WO2013088587A1 - ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質 - Google Patents

ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質 Download PDF

Info

Publication number
WO2013088587A1
WO2013088587A1 PCT/JP2012/001726 JP2012001726W WO2013088587A1 WO 2013088587 A1 WO2013088587 A1 WO 2013088587A1 JP 2012001726 W JP2012001726 W JP 2012001726W WO 2013088587 A1 WO2013088587 A1 WO 2013088587A1
Authority
WO
WIPO (PCT)
Prior art keywords
recombinant protein
seq
antibody fragment
variable region
chain variable
Prior art date
Application number
PCT/JP2012/001726
Other languages
English (en)
French (fr)
Inventor
淳 福永
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/680,925 priority Critical patent/US8663933B2/en
Publication of WO2013088587A1 publication Critical patent/WO2013088587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • the present invention relates to a recombinant protein capable of specifically and rapidly binding to human cardiac muscle-derived troponin I.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose that the concentration of myocardial troponin I rapidly increases in the blood of patients suffering from acute myocardial infarction.
  • An object of the present invention is to provide a recombinant protein capable of specifically and rapidly binding to human cardiac muscle-derived troponin I.
  • the present invention is a recombinant protein that specifically binds to human cardiac muscle-derived troponin I and comprises the following: A light chain variable region consisting of the amino acid sequence represented by SEQ ID NO: 63 and a heavy chain variable region consisting of the amino acid sequence represented by SEQ ID NO: 65.
  • the recombinant protein can be an antibody.
  • the recombinant protein can be an antibody fragment.
  • the antibody fragment can be a Fab antibody fragment.
  • the antibody fragment can be a F (ab ′) 2 antibody fragment.
  • the antibody fragment can be a scFv antibody fragment.
  • the present invention is a method for specifically binding a recombinant protein to troponin I derived from human myocardium, comprising the following steps: Preparing the recombinant protein (a), wherein the recombinant protein comprises: A light chain variable region consisting of the amino acid sequence represented by SEQ ID NO: 63, and a heavy chain variable region consisting of the amino acid sequence represented by SEQ ID NO: 65; (B) contacting the recombinant protein with the troponin I derived from the human myocardium and specifically binding the recombinant protein to the troponin I derived from the human cardiac muscle.
  • step (b) is performed in vitro.
  • the recombinant protein can be an antibody.
  • the recombinant protein can be an antibody fragment.
  • the antibody fragment can be a Fab antibody fragment.
  • the antibody fragment can be a F (ab ′) 2 antibody fragment.
  • the antibody fragment can be a scFv antibody fragment.
  • the present invention provides a recombinant protein capable of binding specifically and rapidly to human cardiac muscle-derived troponin I.
  • the recombinant protein and method of the present invention can be used for early detection of acute myocardial infarction.
  • FIG. 1 shows the antibody.
  • FIG. 2 shows the PCR method in step (c-2).
  • FIG. 1 shows the antibody.
  • antibody 1 has the shape of the “Y” letter.
  • Antibody 1 consists of two Fab regions and one Fc region.
  • Antibody 1 consists of two heavy chains 2 and two light chains 3.
  • Each heavy chain 2 is composed of a heavy chain constant region 1 (reference symbol: 22), a heavy chain constant region 2 (reference symbol: 23), a heavy chain constant region 3 (reference symbol: 24), and a heavy chain variable region 21.
  • Each light chain 3 consists of a light chain variable region 31 and a light chain constant region 32.
  • Each Fab region consists of one heavy chain variable region 21, one heavy chain constant region 1 (reference number: 22), one light chain variable region 31, and one light chain constant region 32.
  • Light chain 3 is linked to heavy chain 2 by linker 4.
  • the heavy chain 2 has one heavy chain variable region 21 at the tip.
  • the light chain 3 has one light chain variable region 31 at the tip.
  • Antigen specifically binds to antibody 1. More specifically, the antigen specifically binds to the Fv region consisting of the heavy chain variable region 21 and the light chain variable region 31.
  • the antigen is troponin I derived from human myocardium.
  • the recombinant protein according to this embodiment includes a light chain variable region 31 consisting of an amino acid sequence represented by SEQ ID NO: 63 and a heavy chain variable region 21 consisting of an amino acid sequence represented by SEQ ID NO: 65. This recombinant protein binds specifically and rapidly to troponin I derived from human myocardium.
  • This recombinant protein is either an antibody or an antibody fragment.
  • Antibody has a “Y” letter shape shown in FIG.
  • the light chain variable region 31 and the heavy chain variable region 21 contained in the antibody of the present invention consist of amino acid sequences represented by SEQ ID NO: 63 and SEQ ID NO: 65, respectively.
  • the light chain variable region 31 is linked to the heavy chain variable region 21 via a linker (not shown).
  • antibody fragments are Fab antibody fragments, F (ab ′) 2 antibody fragments, or scFv antibody fragments.
  • the Fab antibody fragment consists of one Fab region.
  • the Fab antibody fragment consists of one light chain variable region 31 (SEQ ID NO: 63), one heavy chain variable region 21 (SEQ ID NO: 65), one light chain constant region 32, one heavy chain constant region. 1 (reference numeral: 22) and the linker 4.
  • the light chain constant region 32 is linked to the heavy chain constant region 1 (reference number: 22) via the linker 4.
  • An F (ab ′) 2 antibody fragment consists of two Fab regions. As described above, each Fab region has one light chain variable region 31 (SEQ ID NO: 63), one heavy chain variable region 21 (SEQ ID NO: 65), one light chain constant region 32, one heavy chain constant. It consists of a region 1 (reference numeral 22) and a linker 4. These two Fab regions are linked to each other via another linker (not shown). Preferably, one heavy chain constant region 1 (reference number: 22) is linked to the other heavy chain constant region 1 (reference number: 22) via another linker (not shown).
  • the scFv antibody fragment consists of a light chain variable region 31 (SEQ ID NO: 63), a heavy chain variable region 21 (SEQ ID NO: 65), and a linker.
  • the light chain variable region 31 (SEQ ID NO: 63) is linked to the heavy chain variable region 21 (SEQ ID NO: 65) via a linker (not shown).
  • the linker that links the light chain variable region 31 (SEQ ID NO: 63) and the heavy chain variable region 21 (SEQ ID NO: 65) is not particularly limited.
  • An example of a linker is a peptide consisting of 5 to 20 amino acids. More specifically, an example of a linker is a peptide consisting of an amino acid sequence represented by GGGGSGGGGSGGGGS (SEQ ID NO: 64). Another example of the linker is a disulfide bond (-sulfur atom (S) -sulfur atom (S)-).
  • the N-terminus of the light chain variable region 31 (SEQ ID NO: 63) can be modified with an amino acid sequence.
  • the C-terminus can also be modified.
  • the N-terminus of heavy chain variable region 21 can be modified with an amino acid sequence.
  • the C-terminus can also be modified.
  • An example of an amino acid sequence that modifies the C-terminus of the heavy chain variable region 21 (SEQ ID NO: 65) is AAALEHHHHHH (SEQ ID NO: 66).
  • this recombinant protein When this recombinant protein is brought into contact with human cardiac muscle-derived troponin I, it specifically and rapidly binds to human cardiac muscle-derived troponin I. More specifically, when the present recombinant protein is mixed with human cardiac muscle-derived troponin I, the recombinant protein specifically and rapidly binds to human cardiac muscle-derived troponin I. Detection of the binding between the recombinant protein and human cardiac muscle-derived troponin I can be performed by a method for detecting antigen-antibody binding well known to those skilled in the art. An example of such a detection method is a sandwich method.
  • This recombinant protein can be produced using common protein expression techniques. More specifically, first, a vector having a gene sequence encoding the present recombinant protein is prepared. An example of a vector is a plasmid. Next, cells (eg, E. coli) are transformed with this vector. The cells are cultured and produce the recombinant protein.
  • a vector having a gene sequence encoding the present recombinant protein is prepared.
  • An example of a vector is a plasmid.
  • cells eg, E. coli
  • the cells are cultured and produce the recombinant protein.
  • Non-Patent Document 3 discloses a refolding method.
  • Non-patent literature 3 Jun Kamishikiryo et. Al., “Molecular Basis for LLT1 Protein Recognition by Human CD161 Protein (NKRP1A / KLRB1)”, THE JOURNAL OF BIOLOGICAL CHEMISTRY, VOL.
  • Example 1 Table 1, Table 2, Table 3, and Table 4 show the primers used in Example 1.
  • Table 1 shows forward mix primers (primers 1 to 21, SEQ ID NO: 02 to SEQ ID NO: 22) for amplifying the light chain variable region.
  • Table 2 shows forward mix primers (primers 22 to 44, SEQ ID NO: 23 to SEQ ID NO: 45) for amplifying the heavy chain variable region.
  • Table 3 shows reverse mix primers (primers 45 to 49, SEQ ID NO: 46 to SEQ ID NO: 50) for amplifying the light chain variable region.
  • Table 4 shows reverse mix primers (primers 50 to 55, SEQ ID NO: 51 to SEQ ID NO: 56) for amplifying the heavy chain variable region.
  • Step (a-1) Preparation of a hybridoma (derived from mouse spleen) capable of producing a monoclonal antibody that specifically binds to human cardiac muscle-derived troponin I
  • a peptide having the amino acid sequence contained in human cardiac muscle-derived troponin I (SEQ ID NO: 01, purchased from Sigma-Aldrich Japan, RPAPAPIRRRSSNYRAYATEPHAKKKSKISASRKLQLKTLLLQIAK was linked to human serum albumin (purchased from Sigma-Aldrich) using a sulfo-SMCC crosslinker (purchased from Servo Fisher Scientific).
  • sulfo-SMCC crosslinker 0.5 mg was dissolved in 100 microliters of phosphate buffered saline to obtain a first aqueous solution. This first aqueous solution was allowed to stand at a temperature of 50 ° C. for 10 minutes.
  • Human serum albumin (10 mg) was dissolved in 1 ml of phosphate buffered saline to obtain a second aqueous solution.
  • the first aqueous solution was mixed with the second aqueous solution to obtain a mixture.
  • the mixture was left for 30 minutes. In this way, the sulfo-SMCC crosslinker was bound to human serum albumin.
  • the mixture was passed through a column (trade name: PD10 obtained from GE Healthcare) to remove unreacted sulfo-SMCC crosslinker.
  • DMSO dimethyl sulfoxide
  • human serum albumin modified with a peptide having the amino acid sequence contained in troponin I (SEQ ID NO: 01) was obtained.
  • this human serum albumin is referred to as “troponin-modified HSA”.
  • a mixture of phosphate buffered saline (hereinafter referred to as “PBS”) and troponin-modified HSA was injected into BALB / c mice. This was repeated once more. Thus, over a month, BALB / c mice were immunized with troponin-modified HSA. In other words, by feeding the mixture to BALB / C mice, antibodies against troponin-modified HSA were produced in the body of BALB / c mice.
  • PBS phosphate buffered saline
  • the spleen of the immunized BALB / c mouse was removed. According to the cell fusion method described in Non-Patent Document 4, a hybridoma was obtained. Thereafter, the hybridoma was cultured in a culture solution. The number of hybridomas (cells) after culture was approximately 5 ⁇ 10 6 . The hybridoma thus obtained was able to produce a monoclonal antibody that specifically binds to human cardiac muscle-derived troponin I.
  • Non-Patent Document 4 G. Kohler et al., Nature, 256, 495 (1975)
  • Step (a-2) Extraction of Total Mouse RNA from Hybridoma Cells
  • TRIzol obtained from Invitrogen Corporation
  • the culture solution was subjected to centrifugation at a gravitational acceleration of 117600 m / s 2 at a temperature of 4 ° C. for 15 minutes.
  • the supernatant 500 ⁇ L was obtained.
  • Isopropanol 500 ⁇ L was added to the resulting supernatant and allowed to stand at room temperature for 10 minutes.
  • the culture solution was again subjected to centrifugation having the same conditions as described above to obtain a precipitate.
  • a 75% aqueous ethanol solution (1 mL) was added to the resulting precipitate to obtain an ethanol solution.
  • the ethanol solution was subjected to centrifugation at a gravitational acceleration of 73500 m / s 2 for 5 minutes.
  • the precipitate was dried. In this way, total mouse RNA was obtained.
  • Step (b-1) Extraction of mRNA from total mouse RNA From the total mouse RNA obtained in step (a-2) using Oligotex TM -dT30 ⁇ Super> mRNA Purification kit (purchased from Takara Bio Inc.) mRNA was extracted.
  • RNase-free water 100 ⁇ L was injected into one microtube. This microtube was set in a block incubator (obtained from Astech Co., Ltd.) and heated to 70 ° C. for 1 hour.
  • RNA was dissolved in RNase-free water (100 ⁇ L).
  • the mixture was subjected to centrifugation at a gravitational acceleration of 147000 m / s 2 for 5 minutes.
  • the supernatant was removed, and the precipitate was suspended in the wash buffer (350 ⁇ L) included in the kit.
  • the suspension was supplied to the column included in the kit.
  • the column was subjected to centrifugation at a gravitational acceleration of 147000 m / s 2 for 30 seconds.
  • wash buffer 350 ⁇ L was supplied to the column. Again, the column was subjected to centrifugation at a gravitational acceleration of 147000 m / s 2 for 30 seconds.
  • a microtube for sample collection was attached to the bottom of the column.
  • RNase-free water (20 ⁇ L) contained in the microtube was supplied to the column.
  • the column was then subjected to centrifugation at a gravitational acceleration of 147000 m / s 2 for 3 minutes.
  • RNase-free water (20 ⁇ L) was supplied to the column and the column was subjected to centrifugation at a gravitational acceleration of 147000 m / s 2 for 3 minutes.
  • Step (b-2) Reverse transcription from mRNA to cDNA
  • the mRNA contained in the obtained extract is reverse transcribed using reverse transcriptase (trade name: Primerscript, purchased from Takara Bio Inc.) and contains cDNA. A solution was obtained.
  • Step (b-3-1) cDNA contained in the amplification solution of the gene encoding the light chain variable region using cDNA, forward primer 1-21 (SEQ ID NO: 02-22), and reverse primer 1-5 (
  • a gene fragment (SEQ ID NO: 58, hereinafter referred to as “VL gene fragment”) encoding the light chain variable region of the monoclonal antibody was amplified by PCR using SEQ ID NO: 23 to 27).
  • the polymerase used in this PCR method was purchased from Takara Bio Inc. under the trade name: TaKaRa Ex Taq Hot start Version.
  • This PCR solution contained the amplified VL gene fragment (SEQ ID NO: 58).
  • the obtained PCR solution was subjected to electrophoresis using a gel containing agarose having a concentration of 2% by weight.
  • Step (b-3-2) cDNA contained in the amplification solution of the gene encoding the heavy chain variable region using cDNA, forward primer 22 to 44 (SEQ ID NO: 28 to 50), and reverse primer 6 to 11 (
  • a gene fragment (SEQ ID NO: 57, hereinafter referred to as “VH gene fragment”) encoding the heavy chain variable region of the monoclonal antibody was amplified by PCR using SEQ ID NO: 51 to 56).
  • the polymerase used in this PCR method was purchased from Takara Bio Inc. under the trade name: TaKaRa Ex Taq Hot start Version.
  • This PCR solution contained the amplified VH gene fragment (SEQ ID NO: 57).
  • the obtained PCR solution was subjected to electrophoresis using a gel containing agarose having a concentration of 2% by weight.
  • Step (b-4) Ligation of VL gene fragment and VH gene fragment
  • the purified VH gene fragment (SEQ ID NO: 57) was ligated to the purified VL gene fragment (SEQ ID NO: 58) by the overlap extension PCR method. It was.
  • a gene fragment (SEQ ID NO: 59, hereinafter referred to as “scFv gene fragment”) encoding the scFv antibody fragment of the monoclonal antibody was obtained.
  • the 5 ′ end and 3 ′ end of the obtained gene fragment (SEQ ID NO: 59) were modified by restriction enzyme sites Nco1 and Not1, respectively.
  • Step (c-1) Introduction of gene into vector
  • the scFv gene fragment was ligated to a protein expression vector (trade name: pET22b (+), purchased from Takara Bio Inc.). Details of the ligation are described below.
  • the scFv gene fragment was treated with restriction enzymes Nco1 and Not1 (both purchased from Takara Bio Inc.).
  • the scFv gene fragment was purified by electrophoresis to obtain an aqueous solution containing the scFv gene fragment.
  • the protein expression vector was also treated with restriction enzymes Nco1 and Not1 (both purchased from Takara Bio Inc.).
  • the protein expression vector was also purified by electrophoresis to obtain an aqueous solution containing the protein expression vector.
  • the enzyme (purchased from Toyobo Co., Ltd. under the trade name: Ligation High ver. 2) was added to the mixed solution, and the mixed solution was left at a temperature of 16 ° C. for 2 hours. In this way, the scFv gene fragment was ligated to the protein expression vector.
  • Escherichia coli (trade name: DH5 ⁇ competent cell, obtained from Takara Bio Inc.) was transformed with the protein expression vector to which the scFv gene fragment was ligated in this way.
  • E. coli was incubated for 16 hours on LB plate medium containing ampicillin having a concentration of 100 ⁇ g / mL. After incubation, single colonies formed on the LB plate medium were picked up. Single colonies were fed into LB liquid medium (5 mL) containing ampicillin with a concentration of 100 ⁇ g / mL and incubated for 16 hours.
  • a protein expression vector pET22b (+) is obtained from this LB liquid medium as a kit (trade name: QIAprep spin miniprep kit from Qiagen). Extracted.
  • a PCR method using the extracted protein expression vector pET22b (+), primer 56 (SEQ ID NO: 67), and primer 57 (SEQ ID NO: 68), a signal sequence (DNA sequence, protein expression vector pET22b (+)) SEQ ID NO: 60) was removed. In this way, an expression vector encoding a wild type scFv antibody fragment was obtained.
  • Step (c-2) The expression vector obtained in the step (c-1) of introducing a mutation into the vector contains the scFv gene fragment (SEQ ID NO: 59). Of the 729 bases consisting of the scFv gene fragment (SEQ ID NO: 59) contained in this expression vector, 7 bases were substituted.
  • the 589th adenine (A), the 590th cytosine (C), the 607th T (thymine), the 608th cytosine (C), the 609th cytosine (C), the 613th A ( Adenine) and 615 th cytosine (C) are respectively G (guanine), A (adenine), G (guanine), A (adenine), T (thymine), G (guanine), and T (thymine).
  • G guanine
  • a PCR method using primer 58 (SEQ ID NO: 69), primer 59 (SEQ ID NO: 70), and the expression vector obtained in step (c-1) is used. It was implemented.
  • the primer 58 (SEQ ID NO: 69) was complementary to the gene sequence from the 579th base to the 626th base contained in the scFv gene fragment (SEQ ID NO: 59) except for 7 bases to be replaced.
  • Primer 59 (SEQ ID NO: 70) has a gene sequence from the 579th base to the 626th base contained in the gene fragment complementary to the scFv gene fragment (SEQ ID NO: 59) except for 7 bases to be substituted. It was complementary.
  • Step (c-3) Using the vector obtained in the step (c-2) for obtaining a protein using a vector, Escherichia coli (purchased from Takara Bio Inc., trade name: BL21 (DE3)) was transformed. . The E. coli was then incubated for 16 hours at 37 ° C. on LB plate medium containing ampicillin having a concentration of 100 ⁇ g / mL.
  • aqueous solution 0.5 mL of isopropyl- ⁇ -D-thiogalactopyranoside having a concentration of 1M was added to the LB liquid medium. Thereafter, E. coli was incubated at 37 ° C. for 5 hours with shaking. In this way, a culture solution was obtained.
  • the obtained culture broth was subjected to centrifugation at a gravity acceleration of 49000 m / s 2 at a temperature of 4 ° C. for 5 minutes.
  • the precipitate containing E. coli was resuspended in phosphate buffered saline (50 mL).
  • the suspension was subjected to sonication to disrupt E. coli.
  • the solution containing the disrupted E. coli was subjected to centrifugation at a gravitational acceleration of 98000 m / s 2 and a temperature of 4 ° C. for 30 minutes. In this way, a precipitate was obtained.
  • the precipitate was washed twice with phosphate buffered saline containing a surfactant having a concentration of 4% (Triton X-100, obtained from Wako Pure Chemical Industries, Ltd.). In addition, the precipitate was washed with phosphate buffered saline containing no surfactant.
  • Aqueous solution A had a pH of 6.
  • the aqueous solution A was passed through a filter (obtained from Sartorius, trade name: Minisart) having a mesh size of 0.45 ⁇ m to remove the residue. In this way, a filtrate was obtained.
  • Aqueous solution B had a pH of 8.0. In this way, an aqueous solution having a volume of 3 mL was obtained.
  • the aqueous solution (3 mL) was added dropwise to the aqueous solution B having a volume of 1 liter. Thereafter, the obtained aqueous solution was stirred at a temperature of 4 ° C. for 96 hours. In this way, a mutant scFv antibody fragment (SEQ ID NO: 61) was obtained.
  • the mutant scFv antibody fragment contained in the solution was purified using a column (trade name: HiLoad 26/60 Superdex 75 pg, manufactured by GE Healthcare).
  • Light chain variable region (SEQ ID NO: 63): DVVLTQSPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQSPKRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPLTFGAGTKLEIKR Amino acid sequence modified at the N-terminus of the light chain variable region: None Amino acid sequence modified at the C-terminus of the light chain variable region: None Linker (SEQ ID NO: 64): GGGGSGGGGSGGGGS Heavy chain variable region (SEQ ID NO: 65): QLQLQQSGAELVRSGASVKLSCTASGFNIKDYYMNWVKQRPEQGLEWIGWIDPANGDTAYAPRFQVKADMTADKDSDTAYLQLSSLTSEDTAVYYCNADLPMDQWGQGTSVTVSS Amino acid sequence modified at the N-terminus of the light chain variable region: None Amino acid sequence modified at the C
  • Step (d) Calculation of binding rate constant and dissociation rate constant Using the molecular interaction analyzer Biacore T100 (purchased from GE Healthcare), the binding rate constant and the dissociation rate constant of the mutant scFv antibody fragment The calculation was performed according to the manual attached to the interaction analyzer Biacore T100.
  • a human myocardial troponin I (purchased from Funakoshi) having about 500 RU (Resonance Unit) was immobilized on a CM5 chip (purchased from GE Healthcare). This CM5 chip was set in the Biacore T100. Next, an aqueous solution containing the mutant scFv antibody fragment (concentrations: 100 nM, 50 nM, 25 nM, 12.5 nM, and 6.25 nM, volume: 150 microliters) was flowed into the Biacore® T100. Table 9 shows the binding rate constant and dissociation rate constant measured by the molecular interaction analyzer Biacore T100.
  • Comparative Example 1 In Comparative Example 1, an experiment similar to Example 1 was performed, except that the step (c-2) was not performed. In this way, a wild type scFv antibody fragment consisting of the amino acid sequence represented by SEQ ID NO: 62 was obtained. As in Example 1, the association rate constant and dissociation rate constant of the wild type scFv antibody fragment were measured. The results are shown in Table 9.
  • the mutant scFv antibody fragment according to Example 1 has a higher binding rate constant than the wild-type scFv antibody fragment according to Comparative Example 1. This means that the mutant scFv antibody fragment specifically binds to human cardiac muscle-derived troponin I more rapidly than the wild-type scFv antibody fragment.
  • the method according to the present invention can be used in a sensor for detecting acute myocardial infarction.
  • Antibody 2 Heavy chain 21: Heavy chain variable region 3: Light chain 31: Light chain variable region 4: Linker

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、ヒト心筋由来トロポニンIに特異的かつ速やかに結合できる組み換えタンパク質を提供する。本発明は、ヒト心筋由来のトロポニンIに特異的に結合する組み換えタンパク質であって、以下を具備する:配列番号:63によって表されるアミノ酸配列からなる軽鎖可変領域、および配列番号:65によって表されるアミノ酸配列からなる重鎖可変領域。

Description

ヒト心筋由来トロポニンIに特異的にかつ速やかに結合できる組み換えタンパク質
 本発明は、ヒト心筋由来トロポニンIに特異的にかつ速やかに結合できる組み換えタンパク質に関する。
 非特許文献1および非特許文献2は、心筋由来トロポニンIの濃度が、急性心筋梗塞に罹患した患者の血液中で急速に高くなることを開示している。
Aleksei G. Katrukha et. al., "Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex", Clinical Chemistry, Vol. 43, Issue 8, p.p. 1379-1385 (1997) Till Keller et. al.,."Sensitive Troponin I Assay in Early Diagnosis of Acute Myocardinal Infarction", The NEW ENGLAND JOURNAL of MEDICINE, Vol. 361, pages 868-877 (2009)
 本発明の目的は、ヒト心筋由来トロポニンIに特異的かつ速やかに結合できる組み換えタンパク質を提供することである。
 本発明は、ヒト心筋由来のトロポニンIに特異的に結合する組み換えタンパク質であって、以下を具備する:
 配列番号:63によって表されるアミノ酸配列からなる軽鎖可変領域、および
 配列番号:65によって表されるアミノ酸配列からなる重鎖可変領域。

 前記組み換えタンパク質が抗体であり得る。
 前記組み換えタンパク質が抗体フラグメントであり得る。
 前記抗体フラグメントがFab抗体フラグメントであり得る。
 前記抗体フラグメントがF(ab’)抗体フラグメントであり得る。
 前記抗体フラグメントがscFv抗体フラグメントであり得る。

 本発明は、組み換えタンパク質をヒト心筋由来のトロポニンIに特異的に結合させる方法であって、以下の工程を具備する:
 前記組み換えタンパク質を用意する工程(a)、ここで
 前記組み換えタンパク質は以下を具備する:
  配列番号:63によって表されるアミノ酸配列からなる軽鎖可変領域、および
  配列番号:65によって表されるアミノ酸配列からなる重鎖可変領域、

 前記組み換えタンパク質に前記ヒト心筋由来のトロポニンIを接触させ、前記組み換えタンパク質を前記ヒト心筋由来のトロポニンIに特異的に結合させる工程(b)。
 好ましくは、前記方法において、工程(b)はインビトロで行う。

 前記組み換えタンパク質が抗体であり得る。
 前記組み換えタンパク質が抗体フラグメントであり得る。
 前記抗体フラグメントがFab抗体フラグメントであり得る。
 前記抗体フラグメントがF(ab’)抗体フラグメントであり得る。
 前記抗体フラグメントがscFv抗体フラグメントであり得る。 
 本発明は、ヒト心筋由来トロポニンIに特異的かつ速やかに結合できる組み換えタンパク質を提供する。
 本発明の組み換えタンパク質および方法は、急性心筋梗塞の早期検出に利用できる。
図1は抗体を示す。 図2は、工程(c-2)におけるPCR法を示す。
 以下、本発明の実施形態が説明される。
 (用語の説明)
 まず、本明細書において用いられる用語が説明される。
 図1は、抗体を示す。広く知られているように、抗体1は「Y」文字の形状を有する。抗体1は2つのFab領域および1つのFc領域からなる。抗体1は、2本の重鎖2および2本の軽鎖3からなる。各重鎖2は、重鎖定常領域1(参照符号:22)、重鎖定常領域2(参照符号:23)、重鎖定常領域3(参照符号:24)、および重鎖可変領域21からなる。各軽鎖3は、軽鎖可変領域31および軽鎖定常領域32からなる。
 各Fab領域は、1つの重鎖可変領域21、1つの重鎖定常領域1(参照符号:22)、1つの軽鎖可変領域31、および1つの軽鎖定常領域32からなる。軽鎖3はリンカ4により重鎖2に連結されている。重鎖2は先端に1つの重鎖可変領域21を有している。軽鎖3は先端に1つの軽鎖可変領域31を有している。抗体1には抗原が特異的に結合する。より詳細には、抗原は重鎖可変領域21および軽鎖可変領域31からなるFv領域に特異的に結合する。本明細書においては、抗原はヒト心筋由来のトロポニンIである。
 本実施形態に係る組み換えタンパク質は、配列番号:63によって表されるアミノ酸配列からなる軽鎖可変領域31および配列番号:65によって表されるアミノ酸配列からなる重鎖可変領域21を具備する。本組み換えタンパク質は、ヒト心筋由来のトロポニンIに特異的にかつ速やかに結合する。
 本組み換えタンパク質は、抗体または抗体フラグメントのいずれかである。
 抗体は、図1に示される「Y」文字状の形状を有する。本発明の抗体に含まれる軽鎖可変領域31および重鎖可変領域21は、それぞれ、配列番号63および配列番号65によって表されるアミノ酸配列からなる。抗体において、軽鎖可変領域31は重鎖可変領域21にリンカ(図示せず)を介して連結している。
 抗体フラグメントの例は、Fab抗体フラグメント、F(ab’)抗体フラグメント、またはscFv抗体フラグメントである。
 Fab抗体フラグメントは、1つのFab領域からなる。言い換えれば、Fab抗体フラグメントは、1つの軽鎖可変領域31(配列番号:63)、1つの重鎖可変領域21(配列番号:65)、1つの軽鎖定常領域32、1つの重鎖定常領域1(参照符号:22)、およびリンカ4からなる。軽鎖定常領域32は、リンカ4を介して重鎖定常領域1(参照番号:22)に連結している。
 F(ab’)抗体フラグメントは、2つのFab領域からなる。上記の通り、各Fab領域は、1つの軽鎖可変領域31(配列番号:63)、1つの重鎖可変領域21(配列番号:65)、1つの軽鎖定常領域32、1つの重鎖定常領域1(参照符号:22)、およびリンカ4からなる。これらの2つのFab領域は、他のリンカ(図示せず)を介して互いに連結されている。好ましくは、一方の重鎖定常領域1(参照番号:22)が、他のリンカ(図示せず)を介して他方の重鎖定常領域1(参照番号:22)に連結している。
 scFv抗体フラグメントは、軽鎖可変領域31(配列番号:63)、重鎖可変領域21(配列番号:65)、およびリンカからなる。軽鎖可変領域31(配列番号:63)は、リンカ(図示せず)を介して重鎖可変領域21(配列番号:65)に連結している。
 組み換えタンパク質がヒト心筋由来トロポニンIに特異的かつ速やかに結合できる限り、軽鎖可変領域31(配列番号:63)と重鎖可変領域21(配列番号:65)を連結するリンカは特に限定されない。リンカの例は5~20のアミノ酸からなるペプチドである。より具体的には、リンカの例は、GGGGSGGGGSGGGGS(配列番号:64)により表されるアミノ酸配列からなるペプチドである。リンカの他の例は、ジスルフィド結合(-硫黄原子(S)-硫黄原子(S)-)である。
 組み換えタンパク質がヒト心筋由来トロポニンIに特異的かつ速やかに結合できる限り、軽鎖可変領域31(配列番号:63)のN末端はアミノ酸配列によって修飾され得る。C末端もまた、修飾され得る。
 組み換えタンパク質がヒト心筋由来トロポニンIに特異的かつ速やかに結合できる限り、重鎖可変領域21(配列番号:65)のN末端はアミノ酸配列によって修飾され得る。C末端もまた、修飾され得る。重鎖可変領域21(配列番号:65)のC末端を修飾するアミノ酸配列の例は、AAALEHHHHHH(配列番号:66)である。
 本組み換えタンパク質はヒト心筋由来トロポニンIに接触されると、ヒト心筋由来トロポニンIに特異的にかつ速やかに結合する。より具体的には、本組み換えタンパク質がヒト心筋由来トロポニンIと混合されると、本組み換えタンパク質はヒト心筋由来トロポニンIに特異的にかつ速やかに結合する。
 本組み換えタンパク質とヒト心筋由来トロポニンIとの結合の検出は、当業者に周知の抗原抗体結合の検出方法によって行うことができる。かかる検出方法の例としては、サンドウィッチ法が挙げられる。
 本組み換えタンパク質は、一般的なタンパク質発現技術を用いて産生され得る。より具体的には、まず、本組み換えタンパク質をコードする遺伝子配列を具備するベクターを用意する。ベクターの例は、プラスミドである。次に、このベクターを用いて細胞(例えば、大腸菌)が形質転換される。この細胞は培養され、本組み換えタンパク質を産生する。
 scFv抗体フラグメントを効率的に得るためには、本組み換えタンパク質は、リフォールディング法により産生されることが好ましい。非特許文献3は、リフォールディング法を開示している。
 [非特許文献3]Jun Kamishikiryo et. al., ”Molecular Basis for LLT1 Protein Recognition by Human CD161 Protein (NKRP1A/KLRB1)”, THE JOURNAL OF BIOLOGICAL CHEMISTRY, VOL. 286, NO. 27, p.p. 23823-23830.
 以下、本実施形態を裏付ける実施例が説明される。
 (実施例1)
 表1、表2、表3、および表4は、実施例1において用いられたプライマーを示す。 
 表1は、軽鎖可変領域を増幅させるためのフォワードミックスプライマー(プライマー1~21、配列番号:02~配列番号:22)を示す。 
 表2は、重鎖可変領域を増幅させるためのフォワードミックスプライマー(プライマー22~44、配列番号:23~配列番号:45)を示す。 
 表3は、軽鎖可変領域を増幅させるためのリバースミックスプライマー(プライマー45~49、配列番号:46~配列番号:50)を示す。 
 表4は、重鎖可変領域を増幅させるためのリバースミックスプライマー(プライマー50~55、配列番号:51~配列番号:56)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
























Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 工程(a-1) ヒト心筋由来トロポニンIに特異的に結合するモノクローナル抗体を産生可能なハイブリドーマ(マウス脾臓由来)の調製
 ヒト心筋由来のトロポニンIに含有されるアミノ酸配列を有するペプチド(配列番号:01、シグマアルドリッチジャパン株式会社から購入、RPAPAPIRRRSSNYRAYATEPHAKKKSKISASRKLQLKTLLLQIAK)が、sulfo-SMCCクロスリンカー(サーボフィッシャーサイエンティフィック株式会社より購入)を用いて、ヒト血清アルブミン(シグマ・アルドリッチから購入)に連結された。
 より具体的には、sulfo-SMCCクロスリンカー(0.5mg)が、100マイクロリットルのリン酸緩衝生理食塩水に溶解され、第1水溶液を得た。この第1水溶液は、50℃の温度下で10分、放置された。
 ヒト血清アルブミン(10mg)が1ミリリットルのリン酸緩衝生理食塩水に溶解され、第2水溶液を得た。
 第1水溶液は第2水溶液と混合され、混合物を得た。混合物は、30分間、静置された。このようにして、sulfo-SMCCクロスリンカーがヒト血清アルブミンに結合された。
 混合物は、カラム(GEヘルスケアより商品名:PD10として入手)に通され、未反応のsulfo-SMCCクロスリンカーを除去した。
 上記ペプチド(配列番号:01、1.5mg)がジメチルスルホキシド(以下、DMSOという)により溶解され、DMSO溶液を得た。2mg/mlの濃度を有する混合物(1mL)にDMSO溶液(100マイクロリットル)が添加された。その後、一晩、混合物は放置され、sulfo-SMCCクロスリンカーがペプチド(配列番号:01)に結合された。
 このようにして、トロポニンIに含まれるアミノ酸配列を有するペプチド(配列番号:01)により修飾されたヒト血清アルブミンが得られた。以下、このヒト血清アルブミンは「トロポニン修飾HSA」という。
 完全フロイトアジュバント(和光純薬工業株式会社から購入)およびトロポニン修飾HSAが混合され、混合物を得た。この混合物をBALB/cマウスに注入した。BALB/cマウスとは、アルビノマウスの一種である。
 2週間後、リン酸緩衝生理食塩水(以下、「PBS」という)およびトロポニン修飾HSAの混合物がBALB/cマウスに注入された。これをもう一度繰り返した。このようにして、1ヶ月かけて、BALB/cマウスはトロポニン修飾HSAにより免疫された。言い換えれば、上記混合物をBALB/Cマウスに与えることによって、BALB/cマウスの体内において、トロポニン修飾HSAに対する抗体が産生された。
 免疫されたBALB/cマウスの脾臓が摘出された。非特許文献4に記載された細胞融合法に従って、ハイブリドーマを得た。その後、ハイブリドーマは培養液中で培養された。培養の後のハイブリドーマ(細胞)の数は、およそ5×10であった。このようにして得られたハイブリドーマは、ヒト心筋由来トロポニンIに特異的に結合するモノクローナル抗体を産生可能であった。
[非特許文献4]
 G.Kohler et al., Nature, 256, 495(1975)
 工程(a-2) ハイブリドーマ細胞からの全マウスRNAの抽出
 培養されたハイブリドーマの細胞膜を破壊するために、1mLのTRIzol(インビトロジェン株式会社より入手)が、ハイブリドーマを含有する培養液に添加され、そして充分に培養液は攪拌された。
 次に、0.2mLの体積を有するクロロホルム液(純度:99.9%)が培養液に添加され、そして再度、充分に培養液は攪拌された。
 培養液は、117600m/sの重力加速度で、4℃の温度下、15分間、遠心分離に供された。上清(500μL)が取得された。得られた上清にイソプロパノール(500μL)を添加し、室温下で10分間、静置された。
 培養液は、再度、上記の条件と同一の条件を有する遠心分離に供され、沈殿物を得た。得られた沈殿物に75%エタノール水溶液(1mL)を添加し、エタノール溶液を得た。
 エタノール溶液は、73500m/sの重力加速度で、5分間、遠心分離に供された。沈殿物は、乾燥された。このようにして、全マウスRNAが得られた。
 工程(b-1) 全マウスRNAからのmRNAの抽出
 OligotexTM-dT30<Super>mRNA Purification kit (タカラバイオ株式会社から購入)を用いて、工程(a-2)において得られた全マウスRNAからmRNAが抽出された。
 RNaseフリーの水(100μL)が1本のマイクロチューブに注入された。このマイクロチューブは、ブロックインキュベーター(アステック株式会社より入手)にセットされ、1時間、70℃に加温された。
 全マウスRNAが、RNaseフリーの水(100μL)に溶解された。
 キットに含まれている2×バインディング緩衝液(100μL)およびキットに含まれているオリゴテックス(10μL)がRNaseフリーの水(100μL)に混合された。その後、混合物は70℃の温度下で3分間、静置された。さらに室温で10分間、混合物は静置された。
 混合物は、147000m/sの重力加速度で、5分間、遠心分離に供された。上清が除去され、キットに含まれているウォッシュ緩衝液(350μL)に沈殿物が懸濁された。懸濁液は、キットに含まれているカラムに供給された。カラムは、147000m/sの重力加速度で、30秒間、遠心分離に供された。
 カラムを洗浄するために、カラムにウォッシュ緩衝液(350μL)が供給された。再度、カラムは、147000m/sの重力加速度で、30秒間、遠心分離に供された。
 カラムの底部にサンプル採取用のマイクロチューブが装着された。
 カラムに含有されているmRNAを抽出するために、マイクロチューブに含有されているRNaseフリーの水(20μL)がカラムに供給された。その後、カラムは、147000m/sの重力加速度で、3分間、遠心分離に供された。再度、RNaseフリーの水(20μL)がカラムに供給され、カラムは、147000m/sの重力加速度で、3分間、遠心分離に供された。
 このようにして、mRNAを含有する抽出液がマイクロチューブ内に得られた。
 工程(b-2) mRNAからcDNAへの逆転写
 得られた抽出液に含まれるmRNAが、逆転写酵素(商品名:Primersript、タカラバイオ株式会社から購入)を用いて逆転写され、cDNAを含む溶液を得た。
 工程(b-3-1) cDNAを用いた、軽鎖可変領域をコードする遺伝子の増幅
 溶液に含まれるcDNA、フォワードプライマー1~21(配列番号:02~22)、およびリバースプライマー1~5(配列番号:23~27)を用いるPCR法により、上記モノクローナル抗体の軽鎖可変領域をコードする遺伝子断片(配列番号:58、以下、「VL遺伝子断片」という)が増幅された。このPCR法において用いられるポリメラーゼは、商品名:TaKaRa Ex Taq Hot start Versionとしてタカラバイオ株式会社から購入された。
 このPCR法のプロトコールは表5の通り。
Figure JPOXMLDOC01-appb-T000006
 サイクル回数:35回。
 最後に溶液は68℃で4分間放置された。このようにして、PCR溶液が得られた。このPCR溶液は、増幅されたVL遺伝子断片(配列番号:58)を含有していた。
 増幅されたVL遺伝子断片の確認および精製のために、得られたPCR溶液は、2重量%の濃度を有するアガロースを含有するゲルを用いた電気泳動に供された。
 工程(b-3-2) cDNAを用いた、重鎖可変領域をコードする遺伝子の増幅
 溶液に含まれるcDNA、フォワードプライマー22~44(配列番号:28~50)、およびリバースプライマー6~11(配列番号:51~56)を用いるPCR法により、上記モノクローナル抗体の重鎖可変領域をコードする遺伝子断片(配列番号:57、以下、「VH遺伝子断片」という)が増幅された。このPCR法において用いられるポリメラーゼは、商品名:TaKaRa Ex Taq Hot start Versionとしてタカラバイオ株式会社から購入された。
 このPCR法のプロトコールは、VL遺伝子断片のプロトコールと同一であった。
 最後に溶液は68℃で4分間放置された。このようにして、PCR溶液が得られた。このPCR溶液は、増幅されたVH遺伝子断片(配列番号:57)を含有していた。
 VH遺伝子断片の生成の確認およびVH遺伝子断片の精製のために、得られたPCR溶液は、2重量%の濃度を有するアガロースを含有するゲルを用いた電気泳動に供された。
 工程(b-4) VL遺伝子断片およびVH遺伝子断片の連結
 精製されたVH遺伝子断片(配列番号:57)は、精製されたVL遺伝子断片(配列番号:58)にオーバーラップエクステンションPCR法によって連結された。このようにして、上記モノクローナル抗体のscFv抗体フラグメントをコードする遺伝子断片(配列番号:59、以下、「scFv遺伝子断片」という)を得た。得られた遺伝子断片(配列番号:59)の5’末端および3’末端は、制限酵素サイトNco1およびNot1によってそれぞれ修飾されていた。
 工程(c-1) 遺伝子のベクターへの導入
 scFv遺伝子断片は、タンパク質発現用ベクター(商品名:pET22b(+)、タカラバイオ株式会社より購入)にライゲーションされた。ライゲーションの詳細は以下に記述される。
 最初に、scFv遺伝子断片は、制限酵素Nco1およびNot1(いずれもタカラバイオ株式会社より購入)によって処理された。scFv遺伝子断片は、電気泳動法により精製され、scFv遺伝子断片を含有する水溶液を得た。
 タンパク質発現用ベクターもまた、制限酵素Nco1およびNot1(いずれもタカラバイオ株式会社より購入)によって処理された。タンパク質発現用ベクターも、電気泳動により精製され、タンパク質発現用ベクターを含有する水溶液を得た。
 これら2つの水溶液が混合され、混合液を得た。
 混合液に、酵素(東洋紡株式会社より商品名:Ligation High ver.2として購入)が添加され、そして混合液は16℃の温度下で2時間放置された。このようにして、scFv遺伝子断片がタンパク質発現用ベクターにライゲーションされた。
 このようにしてscFv遺伝子断片がライゲーションされたタンパク質発現用ベクターを用いて、大腸菌(商品名:DH5αコンピテントセル、タカラバイオ株式会社より入手)が形質転換された。
 その後、大腸菌は、100μg/mLの濃度を有するアンピシリンを含有するLBプレート培地上で16時間、インキュベートされた。インキュベートの後、LBプレート培地上に形成されたシングルコロニーがピックアップされた。シングルコロニーは、100μg/mLの濃度を有するアンピシリンを含有するLB液体培地(5mL)に供給され、そして16時間インキュベートされた。
 タンパク質発現ベクターpET22b(+)に含まれる不要な遺伝子配列を除去するために、このLB液体培地からタンパク質発現ベクターpET22b(+)がキット(株式会社キアゲンより商品名:QIAprep spin miniprep kitとして入手)を用いて抽出された。抽出されたタンパク質発現ベクターpET22b(+)、プライマー56(配列番号:67)、およびプライマー57(配列番号:68)を用いたPCR法により、タンパク質発現ベクターpET22b(+)のシグナル配列(DNA配列、配列番号:60)が除去された。このようにして、野生型scFv抗体フラグメントをコードする発現ベクターを得た。
 工程(c-2) ベクターへの変異の導入
 工程(c-1)において得られた発現ベクターは、scFv遺伝子断片(配列番号:59)を含む。この発現ベクターに含まれるscFv遺伝子断片(配列番号:59)からなる729塩基のうち、7個の塩基が置換された。より詳細には、589番目のアデニン(A)、590番目のシトシン(C)、607番目のT(チミン)、608番目のシトシン(C)、609番目のシトシン(C)、613番目のA(アデニン)、および615番目のシトシン(C)が、それぞれ、G(グアニン)、A(アデニン)、G(グアニン)、A(アデニン)、T(チミン)、G(グアニン)、およびT(チミン)に置換された。
 より具体的には、図2に示されるように、プライマー58(配列番号:69)、プライマー59(配列番号:70)、および工程(c-1)において得られた発現ベクターを用いるPCR法が実施された。プライマー58(配列番号:69)は、置換される7塩基を除き、scFv遺伝子断片(配列番号:59)に含まれる579番目の塩基から626番目の塩基までの遺伝子配列に相補的であった。プライマー59(配列番号:70)は、置換される7塩基を除き、scFv遺伝子断片(配列番号:59)に相補的な遺伝子断片に含まれる579番目の塩基から626番目の塩基までの遺伝子配列に相補的であった。図2に示されるPCR法により、野生型scFv抗体フラグメントをコードする発現ベクターに含まれる7塩基(AC、TCC、A、C)が、他の7塩基(GA、GAT、G、T)に置換された。このようにして、変異型scFvをコードする遺伝子配列(配列番号:71)を含有する発現ベクターが得られた。
 工程(c-3) ベクターを用いた蛋白質の取得
 工程(c-2)において得られたベクターを用いて、大腸菌(タカラバイオ株式会社より購入、商品名:BL21(DE3))が形質転換された。その後、この大腸菌は、100μg/mLの濃度を有するアンピシリンを含有するLBプレート培地上で37℃の温度下、16時間インキュベートされた。
 インキュベートの後、LBプレート培地上に形成されたシングルコロニーがピックアップされた。シングルコロニーは、100μg/mLの濃度を有するアンピシリンを含有するLB液体培地(500mL)に供給された。その後、600ナノメートルの波長でのLB液体培地の吸光度が0.5に調整されるように、シングルコロニーに含有される大腸菌が増殖された。
 さらに、1Mの濃度を有するイソプロピルーβ-D-チオガラクトピラノシドの水溶液(0.5mL)がLB液体培地に添加された。その後、37℃の温度下で5時間、振盪しながら、大腸菌がインキュベートされた。このようにして、培養液が得られた。
 得られた培養液は、49000m/sの重力加速度、4℃の温度下、5分間、遠心分離に供された。大腸菌を含有する沈殿は、リン酸緩衝生理食塩水(50mL)に再度、懸濁された。
 懸濁液は超音波処理に供され、大腸菌を破砕した。破砕された大腸菌を含有する溶液は、98000m/sの重力加速度、4℃の温度下、30分間、遠心分離に供された。このようにして、沈殿物が得られた。
 この沈殿物は、4%の濃度を有する界面活性剤(TritonX-100、和光純薬工業株式会社より入手)を含有するリン酸緩衝生理食塩水を用いて2回、洗浄された。さらに、沈殿物は界面活性剤を含有しないリン酸緩衝生理食塩水を用いて洗浄された。
 沈殿物に、表6に示される試薬を含有する水溶液A(10mL)が添加された。
Figure JPOXMLDOC01-appb-T000007
 水溶液Aは6のpHを有していた。
 その後、水溶液Aは4℃の温度下で18時間放置された。このようにして、沈殿物は溶解された。
 水溶液Aは、0.45μmのメッシュサイズを有するフィルター(Sartoriusより入手、商品名:Minisart)に通され、残渣を除去した。このようにして、濾液を得た。
 濾液(1mL)に、表7に示される試薬を含有する水溶液B(2mL)が滴下により添加された。
Figure JPOXMLDOC01-appb-T000008
 水溶液Bは8.0のpHを有していた。このようにして、3mLの容積を有する水溶液を得た。
 水溶液(3mL)は、1リットルの容積を有する水溶液Bに滴下により添加された。その後、得られた水溶液は、4℃の温度下で96時間、攪拌された。このようにして、変異体scFv抗体フラグメント(配列番号:61)が得られた。
 その後、濾過ユニット(VIVAFLOW50、Sartoriusより入手)を用いて、溶液は10mLまで濃縮された。カラム(商品名:HiLoad 26/60 Superdex 75 pg、GEヘルスケア社製)を用いて、溶液に含まれる変異体scFv抗体フラグメントが精製された。
 変異体scFv抗体フラグメントのアミノ酸配列(配列番号:61)の詳細は以下に記述される。

 軽鎖可変領域(配列番号:63):
DVVLTQSPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQSPKRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPLTFGAGTKLEIKR
 軽鎖可変領域のN末端に修飾されたアミノ酸配列:なし
 軽鎖可変領域のC末端に修飾されたアミノ酸配列:なし

リンカ(配列番号:64):
GGGGSGGGGSGGGGS

重鎖可変領域(配列番号:65):
QLQLQQSGAELVRSGASVKLSCTASGFNIKDYYMNWVKQRPEQGLEWIGWIDPANGDTAYAPRFQVKADMTADKDSDTAYLQLSSLTSEDTAVYYCNADLPMDQWGQGTSVTVSS
重鎖可変領域のN末端に修飾されたアミノ酸配列:なし
重鎖可変領域のC末端に修飾されたアミノ酸配列:AAALEHHHHHH(配列番号:66)
 工程(d) 結合速度定数および解離速度定数の算出
 分子間相互作用解析装置Biacore T100(GEヘルスケア社より購入)を用いて、変異体scFv抗体フラグメントの結合速度定数および解離速度定数が、分子間相互作用解析装置Biacore T100に添付されているマニュアルに従って算出された。
 およそ500のRU(Resonance Unit)を有するヒト心筋由来トロポニンI(フナコシより購入)がCM5チップ(GEヘルスケア社より購入)上に固定された。このCM5チップはBiacore T100内にセットされた。次に、変異体scFv抗体フラグメントを含有する水溶液(濃度:100nM,50nM、25nM、12.5nM、および6.25nM、容量:150マイクロリットル)をBiacore T100内に流した。分子間相互作用解析装置Biacore T100によって測定された結合速度定数および解離速度定数は、表9に示される。
 (比較例1)
 比較例1では、工程(c-2)が行われなかったこと以外は、実施例1と同様の実験が行われた。このようにして、配列番号:62によって表されるアミノ酸配列からなる野生型scFv抗体フラグメントを得た。実施例1と同様に、野生型scFv抗体フラグメントの結合速度定数および解離速度定数が測定された。結果は、表9に示される。
 野生型scFv抗体フラグメント(配列番号:62)および変異型scFv抗体フラグメント(配列番号:61)の間の相違点は表8に記載される。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表9から明らかなように、実施例1による変異型scFv抗体フラグメントは、比較例1による野生型scFv抗体フラグメントよりも高い結合速度定数を有する。これは、変異型scFv抗体フラグメントは、野生型scFv抗体フラグメントよりも速やかにヒト心筋由来トロポニンIに特異的に結合することを意味する。
 本発明による方法は、急性心筋梗塞を検出するためのセンサに用いられ得る。
 1:抗体
 2:重鎖
  21:重鎖可変領域
 3:軽鎖
  31:軽鎖可変領域
 4:リンカ

Claims (12)

  1.  以下を含む、ヒト心筋由来のトロポニンIに特異的に結合する組み換えタンパク質:
     配列番号:63によって表されるアミノ酸配列からなる軽鎖可変領域、および
     配列番号:65によって表されるアミノ酸配列からなる重鎖可変領域。
  2.  前記組み換えタンパク質が抗体である、請求項1に記載の組み換えタンパク質。
  3.  前記組み換えタンパク質が抗体フラグメントである、請求項1に記載の組み換えタンパク質。
  4.  前記抗体フラグメントがFab抗体フラグメントである、請求項3に記載の組み換えタンパク質。
  5.  前記抗体フラグメントがF(ab’)抗体フラグメントである、請求項3に記載の組み換えタンパク質。
  6.  前記抗体フラグメントがscFv抗体フラグメントである、請求項3に記載の組み換えタンパク質。
  7.  以下の工程を含む、組み換えタンパク質をヒト心筋由来のトロポニンIに特異的に結合させる方法:
     前記組み換えタンパク質を用意する工程(a)、ここで
     前記組み換えタンパク質は以下を含む:
      配列番号:63によって表されるアミノ酸配列からなる軽鎖可変領域、および
      配列番号:65によって表されるアミノ酸配列からなる重鎖可変領域、 前記組み換えタンパク質に前記ヒト心筋由来のトロポニンIを接触させ、前記組み換えタンパク質を前記ヒト心筋由来のトロポニンIに特異的に結合させる工程(b)。
  8.  前記組み換えタンパク質が抗体である、請求項7に記載の方法。
  9.  前記組み換えタンパク質が抗体フラグメントである、請求項7に記載の方法。
  10.  前記抗体フラグメントがFab抗体フラグメントである、請求項9に記載の方法。
  11.  前記抗体フラグメントがF(ab’)抗体フラグメントである、請求項9に記載の方法。
  12.  前記抗体フラグメントがscFv抗体フラグメントである、請求項9に記載の方法。
PCT/JP2012/001726 2011-12-16 2012-03-13 ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質 WO2013088587A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/680,925 US8663933B2 (en) 2011-12-16 2012-11-19 Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-275413 2011-12-16
JP2011275413 2011-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/680,925 Continuation US8663933B2 (en) 2011-12-16 2012-11-19 Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium

Publications (1)

Publication Number Publication Date
WO2013088587A1 true WO2013088587A1 (ja) 2013-06-20

Family

ID=48612071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001726 WO2013088587A1 (ja) 2011-12-16 2012-03-13 ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質

Country Status (2)

Country Link
JP (1) JPWO2013088587A1 (ja)
WO (1) WO2013088587A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503050A (ja) * 1993-05-17 1997-03-25 フォートロン バイオサイエンス インク. 心臓トロポニン▲i▼のアッセイ
JP2009532701A (ja) * 2006-04-04 2009-09-10 シングレックス,インコーポレイテッド トロポニンの分析のための高感度のシステムおよび方法
JP2010107363A (ja) * 2008-10-30 2010-05-13 Sysmex Corp トロポニンiの測定方法及び測定用試薬キット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503050A (ja) * 1993-05-17 1997-03-25 フォートロン バイオサイエンス インク. 心臓トロポニン▲i▼のアッセイ
JP2009532701A (ja) * 2006-04-04 2009-09-10 シングレックス,インコーポレイテッド トロポニンの分析のための高感度のシステムおよび方法
JP2010107363A (ja) * 2008-10-30 2010-05-13 Sysmex Corp トロポニンiの測定方法及び測定用試薬キット

Also Published As

Publication number Publication date
JPWO2013088587A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP4907542B2 (ja) 治療、診断およびクロマトグラフィーに使用するためのタンパク質複合体
AU2009298499A1 (en) Improved method of RNA display
JP2008520963A (ja) サンプル中の分析物を検出する方法
JP6927618B2 (ja) 多重特異性タンパク質薬物およびそのライブラリー、ならびに製造方法と使用
JP5528643B2 (ja) ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質
JP5550797B2 (ja) ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる変異体タンパク質
JPWO2016159211A1 (ja) 試験管内淘汰及び分子間相互作用解析用高速光架橋型共用リンカー、そのリンカーを用いた試験管内淘汰方法
WO2013099043A1 (ja) ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質
JPWO2017094733A1 (ja) 分子標的医薬に結合するdnaアプタマー及びそれを用いる分子標的医薬の検出方法
US8663933B2 (en) Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium
WO2013094080A1 (ja) ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質
KR20210055754A (ko) 항 인간 심근 트로포닌 i의 항체 및 그 사용
WO2013088587A1 (ja) ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質
JP4953046B2 (ja) ランダムペプチドライブラリーもしくは抗体超可変領域を模倣したペプチドライブラリーと、rna結合タンパク質を用いる試験管内ペプチド選択法を組み合わせた、新規の機能性ペプチド創製システム
US8603759B2 (en) Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium
WO2014192202A1 (ja) ヒト心筋由来トロポニンiに特異的にかつ速やかに結合できる組み換えタンパク質
JP2013172663A (ja) ヒト心筋由来トロポニンIとの高い親和性を有するscFv抗体フラグメント
JP6478392B2 (ja) 核酸リンカー
US8603760B2 (en) Recombinant protein capable of binding specifically and quickly to troponin I derived from human myocardium
WO2021003413A2 (en) Self-assembling circular tandem repeat proteins with increased stability
CN112250765A (zh) 一种针对her2的纳米抗体及其应用
JP2015227806A (ja) 磁性体ゲルビーズを用いた標的分子の高感度検出方法及び検出用キット
Möhrle Nanobody selection from a highly variable gene library using mRNA/cDNA display
CN112239504A (zh) 一种针对pd-l1的纳米抗体及其应用
WO2024038187A1 (en) Assay for detection of il-33

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549054

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858570

Country of ref document: EP

Kind code of ref document: A1