WO2013088670A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2013088670A1
WO2013088670A1 PCT/JP2012/007760 JP2012007760W WO2013088670A1 WO 2013088670 A1 WO2013088670 A1 WO 2013088670A1 JP 2012007760 W JP2012007760 W JP 2012007760W WO 2013088670 A1 WO2013088670 A1 WO 2013088670A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless motor
bearing
bearings
bracket
stator
Prior art date
Application number
PCT/JP2012/007760
Other languages
French (fr)
Japanese (ja)
Inventor
誠治 黒住
圭策 中野
知子 従野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280061417.8A priority Critical patent/CN103999332A/en
Publication of WO2013088670A1 publication Critical patent/WO2013088670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices

Definitions

  • the present invention relates to a brushless motor in which a rotor is supported by being sandwiched between bearings.
  • a brushless motor includes a stator having an electromagnetic coil and a rotor having a magnet.
  • the electromagnetic coil When a current flows through the electromagnetic coil, the electromagnetic coil generates a magnetic field.
  • the rotor having the magnet rotates.
  • the electromagnetic coil is formed by winding a winding around a stator core. When the direction of the current flowing through the winding is switched by the inverter control circuit, the magnetic field generated in the electromagnetic coil is switched.
  • the drive voltage of the brushless motor is increased.
  • the inverter frequency for controlling the brushless motor is increased.
  • a voltage is induced from a winding to a conductor such as a bracket that holds the bearing.
  • the conductor is composed of a bracket, a stator core, a rotor, and the like. If the potential of the voltage induced on the conductor changes, a discharge occurs in the bearing. Due to the discharge in the bearing, the bearing was eroded.
  • the brushless motor is molded to become a molded motor.
  • the electromagnetic coil is sealed with resin. Molded motors are highly effective in improving noise and vibration.
  • capacitance is generated between the brackets holding the pair of bearings. This electrostatic capacity increases the potential difference between the rotating shaft and the stator. As the potential difference increased, electrolytic corrosion was likely to occur. Note that such a capacitance is not observed in the steel plate motor.
  • the stator 10 has a stator core 12 that is a stator core and a winding 11 wound around the stator core 12.
  • the stator 10 is molded to form a mold frame 13.
  • the rotor 20 has a rotating body 21 and a rotating shaft 22 fixed to the axis of the rotating body 21.
  • the rotating body 21 is disposed so as to be rotatable facing the stator core 12.
  • the rotating shaft 22 has a pair of bearings 113 and 114 at positions where the rotating shaft 21 is supported with the rotating body 21 interposed therebetween in the axial direction.
  • the bearings 113 and 114 are fixed to the mold frame 13 via the brackets 105 and 106.
  • the “rotating part” refers to a part including the rotating shaft 22 and electrically connected to the rotating shaft 22.
  • the “fixed portion” refers to a portion that includes the stator 10 and is electrically connected to the stator 10.
  • the outer ring side potential is a potential generated in a conductor portion electrically connected to the outer rings 113b and 114b and the outer rings 113b and 114b.
  • the inner rings 113a and 114a and the outer rings 113b and 114b are electrically connected by the rolling elements 113c and 114c.
  • dynamic pressure is generated in the bearings 113 and 114 due to the enclosed grease. Due to this dynamic pressure, an insulating state and a conductive state are generated between the inner rings 113a and 114a and the rolling elements 113c and 114c, or between the outer rings 113b and 114b and the rolling elements 113c and 114c.
  • the electric charge accumulated in the rotor 20 When shifting from the insulated state to the conductive state, the electric charge accumulated in the rotor 20 instantaneously flows as a current from the inner ring 113a, 114a side to the outer ring 113b, 114b side. This current flow becomes an arc discharge generated in the ball bearing. Due to this arc discharge, the sliding surfaces of the inner rings 113a and 114a and the sliding surfaces of the outer rings 113b and 114b are damaged, and electric corrosion occurs.
  • the axial voltage is determined by contact between the inner rings 113a and 114a in contact with the rolling elements 113c and 114c, or the outer ring 113b in contact with the rolling elements 113c and 114c, Discharge occurs at the contact point 114b. This discharge damages the sliding surfaces of the inner rings 113a and 114a and the sliding surfaces of the outer rings 113b and 114b.
  • the rolling element 113c is composed mainly of an insulator such as ceramics or resin. Such electric corrosion countermeasures are known.
  • Patent Document 1 is shown as another electric corrosion countermeasure.
  • an insulator is provided between a sliding bearing and a bracket.
  • the current generated by the shaft voltage is cut off.
  • a brushless motor includes a stator having a stator core around which windings are wound, a rotating body having a permanent magnet in the circumferential direction facing the stator, and a rotating shaft penetrating the axis of the rotating body.
  • the bearing is a sliding bearing containing lubricating oil.
  • FIG. 1 is a longitudinal sectional view of a brushless motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a 2-2 cross-sectional view of the bearing in the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of another brushless motor according to Embodiment 1 of the present invention.
  • FIG. 4 is a 4-4 sectional view of the bearing according to the first embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view of the brushless motor according to the second embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of the brushless motor according to the third embodiment of the present invention.
  • FIG. 7 is a shaft voltage waveform diagram of the brushless motor according to the first embodiment of the present invention.
  • FIG. 8 is a diagram of shaft voltage waveforms of the brushless motor according to the second embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view of a conventional brushless motor.
  • FIG. 10 is a shaft voltage waveform
  • the brushless motor according to the embodiment of the present invention suppresses generation of a shaft voltage between the rotating part and the fixed part via the sliding bearing. Further, when the shaft voltage is generated, the brushless motor according to the embodiment of the present invention suppresses the current density of the current flowing from the rotating portion to the fixed portion within an appropriate range.
  • the brushless motor reduces the occurrence of electrolytic corrosion.
  • the conventional brushless motor has the following improvements. That is, ball bearings are used in the conventional brushless motor shown in FIG. When a ball bearing is used for a molded brushless motor, an axial voltage is generated between the inner rings 113a and 114a that are rotating parts and the outer rings 113b and 114b that are fixed parts with the rolling elements 113c and 114c interposed therebetween.
  • the rolling elements 113c and 114c made of an insulator are used, the following problems occur.
  • the material of the rolling elements 113c and 114c is changed from iron to ceramics. Since ceramics has high hardness, it is difficult to polish ceramics for use in the rolling elements 113c and 114c. Therefore, the ceramic rolling elements 113c and 114c take time to produce, and it is difficult to stably supply them.
  • the ceramic rolling elements 113c and 114c are very expensive compared to the iron rolling elements 113c and 114c.
  • the material of the rolling elements 113c and 114c is changed from iron to resin. In this case, the resin has lower load resistance and wear resistance than iron.
  • the rolling elements 113c and 114c made of resin are less reliable in terms of strength and life compared to the rolling elements 113c and 114c made of iron.
  • a sliding bearing having electrical conductivity is used as a bearing that supports a rotating shaft. According to this configuration, the brushless motor rotates while the rotating portion and the fixed portion are in a conductive state.
  • the induction voltage is not accumulated in the rotating part, so that the occurrence of arc discharge is suppressed between the rotating part and the fixed part.
  • Embodiment 1 A brushless motor according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a longitudinal sectional view of a brushless motor according to Embodiment 1 of the present invention.
  • the brushless motor shown in the figure is a molded brushless DC motor (hereinafter referred to as “molded motor”).
  • the mold motor 1 includes a stator 10 and a rotor 20 disposed inside the stator 10.
  • the stator 10 has a stator core 12 that is a stator core around which a winding 11 is wound. Specifically, the winding 11 is wound around the stator core 12 in a coil shape.
  • the stator 10 is configured integrally with a mold frame 13 molded with a resin material, particularly a thermosetting resin.
  • the rotor 20 has a rotating body 21 and a rotating shaft 22.
  • the rotating body 21 has a permanent magnet 23 in the circumferential direction facing the stator 10.
  • the rotating shaft 22 is attached through the axis of the rotating body 21.
  • the bearings are sliding bearings 102 and 3 containing lubricating oil.
  • the pair of plain bearings 102 and 3 support the rotor 20 with the rotor 20 interposed therebetween.
  • the plain bearings 102 and 3 are made of sintered metal obtained by sintering metal powder.
  • the sliding bearings 102 and 3 are impregnated with a lubricant in a sintered metal.
  • the sliding bearings 102 and 3 containing lubricating oil can be comprised with the growth cast iron impregnated with lubricating oil.
  • the pair of brackets 104 and 5 hold the sliding bearings 102 and 3 which are bearings.
  • the brackets 104 and 5 are made of conductive metal.
  • a galvanized steel plate, an aluminum die cast, a stainless steel plate or the like is used. More specifically, SECC or SECD can be used as the galvanized steel sheet.
  • ADC12 can be used as an aluminum die casting.
  • SUS304 or SUS430 can be used. Note that other metals can be used as long as similar characteristics can be obtained.
  • Mold motor 1 has a control board 6 on which an inverter circuit is mounted.
  • the high-frequency pulse controlled by this inverter circuit switches the current flowing through the winding 11.
  • FIG. 2 is a 2-2 cross-sectional view of the bearing in the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of another brushless motor according to Embodiment 1 of the present invention.
  • FIG. 4 is a 4-4 sectional view of the bearing according to the first embodiment of the present invention.
  • the plain bearing 3 is arranged so as to surround the rotating shaft 22.
  • an annular portion 5 a is provided in which a part of the bracket 5 protrudes convexly toward the rotating body 21 to form an annular wall surface.
  • the slide bearing 3 is fitted to the annular portion 5a and fixed with a tolerance.
  • the annular portions 4 b and 5 b can be formed by denting the surface of the brackets 104 and 5 on the side of the rotating body 21 around the rotating shaft 22.
  • Sliding bearings 102 and 3 are sintered metals obtained by compressing and sintering metal powder. Therefore, the plain bearings 102 and 3 are porous having a large number of pores inside. Since the pores are impregnated with lubricating oil, the sliding bearings 102 and 3 form a state where self-lubrication is possible. Further, since the slide bearings 102 and 3 are porous, the oil film pressure is lowered. Therefore, the film thickness of the oil film formed on the surfaces of the sliding bearings 102 and 3 is thinner than the height of the unevenness existing on the surfaces of the sliding bearings 102 and 3. As a result, the plain bearings 102 and 3 have electrical conductivity as a whole.
  • the rotating shaft 22 is electrically connected to the brackets 104 and 5 via the sliding bearings 102 and 3 in the stopped state.
  • the reason is as follows.
  • the plain bearings 102 and 3 that are sintered metal powders have electrical conductivity.
  • the rotating shaft 22 and the brackets 104 and 5 are in contact with each other through the sliding bearings 102 and 3 so that they are electrically connected.
  • the rotating shaft 22 rotates to cause a pump action, and the lubricating oil impregnated in the slide bearings 102 and 3 is sucked out.
  • the wedge 7 of the lubricating oil generated by the sucked lubricating oil enters between the sliding bearing 3 and the rotary shaft 22 and between the sliding bearing 3 and the annular portion 5b, and lubricates. Perform the action.
  • the rotating shaft 22 and the annular portions 4b and 5b which are a part of the brackets 104 and 5 are electrically connected by the sliding bearings 102 and 3 having conductivity.
  • the rotary shaft 22 and the annular portions 4a and 5a which are a part of the brackets 104 and 5 are electrically connected by the sliding bearings 102 and 3 having conductivity. That is, since the rotating shaft 22 as the rotating portion and the brackets 104 and 5 as the fixing portions are electrically connected via the sliding bearings 102 and 3 having electrical conductivity, it is possible to suppress the induction voltage from being accumulated in the rotating portion. . Therefore, it is possible to prevent arc discharge from occurring between the rotating part and the fixed part.
  • the contact area between the rotary shaft 22 and the sliding bearings 102 and 3 and between the sliding bearings 102 and 3 and the annular portions 4a and 5a can be made wider than that of the ball bearing. Therefore, when a current is passed from the rotating shaft 22 that is the rotating portion to the brackets 104 and 5 that are the fixed portions via the sliding bearings 102 and 3, the current density can be reduced. As a result, the contact surface between the rotating shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 4a and 5a can suppress the occurrence of damage due to energization. Similar effects can be obtained also on the contact surface between the rotary shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 4b and 5b.
  • FIG. 5 is a longitudinal sectional view of the brushless motor according to the second embodiment of the present invention.
  • the brushless motor shown in the figure is a molded motor as in the first embodiment.
  • the molded motor 31 includes a connection terminal 32 that is a first connection portion that electrically connects the outer peripheral surfaces of a pair of bearings.
  • connection terminal 32 that is a first connection portion that electrically connects the outer peripheral surfaces of a pair of bearings.
  • the sliding bearings 102 and 3 as a pair of bearings slide inside the annular portions 4a and 5a.
  • the outer peripheral surfaces 4c and 5c of the annular portions 4a and 5a are electrically connected by connection terminals 32.
  • connection terminal 32 a copper material having spring elasticity such as brass, phosphor bronze or beryllium copper can be used.
  • a copper material having spring elasticity is used, the deformation of the connection terminal 32 due to the pressure from the resin generated during molding can be suppressed. Moreover, the resistance value of the copper material is low.
  • the connection terminal 32 and the outer peripheral surfaces 4c and 5c are connected by a method such as fusing or welding using heat at the time of molding, caulking that is resistant to pressure.
  • the rotating shaft 22 and the annular portions 4a and 5a that are part of the brackets 104 and 5 have electrical conductivity.
  • the sliding bearings 102 and 3 are electrically connected. That is, since the rotating shaft 22 as the rotating portion and the brackets 104 and 5 as the fixing portions are electrically connected via the sliding bearings 102 and 3 having electrical conductivity, it is possible to suppress the induction voltage from being accumulated in the rotating portion. . Therefore, it is possible to prevent arc discharge from occurring between the rotating part and the fixed part.
  • the contact area between the rotary shaft 22 and the sliding bearings 102 and 3 and between the sliding bearings 102 and 3 and the annular portions 4a and 5a can be made wider than that of the ball bearing. Therefore, when a current is passed from the rotating shaft 22 that is the rotating portion to the brackets 104 and 5 that are the fixed portions via the sliding bearings 102 and 3, the current density can be reduced. As a result, the contact surface between the rotating shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 4a and 5a can suppress the occurrence of damage due to energization.
  • the annular portion 4 a that is a part of the bracket 104 and the annular portion 5 a that is a part of the bracket 5 are electrically connected via the connection terminal 32. Therefore, in addition to the electrical path of bracket 104-slide bearing 102-rotating shaft 22-slide bearing 3-bracket 5, an electrical path of bracket 104-annular portion 4a-connection terminal 32-annular portion 5a-bracket 5 is obtained.
  • the mold motor 31 constitutes an electrically connected closed loop of the bracket 104-slide bearing 102-rotary shaft 22-slide bearing 3-bracket 5-outer peripheral surface 5c-connecting terminal 32-outer peripheral surface 4c-bracket 104. .
  • the dielectric voltage between the rotating part and the fixed part can be suppressed to be lower, the occurrence of arc discharge can be suppressed.
  • FIG. 6 is a longitudinal sectional view of the brushless motor according to Embodiment 3 of the present invention.
  • the brushless motor shown in the figure is a molded motor as in the first embodiment.
  • the mold motor 41 includes a connection terminal 44 that is a second connection portion that electrically connects the pair of brackets 42 and 43. Prepare.
  • the bearings 45 and 46 are constituted by separate brackets 42 and 43 and annular portions 47 and 48, respectively.
  • the bracket 42 and the annular portion 47, and the bracket 43 and the annular portion 48 are electrically connected.
  • the annular portions 47 and 48 have sliding bearings 102 and 3 inside.
  • bracket 42 and the bracket 43 are electrically connected to each other at the surfaces 42a and 43a facing each other by the connection terminal 44.
  • connection terminal 44 a copper material having spring elasticity such as brass, phosphor bronze, and beryllium copper can be used.
  • a copper material having spring elasticity is used, deformation of the connection terminal 44 due to the pressure from the resin generated during molding can be suppressed. Moreover, the resistance value of the copper material is low.
  • the connection terminal 44 and the bracket surfaces 42a and 43a are connected by a method such as fusing or welding using heat at the time of molding, caulking having resistance to pressure.
  • the rotary shaft 22 and the annular portions 47 and 48 electrically connected to the brackets 42 and 43 have electrical conductivity.
  • the sliding bearings 102 and 3 are electrically connected. That is, since the rotating shaft 22 as the rotating portion and the brackets 42 and 43 as the fixing portions are electrically connected to each other through the sliding bearings 102 and 3 having electrical conductivity, it is possible to suppress the induction voltage from being accumulated in the rotating portion. . Therefore, it is possible to prevent arc discharge from occurring between the rotating part and the fixed part.
  • the contact area between the rotating shaft 22 and the sliding bearings 102 and 3 and between the sliding bearings 102 and 3 and the annular portions 47 and 48 can be made wider than that of the ball bearing. Therefore, when a current is passed from the rotating shaft 22 that is the rotating portion to the brackets 42 and 43 that are the fixed portions via the slide bearings 102 and 3, the current density can be reduced. As a result, the contact surface between the rotating shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 47 and 48 can suppress the occurrence of damage due to energization.
  • bracket 42 and the annular portion 48 electrically connected to the bracket 43 are electrically connected via the connection terminal 44. Therefore, in addition to the electrical path of bracket 42-annular portion 47-slide bearing 102-rotating shaft 22-slide bearing 3-annular portion 48-bracket 43, an electrical path of bracket 42-connection terminal 44-bracket 43 is obtained.
  • the mold motor 41 forms an electrically connected closed loop of bracket 42-bearing 45-rotating shaft 22-bearing 46-bracket 43-connection terminal 44-bracket 42.
  • the dielectric voltage between the rotating part and the fixed part can be suppressed to be lower, the occurrence of arc discharge can be suppressed.
  • the annular portion 47 and the bracket 42, and the annular portion 48 and the bracket 43 may be formed integrally, and the annular portion 47 may be electrically connected to the bracket 42 and the annular portion 48 to the bracket 43. The same effect can be obtained.
  • FIG. 10 shows a shaft voltage waveform at the time of rotating a brushless motor provided with a conventional ball bearing.
  • the vertical axis represents the shaft voltage
  • the horizontal axis represents the operating time of the brushless motor.
  • the vertical axis indicates the scale for each 1V.
  • the horizontal axis indicates a scale every 10 ⁇ s.
  • the display of 5 scales is described on both the vertical axis and the horizontal axis.
  • the brushless motor was rotated at 1000 r / m with a carrier frequency of 20 kHz.
  • a PWM current is passed through a winding that forms an electromagnetic coil.
  • a magnetic field is generated by the electromagnetic coil. Due to this magnetic field, an induced current flows in a conductor existing around the electromagnetic coil.
  • an induced voltage is generated.
  • the impedance is different between the rotating portion and the fixed portion, the induced voltage is different. This induced voltage difference causes a shaft voltage.
  • Viscoelastic lubricating oil is sealed inside the ball bearing.
  • a thin oil film is formed between the inner ring, the rolling element and the outer ring inside the ball bearing due to the action of viscoelasticity of the lubricating oil.
  • this thin oil film is interposed, the inner ring and the rolling element are in an insulating state, and the rolling element and the outer ring are in an insulated state.
  • FIG. 10 shows how the shaft voltage waveform fluctuates. As can be seen from FIG. 10, when a brushless motor equipped with a conventional ball bearing is rotated, a shaft voltage of about 50 V is generated at the peak-peak voltage.
  • FIG. 7 shows the shaft voltage waveform during rotation of the brushless motor according to Embodiment 1 of the present invention.
  • the vertical axis represents the shaft voltage
  • the horizontal axis represents the operating time of the brushless motor.
  • the vertical axis indicates the scale every 160 mV.
  • the horizontal axis indicates a scale every 10 ⁇ s.
  • the display for five scales is described on both the vertical axis and the horizontal axis.
  • the brushless motor was rotated at 1000 r / m with a carrier frequency of 20 kHz.
  • a PWM current is passed through a winding that forms an electromagnetic coil.
  • the shaft voltage can be suppressed. Specifically, the shaft voltage can be suppressed to about 1/20. The following can be considered as the reason.
  • the plain bearing according to the first embodiment of the present invention is made of sintered metal and impregnated with lubricating oil. Since the slide bearing is porous, the oil film pressure becomes low. Therefore, the film thickness of the oil film formed on the surface of the sliding bearing is thinner than the height of the unevenness existing on the surface of the sliding bearing.
  • the plain bearing is in direct contact with the rotating shaft and the bracket. As a result, the plain bearing has electrical conductivity as a whole. Therefore, whenever the brushless motor rotates, the plain bearing made of a good conductor rotates while electrically connecting the rotating shaft and the bracket. As a result, the induced voltage difference between the rotating part and the fixed part is eliminated, and the shaft voltage decreases.
  • the sliding bearing becomes a path for flowing the electric charge generated in the rotating part around the rotating shaft to the fixed part including the bracket.
  • the path of the rotating shaft and the bearing formed by the sliding bearing and the path of the bearing and the annular portion have a wider contact area than the path of the inner ring and rolling element and the rolling element and outer ring formed by the conventional ball bearing. Therefore, when the sliding bearing is used, the current density is reduced and the occurrence of electrolytic corrosion can be prevented.
  • FIG. 8 shows a shaft voltage waveform at the time of rotating the brushless motor according to the second embodiment of the present invention.
  • the vertical axis represents the shaft voltage
  • the horizontal axis represents the operating time of the brushless motor.
  • the vertical axis indicates the scale every 120 mV.
  • the horizontal axis indicates a scale every 10 ⁇ s.
  • the display of 5 scales is described on both the vertical axis and the horizontal axis.
  • the brushless motor was rotated at 1000 r / m with a carrier frequency of 20 kHz as in the comparative example and example 1.
  • a PWM current is passed through a winding that forms an electromagnetic coil.
  • the second embodiment is considered to have the following operational effects in addition to the operational effects of the first embodiment.
  • phase of the induced voltage generated in the path via the rotary shaft 22-slide bearing 102-annular portion 4a and the induced voltage generated in the path via the rotary shaft 22-slide bearing 3-annular portion 5a are inverted. Therefore, induced voltages having opposite phases are electrically connected using the connection terminals. As a result, both induced voltages cancel each other, and the shaft voltage can be reduced.
  • the application field of the present invention is not particularly limited, and can be widely used as a brushless DC mold motor with reduced electric corrosion of the bearing.
  • Molded motor 3 Sliding bearing (bearing) 4a annular portion 4b annular portion 4c outer peripheral surface 5 bracket 5a annular portion 5b annular portion 5c outer peripheral surface 10 stator 11 winding 12 stator core (stator core) DESCRIPTION OF SYMBOLS 13 Mold frame 20 Rotor 21 Rotating body 22 Rotating shaft 23 Permanent magnet 31 Mold motor 32 Connection terminal (1st connection part) 41 Molded motor 42 Bracket 42a Surface 43 Bracket 43a Surface 44 Connection terminal (second connection part) 45 Bearing 46 Bearing 47 Annular part 48 Annular part 102 Sliding bearing (bearing) 104 Bracket

Abstract

A molded motor (1) that is a brushless motor of the present invention is provided with: a stator (10) that has a stator core (12) around which a winding (11) is wound; a rotor (20) that includes a rotating body (21) facing the stator (10) and having a permanent magnet (23) in a circumferential direction, and a rotating shaft (22) passing through the axis of the rotating body (21); a pair of bearings (102, 3) that rotatably support the rotor (20) therebetween; and a pair of brackets (104, 5) that hold the pair of bearings (102, 3). The bearings (102, 3) are each a sliding bearing containing lubricating oil.

Description

ブラシレスモータBrushless motor
 本発明は、回転子が軸受で挟んで支持されたブラシレスモータに関する。 The present invention relates to a brushless motor in which a rotor is supported by being sandwiched between bearings.
 従来、ブラシレスモータは、電磁コイルを有する固定子と、磁石を有する回転子と、を備える。電磁コイルに電流が流れると、電磁コイルは磁界を生じる。ブラシレスモータにおいて、電磁コイルに発生する磁界の向きが切替えられると、磁石を有する回転子は回転する。電磁コイルは、固定子鉄心へ巻線を巻装して形成される。インバータ制御回路により巻線へ流される電流の向きが切替えられると、電磁コイルに発生する磁界は切替えられる。 Conventionally, a brushless motor includes a stator having an electromagnetic coil and a rotor having a magnet. When a current flows through the electromagnetic coil, the electromagnetic coil generates a magnetic field. In the brushless motor, when the direction of the magnetic field generated in the electromagnetic coil is switched, the rotor having the magnet rotates. The electromagnetic coil is formed by winding a winding around a stator core. When the direction of the current flowing through the winding is switched by the inverter control circuit, the magnetic field generated in the electromagnetic coil is switched.
 近年、ブラシレスモータは、高効率化が強く求められる。この要求を満たすために、ブラシレスモータの駆動電圧は、高電圧化される。あるいは、ブラシレスモータを制御するインバータ周波数は、高周波化される。インバータ周波数が高周波化されると、巻線から軸受を保持するブラケットなどの導電体へ、電圧が誘起される。導電体は、ブラケットや固定子鉄心、回転子などで構成される。導電体へ誘起された電圧の電位が変化すれば、軸受内で放電が発生する。この軸受内の放電により、軸受が電食されていた。 In recent years, brushless motors are strongly required to be highly efficient. In order to satisfy this requirement, the drive voltage of the brushless motor is increased. Alternatively, the inverter frequency for controlling the brushless motor is increased. When the inverter frequency is increased, a voltage is induced from a winding to a conductor such as a bracket that holds the bearing. The conductor is composed of a bracket, a stator core, a rotor, and the like. If the potential of the voltage induced on the conductor changes, a discharge occurs in the bearing. Due to the discharge in the bearing, the bearing was eroded.
 更に、ブラシレスモータには、低騒音化および低振動化が強く求められる。この要求を満たすために、ブラシレスモータは、モールド形成されてモールドモータとなる。モールドモータは、電磁コイルが樹脂で封止される。モールドモータは、騒音や振動に対する改善の効果は高い。しかし、一対の軸受を保持するブラケット間において、静電容量が生じる。この静電容量により、回転軸と固定子との間の電位差が大きくなる。電位差が大きくなると、電食が発生しやすくなっていた。なお、鋼板モータでは、このような静電容量は見られない。 Furthermore, low noise and vibration are strongly demanded for brushless motors. In order to satisfy this requirement, the brushless motor is molded to become a molded motor. In the molded motor, the electromagnetic coil is sealed with resin. Molded motors are highly effective in improving noise and vibration. However, capacitance is generated between the brackets holding the pair of bearings. This electrostatic capacity increases the potential difference between the rotating shaft and the stator. As the potential difference increased, electrolytic corrosion was likely to occur. Note that such a capacitance is not observed in the steel plate motor.
 このような電食を抑制するために提案されているものについて、図9を用いて説明する。 What has been proposed to suppress such electric corrosion will be described with reference to FIG.
 固定子10は、固定子鉄心であるステータコア12と、このステータコア12へ巻かれた巻線11とを有する。固定子10は、モールド成形されてモールドフレーム13を形成する。 The stator 10 has a stator core 12 that is a stator core and a winding 11 wound around the stator core 12. The stator 10 is molded to form a mold frame 13.
 回転子20は、回転体21と、回転体21の軸心に固定された回転軸22とを有する。回転体21は、ステータコア12に対向して回転自在に配される。回転軸22は、軸心方向において回転体21を挟んで支持する位置へ一対の軸受113、114を有する。軸受113、114は、ブラケット105、106を介してモールドフレーム13へ固定される。 The rotor 20 has a rotating body 21 and a rotating shaft 22 fixed to the axis of the rotating body 21. The rotating body 21 is disposed so as to be rotatable facing the stator core 12. The rotating shaft 22 has a pair of bearings 113 and 114 at positions where the rotating shaft 21 is supported with the rotating body 21 interposed therebetween in the axial direction. The bearings 113 and 114 are fixed to the mold frame 13 via the brackets 105 and 106.
 巻線11に電流が流されると、ステータコア12に磁界が発生する。発生した磁界により、回転子20は回転する。このとき、固定子10と回転子20に誘起される電圧は異なる。この結果、軸受113、114の回転部である内輪113a、114aと、軸受113、114の固定部である外輪113b、114bとの間に電位差が生じる。この回転部と固定部との間の電位差を「軸電圧」と定義する。 When a current is passed through the winding 11, a magnetic field is generated in the stator core 12. The rotor 20 is rotated by the generated magnetic field. At this time, voltages induced in the stator 10 and the rotor 20 are different. As a result, a potential difference is generated between the inner rings 113a and 114a that are the rotating parts of the bearings 113 and 114 and the outer rings 113b and 114b that are the fixed parts of the bearings 113 and 114. The potential difference between the rotating part and the fixed part is defined as “axial voltage”.
 なお、「回転部」とは、回転軸22を含み、この回転軸22と電気的に接続された部分をいう。また、「固定部」とは、固定子10を含み、この固定子10と電気的に接続された部分をいう。 Note that the “rotating part” refers to a part including the rotating shaft 22 and electrically connected to the rotating shaft 22. Further, the “fixed portion” refers to a portion that includes the stator 10 and is electrically connected to the stator 10.
 図9に示すように、玉軸受の場合、軸受113、114は、内輪113a、114aと外輪113b、114bとの間に転動体113c、114cが挟まれている。軸受113、114内には、グリスなどの潤滑剤が封入される。玉軸受に生じる軸電圧は、内輪側電位と外輪側電位との電位差である。内輪側電位とは、内輪113a、114aと内輪113a、114aに電気的に接続された導体部に生じる電位をいう。外輪側電位とは、外輪113b、114bと外輪113b、114bに、電気的に接続された導体部に生じる電位をいう。ブラシレスモータが停止していると、玉軸受は、内輪113a、114aと外輪113b、114bとが転動体113c、114cによって電気的に接続される。しかし、ブラシレスモータが回転すると、軸受113、114内には封入されたグリスによって動圧が生じる。この動圧により、内輪113a、114aと転動体113c、114cとの間、または、外輪113b、114bと転動体113c、114cとの間に絶縁状態と導通状態とが発生する。この絶縁状態から導通状態へ移行する際、回転子20に蓄積された電荷が、瞬間的に内輪113a、114a側から外輪113b、114b側へ電流として流れる。この電流の流れが、玉軸受内で発生するアーク放電となる。このアーク放電により、内輪113a、114aの摺動面と外輪113b、114bの摺動面とが損傷して電食が生じる。 As shown in FIG. 9, in the case of a ball bearing, in the bearings 113 and 114, rolling elements 113c and 114c are sandwiched between inner rings 113a and 114a and outer rings 113b and 114b. Lubricants such as grease are sealed in the bearings 113 and 114. The shaft voltage generated in the ball bearing is a potential difference between the inner ring side potential and the outer ring side potential. The inner ring side potential is a potential generated in the inner ring 113a, 114a and a conductor portion electrically connected to the inner ring 113a, 114a. The outer ring side potential is a potential generated in a conductor portion electrically connected to the outer rings 113b and 114b and the outer rings 113b and 114b. When the brushless motor is stopped, in the ball bearing, the inner rings 113a and 114a and the outer rings 113b and 114b are electrically connected by the rolling elements 113c and 114c. However, when the brushless motor rotates, dynamic pressure is generated in the bearings 113 and 114 due to the enclosed grease. Due to this dynamic pressure, an insulating state and a conductive state are generated between the inner rings 113a and 114a and the rolling elements 113c and 114c, or between the outer rings 113b and 114b and the rolling elements 113c and 114c. When shifting from the insulated state to the conductive state, the electric charge accumulated in the rotor 20 instantaneously flows as a current from the inner ring 113a, 114a side to the outer ring 113b, 114b side. This current flow becomes an arc discharge generated in the ball bearing. Due to this arc discharge, the sliding surfaces of the inner rings 113a and 114a and the sliding surfaces of the outer rings 113b and 114b are damaged, and electric corrosion occurs.
 転動体113c、114cが鉄などの導体を主原料として構成された場合、軸電圧は、転動体113c、114cと接する内輪113a、114aの接触箇所、または、転動体113c、114cと接する外輪113b、114bの接触箇所で放電する。この放電により、内輪113a、114aの摺動面と外輪113b、114bの摺動面とが損傷する。 When the rolling elements 113c and 114c are configured using a conductor such as iron as a main raw material, the axial voltage is determined by contact between the inner rings 113a and 114a in contact with the rolling elements 113c and 114c, or the outer ring 113b in contact with the rolling elements 113c and 114c, Discharge occurs at the contact point 114b. This discharge damages the sliding surfaces of the inner rings 113a and 114a and the sliding surfaces of the outer rings 113b and 114b.
 この摺動面の損傷を防ぐために、転動体113cは、セラミクスや樹脂などの絶縁体を主原料として構成される。このような電食対策が知られている。 In order to prevent the sliding surface from being damaged, the rolling element 113c is composed mainly of an insulator such as ceramics or resin. Such electric corrosion countermeasures are known.
 その他の電食対策として、軸受として滑り軸受を採用し、セラミクスや樹脂などの絶縁体で構成された滑り軸受を使用するものも知られている。 Other anti-corrosion measures that use a sliding bearing as a bearing and that use a sliding bearing made of an insulator such as ceramics or resin are also known.
 さらに、その他の電食対策として、特許文献1が示される。特許文献1は、滑り軸受とブラケットとの間に絶縁体を設ける。滑り軸受とブラケットとの間に絶縁体が設けられると、軸電圧によって生じる電流が遮断される。 Furthermore, Patent Document 1 is shown as another electric corrosion countermeasure. In Patent Document 1, an insulator is provided between a sliding bearing and a bracket. When an insulator is provided between the slide bearing and the bracket, the current generated by the shaft voltage is cut off.
実開平2-83652号公報Japanese Utility Model Publication No. 2-83651
 本発明に関するブラシレスモータは、巻線を巻装した固定子鉄心を有する固定子と、固定子に対向して周方向に永久磁石を有する回転体と、回転体の軸芯を貫通する回転軸とを含む回転子と、一対の回転子を回転自在に挟持する軸受と、一対の軸受を保持するブラケットと、を備える。軸受は、潤滑油を含んだ滑り軸受である。 A brushless motor according to the present invention includes a stator having a stator core around which windings are wound, a rotating body having a permanent magnet in the circumferential direction facing the stator, and a rotating shaft penetrating the axis of the rotating body. , A bearing that rotatably holds the pair of rotors, and a bracket that holds the pair of bearings. The bearing is a sliding bearing containing lubricating oil.
図1は本発明の実施の形態1におけるブラシレスモータの縦断面図である。FIG. 1 is a longitudinal sectional view of a brushless motor according to Embodiment 1 of the present invention. 図2は本発明の実施の形態1における軸受の2-2断面図である。FIG. 2 is a 2-2 cross-sectional view of the bearing in the first embodiment of the present invention. 図3は本発明の実施の形態1における他のブラシレスモータの縦断面図である。FIG. 3 is a longitudinal sectional view of another brushless motor according to Embodiment 1 of the present invention. 図4は本発明の実施の形態1における軸受の4-4断面図である。FIG. 4 is a 4-4 sectional view of the bearing according to the first embodiment of the present invention. 図5は本発明の実施の形態2におけるブラシレスモータの縦断面図である。FIG. 5 is a longitudinal sectional view of the brushless motor according to the second embodiment of the present invention. 図6は本発明の実施の形態3におけるブラシレスモータの縦断面図である。FIG. 6 is a longitudinal sectional view of the brushless motor according to the third embodiment of the present invention. 図7は本発明の実施の形態1におけるブラシレスモータの軸電圧波形図である。FIG. 7 is a shaft voltage waveform diagram of the brushless motor according to the first embodiment of the present invention. 図8は本発明の実施の形態2におけるブラシレスモータの軸電圧波形図である。FIG. 8 is a diagram of shaft voltage waveforms of the brushless motor according to the second embodiment of the present invention. 図9は従来のブラシレスモータの縦断面図である。FIG. 9 is a longitudinal sectional view of a conventional brushless motor. 図10は従来のブラシレスモータの軸電圧波形図である。FIG. 10 is a shaft voltage waveform diagram of a conventional brushless motor.
 本発明の実施の形態であるブラシレスモータは、滑り軸受を介して回転部と固定部との間に軸電圧が発生することを抑制する。また、軸電圧が発生した場合には、本発明の実施の形態であるブラシレスモータは、回転部から固定部へ流れる電流の電流密度を適正な範囲に抑制する。 The brushless motor according to the embodiment of the present invention suppresses generation of a shaft voltage between the rotating part and the fixed part via the sliding bearing. Further, when the shaft voltage is generated, the brushless motor according to the embodiment of the present invention suppresses the current density of the current flowing from the rotating portion to the fixed portion within an appropriate range.
 この結果、ブラシレスモータは、電食の発生が低減される。 As a result, the brushless motor reduces the occurrence of electrolytic corrosion.
 つまり、従来のブラシレスモータには、つぎの改善点があった。すなわち、図9に示す従来のブラシレスモータには、玉軸受が用いられている。モールドされたブラシレスモータへ玉軸受が用いられると、転動体113c、114cを挟んで回転部である内輪113a、114aと固定部である外輪113b、114bとの間に軸電圧が発生する。 That is, the conventional brushless motor has the following improvements. That is, ball bearings are used in the conventional brushless motor shown in FIG. When a ball bearing is used for a molded brushless motor, an axial voltage is generated between the inner rings 113a and 114a that are rotating parts and the outer rings 113b and 114b that are fixed parts with the rolling elements 113c and 114c interposed therebetween.
 例えば、絶縁体で構成された転動体113c、114cを使用すると、以下の問題が生じる。転動体113c、114cの材料が、鉄からセラミクスへ変更される。セラミクスは高硬度であるため、転動体113c、114cに用いるためにセラミクスを研磨することは困難である。よって、セラミクス製の転動体113c、114cは、生産に時間が掛かるようになり、安定した供給が難しくなる。 For example, when the rolling elements 113c and 114c made of an insulator are used, the following problems occur. The material of the rolling elements 113c and 114c is changed from iron to ceramics. Since ceramics has high hardness, it is difficult to polish ceramics for use in the rolling elements 113c and 114c. Therefore, the ceramic rolling elements 113c and 114c take time to produce, and it is difficult to stably supply them.
 また、鉄製の転動体113c、114cに比べて、セラミクス製の転動体113c、114cは大変高価である。その他、転動体113c、114cの材料が、鉄から樹脂へ変更される。この場合、樹脂は鉄に比べて耐荷重性や耐摩耗性が低い。 Also, the ceramic rolling elements 113c and 114c are very expensive compared to the iron rolling elements 113c and 114c. In addition, the material of the rolling elements 113c and 114c is changed from iron to resin. In this case, the resin has lower load resistance and wear resistance than iron.
 よって、樹脂製の転動体113c、114cは鉄製の転動体113c、114cに比べて、強度や寿命という点で信頼性が低下する。 Therefore, the rolling elements 113c and 114c made of resin are less reliable in terms of strength and life compared to the rolling elements 113c and 114c made of iron.
 あるいは、モールドモータへ上述した滑り軸受を用いる場合、回転軸と滑り軸受のどちらか一方を絶縁体で構成することが知られている。 Alternatively, when the above-described sliding bearing is used for a molded motor, it is known that either the rotating shaft or the sliding bearing is made of an insulator.
 しかしながら、絶縁体として樹脂を用いた場合、剛性が不足する。また、絶縁体としてセラミクスを用いた場合、加工が困難である。つまり、いずれの方法も、上述した改善点を解決する最適な方法ではなかった。 However, when resin is used as an insulator, rigidity is insufficient. Moreover, when ceramics is used as an insulator, processing is difficult. In other words, none of the methods is an optimal method for solving the above-described improvements.
 後述する本発明の実施の形態であるブラシレスモータには、回転軸を支持する軸受に電気伝導性を有する滑り軸受が用いられる。本構成によれば、回転部と固定部とが導通状態で、ブラシレスモータは回転する。 In a brushless motor that is an embodiment of the present invention to be described later, a sliding bearing having electrical conductivity is used as a bearing that supports a rotating shaft. According to this configuration, the brushless motor rotates while the rotating portion and the fixed portion are in a conductive state.
 その結果、回転部に誘導電圧が蓄積することがなくなるため、回転部と固定部との間でアーク放電の発生が抑制される。 As a result, the induction voltage is not accumulated in the rotating part, so that the occurrence of arc discharge is suppressed between the rotating part and the fixed part.
 以下、特に顕著な効果を発揮するモールドモータ、いわゆるブラシレスモールドモータを用いて説明する。 Hereinafter, a description will be given using a mold motor that exhibits particularly remarkable effects, a so-called brushless mold motor.
 なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。 The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
 また、背景技術で説明したものと同じ構成要素については、同一の符号を付し、説明を援用する。 Also, the same components as those described in the background art are denoted by the same reference numerals, and the description is incorporated.
 (実施の形態1)
 本発明の実施の形態1におけるブラシレスモータについて、図1から図4を用いて説明する。
(Embodiment 1)
A brushless motor according to Embodiment 1 of the present invention will be described with reference to FIGS.
 図1は、本発明の実施の形態1におけるブラシレスモータの縦断面図である。図に示すブラシレスモータは、モールド形成されたブラシレスDCモータ(以下、「モールドモータ」と記す。)である。 FIG. 1 is a longitudinal sectional view of a brushless motor according to Embodiment 1 of the present invention. The brushless motor shown in the figure is a molded brushless DC motor (hereinafter referred to as “molded motor”).
 モールドモータ1は、固定子10と、固定子10の内側に配された回転子20とを備える。 The mold motor 1 includes a stator 10 and a rotor 20 disposed inside the stator 10.
 固定子10は、巻線11を巻装した固定子鉄心であるステータコア12を有する。具体的には、巻線11は、ステータコア12の周りに対してコイル状に巻き回される。固定子10は、樹脂材、特に熱硬化性樹脂でモールド成形されたモールドフレーム13と一体化して構成される。 The stator 10 has a stator core 12 that is a stator core around which a winding 11 is wound. Specifically, the winding 11 is wound around the stator core 12 in a coil shape. The stator 10 is configured integrally with a mold frame 13 molded with a resin material, particularly a thermosetting resin.
 回転子20は、回転体21と回転軸22とを有する。回転体21は、固定子10に対向して周方向に永久磁石23を有する。回転軸22は、回転体21の軸心を貫通して取り付けられる。 The rotor 20 has a rotating body 21 and a rotating shaft 22. The rotating body 21 has a permanent magnet 23 in the circumferential direction facing the stator 10. The rotating shaft 22 is attached through the axis of the rotating body 21.
 軸受は、潤滑油を含んだ滑り軸受102、3である。一対の滑り軸受102、3は、回転子20を回転自在に挟んで支持する。滑り軸受102、3は、金属粉末を焼結させた焼結金属で構成される。滑り軸受102、3は、焼結金属に潤滑油が含浸される。また、潤滑油を含んだ滑り軸受102、3は、潤滑油を含浸した成長鋳鉄で構成できる。 The bearings are sliding bearings 102 and 3 containing lubricating oil. The pair of plain bearings 102 and 3 support the rotor 20 with the rotor 20 interposed therebetween. The plain bearings 102 and 3 are made of sintered metal obtained by sintering metal powder. The sliding bearings 102 and 3 are impregnated with a lubricant in a sintered metal. Moreover, the sliding bearings 102 and 3 containing lubricating oil can be comprised with the growth cast iron impregnated with lubricating oil.
 一対のブラケット104、5は、軸受である滑り軸受102、3を保持する。ブラケット104、5は、導電性を有する金属からなる。例えば、亜鉛めっき鋼板、アルミダイカスト、ステンレス鋼板などが用いられる。より具体的には、亜鉛めっき鋼板として、SECCやSECDを用いることができる。アルミダイカストとして、ADC12を用いることができる。ステンレス鋼板として、SUS304やSUS430を用いることができる。なお、同様の特性を得ることができれば、他の金属を用いることもできる。 The pair of brackets 104 and 5 hold the sliding bearings 102 and 3 which are bearings. The brackets 104 and 5 are made of conductive metal. For example, a galvanized steel plate, an aluminum die cast, a stainless steel plate or the like is used. More specifically, SECC or SECD can be used as the galvanized steel sheet. ADC12 can be used as an aluminum die casting. As the stainless steel plate, SUS304 or SUS430 can be used. Note that other metals can be used as long as similar characteristics can be obtained.
 モールドモータ1は、インバータ回路を搭載した制御基板6を内部に有する。このインバータ回路で制御された高周波パルスが、巻線11へ流す電流を切替える。 Mold motor 1 has a control board 6 on which an inverter circuit is mounted. The high-frequency pulse controlled by this inverter circuit switches the current flowing through the winding 11.
 更に、図1から図4を用いて滑り軸受102、3について、説明する。 Further, the sliding bearings 102 and 3 will be described with reference to FIGS.
 図2は、本発明の実施の形態1における軸受の2-2断面図である。図3は、本発明の実施の形態1における他のブラシレスモータの縦断面図である。図4は、本発明の実施の形態1における軸受の4-4断面図である。 FIG. 2 is a 2-2 cross-sectional view of the bearing in the first embodiment of the present invention. FIG. 3 is a longitudinal sectional view of another brushless motor according to Embodiment 1 of the present invention. FIG. 4 is a 4-4 sectional view of the bearing according to the first embodiment of the present invention.
 図2に示すように、滑り軸受3は、回転軸22を囲うように配される。滑り軸受3の周囲には、ブラケット5の一部を回転体21方向へ凸状に突き出して環状の壁面とした環状部5aが設けられる。滑り軸受3は、環状部5aに対して嵌め合い公差で固定される。図3および図4に示すように、環状部4b、5bは、ブラケット104、5の回転軸22を中心とした回転体21側の表面を窪ませて形成できる。 2, the plain bearing 3 is arranged so as to surround the rotating shaft 22. Around the slide bearing 3, an annular portion 5 a is provided in which a part of the bracket 5 protrudes convexly toward the rotating body 21 to form an annular wall surface. The slide bearing 3 is fitted to the annular portion 5a and fixed with a tolerance. As shown in FIGS. 3 and 4, the annular portions 4 b and 5 b can be formed by denting the surface of the brackets 104 and 5 on the side of the rotating body 21 around the rotating shaft 22.
 滑り軸受102、3は、金属粉末を圧縮成形し、焼結させた焼結金属である。よって、滑り軸受102、3は、内部に多数の気孔を有する多孔質である。この気孔に潤滑油が含浸されるため、滑り軸受102、3は自己給油ができる状態を形成する。また、滑り軸受102、3は、多孔質であるため、油膜圧力が低くなる。よって、滑り軸受102、3の表面に形成される油膜の膜厚は、滑り軸受102、3の表面に存在する凹凸の高さよりも薄くなる。この結果、滑り軸受102、3は、軸受全体として電気導電性を有する。 Sliding bearings 102 and 3 are sintered metals obtained by compressing and sintering metal powder. Therefore, the plain bearings 102 and 3 are porous having a large number of pores inside. Since the pores are impregnated with lubricating oil, the sliding bearings 102 and 3 form a state where self-lubrication is possible. Further, since the slide bearings 102 and 3 are porous, the oil film pressure is lowered. Therefore, the film thickness of the oil film formed on the surfaces of the sliding bearings 102 and 3 is thinner than the height of the unevenness existing on the surfaces of the sliding bearings 102 and 3. As a result, the plain bearings 102 and 3 have electrical conductivity as a whole.
 以上のように構成されたブラシレスモータについて、その作用を説明する。 The operation of the brushless motor configured as described above will be described.
 本発明の実施の形態1に係るブラシレスモータは、停止状態において、回転軸22が滑り軸受102、3を介してブラケット104、5と導通する。その理由は、以下の通りである。金属粉体の焼結体である滑り軸受102、3は、電気導電性を有する。この滑り軸受102、3を介して回転軸22とブラケット104、5とが接することで、電気的に接続される。 In the brushless motor according to the first embodiment of the present invention, the rotating shaft 22 is electrically connected to the brackets 104 and 5 via the sliding bearings 102 and 3 in the stopped state. The reason is as follows. The plain bearings 102 and 3 that are sintered metal powders have electrical conductivity. The rotating shaft 22 and the brackets 104 and 5 are in contact with each other through the sliding bearings 102 and 3 so that they are electrically connected.
 つぎに、動作状態において、回転軸22が回転することでポンプ作用が起こり、滑り軸受102、3内部に含浸された潤滑油が吸い出される。図4に示すように、この吸い出された潤滑油によって生じる潤滑油のくさび7が、滑り軸受3と回転軸22との間、および、滑り軸受3と環状部5bとの間に入り込み、潤滑作用を行う。 Next, in the operating state, the rotating shaft 22 rotates to cause a pump action, and the lubricating oil impregnated in the slide bearings 102 and 3 is sucked out. As shown in FIG. 4, the wedge 7 of the lubricating oil generated by the sucked lubricating oil enters between the sliding bearing 3 and the rotary shaft 22 and between the sliding bearing 3 and the annular portion 5b, and lubricates. Perform the action.
 なお、図1、図2に示すブラシレスモータにおいては、同様の作用が、滑り軸受3と回転軸22との間、および、滑り軸受3と環状部5aとの間に生じる。 In the brushless motor shown in FIGS. 1 and 2, the same action occurs between the sliding bearing 3 and the rotating shaft 22 and between the sliding bearing 3 and the annular portion 5a.
 この結果、回転軸22とブラケット104、5の一部である環状部4b、5bとは、導電性を有する滑り軸受102、3により電気的に接続される。あるいは、回転軸22とブラケット104、5の一部である環状部4a、5aとは、導電性を有する滑り軸受102、3により電気的に接続される。つまり、電気導電性を有する滑り軸受102、3を介して、回転部である回転軸22と固定部であるブラケット104、5とが導通するため、回転部に誘導電圧が蓄積することを抑制できる。よって、回転部と固定部との間でアーク放電が発生することを防止できる。 As a result, the rotating shaft 22 and the annular portions 4b and 5b which are a part of the brackets 104 and 5 are electrically connected by the sliding bearings 102 and 3 having conductivity. Alternatively, the rotary shaft 22 and the annular portions 4a and 5a which are a part of the brackets 104 and 5 are electrically connected by the sliding bearings 102 and 3 having conductivity. That is, since the rotating shaft 22 as the rotating portion and the brackets 104 and 5 as the fixing portions are electrically connected via the sliding bearings 102 and 3 having electrical conductivity, it is possible to suppress the induction voltage from being accumulated in the rotating portion. . Therefore, it is possible to prevent arc discharge from occurring between the rotating part and the fixed part.
 また、回転軸22と滑り軸受102、3および、滑り軸受102、3と環状部4a、5aとの接触面積は、玉軸受に比べて広く取ることができる。よって、回転部である回転軸22から滑り軸受102、3を介して固定部であるブラケット104、5へ電流を流す場合、電流密度を小さくできる。その結果、回転軸22と滑り軸受102、3との接触面および、滑り軸受102、3と環状部4a、5aとの接触面は、通電による損傷の発生を抑制できる。同様の作用効果は、回転軸22と滑り軸受102、3との接触面および、滑り軸受102、3と環状部4b、5bとの接触面でも得ることができる。 Further, the contact area between the rotary shaft 22 and the sliding bearings 102 and 3 and between the sliding bearings 102 and 3 and the annular portions 4a and 5a can be made wider than that of the ball bearing. Therefore, when a current is passed from the rotating shaft 22 that is the rotating portion to the brackets 104 and 5 that are the fixed portions via the sliding bearings 102 and 3, the current density can be reduced. As a result, the contact surface between the rotating shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 4a and 5a can suppress the occurrence of damage due to energization. Similar effects can be obtained also on the contact surface between the rotary shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 4b and 5b.
 なお、上記環状部4a、5aを別部材で作成して、環状部4a、5aとブラケット104、5とが電気的に接続される構成としても、同様の効果を得ることができる。 In addition, the same effect can be acquired also if the said cyclic | annular parts 4a and 5a are created with another member, and the cyclic | annular parts 4a and 5a and the brackets 104 and 5 are electrically connected.
 (実施の形態2)
 図5は、本発明の実施の形態2におけるブラシレスモータの縦断面図である。図に示すブラシレスモータは、実施の形態1と同様、モールドモータである。
(Embodiment 2)
FIG. 5 is a longitudinal sectional view of the brushless motor according to the second embodiment of the present invention. The brushless motor shown in the figure is a molded motor as in the first embodiment.
 なお、実施の形態1で説明したものと同じ構成要素については、同一の符号を付し、説明を援用する。 In addition, about the same component as what was demonstrated in Embodiment 1, the same code | symbol is attached | subjected and description is used.
 図5に示すように、モールドモータ31は、実施の形態1で説明したモールドモータ1に加えて、一対の軸受の外周面間を電気的に接続する第1の接続部である接続端子32を備える。詳述すると、一対の軸受である滑り軸受102、3は、環状部4a、5aの内部を摺動する。この環状部4a、5aの外周面4c、5cは、接続端子32で電気的に接続される。 As shown in FIG. 5, in addition to the molded motor 1 described in the first embodiment, the molded motor 31 includes a connection terminal 32 that is a first connection portion that electrically connects the outer peripheral surfaces of a pair of bearings. Prepare. Specifically, the sliding bearings 102 and 3 as a pair of bearings slide inside the annular portions 4a and 5a. The outer peripheral surfaces 4c and 5c of the annular portions 4a and 5a are electrically connected by connection terminals 32.
 接続端子32としては、真鍮、燐青銅やベリリウム銅などのばね弾性を有する銅材料が使用できる。ばね弾性を有する銅材料を用いた場合、モールド成形時に生じる樹脂からの圧力に起因する接続端子32の変形を抑制できる。しかも、銅材料は抵抗値も低い。また、接続端子32と外周面4c、5cとの接続は、モールド成形時の熱を用いる、圧力に耐性を有するカシメを用いる、ヒュージング、溶接などの方法で接続される。 As the connection terminal 32, a copper material having spring elasticity such as brass, phosphor bronze or beryllium copper can be used. When a copper material having spring elasticity is used, the deformation of the connection terminal 32 due to the pressure from the resin generated during molding can be suppressed. Moreover, the resistance value of the copper material is low. The connection terminal 32 and the outer peripheral surfaces 4c and 5c are connected by a method such as fusing or welding using heat at the time of molding, caulking that is resistant to pressure.
 以上のように構成されたブラシレスモータについて、その作用を説明する。 The operation of the brushless motor configured as described above will be described.
 本発明の実施の形態2に係るブラシレスモータは、実施の形態1で説明したように、回転軸22と、ブラケット104、5の一部である環状部4a、5aとは、電気導電性を有する滑り軸受102、3により電気的に接続される。つまり、電気導電性を有する滑り軸受102、3を介して、回転部である回転軸22と固定部であるブラケット104、5とが導通するため、回転部に誘導電圧が蓄積することを抑制できる。よって、回転部と固定部との間でアーク放電が発生することを防止できる。 In the brushless motor according to the second embodiment of the present invention, as described in the first embodiment, the rotating shaft 22 and the annular portions 4a and 5a that are part of the brackets 104 and 5 have electrical conductivity. The sliding bearings 102 and 3 are electrically connected. That is, since the rotating shaft 22 as the rotating portion and the brackets 104 and 5 as the fixing portions are electrically connected via the sliding bearings 102 and 3 having electrical conductivity, it is possible to suppress the induction voltage from being accumulated in the rotating portion. . Therefore, it is possible to prevent arc discharge from occurring between the rotating part and the fixed part.
 また、回転軸22と滑り軸受102、3および、滑り軸受102、3と環状部4a、5aとの接触面積は、玉軸受に比べて広く取ることができる。よって、回転部である回転軸22から滑り軸受102、3を介して固定部であるブラケット104、5へ電流を流す場合、電流密度を小さくできる。その結果、回転軸22と滑り軸受102、3との接触面および、滑り軸受102、3と環状部4a、5aとの接触面は、通電による損傷の発生を抑制できる。 Further, the contact area between the rotary shaft 22 and the sliding bearings 102 and 3 and between the sliding bearings 102 and 3 and the annular portions 4a and 5a can be made wider than that of the ball bearing. Therefore, when a current is passed from the rotating shaft 22 that is the rotating portion to the brackets 104 and 5 that are the fixed portions via the sliding bearings 102 and 3, the current density can be reduced. As a result, the contact surface between the rotating shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 4a and 5a can suppress the occurrence of damage due to energization.
 さらに、ブラケット104の一部である環状部4aとブラケット5の一部である環状部5aとは、接続端子32を介して電気的に接続される。よって、ブラケット104-滑り軸受102-回転軸22-滑り軸受3-ブラケット5という電気的経路に加え、ブラケット104-環状部4a-接続端子32-環状部5a-ブラケット5という電気的経路を得ることができる。つまり、モールドモータ31は、ブラケット104-滑り軸受102-回転軸22-滑り軸受3-ブラケット5-外周面5c-接続端子32-外周面4c-ブラケット104という電気的に接続された閉ループを構成する。その結果、回転部と固定部との間における誘電電圧がより低く抑えられるため、アーク放電が発生することを抑制できる。 Furthermore, the annular portion 4 a that is a part of the bracket 104 and the annular portion 5 a that is a part of the bracket 5 are electrically connected via the connection terminal 32. Therefore, in addition to the electrical path of bracket 104-slide bearing 102-rotating shaft 22-slide bearing 3-bracket 5, an electrical path of bracket 104-annular portion 4a-connection terminal 32-annular portion 5a-bracket 5 is obtained. Can do. That is, the mold motor 31 constitutes an electrically connected closed loop of the bracket 104-slide bearing 102-rotary shaft 22-slide bearing 3-bracket 5-outer peripheral surface 5c-connecting terminal 32-outer peripheral surface 4c-bracket 104. . As a result, since the dielectric voltage between the rotating part and the fixed part can be suppressed to be lower, the occurrence of arc discharge can be suppressed.
 なお、上記環状部4a、5aを別部材で作成して、環状部4a、5aがブラケット104、5へ電気的に接続される構成としても、同様の効果を得ることができる。 In addition, the same effect can be acquired also if the said cyclic | annular parts 4a and 5a are created with another member, and the cyclic | annular parts 4a and 5a are electrically connected to the brackets 104 and 5. FIG.
 (実施の形態3)
 図6は、本発明の実施の形態3におけるブラシレスモータの縦断面図である。図に示すブラシレスモータは、実施の形態1と同様、モールドモータである。
(Embodiment 3)
FIG. 6 is a longitudinal sectional view of the brushless motor according to Embodiment 3 of the present invention. The brushless motor shown in the figure is a molded motor as in the first embodiment.
 なお、実施の形態1で説明したものと同じ構成要素については、同一の符号を付し、説明を援用する。 In addition, about the same component as what was demonstrated in Embodiment 1, the same code | symbol is attached | subjected and description is used.
 図6に示すように、モールドモータ41は、実施の形態1で説明したモールドモータ1に加えて、一対のブラケット42、43間を電気的に接続する第2の接続部である接続端子44を備える。 As shown in FIG. 6, in addition to the mold motor 1 described in the first embodiment, the mold motor 41 includes a connection terminal 44 that is a second connection portion that electrically connects the pair of brackets 42 and 43. Prepare.
 また、モールドモータ41において、軸受45、46は、ブラケット42、43と環状部47、48とが別体で構成される。ブラケット42と環状部47、ブラケット43と環状部48とは、電気的に接続される。環状部47、48は、内部に滑り軸受102、3を有する。 Also, in the molded motor 41, the bearings 45 and 46 are constituted by separate brackets 42 and 43 and annular portions 47 and 48, respectively. The bracket 42 and the annular portion 47, and the bracket 43 and the annular portion 48 are electrically connected. The annular portions 47 and 48 have sliding bearings 102 and 3 inside.
 本実施の形態3では、ブラケット42とブラケット43とは、互いに向い合う表面42a、43aが接続端子44によって電気的に接続される。 In the third embodiment, the bracket 42 and the bracket 43 are electrically connected to each other at the surfaces 42a and 43a facing each other by the connection terminal 44.
 接続端子44としては、真鍮、燐青銅やベリリウム銅などのばね弾性を有する銅材料が使用できる。ばね弾性を有する銅材料を用いた場合、モールド成形時に生じる樹脂からの圧力に起因する接続端子44の変形を抑制できる。しかも、銅材料は抵抗値も低い。また、接続端子44とブラケットの表面42a、43aとの接続は、モールド成形時の熱を用いる、圧力に耐性を有するカシメを用いる、ヒュージング、溶接などの方法で接続される。 As the connection terminal 44, a copper material having spring elasticity such as brass, phosphor bronze, and beryllium copper can be used. When a copper material having spring elasticity is used, deformation of the connection terminal 44 due to the pressure from the resin generated during molding can be suppressed. Moreover, the resistance value of the copper material is low. Further, the connection terminal 44 and the bracket surfaces 42a and 43a are connected by a method such as fusing or welding using heat at the time of molding, caulking having resistance to pressure.
 以上のように構成されたブラシレスモータについて、その作用を説明する。 The operation of the brushless motor configured as described above will be described.
 本発明の実施の形態3に係るブラシレスモータは、実施の形態1と同様に、回転軸22と、ブラケット42、43と電気的に接続された環状部47、48とは、電気導電性を有する滑り軸受102、3により電気的に接続される。つまり、電気導電性を有する滑り軸受102、3を介して、回転部である回転軸22と固定部であるブラケット42、43とが導通するため、回転部に誘導電圧が蓄積することを抑制できる。よって、回転部と固定部との間でアーク放電が発生することを防止できる。 In the brushless motor according to the third embodiment of the present invention, as in the first embodiment, the rotary shaft 22 and the annular portions 47 and 48 electrically connected to the brackets 42 and 43 have electrical conductivity. The sliding bearings 102 and 3 are electrically connected. That is, since the rotating shaft 22 as the rotating portion and the brackets 42 and 43 as the fixing portions are electrically connected to each other through the sliding bearings 102 and 3 having electrical conductivity, it is possible to suppress the induction voltage from being accumulated in the rotating portion. . Therefore, it is possible to prevent arc discharge from occurring between the rotating part and the fixed part.
 また、回転軸22と滑り軸受102、3および、滑り軸受102、3と環状部47、48との接触面積は、玉軸受に比べて広く取ることができる。よって、回転部である回転軸22から滑り軸受102、3を介して固定部であるブラケット42、43へ電流を流す場合、電流密度を小さくできる。その結果、回転軸22と滑り軸受102、3との接触面および、滑り軸受102、3と環状部47、48との接触面は、通電による損傷の発生を抑制できる。 Further, the contact area between the rotating shaft 22 and the sliding bearings 102 and 3 and between the sliding bearings 102 and 3 and the annular portions 47 and 48 can be made wider than that of the ball bearing. Therefore, when a current is passed from the rotating shaft 22 that is the rotating portion to the brackets 42 and 43 that are the fixed portions via the slide bearings 102 and 3, the current density can be reduced. As a result, the contact surface between the rotating shaft 22 and the sliding bearings 102 and 3 and the contact surface between the sliding bearings 102 and 3 and the annular portions 47 and 48 can suppress the occurrence of damage due to energization.
 さらに、ブラケット42と電気的に接続された環状部47と、ブラケット43と電気的に接続された環状部48とは、接続端子44を介して電気的に接続される。よって、ブラケット42-環状部47-滑り軸受102-回転軸22-滑り軸受3-環状部48-ブラケット43という電気的経路に加え、ブラケット42-接続端子44-ブラケット43という電気的経路を得ることができる。つまり、モールドモータ41は、ブラケット42-軸受45-回転軸22-軸受46-ブラケット43-接続端子44-ブラケット42という電気的に接続された閉ループを構成する。その結果、回転部と固定部との間における誘電電圧がより低く抑えられるため、アーク放電が発生することを抑制できる。 Furthermore, the annular portion 47 electrically connected to the bracket 42 and the annular portion 48 electrically connected to the bracket 43 are electrically connected via the connection terminal 44. Therefore, in addition to the electrical path of bracket 42-annular portion 47-slide bearing 102-rotating shaft 22-slide bearing 3-annular portion 48-bracket 43, an electrical path of bracket 42-connection terminal 44-bracket 43 is obtained. Can do. That is, the mold motor 41 forms an electrically connected closed loop of bracket 42-bearing 45-rotating shaft 22-bearing 46-bracket 43-connection terminal 44-bracket 42. As a result, since the dielectric voltage between the rotating part and the fixed part can be suppressed to be lower, the occurrence of arc discharge can be suppressed.
 なお、上記環状部47とブラケット42および、環状部48とブラケット43とを各々一体で作成して、環状部47がブラケット42および、環状部48がブラケット43へ電気的に接続される構成としても、同様の効果を得ることができる。 The annular portion 47 and the bracket 42, and the annular portion 48 and the bracket 43 may be formed integrally, and the annular portion 47 may be electrically connected to the bracket 42 and the annular portion 48 to the bracket 43. The same effect can be obtained.
 (比較例)
 従来の玉軸受を備えたブラシレスモータを回転させた場合について、その回転時の軸電圧波形を図10に示す。図中、縦軸は軸電圧を示し、横軸はブラシレスモータの動作時間を示す。縦軸は、1V毎に目盛りを示す。横軸は、10μs毎に目盛りを示す。なお、図10を分かりやすくするために、縦軸、横軸とも5目盛り分の表示を記載する。
(Comparative example)
FIG. 10 shows a shaft voltage waveform at the time of rotating a brushless motor provided with a conventional ball bearing. In the figure, the vertical axis represents the shaft voltage, and the horizontal axis represents the operating time of the brushless motor. The vertical axis indicates the scale for each 1V. The horizontal axis indicates a scale every 10 μs. In addition, in order to make FIG. 10 easy to understand, the display of 5 scales is described on both the vertical axis and the horizontal axis.
 ブラシレスモータは、キャリア周波数を20kHzとして、1000r/mで回転された。ブラシレスモータにおいて、電磁コイルをなす巻線にはPWM電流が流される。PWM電流が流されると、電磁コイルで磁界が発生する。この磁界により、電磁コイルの周辺に存在する導体には、誘導電流が流れる。導体に誘導電流が流れると、誘導電圧が発生する。このとき、回転部と固定部とでは、インピーダンスが異なるために誘起電圧が異なる。この誘起電圧差が要因となって、軸電圧が発生する。 The brushless motor was rotated at 1000 r / m with a carrier frequency of 20 kHz. In a brushless motor, a PWM current is passed through a winding that forms an electromagnetic coil. When the PWM current flows, a magnetic field is generated by the electromagnetic coil. Due to this magnetic field, an induced current flows in a conductor existing around the electromagnetic coil. When an induced current flows through the conductor, an induced voltage is generated. At this time, since the impedance is different between the rotating portion and the fixed portion, the induced voltage is different. This induced voltage difference causes a shaft voltage.
 玉軸受の内部には、粘弾性を有する潤滑油が封入されている。回転軸が回転すると、潤滑油の粘弾性の作用により、玉軸受の内部には、内輪-転動体-外輪間に薄い油膜が生じる。この薄い油膜が介在すると、内輪と転動体間、転動体と外輪間が各々絶縁状態となる。 玉 Viscoelastic lubricating oil is sealed inside the ball bearing. When the rotating shaft rotates, a thin oil film is formed between the inner ring, the rolling element and the outer ring inside the ball bearing due to the action of viscoelasticity of the lubricating oil. When this thin oil film is interposed, the inner ring and the rolling element are in an insulating state, and the rolling element and the outer ring are in an insulated state.
 絶縁状態は薄い油膜で支持されている。よって、軸電圧が高くなり、この薄い油膜で絶縁状態を支えきれなくなると、放電現象が発生する。この絶縁状態と放電現象とが繰り返されると、軸電圧波形は激しく変動する。この軸電圧波形が変動する様子を図10に示す。図10から明らかなように、従来の玉軸受を備えたブラシレスモータを回転させた場合、ピーク-ピーク電圧で50V程度の軸電圧が発生していることがわかる。 ) The insulation state is supported by a thin oil film. Therefore, if the shaft voltage becomes high and the insulation state cannot be supported by this thin oil film, a discharge phenomenon occurs. When this insulation state and the discharge phenomenon are repeated, the shaft voltage waveform fluctuates drastically. FIG. 10 shows how the shaft voltage waveform fluctuates. As can be seen from FIG. 10, when a brushless motor equipped with a conventional ball bearing is rotated, a shaft voltage of about 50 V is generated at the peak-peak voltage.
 このように激しい軸電圧の変動により、玉軸受の内部には、短時間で電食が発生する。電食により、玉軸受の内部表面が荒らされるため、騒音が発生する。 電 As a result of such intense shaft voltage fluctuations, electrolytic corrosion occurs within the ball bearing in a short time. Since the inner surface of the ball bearing is roughened by electric corrosion, noise is generated.
 (実施例1)
 本発明の実施の形態1に係るブラシレスモータを回転させた場合について、その回転時の軸電圧波形を図7に示す。図中、縦軸は軸電圧を示し、横軸はブラシレスモータの動作時間を示す。縦軸は、160mV毎に目盛りを示す。横軸は、10μs毎に目盛りを示す。なお、図7を分かりやすくするために、縦軸、横軸とも5目盛り分の表示を記載する。ブラシレスモータは、キャリア周波数を20kHzとして、1000r/mで回転された。ブラシレスモータにおいて、電磁コイルをなす巻線にはPWM電流が流される。PWM電流が流されると、電磁コイルで磁界が発生する。この磁界により、電磁コイルの周辺に存在する導体には、誘導電流が流れる。導体に誘導電流が流れると、誘導電圧が発生する。図7から明らかなように、本発明の実施の形態1に係るブラシレスモータを回転させた場合、ピーク-ピーク電圧で2.0V程度の軸電圧が発生していることがわかる。
Example 1
FIG. 7 shows the shaft voltage waveform during rotation of the brushless motor according to Embodiment 1 of the present invention. In the figure, the vertical axis represents the shaft voltage, and the horizontal axis represents the operating time of the brushless motor. The vertical axis indicates the scale every 160 mV. The horizontal axis indicates a scale every 10 μs. In addition, in order to make FIG. 7 easy to understand, the display for five scales is described on both the vertical axis and the horizontal axis. The brushless motor was rotated at 1000 r / m with a carrier frequency of 20 kHz. In a brushless motor, a PWM current is passed through a winding that forms an electromagnetic coil. When the PWM current flows, a magnetic field is generated by the electromagnetic coil. Due to this magnetic field, an induced current flows in a conductor existing around the electromagnetic coil. When an induced current flows through the conductor, an induced voltage is generated. As can be seen from FIG. 7, when the brushless motor according to the first embodiment of the present invention is rotated, an axial voltage of about 2.0 V is generated at the peak-peak voltage.
 上記比較例と異なり、本発明の実施の形態1に係る滑り軸受を用いた場合、軸電圧を抑制できる。具体的には、軸電圧が20分の1程度まで抑制できる。その理由として、以下の内容が考えられる。 Unlike the above comparative example, when the sliding bearing according to the first embodiment of the present invention is used, the shaft voltage can be suppressed. Specifically, the shaft voltage can be suppressed to about 1/20. The following can be considered as the reason.
 すなわち、本願発明の実施の形態1に係る滑り軸受は、焼結金属からなり、潤滑油が含浸されている。滑り軸受は、多孔質であるため、油膜圧力が低くなる。よって、滑り軸受の表面に形成される油膜の膜厚は、滑り軸受の表面に存在する凹凸の高さよりも薄くなる。滑り軸受は、直接、回転軸やブラケットと接触することになる。この結果、滑り軸受は、軸受全体として電気導電性を有する。従って、ブラシレスモータが回転すると、常に、良導体の滑り軸受は、回転軸とブラケットとを電気的に接続しながら回転する。この結果、回転部と固定部との誘起電圧差が解消され、軸電圧は低下する。 That is, the plain bearing according to the first embodiment of the present invention is made of sintered metal and impregnated with lubricating oil. Since the slide bearing is porous, the oil film pressure becomes low. Therefore, the film thickness of the oil film formed on the surface of the sliding bearing is thinner than the height of the unevenness existing on the surface of the sliding bearing. The plain bearing is in direct contact with the rotating shaft and the bracket. As a result, the plain bearing has electrical conductivity as a whole. Therefore, whenever the brushless motor rotates, the plain bearing made of a good conductor rotates while electrically connecting the rotating shaft and the bracket. As a result, the induced voltage difference between the rotating part and the fixed part is eliminated, and the shaft voltage decreases.
 さらに、本発明の実施の形態1に係る滑り軸受を用いた場合、電食の発生を防止できる。その理由として、以下の内容が考えられる。 Furthermore, when the sliding bearing according to Embodiment 1 of the present invention is used, the occurrence of electrolytic corrosion can be prevented. The following can be considered as the reason.
 すなわち、該滑り軸受は、回転軸を中心とする回転部で生じた電荷を、ブラケットを含む固定部へ流すための経路となる。該滑り軸受が形成する回転軸と軸受および、軸受と環状部という経路は、従来の玉軸受が形成する内輪と転動体および、転動体と外輪という経路に比べ、広い接触面積を有する。よって、該滑り軸受を用いると、電流密度が小さくなり、電食の発生が防止できる。 That is, the sliding bearing becomes a path for flowing the electric charge generated in the rotating part around the rotating shaft to the fixed part including the bracket. The path of the rotating shaft and the bearing formed by the sliding bearing and the path of the bearing and the annular portion have a wider contact area than the path of the inner ring and rolling element and the rolling element and outer ring formed by the conventional ball bearing. Therefore, when the sliding bearing is used, the current density is reduced and the occurrence of electrolytic corrosion can be prevented.
 (実施例2)
 本発明の実施の形態2に係るブラシレスモータを回転させた場合について、その回転時の軸電圧波形を図8に示す。図中、縦軸は軸電圧を示し、横軸はブラシレスモータの動作時間を示す。縦軸は、120mV毎に目盛りを示す。横軸は、10μs毎に目盛りを示す。なお、図8を分かりやすくするために、縦軸、横軸とも5目盛り分の表示を記載する。ブラシレスモータは、比較例、実施例1と同様、キャリア周波数を20kHzとして、1000r/mで回転された。ブラシレスモータにおいて、電磁コイルをなす巻線にはPWM電流が流される。PWM電流が流されると、電磁コイルで磁界が発生する。この磁界により、電磁コイルの周辺に存在する導体には、誘導電流が流れる。導体に誘導電流が流れると、誘導電圧が発生する。図8から明らかなように、本発明の実施の形態2に係るブラシレスモータを回転させた場合、ピーク-ピーク電圧で1.5V程度の軸電圧が発生していることがわかる。上記実施例1に加え、本発明の実施の形態2に係る滑り軸受を用いた場合、さらに軸電圧の発生を抑制できる。具体的には、軸電圧が4分の3程度まで抑制できる。
(Example 2)
FIG. 8 shows a shaft voltage waveform at the time of rotating the brushless motor according to the second embodiment of the present invention. In the figure, the vertical axis represents the shaft voltage, and the horizontal axis represents the operating time of the brushless motor. The vertical axis indicates the scale every 120 mV. The horizontal axis indicates a scale every 10 μs. In addition, in order to make FIG. 8 easy to understand, the display of 5 scales is described on both the vertical axis and the horizontal axis. The brushless motor was rotated at 1000 r / m with a carrier frequency of 20 kHz as in the comparative example and example 1. In a brushless motor, a PWM current is passed through a winding that forms an electromagnetic coil. When the PWM current flows, a magnetic field is generated by the electromagnetic coil. Due to this magnetic field, an induced current flows in a conductor existing around the electromagnetic coil. When an induced current flows through the conductor, an induced voltage is generated. As is apparent from FIG. 8, when the brushless motor according to the second embodiment of the present invention is rotated, an axial voltage of about 1.5 V is generated at the peak-peak voltage. In addition to Example 1 described above, when the sliding bearing according to Embodiment 2 of the present invention is used, generation of shaft voltage can be further suppressed. Specifically, the shaft voltage can be suppressed to about 3/4.
 本実施例2は、上記実施例1の作用効果に加え、以下に示す作用効果があるものと考える。 The second embodiment is considered to have the following operational effects in addition to the operational effects of the first embodiment.
 すなわち、回転軸22-滑り軸受102-環状部4aを介する経路へ生じる誘起電圧と、回転軸22-滑り軸受3-環状部5aを介する経路へ生じる誘起電圧とは、位相が反転している。よって、相反する位相を有する誘起電圧を、接続端子を用いて電気的に接続する。この結果、双方の誘起電圧は打消し合い、軸電圧を低下できる。 That is, the phase of the induced voltage generated in the path via the rotary shaft 22-slide bearing 102-annular portion 4a and the induced voltage generated in the path via the rotary shaft 22-slide bearing 3-annular portion 5a are inverted. Therefore, induced voltages having opposite phases are electrically connected using the connection terminals. As a result, both induced voltages cancel each other, and the shaft voltage can be reduced.
 本発明の利用分野は特に制限はなく、軸受けの電食が低減されたブラシレスDCモールドモータとして広範囲に利用することができる。 The application field of the present invention is not particularly limited, and can be widely used as a brushless DC mold motor with reduced electric corrosion of the bearing.
 1  モールドモータ
 3  滑り軸受(軸受)
 4a  環状部
 4b  環状部
 4c  外周面
 5  ブラケット
 5a  環状部
 5b  環状部
 5c  外周面
 10  固定子
 11  巻線
 12  ステータコア(固定子鉄心)
 13  モールドフレーム
 20  回転子
 21  回転体
 22  回転軸
 23  永久磁石
 31  モールドモータ
 32  接続端子(第1の接続部)
 41  モールドモータ
 42  ブラケット
 42a  表面
 43  ブラケット
 43a  表面
 44  接続端子(第2の接続部)
 45  軸受
 46  軸受
 47  環状部
 48  環状部
 102  滑り軸受(軸受)
 104  ブラケット
1 Molded motor 3 Sliding bearing (bearing)
4a annular portion 4b annular portion 4c outer peripheral surface 5 bracket 5a annular portion 5b annular portion 5c outer peripheral surface 10 stator 11 winding 12 stator core (stator core)
DESCRIPTION OF SYMBOLS 13 Mold frame 20 Rotor 21 Rotating body 22 Rotating shaft 23 Permanent magnet 31 Mold motor 32 Connection terminal (1st connection part)
41 Molded motor 42 Bracket 42a Surface 43 Bracket 43a Surface 44 Connection terminal (second connection part)
45 Bearing 46 Bearing 47 Annular part 48 Annular part 102 Sliding bearing (bearing)
104 Bracket

Claims (5)

  1. 巻線を巻装した固定子鉄心を有する固定子と、
    前記固定子に対向して周方向に永久磁石を有する回転体と、前記回転体の軸芯を貫通する回転軸とを含む回転子と、
    一対の前記回転子を回転自在に挟持する軸受と、
    一対の前記軸受を保持するブラケットと、を備え、
    前記軸受は、潤滑油を含んだ滑り軸受であるブラシレスモータ。
    A stator having a stator core wound with windings;
    A rotor including a rotating body facing the stator and having a permanent magnet in the circumferential direction; and a rotating shaft penetrating an axis of the rotating body;
    A bearing for rotatably holding the pair of rotors;
    A bracket for holding the pair of bearings,
    The said bearing is a brushless motor which is a sliding bearing containing lubricating oil.
  2. 前記滑り軸受は、焼結金属である請求項1に記載のブラシレスモータ。 The brushless motor according to claim 1, wherein the sliding bearing is a sintered metal.
  3. さらに、一対の前記軸受の外周面間を電気的に接続する第1の接続部を備えた請求項1に記載のブラシレスモータ。 Furthermore, the brushless motor of Claim 1 provided with the 1st connection part which electrically connects between the outer peripheral surfaces of a pair of said bearing.
  4. さらに、一対の前記ブラケット間を電気的に接続する第2の接続部を備えた請求項1に記載のブラシレスモータ。 The brushless motor according to claim 1, further comprising a second connection portion that electrically connects the pair of brackets.
  5. 前記固定子は、樹脂材でモールド成形されたモールドフレームを形成する請求項1に記載のブラシレスモータ。 The brushless motor according to claim 1, wherein the stator forms a mold frame molded by a resin material.
PCT/JP2012/007760 2011-12-12 2012-12-04 Brushless motor WO2013088670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280061417.8A CN103999332A (en) 2011-12-12 2012-12-04 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270942 2011-12-12
JP2011270942 2011-12-12

Publications (1)

Publication Number Publication Date
WO2013088670A1 true WO2013088670A1 (en) 2013-06-20

Family

ID=48612147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007760 WO2013088670A1 (en) 2011-12-12 2012-12-04 Brushless motor

Country Status (3)

Country Link
JP (1) JPWO2013088670A1 (en)
CN (1) CN103999332A (en)
WO (1) WO2013088670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257150A4 (en) * 2015-02-10 2018-08-08 CTS Corporation Axial brushless dc motor
US10454403B2 (en) 2016-02-05 2019-10-22 Cts Corporation Axial brushless DC motor with fractional and hold step function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154250A (en) * 1995-11-28 1997-06-10 Matsushita Electric Ind Co Ltd Vibration generating motor
JP2007129863A (en) * 2005-11-07 2007-05-24 Namiki Precision Jewel Co Ltd Bearing structure of motor
JP2010158152A (en) * 2008-12-03 2010-07-15 Panasonic Corp Motor and electrical apparatus having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018616A1 (en) * 1995-11-16 1997-05-22 Matsushita Electric Industrial Co., Ltd. Motor
JP2007129836A (en) * 2005-11-04 2007-05-24 Chugoku Electric Power Co Inc:The Cross arm installation device, its auxiliary instrument, and installation method of auxiliary instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154250A (en) * 1995-11-28 1997-06-10 Matsushita Electric Ind Co Ltd Vibration generating motor
JP2007129863A (en) * 2005-11-07 2007-05-24 Namiki Precision Jewel Co Ltd Bearing structure of motor
JP2010158152A (en) * 2008-12-03 2010-07-15 Panasonic Corp Motor and electrical apparatus having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257150A4 (en) * 2015-02-10 2018-08-08 CTS Corporation Axial brushless dc motor
US10148152B2 (en) 2015-02-10 2018-12-04 Cts Corporation Axial brushless DC motor
US10658902B2 (en) 2015-02-10 2020-05-19 Cts Corporation Axial brushless DC motor
US10454403B2 (en) 2016-02-05 2019-10-22 Cts Corporation Axial brushless DC motor with fractional and hold step function

Also Published As

Publication number Publication date
JPWO2013088670A1 (en) 2015-04-27
CN103999332A (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US7772736B2 (en) Permanent magnet synchronous motor, rotor of the same, and compressor using the same
JP6073763B2 (en) Axial gap type permanent magnet synchronous motor
JP2012130157A (en) Electric motor
WO2013088670A1 (en) Brushless motor
JP2015006072A (en) Rotary electric machine, rotation load combination device and air conditioner having rotation load combination device
JP2014176111A (en) Motor
JP2009171750A (en) Molded motor
JP2014075908A (en) Electric motor, air conditioner mounting the same, and manufacturing method of the same
JP2012191734A (en) Motor
CN112186950A (en) Electric machine
KR20140136484A (en) A permanent-magnet synchronous machine and a method for manufacturing and installing it
JP2015023750A (en) Electric motor
US20150155766A1 (en) High Slip Variable Frequency Induction Motors
JP2017055556A (en) Axial gap type rotary electric machine, and pump and compressor that use the same
JP2015023681A (en) Electric motor and electrical machine
JP6806209B1 (en) Rotating machine end plate structure
JP2012222841A (en) Motor and electric appliance equipped with the same
EP3961872A1 (en) Brushless electric motor and electrical device
JP2009165277A (en) Molded motor
JP2014117004A (en) Motor
JP2016149916A (en) Rotary electric machine
JP2015021544A (en) Motor and bering of motor
JP2015023751A (en) Electric motor and electrical machine
JP2010098883A (en) Brush
JP2000134860A (en) Electric rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858628

Country of ref document: EP

Kind code of ref document: A1