WO2013087052A1 - Procédé et dispositif de détermination sans contact des paramètres de plantes et de traitement de ces informations - Google Patents

Procédé et dispositif de détermination sans contact des paramètres de plantes et de traitement de ces informations Download PDF

Info

Publication number
WO2013087052A1
WO2013087052A1 PCT/DE2012/001150 DE2012001150W WO2013087052A1 WO 2013087052 A1 WO2013087052 A1 WO 2013087052A1 DE 2012001150 W DE2012001150 W DE 2012001150W WO 2013087052 A1 WO2013087052 A1 WO 2013087052A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
image
stock
stereo camera
images
Prior art date
Application number
PCT/DE2012/001150
Other languages
German (de)
English (en)
Other versions
WO2013087052A8 (fr
Inventor
Stefan Reusch
Original Assignee
Yara International Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yara International Asa filed Critical Yara International Asa
Publication of WO2013087052A1 publication Critical patent/WO2013087052A1/fr
Publication of WO2013087052A8 publication Critical patent/WO2013087052A8/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/007Determining fertilization requirements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02466Biological material, e.g. blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30188Vegetation; Agriculture

Definitions

  • the invention relates to a method for contactless determination of plant parameters of a plant population and for processing this information into a control variable for fertilizing, watering and / or crop protection of the stock, in which of a part of the plant population composed of pixels digital image with recorded at least one image recording system and the image of the current plant parameters are determined by an image analysis.
  • the invention further relates to a device for non-contact determination of current plant parameters of a plant stand and for processing this information into a control variable for fertilizing, watering the stock and / or spreading pesticides on the crop, with a Schmeau- and evaluation system for Image analysis, whereby as an image evaluation system one in the memory of a portable, local or central
  • CONFIRMATION COPY Computer deposited image analysis algorithm is provided for image analysis, which is connected to the image recording system for transmitting the images.
  • DE 102005050302 A1 discloses a method for the contactless determination of the current nutritional status of a plant population and for the processing thereof
  • fertilizer recommendation taking into account other parameters such as crop and / or variety and / or stage of development and / or yield target in a fertilizer recommendation known, in which taken from a part of the plant population at least one digital image by means of an image recording system in at least two spectral channels, from the image of the current Nutritional status determined by an image analysis and from the latter, the fertilizer recommendation is derived.
  • DE 10 2006 009 753 B3 further describes a method for the non-contact determination of the biomass and morphological parameters of plant stands, in which the plants of the stand were acted upon by a sound field emitted by an ultrasonic source attached to a mobile carrier during the crossing, the sound echoes reflected from the plants and the ground be detected by a receiver fixed to the carrier and passed from this after conversion into digital signals to an evaluation and signal processing unit that currently evaluates the signals stored on a disk and displays on a monitor, optionally in an electronically controlled Ausbringmaschine the signals to Control commands for dispensing product agents are processed.
  • a device for measuring the crop density, in particular the green masses of the plant population of an agricultural crop density for controlling and / or regulating a agricultural distribution machine is also known, wherein the device at least one signal to an on-board computer sensor a transmitter and a receiver.
  • the sensor is designed as a triangulation sensor.
  • Equipment combinations consisting of an agricultural tractor and attached to this and trained as a fertilizer spreader and / or sprayer agricultural
  • Distribution machines wherein via the on-board computer system of the tractors and / or the coupled distributing machines can be adjusted, controlled and / or regulated via setting values stored and / or input in the on-board computer system, wherein the on-board computer system has at least one sensor element cooperating with the on-board computer, which contains information about provides the area to be spread.
  • the sensor element is designed as a non-contact sensor and currently detects information about the nature and condition of the plant growth by contactless scanning of the plants located on the area to be spread.
  • This information is transmitted to the on-board computer, which currently determines the nutrient requirement and / or the nutrient supply of the plants by means of a stored evaluation program, wherein due to the nutrient requirement thus determined, the direct control of the metering is done by the on-board computer.
  • the sensors used may be ultrasonic sensors or infrared sensors.
  • the invention The object of the invention to improve the method for non-contact determination of plant parameters of a plant population and for processing this information into a control variable for fertilizing, watering the stock and / or spreading of pesticides on the stock so that the measurement accuracy for the plant parameters with simultaneous Reduction of costs further increased and a significantly simplified handling for the farmer is achieved.
  • step d) converting the plant parameters determined in step d) into a control quantity for fertilizing, watering and / or crop protection.
  • a window formed by a small number of pixels is drawn around every nth pixel or pixels in the one image, the window in the other image being shifted horizontally by as many pixels until a maximum match of the two window contents is achieved. This pixel number then corresponds to the disparity d (x, y).
  • a prerequisite for deriving the distance map from the disparity map is a calibration of the disparity map, preferably on a reference object with at least two different known distances or from the known camera parameters such as the focal point and the distance of the focal points.
  • the inventive method makes it possible in a very simple manner, from the distance map, the inventory level of the stock and / or the soil cover and / or the vertical distribution of the biomass and / or the blade angle position to determine and from a corresponding fertilizer, and / or Derive the crop protection and / or irrigation recommendation as the control quantity for the stock.
  • a hand-held mobile phone or smartphone is used with built-in stereo camera, the captured images directly by a stored on the smartphone image analysis algorithm query of appropriate parameters such as crop and / or variety and / or development stage and / or yield target for fertilizer and / or crop protection and / or irrigation recommendation are processed and displayed.
  • a hand-held mobile phone or smartphone with integrated stereo camera and Internet access is used as an image recording system, the recorded images under query of appropriate parameters such as crop and / or variety and / or development stage and / or yield target be sent to a central server for fertilizer and / or crop protection and / or irrigation recommendation, the information on a fertilizer and / or plant protection and / or
  • Watering recommendation processed and this sends back to the display on the smartphone.
  • the farmer is thus able to obtain with simple means up-to-date measurement results on the state of his crops and to initiate appropriate measures for fertilization and / or watering and / or for the application of pesticides.
  • a commercially hand-held stereo camera can be used, which stores the images in a camera-internal or external memory, of which the images after requesting appropriate parameters such as crop and / or variety and / or Development stage and / or income target can be transferred directly to a local computer or via an Internet portal to the central server for evaluation.
  • the method according to the invention is at least one stationary during the growing season, mounted on a mast mounted vertically above the plant stock stereo camera with internetschreibem radio module that automatically receives the stereo images of the plant population in a preselectable time interval and this to the central Server (8) sends, which evaluates the stereo images, the results processed to fertilizer and / or crop protection and / or irrigation recommendations and this , the farmer via an Internet-based platform provides.
  • at least two stationary stereo cameras can be used, of which one stereo camera monitors an optimally-guided reference stock and the other monitors a target stock so that the reference stock can serve to derive fertilizer, crop protection and irrigation measures on the target stock.
  • Stationary stationary, mounted on a mast vertically above the plant population stereo camera is used with Internetconnectedem radio module that automatically records stereo images of the plant population at a pre-selectable time interval, sends them to the central server, which evaluates the images in terms of leaf position and sends the evaluation results as a control quantity to an irrigation or liquid fertilizer system for discharging the required amount of water.
  • the method according to the invention utilizes the knowledge that the plant leaves curl up or hang down under drought stress, as a result of which the blade angle or the blade angle distribution function changes. From the daily flow of measured data, it is possible, in conjunction with climate data such as temperature, dew point, irradiation, to determine and apply the required amount of water for watering.
  • At least one camera is mounted on a mobile carrier vehicle with processor unit stereo camera is used, which generates continuous stereo images during the crossing of the plant population from which the processor unit continuously determines the biomass and with this size the emitters Growth regulator is controlled to the stock.
  • the device according to the invention is characterized in that the image recording system is a commercially available stereo camera integrated into an internet-enabled mobile phone or smartphone or a stereo camera connected to the local or central computer, either the smartphone or the local computer or central server contains the image analysis algorithm for image analysis.
  • the image recording system is a commercially available stereo camera integrated into an internet-enabled mobile phone or smartphone or a stereo camera connected to the local or central computer, either the smartphone or the local computer or central server contains the image analysis algorithm for image analysis.
  • the device according to the invention can be applied in various ways in a simple manner, for example, as manually actuated by the farmer Smartphone with integrated stereo camera, separately communicating with a smartphone stereo camera or stereo camera, which can be mounted on a short boom next to the vehicle carrier, directly on the tractor roof or even on a standing mast with little effort.
  • 1a is a schematic representation of the image recording and evaluation system with an internet-enabled smartphone integrated stereo camera
  • FIG. 1b shows a typical image and evaluation system with a stereo camera having an external image memory and a local / central server
  • FIG. 3 shows an example of a stereo image for a rape-built field
  • FIG. 4a and 4b an example of determining a Disparticians certification and deriving a distance map from the stereo image of FIG. 3,
  • FIG. 5 shows a histogram derived from the distance map according to FIG. 4b for the determination of the vertical distribution of biomass in an unfertilized and optimally fertilized rapeseed stock
  • FIG. 6 shows an example of the relationship between plant height and biomass determined by the method according to the invention in the case of different fertilizer inputs and growth stages
  • FIG. 7 shows a schematic representation of the device according to the invention on a stationary mast
  • FIG. 8 shows a schematic representation of the device according to the invention on a mobile carrier.
  • the inventive method for non-contact determination of plant parameters of a plant stand 4 and for processing this information into a control variable for fertilizing, watering and / or crop protection of the stock is to be manually applied to a rape-built blow.
  • the farmer uses a color stereo camera 1, which is integrated in an internet-enabled smartphone 3, as the image acquisition system for manually executing the inventive method Image evaluation system implemented in the memory 2 of the smartphone 3 image evaluation algorithm for performing a 3D image analysis of color stereo images.
  • the pictures taken by the stereo camera 1 5.1 and 5.2 are directly in the memory 2 of the smartphone 3 by thessenaustudealgorithmus after interrogation of stock-specific data such as crop and / or variety and / or
  • Crop protection and / or irrigation recommendation and sends it back to the smartphone 3 for display.
  • the embodiment of the method according to the invention is not exclusively bound to a smartphone 3, but can also-as shown in FIG. 1b-be carried out with a commercially available stereo camera 1.
  • the recorded by the stereo camera 1 images 5.1 and 5.2 are preferably stored in a portable external memory 6 of the stereo camera 1 and this then from the farmer in the with the Schmausncealgorithmus equipped local computer 7 loaded.
  • the images 5.1 and 5.2 are processed in the local computer 7 to a fertilizer and / or crop protection and / or irrigation recommendation and displayed to the farmer on the display of the computer 7, so that the farmer can arrange appropriate measures.
  • the color stereo camera 1 is placed about 1 to 3 m vertically above the plant stock 4 in position and the plant stock 4 of the camera by at least one image pair ( Figure 5.1 and 5.2), preferably several image pairs (see FIG. 3) recorded simultaneously.
  • the stereo camera 1 has a resolving power of e.g. 1.3 megapixels.
  • the inventive method runs, as shown in FIG. 2, as follows.
  • the two images are made to coincide in such a way that a mapped object is apparently shifted only in the horizontal direction, wherein the object in the vertical direction on one and the other image exactly the same pixel position (x, y) occupies.
  • a disparity map is created which for each pixel contains the apparent displacement (disparity) d (x, y) in one image compared to the other image.
  • the disparity d (x, y) can be determined by defining a small window, for example with a size of 7 ⁇ 7 pixels, around the relevant pixel of one image and moving this window horizontally in the other image until there is a maximum match of both window contents. This shift is detected as disparity d (x, y).
  • the distance z bxf / d (x, y) holds the distance z to an object can be determined by measuring the disparity in the stereo image.
  • the disparity map is thus a depth image.
  • Such a distance map derived according to step S3 is shown in FIG. 4b.
  • Determining the disparity card can be quite time-consuming even with optimal implementation. This expenditure of time can be reduced if the disparity d (x, y) is determined for every nth pixel in the x and y direction instead of for each individual pixel of the output image. The prerequisite for this, however, is that no high spatial resolution is required or only the statistical distribution of the distances z (x, y) is of interest.
  • step S3 From the distance map obtained in step S3, the plant parameters such as the stock level, the soil cover, the biomass and their vertical distribution and the leaf position can be derived accordingly in step S4 and as control variables for fertilizing, watering and / or spreading pesticides use in step S5.
  • the stock height can at a known distance z Q of the color stereo camera 1 from the ground simply by determining the smallest measured distance min (z) to
  • the stock height h can also be calculated from the difference between highest and lowest distance value or, for example, from 95% and 5%. Determine percentile. However, such a procedure presupposes that the plant population does not completely cover the soil and that the soil on the image area is still recognizable in some percent and also sufficiently illuminated. For many crops, the stock level is directly related to above-ground biomass. An example of the relationship between the inventory level derived according to the invention and the actual biomass in a rape stock measured at different times and measured at different times is shown in FIG. 6.
  • the soil cover level ie the proportion of soil covered by plant parts or leaves, can be determined simply by determining the number of pixels for which the condition applies: z (x, y) ⁇ z 0 , where z 0 the distance of the color stereo camera 1 to the ground is.
  • the prerequisite is that the lowest floor of the plant leaves does not rest directly on the ground and thus the distance is distinguishable.
  • the method according to the invention has the advantage that shallow weeds or ground algae and mosses do not distort the result.
  • brown or discolored leaves and plant parts are reliably detected, since the process of the invention, the texture and not the color is evaluated.
  • the relative vertical distribution of the biomass results from the distribution of the distance values z (x, y) in a histogram. For this purpose, the statistical frequency of the individual distance values z (x, y) in the images is determined, so that the form of the distribution can be used to deduce the vertical distribution of the biomass.
  • FIG. 5 An example of such a histogram is shown in FIG. 5, in which the frequency of the pixel distances in an untreated
  • the mean leaf position or a distribution function of the leaf positions can be derived.
  • one level is adapted to the number of leaf pixels for each small leaf section and the angle between the normal vector of the plane and the vertical is determined.
  • the procedure for determining this angle belongs to the general state of the art and therefore need not be described in detail.
  • the inventive method is to be used in a portable device according to FIG. 1.
  • an internet-enabled smartphone 3 with integrated commercial color stereo camera 1 is used.
  • these are sent after requesting further required for the evaluation parameters such as the crop, the variety, the development status, etc. of the smartphone 3 via the Internet I to a central server 8, on which the image evaluation algorithm is installed.
  • the image evaluation algorithm evaluates the images 5.1 and 5.2, determines the biomass and / or plant height and derives therefrom a fertilizer and / or plant protection recommendation for the stock.
  • This fertilizer and / or crop protection recommendation is sent back from the server 8 to the smartphone 3 via Internet I and displayed there for the user.
  • the image evaluation algorithm can also be installed directly on the smartphone 3, which, when activated by the user, prompts the user to record, for example, several color stereo images with the color stereo camera.
  • the images are evaluated directly on the smartphone 3 by the image evaluation algorithm that determines biomass and / or plant height, from this a
  • Fertilizer recommendation / plant protection recommendation derived and displayed to the user.
  • the inventive method is used for stationary monitoring of a plant population 4 (see Fig. 7).
  • the color stereo camera 1 with radio module 13 is mounted in a weatherproof housing so on a standing in the plant stand 4 mast 9 that they can absorb the plant stock 4 vertically from above.
  • This measuring station remains stationary at one point in the plant stand 4 during the entire vegetation period.
  • the color stereo camera 1 automatically takes pictures at an adjustable time interval, for example once a day, and transmits them via mobile radio via the Internet directly to the central server 8.
  • the color stereo camera 1 and the radio module 13 become autonomous via a solar panel and, if necessary, a battery backup powered.
  • the transmitted images are processed on the central server 8 with the image evaluation algorithm stored on the central server 8, and the plant parameters are determined.
  • the evaluation results with derived fertilization, irrigation and / or crop protection recommendations are made available to the user via an internet-based platform. The farmer is thus able to use his computer in the office to conveniently track the state of his crop and take appropriate action if the growth does not meet the expected value.
  • several similar measuring stations can be used to simultaneously monitor several stocks or a stock at several locations.
  • the inventive method is used as described in Example 2, but is directly connected to an irrigation system, which is shown in dashed lines in Fig. 7 and receives its control commands from the server 8. From the stereo images of the average blade angle is derived and used as a control variable for the irrigation system. This exploits the fact that the plant leaves curl up or hang down under drought stress, thereby changing the blade angle or the blade angle distribution function.
  • the amount of water to be applied is determined from the daily course of the measurement data, possibly in conjunction with climate data such as temperature, dew point, sunshine duration, etc., and then applied to the stock accordingly.
  • Such an irrigation system is preferably suitable for use in the greenhouse in order to exclude the effects of wind movement.
  • the process according to the invention is used for the partial area-specific application of growth regulators (see FIG. 8).
  • At least one color stereo camera 1 is / are attached to a boom 10 of a carrier vehicle 11 and detect the crop 4 during the crossing.
  • the color stereo cameras 1 continuously record images 5.1, 5.2 which are processed by a processor unit 12 located on board the carrier vehicle 11 and continuously determine the biomass. With the help of this size, the quantity of growth regulator is then continuously varied.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analytical Chemistry (AREA)
  • Soil Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Acoustics & Sound (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

L'invention concerne un procédé et un dispositif de détermination sans contact des paramètres de plantes d'un peuplement végétal et de traitement de ces informations pour donner une grandeur de commande utilisée pour la fertilisation, l'arrosage et/ou le traitement phytosanitaire du peuplement. Selon le procédé, sur une partie du peuplement végétal, une image numérique composée de pixels est prise par au moins un système de prise de vues et, à partir de l'image, les paramètres actuels des plantes sont déterminés par une analyse de l'image.
PCT/DE2012/001150 2011-12-13 2012-12-04 Procédé et dispositif de détermination sans contact des paramètres de plantes et de traitement de ces informations WO2013087052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011120858.9 2011-12-13
DE102011120858A DE102011120858A1 (de) 2011-12-13 2011-12-13 Verfahren und Vorrichtung zum berührungslosen Bestimmen von Pflanzenparametern und zum Verarbeiten dieser Informationen

Publications (2)

Publication Number Publication Date
WO2013087052A1 true WO2013087052A1 (fr) 2013-06-20
WO2013087052A8 WO2013087052A8 (fr) 2014-01-09

Family

ID=47832834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/001150 WO2013087052A1 (fr) 2011-12-13 2012-12-04 Procédé et dispositif de détermination sans contact des paramètres de plantes et de traitement de ces informations

Country Status (2)

Country Link
DE (1) DE102011120858A1 (fr)
WO (1) WO2013087052A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193822A1 (fr) 2014-06-17 2015-12-23 Casella Macchine Agricole S.R.L. Procédé et dispositif pour mesurer la couverture végétale sur une terre agricole
CN106595603A (zh) * 2016-11-23 2017-04-26 华南农业大学 一种检测由无人机旋翼气流引起的冠层倒伏锥体的方法
EP3343170A1 (fr) 2016-12-27 2018-07-04 Yara International ASA Dispositif et procédé pour déterminer la hauteur d'un produit agricole
CN108469434A (zh) * 2018-04-11 2018-08-31 山东农业大学 一种监测果树是否缺水的装置及方法
DE102017204650A1 (de) * 2017-03-21 2018-09-27 Robert Bosch Gmbh Verfahren zum Klassifizieren von Pflanzen
DE102017124934A1 (de) * 2017-10-25 2019-04-25 M-Farms Gmbh System zur halbautomatischen und/oder automatischen Unkrautentfernung
EP3872450A1 (fr) * 2020-02-26 2021-09-01 Yara International ASA Dispositif et procédé pour déterminer une hauteur de récolte

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2870859A1 (fr) * 2013-11-07 2015-05-13 Heliospectra AB Procédé pour commander un cycle de croissance de plantes au moyen de l'état de commande d'orientation
DE102014010079A1 (de) * 2014-07-05 2016-01-07 Rudolf Trepnau Verfahren zur kooperativen Überwachung von Pflanzenzüchtungen
DE102014226291A1 (de) 2014-12-17 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum Warnen vor Oberflächenschäden an Fahrzeugen
DE102014226189B4 (de) * 2014-12-17 2017-08-24 Continental Automotive Gmbh Verfahren zur Ermittlung eines Unkrautanteils und Landtechnik-Steuereinrichtung
DE102015119072A1 (de) * 2015-11-06 2017-05-11 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Verfahren zum Bestimmen eines Streubilds eines Schleuderstreuers
US20190124853A1 (en) * 2015-12-16 2019-05-02 Plantio, Inc. Information processing device, information processing method, and program
ES2883327T3 (es) * 2016-10-18 2021-12-07 Basf Agro Trademarks Gmbh Planificación e implementación de medidas agrícolas
CN108074236B (zh) * 2017-12-27 2020-05-19 Oppo广东移动通信有限公司 植物浇灌提醒方法、装置、设备及存储介质
US11908074B2 (en) 2018-09-04 2024-02-20 Viliam Kiss Method of identifying and displaying areas of lodged crops
DE102018251708A1 (de) * 2018-12-27 2020-07-02 Robert Bosch Gmbh Verfahren zur Zerstörung von zumindest einer Pflanze

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132637A1 (de) * 1991-10-01 1993-04-08 Walter Prof Dr Kuehbauch Verfahren und vorrichtung zur gesteuerten unkrautbekaempfung
DE19642439C1 (de) * 1996-10-15 1997-11-20 Heinz Dr Ing Ganzelmeier Verfahren zur optischen Detektion und Behandlung von Kulturpflanzen und nicht biologisch transformierte Kulturpflanze
DE4042672C2 (de) 1990-05-23 2002-08-08 Amazonen Werke Dreyer H Bordcomputersystem für landwirtschaftliche Maschinen- und/oder Gerätekombinationen
US20040149893A1 (en) * 2001-04-26 2004-08-05 Scott Christopher C Selective plant discrimination
DE10329472A1 (de) 2003-07-01 2005-01-27 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Vorrichtung zur Messung der Pflanzenbestandsdichte
DE20221564U1 (de) * 2001-06-12 2006-06-29 Gebr. Pöttinger GmbH Landmaschine
WO2006117581A1 (fr) * 2005-04-29 2006-11-09 G & G Növényvédelmi és Kereskedelmi Kft. Dispositif d’etablissement d’une carte des mauvaises herbes
DE102005050302A1 (de) 2005-10-17 2007-04-26 Yara International Asa Verfahren und Vorrichtung zum berührungslosen Ermitteln des aktuellen Ernährungszustandes eines Pflanzenbestandes und zum Verarbeiten dieser Informationen zu Düngeempfehlungen
WO2007079805A1 (fr) * 2006-01-08 2007-07-19 Hermann Tropf Etablissement d'une image de distance
DE102008009753B3 (de) 2008-02-18 2009-09-10 Yara International Asa Verfahren zum Bestimmen der Biomasse und Morphologie von Pflanzenbeständen mittels Ultraschall

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551264B2 (ja) * 1993-10-22 2004-08-04 東急建設株式会社 植物活力変動の評価画像作成方法
DE10353212A1 (de) * 2003-11-13 2005-06-23 Db Netz Ag Verfahren und Vorrichtung zur Erkennung und Vermessung von Vegetation im Umfeld von Verkehrswegen
WO2009153304A1 (fr) * 2008-06-20 2009-12-23 Faculté Universitaire des Sciences Agronomiques de Gembloux Détection et/ou destruction des plantes nuisibles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4042672C2 (de) 1990-05-23 2002-08-08 Amazonen Werke Dreyer H Bordcomputersystem für landwirtschaftliche Maschinen- und/oder Gerätekombinationen
DE4132637A1 (de) * 1991-10-01 1993-04-08 Walter Prof Dr Kuehbauch Verfahren und vorrichtung zur gesteuerten unkrautbekaempfung
DE19642439C1 (de) * 1996-10-15 1997-11-20 Heinz Dr Ing Ganzelmeier Verfahren zur optischen Detektion und Behandlung von Kulturpflanzen und nicht biologisch transformierte Kulturpflanze
US20040149893A1 (en) * 2001-04-26 2004-08-05 Scott Christopher C Selective plant discrimination
DE20221564U1 (de) * 2001-06-12 2006-06-29 Gebr. Pöttinger GmbH Landmaschine
DE10329472A1 (de) 2003-07-01 2005-01-27 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Vorrichtung zur Messung der Pflanzenbestandsdichte
WO2006117581A1 (fr) * 2005-04-29 2006-11-09 G & G Növényvédelmi és Kereskedelmi Kft. Dispositif d’etablissement d’une carte des mauvaises herbes
DE102005050302A1 (de) 2005-10-17 2007-04-26 Yara International Asa Verfahren und Vorrichtung zum berührungslosen Ermitteln des aktuellen Ernährungszustandes eines Pflanzenbestandes und zum Verarbeiten dieser Informationen zu Düngeempfehlungen
WO2007079805A1 (fr) * 2006-01-08 2007-07-19 Hermann Tropf Etablissement d'une image de distance
DE102008009753B3 (de) 2008-02-18 2009-09-10 Yara International Asa Verfahren zum Bestimmen der Biomasse und Morphologie von Pflanzenbeständen mittels Ultraschall

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHRÄDER, DANIEL: "LG Optimus 3D mit Dual-Core und Stereo-Kamera: der Prototyp im Test", 29 April 2011 (2011-04-29), XP002696116, Retrieved from the Internet <URL:http://www.zdnet.de/41552325/lg-optimus-3d-mit-dual-core-und-stereo-kamera-der-prototyp-im-test/> [retrieved on 20130425] *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193822A1 (fr) 2014-06-17 2015-12-23 Casella Macchine Agricole S.R.L. Procédé et dispositif pour mesurer la couverture végétale sur une terre agricole
CN106595603A (zh) * 2016-11-23 2017-04-26 华南农业大学 一种检测由无人机旋翼气流引起的冠层倒伏锥体的方法
US10837758B2 (en) 2016-12-27 2020-11-17 Yara International Asa Device and method for determining a height of an agricultural product
EP3343170A1 (fr) 2016-12-27 2018-07-04 Yara International ASA Dispositif et procédé pour déterminer la hauteur d'un produit agricole
WO2018122237A1 (fr) 2016-12-27 2018-07-05 Yara International Asa Dispositif et procédé pour déterminer la hauteur d'un produit agricole
AU2017387700B2 (en) * 2016-12-27 2022-02-10 Yara International Asa Device and method for determining a height of an agricultural product
CN110088567A (zh) * 2016-12-27 2019-08-02 亚拉国际有限公司 用于确定农产品高度的设备和方法
DE102017204650A1 (de) * 2017-03-21 2018-09-27 Robert Bosch Gmbh Verfahren zum Klassifizieren von Pflanzen
DE102017124934A1 (de) * 2017-10-25 2019-04-25 M-Farms Gmbh System zur halbautomatischen und/oder automatischen Unkrautentfernung
CN108469434B (zh) * 2018-04-11 2022-01-25 山东农业大学 一种监测果树是否缺水的装置及方法
CN108469434A (zh) * 2018-04-11 2018-08-31 山东农业大学 一种监测果树是否缺水的装置及方法
EP3872450A1 (fr) * 2020-02-26 2021-09-01 Yara International ASA Dispositif et procédé pour déterminer une hauteur de récolte
WO2021170804A1 (fr) 2020-02-26 2021-09-02 Yara International Asa Dispositif et procédé permettant de déterminer une hauteur de récolte

Also Published As

Publication number Publication date
WO2013087052A8 (fr) 2014-01-09
DE102011120858A1 (de) 2013-06-13

Similar Documents

Publication Publication Date Title
WO2013087052A1 (fr) Procédé et dispositif de détermination sans contact des paramètres de plantes et de traitement de ces informations
DE102008009753B3 (de) Verfahren zum Bestimmen der Biomasse und Morphologie von Pflanzenbeständen mittels Ultraschall
DE102018217742A1 (de) Verfahren zum Ausbringen eines Spritzmittels auf ein Feld
DE102015225460A1 (de) System und Verfahren zum Analysieren der Effektivität einer Aufbringung auf ein Erntegut
DE102016212623A1 (de) UAV-basiertes Abfühlen für Arbeitsabläufe in einem Arbeitsbereich
DE102019211642A1 (de) Verfahren zum Identifizieren von Beikräutern innerhalb einer definierten Pflanzenreihe einer landwirtschaftlichen Fläche
EP2854506A1 (fr) Procédé de détermination sans contact de l&#39;état nutritionnel d&#39;un peuplement végétal et de traitement de cette information
WO2022128189A1 (fr) Procédé d&#39;application d&#39;une pulvérisation sur terrain agricole
EP4088223A1 (fr) Procédé de génération d&#39;une pluralité d&#39;images annotées
WO2019096463A1 (fr) Procédé de guidage automatique d&#39;un véhicule le long d&#39;un système de rails virtuel
EP3738420A1 (fr) Procédé de fonctionnement d&#39;un engin agricole automatique
DE102019218192A1 (de) Verfahren zum Bearbeiten von Pflanzen auf einem Feld
DE102018222623A1 (de) Verfahren zur automatisierten Bewässerung von Pflanzen
DE1588585A1 (de) Selbsttaetige Leiteinrichtung zur Fuehrung von Fahrzeugen laengs kursbestimmender Leitlinien
DE202022102591U1 (de) System zur Überwachung des Gesundheitszustands von Pflanzen in der Präzisionslandwirtschaft mittels Bildverarbeitung und Faltungsneuronalem Netz
WO2021105017A1 (fr) Procédé de traitement de plantes dans un champ
DE102020215876A1 (de) Verfahren zum Klassifizieren von Pflanzen für landwirtschaftliche Zwecke
DE102020215880A1 (de) Verfahren zum Ausbringen eines Spritzmittels auf eine landwirtschaftliche Fläche
WO2013026439A1 (fr) Dispositif de détermination de la croissance d&#39;une plante ou d&#39;une ressource végétale
EP4064818B1 (fr) Procédé de traitement de plantes dans un champ
DE102020215878A1 (de) Verfahren zum Ausbringen eines Spritzmittels auf eine landwirtschaftliche Fläche
DE102017204105B4 (de) Anordnung zur Ermittlung einer Bodeneigenschaft unter Verwendung von Signalen unterschiedlicher Sensoren
WO2021105006A1 (fr) Procédé d&#39;estimation d&#39;une trajectoire de rangées de plantes
DE102023113767A1 (de) Automatische erzeugung von feldbegrenzungen
DE102023126750A1 (de) Kalibriereinstellung für landwirtschaftliche sprühvorrichtung mit echtzeitzielsensor an der maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829205

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12829205

Country of ref document: EP

Kind code of ref document: A1