WO2013087963A1 - Method for identifying a particular protein in a cell, using a marker peptide and spectroscopy techniques and uses thereof - Google Patents

Method for identifying a particular protein in a cell, using a marker peptide and spectroscopy techniques and uses thereof Download PDF

Info

Publication number
WO2013087963A1
WO2013087963A1 PCT/ES2012/070864 ES2012070864W WO2013087963A1 WO 2013087963 A1 WO2013087963 A1 WO 2013087963A1 ES 2012070864 W ES2012070864 W ES 2012070864W WO 2013087963 A1 WO2013087963 A1 WO 2013087963A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
elementary image
protein
seq
image
Prior art date
Application number
PCT/ES2012/070864
Other languages
Spanish (es)
French (fr)
Inventor
Cristina Risco Ortiz
Raoul Junior De Groot
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/ES2011/070869 external-priority patent/WO2012080551A1/en
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2013087963A1 publication Critical patent/WO2013087963A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5035Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on sub-cellular localization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex

Definitions

  • the present invention falls within the field of molecular biology and microscopy, and more specifically, correlative microscopy techniques in combination with the use of clonable markers, applied to the detection of metals bound to proteins of interest.
  • Electron microscopy techniques in combination with the use of groups of gold atoms covalently linked to each other and to a small molecule, in some cases, or with the use of primary antibodies, in others, allow the mapping and visualization of cell proteins in a way not always satisfactory.
  • the following stand out the lack of application in vivo; the limited sensitivity; and the limited resolution to locate proteins in situ.
  • metallothionein a small protein that lacks secondary structure and that folds when joining metals, when treated with gold salts, forms dense particles to electrons in vitro (Mercogliano and DeRosier, 2006, J Mol. Biol., 355: 21 1-223; Mercogliano and DeRosier, 2007, J. Struct. Biol., 160 (1): 70-82), positioning itself as an excellent clone marker for electron microscopy (WO20061 18615).
  • MT metallothionein
  • An object of the present invention is a useful method for the visualization and detection of a protein of interest in a cell, in a cellular organelle or in a virus by means of a marker peptide bound to metal nano-particles and by correlative microscopy images optics and electronics, hereinafter method of the invention, where the image obtained by microscopy is analyzed together with at least one elementary image obtained by means of a spectroscopy technique and by the joint analysis of different levels of observation, which are simultaneously visualized after superposition at computational level (pixel to pixel) and because said procedure comprises:
  • a preferred object of the invention is the process of the invention where the marker peptide of a) comprises an amino acid sequence, by way of illustration and without limiting the scope of the invention, belonging to the following group: any one of the SEQ sequences ID NO: 1 to 6, any one of its fragments comprising 7 or more cisterns or any amino acid sequence consisting of any combination thereof.
  • step (b) is selected from the list, by way of illustration and without limiting the scope of the invention, as follows: gold, silver, mercury, cadmium, zinc, platinum, bismuth, copper, lead or cobalt.
  • a particular embodiment of the invention is the process of the invention where the metal of step (b) is gold, more preferably, gold in the form of aurous chloride (AuCI), auric chloride (AuC), aurothiomalate or chlorouric acid (HAuCU).
  • AuCI aurous chloride
  • AuC auric chloride
  • HAuCU chlorouric acid
  • Another particular object of the invention is the method of the invention where the c) spectroscopy technique used belongs to the following group: Electron Energy-Loss Spectroscopy (EELS) or X-ray spectroscopy.
  • EELS Electron Energy-Loss Spectroscopy
  • X-ray spectroscopy X-ray spectroscopy
  • Another particular object of the invention is the process of the invention where elementary image of c) is an elementary image of the metal used in step (b).
  • Another preferred object of the invention is the process of the invention where the elementary image is an elementary image of a metal belonging to the following group: elementary image of gold, an elementary image of silver, an elementary image of mercury, an elementary image of Cadmium, an elemental image of zinc, an elementary image of platinum, an elementary image of bismuth, an elementary image of copper, an elementary image of lead and an elementary image of cobalt.
  • Another particular object of the invention is the process of the invention where a noise extraction process is carried out, preferably, the acquisition of additional images by selecting energy losses close to the specific energy loss of the element of interest, previous and after the elementary image at the peak of the spectrum, to later subtract them from the latter.
  • Another object of the invention is the use of the method of the invention for the identification of proteins of biomedical interest within cells, cellular organelles, viruses.
  • the present invention is based on the fact that the inventors have observed that it is possible to considerably increase the sensitivity of visualization and detection of proteins of interest by means of images of optical and electronic correlative microscopy, when analyzed together with at least one elementary image obtained by spectroscopy and the joint analysis of different levels of observation.
  • the competitive advantage described in the present invention is that the use of elementary images allows solving the masking that occurs when using certain stains of heavy materials in preparations to identify proteins of interest by correlative microscopy techniques (see Example 1).
  • the identification of the protein of interest is carried out by the detection of nanoparticles or metal atoms attached to at least said protein of interest using as a point of attachment a marker peptide fused to said protein of interest.
  • the elemental image obtained by spectroscopy also provides a much greater sensitivity than the visualization of dense nano-particles to electrons in cellular electron microscopy either by direct visual verification ( Figure 1) or by quantification by microscopy with energy loss spectroscopy , X-ray or STEM microscopy (scanning electron transmission microscopy; LeBeau et al., (2010) Standardless atom counting in scanning transmission electron microscopy. NanoLetters 10, 4406-4408; Krivanek et al., (1991) EELS quantification near the single -atom detection level Microsc. Microanal. Microstruct.
  • the present invention represents important competitive or commercial advantages since the process requires less reaction time, less concentration of gold salts (cheaper process), thus reducing or eliminating a possible toxicity for those cells that could be particularly sensitive to metals (with the described protocols it has been verified that there is no toxicity in the cell lines with which it has been worked); but the main The advantage is that many more molecules are detected when viewing smaller nano-particles, all those that incorporated less than 40 gold atoms and were invisible in conventional MET ( Figure 1).
  • the detection of gold particles is very specific, since the energy loss spectrum allows the detection of said particles even in samples stained with salts of other heavy metals, usually used to staining the sample and normally masking them in a conventional MET image ( Figure 1).
  • the elementary image is a gold image obtained by electronic energy loss spectroscopy.
  • noise extraction process refers to a procedure that eliminates the non-specific signal that may interfere or be blurring an image obtained by a microscopic technique (according to the invention), to produce an image where only the element of interest appears .
  • Noise extraction is always done and has been done in the example and results shown in Figure 1. It is done computationally once acquired the images of loss of energy corresponding to gold (specific), an area immediately before the spectrum and a subsequent one, which are subtracted from the specific one.
  • Y can be used for the detection of one or several proteins of interest, since the simultaneous use of several copies of the marker peptide or of several fragments thereof of different length treated with metals give rise to the formation of dense particles to the electrons of different size, thus allowing multiple tides to locate more than one protein simultaneously;
  • an object of the present invention constitutes a useful method for the visualization and detection of a protein of interest in a cell, in a cellular organelle or in a virus by means of a marker peptide bound to metal nano-particles and by images of correlative optical and electronic microscopy, hereinafter method of the invention, where the image obtained by microscopy is analyzed together with at least one elementary image obtained by means of a spectroscopy technique and by the joint analysis of different levels of observation, which are visualized simultaneously after computational superposition (pixel to pixel) and because said procedure comprises:
  • d) express at least one peptide in a cell, in a cell organelle or in a virus
  • step (e) treating the cell, the cellular organelle or the virus of step (a) with a metal, and f) analyzing the cell, the cellular organelle or the virus of step (b) by microscopy and, also by at least one image elemental obtained by spectroscopy, and identify the protein of interest.
  • microscopy refers to a technique used to produce enlarged visible images of any structure belonging, by way of illustration and without limiting the scope of the invention, to the following group:
  • optical microscopy for example, but not limited to, bright-field, dark-field, phase contrast optical microscopy; differential interference microscopy or DIC, fluorescence or confocal; Y
  • - electron microscopy for example, but not limited to scanning or transmission; or correlative microscopy.
  • Electrode microscopy means both transmission electron microscopy (MET) and scanning electron microscopy (SEM) and both 2D electron microscopy and 3D electron microscopy.
  • correlative microscopy means the technique based on the use of experimental approaches that allow visualizing a sample or specimen at two levels of observation, for example, but not limited to, optical microscopy and electron microscopy, that is, with microscopic techniques different that normally provide different resolutions.
  • the correlative technique referred to in the present invention selects the cells that express a protein (fused to GFP and the metal-binding peptide) in the optical microscope (fluorescent) to carry them to electronic (for peptide-gold visualization); in this way the same molecules are visualized in optical and electronic, in the latter case with molecular resolution (individual molecules).
  • CLEM correlative light and electron microscopy
  • marker peptide refers to a peptide useful for the detection of proteins of interest by microscopy, preferably electronically or correlatively for their ability to bind to metal molecules that can subsequently be identified by techniques. microscopic By way of example, and without representing a limitation on the scope of the invention, a cloning marker peptide whose amino acid sequence has been designed based on the tank skeleton of the metallothionein (MT) sequence but where The rest of the amino acids have been replaced by small amino acids without charge. This definition also refers to smaller fragments of said marker peptide.
  • MT metallothionein
  • any other metal affinity marker peptide can be used in the process of the invention, such as the tetra-cysteine marker (Gaietta et al., (2002) Multicolor and electron microscopy imaging of connexin trafficking. Science 296, 503 -507).
  • a marker peptide based on the endogenous MT constituted by the amino acid sequence SEQ ID NO: 4 or any of its fragments comprising 7 or more tanks, preferably comprising 8 or more tanks, more preferably comprising 9 or more tanks.
  • SEQ ID NO: 4 is equivalent to the complete MT sequence. Any other amino acid sequence comprising said SEQ ID NO4, its minor variants or combinations thereof can also be used within the framework of the process of the invention.
  • a possible marker peptide is constituted by SEQ ID NO1, which comprises 20 tanks (in SEQ ID NO1 the tanks were conserved by eliminating residues 1, 2, 1 1, 12, 32 and 54 to make a peptide as small as possible, the result is a 53 amino acid peptide).
  • Another possible marker peptide is constituted by SEQ ID NO: 2, fragment corresponding to amino acids 1 to 25 of SEQ ID NO: 1 and comprising 9 tanks (equivalent to the beta domain of MT but with 25 amino acids instead of 29 ).
  • Another possible marker peptide is constituted by SEQ ID NO: 3, a fragment corresponding to amino acids 26 to 53 of SEQ ID NO: 1 and comprising 1 1 tanks.
  • Another possible marker peptide is constituted by SEQ ID NO: 5, a fragment corresponding to amino acids 1 to 29 of SEQ ID NO: 4 and comprising 9 cysteines (equivalent to the complete beta-MT).
  • Another possible marker peptide is constituted by SEQ ID NO: 6, fragment corresponding to amino acids 30 to 61 of SEQ ID NO: 4 and comprising 1 1 cysteines (equivalent to the complete alpha-MT).
  • the marker peptide and its vanants or derivatives can be synthesized, for example, but not limited to, in vitro. For example, by synthesizing solid phase peptides or by recombinant DNA approaches.
  • the marker peptide can be produced recombinantly, not only directly but as a fusion polypeptide together with a heterologous polypeptide, which may contain, for example, but without limiting the scope of the invention, a signal sequence or other polypeptide having a cleavage site.
  • a protease for example, but not limited to, at the N-terminal end of the polypeptide.
  • the marker peptide used may have variants. These variants refer to limited variations in the amino acid sequence, which allow the maintenance of the functionality of the peptide. This means that the reference sequence and the variant sequence are similar as a whole, and identical in many regions. These variations are generated by substitutions, deletions or additions. These substitutions are conserved amino acids.
  • the conserved amino acids are amino acids that have similar side chains and properties in terms of, for example, hydrophobicity or aromaticity. These substitutions are between serine (Ser) and threonine (Thr), and / or between the amino acids that make up the alanine (Ala), leucine (Leu), valine (Val) and isoleucine (lie) group.
  • Variations can be artificially generated variations, such as by mutagenesis or direct synthesis. These variations do not cause essential modifications in the essential characteristics or properties of the peptide. Therefore, peptides or polypeptides whose amino acid sequence is identical or homologous, in the sense described in this paragraph, to the sequences described in the present invention are also included within the scope of the present invention.
  • the marker peptide is fused to a protein of interest.
  • protein of interest refers to any peptide or polypeptide of interest whose microscopy location is to be carried out, and includes any intracellular, extracellular or viral macromolecule, formed by a linear chain of amino acids. This term includes, without limitation, both simple and conjugated proteins or heteroproteins and refers for example, but not limited to, to structural, regulatory (such as, but not limited to, hormones), transporter, defensive (such as, but not limited to, antibodies), enzymatic or contractile proteins.
  • the marker peptide used in the present invention is fused to a marker protein.
  • the marker peptide is fused to a protein and a marker protein.
  • Marker protein or “reporter protein” means any protein that provides, to the system where it is expressed, visually identifiable characteristics, such as, but not limited to, fluorescence or luminescence.
  • marker proteins are, but are not limited to, ⁇ -galactosidase, luciferase, GUS ( ⁇ -glucuronidase) or fluorescent proteins derived from GFP, such as, but not limited to, Green Fluorescent Protein or Green Fluorescent Protein (GFP), Red Fluorescent Protein or Fluorescent Red Protein (RFP), Cyan Fluorescent Protein or Cyan Fluorescent Protein (CFP), Yellow Fluorescent Protein or Yellow Fluorescent Protein (YFP) or Blue Fluorescent Protein or Blue Fluorescent Protein (BFP).
  • GFP Green Fluorescent Protein or Green Fluorescent Protein
  • RFP Red Fluorescent Protein or Fluorescent Red Protein
  • CFP Cyan Fluorescent Protein or Cyan Fluorescent Protein
  • YFP Yellow Fluorescent Protein or Yellow Fluorescent Protein
  • BFP Blue Fluorescent Protein or Blue Fluorescent Protein
  • the marker protein is GFP, which is a 238 amino acid (26.9 kDa) protein isolated from the Aequorea victoria jellyfish that emits green fluorescence when exposed to light. blue.
  • Protein fusion is a technique that is frequently used in molecular biology and can be carried out by techniques known to a person skilled in the art. It is usually related to the production of proteins in living systems, such as, but not limited to, in cells (both prokaryotes, bacteria, and eukaryotes, such as yeasts, mammalian cells or insect cells), in cellular organelles or in virus. Protein fusion consists in cloning the coding sequence of a protein of interest at one end, preferably the 3 'end (carboxyl end), of another peptide.
  • coding sequence of the protein of interest must be carried out in phase, respecting the reading pattern, so as to allow production of a chimeric protein, which in the case of the present invention would consist, but not limited to, the marker peptide fused to a protein, the peptide of the invention fused to a marker protein, or the peptide of the invention fused to a protein and a marker protein.
  • the marker peptide used in the invention has no secondary structure and is folded by joining metal atoms. Said binding is preferably of the ionic type between the metal atoms and the cysteine residues of said peptide, although additional metal atoms may also be incorporated into the group of metal atoms already attached to the marker peptide, said additional metal atoms are attached covalently between them and the atoms that are already attached to the peptide tanks of the invention. Therefore, in another preferred embodiment, the marker peptide further comprises a group of metal atoms attached.
  • the metals that can be attached to this marker peptide are, by way of illustration and without limiting the scope of the invention, all those useful for carrying out electron microscopy, preferably, heavy metals.
  • the metal is selected from the list comprising: gold (Au), silver (Ag), mercury (Hg), cadmium (Cd), zinc (Zn), platinum (Pt), bismuth ( B ⁇ ), copper (Cu), lead (Pb) and Cobalt (Co).
  • the metal is gold.
  • the size of the "group of metal atoms" attached to the marker peptide used in the present invention is, at a minimum, that necessary for electron microscopy techniques to detect. Said size, as well as the number of metal atoms that form the group and their stability during irradiation in the electron microscope can be monitored by, for example, but not limited to, electron microscopy, mass spectrometry or spectroscopic techniques.
  • a preferred object of the invention is the process of the invention where the marker peptide of a) comprises an amino acid sequence, by way of illustration and without limiting the scope of the invention, belonging to the following group: any one of the SEQ sequences ID NO: 1 to 6, one any of its fragments comprising 7 or more tanks or any amino acid sequence consisting of any combination thereof.
  • a person skilled in the art can obtain a marker peptide with these sequences SEQ ID NO: 1 to 6, its fragments or combinations, fused to other different amino acid sequences that also have affinity for metal atoms.
  • Another preferred object of the invention is the process of the invention where the marker peptide of a) is constituted by an amino acid sequence, by way of illustration and without limiting the scope of the invention, belonging to the following group: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, any of its fragments comprising 7 or more tanks or any amino acid sequence consisting of a any combination thereof.
  • Another particular object of the invention is the process of the invention where the a) marker peptide is fused to a protein, preferably a marker protein, and more preferably, is fused to the GFP protein.
  • Another particular object of the invention is the process of the invention where the marker peptide of a) also comprises a group of metal atoms after step b).
  • Another preferred object of the invention is the process of the invention where the metal of step (b) is selected from the list, by way of illustration and without limiting the scope of the invention, as follows: gold, silver, mercury, cadmium, zinc, platinum, bismuth, copper, lead or cobalt.
  • a particular embodiment of the invention is the process of the invention where the metal of step (b) is gold, more preferably, gold in the form of aurous chloride (AuCI), auric chloride (AuC), aurothiomalate or chlorouric acid (HAuCU).
  • Another particular object of the invention is the process of the invention where it also comprises, between steps (b) and (c), a cell fixation stage, the cellular organelle or the virus of step (b) by chemical fixation or freezing and the realization of sections of between 20 and 500 nm of the cell, the cellular organelle or the virus previously fixed.
  • Another particular object of the invention is the method of the invention where the c) spectroscopy technique used belongs to the following group: Electron Energy-Loss Spectroscopy (EELS) or X-ray spectroscopy.
  • EELS Electron Energy-Loss Spectroscopy
  • X-ray spectroscopy X-ray spectroscopy
  • Another particular object of the invention is the process of the invention where elementary image of c) is an elementary image of the metal used in step (b).
  • Another preferred object of the invention is the process of the invention where the elementary image is an elementary image of a metal belonging to the following group: elementary image of gold, an elementary image of silver, an elementary image of mercury, an elementary image of Cadmium, an elemental image of zinc, an elementary image of platinum, an elementary image of bismuth, an elementary image of copper, an elementary image of lead and an elementary image of cobalt.
  • the elementary image is an elementary image of a metal belonging to the following group: elementary image of gold, an elementary image of silver, an elementary image of mercury, an elementary image of Cadmium, an elemental image of zinc, an elementary image of platinum, an elementary image of bismuth, an elementary image of copper, an elementary image of lead and an elementary image of cobalt.
  • Another preferred object of the invention is the process of the invention where the elementary image is a gold image, and more preferably, where the gold image is obtained by electronic energy loss spectroscopy, and even more preferably, the gold image is obtained. with spectroscopes that are coupled to electronic microscopes.
  • Another particular object of the invention is the process of the invention where the expression of the peptide in step (a) is carried out in a cell and because the treatment of step (b) is carried out with aurous chloride (AuCI), auric chloride ( AuC), aurothiomalate or chlorouric acid (HAuCU) at a concentration of between 0.1 and 50 mM, preferably, for between 5 and 60 minutes.
  • Another particular object of the invention is the process of the invention where the cell of step (c) is analyzed for the visualization of at least one cell surface protein and / or at least one protein in vivo.
  • Another particular object of the invention is the process of the invention where it also comprises a stage of selective permeabilization of the cell membrane between steps (a) and (b), preferably by Streptolysin O.
  • Another particular object of the invention is the process of the invention where the cell of step (c) is analyzed for the visualization of at least one intracellular protein.
  • Another particular object of the invention is the process of the invention where the expression of the peptide in step (a) is carried out in a cellular organelle or in a virus and because the treatment of step (b) is carried out with aurous chloride (AuCI ), auric chloride (AuC) or chlorouric acid (HAuCU) at a concentration of between 0.1 and 5 mM, preferably for between 5 and 30 minutes.
  • Another particular object of the invention is the process of the invention where, in step (a), two or more different sized peptides fused to different marker proteins are expressed in a cell, in a cell organelle or in a virus, and, alternatively, to marker proteins of different color.
  • Another more particular object of the invention is the process of the invention where the cell is eukaryotic.
  • Another particular object of the invention is the process of the invention where a noise extraction process is performed, preferably the acquisition of additional images by selecting energy losses close to the specific energy loss of the element of interest, before and after the elementary image at the peak of the spectrum, to later subtract them from the latter.
  • Another object of the invention is the use of the method of the invention for the identification of proteins of biomedical interest within cells, cellular organelles, viruses.
  • Figure 1 Visual comparison of the chimeric proteins of MT1 in a Rubella virus replication organelle with conventional EMT techniques and the method of the present invention.
  • A Visualization of the chimeras of MT1 by means of a conventional transmission electron microscopy image showing the dense gold nano-particles to the electrons associated with MT1 (arrows).
  • B Image of the organelle with MT1 stained with heavy metal salts by means of an image of conventional transmission electron microscopy, where the ultrastructure of the organelle is appreciated, which is filled with condensed membranes, but the gold nano-particles are no longer detected of MT1.
  • C to (E) Method of the present invention.
  • the elementary image of gold has been colored in computationally green, (it is not a fluorescent signal) and has been superimposed on the ultrastructure image.
  • This overlay shows the detailed distribution of the P150-MT1 -oro molecules in the different subdomains of the organelle. Bars: 200.
  • Example 1 Location of chimeric proteins-MT1 -oro in dense organelles of cells by spectroscopic analysis and elementary images (gold maps).
  • a nucleotide sequence encoding a chimeric protein comprising the P150 subunit of the viral replicase fused with the mouse metallothionein peptide 1 (P150-MT1) was prepared as described in patent ES201031880, which allows the expression of said chimeric protein inside cells, organelles or viruses.
  • first BHK-21 mammalian cells cultured in monolayer were transfected with a Rubella virus replicon that allows the expression of the chimeric protein P150-MT1 in vivo, incubated with 1 mM AuC for 30 minutes at 37 ° C, fixed with a mixture of 4% paraformaldehyde and 0.1% glutaraldehyde in PBS (phosphate buffer saline), they were dehydrated in increasing amounts of ethanol and infiltrated in acrylic resin, which once polymerized by heat and hardened, allowed to obtain ultra thin sections (50-70 nm) samples of the sample in an ultramicrotome; alternatively, the samples fixed with aldehydes were frozen at high speed in liquid ethane, dehydrated by cryosubstitution in methanol at -90 ° C for two days and infiltrated in acrylic resin that was polymerized and hardened with ultraviolet light.
  • a Rubella virus replicon that allows the expression of the chimeric protein P150-MT1 in vivo
  • Sections were collected on electron microscopy grids for staining with saturated uranyl acetate (25 min) and lead citrate (2 min), washed with water and allowed to dry before viewing by transmission electron microscopy (MET) conventional; dense perinuclear organelles of cells (modified lysosomes where virus replicative complexes are assembled) were studied.
  • the ultrastructural details of the organelle can be seen in Figures 1 B and 1 C but the gold nano-particles associated with the P150-MT1 molecules are masked by the staining of heavy materials. Only the largest colloidal gold particles (10 nm) added to the post-ori section are visible in a stained section (arrows, Figure 1 C).
  • Colloidal gold particles are immunoglobulins (IgG) adsorbed to colloid spheres and are commercial preparations that are used in "immunogold” assays. They have no affinity for the marker peptide of the invention and are adsorbed by electrostatic attraction after incubating the sections with a suspension of these particles for 30 min at room temperature. Incubation of these particles with colloidal gold was carried out before staining with heavy metals and elemental analysis as an internal confirmation of specificity of the elemental analysis object of the invention: it can be seen how the colloidal gold particles are clearly detected in the Gold maps ( Figures 1 C and 1 D, arrows). In a conventional MET image the gold particles associated with the P150-MT1 proteins are perfectly visualized as small electron dense structures ( Figure 1A).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to a method that can be used to view and detect a particular protein in a cell, a cell organ or a virus, using a marker peptide bound to metal particles and using correlative, optical and electronic microscopy images, in which the microscopically obtained image is analysed together with at least one elementary image obtained using a spectroscopy technique. This method can be used to study the biological action of proteins of biomedical interest as well as to locate said proteins in different intracellular organelles with considerable sensitivity.

Description

PROCEDIMIENTO PARA IDENTIFICAR UNA PROTEÍNA DE INTERÉS EN UNA CÉLULA MEDIANTE UN PÉPTIDO MARCADOR Y TÉCNICAS DE ESPECTROSCOPIA Y SUS APLICACIONES SECTOR DE LA TÉCNICA  PROCEDURE TO IDENTIFY A PROTEIN OF INTEREST IN A CELL BY MEANS OF A MARKER PEPTIDE AND SPECTROSCOPY TECHNIQUES AND ITS TECHNICAL SECTOR APPLICATIONS
La presente invención se encuadra dentro del campo de la biología molecular y de la microscopía, y más concretamente, de las técnicas de microscopía correlativa en combinación con el uso de marcadores clonables, aplicadas a la detección de metales unidos a proteínas de interés. The present invention falls within the field of molecular biology and microscopy, and more specifically, correlative microscopy techniques in combination with the use of clonable markers, applied to the detection of metals bound to proteins of interest.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
Las técnicas de microscopía electrónica en combinación con el uso de grupos de átomos de oro unidos covalentemente entre sí y a una pequeña molécula, en unos casos, o con la utilización de anticuerpos primarios, en otros, permiten el mareaje y visualización de proteínas de la célula de una forma no siempre satisfactoria. Entre las desventajas que presentan estas técnicas, destacan: la falta de aplicación in vivo; la limitada sensibilidad; y la limitada resolución para localizar las proteínas in situ. Electron microscopy techniques in combination with the use of groups of gold atoms covalently linked to each other and to a small molecule, in some cases, or with the use of primary antibodies, in others, allow the mapping and visualization of cell proteins in a way not always satisfactory. Among the disadvantages of these techniques, the following stand out: the lack of application in vivo; the limited sensitivity; and the limited resolution to locate proteins in situ.
Recientemente, se han comenzado a utilizar marcadores clonables, por su considerable capacidad para localizar la práctica totalidad de las moléculas de las proteínas de interés dentro de las células. Así por ejemplo, la metalotioneína (MT), una pequeña proteína que carece de estructura secundaria y que se pliega al unir metales, al ser tratada con sales de oro, forma partículas densas a los electrones in vitro (Mercogliano y DeRosier, 2006, J. Mol. Biol., 355: 21 1 -223; Mercogliano y DeRosier, 2007, J. Struct. Biol., 160(1 ):70-82), posicionándose como un excelente marcador clonable para microscopía electrónica (WO20061 18615). Algunos estudios demuestran la visualización en dos dimensiones (2D) y tres dimensiones (3D) con una sensibilidad muy alta, de proteínas quiméricas fusionadas a la MT en bacterias, mediante tratamientos de las células vivas con sales de oro y procesamientos de las mismas para su posterior visualización en microscopía electrónica, aunque únicamente en células procariotas (Diestra E., et al., 2009, J Struct Biol, 165: 157-168; Diestra E., et al., 2009, PLoS ONE 4:e8301 ). Recently, clonable markers have begun to be used, due to their considerable ability to locate almost all of the molecules of the proteins of interest within the cells. Thus, for example, metallothionein (MT), a small protein that lacks secondary structure and that folds when joining metals, when treated with gold salts, forms dense particles to electrons in vitro (Mercogliano and DeRosier, 2006, J Mol. Biol., 355: 21 1-223; Mercogliano and DeRosier, 2007, J. Struct. Biol., 160 (1): 70-82), positioning itself as an excellent clone marker for electron microscopy (WO20061 18615). Some studies show the visualization in two dimensions (2D) and three dimensions (3D) with a very high sensitivity, of chimeric proteins fused to the MT in bacteria, by means of treatments of the living cells with gold salts and their processing for their subsequent visualization in electron microscopy, although only in prokaryotic cells (Diestra E., et al., 2009, J Struct Biol, 165: 157-168; Diestra E., et al., 2009, PLoS ONE 4: e8301).
Ha existido durante mucho tiempo la necesidad de disponer de técnicas de microscopía electrónica, y sus derivados en microscopía óptica más adecuadas, asociadas al uso de marcadores clonables, que no solo permitan visualizar las proteínas in vivo en su entorno intracelular nativo en células procariotas sin depender del reconocimiento antígeno-anticuerpo, sino que también pudieran ser aplicadas a estudios de visualización de moléculas individuales de proteínas en células eucariotas vivas con una alta sensibilidad y resolución. Estas técnicas permitirían la elaboración de mapas macromoleculares en 2D y 3D de las células eucariotas para obtener información relevante de las estructuras que mantienen las funciones celulares, ampliando así sus aplicaciones en biología. There has been a need for a long time for electron microscopy techniques, and their derivatives in more appropriate optical microscopy, associated with the use of clonable markers, which not only allow visualization of proteins in vivo in their native intracellular environment in prokaryotic cells without relying on of the antigen-antibody recognition, but could also be applied to visualization studies of individual protein molecules in living eukaryotic cells with high sensitivity and resolution. These techniques would allow the elaboration of 2D and 3D macromolecular maps of eukaryotic cells to obtain relevant information on the structures that maintain cellular functions, thus expanding their applications in biology.
Recientemente, la solicitud de patente española P201031880 titulada "Marcador clonable para su uso en microscopía" ha aportado soluciones técnicas en el campo de la visualización de proteínas in vivo en células procariotas y eucariotas, a través de técnicas de microscopía, utilizando como marcador clonable un péptido o fragmentos de menor tamaño del mismo, que presentan una secuencia aminoacídica conformada por un esqueleto de cisteínas de la secuencia de la metalotioneína (MT) y aminoácidos de pequeño tamaño sin carga, fusionado o no a una proteína marcadora. La presente solicitud PCT reivindica materia inventiva incorporada en la solicitud PCT de la prioridad ES201031880 presentada el 17 de diciembre de 2010 (PCT/ES1 1/070869 solicitada el 15 de diciembre de 201 1 ) y que se ha considerado como invención diferente a la prioridad ES201031880 y que debe reclamar prioridad propia con fecha de 15 de diciembre de 201 1 . Al mismo tiempo que se presenta esta solicitud PCT se va a proceder a solicitar el reconocimiento de su solicitud de prioridad en la Oficina Española de Patentes y Marcas. Recently, the Spanish patent application P201031880 entitled "Cloning marker for use in microscopy" has provided technical solutions in the field of in vivo protein visualization in prokaryotic and eukaryotic cells, through microscopy techniques, using a clone marker as a peptide or smaller fragments thereof, which have an amino acid sequence consisting of a cysteine skeleton of the metallothionein (MT) sequence and small amino acids without charge, fused or not to a marker protein. The present PCT application claims inventive matter incorporated in the PCT application of priority ES201031880 filed on December 17, 2010 (PCT / ES1 1/070869 requested on December 15, 201 1) and which has been considered as a different invention from the priority ES201031880 and must claim its own priority dated December 15, 201 1. At the same time that this PCT application is submitted, it will proceed to request the recognition of your priority application in the Spanish Patent and Trademark Office.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Descripción Breve Brief description
Un objeto de la presente invención lo constituye un procedimiento útil para la visualización y detección de una proteína de interés en una célula, en un orgánulo celular o en un virus mediante un péptido marcador unido a nano-partículas de metal y mediante imágenes de microscopía correlativa óptica y electrónica, en adelante procedimiento de la invención, donde la imagen obtenida por microscopía se analiza conjuntamente con, al menos, una imagen elemental obtenida mediante una técnica de espectroscopia y mediante el análisis conjunto de diferentes niveles de observación, que se visualizan simultáneamente tras superposición a nivel computacional (pixel a pixel) y porque dicho procedimiento comprende: An object of the present invention is a useful method for the visualization and detection of a protein of interest in a cell, in a cellular organelle or in a virus by means of a marker peptide bound to metal nano-particles and by correlative microscopy images optics and electronics, hereinafter method of the invention, where the image obtained by microscopy is analyzed together with at least one elementary image obtained by means of a spectroscopy technique and by the joint analysis of different levels of observation, which are simultaneously visualized after superposition at computational level (pixel to pixel) and because said procedure comprises:
a) expresar al menos un péptido en una célula, en un orgánulo celular o en un virus,  a) expressing at least one peptide in a cell, in a cell organelle or in a virus,
b) tratar la célula, el orgánulo celular o el virus del paso (a) con un metal, y c) analizar la célula, el orgánulo celular o el virus del paso (b) mediante microscopía y, también mediante, al menos, una imagen elemental obtenida mediante espectroscopia, e identificar la proteína de interés. Un objeto preferente de la invención lo constituye el procedimiento de la invención donde el péptido marcador de a) comprende una secuencia de aminoácidos, a título ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo: una cualquiera de las secuencias SEQ ID NO: 1 a la 6, una cualquiera de sus fragmentos que comprenda 7 ó más cisternas o cualquier secuencia de aminoácidos constituida por una combinación cualquiera de las mismas. Otro objeto preferente de la invención lo constituye el procedimiento de la invención donde el metal del paso (b) se selecciona de la lista, a título ilustrativo y sin que limite el alcance de la invención, siguiente: oro, plata, mercurio, cadmio, zinc, platino, bismuto, cobre, plomo o cobalto. b) treating the cell, the cellular organelle or the virus of step (a) with a metal, and c) analyzing the cell, the cellular organelle or the virus of step (b) by microscopy and, also by at least one image elemental obtained by spectroscopy, and identify the protein of interest. A preferred object of the invention is the process of the invention where the marker peptide of a) comprises an amino acid sequence, by way of illustration and without limiting the scope of the invention, belonging to the following group: any one of the SEQ sequences ID NO: 1 to 6, any one of its fragments comprising 7 or more cisterns or any amino acid sequence consisting of any combination thereof. Another preferred object of the invention is the process of the invention where the metal of step (b) is selected from the list, by way of illustration and without limiting the scope of the invention, as follows: gold, silver, mercury, cadmium, zinc, platinum, bismuth, copper, lead or cobalt.
Una realización particular de la invención lo constituye el procedimiento de la invención donde el metal del paso (b) es oro, más preferentemente, oro en la forma de cloruro auroso (AuCI), cloruro aurico (AuC ), aurotiomalato o el ácido cloroáurico (HAuCU). A particular embodiment of the invention is the process of the invention where the metal of step (b) is gold, more preferably, gold in the form of aurous chloride (AuCI), auric chloride (AuC), aurothiomalate or chlorouric acid ( HAuCU).
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la técnica de espectroscopia de c) utilizada pertenece al siguiente grupo: espectroscopia electrónica de pérdida de energía (EELS, del inglés Electron Energy-Loss Spectroscopy) o espectroscopia de rayos X. Another particular object of the invention is the method of the invention where the c) spectroscopy technique used belongs to the following group: Electron Energy-Loss Spectroscopy (EELS) or X-ray spectroscopy.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde imagen elemental de c) es una imagen elemental del metal utilizado en el paso (b). Otro objeto preferente de la invención lo constituye el procedimiento de la invención donde la imagen elemental es una imagen elemental de un metal perteneciente al siguiente grupo: imagen elemental de oro, una imagen elemental de plata, una imagen elemental de mercurio, una imagen elemental de cadmio, una imagen elemental de zinc, una imagen elemental de platino, una imagen elemental de bismuto, una imagen elemental de cobre, una imagen elemental de plomo y una imagen elemental de cobalto. Another particular object of the invention is the process of the invention where elementary image of c) is an elementary image of the metal used in step (b). Another preferred object of the invention is the process of the invention where the elementary image is an elementary image of a metal belonging to the following group: elementary image of gold, an elementary image of silver, an elementary image of mercury, an elementary image of Cadmium, an elemental image of zinc, an elementary image of platinum, an elementary image of bismuth, an elementary image of copper, an elementary image of lead and an elementary image of cobalt.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde se realiza un proceso de extracción de ruido, preferentemente, la adquisición de imágenes adicionales seleccionando pérdidas de energía próximas a la pérdida de energía específica del elemento de interés, anteriores y posteriores a la imagen elemental en el pico del espectro, para posteriormente restarlas de ésta última. Another particular object of the invention is the process of the invention where a noise extraction process is carried out, preferably, the acquisition of additional images by selecting energy losses close to the specific energy loss of the element of interest, previous and after the elementary image at the peak of the spectrum, to later subtract them from the latter.
Finalmente, otro objeto de la invención lo constituye el uso del procedimiento de la invención para la identificación proteínas de interés biomédico en el interior de células, orgánulos celulares, virus. Finally, another object of the invention is the use of the method of the invention for the identification of proteins of biomedical interest within cells, cellular organelles, viruses.
Descripción Detallada La presente invención se basa en que los inventores han observado que es posible incrementar considerablemente la sensibilidad de visualización y detección de proteínas de interés mediante imágenes de microscopía correlativa óptica y electrónica, cuando se analiza conjuntamente con, al menos, una imagen elemental obtenida mediante espectroscopia y el análisis conjunto de diferentes niveles de observación. La ventaja competitiva descrita en la presente invención es que el uso de las imágenes elementales permite resolver el enmascaramiento que se produce al utilizar determinadas tinciones de materiales pesados en preparaciones para identificar proteínas de interés mediante técnicas de microscopía correlativa (ver Ejemplo 1 ). Detailed Description The present invention is based on the fact that the inventors have observed that it is possible to considerably increase the sensitivity of visualization and detection of proteins of interest by means of images of optical and electronic correlative microscopy, when analyzed together with at least one elementary image obtained by spectroscopy and the joint analysis of different levels of observation. The competitive advantage described in the present invention is that the use of elementary images allows solving the masking that occurs when using certain stains of heavy materials in preparations to identify proteins of interest by correlative microscopy techniques (see Example 1).
La identificación de la proteína de interés se lleva a cabo mediante la detección de nanopartículas o átomos de metal unidos a, al menos, a dicha proteína de interés utilizando como punto de unión un péptido marcador fusionado a dicha proteína de interés. The identification of the protein of interest is carried out by the detection of nanoparticles or metal atoms attached to at least said protein of interest using as a point of attachment a marker peptide fused to said protein of interest.
En microscopía electrónica de transmisión convencional (MET), no todos los metales se visualizan bien como partículas densas a los electrones. Uno de los elementos más usados es el oro ya que es uno de los metales que mejor se puede visualizar por este tipo de microscopía. De igual forma, el uso de la imagen elemental descrito en la presente invención tiene como principal ventaja que permite visualizar otros metales distintos de oro, sean densos o no a los electrones, y distinguirlos cuando se enmascaran con las tinciones. Con las imágenes elementales la identificación no ofrece dudas, incluso para el oro, que no se localiza con claridad si está en cantidades pequeñas o si forma nano- partículas de menos de 1 nm (Figura 1 ). El uso de metales distintos al oro tiene ventajas adicionales si se pueden obtener imágenes elementales, ya que la afinidad de la MT es mayor para metales diferentes al oro: Hg2+ > Cu+ > Ag+ > Pb2+ > Cd2+ = Au+ > Zn2+ > Co2+ (Nielson et al., (1985) Distinct metal-binding configurations in metallothionein. J. Biol. Chem. 260: 5342-5350); Schmitz et al., (1980) The Binding of Gold (I) to Metallothionein. J. Inorganic Biochemistry 12:293-306). In conventional transmission electron microscopy (MET), not all metals are well visualized as dense particles to electrons. One of the most used elements is gold since it is one of the metals that can best be visualized by this type of microscopy. Similarly, the use of the elementary image described in the present invention has the main advantage that it allows visualizing other metals other than gold, whether or not they are dense to electrons, and distinguish them when they are masked with stains. With the Elemental images Identification offers no doubt, even for gold, that it is not clearly located if it is in small quantities or if it forms nano-particles of less than 1 nm (Figure 1). The use of metals other than gold has additional advantages if elementary images can be obtained, since the affinity of MT is greater for metals other than gold: Hg2 +> Cu +> Ag +> Pb2 +> Cd2 + = Au +> Zn2 +> Co2 + (Nielson et al., (1985) Distinct metal-binding configurations in metallothionein. J. Biol. Chem. 260: 5342-5350); Schmitz et al., (1980) The Binding of Gold (I) to Metallothionein. J. Inorganic Biochemistry 12: 293-306).
La imagen elemental obtenida mediante espectroscopia proporciona además una sensibilidad mucho mayor que la visualización de nano-partículas densas a los electrones en microscopía electrónica celular ya sea mediante la constatación visual directa (Figura 1 ) o mediante la cuantificación mediante microscopía con espectroscopia de pérdida de energía, de rayos X o microscopía STEM (scanning transmisión electrón microscopy; LeBeau et al., (2010) Standardless atom counting in scanning transmission electrón microscopy. NanoLetters 10, 4406- 4408; Krivanek et al., (1991 ) EELS quantification near the single-atom detection level. Microsc. Microanal. Microstruct. 2, 257-267; Sousa et al., (2008) Determination of quantitative distributions of heavy-metal stain in biologival specimens by anular dark-field STEM. J. Struct. Biol. 162, 14-28). El motivo es que en las imágenes elementales obtenidas mediante espectroscopia se detectan las proteínas de interés correctamente con muy pocos átomos de oro incorporados a las mismas y no se necesita el crecimiento de las nano-partículas hasta alcanzar el tamaño de 1 nm (formado por unos 40-60 átomos), que es el diámetro mínimo para su detección en células por microscopía electrónica. La presente invención representa importantes ventajas competitivas o comerciales ya que el procedimiento requiere menos tiempo de reacción, menor concentración de las sales de oro (abaratamiento del proceso), disminuyendo o eliminando así una posible toxicidad para aquellas células que pudieran ser particularmente sensibles a los metales (con los protocolos descritos se ha comprobado que no hay toxicidad en las líneas celulares con las que se ha trabajado); pero la principal ventaja es que se detectan muchas más moléculas al visualizarse nano-partículas de menor tamaño, todas aquellas que incorporaron menos de 40 átomos de oro y que eran invisibles en MET convencional (Figura 1 ). En el caso del oro, como se menciona anteriormente, la detección de las partículas de oro es muy específica, ya que el espectro de pérdida de energía permite la detección de dichas partículas incluso en muestras teñidas con sales de otros metales pesados, habitualmente empleadas para la tinción de la muestra y que normalmente las enmascaran en una imagen MET convencional (Figura 1 ). De este modo, se consigue una imagen de alto contraste que permite el estudio detallado de la distribución de las moléculas de proteína junto con la visualización simultánea de la ultraestructura celular. Adicionalmente, permite obtener muchos más detalles sobre la localización subcelular de las proteínas que llevan el péptido marcador-oro, como por ejemplo la asociación a membranas intracelulares, la orientación de las moléculas de proteína en un lado u otro de las membranas (lumen de orgánulos o citosol), o la asociación a complejos macromoleculares como ribosomas o elementos del citoesqueleto, todos ellos invisibles en ausencia de tinción en MET convencional. Por ello, en una realización más preferida de la anterior, la imagen elemental es una imagen oro obtenida por espectroscopia electrónica de pérdida de energía. The elemental image obtained by spectroscopy also provides a much greater sensitivity than the visualization of dense nano-particles to electrons in cellular electron microscopy either by direct visual verification (Figure 1) or by quantification by microscopy with energy loss spectroscopy , X-ray or STEM microscopy (scanning electron transmission microscopy; LeBeau et al., (2010) Standardless atom counting in scanning transmission electron microscopy. NanoLetters 10, 4406-4408; Krivanek et al., (1991) EELS quantification near the single -atom detection level Microsc. Microanal. Microstruct. 2, 257-267; Sousa et al., (2008) Determination of quantitative distributions of heavy-metal stain in biologival specimens by anular dark-field STEM. J. Struct. Biol. 162, 14-28). The reason is that in the elementary images obtained by spectroscopy the proteins of interest are correctly detected with very few gold atoms incorporated therein and the growth of the nano-particles is not necessary until reaching the size of 1 nm (formed by about 40-60 atoms), which is the minimum diameter for detection in cells by electron microscopy. The present invention represents important competitive or commercial advantages since the process requires less reaction time, less concentration of gold salts (cheaper process), thus reducing or eliminating a possible toxicity for those cells that could be particularly sensitive to metals (with the described protocols it has been verified that there is no toxicity in the cell lines with which it has been worked); but the main The advantage is that many more molecules are detected when viewing smaller nano-particles, all those that incorporated less than 40 gold atoms and were invisible in conventional MET (Figure 1). In the case of gold, as mentioned above, the detection of gold particles is very specific, since the energy loss spectrum allows the detection of said particles even in samples stained with salts of other heavy metals, usually used to staining the sample and normally masking them in a conventional MET image (Figure 1). In this way, a high contrast image is achieved that allows detailed study of the distribution of protein molecules together with the simultaneous visualization of cell ultrastructure. Additionally, it allows to obtain many more details about the subcellular localization of the proteins that carry the gold-marker peptide, such as the association with intracellular membranes, the orientation of the protein molecules on one side or the other of the membranes (lumen of organelles or cytosol), or the association to macromolecular complexes such as ribosomes or cytoskeleton elements, all of them invisible in the absence of conventional MET staining. Therefore, in a more preferred embodiment of the above, the elementary image is a gold image obtained by electronic energy loss spectroscopy.
La situación para cada elemento metálico anterior es diferente y en todos los casos se realiza un proceso de "extracción de ruido". Un "proceso de extracción de ruido" se refiere a un procedimiento que permite eliminar la señal no específica que puede interferir o estar emborronando una imagen obtenida por una técnica microscópica (según la invención), para producir una imagen donde sólo aparece el elemento de interés. La extracción de ruido se hace siempre y se ha hecho en el ejemplo y resultados que se muestran en la Figura 1 . Se realiza computacionalmente una vez adquiridas las imágenes de pérdida de energía correspondiente al oro (específica), una zona inmediatamente anterior en el espectro y una posterior, que se sustraen a la específica. Para ello, se emplean diversos métodos, pero uno de los más utilizados consiste en adquirir imágenes adicionales seleccionando pérdidas de energía próximas a la pérdida de energía específica del elemento de interés, anteriores y posteriores a la imagen elemental en el pico del espectro, para posteriormente restarlas de ésta última. A modo de ejemplo, y sin que sirva de limitación, el método más utilizado es el descrito por Egerton (Egerton, R.F. (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, USA). The situation for each previous metallic element is different and in all cases a "noise extraction" process is carried out. A "noise extraction process" refers to a procedure that eliminates the non-specific signal that may interfere or be blurring an image obtained by a microscopic technique (according to the invention), to produce an image where only the element of interest appears . Noise extraction is always done and has been done in the example and results shown in Figure 1. It is done computationally once acquired the images of loss of energy corresponding to gold (specific), an area immediately before the spectrum and a subsequent one, which are subtracted from the specific one. For this, various methods are used, but one of the most used is to acquire images additional by selecting energy losses close to the specific energy loss of the element of interest, before and after the elementary image at the peak of the spectrum, to subsequently subtract them from the latter. As an example, and without limitation, the most commonly used method is that described by Egerton (Egerton, RF (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, USA).
La obtención de, al menos, una imagen elemental obtenida mediante una técnica de espectroscopia tal como se describe en la presente invención, conjuntamente con la utilización de la expresión de un péptido marcador, el tratamiento con metales de las células y el procesamiento posterior, junto con las técnicas de microscopía correlativa - estos últimos elementos están descritos en la patente anterior ES201031880 a la cual se considera referencia para su descripción suficiente - presenta igualmente las siguientes ventajas ya descritas en dicha patente: Obtaining at least one elementary image obtained by means of a spectroscopy technique as described in the present invention, together with the use of expression of a marker peptide, treatment with cell metals and subsequent processing, together with correlative microscopy techniques - these last elements are described in the previous patent ES201031880 to which it is considered a reference for its sufficient description - it also has the following advantages already described in said patent:
- permite su aplicación a células vivas, tanto procariotas como eucariotas, a orgánulos celulares purificados o a virus, permitiendo visualizar las proteínas en su entorno intracelular nativo sin depender del reconocim iento antígeno-anticuerpo;  - allows its application to living cells, both prokaryotic and eukaryotic, to purified cellular organelles or to viruses, allowing the visualization of proteins in their native intracellular environment without relying on antigen-antibody recognition;
- no interfiere con la funcionalidad de las proteínas debido a su pequeño tamaño;  - does not interfere with protein functionality due to its small size;
- puede emplearse para la detección de una o de varias proteínas de interés, ya que el uso simultáneo de varias copias del péptido marcador o de varios fragmentos del mismo de diferente longitud tratados con metales dan lugar a la formación de partículas densas a los electrones de tamaño diferente, permitiendo así los mareajes múltiples para la localización de más de una proteína simultáneamente; y  - can be used for the detection of one or several proteins of interest, since the simultaneous use of several copies of the marker peptide or of several fragments thereof of different length treated with metals give rise to the formation of dense particles to the electrons of different size, thus allowing multiple tides to locate more than one protein simultaneously; Y
- permite visualizar las moléculas en la proteína de interés con una alta sensibilidad y resolución (localización muy precisa), incluso la posición de las moléculas individuales de proteínas y el detalle estructural en células eucariotas vivas. Así, un objeto de la presente invención lo constituye un procedimiento útil para la visualización y detección de una proteína de interés en una célula, en un orgánulo celular o en un virus mediante un péptido marcador unido a nano-partículas de metal y mediante imágenes de microscopía correlativa óptica y electrónica, en adelante procedimiento de la invención, donde la imagen obtenida por microscopía se analiza conjuntamente con, al menos, una imagen elemental obtenida mediante una técnica de espectroscopia y mediante el análisis conjunto de diferentes niveles de observación, que se visualizan simultáneamente tras superposición a nivel computacional (pixel a pixel) y porque dicho procedimiento comprende: - allows to visualize the molecules in the protein of interest with a high sensitivity and resolution (very precise location), including the position of the individual protein molecules and the structural detail in living eukaryotic cells. Thus, an object of the present invention constitutes a useful method for the visualization and detection of a protein of interest in a cell, in a cellular organelle or in a virus by means of a marker peptide bound to metal nano-particles and by images of correlative optical and electronic microscopy, hereinafter method of the invention, where the image obtained by microscopy is analyzed together with at least one elementary image obtained by means of a spectroscopy technique and by the joint analysis of different levels of observation, which are visualized simultaneously after computational superposition (pixel to pixel) and because said procedure comprises:
d) expresar al menos un péptido en una célula, en un orgánulo celular o en un virus,  d) express at least one peptide in a cell, in a cell organelle or in a virus,
e) tratar la célula, el orgánulo celular o el virus del paso (a) con un metal, y f) analizar la célula, el orgánulo celular o el virus del paso (b) mediante microscopía y, también mediante, al menos, una imagen elemental obtenida mediante espectroscopia, e identificar la proteína de interés.  e) treating the cell, the cellular organelle or the virus of step (a) with a metal, and f) analyzing the cell, the cellular organelle or the virus of step (b) by microscopy and, also by at least one image elemental obtained by spectroscopy, and identify the protein of interest.
El término "microscopía" se refiere a una técnica empleada para producir imágenes visibles aumentadas de cualquier estructura perteneciente, a título ilustrativo y sin que limite el alcance de la invención, al siguiente grupo: The term "microscopy" refers to a technique used to produce enlarged visible images of any structure belonging, by way of illustration and without limiting the scope of the invention, to the following group:
- microscopía óptica, por ejemplo, aunque sin limitarnos, microscopía óptica de campo brillante, de campo oscuro, de contraste de fases; microscopía diferencial de contraste de interferencia o DIC, de fluorescencia o confocal; y  - optical microscopy, for example, but not limited to, bright-field, dark-field, phase contrast optical microscopy; differential interference microscopy or DIC, fluorescence or confocal; Y
- microscopía electrónica, por ejemplo, aunque sin limitarnos, de barrido o de transmisión; o microscopía correlativa.  - electron microscopy, for example, but not limited to scanning or transmission; or correlative microscopy.
Se entiende por "microscopía electrónica" tanto la microscopía electrónica de transmisión (MET) como la de barrido (SEM) y tanto la microscopía electrónica 2D como la microscopía electrónica 3D. Finalmente, se entiende por "microscopía correlativa" la técnica basada en el empleo de abordajes experimentales que permitan visualizar una muestra o espécimen a dos niveles de observación, por ejemplo, aunque sin limitarnos, microscopía óptica y microscopía electrónica, es decir, con técnicas microscópicas diferentes que normalmente proporcionan distintas resoluciones. La técnica correlativa a la que se alude en la presente invención (del ingles CLEM: correlative light and electrón microscopy) selecciona las células que expresan una proteína (fusionada a GFP y al péptido que une metales) en el microscopio óptico (fluorescentes) para llevarlas a electrónico (para visualización del péptido-oro); de esta manera se visualizan las mismas moléculas en óptico y electrónico, en este último caso con resolución molecular (moléculas individuales). "Electron microscopy" means both transmission electron microscopy (MET) and scanning electron microscopy (SEM) and both 2D electron microscopy and 3D electron microscopy. Finally, "correlative microscopy" means the technique based on the use of experimental approaches that allow visualizing a sample or specimen at two levels of observation, for example, but not limited to, optical microscopy and electron microscopy, that is, with microscopic techniques different that normally provide different resolutions. The correlative technique referred to in the present invention (CLEM: correlative light and electron microscopy) selects the cells that express a protein (fused to GFP and the metal-binding peptide) in the optical microscope (fluorescent) to carry them to electronic (for peptide-gold visualization); in this way the same molecules are visualized in optical and electronic, in the latter case with molecular resolution (individual molecules).
Se considera que expresan el mismo significado las siguientes expresiones: "imagen elemental de oro", "imagen de oro", "imagen oro" o "mapa oro". The following expressions are considered to express the same meaning: "elementary image of gold", "image of gold", "image of gold" or "map of gold".
El término "péptido marcador" tal como se usa en la presente invención se refiere a un péptido útil para la detección de proteínas de interés por microscopía, preferiblemente electrónica o correlativa por su capacidad de unión a moléculas de metales que posteriormente pueden ser identificadas mediante técnicas microscópicas. A título de ejemplo, y sin que represente una limitación al alcance de la invención, se ha utilizado en la invención un péptido marcador clonable cuya secuencia aminoacídica ha sido diseñada en base al esqueleto de cisternas de la secuencia de la metalotioneína (MT) pero donde el resto de los aminoácidos han sido sustituidos por aminoácidos de pequeño tamaño sin carga. Esta definición también se refiere a fragmentos de menor tamaño de dicho péptido marcador. Además, cualquier otro péptido marcador con afinidad por metales puede utilizarse en el procedimiento de la invención, como por ejemplo el marcador de tetra-cisteínas (Gaietta et al., (2002) Multicolor and electrón microscopio imaging of connexin trafficking. Science 296, 503-507). The term "marker peptide" as used in the present invention refers to a peptide useful for the detection of proteins of interest by microscopy, preferably electronically or correlatively for their ability to bind to metal molecules that can subsequently be identified by techniques. microscopic By way of example, and without representing a limitation on the scope of the invention, a cloning marker peptide whose amino acid sequence has been designed based on the tank skeleton of the metallothionein (MT) sequence but where The rest of the amino acids have been replaced by small amino acids without charge. This definition also refers to smaller fragments of said marker peptide. In addition, any other metal affinity marker peptide can be used in the process of the invention, such as the tetra-cysteine marker (Gaietta et al., (2002) Multicolor and electron microscopy imaging of connexin trafficking. Science 296, 503 -507).
Más concretamente, para la ejecución del procedimiento de la presente invención se puede usar un péptido marcador basado en la MT endógena constituida por la secuencia aminoacídica SEQ ID NO: 4 o cualquiera de sus fragmentos que comprenda 7 o más cisternas, preferiblemente que comprenda 8 o más cisternas, más preferiblemente que comprenda 9 o más cisternas. La SEQ ID NO: 4 equivale a la secuencia de la MT completa. Cualquier otra secuencia de aminoácidos que comprenda dicha SEQ ID NO4, sus vanantes menores o combinaciones de las mismas pueden ser utilizadas igualmente en el marco del procedimiento de la invención. More specifically, for the execution of the process of the present invention a marker peptide based on the endogenous MT constituted by the amino acid sequence SEQ ID NO: 4 or any of its fragments comprising 7 or more tanks, preferably comprising 8 or more tanks, more preferably comprising 9 or more tanks. SEQ ID NO: 4 is equivalent to the complete MT sequence. Any other amino acid sequence comprising said SEQ ID NO4, its minor variants or combinations thereof can also be used within the framework of the process of the invention.
Un posible péptido marcador está constituido por la SEQ ID NO1 , que comprende 20 cisternas (en la SEQ ID NO1 se conservó las cisternas eliminando los residuos 1 , 2, 1 1 , 12, 32 y 54 para hacer un péptido lo más pequeño posible, el resultado es un péptido de 53 aminoácidos). A possible marker peptide is constituted by SEQ ID NO1, which comprises 20 tanks (in SEQ ID NO1 the tanks were conserved by eliminating residues 1, 2, 1 1, 12, 32 and 54 to make a peptide as small as possible, the result is a 53 amino acid peptide).
Otro posible péptido marcador está constituido por la SEQ ID NO: 2, fragmento correspondiente a los aminoácidos 1 a 25 de la SEQ ID NO: 1 y que comprende 9 cisternas (equivaldría al dominio beta de la MT pero con 25 aminoácidos en vez de 29). Another possible marker peptide is constituted by SEQ ID NO: 2, fragment corresponding to amino acids 1 to 25 of SEQ ID NO: 1 and comprising 9 tanks (equivalent to the beta domain of MT but with 25 amino acids instead of 29 ).
Otro posible péptido marcador está constituido por la SEQ ID NO: 3, fragmento correspondiente a los aminoácidos 26 a 53 de la SEQ ID NO: 1 y que comprende 1 1 cisternas. Another possible marker peptide is constituted by SEQ ID NO: 3, a fragment corresponding to amino acids 26 to 53 of SEQ ID NO: 1 and comprising 1 1 tanks.
Otro posible péptido marcador está constituido por la SEQ ID NO: 5, fragmento correspondiente a los aminoácidos 1 a 29 de la SEQ ID NO: 4 y que comprende 9 cisteínas (equivale a la beta-MT completa). Another possible marker peptide is constituted by SEQ ID NO: 5, a fragment corresponding to amino acids 1 to 29 of SEQ ID NO: 4 and comprising 9 cysteines (equivalent to the complete beta-MT).
Otro posible péptido marcador está constituido por la SEQ ID NO: 6, fragmento correspondiente a los aminoácidos 30 a 61 de la SEQ ID NO: 4 y que comprende 1 1 cisteínas (equivale a la alfa-MT completa). Another possible marker peptide is constituted by SEQ ID NO: 6, fragment corresponding to amino acids 30 to 61 of SEQ ID NO: 4 and comprising 1 1 cysteines (equivalent to the complete alpha-MT).
El péptido marcador y sus vanantes o derivados pueden ser sintetizados, por ejemplo, aunque sin limitarnos, in vitro. Por ejemplo, mediante la síntesis de péptidos en fase sólida o mediante aproximaciones de ADN recombinante. El péptido marcador puede producirse recombinantemente, no sólo directamente sino como un polipéptido de fusión junto con un polipéptido heterólogo, el cual puede contener, por ejemplo aunque sin limitar el alcance de la invención, una secuencia señal u otro polipéptido que tenga un sitio de corte para una proteasa, por ejemplo, aunque sin limitarnos, en el extremo N-terminal del polipéptido. The marker peptide and its vanants or derivatives can be synthesized, for example, but not limited to, in vitro. For example, by synthesizing solid phase peptides or by recombinant DNA approaches. The marker peptide can be produced recombinantly, not only directly but as a fusion polypeptide together with a heterologous polypeptide, which may contain, for example, but without limiting the scope of the invention, a signal sequence or other polypeptide having a cleavage site. for a protease, for example, but not limited to, at the N-terminal end of the polypeptide.
El péptido marcador utilizado puede presentar variantes. Estas variantes se refieren a variaciones limitadas en la secuencia aminoacídica, que permiten el mantenimiento de la funcionalidad del péptido. Esto quiere decir que la secuencia de referencia y la secuencia de la variante son similares en conjunto, e idénticas en muchas regiones. Estas variaciones se generan por sustituciones, deleciones o adiciones. Dichas sustituciones son por aminoácidos conservados. Los aminoácidos conservados son aminoácidos que tienen cadenas laterales y propiedades similares en cuanto a, por ejemplo, hidrofobicidad o aromaticidad. Estas sustituciones son entre serina (Ser) y treonina (Thr), y/o entre los aminoácidos que componen el grupo alanina (Ala), leucina (Leu), valina (Val) e isoleucina (lie). Las variaciones pueden ser variaciones generadas artificialmente como, por ejemplo, mediante mutagénesis o síntesis directa. Estas variaciones no provocan modificaciones esenciales en las características o propiedades esenciales del péptido. Por ello, dentro del alcance de la presente invención también se incluyen los péptidos o polipéptidos cuya secuencia de aminoácidos sea idéntica u homologa, en el sentido descrito en este párrafo, a las secuencias descritas en la presente invención. The marker peptide used may have variants. These variants refer to limited variations in the amino acid sequence, which allow the maintenance of the functionality of the peptide. This means that the reference sequence and the variant sequence are similar as a whole, and identical in many regions. These variations are generated by substitutions, deletions or additions. These substitutions are conserved amino acids. The conserved amino acids are amino acids that have similar side chains and properties in terms of, for example, hydrophobicity or aromaticity. These substitutions are between serine (Ser) and threonine (Thr), and / or between the amino acids that make up the alanine (Ala), leucine (Leu), valine (Val) and isoleucine (lie) group. Variations can be artificially generated variations, such as by mutagenesis or direct synthesis. These variations do not cause essential modifications in the essential characteristics or properties of the peptide. Therefore, peptides or polypeptides whose amino acid sequence is identical or homologous, in the sense described in this paragraph, to the sequences described in the present invention are also included within the scope of the present invention.
En otra realización preferida, el péptido marcador se encuentra fusionado a una proteína de interés. El término "proteína de interés", tal y como se utiliza en la presente invención, se refiere a cualquier péptido o polipéptido de interés cuya localización por microscopía se desee llevar a cabo, e incluye cualquier macromolécula intracelular, extracelular o viral, formada por una cadena lineal de aminoácidos. Este término incluye, sin limitarse, tanto las proteínas simples como las conjugadas o heteroproteínas y se refiere por ejemplo, aunque sin limitarnos, a proteínas estructurales, reguladoras (como por ejemplo, aunque sin limitarnos, hormonas), transportadoras, defensivas (como por ejemplo, aunque sin limitarnos, anticuerpos), enzimáticas o contráctiles. En otra realización preferida, el péptido marcador utilizado en la presente invención se encuentra fusionado a una proteína marcadora. En una realización más preferida, el péptido marcador se encuentra fusionado a una proteína y a una proteína marcadora. Se entiende por "proteína marcadora" o "proteína repórter" cualquier proteína que proporciona, al sistema donde se expresa, características identificables visualmente, como por ejemplo, aunque sin limitarnos, fluorescencia o luminiscencia. Ejemplos de proteínas marcadoras son, aunque sin limitarnos, β- galactosidasa, luciferasa, GUS (β-glucuronidasa) o proteínas fluorescentes derivadas de la GFP, como por ejemplo, aunque sin limitarnos, Green Fluorescent Protein o proteína verde fluorescente (GFP), Red Fluorescent Protein o proteína roja fluorescente (RFP), Cyan Fluorescent Protein o proteína cyan fluorescente (CFP), Yellow Fluorescent Protein o proteína amarilla fluorescente (YFP) o Blue Fluorescent Protein o proteína azul fluorescente (BFP). En una realización aun más preferida de este aspecto de la invención, la proteína marcadora es GFP, la cual es una proteína de 238 aminoácidos (26,9 kDa) aislada de la medusa Aequorea victoria que emite fluorescencia de color verde al ser expuesta a luz azul. In another preferred embodiment, the marker peptide is fused to a protein of interest. The term "protein of interest", as used in the present invention, refers to any peptide or polypeptide of interest whose microscopy location is to be carried out, and includes any intracellular, extracellular or viral macromolecule, formed by a linear chain of amino acids. This term includes, without limitation, both simple and conjugated proteins or heteroproteins and refers for example, but not limited to, to structural, regulatory (such as, but not limited to, hormones), transporter, defensive (such as, but not limited to, antibodies), enzymatic or contractile proteins. In another preferred embodiment, the marker peptide used in the present invention is fused to a marker protein. In a more preferred embodiment, the marker peptide is fused to a protein and a marker protein. "Marker protein" or "reporter protein" means any protein that provides, to the system where it is expressed, visually identifiable characteristics, such as, but not limited to, fluorescence or luminescence. Examples of marker proteins are, but are not limited to, β-galactosidase, luciferase, GUS (β-glucuronidase) or fluorescent proteins derived from GFP, such as, but not limited to, Green Fluorescent Protein or Green Fluorescent Protein (GFP), Red Fluorescent Protein or Fluorescent Red Protein (RFP), Cyan Fluorescent Protein or Cyan Fluorescent Protein (CFP), Yellow Fluorescent Protein or Yellow Fluorescent Protein (YFP) or Blue Fluorescent Protein or Blue Fluorescent Protein (BFP). In an even more preferred embodiment of this aspect of the invention, the marker protein is GFP, which is a 238 amino acid (26.9 kDa) protein isolated from the Aequorea victoria jellyfish that emits green fluorescence when exposed to light. blue.
La fusión proteica es una técnica que se emplea frecuentemente en biología molecular y que puede llevarse a cabo mediante técnicas conocidas por un experto en la materia. Habitualmente está relacionada con la producción de proteínas en sistemas vivos, como por ejemplo, aunque sin limitarnos, en células (tanto procariotas, como las bacterias, como eucariotas, como las levaduras, células de mamífero o células de insecto), en orgánulos celulares o en virus. La fusión proteica consiste en el clonaje de la secuencia codificante de una proteína de interés en un extremo, preferiblemente el extremo 3' (extremo carboxilo), de otro péptido. La inclusión de la secuencia codificante de la proteína de interés ha de realizarse en fase, respetando la pauta de lectura, de manera que permita la producción de una proteína quimérica, que en el caso de la presente invención consistiría, aunque sin limitarnos, en el péptido marcador fusionado a una proteína, en el péptido de la invención fusionado a una proteína marcadora, o en el péptido de la invención fusionado a una proteína y a una proteína marcadora. Protein fusion is a technique that is frequently used in molecular biology and can be carried out by techniques known to a person skilled in the art. It is usually related to the production of proteins in living systems, such as, but not limited to, in cells (both prokaryotes, bacteria, and eukaryotes, such as yeasts, mammalian cells or insect cells), in cellular organelles or in virus. Protein fusion consists in cloning the coding sequence of a protein of interest at one end, preferably the 3 'end (carboxyl end), of another peptide. The inclusion of the coding sequence of the protein of interest must be carried out in phase, respecting the reading pattern, so as to allow production of a chimeric protein, which in the case of the present invention would consist, but not limited to, the marker peptide fused to a protein, the peptide of the invention fused to a marker protein, or the peptide of the invention fused to a protein and a marker protein.
El péptido marcador utilizado en la invención carece de estructura secundaria y se pliega al unir átomos de metal. Dicha unión es, preferiblemente, de tipo iónico entre los átomos de metal y los residuos de cisteína de dicho péptido, aunque también átomos de metal adicionales pueden incorporarse al grupo de átomos de metal ya unidos al péptido marcador, dichos átomos de metal adicionales se unen covalentemente entre ellos y a los átomos que ya están unidos a las cisternas del péptido de la invención. Por ello, en otra realización preferida, el péptido marcador además comprende unido un grupo de átomos de metal. Los metales que pueden unirse a este péptido marcador son, a título ilustrativo y sin que limite el alcance de la invención, todos aquellos útiles para llevar a cabo mareajes en microscopía electrónica, preferiblemente, metales pesados. Así, en una realización más preferida, el metal se selecciona de la lista que comprende: oro (Au), plata (Ag), mercurio (Hg), cadmio (Cd), zinc (Zn), platino (Pt), bismuto (B¡), cobre (Cu), plomo (Pb) y Cobalto (Co). En una realización aun más preferida, el metal es oro. The marker peptide used in the invention has no secondary structure and is folded by joining metal atoms. Said binding is preferably of the ionic type between the metal atoms and the cysteine residues of said peptide, although additional metal atoms may also be incorporated into the group of metal atoms already attached to the marker peptide, said additional metal atoms are attached covalently between them and the atoms that are already attached to the peptide tanks of the invention. Therefore, in another preferred embodiment, the marker peptide further comprises a group of metal atoms attached. The metals that can be attached to this marker peptide are, by way of illustration and without limiting the scope of the invention, all those useful for carrying out electron microscopy, preferably, heavy metals. Thus, in a more preferred embodiment, the metal is selected from the list comprising: gold (Au), silver (Ag), mercury (Hg), cadmium (Cd), zinc (Zn), platinum (Pt), bismuth ( B¡), copper (Cu), lead (Pb) and Cobalt (Co). In an even more preferred embodiment, the metal is gold.
El tamaño del "grupo de átomos de metal" unido al péptido marcador utilizado en la presente invención es, como mínimo, el necesario para que las técnicas de microscopía electrónica lo detecten. Dicho tamaño, así como el número de átomos de metal que forman el grupo y su estabilidad durante la irradiación en el microscopio electrónico se pueden monitorizar mediante por ejemplo, aunque sin limitarnos, microscopía electrónica, espectrometría de masas o técnicas espectroscópicas. The size of the "group of metal atoms" attached to the marker peptide used in the present invention is, at a minimum, that necessary for electron microscopy techniques to detect. Said size, as well as the number of metal atoms that form the group and their stability during irradiation in the electron microscope can be monitored by, for example, but not limited to, electron microscopy, mass spectrometry or spectroscopic techniques.
Un objeto preferente de la invención lo constituye el procedimiento de la invención donde el péptido marcador de a) comprende una secuencia de aminoácidos, a título ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo: una cualquiera de las secuencias SEQ ID NO: 1 a la 6, una cualquiera de sus fragmentos que comprenda 7 ó más cisternas o cualquier secuencia de aminoácidos constituida por una combinación cualquiera de las mismas. Un experto en el estado de la técnica puede obtener un péptido marcador con estas secuencias SEQ ID NO: 1 a la 6, sus fragmentos o combinaciones, fusionadas a otras secuencias de aminoácidos diferentes que tengan también afinidad por átomos de metales. A preferred object of the invention is the process of the invention where the marker peptide of a) comprises an amino acid sequence, by way of illustration and without limiting the scope of the invention, belonging to the following group: any one of the SEQ sequences ID NO: 1 to 6, one any of its fragments comprising 7 or more tanks or any amino acid sequence consisting of any combination thereof. A person skilled in the art can obtain a marker peptide with these sequences SEQ ID NO: 1 to 6, its fragments or combinations, fused to other different amino acid sequences that also have affinity for metal atoms.
Otro objeto preferente de la invención lo constituye el procedimiento de la invención donde el péptido marcador de a) está constituido por una secuencia de aminoácidos, a título ilustrativo y sin que limite el alcance de la invención, perteneciente al siguiente grupo: SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 y SEQ ID NO: 6, cualquiera de sus fragmentos que comprenda 7 ó más cisternas o cualquier secuencia de aminoácidos constituida por una combinación cualquiera de las mismas. Another preferred object of the invention is the process of the invention where the marker peptide of a) is constituted by an amino acid sequence, by way of illustration and without limiting the scope of the invention, belonging to the following group: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, any of its fragments comprising 7 or more tanks or any amino acid sequence consisting of a any combination thereof.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde el péptido marcador de a) está fusionado a una proteína, preferentemente una proteína marcadora, y más preferentemente, esta fusionada a la proteína GFP. Another particular object of the invention is the process of the invention where the a) marker peptide is fused to a protein, preferably a marker protein, and more preferably, is fused to the GFP protein.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde el péptido marcador de a) además comprende un grupo de átomos de metal tras el paso b). Otro objeto preferente de la invención lo constituye el procedimiento de la invención donde el metal del paso (b) se selecciona de la lista, a título ilustrativo y sin que limite el alcance de la invención, siguiente: oro, plata, mercurio, cadmio, zinc, platino, bismuto, cobre, plomo o cobalto. Una realización particular de la invención lo constituye el procedimiento de la invención donde el metal del paso (b) es oro, más preferentemente, oro en la forma de cloruro auroso (AuCI), cloruro aurico (AuC ), aurotiomalato o el ácido cloroáurico (HAuCU). Another particular object of the invention is the process of the invention where the marker peptide of a) also comprises a group of metal atoms after step b). Another preferred object of the invention is the process of the invention where the metal of step (b) is selected from the list, by way of illustration and without limiting the scope of the invention, as follows: gold, silver, mercury, cadmium, zinc, platinum, bismuth, copper, lead or cobalt. A particular embodiment of the invention is the process of the invention where the metal of step (b) is gold, more preferably, gold in the form of aurous chloride (AuCI), auric chloride (AuC), aurothiomalate or chlorouric acid (HAuCU).
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde además comprende, entre los pasos (b) y (c), una etapa de fijación de la célula, el orgánulo celular o el virus del paso (b) mediante fijación química o congelación y la realización de secciones de entre 20 y 500 nm de la célula, el orgánulo celular o el virus previamente fijados. Another particular object of the invention is the process of the invention where it also comprises, between steps (b) and (c), a cell fixation stage, the cellular organelle or the virus of step (b) by chemical fixation or freezing and the realization of sections of between 20 and 500 nm of the cell, the cellular organelle or the virus previously fixed.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la técnica de espectroscopia de c) utilizada pertenece al siguiente grupo: espectroscopia electrónica de pérdida de energía (EELS, del inglés Electron Energy-Loss Spectroscopy) o espectroscopia de rayos X. Another particular object of the invention is the method of the invention where the c) spectroscopy technique used belongs to the following group: Electron Energy-Loss Spectroscopy (EELS) or X-ray spectroscopy.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde imagen elemental de c) es una imagen elemental del metal utilizado en el paso (b). Another particular object of the invention is the process of the invention where elementary image of c) is an elementary image of the metal used in step (b).
Otro objeto preferente de la invención lo constituye el procedimiento de la invención donde la imagen elemental es una imagen elemental de un metal perteneciente al siguiente grupo: imagen elemental de oro, una imagen elemental de plata, una imagen elemental de mercurio, una imagen elemental de cadmio, una imagen elemental de zinc, una imagen elemental de platino, una imagen elemental de bismuto, una imagen elemental de cobre, una imagen elemental de plomo y una imagen elemental de cobalto. Another preferred object of the invention is the process of the invention where the elementary image is an elementary image of a metal belonging to the following group: elementary image of gold, an elementary image of silver, an elementary image of mercury, an elementary image of Cadmium, an elemental image of zinc, an elementary image of platinum, an elementary image of bismuth, an elementary image of copper, an elementary image of lead and an elementary image of cobalt.
Otro objeto preferente de la invención lo constituye el procedimiento de la invención donde la imagen elemental es una imagen oro, y más preferentemente, donde la imagen oro se obtiene por espectroscopia electrónica de pérdida de energía, y aun más preferentemente, la imagen oro se obtiene con equipos espectroscopios que están acoplados a microscopios electrónicos. Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la expresión del péptido en el paso (a) se realiza en una célula y porque el tratamiento del paso (b) se realiza con cloruro auroso (AuCI), cloruro aúrico (AuC ), aurotiomalato o ácido cloroáurico (HAuCU) a una concentración de entre 0, 1 y 50 mM, preferentemente, durante entre 5 y 60 minutos. Another preferred object of the invention is the process of the invention where the elementary image is a gold image, and more preferably, where the gold image is obtained by electronic energy loss spectroscopy, and even more preferably, the gold image is obtained. with spectroscopes that are coupled to electronic microscopes. Another particular object of the invention is the process of the invention where the expression of the peptide in step (a) is carried out in a cell and because the treatment of step (b) is carried out with aurous chloride (AuCI), auric chloride ( AuC), aurothiomalate or chlorouric acid (HAuCU) at a concentration of between 0.1 and 50 mM, preferably, for between 5 and 60 minutes.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la célula del paso (c) se analiza para la visualización de al menos una proteína de superficie celular y/o de al menos una proteína endocitada in vivo. Another particular object of the invention is the process of the invention where the cell of step (c) is analyzed for the visualization of at least one cell surface protein and / or at least one protein in vivo.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde además comprende una etapa de permeabilización selectiva de la membrana celular entre los pasos (a) y (b), preferentemente mediante Streptolisina O. Another particular object of the invention is the process of the invention where it also comprises a stage of selective permeabilization of the cell membrane between steps (a) and (b), preferably by Streptolysin O.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la célula del paso (c) se analiza para la visualización de al menos una proteína intracelular. Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la expresión del péptido en el paso (a) se realiza en un orgánulo celular o en un virus y porque el tratamiento del paso (b) se realiza con cloruro auroso (AuCI), cloruro aúrico (AuC ) o ácido cloroáurico (HAuCU) a una concentración de entre 0, 1 y 5 mM, preferentemente durante entre 5 y 30 minutos. Another particular object of the invention is the process of the invention where the cell of step (c) is analyzed for the visualization of at least one intracellular protein. Another particular object of the invention is the process of the invention where the expression of the peptide in step (a) is carried out in a cellular organelle or in a virus and because the treatment of step (b) is carried out with aurous chloride (AuCI ), auric chloride (AuC) or chlorouric acid (HAuCU) at a concentration of between 0.1 and 5 mM, preferably for between 5 and 30 minutes.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde en el paso (a) se expresan, en una célula, en un orgánulo celular o en un virus, dos o más péptidos de distinto tamaño fusionados a proteínas marcadores diferentes y, alternativamente, a proteínas marcadoras de diferente color. Otro objeto más particular de la invención lo constituye el procedimiento de la invención donde la célula es eucariota. Another particular object of the invention is the process of the invention where, in step (a), two or more different sized peptides fused to different marker proteins are expressed in a cell, in a cell organelle or in a virus, and, alternatively, to marker proteins of different color. Another more particular object of the invention is the process of the invention where the cell is eukaryotic.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde se realiza un proceso de extracción de ruido, preferentemente, la adquisición de imágenes adicionales seleccionando pérdidas de energía próximas a la pérdida de energía específica del elemento de interés, anteriores y posteriores a la imagen elemental en el pico del espectro, para posteriormente restarlas de ésta última. Another particular object of the invention is the process of the invention where a noise extraction process is performed, preferably the acquisition of additional images by selecting energy losses close to the specific energy loss of the element of interest, before and after the elementary image at the peak of the spectrum, to later subtract them from the latter.
Finalmente, otro objeto de la invención lo constituye el uso del procedimiento de la invención para la identificación proteínas de interés biomédico en el interior de células, orgánulos celulares, virus. DESCRIPCIÓN DE LAS FIGURAS Finally, another object of the invention is the use of the method of the invention for the identification of proteins of biomedical interest within cells, cellular organelles, viruses. DESCRIPTION OF THE FIGURES
Figura 1.- Comparativa visual de las proteínas quiméricas de MT1 en un orgánulo de replicación del virus Rubella con técnicas convencionales de EMT y el procedimiento de la presente invención. (A) Visualización de las quimeras de MT1 mediante una imagen de microscopía electrónica de transmisión convencional donde se aprecian las nano-partículas de oro densas a los electrones asociados a MT1 (flechas). (B) Imagen del orgánulo con MT1 teñido con sales de metales pesados mediante una imagen de microscopía electrónica de transmisión convencional, donde se aprecia la ultraestructura del orgánulo, que está lleno de membranas condensadas, pero ya no se detectan las nano-partículas de oro de MT1 . (C) a (E) Procedimiento de la presente invención. (C) Visualización por MET convencional del orgánulo en sección de una célula teñida con sales de metales pesados (acetato de uranilo y citrato de plomo). En la imagen de MET convencional las nano-partículas de oro asociadas a las moléculas de P150-MT1 están enmascaradas por la tinción de materiales pesados. Partículas de oro coloidal de mayor tamaño (10 nm) (flechas). (D) Detección de las moléculas de P150-MT1 -oro en el mismo orgánulo mediante imagen elemental obtenida con espectroscopia de pérdida de energía tras la sustracción del fondo no específico (mapa oro). (E) Imagen de oro elemental en sección del orgánulo teñida con sales de metales pesados (acetato de uranilo y citrato de plomo) y procesada mediante espectroscopia de pérdida de energía para la obtención de dicha imagen oro. La imagen elemental de oro se ha coloreado en verde computacionalmente, (no se trata de señal fluorescente) y se ha superpuesto a la imagen de ultraestructura. Esta superposición muestra la distribución detallada de las moléculas de P150-MT1 -oro en los distintos subdominios del orgánulo. Barras: 200. Figure 1.- Visual comparison of the chimeric proteins of MT1 in a Rubella virus replication organelle with conventional EMT techniques and the method of the present invention. (A) Visualization of the chimeras of MT1 by means of a conventional transmission electron microscopy image showing the dense gold nano-particles to the electrons associated with MT1 (arrows). (B) Image of the organelle with MT1 stained with heavy metal salts by means of an image of conventional transmission electron microscopy, where the ultrastructure of the organelle is appreciated, which is filled with condensed membranes, but the gold nano-particles are no longer detected of MT1. (C) to (E) Method of the present invention. (C) Conventional MET display of the organelle in section of a cell stained with heavy metal salts (uranyl acetate and lead citrate). In the conventional MET image the gold nano-particles associated with the P150-MT1 molecules are masked by staining heavy materials. Colloidal gold particles of larger size (10 nm) (arrows). (D) Detection of P150-MT1 -oro molecules in the same organelle by Elemental image obtained with energy loss spectroscopy after subtraction of the non-specific background (gold map). (E) Image of elemental gold in section of the organelle stained with heavy metal salts (uranyl acetate and lead citrate) and processed by energy loss spectroscopy to obtain said gold image. The elementary image of gold has been colored in computationally green, (it is not a fluorescent signal) and has been superimposed on the ultrastructure image. This overlay shows the detailed distribution of the P150-MT1 -oro molecules in the different subdomains of the organelle. Bars: 200.
EJEMPLOS DE REALIZACIÓN EXAMPLES OF REALIZATION
Para una mejor comprensión de la invención se adjunta el siguiente ejemplo que no pretende ser limitante en cuanto a su aplicación. For a better understanding of the invention, the following example is attached, which is not intended to be limiting in its application.
Ejemplo 1.- Localización de proteínas quiméricas-MT1 -oro en orgánulos densos de células mediante análisis espectroscópico e imágenes elementales (mapas oro). Se preparó una secuencia de nucleótidos codificante de una proteína quimérica que comprende la subunidad P150 de la replicasa viral fusionada con el péptido metalotioneína 1 de ratón (P150-MT1 ) tal como se describe en la patente ES201031880, que permite la expresión de dicha proteína quimérica en el interior de células, orgánulos o virus. Example 1.- Location of chimeric proteins-MT1 -oro in dense organelles of cells by spectroscopic analysis and elementary images (gold maps). A nucleotide sequence encoding a chimeric protein comprising the P150 subunit of the viral replicase fused with the mouse metallothionein peptide 1 (P150-MT1) was prepared as described in patent ES201031880, which allows the expression of said chimeric protein inside cells, organelles or viruses.
Más concretamente, primeramente se transfectaron células de mamífero BHK-21 cultivadas en monocapa con un replicón del virus Rubella que permite la expresión de la proteína quimérica P150-MT1 in vivo, se incubaron con AuC 1 mM durante 30 minutos a 37°C, se fijaron con una mezcla de paraformaldehído al 4% y glutaraldehído al 0, 1 % en PBS (phosphate buffer saline), se deshidrataron en cantidades crecientes de etanol y se infiltraron en resina acrílica, que una vez polimerizada por calor y endurecida, permitió la obtención de secciones ultrafinas (50-70 nm) senadas de la muestra en un ultramicrotomo; alternativamente, las muestras fijadas con aldehidos fueron congeladas a alta velocidad en etano líquido, deshidratadas por criosustitución en metanol a -90°C durante dos días e infiltradas en resina acrílica que fue polimerizada y endurecida con luz ultravioleta. Las secciones fueron recolectadas en rejillas de microscopía electrónica para su tinción con acetato de uranilo saturado (25 min) y citrato de plomo (2 min), se lavaron con agua y se dejaron secar antes de su visualización por microscopía electrónica de transmisión (MET) convencional; se estudiaron los orgánulos perinucleares densos de las células (lisosomas modificados donde se ensamblan los complejos replicativos del virus). En las Figura 1 B y 1 C se aprecian los detalles ultraestructurales del orgánulo pero las nano-partículas de oro asociadas a las moléculas de P150-MT1 quedan enmascaradas por la tinción de materiales pesados. Sólo las partículas de oro coloidal de mayor tamaño (10 nm) añadidas a la sección a poste ori son visibles en una sección teñida (flechas, Figura 1 C). Las partículas de oro coloidal son inmunoglobulinas (IgG) adsorbidas a esferas del coloide y se trata de preparados comerciales que se usan en los ensayos de "immunogold". No tienen ninguna afinidad por el péptido marcador de la invención y se adsorben por atracción electrostática tras incubar las secciones con una suspensión de estas partículas durante 30 min a temperatura ambiente. La incubación de estas partículas con oro coloidal se llevó a cabo antes de la tinción con metales pesados y del análisis elemental como confirmación interna de especificidad del análisis elemental objeto de la invención: se puede observar cómo las partículas de oro coloidal son detectadas claramente en los mapas oro (Figuras 1 C y 1 D, flechas). En una imagen MET convencional las partículas de oro asociadas a la proteínas P150-MT1 se visualizan perfectamente como pequeñas estructuras densas a los electrones (Figura 1A). More specifically, first BHK-21 mammalian cells cultured in monolayer were transfected with a Rubella virus replicon that allows the expression of the chimeric protein P150-MT1 in vivo, incubated with 1 mM AuC for 30 minutes at 37 ° C, fixed with a mixture of 4% paraformaldehyde and 0.1% glutaraldehyde in PBS (phosphate buffer saline), they were dehydrated in increasing amounts of ethanol and infiltrated in acrylic resin, which once polymerized by heat and hardened, allowed to obtain ultra thin sections (50-70 nm) samples of the sample in an ultramicrotome; alternatively, the samples fixed with aldehydes were frozen at high speed in liquid ethane, dehydrated by cryosubstitution in methanol at -90 ° C for two days and infiltrated in acrylic resin that was polymerized and hardened with ultraviolet light. Sections were collected on electron microscopy grids for staining with saturated uranyl acetate (25 min) and lead citrate (2 min), washed with water and allowed to dry before viewing by transmission electron microscopy (MET) conventional; dense perinuclear organelles of cells (modified lysosomes where virus replicative complexes are assembled) were studied. The ultrastructural details of the organelle can be seen in Figures 1 B and 1 C but the gold nano-particles associated with the P150-MT1 molecules are masked by the staining of heavy materials. Only the largest colloidal gold particles (10 nm) added to the post-ori section are visible in a stained section (arrows, Figure 1 C). Colloidal gold particles are immunoglobulins (IgG) adsorbed to colloid spheres and are commercial preparations that are used in "immunogold" assays. They have no affinity for the marker peptide of the invention and are adsorbed by electrostatic attraction after incubating the sections with a suspension of these particles for 30 min at room temperature. Incubation of these particles with colloidal gold was carried out before staining with heavy metals and elemental analysis as an internal confirmation of specificity of the elemental analysis object of the invention: it can be seen how the colloidal gold particles are clearly detected in the Gold maps (Figures 1 C and 1 D, arrows). In a conventional MET image the gold particles associated with the P150-MT1 proteins are perfectly visualized as small electron dense structures (Figure 1A).
Posteriormente, para la detección de las moléculas P150-MT1 -oro que quedan enmascaradas en la tinción anterior con metales pesados, se obtuvo una imagen oro elemental mediante espectroscopia de pérdida de energía tras la sustracción del fondo no específico (mapa oro, Figura 1 D) de acuerdo al procedimiento de la presente invención. La extracción de ruido hubo de hacerse para obtener el mapa oro que se presenta en la Figura 1 D. Esta extracción se realizó computacionalmente una vez adquiridas las imágenes de pérdida de energía correspondiente al oro (específica), una zona inmediatamente anterior en el espectro y una posterior, que se sustraen a la específica. Para la extracción de ruido y la elaboración de mapas elementales específicos en este ejemplo se empleó el procedimiento de Egerton (Egerton, R.F. (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, USA). Subsequently, for the detection of the P150-MT1 -oro molecules that are masked in the previous staining with heavy metals, an elemental gold image was obtained by energy loss spectroscopy after non-specific background subtraction (gold map, Figure 1 D ) according to the process of the present invention. Noise extraction had to be done to obtain the map gold presented in Figure 1 D. This extraction was performed computationally once the images of energy loss corresponding to gold (specific), an area immediately before the spectrum and a subsequent one, which are subtracted from the specific one. The Egerton procedure (Egerton, RF (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, USA) was used for noise extraction and specific elementary mapping.
Finalmente, la superposición del mapa oro de D) sobre la imagen MET convencional de C) mostró la distribución detallada de las moléculas de PI SO- MU -oro en los distintos subdominios del orgánulo (Figura 1 E). El orgánulo está lleno de membranas a las que se asocian las moléculas de P150-MT1 -oro como puede apreciarse en la tinción del mismo (Figura 1 C) y en particular en la superposición del mapa oro sobre la ultraestructura mostrada por la tinción (Figura 1 E). Sin embargo, en la imagen oro obtenida por el procedimiento de la invención se detectan muchas más moléculas P150-MT1 -oro que se encuentran ocupando todo el interior del orgánulo de replicación (esto es constatable comparando las Figuras 1A con 1 E). Además, sólo en la Figura 1 E se puede apreciar la distribución precisa de las moléculas de proteína que llevan el péptido marcador de MT1 y su distribución dentro del orgánulo. Se observa también que las moléculas llenan por completo el orgánulo y se asocian a las membranas exclusivamente, mientras que en la imagen de MET convencional sólo se visualizaron las moléculas en las que se formaron las nano-partículas más grandes (de al menos 1 nm), que se concentran únicamente en una zona inferior del orgánulo (flechas en Figura 1A); en MET convencional tampoco es posible visualizar las membranas a las que están asociadas las nano-partículas (flechas en Figura 1A). Finally, the superposition of the gold map of D) on the conventional MET image of C) showed the detailed distribution of the SO-MU -oro PI molecules in the different subdomains of the organelle (Figure 1 E). The organelle is filled with membranes with which the P150-MT1 -oro molecules are associated as can be seen in the staining thereof (Figure 1 C) and in particular in the superposition of the gold map on the ultrastructure shown by the staining (Figure 1 E). However, in the gold image obtained by the process of the invention many more P150-MT1 -oro molecules are found that are occupying the entire interior of the replication organelle (this is verified by comparing Figures 1A with 1 E). In addition, only in Figure 1 E can the precise distribution of the protein molecules bearing the MT1 marker peptide and its distribution within the organelle be appreciated. It is also observed that the molecules completely fill the organelle and are associated with the membranes exclusively, while in the conventional MET image only the molecules in which the largest nano-particles (of at least 1 nm) were formed , which are concentrated only in a lower area of the organelle (arrows in Figure 1A); In conventional MET it is also not possible to visualize the membranes with which the nano-particles are associated (arrows in Figure 1A).

Claims

REIVINDICACIONES
1 . - Procedimiento útil para la visualización y detección de una proteína de interés en una célula, en un orgánulo celular o en un virus mediante un péptido marcador unido a partículas de metal y mediante imágenes de microscopía correlativa, ya sea óptica o electrónica, caracterizado porque la imagen obtenida por microscopía se analiza conjuntamente con, al menos, una imagen elemental obtenida mediante una técnica de espectroscopia y mediante el análisis conjunto de diferentes niveles de observación, que se visualizan simultáneamente tras superposición a nivel computacional y porque dicho procedimiento comprende: one . - Useful procedure for the visualization and detection of a protein of interest in a cell, in a cellular organelle or in a virus by means of a marker peptide bound to metal particles and by correlative microscopy images, either optical or electronic, characterized in that the The image obtained by microscopy is analyzed together with at least one elementary image obtained by means of a spectroscopy technique and by the joint analysis of different levels of observation, which are simultaneously visualized after superposition at the computational level and because said procedure comprises:
a) expresar al menos un péptido marcador en una célula, en un orgánulo celular o en un virus,  a) expressing at least one marker peptide in a cell, in a cell organelle or in a virus,
b) tratar la célula, el orgánulo celular o el virus del paso (a) con un metal, y  b) treat the cell, cell organelle or virus of step (a) with a metal, and
c) analizar la célula, el orgánulo celular o el virus del paso (b) mediante microscopía y, también mediante, al menos, una imagen elemental obtenida mediante espectroscopia.  c) analyze the cell, the cellular organelle or the virus of step (b) by microscopy and, also, by at least one elementary image obtained by spectroscopy.
2. - Procedimiento según la reivindicación 1 caracterizado porque el péptido marcador de a) está constituido por una secuencia de aminoácidos que comprende una secuencia de aminoácidos perteneciente al siguiente grupo: SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 y SEQ ID NO: 6, cualquiera de sus fragmentos que comprenda 7 ó más cisternas o cualquier secuencia de aminoácidos constituida por una combinación cualquiera de las mismas. 2. - Method according to claim 1 characterized in that the marker peptide of a) is constituted by an amino acid sequence comprising an amino acid sequence belonging to the following group: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, any of its fragments comprising 7 or more tanks or any amino acid sequence consisting of any combination thereof.
3. - Procedimiento según la reivindicación 2 caracterizado porque el péptido marcador de a) está constituido por una secuencia de aminoácidos perteneciente al siguiente grupo: SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 y SEQ ID NO: 6, cualquiera de sus fragmentos que comprenda 7 ó más cisternas o cualquier secuencia de aminoácidos constituida por una combinación cualquiera de las mismas. 3. - Method according to claim 2 characterized in that the marker peptide of a) is constituted by an amino acid sequence belonging to the following group: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, any of its fragments comprising 7 or more tanks or any amino acid sequence consisting of any combination thereof.
4. - Procedimiento según una cualquiera de las reivindicaciones 1 a la 3 caracterizado porque el péptido marcador de a) está fusionado a una proteína. 4. - Method according to any one of claims 1 to 3 characterized in that the marker peptide of a) is fused to a protein.
5. - Procedimiento según la reivindicación 4 caracterizado porque la proteína es proteína marcadora. 5. - Method according to claim 4 characterized in that the protein is a marker protein.
6. - Procedimiento según la reivindicación 5 caracterizado porque la proteína marcadora es la proteína GFP. 6. - Method according to claim 5 characterized in that the marker protein is the GFP protein.
7.- Procedimiento según cualquiera de las reivindicaciones 1 a la 6 caracterizado porque el péptido marcador además comprende un grupo de átomos de metal tras el paso b). 7. Method according to any of claims 1 to 6, characterized in that the marker peptide further comprises a group of metal atoms after step b).
8. - Procedimiento según la reivindicación 7 caracterizado porque el metal del paso (b) se selecciona de la lista que comprende: oro, plata, mercurio, cadmio, zinc, platino, bismuto, cobre, plomo o cobalto. 8. - Method according to claim 7 characterized in that the metal of step (b) is selected from the list comprising: gold, silver, mercury, cadmium, zinc, platinum, bismuth, copper, lead or cobalt.
9. - Procedimiento según las reivindicaciones 7 y 8 caracterizado porque el metal del paso (b) es oro. 9. - Method according to claims 7 and 8 characterized in that the metal of step (b) is gold.
10. - Procedimiento según la reivindicación 9 caracterizado porque la fuente de oro es cloruro auroso, cloruro aúrico, aurotiomalato o ácido cloroáurico. 10. - Method according to claim 9 characterized in that the gold source is aurous chloride, auric chloride, aurothiomalate or chlorouric acid.
1 1 . - Procedimiento según las reivindicaciones 1 a la 10 caracterizado porque además comprende, entre los pasos (b) y (c), fijar la célula, el orgánulo celular o el virus del paso (b) mediante fijación química o congelación y realizar secciones de entre 20 y 500 nm de la célula, el orgánulo celular o el virus previamente fijados. eleven . - Method according to claims 1 to 10, characterized in that it also comprises, between steps (b) and (c), fixing the cell, the cellular organelle or the virus of step (b) by chemical fixation or freezing and making sections between 20 and 500 nm of the cell, the cell organelle or the virus previously fixed.
12.- Procedimiento según una cualquiera de las reivindicaciones 1 a la 1 1 caracterizado porque la técnica de espectroscopia utilizada pertenece al siguiente grupo: espectroscopia electrónica de pérdida de energía o espectroscopia de rayos X. 12. Method according to any one of claims 1 to 1, characterized in that the spectroscopy technique used belongs to the following group: electronic energy loss spectroscopy or X-ray spectroscopy.
13. - Procedimiento según la reivindicación 12 caracterizado porque la imagen elemental de c) es una imagen elemental del metal del paso (b). 13. - Method according to claim 12 characterized in that the elementary image of c) is an elementary image of the metal of the passage (b).
14. - Procedimiento según las reivindicaciones 12 y 13 caracterizado porque la imagen elemental es una imagen elemental de un metal perteneciente al siguiente grupo: imagen elemental de oro, una imagen elemental de plata, una imagen elemental de mercurio, una imagen elemental de cadmio, una imagen elemental de zinc, una imagen elemental de platino, una imagen elemental de bismuto, una imagen elemental de cobre, una imagen elemental de plomo o una imagen elemental de cobalto. 14. - Method according to claims 12 and 13 characterized in that the elementary image is an elementary image of a metal belonging to the following group: elementary image of gold, an elementary image of silver, an elementary image of mercury, an elementary image of cadmium, an elemental image of zinc, an elementary image of platinum, an elementary image of bismuth, an elementary image of copper, an elementary image of lead or an elementary image of cobalt.
15.- Procedimiento según las reivindicaciones 12 y 13 caracterizado porque la imagen elemental es una imagen oro. 15. Method according to claims 12 and 13 characterized in that the elementary image is a gold image.
16. - Procedimiento según la reivindicación 15 caracterizado porque la imagen oro se obtiene por espectroscopia electrónica de pérdida de energía. 16. - Method according to claim 15 characterized in that the gold image is obtained by electronic energy loss spectroscopy.
17. - Procedimiento según una cualquiera de las reivindicaciones 1 a la 16 caracterizado porque la obtención de la imagen elemental se realiza con equipos espectroscópicos que están acoplados a microscopios electrónicos. 17. - Method according to any one of claims 1 to 16, characterized in that the obtaining of the elementary image is carried out with spectroscopic equipment that is coupled to electron microscopes.
18.- Procedimiento según una cualquiera de las reivindicaciones 1 a la 17 caracterizado porque la expresión del péptido en el paso (a) se realiza en una célula y porque el tratamiento del paso (b) se realiza con cloruro auroso (AuCI), cloruro aúrico (AuC ), aurotiomalato o ácido cloroáurico (HAuCU) a una concentración de entre 0, 1 y 50 mM. 18. Method according to any one of claims 1 to 17 characterized in that the expression of the peptide in step (a) is carried out in a cell and because the treatment of step (b) is carried out with aurous chloride (AuCI), chloride Auric (AuC), aurothiomalate or chlorouric acid (HAuCU) at a concentration of between 0.1 and 50 mM.
19.- Procedimiento según la reivindicación 18 caracterizado porque el tratamiento del paso (b) se realiza durante entre 5 y 60 minutos. 19. Method according to claim 18 characterized in that the treatment of step (b) is carried out for between 5 and 60 minutes.
20.- Procedimiento según las reivindicaciones 18 y 19 caracterizado porque la célula del paso (c) se analiza para la visualización de al menos una proteína de superficie celular y/o de al menos una proteína endocitada in vivo. 20. Method according to claims 18 and 19, characterized in that the cell in step (c) is analyzed for the visualization of at least one cell surface protein and / or at least one protein in vivo.
21 .- Procedimiento según las reivindicaciones 18 y 19 caracterizado porque además comprende permeabilizar selectivamente la membrana celular entre los pasos (a) y (b). 21. Method according to claims 18 and 19, characterized in that it further comprises selectively permeabilizing the cell membrane between steps (a) and (b).
22. - Procedimiento según la reivindicación 21 caracterizado porque la permeabilización selectiva de la membrana celular se realiza mediante22. - Method according to claim 21 characterized in that the selective permeabilization of the cell membrane is carried out by
Streptolisina O. Streptolysin O.
23. - Procedimiento según una cualquiera de las reivindicaciones 21 y 22 donde la célula del paso (c) se analiza para la visualización de al menos una proteína intracelular. 23. - Method according to any one of claims 21 and 22 wherein the cell of step (c) is analyzed for the visualization of at least one intracellular protein.
24. - Procedimiento según una cualquiera de las reivindicaciones 1 a la 16 caracterizado porque la expresión del péptido en el paso (a) se realiza en un orgánulo celular o en un virus y porque el tratamiento del paso (b) se realiza con cloruro auroso, cloruro aúrico o ácido cloroáurico a una concentración de entre 0, 1 y 5 mM. 24. - Method according to any one of claims 1 to 16 characterized in that the expression of the peptide in step (a) is carried out in a cellular organelle or in a virus and because the treatment of step (b) is carried out with aurous chloride , auric chloride or chlorouric acid at a concentration of between 0.1 and 5 mM.
25. - Procedimiento según la reivindicación 24 caracterizado porque el tratamiento del paso (b) se realiza durante entre 5 y 30 minutos. 25. - Method according to claim 24 characterized in that the treatment of step (b) is carried out for between 5 and 30 minutes.
26. - Procedimiento según una cualquiera de las reivindicaciones 1 a la 25 caracterizado porque en el paso (a) se expresan, en una célula, en un orgánulo celular o en un virus, dos o más péptidos de distinto tamaño fusionados a proteínas marcadores diferentes y, alternativamente, a proteínas marcadoras de diferente color. 26. - Method according to any one of claims 1 to 25 characterized in that in step (a), two or more different sized peptides fused to different marker proteins are expressed in a cell, in a cell organelle or in a virus. and, alternatively, to marker proteins of different color.
27. - Procedimiento según una cualquiera de las reivindicaciones 1 a la 26 caracterizado porque la célula es eucariota. 27. - Method according to any one of claims 1 to 26 characterized in that the cell is eukaryotic.
28. - Procedimiento según una cualquiera de las reivindicaciones 1 a la 27 caracterizado porque la imagen elemental de c) se obtiene mediante un proceso de extracción de ruido. 28. - Method according to any one of claims 1 to 27 characterized in that the elementary image of c) is obtained by a noise extraction process.
29. - Procedimiento según la reivindicación 28 caracterizado porque el proceso de extracción de ruido consiste en la adquisición de imágenes adicionales seleccionando pérdidas de energía próximas a la pérdida de energía específica del elemento de interés, anteriores y posteriores a la imagen elemental en el pico del espectro, para posteriormente restarlas de ésta última. 29. - The method according to claim 28, characterized in that the noise extraction process consists in the acquisition of additional images by selecting energy losses close to the specific energy loss of the element of interest, before and after the elementary image at the peak of the spectrum, to later subtract them from the latter.
30. - Uso del procedimiento según una cualquiera de las reivindicaciones 1 a la 29 para la identificación proteínas de interés biomédico en el interior de células, orgánulos celulares, virus. 30. - Use of the method according to any one of claims 1 to 29 for the identification of proteins of biomedical interest inside cells, cell organelles, viruses.
PCT/ES2012/070864 2011-12-15 2012-12-13 Method for identifying a particular protein in a cell, using a marker peptide and spectroscopy techniques and uses thereof WO2013087963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/ES2011/070869 WO2012080551A1 (en) 2010-12-17 2011-12-15 Cloneable marker for use in microscopy
ESPCT/ES2011/070869 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013087963A1 true WO2013087963A1 (en) 2013-06-20

Family

ID=48614211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070864 WO2013087963A1 (en) 2011-12-15 2012-12-13 Method for identifying a particular protein in a cell, using a marker peptide and spectroscopy techniques and uses thereof

Country Status (1)

Country Link
WO (1) WO2013087963A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118615A2 (en) * 2004-12-16 2006-11-09 Brandeis University Clonable tag for purification and electron microscopy labeling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118615A2 (en) * 2004-12-16 2006-11-09 Brandeis University Clonable tag for purification and electron microscopy labeling

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DIESTRA, E. ET AL.: "Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane", PLOSONE., vol. 4, no. 12, December 2009 (2009-12-01), pages 1 - 10 *
DIESTRA, E. ET AL.: "Visualization of proteins in intact cells with a clonable tag for electron microscopy", JOURNAL OF STRUCTURAL BIOLOGY., vol. 165, no. 3, March 2009 (2009-03-01), pages 157 - 168, XP026045865, DOI: doi:10.1016/j.jsb.2008.11.009 *
DIOCIAIUTI, M.: "Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications", JOURNAL OF ELECTRON SPECTROSCOPY., vol. 143, no. 2-3, May 2005 (2005-05-01), pages 189 - 203, XP026080753, DOI: doi:10.1016/j.elspec.2004.07.005 *
EGERTON, R.F.: "Electron energy-loss spectroscopy in the TEM", REPORTS ON PROGRESS IN PHYSICS., vol. 72, no. 1, 1 January 2009 (2009-01-01), pages 1 - 25, XP020149983, DOI: doi:10.1088/0034-4885/72/1/016502 *
LEAPMAN R.D. ET AL.: "Biological electron energy loss spectroscopy: the present and the future", MICROSC. MICROANAL. MICROSTRUCT., vol. 2, no. 2-3, April 1991 (1991-04-01), pages 387 - 394 *
LEAPMAN, R.D. ET AL.: "Phosphorylation and subunit organization of axonal neurofilaments determined by scanning transmission electron microscopy", PROC. NATL. ACAD. SCI., vol. 94, no. 15, 22 July 1997 (1997-07-22), pages 7820 - 7824 *

Similar Documents

Publication Publication Date Title
Silvester et al. DNA origami signposts for identifying proteins on cell membranes by electron cryotomography
Oda et al. Novel structural labeling method using cryo-electron tomography and biotin–streptavidin system
Shiu et al. Phosphorescent proteins for bio-imaging and site selective bio-conjugation of peptides and proteins with luminescent cyclometalated iridium (iii) complexes
ES2583277T3 (en) Binding peptides to inorganic materials
Lai et al. Bimolecular fluorescence complementation (BiFC) assay for direct visualization of protein-protein interaction in vivo
Kobayashi et al. Live correlative light-electron microscopy to observe molecular dynamics in high resolution
JP5080252B2 (en) Cell lines that inform the cell cycle
Gwozdzinska et al. Phenylenevinylene conjugated oligoelectrolytes as fluorescent dyes for mammalian cell imaging
de Castro et al. Metallothioneins for correlative light and electron microscopy
Kralt et al. An amphipathic helix in Brl1 is required for nuclear pore complex biogenesis in S. cerevisiae
Liu et al. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis
JPWO2008123180A1 (en) Target substance detection method, tag, DNA, vector, probe and detection kit used therefor
ES2290556T3 (en) NEW USES OF PROTEINS CODED BY BLE GENES AND ANTIBIOTICS OF THE BLEOMYCINE FAMILY.
WO2013087963A1 (en) Method for identifying a particular protein in a cell, using a marker peptide and spectroscopy techniques and uses thereof
Morris et al. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos
Castilleux et al. Contributions to arabinogalactan protein analysis
Li et al. Real time detection of cell cycle regulator cyclin A on living tumor cells with europium emission
Hames et al. Pix1 and Pix2 are novel WD40 microtubule-associated proteins that colocalize with mitochondria in Xenopus germ plasm and centrosomes in human cells
WO2012080551A1 (en) Cloneable marker for use in microscopy
van Driel et al. Fluorescent labeling of resin-embedded sections for correlative electron microscopy using tomography-based contrast enhancement
Twair et al. Secretion of recombinant human annexin V in fusion with the super folder GFP for labelling phosphatidylserine-exposing membranes
Elejalde-Cadena et al. Searching for a clue to characterize a crystalline dinosaur’s eggshell of Baja California, Mexico
JP5086636B2 (en) Uranium-chelating peptides and their use
KR102496784B1 (en) Protein crystal of CEP55-TEX14 complex and its use
Reynaud et al. Tumor protein D54 binds intracellular nanovesicles via an amphipathic lipid packing sensor (ALPS) motif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857292

Country of ref document: EP

Kind code of ref document: A1