe 60, a liquid such as water or a gas such as air is used. The refrigerant flowing through the second refrigerant pipe 60 and the refrigerant flowing through the first refrigerant pipe 50 are preferably supplied from the same refrigerant supply source.
 次に、上記構成の成形装置10の動作(成形方法)について説明する。 Next, the operation (molding method) of the molding apparatus 10 having the above configuration will be described.
 成形装置10は、溶融金属M上に連続的に供給される溶融ガラスGを溶融金属M上で流動させて帯板状に成形する。溶融ガラスGは、幅方向に収縮しないようにトップロール40によって支持される。溶融ガラスGは、所定方向に流動しながら徐々に低温になり、溶融金属Mから引き上げ可能な温度となる。フロートバス20内の温度は、複数のヒータ32、第1及び第2冷媒管50、60によって調節される。 The forming apparatus 10 forms a strip plate by causing the molten glass G continuously supplied onto the molten metal M to flow on the molten metal M. The molten glass G is supported by the top roll 40 so as not to shrink in the width direction. The molten glass G gradually decreases in temperature while flowing in a predetermined direction, and reaches a temperature at which it can be pulled up from the molten metal M. The temperature in the float bath 20 is adjusted by the plurality of heaters 32 and the first and second refrigerant tubes 50 and 60.
 その後、溶融ガラスGは、リフトアウトロールによって溶融金属Mから引き上げられ、徐冷炉内で徐冷され、板状ガラスとなる。板状ガラスは、徐冷炉から搬出された後、切断機によって所定の寸法形状に切断され、製品であるフロートガラス板となる。 Thereafter, the molten glass G is pulled up from the molten metal M by a lift-out roll, and is gradually cooled in a slow cooling furnace to become a sheet glass. After the plate-like glass is carried out of the slow cooling furnace, it is cut into a predetermined size and shape by a cutting machine to become a product float glass plate.
 フロートガラス板は、例えば液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)、有機ELディスプレイ等のディスプレイ用のガラス基板であってよい。なお、フロートガラス板の用途は、車両用窓ガラス、建物用窓ガラス等であってもよく、特に限定されない。 The float glass plate may be a glass substrate for a display such as a liquid crystal display (LCD), a plasma display (PDP), or an organic EL display. In addition, the use of a float glass plate may be a window glass for vehicles, a window glass for buildings, etc., and is not specifically limited.
 フロートガラス板のガラスの種類は、用途に応じて選定される。例えば、LCD用のガラス基板の場合、無アルカリガラスが用いられる。また、PDP用のガラス基板の場合、アルミノ珪酸ガラスが用いられる。 The type of glass on the float glass plate is selected according to the application. For example, in the case of a glass substrate for LCD, alkali-free glass is used. In the case of a glass substrate for PDP, aluminosilicate glass is used.
 次に、上記構成の成形装置10における複数のヒータの制御方法について説明する。 Next, a method for controlling a plurality of heaters in the molding apparatus 10 having the above configuration will be described.
 図3は、発熱部群と、第1及び第2冷却管と、トップロールとの位置関係を示す上面図である。図3において、Lは複数の発熱部32aを複数の発熱部群111~115、121~125に分割する分割線を示す。 FIG. 3 is a top view showing a positional relationship among the heat generating portion group, the first and second cooling pipes, and the top roll. In FIG. 3, L indicates a dividing line that divides the plurality of heat generating portions 32a into a plurality of heat generating portion groups 111 to 115, 121 to 125.
 複数の発熱部32aは、1個ずつ出力制御してもよいが、出力制御を容易とするため、複数の発熱部群111~115、121~125に分けて出力制御されることが好ましい。複数の発熱部群111~115、121~125は、溶融ガラスGの幅方向中心線を中心に対称配置されてよい。 Although the output control of the plurality of heat generating portions 32a may be performed one by one, it is preferable that the output control is performed separately for the plurality of heat generating portion groups 111 to 115 and 121 to 125 in order to facilitate output control. The plurality of heat generating unit groups 111 to 115 and 121 to 125 may be arranged symmetrically about the center line in the width direction of the molten glass G.
 発熱部群111~115は、溶融ガラスGの幅方向に並んで発熱部列110を形成する。同様に、発熱部群121~125は、溶融ガラスGの幅方向に並んで発熱部列120を形成する。複数の発熱部列110~120が、溶融ガラスGの流動方向に並んでいる。 The heat generating portion groups 111 to 115 form a heat generating portion row 110 that is aligned in the width direction of the molten glass G. Similarly, the heat generating portion groups 121 to 125 form a heat generating portion row 120 aligned in the width direction of the molten glass G. A plurality of heat generating portion rows 110 to 120 are arranged in the flow direction of the molten glass G.
 発熱部列110、120の数は、例えば4~15(図3には2つのみ図示)である。各発熱部列110、120に含まれる発熱部群の数は、例えば4~15である。各発熱部列110、120に含まれる発熱部群の数は、発熱部列110、120毎に異なってもよいし、同じでもよい。 The number of the heating part rows 110 and 120 is, for example, 4 to 15 (only two are shown in FIG. 3). The number of heat generating unit groups included in each of the heat generating unit rows 110 and 120 is, for example, 4 to 15. The number of heating unit groups included in each heating unit row 110, 120 may be different for each heating unit row 110, 120, or may be the same.
 各発熱部群111~115、121~125は複数の発熱部32aで構成され、一の発熱部群(例えば、発熱部群111)を構成する複数の発熱部32aには同じ電力が供給される。各発熱部32aに供給される電力は、発熱部群111~115、121~125毎に設定される。このようにして、複数の発熱部32aは、複数の発熱部群111~115、121~125に分けて出力制御される。
 複数の発熱部32aの出力制御は、制御装置34によって行われる。制御装置34は、例えばCPU、ROMやRAM等を含むマイクロコンピュータ等で構成される。制御装置34は、ROM等に記録されたプログラムをCPUに実行させることで、複数の発熱部32aの出力制御を行う。
Each of the heat generating unit groups 111 to 115 and 121 to 125 includes a plurality of heat generating units 32a, and the same power is supplied to the plurality of heat generating units 32a constituting one heat generating unit group (for example, the heat generating unit group 111). . The power supplied to each heat generating part 32a is set for each heat generating part group 111-115, 121-125. In this manner, the plurality of heat generating portions 32a are output-controlled by being divided into a plurality of heat generating portion groups 111 to 115 and 121 to 125.
Output control of the plurality of heat generating units 32 a is performed by the control device 34. The control device 34 is composed of, for example, a microcomputer including a CPU, ROM, RAM, and the like. The control device 34 controls the output of the plurality of heat generating units 32a by causing the CPU to execute a program recorded in a ROM or the like.
 最上流の発熱部列110に含まれる各発熱部32aの出力は、最上流の発熱部列110と溶融ガラスGとの間に溶融ガラスGを冷却する第2冷媒管60を配置する場合(図1及び図3参照)、第2冷媒管60を配置しない場合に比べて、小さく設定され、例えば0(W)に設定される。よって、第2冷媒管60による冷却を効率的に行うことができる。 The output of each heat generating part 32a included in the most upstream heat generating part row 110 is obtained when the second refrigerant pipe 60 for cooling the molten glass G is disposed between the most upstream heat generating part array 110 and the molten glass G (FIG. 1 and FIG. 3), it is set smaller than the case where the second refrigerant pipe 60 is not disposed, for example, 0 (W). Therefore, the cooling by the second refrigerant pipe 60 can be performed efficiently.
 上流側から2番目の発熱部列120は、3つ以上(本実施形態では5つ)の発熱部群121~125からなる。該3つ以上の発熱部群121~125のうち、両端の発熱部群121、125以外の発熱部群122~124において、各発熱部32aの出力は、第2冷媒管60を配置する場合(図1及び図3参照)、第2冷媒管60を配置しない場合に比べて小さく設定され、例えば0(W)に設定される。よって、第2冷媒管60による冷却をさらに効率的に行うことができる。 The second exothermic part row 120 from the upstream side is composed of three or more (in this embodiment, five) exothermic part groups 121-125. Among the three or more heat generating part groups 121 to 125, in the heat generating part groups 122 to 124 other than the heat generating part groups 121 and 125 at both ends, the output of each heat generating part 32a is when the second refrigerant pipe 60 is disposed ( 1 and FIG. 3), it is set smaller than the case where the second refrigerant pipe 60 is not disposed, and is set to 0 (W), for example. Therefore, cooling by the second refrigerant pipe 60 can be performed more efficiently.
 また、第2冷媒管60を配置する場合(図1及び図3参照)、上流側から2番目の発熱部列120において、両端の発熱部群121、125に含まれる各発熱部32aの出力は、両端の発熱部群121、125以外の発熱部群122~124に含まれる各発熱部32aの出力よりも大きく設定される。溶融ガラスGの幅方向両端部の熱が側壁部23によって奪われる場合に、溶融ガラスGの幅方向における温度分布を均一化することができる。 When the second refrigerant pipe 60 is arranged (see FIGS. 1 and 3), in the second heat generating portion row 120 from the upstream side, the outputs of the heat generating portions 32a included in the heat generating portion groups 121 and 125 at both ends are as follows. The output is set to be larger than the output of each heat generating part 32a included in the heat generating part groups 122 to 124 other than the heat generating part groups 121 and 125 at both ends. When the heat at both ends in the width direction of the molten glass G is taken away by the side wall 23, the temperature distribution in the width direction of the molten glass G can be made uniform.
 また、第2冷媒管60を配置する場合、上流側から2番目の発熱部列120の下方に、最上流のトップロール40の配置することが好ましい。上流側から2番目の発熱部列120の下方では、上述の如く、溶融ガラスGの幅方向における温度分布が均一化されるので、トップロール40によって溶融ガラスGに加わる幅方向の張力が安定化する。 Further, when the second refrigerant pipe 60 is disposed, it is preferable to dispose the most upstream top roll 40 below the second heat generating portion row 120 from the upstream side. Since the temperature distribution in the width direction of the molten glass G is made uniform below the second heat generating portion row 120 from the upstream side, the tension in the width direction applied to the molten glass G by the top roll 40 is stabilized. To do.
 上流側から3番目以降の発熱部列では、第2冷媒管60の有無に関係なく、例えばフロートバス20内の温度に基づいて発熱部32aの出力制御が行われる。 In the third and subsequent heat generating section rows from the upstream side, regardless of the presence or absence of the second refrigerant pipe 60, output control of the heat generating section 32a is performed based on the temperature in the float bath 20, for example.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に制限されない。本発明の範囲を逸脱しない範囲で、上記の実施形態に種々の変形及び置換を加えることができる。 As mentioned above, although embodiment of this invention was described, this invention is not restrict | limited to said embodiment. Various modifications and substitutions can be made to the above-described embodiment without departing from the scope of the present invention.
 例えば、本実施形態では、第1冷媒管50と第2冷媒管60とを組み合わせて用いるとしたが、それぞれ単独で用いられてもよい。即ち、第1冷媒管50を単独で用いてもよいし、第2冷媒管60を単独で用いてもよい。 For example, in the present embodiment, the first refrigerant pipe 50 and the second refrigerant pipe 60 are used in combination, but each may be used alone. That is, the first refrigerant pipe 50 may be used alone, or the second refrigerant pipe 60 may be used alone.
 本出願は、2011年12月15日出願の日本特許出願2011-274399に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2011-274399 filed on December 15, 2011, the contents of which are incorporated herein by reference.
10 成形装置
22 浴槽
23 側壁部
32 ヒータ
32a 発熱部
50 第1冷媒管
60 第2冷媒管
110、120 発熱部列
111~115、121~125 発熱部群
M  溶融金属
G  溶融ガラス
DESCRIPTION OF SYMBOLS 10 Molding apparatus 22 Bath 23 Side wall part 32 Heater 32a Heat generating part 50 1st refrigerant pipe 60 2nd refrigerant pipe 110,120 Heat generating part row | line | column 111-115, 121-125 Heat generating part group M Molten metal G Molten glass

Claims (10)

  1.  浴槽内の溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させて帯板状に成形するフロートガラス板の成形方法において、
     前記溶融金属の最上流部は、前記溶融金属の外に配置される第1冷媒管によって冷却され、
     前記第1冷媒管は、上面視で前記溶融ガラスと重ならない位置に配置されるフロートガラス板の成形方法。
    In the method for forming a float glass plate in which molten glass continuously supplied onto the molten metal in the bathtub is flowed on the molten metal and formed into a strip shape,
    The most upstream part of the molten metal is cooled by a first refrigerant pipe disposed outside the molten metal,
    The said 1st refrigerant | coolant pipe | tube is a shaping | molding method of the float glass plate arrange | positioned in the position which does not overlap with the said molten glass by upper surface view.
  2.  前記第1冷媒管が前記浴槽の側壁部上に載置される請求項1に記載のフロートガラス板の成形方法。 The method for forming a float glass sheet according to claim 1, wherein the first refrigerant pipe is placed on a side wall of the bathtub.
  3.  前記第1冷媒管内を流れる冷媒が水である請求項1又は2に記載のフロートガラス板の成形方法。 The method for forming a float glass sheet according to claim 1 or 2, wherein the refrigerant flowing in the first refrigerant pipe is water.
  4.  前記溶融金属の上方に、前記溶融ガラスを加熱する複数の発熱部が設けられ、
     該複数の発熱部は複数の発熱部群に分けて出力制御され、前記発熱部群は前記溶融ガラスの幅方向に並んで発熱部列を形成し、複数の前記発熱部列が前記溶融ガラスの流動方向に並んでおり、
     最上流の前記発熱部列に含まれる各発熱部の出力は、最上流の前記発熱部列と前記溶融ガラスとの間に前記溶融ガラスを冷却する第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定される請求項1~3のいずれか一項に記載のフロートガラス板の成形方法。
    A plurality of heat generating portions for heating the molten glass are provided above the molten metal,
    The plurality of heat generating portions are output-controlled by being divided into a plurality of heat generating portion groups, the heat generating portion groups are arranged in the width direction of the molten glass to form a heat generating portion row, and the plurality of heat generating portion rows are formed of the molten glass. Lined up in the flow direction,
    When the second refrigerant pipe for cooling the molten glass is disposed between the most upstream heating unit row and the molten glass, the output of each heating unit included in the most upstream heating unit row is the second refrigerant. The method for forming a float glass sheet according to any one of claims 1 to 3, wherein the method is set to be smaller than in the case where no tube is disposed.
  5.  上流側から2番目の前記発熱部列は、3つ以上の前記発熱部群からなり、該3つ以上の発熱部群のうち、両端の発熱部群以外の発熱部群において、各発熱部の出力は、前記第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定され、
     前記第2冷媒管を配置する場合、上流側から2番目の前記発熱部列において、前記両端の発熱部群に含まれる各発熱部の出力は、前記両端の発熱部群以外の発熱部群に含まれる各発熱部の出力よりも大きく設定される請求項4に記載のフロートガラス板の成形方法。
    The second heat generating portion row from the upstream side is composed of three or more heat generating portion groups, and among the three or more heat generating portion groups, in the heat generating portion groups other than the heat generating portion groups at both ends, When the second refrigerant pipe is arranged, the output is set smaller than when the second refrigerant pipe is not arranged,
    When the second refrigerant pipe is arranged, in the second heat generating portion row from the upstream side, the output of each heat generating portion included in the heat generating portion group at both ends is sent to a heat generating portion group other than the heat generating portion group at both ends. The method for forming a float glass sheet according to claim 4, wherein the float glass sheet is set to be larger than the output of each heat generating part included.
  6.  溶融金属を収容する浴槽を備え、該浴槽内の前記溶融金属上に連続的に供給される溶融ガラスを前記溶融金属上で流動させて帯板状に成形するフロートガラス板の成形装置において、
     前記溶融金属の外に配置され、前記溶融金属の最上流部を冷却する第1冷媒管を備え、
     該第1冷媒管は、上面視で前記溶融ガラスと重ならない位置に配置されるフロートガラス板の成形装置。
    In a forming apparatus for a float glass plate, comprising a bathtub containing molten metal, and flowing molten glass continuously supplied onto the molten metal in the bathtub to form a belt plate shape on the molten metal,
    A first refrigerant pipe that is disposed outside the molten metal and cools the most upstream part of the molten metal;
    The first refrigerant pipe is an apparatus for forming a float glass plate that is disposed at a position that does not overlap the molten glass in a top view.
  7.  前記第1冷媒管が前記浴槽の側壁部上に載置される請求項6に記載のフロートガラス板の成形装置。 The apparatus for forming a float glass sheet according to claim 6, wherein the first refrigerant pipe is placed on a side wall of the bathtub.
  8.  前記第1冷媒管内を流れる冷媒が水である請求項6又は7に記載のフロートガラス板の成形装置。 The float glass sheet forming apparatus according to claim 6 or 7, wherein the refrigerant flowing in the first refrigerant pipe is water.
  9.  前記溶融金属の上方に、前記溶融ガラスを加熱する複数の発熱部が設けられ、
     該複数の発熱部は複数の発熱部群に分けて出力制御され、前記発熱部群は前記溶融ガラスの幅方向に並んで発熱部列を形成し、複数の前記発熱部列が前記溶融ガラスの流動方向に並んでおり、
     最上流の前記発熱部列に含まれる各発熱部の出力は、最上流の前記発熱部列と前記溶融ガラスとの間に前記溶融ガラスを冷却する第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定される請求項6~8のいずれか一項に記載のフロートガラス板の成形装置。
    A plurality of heat generating portions for heating the molten glass are provided above the molten metal,
    The plurality of heat generating portions are output-controlled by being divided into a plurality of heat generating portion groups, the heat generating portion groups are arranged in the width direction of the molten glass to form a heat generating portion row, and the plurality of heat generating portion rows are formed of the molten glass. Lined up in the flow direction,
    When the second refrigerant pipe for cooling the molten glass is disposed between the most upstream heating unit row and the molten glass, the output of each heating unit included in the most upstream heating unit row is the second refrigerant. The apparatus for forming a float glass sheet according to any one of claims 6 to 8, wherein the apparatus is set to be smaller than a case where no pipe is disposed.
  10.  上流側から2番目の前記発熱部列は、3つ以上の前記発熱部群からなり、該3つ以上の発熱部群のうち、両端の発熱部群以外の発熱部群において、各発熱部の出力は、前記第2冷媒管を配置する場合、第2冷媒管を配置しない場合に比べて小さく設定され、
     前記第2冷媒管を配置する場合、上流側から2番目の前記発熱部列において、前記両端の発熱部群に含まれる各発熱部の出力は、前記両端の発熱部群以外の発熱部群に含まれる各発熱部の出力よりも大きく設定される請求項9に記載のフロートガラス板の成形装置。
    The second heat generating portion row from the upstream side is composed of three or more heat generating portion groups, and among the three or more heat generating portion groups, in the heat generating portion groups other than the heat generating portion groups at both ends, When the second refrigerant pipe is arranged, the output is set smaller than when the second refrigerant pipe is not arranged,
    When the second refrigerant pipe is arranged, in the second heat generating portion row from the upstream side, the output of each heat generating portion included in the heat generating portion group at both ends is sent to a heat generating portion group other than the heat generating portion group at both ends. The apparatus for forming a float glass sheet according to claim 9, wherein the apparatus is set to be larger than the output of each included heat generating part.
PCT/JP2012/079407 2011-12-15 2012-11-13 Method for molding float glass sheet and device for molding float glass sheet WO2013088894A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147013846A KR20140107210A (en) 2011-12-15 2012-11-13 Method for molding float glass sheet and device for molding float glass sheet
CN201280061967.XA CN103998384A (en) 2011-12-15 2012-11-13 Method for molding float glass sheet and device for molding float glass sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011274399 2011-12-15
JP2011-274399 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013088894A1 true WO2013088894A1 (en) 2013-06-20

Family

ID=48612349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079407 WO2013088894A1 (en) 2011-12-15 2012-11-13 Method for molding float glass sheet and device for molding float glass sheet

Country Status (5)

Country Link
JP (1) JPWO2013088894A1 (en)
KR (1) KR20140107210A (en)
CN (1) CN103998384A (en)
TW (1) TW201323359A (en)
WO (1) WO2013088894A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11689309B2 (en) 2013-07-11 2023-06-27 Nec Corporation Optical reception apparatus and monitor signal generating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501570B1 (en) * 1969-04-22 1975-01-20
JPS5045059Y1 (en) * 1974-12-11 1975-12-20
JPH03193631A (en) * 1989-12-22 1991-08-23 Nippon Sheet Glass Co Ltd Device for producing float sheet glass
JPH1111959A (en) * 1997-06-13 1999-01-19 Ppg Ind Inc Production of sheet glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096770A (en) * 1993-06-21 1994-12-28 秦皇岛玻璃研究院 Forming method and device for producing 1.5-19 mm float glass
WO2009054411A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Co., Ltd. Sheet glass manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501570B1 (en) * 1969-04-22 1975-01-20
JPS5045059Y1 (en) * 1974-12-11 1975-12-20
JPH03193631A (en) * 1989-12-22 1991-08-23 Nippon Sheet Glass Co Ltd Device for producing float sheet glass
JPH1111959A (en) * 1997-06-13 1999-01-19 Ppg Ind Inc Production of sheet glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11689309B2 (en) 2013-07-11 2023-06-27 Nec Corporation Optical reception apparatus and monitor signal generating method

Also Published As

Publication number Publication date
JPWO2013088894A1 (en) 2015-04-27
CN103998384A (en) 2014-08-20
TW201323359A (en) 2013-06-16
KR20140107210A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
KR101643803B1 (en) Glass substrate manufacturing method and a cooler
JP5711583B2 (en) Reflow device
US7886687B2 (en) Plasma processing apparatus
TWI469937B (en) Float bath for manufacturing float glass and cooling method of the same
TWI729115B (en) Muffle assembly for fusion forming apparatus, glass forming apparatus with such muffle assembly, and method for glass forming using such glass forming apparatus
JP4900773B2 (en) Float glass manufacturing apparatus and method
CN102372421B (en) Float bath for manufacturing float glass and cooling method of the same
JP2011094162A (en) Gas-jet cooling device of continuous annealing furnace
WO2013088894A1 (en) Method for molding float glass sheet and device for molding float glass sheet
JP2013139342A (en) Method for manufacturing glass sheet
WO2005087672A1 (en) Method and device for manufacturing float plate glass
KR101920327B1 (en) Substrate Thermal Processing Apparatus
JP2010144999A (en) Multitubular heat exchanger
CN204417327U (en) A kind of cooling system of glass tempering unit
CN210620883U (en) Quick cooling system of cooling chamber of continuous furnace
JPWO2013179862A1 (en) Float glass forming apparatus and float glass manufacturing method
JP4210833B2 (en) Continuous firing furnace
WO2019192206A1 (en) Cooling device, glass fiber forming device, and glass fiber cooling and forming methods
JP2016210630A (en) Support roll, and production method of glass sheet
JP2008170143A (en) Slow cooling furnace
JP5969671B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2007308331A (en) Float bath
JP4924979B2 (en) Float plate glass manufacturing apparatus and manufacturing method
US20230168036A1 (en) Heat treatment furnace
WO2023106089A1 (en) Molten glass transport device, glass article manufacturing device, and glass article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549172

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147013846

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857267

Country of ref document: EP

Kind code of ref document: A1