WO2013086596A1 - Process for producing a silica nanoparticle hydrogel, silica nanoparticles and silica nanoparticles with adsorbed ions; products produced and the corresponding uses thereof - Google Patents

Process for producing a silica nanoparticle hydrogel, silica nanoparticles and silica nanoparticles with adsorbed ions; products produced and the corresponding uses thereof Download PDF

Info

Publication number
WO2013086596A1
WO2013086596A1 PCT/BR2012/000508 BR2012000508W WO2013086596A1 WO 2013086596 A1 WO2013086596 A1 WO 2013086596A1 BR 2012000508 W BR2012000508 W BR 2012000508W WO 2013086596 A1 WO2013086596 A1 WO 2013086596A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
silica
solution
nanoparticles
silica nanoparticles
Prior art date
Application number
PCT/BR2012/000508
Other languages
French (fr)
Portuguese (pt)
Inventor
Fernando APARECIDO SIGOLI
Tábita Cristina BELINI
Ítalo ODONE MAZALI
Original Assignee
Universidade Estadual De Campinas - Unicamp
Iharabrás S/A Indústrias Químicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp, Iharabrás S/A Indústrias Químicas filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2013086596A1 publication Critical patent/WO2013086596A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/154Preparation of hydrogels by acidic treatment of aqueous silicate solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a process for obtaining silica-based nanoproducts from sodium silicate. More specifically, the present invention relates to a process for obtaining hydrogel from silica nanoparticles and silica nanoparticles that may be used for adsorption of ions on their surface.
  • Silica nanoparticle hydrogel and silica nanoparticle can be used for agrochemical, home and personal care applications in the rubber industry as an additive to formulations and carrier systems.
  • they may contain ions adsorbed on their surface and are mainly used as bactericidal and / or fungicidal materials, depending on the ion used.
  • Nanomaterials are also present in nonlinear optics, luminescence, catalysis, solar energy conversion, biological detection, lasers, optical fibers, sensors, drugs and cosmetics, as well as in other areas (P. 0 ' Brien, NL Pickett. Nanocrystalline Semiconductors: Syntheses, Properties and Perspectives, Chemistry of Materials, 2001, Vol. 13, pp. 3843-385).
  • the physicochemical properties of materials can be related to particle size, shape and composition.
  • the size and shape of a particle can be manipulated by adjusting experimental conditions such as temperature, reagent concentration ratio, reaction time, pH and solution dielectric constant, solvent type, reagent concentration, among others (LM Liz-Marzán, Nanometals: Formation and Color, Materials Today, 2004, pp. 26-31). Silicon oxide, called silica (Si0 2 ) is one of the most abundant components in the earth's crust and widely used in the glass, ceramics, polymers, paints, toothpastes and other industries.
  • insulating glazing material used as a support for heterogeneous catalysts, as adsorbent, as stationary phase for gas and liquid chromatographs, rubber reinforcing agent, elastomers, texturizing agent, filler, abrasives, polishing material,
  • silicon oxide must be presented as small aggregates or small particles in order to obtain stable suspensions.
  • Silica gel is a non - crystalline inorganic polymer with high porosity, consisting of SI0 4 tetrahedral units randomly distributed and connected by siloxane bonds (Si-O-Si) , and silanol groups (Si - OH) on the particle surface.
  • Chemical reactivity is mainly determined by silanol groups on the silica surface. Hydroxyls present on the silica surface can be chemically modified, resulting in the functionalization of the silanol groups. Such a reaction makes it possible to obtain a more selective and versatile silica matrix, as it incorporates the characteristics of the modifying agent. Therefore, a silica matrix can be used to anchor other substances - such as metal ions or organic molecules - either by direct bonding to the silanol groups or by modifying such groups and chemical interaction with the modified terminals.
  • sol-gel which consists of obtaining solid particles through liquid precursors through hydrolysis and condensation reactions.
  • the main precursors of this reaction are silicon alkoxides.
  • the most common process for colloidal silica synthesis is called Stöber process and makes use of TEOS as a source of silicon.
  • the method was developed by Werner Stöber in 1968 and consists of hydrolyzing / condensing tetraethylorthosilicate in an alcoholic solution in the presence of ammonium hydroxide (catalyst).
  • the size of the synthesized particles can be controlled by varying the TEOS and alcohol concentrations as well as the nature of the alcohol. It is a widespread method and several works are still developed on the basis of it (I. A. M. (2004) et al., J Am Sei, 2010, 11, 985-989).
  • nanoparticle synthesis parameters from TEOS such as volume, reactor shape, temperature, reaction time, agitation and atmosphere should be controlled within a narrow window of parameter variations to obtain nanoparticles of size and controlled.
  • large-scale production of silica nanoparticles by hydrolysis and condensation reactions of TEOS requires strict control of these parameters, making it difficult to obtain them on a large scale.
  • the small number of suppliers of this precursor worldwide being zero or very small in Brazil, which depends on the importation of this input.
  • TEOS is an unstable reagent against moisture. When exposed to water (either direct source or moisture), it may hydrolyze to release ethanol and therefore requires care with regard to handling and storage.
  • the present invention proposes a viable alternative for the industrial production of silica nanoparticles using sodium silicate.
  • nanoparticles obtained are stable even under adverse storage conditions and have a narrow size distribution, with the average diameter being around 10 nm.
  • Sodium silicate is non-flammable, is widely available on the market, is much lower in cost than TEOS and does not require special stock and synthesis conditions for nanoparticles.
  • the sodium silicate solution is alkaline (approximately pH 12) and for the hydrolysis reaction to take place a catalyst is required, but the addition of acid neutralizes the medium which induces the condensation reaction. It quickly acidified to pH's acid, is achieved circumvent this condition. However, the low pH makes it impossible to use silica in some applications and, moreover, pHs below 5 do not lead to the formation of isolated nanoparticles.
  • the present invention has dispersed and water dispersible silica nanoparticles, which already guarantees unique advantages regarding its use in various areas, especially the agricultural field, due to the ease of preparation and application of the syrup.
  • EP0537375 of 10/15/1991, EP0557740 of 02/01/1993 and EP0996 588 of 06/30/1998 use various unit operations, increasing the length and decreasing process productivity, as well as requiring the installation of specific equipment. in the manufacturing plant, such as ion exchange columns.
  • the present invention makes use of weak acids and eliminates some unit operations making the manufacturing process simpler and still preparing highly stable solution-stable silica nanoparticles hydrogel.
  • the great advantage of the present invention is that it is capable of forming and stabilizing silica nanoparticles from sodium silicate, making use of a weak acid as catalyst in the absence of other surface modifiers.
  • the process control occurs by the sodium silicate / acid ratio, acid strength and time and system heating, and therefore can be accomplished by reducing the number of unit operations.
  • Silica applications are numerous, standing out as adsorbent material. Silanol groups present on the surface of the particle are able to interact with various compounds such as metal ions, gases, organic molecules and so on.
  • Godói and collaborators RHM Godói, L. Fernandes, M. Jafelicci Jr., RC Marques, LC Veranda, MR Davolos. Investigation of the silica and silica systems containing chromium in alcohol medium. Journal of Non-Crystalline Solids. 1999, Vol. 47, pp. 141-145) describe a method for synthesizing chromium-containing silica particles from sodium silicate in alcoholic medium.
  • This is a process adapted from Stober's method in which a salt of the metal of interest is inserted during the precipitation of the silica so that such an ion is trapped in the formed structure.
  • the limitation of this method is that the final product is in gel form.
  • Some metals are known to have bactericidal / fungicidal activities (such as silver and copper), so when incorporated into the silica matrix, a compound with characteristics is obtained that can be employed as additives in the home and personal care industry, for disease control in agriculture, among others.
  • WO2007 / 122651 of 24/04/2006 describes a process for producing particles with activity against viruses and bacteria. These are particles of a metal oxide (such as silica, zinc oxide, titanium dioxide, among others) whose surface has been chemically modified. to bind to ions that exhibit the desired activity.
  • a metal oxide such as silica, zinc oxide, titanium dioxide, among others
  • the advantage associated with this method is that it can be used for several oxides, however the associated problem is that the functionalization of silica requires the use of organic solvents, making the process less sustainable - which is not in accordance with the principles of "chemistry". green "- and presents greater risk to handlers, compromising their health.
  • surface functionalization requires new unit operations which are eliminated in the present invention, where the adsorption of ions occurs only by weak chemical interaction. This weak chemical interaction between the ions and the silica surface makes these ions more bioavailable compared to coordinating and organometallic compounds and thus the bactericidal and / or fungicidal action is achieved
  • WO2008 / 017176 of 7/23/2007 the inventor proposes a method using TEOS to produce silica nanoparticles containing copper and silver ions as well as other compounds which exhibit bactericidal / fungicidal activity.
  • the process involves preparing a solution of a silicon precursor in organic solvent, together with the component having the desired activity, and subjecting such solution to pyrolysis.
  • the final product obtained is solid phase silica nanoparticles with an average diameter between 30 and 100 nm.
  • the process involves the burning of organic solvents by pyrolysis spray, a process that demands high temperatures, releasing toxic gases and making use of unitary operations that are not necessary in the present invention.
  • the solvent used is water which can be recovered and reused in the process.
  • Nanoparticle synthesis parameters from TEOS such as volume, reactor shape, temperature, reaction time, agitation and atmosphere should be controlled within a narrow range window to obtain controlled size and shape nanoparticles.
  • large-scale production of silica nanoparticles by hydrolysis and condensation reactions of TEOS requires strict control of production parameters, making it difficult to obtain them on a large scale.
  • small number of worldwide suppliers of this precursor being zero or very small in Brazil that depends on the importation of this input.
  • TEOS is an unstable reagent against moisture. When exposed to water (either direct source or moisture), it may hydrolyze to release ethanol and therefore requires some care with regard to handling and storage.
  • WO2010 / 068275 of 10/12/2009 deals with a bactericidal and fungicidal copper-based formulation using a silica matrix.
  • the author synthesized the matrix from TEOS - an adapted Stober's method - and evaluates the differences between the effectiveness of nanoparticles called "nanogel", which consists of polymerized silica nanoparticles.
  • nanogel which consists of polymerized silica nanoparticles.
  • the present invention has advantages in several respects. Firstly, it proposes a new process for the synthesis of silica nanoparticles from sodium silicate, employing an acid catalyst and limiting the kinetics of condensation reactions at pH10, which lead to efficient gelation of the solution. In addition, such a process can easily be transposed to industrial scale and the reagents used are not impediments to large scale production.
  • the present invention advantageously employs a weak organic acid, thereby achieving better control of pH adjustment, which is critical for precipitating colloidal silica and keeping it in the form of individual particles by controlling the size of nanoparticles. Another crucial point for the process is heating, combined with the time the sodium silicate solution undergoes, which enables the formation of individual particles and promotes their stabilization over a long period of storage.
  • Nanoparticles do not have surface modifiers, such as surfactants, and yet are re-dispersible in water, that is, the use of adjuvants is not necessary to maintain the dispersion of the particles. Nanoparticles are stable even under adverse storage conditions and have a narrow size distribution, with an average diameter around 10 nm.
  • the present invention offers an alternative to this need by reducing the amount of copper (11) used for application in the agricultural sector, highlighting an important new route for obtaining differentiated products with less impact on the environment.
  • the present invention relates to a process for obtaining silica based nanoproducts. Additional objects are the products obtained by the described process, comprising silica nanoparticles hydrogel, silica nanoparticles and silicon nanoparticles of interest. adsorbed to its surface. Furthermore, the present invention also relates to the use of said nanoproducts.
  • the invention describes a process comprising the steps of preparing sodium silicate solutions and a weak organic acid, adding one solution to another, refluxing, filtration, concentration, drying, adsorption and drying.
  • Figure 2 shows an X-ray diffractogram of solid phase silica nanoparticles.
  • FIG. 3 shows the size distribution of silica nanoparticles after spray dryer processing and redispersion of the particles in water.
  • FIG. 4 shows the scanning electron microscopy of the silica nanoparticle hydrogel.
  • FIG. 5 shows the scanning electron microscopy of the redispersed silica nanoparticles in water.
  • the present invention describes a process for obtaining silica nanoproducts employing sodium silicate and a weak organic acid catalyst which can be applied as a hydrogel or a powder, such as silica nanoparticles, and also with ions adsorbed to nanoparticle surface
  • Silica nanoproducts obtained by the process described in this invention comprise silica nanoparticle hydrogel, silica nanoparticle and silica nanoparticle with adsorbed ions.
  • An object of the present invention is a process for obtaining the products described above comprising the following steps:
  • the first solution preparation step (a) is initiated by step (a1), in which an alkaline sodium silicate solution is prepared in distilled water of between 0.1 and 10%, preferably 1% (w / v). Then, in step (a2), a weak organic acid solution selected from picric acid, squaric acid, oxalic acid, citric acid, formic acid, ascorbic acid, benzoic acid, acetic acid, p-nitrophenol, peracetic acid, propionic, butyric acid, valyric acid, caproic acid, caprylic acid, capric acid, succinic acid, glutaric acid, adipic acid, D-tartaric acid, L-tartaric acid, lactic acid, uric acid, maleic acid, fumaric acid, isovaliric acid , furic acid, sorbic acid, salicylic acid, trans-cinnamic acid, acetylsalicylic acid, myristic acid) being preferably citric acid at a concentration of 0.5
  • step (b) the weak organic acid solution obtained in step (a2) is added to the solution prepared in step (a1), so that the pH decreases to a range of 12 to 9.0, preferably 10.5.
  • a suitable pH which in the present invention is easily achieved, especially for industrial scale application, by the use of a weak organic acid, is essential to promote the hydrolysis reactions of the product. silicate, limiting condensation reactions, which lead to efficient hydrogel formation in subsequent steps.
  • the final solution is refluxed (c), at which time nanoparticles form.
  • the solution is heated to 50 to 100 ° C, preferably to 90 ° C for a period of 4 to 48 hours, preferably 24 hours. Reflux is critical for obtaining stable and individual nanoparticles.
  • step (c) The suspension is then cooled to room temperature until complete cooling.
  • the material obtained in step (c) is subjected to filtration step (d) in a simple filtration system, thus obtaining the so-called silica nanoparticle hydrogel.
  • This hydrogel obtained in step (d) is colorless, with medium diameter silica nanoparticles ranging from 1 to 100 nm, preferably 10 nm, zeta potential ranging from -100 to +100 mV, preferably -35 mV.
  • the hydrogel obtained in step (d) may or may not be concentrated by removing water from the system (step e), preferably by distillation.
  • the obtained compound - concentrated or diluted - can be applied as metal ion adsorbent materials, stationary phase for gas and liquid phase chromatography, rubber reinforcing agent, elastomers, texturizing agent, filler, abrasives, polishing material, carrier systems and inert / additives for the agrochemical industry, home and personal care, ceramics, polymers and paints.
  • the next process step consists of drying (f) the hydrogel obtained in step (d) or (e).
  • the material is spray dried at a temperature of 100 to 200 ° C, preferably 150 ° C, with a flow rate of 1 to 20 mL / min, preferably 5 mL / min, and with a nozzle of 0.7 to 2.0 mm, preferably 1.5 mm, for removal of all residual water to give the solid phase silica nanoparticles, a water redispersible powder.
  • the silica nanoparticles obtained in step (f) have a mean diameter ranging from 5 to 200 nm, preferably 20 nm, zeta potential ranging from -150 to +150 mV, preferably -80 mV. And they can be applied as support for catalysts, adsorbent materials, stationary phase for gas and liquid phase chromatography, rubber reinforcing agent, elastomers, texturizing agent, filler, abrasives, polishing material, filler and additive systems for the agrochemical industry, home and personal care, ceramics, polymers and paints.
  • Silica nanoparticles obtained in step (f) and hydrogel obtained in steps (d) and (e) can be used for adsorption (g) of ions on their surface.
  • a suspension of the nanoparticles at a pH ranging from 1 to 11, preferably 8, is prepared using a weak organic acid solution selected from picric acid, squaric acid, oxalic acid, citric acid, formic acid, ascorbic acid, benzoic acid, acetic acid, p-nitrophenol, peracetic acid, propionic acid, butyric acid, valyric acid, caproic acid, caprylic acid, capric acid, succinic acid, adipic acid, D-tartaric acid, L-tartaric acid, lactic acid, uric acid, maleic acid, fumaric acid, isovalyric acid, furic acid, sorbic acid, salicylic acid, trans-cinnamic acid, acetylsalicylic acid, myristic acid), being preferably citric acid at
  • a soluble salt of the ion of interest may be added, which may be copper (1), copper (11), mercury (11), silver (1), zinc (11), iron (11), iron (11). ), lead (11), lead (11) and bismuth (11), with copper (11) being preferably chloride, nitrate or sulfate, and the solution is stirred briefly.
  • step (g) which can be used as a hydrogel with bactericidal and fungicidal properties, is submitted to a drying step (h), processed in a spray dryer at 100 to 200 ° C, preferably 150 ° C, with a flow rate of 1 to 20 mL / min, preferably 5 mUmin, and nozzle of 0.7 to 2.0 mm, preferably 1.5 mm, for removal of all wastewater.
  • Silica nanoparticles obtained in steps (g) and (h) may have bactericidal and fungicidal action or act as a catalyst, depending on the metal ions adsorbed to their surface, and may be applied in various branches of industry, such as the sectors: agricultural, electronic, home and personal care, pharmaceutical, polymers, rubbers, among others.
  • the first step is the proton catalyzed hydrolysis of sodium silicate to generate silicic acid. Protonation of such acid leads to condensation of such molecules, forming polysilicic acid. If such a reaction is not controlled, the chains continue to undergo condensation and crosslinking, leading to hydrogel formation.
  • the obtained silica nanoparticles were characterized by several techniques, such as dynamic light scattering (DLS), X-ray diffraction (XRD) and particle morphology were evaluated by scanning electron microscopy.
  • DLS dynamic light scattering
  • XRD X-ray diffraction
  • particle morphology were evaluated by scanning electron microscopy.
  • a 1% (w / v) alkaline sodium silicate solution is prepared and 1 mol L " citric acid is added such that the pH reaches a value close to 10.5. refluxing solution for 4 to 24 hours After this time the final suspension is filtered on a qualitative filter paper and finally the silica nanoparticle hydrogel is obtained.
  • This hydrogel is colorless and the nanoparticles obtained have an average diameter of 10 nm (Figure 1), zeta potential of - 32.1 mV and are quite dispersed as shown by electron microscopy ( Figure 4). As mentioned the hydrogel is completely colorless and translucent and the only visual means to check if precipitation has occurred is by light scattering.
  • the Tyndall effect predicts that suspended particles are capable of scattering light, regardless of their size or medium in which they are scattered.
  • pointing a laser at a solution if there are suspended particles, it will be possible to observe the path of light through the liquid medium, which does not occur in the case of water or a true solution, for example.
  • the refluxed solution is processed after filtration in a spray dryer.
  • Samples were processed at 150, 180 and 200 ° C with 1.5 mm nozzle. These conditions were changed to see if they would influence the morphology and size of the dried particles. As other parameters, aspiration was standardized at 85%, the pump at 15% (which is approximately 5 mL / min) and nozzle cleanerem 5 (arbitrary units).
  • Example 3 Process of preparing adsorbed copper (ll) ions silica nanoparticles
  • the silica suspension prepared as described in Example 1 is adjusted to pH with a 1 mol L "1 citric acid solution to pH 8. Then a soluble copper salt (11) may be added, which may be chloride , nitrate, sulfate, among others, and the solution is briefly stirred, and the copper salt will solubilize in the solution, providing the copper ions which in turn will interact with the silica surface.
  • a soluble copper salt (11) may be added, which may be chloride , nitrate, sulfate, among others, and the solution is briefly stirred, and the copper salt will solubilize in the solution, providing the copper ions which in turn will interact with the silica surface.
  • the spray dryer solution is processed under the same conditions as described in Example 2.
  • a water-redispersible blue solid is obtained at the end of the process.
  • Copper-containing silica nanoparticles were obtained and the in vitro efficacy tests were conducted and the bactericidal action was verified with Xanthomonas axonopodis and Ralstonia solanacearum strains.
  • the test consists of spreading a certain volume of a bacterial solution on a specific culture medium (in this case, BDA - potato, dextrose and agar was used) and in the center of the petri dish a filter paper disc is placed. moistened in a solution of the formula to be tested with known concentration. At concentrations where the formula has activity, a halo will be formed around the filter disc, indicating that in this region the bacteria did not develop, and the larger this halo, the greater the activity of the tested formulation.
  • a specific culture medium in this case, BDA - potato, dextrose and agar was used
  • the spray-dried formulation was tested at dosages of 1; 5; 10; 25; 50 and 100 ppm of copper ions adsorbed on silica nanoparticles and, as a commercial reference, a formula based on copper hydroxide was used at the recommended concentration of 300g / 100L of water, which is equivalent to 1050 ppm copper (ll). .
  • Example 4.1 Evaluation with Xanthomonas axonopodis pv. phaseoli
  • Xanthomonas axonopodis pv. phaseoli is the etiological agent of bean bacterial growth. It is a bacteriosis largely mainly in hot and humid climates (such as the states of S ⁇ o Paulo, Rio de Janeiro, Minas Gerais, Paraná, Santa Catarina, Espirito Santo, Rio Grande do Sul and the Midwest) harvesting 10 to 70% under natural attack conditions and the difficulties of disease control.
  • the copper ion-containing silica nanoparticle proposed in the present invention has been effective in controlling this bacterium from 25 ppm copper (11) when metal ions are adsorbed to the surface while the commercial reference concentration is 1050 ppm copper (11). - concentration at which control was observed in the in vitro test.
  • Ralstonia solanacearum causes bacterial wilt in numerous hosts, including tomato and potato crops. Initially the disease affects only the fruit, but with the development of the bacteria, it eventually spreads to the plant, causing its death. Therefore, if not controlled at the beginning of the infestation, it causes great damage to the farmer.
  • the developed silicon nanoparticle containing copper (ll) ions was effective in controlling Ralstonia solanacearum at 50 ppm, while the commercial reference at 1050 ppm copper (ll).
  • the silica-based nanoparticle showed good efficacy compared to the commercial reference. Accordingly, the efficacy of this copper (11) -containing silica-based formulation as a bactericide is proven and offers an option to the market for the control of these diseases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a process for producing silica-based nanoproducts, using sodium silicate as the source of silicon and organic acid as a catalyst for the hydrolysis and condensation reactions. The final products are described as being a silica nanoparticle hydrogel and silica nanoparticles, which can have ions adsorbed to the silica surface thereof. One of the numerous uses for said particles is as an adsorbent material, mainly for metal ions, some of which have fungicidal/bactericidal properties. With the adsorption of specific metal ions to the silica nanoparticles, products that have bactericidal and fungicidal activity can be produced, which can be used in various agricultural sectors.

Description

PROCESSO PARA A OBTENÇÃO DE HIDROGEL DE NANO PARTÍCULAS DE SÍLICA, NANOPARTÍCULAS DE SÍLICA E NANO PARTÍCULAS DE SÍLICA COM IONS ADSORVIDOS; PRODUTOS OBTIDOS E SEUS RESPECTIVOS USOS  PROCEDURE FOR OBTAINING HYDROGEL FROM NANO SILICA PARTICULATES, SILICA NANOParticles AND NANO SILICA PARTICULATES WITH ADSORTED IONS; PRODUCTS OBTAINED AND THEIR USES
Campo da invenção Field of the invention
A presente invenção se refere a um processo de obtenção de nanoprodutos a base de sílica a partir de silicato de sódio. Mais especificamente, a presente invenção trata de um processo de obtenção de hidrogel de nanopartículas de sílica e nanopartículas de sílica que poderão ser utilizadas para adsorção de íons em sua superfície.  The present invention relates to a process for obtaining silica-based nanoproducts from sodium silicate. More specifically, the present invention relates to a process for obtaining hydrogel from silica nanoparticles and silica nanoparticles that may be used for adsorption of ions on their surface.
O hidrogel de nanopartículas de sílica e as nanopartículas de sílica podem ser utilizadas para aplicações no setor agroquímico, home e personal care, na indústria de borracha, como aditivo de formulações e sistemas carreadores. Além disso, podem conter íons adsorvidos em sua superfície, sendo empregadas principalmente como materiais bactericidas e/ou fungicidas, dependendo do íon utilizado.  Silica nanoparticle hydrogel and silica nanoparticle can be used for agrochemical, home and personal care applications in the rubber industry as an additive to formulations and carrier systems. In addition, they may contain ions adsorbed on their surface and are mainly used as bactericidal and / or fungicidal materials, depending on the ion used.
Fundamentos da invenção Fundamentals of the invention
Atualmente mostra-se crescente o interesse pela nanotecnologia e, portanto, pela nanociência. Estes interesses têm possibilitado grandes avanços em diversas áreas da indústria, como microeletrônica e telecomunicações. Nanomateriais também se fazem presentes na óptica não- linear, luminescência, catálise, conversão de energia solar, detecção biológica, lasers, fibras ópticas, sensores, fármacos e cosméticos, assim como em outras áreas (P. 0'Brien, N. L. Pickett. Nanocrystalline Semiconductors: Syntheses, Properties and Perspectives. Chemistry of Materials. 2001 , Vol. 13, pp. 3843- 385). As propriedades físico-químicas dos materiais podem ser relacionadas ao tamanho, forma e composição das partículas. O tamanho e a forma de uma partícula podem ser manipulados ajustando-se condições experimentais, como temperatura, razão entre as concentrações dos reagentes, tempo de reação, pH e constante dielétrica da solução, tipo de solvente, concentração dos reagentes, entre outros (L. M. Liz-Marzán. Nanometals: Formation and Color. Materials Today. 2004, pp. 26-31 ). Óxido de silício, denominado de sílica (Si02) é um dos componentes mais abundantes na crosta terrestre e largamente utilizado na indústria de vidros, cerâmicas, polímeros, tintas, cremes dentais entre outras diversas aplicações. Mais especificamente é utilizado e comercializado como material vitrificado isolante, utilizado como suporte para catalisadores heterogéneos, como adsorvente, como fase estacionária para cromatografias gasosa e líquida, agente reforçador em borrachas, elastômeros, agente texturizante, material de enchimento, abrasivos, material de polimento, sendo que para diversas destas aplicações o óxido de silício deve apresentar-se como pequenos agregados ou pequenas partículas para que seja possível a obtenção de suspensões estáveis. Interest in nanotechnology and therefore nanoscience is growing. These interests have enabled major advances in various areas of industry, such as microelectronics and telecommunications. Nanomaterials are also present in nonlinear optics, luminescence, catalysis, solar energy conversion, biological detection, lasers, optical fibers, sensors, drugs and cosmetics, as well as in other areas (P. 0 ' Brien, NL Pickett. Nanocrystalline Semiconductors: Syntheses, Properties and Perspectives, Chemistry of Materials, 2001, Vol. 13, pp. 3843-385). The physicochemical properties of materials can be related to particle size, shape and composition. The size and shape of a particle can be manipulated by adjusting experimental conditions such as temperature, reagent concentration ratio, reaction time, pH and solution dielectric constant, solvent type, reagent concentration, among others (LM Liz-Marzán, Nanometals: Formation and Color, Materials Today, 2004, pp. 26-31). Silicon oxide, called silica (Si0 2 ) is one of the most abundant components in the earth's crust and widely used in the glass, ceramics, polymers, paints, toothpastes and other industries. More specifically it is used and marketed as insulating glazing material, used as a support for heterogeneous catalysts, as adsorbent, as stationary phase for gas and liquid chromatographs, rubber reinforcing agent, elastomers, texturizing agent, filler, abrasives, polishing material, For many of these applications, silicon oxide must be presented as small aggregates or small particles in order to obtain stable suspensions.
A sílica gel é um polímero inorgânico não cristalino, com alta porosidade, constituído por unidades Si04 tetraédricas distribuídas aleatoriamente e ligadas por pontes de siloxano (Si-O-Si) e grupos silanóis (Si- OH) na superfície da partícula. Silica gel is a non - crystalline inorganic polymer with high porosity, consisting of SI0 4 tetrahedral units randomly distributed and connected by siloxane bonds (Si-O-Si) , and silanol groups (Si - OH) on the particle surface.
A reatividade química é determinada, principalmente, pelos grupos silanóis da superfície da sílica. As hidroxilas presentes na superfície da sílica são passíveis de serem quimicamente modificadas, resultando na funcionalização dos grupos silanóis. Tal reação possibilita a obtenção de uma matriz de sílica mais seletiva e versátil, uma vez que incorpora as características do agente modificador. Portanto, uma matriz de sílica pode ser utilizada para ancorar outras substâncias - como íons metálicos ou moléculas orgânicas - seja por ligação direta nos grupos silanóis, seja pela modificação de tais grupos e interação química com os terminais modificados.  Chemical reactivity is mainly determined by silanol groups on the silica surface. Hydroxyls present on the silica surface can be chemically modified, resulting in the functionalization of the silanol groups. Such a reaction makes it possible to obtain a more selective and versatile silica matrix, as it incorporates the characteristics of the modifying agent. Therefore, a silica matrix can be used to anchor other substances - such as metal ions or organic molecules - either by direct bonding to the silanol groups or by modifying such groups and chemical interaction with the modified terminals.
O método clássico para obtenção de nanopartículas de sílica é o sol-gel, que consiste na obtenção de partículas sólidas através de precursores líquidos, por meio de reações de hidrólise e de condensação. Os principais precursores dessa reação são os alcoóxidos de silício.  The classic method for obtaining silica nanoparticles is sol-gel, which consists of obtaining solid particles through liquid precursors through hydrolysis and condensation reactions. The main precursors of this reaction are silicon alkoxides.
No caso da síntese de sílica a partir de silicatos, o processo é iniciado com a hidrólise desse precursor por catálise ácida, resultando num sistema coloidal de óxido/hidróxido de silício - o sol. Reações posteriores de condensação levam à formação do gel que, quando seco, resulta numa estrutura denominada xerogel (C. J. Brinker, G. W. Sherer. Sol-Gel Science. 1990, Academic Press: New York). In the case of silica synthesis from silicates, the process is started by hydrolysis of this precursor by acid catalysis, resulting in a colloidal silicon oxide / hydroxide system - the sun. Later reactions of Condensation leads to gel formation which, when dried, results in a structure called xerogel (CJ Brinker, GW Sherer. Sol-Gel Science. 1990, Academic Press: New York).
Tal método apresenta inúmeras vantagens, como pureza e homogeneidade, além de ser facilmente transposto para escala industrial. A precipitação de sílica através desse processo é largamente apresentada na literatura, sendo que os principais métodos utilizam a acidificação de uma solução de silicato de sódio ou precipitação através de tetraetilortossilicato - TEOS (R. K. Iler. The Chemistry of Sílica. 1979, John Wiley & Sons: New York).  Such method has numerous advantages, such as purity and homogeneity, and is easily transposed to industrial scale. The precipitation of silica through this process is widely presented in the literature, and the main methods use the acidification of a sodium silicate solution or precipitation through tetraethylorthosilicate - TEOS (RK Iler. The Chemistry of Silica. 1979, John Wiley & Sons : New York).
O processo mais comum para síntese de sílica coloidal é denominado processo de Stõber e faz uso de TEOS como fonte de silício. O método foi desenvolvido por Werner Stõber em 1968 e consiste em hidrolisar/condensar o tetraetilortossilicato em uma solução alcoólica em presença de hidróxido de amónio (catalisador). Consegue-se controlar o tamanho das partículas sintetizadas variando-se as concentrações de TEOS e do álcool, bem como a natureza do álcool. Trata-se de um método bastante divulgado e vários trabalhos ainda são desenvolvidos com base no mesmo (I. A. M. Ibrahim et al., J Am Sei, 2010, 1 1 , 985-989).  The most common process for colloidal silica synthesis is called Stöber process and makes use of TEOS as a source of silicon. The method was developed by Werner Stöber in 1968 and consists of hydrolyzing / condensing tetraethylorthosilicate in an alcoholic solution in the presence of ammonium hydroxide (catalyst). The size of the synthesized particles can be controlled by varying the TEOS and alcohol concentrations as well as the nature of the alcohol. It is a widespread method and several works are still developed on the basis of it (I. A. M. Ibrahim et al., J Am Sei, 2010, 11, 985-989).
Todavia, os parâmetros de síntese de nanopartículas a partir de TEOS, tais como volume, formato de reator, temperatura, tempo de reação, agitação e atmosfera devem ser controlados dentro de uma janela estreita de variações de parâmetros para a obtenção de nanopartículas com tamanho e forma controlados. Dessa forma, a produção em larga escala de nanopartículas de sílica por reações de hidrólise e de condensação do TEOS requer o controle rígido destes parâmetros, dificultando sua obtenção em larga escala. Cabe mencionar também o número pequeno de fornecedores a nível mundial deste precursor, sendo zero ou ínfimo no Brasil, que depende da importação desse insumo. Além das dificuldades encontradas no âmbito de produção, o TEOS é um reagente instável frente à umidade. Quando exposto a água (seja fonte direta ou umidade), pode sofrer hidrólise, liberando etanol e, portanto, requer cuidados com relação ao manuseio e armazenagem. Desta forma, conhecendo-se todas as dificuldades industriais para a obtenção de nanopartículas de sílica a partir de TEOS e sabendo-se da grande disponibilidade do silicato de sódio, o presente invento propõe uma alternativa viável para a obtenção industrial de nanopartículas de sílica, utilizando silicato de sódio. However, nanoparticle synthesis parameters from TEOS such as volume, reactor shape, temperature, reaction time, agitation and atmosphere should be controlled within a narrow window of parameter variations to obtain nanoparticles of size and controlled. Thus, large-scale production of silica nanoparticles by hydrolysis and condensation reactions of TEOS requires strict control of these parameters, making it difficult to obtain them on a large scale. It is also worth mentioning the small number of suppliers of this precursor worldwide, being zero or very small in Brazil, which depends on the importation of this input. In addition to the difficulties encountered in production, TEOS is an unstable reagent against moisture. When exposed to water (either direct source or moisture), it may hydrolyze to release ethanol and therefore requires care with regard to handling and storage. Thus, knowing all the industrial difficulties for obtaining silica nanoparticles from TEOS and knowing the high availability of sodium silicate, the present invention proposes a viable alternative for the industrial production of silica nanoparticles using sodium silicate.
Trata-se de um método "one pot" no qual as nanopartículas obtidas são estáveis mesmo em condições adversas de armazenagem e apresentam estreita distribuição de tamanho, estando o diâmetro médio em torno de 10 nm. O silicato de sódio não é inflamável, é bastante disponível no mercado, apresenta um custo bastante inferior ao TEOS e não exige condições especiais de estoque e de síntese das nanopartículas.  It is a "one pot" method in which the nanoparticles obtained are stable even under adverse storage conditions and have a narrow size distribution, with the average diameter being around 10 nm. Sodium silicate is non-flammable, is widely available on the market, is much lower in cost than TEOS and does not require special stock and synthesis conditions for nanoparticles.
Encontram-se na literatura diversos métodos de síntese de sílica utilizando silicato de sódio. A patente US2483868 de 04/10/1949 apresenta um método para produzir sílica gel que consiste em nebulizar uma solução de silicato de sódio em uma solução de ácido sulfúrico, agitando-a por um determinado tempo. Trata-se de um processo simples de ser aplicado em escala industrial para a produção de partículas micrométricas de sílica, porém não permite a obtenção de nanopartículas e não apresenta dados sobre controle da forma e do tamanhos das partículas de sílica. A patente US2935482 de 03/05/1960, que também produz sílica a partir de silicato de sódio e gás cloro, fazendo uso de um aparato específico. O uso de aparatos específicos foi empregado para interromper a reação de condensação do processo sol-gel, impedindo a formação do gel. Além de desvantajosamente ter que empregar um aparato para a produção, o documento também não descreve a formação e o controle de tamanho e da forma das nanopartícuals de sílica.  Several methods of silica synthesis using sodium silicate are found in the literature. US2483868 of 10/04/1949 discloses a method for producing silica gel which consists of nebulizing a sodium silicate solution in a sulfuric acid solution by stirring it for a certain time. It is a simple process to be applied on an industrial scale for the production of silica micrometer particles, but it does not allow the obtaining of nanoparticles and does not present data on the control of the shape and size of the silica particles. US2935482 of 05/03/1960, which also produces silica from sodium silicate and chlorine gas, making use of a specific apparatus. The use of specific apparatus was employed to interrupt the condensation reaction of the sol-gel process, preventing gel formation. Besides disadvantageously having to employ an apparatus for production, the document also does not describe the formation and control of size and shape of silica nanoparticles.
A solução de silicato de sódio é alcalina (pH 12, aproximadamente) e, para que a reação de hidrólise ocorra, é necessário um catalisador, contudo a adição de ácido neutraliza o meio, o que induz a reação de condensação. Acidificando-se rapidamente para pH's ácidos, consegue-se contornar essa condição. Todavia, o pH baixo inviabiliza o uso da sílica em algumas aplicações e, além disso, pHs abaixo de 5 não levam a formação de nanopartículas isoladas. The sodium silicate solution is alkaline (approximately pH 12) and for the hydrolysis reaction to take place a catalyst is required, but the addition of acid neutralizes the medium which induces the condensation reaction. It quickly acidified to pH's acid, is achieved circumvent this condition. However, the low pH makes it impossible to use silica in some applications and, moreover, pHs below 5 do not lead to the formation of isolated nanoparticles.
Nesse contexto, vários trabalhos foram desenvolvidos para estabilizar o produto sintetizado em pH próximo da neutralidade. Os documentos EP0537375 de 15/10/1991 , EP0557740 de 01/02/1993 e EP0996 588 de 30/06/1998 descrevem métodos para produzir suspensões coloidais de sílica com até 50% (m/m) a partir de silicato de sódio e ácidos inorgânicos fortes (como ácido sulfúrico, clorídrico, nítrico), todavia o processo apresentado não é simples. A principal etapa é passar a solução de silicato de sódio por colunas de troca iônica (catiônicas e aniônicas), alterando assim a dupla camada elétrica das partículas de sílica formadas, o que permite concentrar a solução sem gelifícá-la. Caso não seja promovida essa troca iônica, a adição de ácidos desencadeia o processo de gelificação da solução, conduzindo a formação do xerogel, como publicado por Witoon e colaboradores (T. Witoon J et al. Ceram Inter, 2011 , 37, 2297-2303). Nesse caso, os autores iniciaram o processo de precipitação pela adição de ácido acético, o que induziu a formação da sílica coloidal e, então, adicionaram ácido clorídrico até pH 2, o que desencadeou as reações de condensação entre as partículas de sílica, produzindo o xerogel. Diferentemente da presente invenção, o produto final obtido apresenta partículas de sílica altamente agregadas o que dificulta sua redispersão e, consequentemente, dificulta algumas de suas aplicações, especialmente no campo da agricultura.  In this context, several works were developed to stabilize the synthesized product at pH close to neutrality. EP0537375 of 10/15/1991, EP0557740 of 02/01/1993 and EP0996 588 of 06/30/1998 describe methods for producing colloidal silica suspensions of up to 50% (w / w) from sodium silicate and strong inorganic acids (such as sulfuric acid, hydrochloric acid, nitric), however the process presented is not simple. The main step is to pass the sodium silicate solution through ion exchange columns (cationic and anionic), thus altering the electric double layer of the formed silica particles, allowing the solution to be concentrated without gelling it. If this ion exchange is not promoted, the addition of acids triggers the gelation process of the solution, leading to the formation of xerogel, as published by Witoon et al. (T. Witoon J et al. Ceram Inter, 2011, 37, 2297-2303 ). In this case, the authors started the precipitation process by the addition of acetic acid, which induced the formation of colloidal silica and then added hydrochloric acid to pH 2, which triggered the condensation reactions between the silica particles, producing the xerogel. Unlike the present invention, the final product obtained has highly aggregated silica particles which hinders their redispersion and, consequently, hinders some of their applications, especially in the field of agriculture.
O presente invento apresenta nanopartículas de sílica dispersas e dispersáveis em água, o que já garante vantagens únicas quanto sua utilização em diversas áreas, com destaque para o campo agrícola, devido à facilidade de preparo da calda e aplicação da mesma. As patentes EP0537375 de 15/10/1991 , EP0557740 de 01/02/1993 e EP0996 588 de 30/06/1998 utilizam diversas operações unitárias, aumentando a morosidade e diminuindo a produtividade do processo, bem como também demanda a instalação de equipamentos específicos na planta fabril, tais como as colunas de troca iônica. O presente invento faz a utilização de ácidos fracos e elimina algumas operações unitárias tornando o processo de fabricação mais simples e ainda prepara hidrogel de nanopartículas de sílica altamente estáveis em solução. The present invention has dispersed and water dispersible silica nanoparticles, which already guarantees unique advantages regarding its use in various areas, especially the agricultural field, due to the ease of preparation and application of the syrup. EP0537375 of 10/15/1991, EP0557740 of 02/01/1993 and EP0996 588 of 06/30/1998 use various unit operations, increasing the length and decreasing process productivity, as well as requiring the installation of specific equipment. in the manufacturing plant, such as ion exchange columns. The present invention makes use of weak acids and eliminates some unit operations making the manufacturing process simpler and still preparing highly stable solution-stable silica nanoparticles hydrogel.
Portanto, diante das tecnologias descritas o grande diferencial da presente invenção consiste em ser capaz de formar e estabilizar as nanopartículas de sílica a partir de silicato de sódio, fazendo uso de um ácido fraco como catalisador na ausência de outros modificadores de superfície. O controle do processo ocorre pela razão silicato de sódio/ácido, força do ácido e tempo e aquecimento do sistema, e portanto poder ser realizado reduzindo o número de operações unitárias.  Therefore, in view of the described technologies, the great advantage of the present invention is that it is capable of forming and stabilizing silica nanoparticles from sodium silicate, making use of a weak acid as catalyst in the absence of other surface modifiers. The process control occurs by the sodium silicate / acid ratio, acid strength and time and system heating, and therefore can be accomplished by reducing the number of unit operations.
As aplicações para sílica são inúmeras, destacando-se como material adsorvente. Os grupos silanóis, presentes na superfície da partícula, são capazes de interagir com diversos compostos, como íons metálicos, gases, moléculas orgânicas e etc. Godói e colaboradores (R. H. M. Godói, L. Fernandes, M. Jafelicci Jr., R. C. Marques, L. C. Varanda, M. R. Davolos. Investigation of the systems sílica and sílica containing chromium in alcohol médium. Journal of Non-Crystalline Solids. 1999, Vol. 47, pp. 141 -145) descrevem um método para síntese de partículas de sílica contendo crómio a partir de silicato de sódio em meio alcoólico. Trata-se de um processo adaptado a partir do método de Stõber, no qual se insere um sal do metal de interesse durante a precipitação da sílica, de modo que tal íon fique aprisionado na estrutura formada. A limitação desse método é que o produto final apresenta-se na forma de gel.  Silica applications are numerous, standing out as adsorbent material. Silanol groups present on the surface of the particle are able to interact with various compounds such as metal ions, gases, organic molecules and so on. Godói and collaborators (RHM Godói, L. Fernandes, M. Jafelicci Jr., RC Marques, LC Veranda, MR Davolos. Investigation of the silica and silica systems containing chromium in alcohol medium. Journal of Non-Crystalline Solids. 1999, Vol. 47, pp. 141-145) describe a method for synthesizing chromium-containing silica particles from sodium silicate in alcoholic medium. This is a process adapted from Stober's method in which a salt of the metal of interest is inserted during the precipitation of the silica so that such an ion is trapped in the formed structure. The limitation of this method is that the final product is in gel form.
É sabido que alguns metais apresentam atividades bactericidas/fungicidas (como a prata e o cobre), portanto, quando incorporados à matriz de sílica, obtém-se um composto com características tais que pode ser empregados como aditivos na indústria de home e personal care, para controle de doenças na agricultura, entre outros.  Some metals are known to have bactericidal / fungicidal activities (such as silver and copper), so when incorporated into the silica matrix, a compound with characteristics is obtained that can be employed as additives in the home and personal care industry, for disease control in agriculture, among others.
O documento WO2007/122651 de 24/04/2006 descreve um processo para produção de partículas com atividade contra vírus e bactérias. Trata-se de partículas de um óxido metálico (como sílica, óxido de zinco, dióxido de titânio, dentre outros) cuja superfície foi quimicamente modificada para se ligar a íons que apresentem a atividade desejada. A vantagem associada a esse método é que pode ser empregado a diversos óxidos, todavia o problema associado é que a funcionalização da sílica requer o uso de solventes orgânicos, tornando o processo menos sustentável - o que não está de acordo com os princípios da "química verde" - e apresenta maior risco aos manipuladores, comprometendo sua saúde. Além disso, a funcionalização da superfície requer novas operações unitárias que são eliminadas no presente invento, onde a adsorção dos íons ocorre apenas por uma interação química fraca. Essa interação química fraca entre os íons e a superfície da sílica torna esses íons mais bio-disponíveis em relação a compostos de coordenação e organometálicos e, portanto a ação bactericida e/ou fungicida é conseguida utilizando-se menor concentração de íons metálicos. WO2007 / 122651 of 24/04/2006 describes a process for producing particles with activity against viruses and bacteria. These are particles of a metal oxide (such as silica, zinc oxide, titanium dioxide, among others) whose surface has been chemically modified. to bind to ions that exhibit the desired activity. The advantage associated with this method is that it can be used for several oxides, however the associated problem is that the functionalization of silica requires the use of organic solvents, making the process less sustainable - which is not in accordance with the principles of "chemistry". green "- and presents greater risk to handlers, compromising their health. In addition, surface functionalization requires new unit operations which are eliminated in the present invention, where the adsorption of ions occurs only by weak chemical interaction. This weak chemical interaction between the ions and the silica surface makes these ions more bioavailable compared to coordinating and organometallic compounds and thus the bactericidal and / or fungicidal action is achieved by using a lower concentration of metal ions.
No documento WO2008/017176 de 23/07/2007 o inventor propõe um método utilizando TEOS para produzir nanopartículas de sílica contendo íons de cobre e prata, bem como outros compostos que apresentem atividade bactericida/fungicida. O processo envolve preparar uma solução de um precursor de silício em solvente orgânico, junto com o componente que apresente a atividade desejada, e submeter tal solução à pirólise. O produto final obtido são nanopartículas de sílica em fase sólida com um diâmetro médio entre 30 e 100 nm. O processo envolve a queima de solventes orgânicos por spray pirólise, processo que demanda altas temperaturas, liberando gases tóxicos e fazendo o uso de operações unitárias que no presente invento não são necessárias. No presente invento o solvente utilizado é água e que pode ser recuperada e reutilizada no processo. Os parâmetros de síntese de nanopartículas a partir de TEOS, tais como volume, formato de reator, temperatura, tempo de reação, agitação e atmosfera devem ser controlados dentro de uma janela estreita de variações para a obtenção de nanopartículas com tamanho e forma controlados. Dessa forma, a produção em larga escala de nanopartículas de sílica por reações de hidrólise e de condensação do TEOS requer o controle rígido de parâmetros de produção, dificultando sua obtenção em larga escala. Cabe mencionar também o número pequeno de fornecedores a nível mundial deste precursor, sendo zero ou ínfimo no Brasil que depende da importação desse insumo. Além das dificuldades encontradas no âmbito de produção, o TEOS é um reagente instável frente à umidade. Quando exposto a água (seja fonte direta ou umidade), pode sofrer hidrólise, liberando etanol e, portanto, requer alguns cuidados com relação ao manuseio e armazenagem. In WO2008 / 017176 of 7/23/2007 the inventor proposes a method using TEOS to produce silica nanoparticles containing copper and silver ions as well as other compounds which exhibit bactericidal / fungicidal activity. The process involves preparing a solution of a silicon precursor in organic solvent, together with the component having the desired activity, and subjecting such solution to pyrolysis. The final product obtained is solid phase silica nanoparticles with an average diameter between 30 and 100 nm. The process involves the burning of organic solvents by pyrolysis spray, a process that demands high temperatures, releasing toxic gases and making use of unitary operations that are not necessary in the present invention. In the present invention the solvent used is water which can be recovered and reused in the process. Nanoparticle synthesis parameters from TEOS, such as volume, reactor shape, temperature, reaction time, agitation and atmosphere should be controlled within a narrow range window to obtain controlled size and shape nanoparticles. Thus, large-scale production of silica nanoparticles by hydrolysis and condensation reactions of TEOS requires strict control of production parameters, making it difficult to obtain them on a large scale. It is also worth mentioning the small number of worldwide suppliers of this precursor, being zero or very small in Brazil that depends on the importation of this input. In addition to the difficulties encountered in production, TEOS is an unstable reagent against moisture. When exposed to water (either direct source or moisture), it may hydrolyze to release ethanol and therefore requires some care with regard to handling and storage.
E o documento WO2010/068275 de 10/12/2009 trata de uma formulação com ação bactericida e fungicida a base de cobre, usando uma matriz de sílica. Todavia, o autor sintetizou a matriz a partir de TEOS - um método de Stõber adaptado - e avalia as diferenças entre a eficácia das nanopartículas denominadas como "nanogel", que consiste nas nanopartículas de sílica polimerizadas. Todavia dificilmente será empregado na indústria - principalmente na indústria agroquímica, que é uma indústria de commodities - devido as limitações já abordadas anteriormente com relação ao tetraetilortossilicato.  And WO2010 / 068275 of 10/12/2009 deals with a bactericidal and fungicidal copper-based formulation using a silica matrix. However, the author synthesized the matrix from TEOS - an adapted Stober's method - and evaluates the differences between the effectiveness of nanoparticles called "nanogel", which consists of polymerized silica nanoparticles. However, it is unlikely to be used in industry - especially in the agrochemical industry, which is a commodity industry - due to the limitations already discussed previously regarding tetraethylorthosilicate.
Diante do exposto, a presente invenção apresenta vantagens sob vários aspectos. Primeiro porque propõe um novo processo para síntese de nanopartículas de sílica a partir de silicato de sódio, empregando um catalisador ácido e limitando a cinética das reações de condensação em pH10, que levam à gelificação eficiente da solução. Além disso, tal processo pode ser facilmente transposto para escala industrial e os reagentes utilizados não são impeditivos para a produção em larga escala. O presente invento emprega vantajosamente um ácido orgânico fraco, conseguindo assim um melhor controle do ajuste de pH, que é fundamental para precipitar a sílica coloidal e mantê-la na forma de partículas individuais, controlando o tamanho das nanopartículas. Outro ponto crucial para o processo é o aquecimento, aliado ao tempo ao qual se submete a solução de silicato de sódio, que possibilita a formação de partículas individuais e promove a sua estabilização durante um longo período de armazenamento.  In view of the foregoing, the present invention has advantages in several respects. Firstly, it proposes a new process for the synthesis of silica nanoparticles from sodium silicate, employing an acid catalyst and limiting the kinetics of condensation reactions at pH10, which lead to efficient gelation of the solution. In addition, such a process can easily be transposed to industrial scale and the reagents used are not impediments to large scale production. The present invention advantageously employs a weak organic acid, thereby achieving better control of pH adjustment, which is critical for precipitating colloidal silica and keeping it in the form of individual particles by controlling the size of nanoparticles. Another crucial point for the process is heating, combined with the time the sodium silicate solution undergoes, which enables the formation of individual particles and promotes their stabilization over a long period of storage.
Desse modo, com o processo aqui descrito é possível sintetizar nanopartículas de sílica estáveis em solução aquosa a partir de uma fonte de silício diferente do tetraetilortossilicato (TEOS), o silicato de sódio, que não é inflamável, é bastante disponível no mercado, apresenta um custo bastante inferior ao TEOS e não exige condições especiais de estoque e de síntese das nanopartículas, sem fazer uso de aparatos específicos, como o mencinado na patente US2935482. Outra vantagem do processo apresentado é com relação aos reagentes utilizados, que não necessitam de nenhum processo de purificação extra e não apresentam grande periculosidade ao homem e ao meio ambiente, bem como não requerem condições especiais de manuseio, complicados protocolos de síntese e armazenagem. Thus, with the process described herein it is possible to synthesize stable silica nanoparticles in aqueous solution from a source of silicon other than tetraethylorthosilicate (TEOS), non-flammable sodium silicate is widely available at a lower cost than TEOS and does not require special stock and synthesis conditions for nanoparticles without the use of specific apparatus as mentioned in US2935482. Another advantage of the presented process is in relation to the reagents used, which do not require any extra purification process and do not present great danger to man and the environment, as well as do not require special handling conditions, complicated synthesis and storage protocols.
Com destaque para os produtos obtidos na presente invenção, tais nanopartículas não possuem modificadores de superfície, como por exemplo surfactantes, e ainda assim são re-dispersáveis em água, ou seja, não é necessário o emprego de adjuvantes para manter a dispersão das partículas. As nanopartículas são estáveis mesmo em condições adversas de armazenagem e apresentam estreita distribuição de tamanho, estando o diâmetro médio em torno de 10 nm.  Highlighting the products obtained in the present invention, such nanoparticles do not have surface modifiers, such as surfactants, and yet are re-dispersible in water, that is, the use of adjuvants is not necessary to maintain the dispersion of the particles. Nanoparticles are stable even under adverse storage conditions and have a narrow size distribution, with an average diameter around 10 nm.
Dentre as diversas aplicações que essas nanopartículas apresentam, uma delas está relacionada com a adsorção de íons metálicos, como cobre(ll), que garante a este óxido ação fungicida/bactericida. A indústria de agroquímicos, por exemplo, vem continuamente buscando alternativas para dar sobrevida aos ingredientes ativos consolidados e tem como objetivo diminuir a dosagem utilizada, mantendo-se a eficácia. Portanto, a presente invenção, oferece uma alternativa a essa necessidade, reduzindo a quantidade de cobre(ll) utilizado para a aplicação no setor agrícola, destacando uma nova rota importante para a obtenção de produtos diferenciados e com menor impacto ao meio ambiente.  Among the various applications that these nanoparticles present, one of them is related to the adsorption of metal ions, such as copper (ll), which guarantees this oxide fungicidal / bactericidal action. The agrochemical industry, for example, has been continually seeking alternatives to survive consolidated active ingredients and aims to reduce the dosage used while maintaining effectiveness. Therefore, the present invention offers an alternative to this need by reducing the amount of copper (11) used for application in the agricultural sector, highlighting an important new route for obtaining differentiated products with less impact on the environment.
Breve descrição da invenção Brief Description of the Invention
A presente invenção refere-se a um processo de obtenção de nanoprodutos a base de sílica. São objetos adicionais os produtos obtidos pelo processo descrito, compreendendo hidrogel de nanopartículas de sílica, nanopartículas de sílica e nanopartículas de sílica com íons de interesse adsorvidos à sua superfície. Além disso, a presente invenção refere-se também ao uso dos referidos nanoprodutos. The present invention relates to a process for obtaining silica based nanoproducts. Additional objects are the products obtained by the described process, comprising silica nanoparticles hydrogel, silica nanoparticles and silicon nanoparticles of interest. adsorbed to its surface. Furthermore, the present invention also relates to the use of said nanoproducts.
A invenção descreve um processo compreendendo as etapas de preparo das soluções de silicato de sódio e de um ácido orgânico fraco, adição de uma solução à outra, refluxo, filtração, concentração, secagem, adsorção e secagem.  The invention describes a process comprising the steps of preparing sodium silicate solutions and a weak organic acid, adding one solution to another, refluxing, filtration, concentration, drying, adsorption and drying.
Breve descrição das figuras  Brief Description of the Figures
A estrutura e operação da presente invenção, juntamente com vantagens adicionais da mesma podem ser mais bem entendidas mediante referência às figuras em anexo e à seguinte descrição:  The structure and operation of the present invention, together with further advantages thereof may be better understood by reference to the accompanying figures and the following description:
- A Figura 1 mostra a distribuição de tamanho das nanopartículas de sílica.  - Figure 1 shows the size distribution of silica nanoparticles.
- A Figura 2 apresenta um difratograma de raios X das nanopartículas de sílica em fase sólida.  Figure 2 shows an X-ray diffractogram of solid phase silica nanoparticles.
- A Figura 3 mostra a distribuição de tamanho das nanopartículas de sílica após processamento em spray dryer e redispersão das partículas em água.  - Figure 3 shows the size distribution of silica nanoparticles after spray dryer processing and redispersion of the particles in water.
- A Figura 4 apresenta a microscopia eletrônica de varredura do hidrogel de nanopartículas de sílica.  - Figure 4 shows the scanning electron microscopy of the silica nanoparticle hydrogel.
- A Figura 5 apresenta a microscopia eletrônica de varredura das nanopartículas de sílica redispersadas em água.  - Figure 5 shows the scanning electron microscopy of the redispersed silica nanoparticles in water.
Descrição detalhada da invenção  Detailed Description of the Invention
A presente invenção descreve um processo de obtenção de nanoprodutos de sílica, empregando silicato de sódio e um catalisador de ácido orgânico fraco, que pode ser aplicado na forma de um hidrogel ou de um pó, como nanopartículas de sílica, e também com íons adsorvidos à superfície das nanopartículas  The present invention describes a process for obtaining silica nanoproducts employing sodium silicate and a weak organic acid catalyst which can be applied as a hydrogel or a powder, such as silica nanoparticles, and also with ions adsorbed to nanoparticle surface
Os nanoprodutos de sílica obtidos pelo processo descrito neste invento compreendem hidrogel de nanopartículas de sílica, nanopartículas de sílica e nanopartículas de sílica com íons adsorvidos. É objeto da presente invenção um processo para obtenção dos produtos descritos acima que compreende as seguintes etapas: Silica nanoproducts obtained by the process described in this invention comprise silica nanoparticle hydrogel, silica nanoparticle and silica nanoparticle with adsorbed ions. An object of the present invention is a process for obtaining the products described above comprising the following steps:
a) Preparo de soluções  a) Preparation of solutions
a1 ) Solução de silicato  a1) Silicate solution
a2) Solução de um ácido orgânico fraco b) Adição da solução de (a2) em (a1 )  a2) Solution of a weak organic acid b) Addition of the solution of (a2) to (a1)
c) Refluxo  c) Reflux
d) Filtração  d) Filtration
e) Concentração  e) Concentration
f) Secagem  f) Drying
g) Adsorção  g) Adsorption
h) Secagem  h) Drying
A primeira etapa (a) de preparo de soluções é iniciada pela etapa (a1 ), na qual uma solução de silicato de sódio alcalino é preparada em água destilada entre 0,1 e 10%, preferencialmente a 1% (m/v). Em seguida, na etapa (a2), uma solução de ácido orgânico fraco, selecionado dentre ácido pícrico, ácido esquárico, ácido oxálico, ácido cítrico, ácido fórmico, ácido ascórbico, ácido benzóico, ácido acético, p-nitrofenol, ácido peracético, ácido propiônico, ácido butírico, ácido valírico, ácido capróico, ácido caprílico, ácido cáprico, ácido succínico, ácido glutárico, ácido adípico, ácido D-tartárico, ácido L- tartárico, ácido lático, ácido úrico, ácido maleico, ácido fumárico, ácido isovalírico, ácido furóico, ácido sórbico, ácido salicílico, ácido trans-cinâmico, ácido acetilsalicílico, ácido mirístico) sendo preferencialmente o ácido cítrico, na concentração de 0,5 a 5 mol L"1, preferencialmente a 1 mol L"1, também é preparada. The first solution preparation step (a) is initiated by step (a1), in which an alkaline sodium silicate solution is prepared in distilled water of between 0.1 and 10%, preferably 1% (w / v). Then, in step (a2), a weak organic acid solution selected from picric acid, squaric acid, oxalic acid, citric acid, formic acid, ascorbic acid, benzoic acid, acetic acid, p-nitrophenol, peracetic acid, propionic, butyric acid, valyric acid, caproic acid, caprylic acid, capric acid, succinic acid, glutaric acid, adipic acid, D-tartaric acid, L-tartaric acid, lactic acid, uric acid, maleic acid, fumaric acid, isovaliric acid , furic acid, sorbic acid, salicylic acid, trans-cinnamic acid, acetylsalicylic acid, myristic acid) being preferably citric acid at a concentration of 0.5 to 5 mol L "1 , preferably 1 mol L " 1 , is also ready.
Na etapa seguinte (b) a solução de ácido orgânico fraco obtida na etapa (a2) é adicionada a solução preparada na etapa (a1), de modo que o pH decresça para uma faixa de 12 a 9,0, preferencialmente 10,5. A definição de um pH adequado, que no presente invento é facilmente alcançado, principalmente visando a aplicação em escala industrial, pelo emprego de um ácido orgânico fraco, é essencial para promover as reações de hidrólise do silicato, limitando as reações de condensação, que levam a uma eficiente formação do hidrogel nas etapas subsequentes. In the next step (b) the weak organic acid solution obtained in step (a2) is added to the solution prepared in step (a1), so that the pH decreases to a range of 12 to 9.0, preferably 10.5. The definition of a suitable pH, which in the present invention is easily achieved, especially for industrial scale application, by the use of a weak organic acid, is essential to promote the hydrolysis reactions of the product. silicate, limiting condensation reactions, which lead to efficient hydrogel formation in subsequent steps.
A solução final é levada a refluxo (c), momento no qual ocorre a formação de nanopartículas. Nesta etapa aquece-se a solução entre 50 e 100°C, preferencialmente a 90 °C por um período entre 4 e 48 horas, preferencialmente 24 horas. O refluxo é fundamental para obtenção de nanopartículas estáveis e individuais.  The final solution is refluxed (c), at which time nanoparticles form. At this stage the solution is heated to 50 to 100 ° C, preferably to 90 ° C for a period of 4 to 48 hours, preferably 24 hours. Reflux is critical for obtaining stable and individual nanoparticles.
Em seguida resfria-se a suspensão a temperatura ambiente até resfriamento completo. O material obtido na etapa (c) é submetido à etapa de filtração (d), em um sistema de filtração simples, obtendo-se assim o chamado hidrogel de nanopartículas de sílica. Este hidrogel obtido na etapa (d) é incolor, com nanopartículas de sílica de diâmetro médio variando entre 1 e 100 nm, preferencialmente 10 nm, potencial zeta que varia entre -100 a +100 mV, preferencialmente -35 mV.  The suspension is then cooled to room temperature until complete cooling. The material obtained in step (c) is subjected to filtration step (d) in a simple filtration system, thus obtaining the so-called silica nanoparticle hydrogel. This hydrogel obtained in step (d) is colorless, with medium diameter silica nanoparticles ranging from 1 to 100 nm, preferably 10 nm, zeta potential ranging from -100 to +100 mV, preferably -35 mV.
O hidrogel obtido na etapa (d) pode ser concentrado, ou não, por remoção de água do sistema (etapa e), preferencialmente por destilação. O composto obtido - concentrado ou diluído - pode ser aplicado como materiais adsorventes para íons metálicos, fase estacionária para cromatografia em fase gasosa e líquida, agente reforçador de borracha, elastômeros, agente texturizante, material de enchimento, abrasivos, material de polimento, sistemas carreadores e inertes/aditivos para indústria agroquímica, home e personal care, cerâmica, polímeros e tintas.  The hydrogel obtained in step (d) may or may not be concentrated by removing water from the system (step e), preferably by distillation. The obtained compound - concentrated or diluted - can be applied as metal ion adsorbent materials, stationary phase for gas and liquid phase chromatography, rubber reinforcing agent, elastomers, texturizing agent, filler, abrasives, polishing material, carrier systems and inert / additives for the agrochemical industry, home and personal care, ceramics, polymers and paints.
A próxima etapa do processo consiste na secagem (f) do hidrogel obtido na etapa (d) ou (e). Nesta etapa o material é processado em spray dryer a temperatura de 100 a 200 °C, preferencialmente a 150°C, com um fluxo de 1 a 20 mL/min, preferencialmente a 5 mL/min, e com bico de 0,7 a 2,0 mm, preferencialmente de 1 ,5 mm, para a remoção de toda água residual, obtendo- se as nanopartículas de sílica em fase sólida, um pó redispersável em água.  The next process step consists of drying (f) the hydrogel obtained in step (d) or (e). At this stage the material is spray dried at a temperature of 100 to 200 ° C, preferably 150 ° C, with a flow rate of 1 to 20 mL / min, preferably 5 mL / min, and with a nozzle of 0.7 to 2.0 mm, preferably 1.5 mm, for removal of all residual water to give the solid phase silica nanoparticles, a water redispersible powder.
As nanopartículas de sílica obtidas na etapa (f) apresentam diâmetro médio variando entre 5 e 200 nm, preferencialmente 20 nm, potencial zeta que varia entre -150 e +150 mV, preferencialmente -80 mV. E podem ser aplicadas como suporte para catalisadores, materiais adsorventes, fase estacionária para cromatografia em fase gasosa e líquida, agente reforçador de borracha, elastômeros, agente texturizante, material de enchimento, abrasivos, material de polimento, sistemas carreadores e inertes/aditivos para indústria agroquímica, home e personal care, cerâmica, polímeros e tintas. The silica nanoparticles obtained in step (f) have a mean diameter ranging from 5 to 200 nm, preferably 20 nm, zeta potential ranging from -150 to +150 mV, preferably -80 mV. And they can be applied as support for catalysts, adsorbent materials, stationary phase for gas and liquid phase chromatography, rubber reinforcing agent, elastomers, texturizing agent, filler, abrasives, polishing material, filler and additive systems for the agrochemical industry, home and personal care, ceramics, polymers and paints.
As nanopartículas de sílica obtidas na etapa (f) e o hidrogel obtido nas etapas (d) e (e) podem ser utilizadas para adsorção (g) de íons em sua superfície. Para isso é preparado uma suspensão das nanopartículas em pH variando entre 1 e 1 1 , preferencialmente 8, utilizando uma solução de ácido orgânico fraco selecionado dentre ácido pícrico, ácido esquárico, ácido oxálico, ácido cítrico, ácido fórmico, ácido ascórbico, ácido benzóico, ácido acético, p- nitrofenol, ácido peracético, ácido propiônico, ácido butírico, ácido valírico, ácido capróico, ácido caprílico, ácido cáprico, ácido succínico, ácido glutárico, ácido adípico, ácido D-tartárico, ácido L-tartárico, ácido lático, ácido úrico, ácido maleico, ácido fumárico, ácido isovalírico, ácido furóico, ácido sórbico, ácido salicílico, ácido trans-cinâmico, ácido acetilsalicílico, ácido mirístico), sendo preferencialmente ácido cítrico, a uma concentração variando entre 0,5 a 5 mol L"\ preferencialmente a 1 mol L"1. Após o ajuste, é adicionado um sal solúvel do íon de interesse, que podem ser cobre(l), cobre(ll), mercúrio(ll), prata(l), zinco(ll), ferro(ll), ferro(lll), chumbo(ll), chumbo(lll) e bismuto(ll), sendo preferencialmente o cobre(ll), como cloreto, nitrato ou sulfato, e a solução é agitada brevemente. Silica nanoparticles obtained in step (f) and hydrogel obtained in steps (d) and (e) can be used for adsorption (g) of ions on their surface. For this purpose a suspension of the nanoparticles at a pH ranging from 1 to 11, preferably 8, is prepared using a weak organic acid solution selected from picric acid, squaric acid, oxalic acid, citric acid, formic acid, ascorbic acid, benzoic acid, acetic acid, p-nitrophenol, peracetic acid, propionic acid, butyric acid, valyric acid, caproic acid, caprylic acid, capric acid, succinic acid, adipic acid, D-tartaric acid, L-tartaric acid, lactic acid, uric acid, maleic acid, fumaric acid, isovalyric acid, furic acid, sorbic acid, salicylic acid, trans-cinnamic acid, acetylsalicylic acid, myristic acid), being preferably citric acid at a concentration ranging from 0.5 to 5 mol L " \ preferably at 1 mol L " 1 . After adjustment, a soluble salt of the ion of interest may be added, which may be copper (1), copper (11), mercury (11), silver (1), zinc (11), iron (11), iron (11). ), lead (11), lead (11) and bismuth (11), with copper (11) being preferably chloride, nitrate or sulfate, and the solution is stirred briefly.
Após a adição do sal de interesse, a solução obtida na etapa (g), que pode ser utilizada como um hidrogel com propriedades bactericidas e fungicidas, é submetida a uma etapa de secagem (h), processada em spray dryer a temperatura de 100 a 200 °C, preferencialmente a 150°C, com um fluxo de 1 a 20 mL/min, preferencialmente a 5 mUmin, e com bico de 0,7 a 2,0 mm, preferencialmente de 1 ,5 mm, para a remoção de toda água residual.  After the addition of the salt of interest, the solution obtained in step (g), which can be used as a hydrogel with bactericidal and fungicidal properties, is submitted to a drying step (h), processed in a spray dryer at 100 to 200 ° C, preferably 150 ° C, with a flow rate of 1 to 20 mL / min, preferably 5 mUmin, and nozzle of 0.7 to 2.0 mm, preferably 1.5 mm, for removal of all wastewater.
As nanopartículas de sílica obtidas nas etapas (g) e (h) podem apresentar ação bactericida e fungicida ou atuar como catalisador, dependendo dos íons metálicos adsorvidos à sua superfície, podendo ser aplicadas em diversos ramos da indústria, como nos setores: agrícola, eletrônico, home e personal care, farmacêutico, polímeros, borrachas, dentre outras. Silica nanoparticles obtained in steps (g) and (h) may have bactericidal and fungicidal action or act as a catalyst, depending on the metal ions adsorbed to their surface, and may be applied in various branches of industry, such as the sectors: agricultural, electronic, home and personal care, pharmaceutical, polymers, rubbers, among others.
As reações químicas que representam a formação das nanopartículas de sílica a partir do processo descrito na presente invenção são as seguintes:  The chemical reactions that represent the formation of silica nanoparticles from the process described in the present invention are as follows:
N zSi03 + H20 + « 5f(0tf)4 + 2JVa÷ (1)
Figure imgf000015_0001
N SI0 z 3 + H 2 0 + "5f (0TF) 2JVa ÷ 4 + (1)
Figure imgf000015_0001
≡ Si - OH + ≡ St - →≡ Si - O - S7≡ + + (3) ≡ Si - OH + ≡ St - → ≡ Si - O - S7≡ + + ( 3 )
A primeira etapa consiste na hidrólise do silicato de sódio, catalisada por prótons, gerando o ácido silícico. A protonação de tal ácido leva a condensação de tais moléculas, formando o ácido polissilícico. Se tal reação não for controlada, as cadeias continuam a sofrer condensação e reticulação, levando a formação do hidrogel. The first step is the proton catalyzed hydrolysis of sodium silicate to generate silicic acid. Protonation of such acid leads to condensation of such molecules, forming polysilicic acid. If such a reaction is not controlled, the chains continue to undergo condensation and crosslinking, leading to hydrogel formation.
As nanopartículas de sílica obtidas foram caracterizadas por diversas técnicas, como espalhamento dinâmico de luz (DLS), difratometria de raios X (DRX) e a morfologia das partículas foram avaliadas por microscopia eletrônica de varredura.  The obtained silica nanoparticles were characterized by several techniques, such as dynamic light scattering (DLS), X-ray diffraction (XRD) and particle morphology were evaluated by scanning electron microscopy.
Exemplo 1 : Processo de preparação do hidrogel de nanopartículas de sílica  Example 1: Silica Nanoparticle Hydrogel Preparation Process
Preparou-se uma solução de silicato de sódio alcalino a 1 % (m/v) e adiciona-se ácido cítrico 1 mol L"\ de modo que o pH atinja um valor próximo a 10,5. Nessas condições, submete-se tal solução a refluxo por um período de 4 a 24 horas. Passado esse período, filtra-se a suspensão final em um papel filtro qualitativo. Por fim, obtém-se o hidrogel de nanopartículas de sílica. A 1% (w / v) alkaline sodium silicate solution is prepared and 1 mol L " citric acid is added such that the pH reaches a value close to 10.5. refluxing solution for 4 to 24 hours After this time the final suspension is filtered on a qualitative filter paper and finally the silica nanoparticle hydrogel is obtained.
Este hidrogel mostra-se incolor sendo que as nanopartículas obtidas possuem um diâmetro médio de 10 nm (Figura 1 ), potencial zeta de - 32,1 mV e encontram-se bastante dispersas como mostrado por microscopia eletrônica (Figura 4). Como mencionado o hidrogel é completamente incolor e translúcido e o único meio visual para verificar se a precipitação ocorreu é via espalhamento de luz. This hydrogel is colorless and the nanoparticles obtained have an average diameter of 10 nm (Figure 1), zeta potential of - 32.1 mV and are quite dispersed as shown by electron microscopy (Figure 4). As mentioned the hydrogel is completely colorless and translucent and the only visual means to check if precipitation has occurred is by light scattering.
O efeito Tyndall prevê que partículas em suspensão são capazes de espalhar luz, independente do seu tamanho ou meio no qual estão dispersas. Assim, apontando-se um laser para uma solução, caso haja partículas suspensas, será possível observar o caminho da luz pelo meio líquido, o que não ocorre no caso da água ou de uma solução verdadeira, por exemplo.  The Tyndall effect predicts that suspended particles are capable of scattering light, regardless of their size or medium in which they are scattered. Thus, by pointing a laser at a solution, if there are suspended particles, it will be possible to observe the path of light through the liquid medium, which does not occur in the case of water or a true solution, for example.
Exemplo 2: Processo de preparação de nanopartículas de sílica Example 2: Silica Nanoparticle Preparation Process
Para se obter as nanopartículas de sílica em fase sólida, processa-se a solução saída do refluxo, após filtração, em um spray dryer. To obtain the solid phase silica nanoparticles, the refluxed solution is processed after filtration in a spray dryer.
Processou-se as amostras a 150, 180 e 200°C com bico de 1 ,5 mm. Essas condições foram alteradas para verificar se influenciariam na morfologia e tamanho das partículas secas. Como demais parâmetros, padronizou-se a aspiração em 85%, a bomba a 15% (o que equivale a, aproximadamente, 5 mL/min) e o nozzle cleanerem 5 (unidades arbitrárias). Samples were processed at 150, 180 and 200 ° C with 1.5 mm nozzle. These conditions were changed to see if they would influence the morphology and size of the dried particles. As other parameters, aspiration was standardized at 85%, the pump at 15% (which is approximately 5 mL / min) and nozzle cleanerem 5 (arbitrary units).
Observou que a melhor condição para obtenção de nanopartículas de sílica, em fase sólida, ocorre a temperatura de 150 °C. As nanopartículas de sílica (Figura 5) foram caracterizadas como não cristalinas He observed that the best condition for obtaining solid phase silica nanoparticles occurs at 150 ° C. Silica nanoparticles (Figure 5) were characterized as non-crystalline
(Figura 2) e observou-se uma distribuição de tamanho bimodal via DLS (Figura(Figure 2) and a bimodal size distribution via DLS was observed (Figure 2).
3), com uma população significativa em 20 nm e outra população com menor contagem em 200 nm. 3) with a significant population at 20 nm and another population with a lower count at 200 nm.
Exemplo 3: Processo de preparação de nanopartículas de sílica com íons cobre(ll) adsorvidos  Example 3: Process of preparing adsorbed copper (ll) ions silica nanoparticles
A adsorção de íons cobre(ll) na superfície das nanopartículas de sílica ocorre através de interações químicas. O cátion metálico interage com as hidroxilas dissociadas dos grupos silanóis, uma vez que a solução é mantida em pH ligeiramente básico. Todavia, o pH deve ser ajustado de modo que não ocorra a precipitação dos íons cobre na forma de hidróxido. Portanto, estabeleceu-se como ponto ótimo o pH 8, com base em dados publicados na literatura (C. J. Brinker et al. Sol-Gel Science, 1990) Adsorption of copper ions on the surface of silica nanoparticles occurs through chemical interactions. The metal cation interacts with the dissociated hydroxyls of the silanol groups, since the solution is kept at slightly basic pH. However, the pH should be adjusted so that precipitation of copper ions in the form of hydroxide does not occur. Therefore, pH 8 was established as optimal, based on data published in the literature (CJ Brinker et al. Sol-Gel Science, 1990)
Ajusta-se o pH da suspensão de sílica, preparada conforme descrito no Exemplo 1 , com uma solução de ácido cítrico 1 mol L"1 até pH 8. Em seguida, adiciona-se um sal solúvel de cobre(ll), podendo ser cloreto, nitrato, sulfato, entre outros, e agita-se brevemente a solução. O sal de cobre solubilizará na solução, disponibilizando os íons cobre que, por sua vez, irão interagir com a superfície da sílica. The silica suspension prepared as described in Example 1 is adjusted to pH with a 1 mol L "1 citric acid solution to pH 8. Then a soluble copper salt (11) may be added, which may be chloride , nitrate, sulfate, among others, and the solution is briefly stirred, and the copper salt will solubilize in the solution, providing the copper ions which in turn will interact with the silica surface.
Para obter o composto em fase sólida, processa-se a solução em spray dryer nas mesmas condições descritas no Exemplo 2. Obtém-se, ao final do processo, um sólido azul redispersável em água.  To obtain the compound in solid phase, the spray dryer solution is processed under the same conditions as described in Example 2. A water-redispersible blue solid is obtained at the end of the process.
Exemplo 4: Aplicações bactericidas  Example 4: Bactericidal Applications
Obtidas as nanopartículas de sílica contendo cobre os testes de eficácia in vitro foram conduzidos e a ação bactericida foi verificada com cepas de Xanthomonas axonopodis e Ralstonia solanacearum.  Copper-containing silica nanoparticles were obtained and the in vitro efficacy tests were conducted and the bactericidal action was verified with Xanthomonas axonopodis and Ralstonia solanacearum strains.
O teste consiste em espalhar um determinado volume de uma solução de bactéria sobre um meio de cultura específico (neste caso, foi utilizado BDA - batata, dextrose e agar) e, no centro da placa de Petri, coloca- se um disco de papel filtro umedecido em uma solução da fórmula a ser testada com concentração conhecida. Nas concentrações em que a fórmula apresentar atividade, formar-se-á um halo em torno do disco de papel filtro, indicando que nessa região a bactéria não se desenvolveu, e quanto maior esse halo, maior a atividade da formulação testada.  The test consists of spreading a certain volume of a bacterial solution on a specific culture medium (in this case, BDA - potato, dextrose and agar was used) and in the center of the petri dish a filter paper disc is placed. moistened in a solution of the formula to be tested with known concentration. At concentrations where the formula has activity, a halo will be formed around the filter disc, indicating that in this region the bacteria did not develop, and the larger this halo, the greater the activity of the tested formulation.
Assim, testou-se a formulação processada em spray dryer nas dosagens de 1 ; 5; 10; 25; 50 e 100 ppm de íons cobre adsorvidos nas nanopartículas de sílica e, como referência comercial, utilizou-se uma fórmula a base de hidróxido de cobre na concentração recomendada de 300g/100L da água, o que equivale a 1050 ppm de cobre(ll).  Thus, the spray-dried formulation was tested at dosages of 1; 5; 10; 25; 50 and 100 ppm of copper ions adsorbed on silica nanoparticles and, as a commercial reference, a formula based on copper hydroxide was used at the recommended concentration of 300g / 100L of water, which is equivalent to 1050 ppm copper (ll). .
Exemplo 4.1 : Avaliação com Xanthomonas axonopodis pv. phaseoli  Example 4.1: Evaluation with Xanthomonas axonopodis pv. phaseoli
A Xanthomonas axonopodis pv. phaseoli é o agente etiológico do crestamento bacteriano do feijoeiro. Trata-se de uma bacteriose largamente distribuída, principalmente nas regiões de clima quente e úmido (como nos estados de São Paulo, Rio de Janeiro, Minas Gerais, Paraná, Santa Catarina, Espírito Santo, Rio Grande do Sul e na região Centro-Oeste) que se destaca por provocar redução na colheita de 10 a 70% em condições de ataque natural e às dificuldades de controle da doença. Xanthomonas axonopodis pv. phaseoli is the etiological agent of bean bacterial growth. It is a bacteriosis largely mainly in hot and humid climates (such as the states of São Paulo, Rio de Janeiro, Minas Gerais, Paraná, Santa Catarina, Espirito Santo, Rio Grande do Sul and the Midwest) harvesting 10 to 70% under natural attack conditions and the difficulties of disease control.
A nanopartícula de sílica contendo íons cobre proposta no presente invento apresentou eficácia no controle dessa bactéria a partir de 25 ppm de cobre(ll) quando íons metálicos são adsorvidos à superfície enquanto que a concentração da referência comercial é de 1050 ppm de cobre(ll) - concentração na qual observou-se controle no teste in vitro.  The copper ion-containing silica nanoparticle proposed in the present invention has been effective in controlling this bacterium from 25 ppm copper (11) when metal ions are adsorbed to the surface while the commercial reference concentration is 1050 ppm copper (11). - concentration at which control was observed in the in vitro test.
Exemplo 4.2: Avaliação com Ralstonia solanacearum Example 4.2: Evaluation with Ralstonia solanacearum
A Ralstonia solanacearum é causadora da murcha-bacteriana em numerosos hospedeiros, dentre eles, as culturas de tomate e de batata. Inicialmente a doença afeta apenas o fruto, mas com o desenvolver da bactéria, ela acaba se espalhando pela planta, causando a morte da mesma. Portanto, se não controlada no início da infestação, causa grande prejuízo ao agricultor.  Ralstonia solanacearum causes bacterial wilt in numerous hosts, including tomato and potato crops. Initially the disease affects only the fruit, but with the development of the bacteria, it eventually spreads to the plant, causing its death. Therefore, if not controlled at the beginning of the infestation, it causes great damage to the farmer.
Em condições de alta infestação do solo, o controle envolve, necessariamente, o uso de cultivares resistentes, dado a dificuldade de controle dessa doença. Portanto, uma formulação de contato que seja capaz de controlar a infestação dessa bactéria será muito bem aceita no pelo mercado agroquímico.  In conditions of high soil infestation, control necessarily involves the use of resistant cultivars, given the difficulty of controlling this disease. Therefore, a contact formulation that is capable of controlling the infestation of this bacterium will be very well accepted by the agrochemical market.
A nanopartícula de sílica contendo íons cobre(ll) desenvolvida apresentou eficácia no controle da Ralstonia solanacearum a 50 ppm, enquanto que a referência comercial, a 1050 ppm de cobre(ll).  The developed silicon nanoparticle containing copper (ll) ions was effective in controlling Ralstonia solanacearum at 50 ppm, while the commercial reference at 1050 ppm copper (ll).
Portanto, para ambas as bactérias, a nanopartícula desenvolvida a base de sílica mostrou boa eficácia em relação à referência comercial. Assim sendo, atesta-se a eficácia dessa formulação a base de sílica contendo cobre(ll) como bactericida e oferece-se uma opção ao mercado para o controle dessas doenças.  Therefore, for both bacteria, the silica-based nanoparticle showed good efficacy compared to the commercial reference. Accordingly, the efficacy of this copper (11) -containing silica-based formulation as a bactericide is proven and offers an option to the market for the control of these diseases.

Claims

REIVINDICAÇÕES
Processo para a obtenção de nanoprodutos caracterizado por compreender as seguintes etapas: Process for obtaining nanoproducts characterized by comprising the following steps:
a) Preparo de soluções: a) Preparation of solutions:
a1 ) Solução de silicato; a1 ) Silicate solution;
a2) Solução de um ácido orgânico fraco; a2) Solution of a weak organic acid;
b) Adição da solução de (a2) em (a1 ); b) Addition of the solution of (a2) to (a1);
c) Refluxo; c) Reflux;
d) Filtração; d) Filtration;
e) Concentração; e) Concentration;
f) Secagem; f) Drying;
g) Adsorção, e g) Adsorption, and
h) Secagem. h) Drying.
Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (a) compreender o preparo de uma solução de silicato de sódio alcalino (a1 ) em água destilada entre 0,1 e 10%, preferencialmente a 1 % (m/v). Process, according to claim 1, characterized by step (a) comprising the preparation of a solution of alkaline sodium silicate (a1) in distilled water between 0.1 and 10%, preferably 1% (m/v).
Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (a) compreender o preparo de uma solução de ácido orgânico fraco (a2) selecionado dentre ácido pícrico, ácido esquárico, ácido oxálico, ácido cítrico, ácido fórmico, ácido ascórbico, ácido benzóico, ácido acético, p-nitrofenol, ácido peracético, ácido propiônico, ácido butírico, ácido valírico, ácido capróico, ácido caprílico, ácido cáprico, ácido succínico, ácido glutárico, ácido adípico, ácido D-tartárico, ácido L-tartárico, ácido lático, ácido úrico, ácido maleico, ácido fumárico, ácido isovalírico, ácido furóico, ácido sórbico, ácido salicílico, ácido trans-cinâmico, ácido acetilsalicílico, ácido mirístico. Processo, de acordo com a reivindicação 3, caracterizado pelo fato de que o ácido orgânico é preferencialmente o ácido cítrico. Process, according to claim 1, characterized by step (a) comprising the preparation of a solution of weak organic acid (a2) selected from picric acid, squaric acid, oxalic acid, citric acid, formic acid, ascorbic acid, benzoic acid , acetic acid, p-nitrophenol, peracetic acid, propionic acid, butyric acid, valyric acid, caproic acid, caprylic acid, capric acid, succinic acid, glutaric acid, adipic acid, D-tartaric acid, L-tartaric acid, lactic acid , uric acid, maleic acid, fumaric acid, isovalyric acid, furoic acid, sorbic acid, salicylic acid, trans-cinnamic acid, acetylsalicylic acid, myristic acid. Process according to claim 3, characterized by the fact that the organic acid is preferably citric acid.
5. Processo, de acordo com a reivindicação 4, caracterizado por compreender uma concentração de ácido cítrico variando entre 0,5 e 5 mol L"\ preferencialmente 1 mol L"1. 5. Process, according to claim 4, characterized by comprising a concentration of citric acid varying between 0.5 and 5 mol L " \ preferably 1 mol L "1 .
6. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (b) compreender a adição da solução de ácido orgânico fraco obtida na etapa (a2) à solução preparada na etapa (a1), até atingir um pH entre 12,0 a 9,0, preferencialmente 10,5. 6. Process, according to claim 1, characterized by step (b) comprising adding the weak organic acid solution obtained in step (a2) to the solution prepared in step (a1), until reaching a pH between 12.0 to 9.0, preferably 10.5.
7. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de refluxo (c) da solução obtida na etapa (b) entre 50 e 100°C, preferencialmente a 90 °C, por um período entre 4 e 48 horas, preferencialmente 24 horas. 7. Process, according to claim 1, characterized by the reflux step (c) of the solution obtained in step (b) between 50 and 100°C, preferably at 90°C, for a period between 4 and 48 hours, preferably 24 hours.
8. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de filtração (d) ser realizada em um sistema de filtração simples a temperatura ambiente. 8. Process, according to claim 1, characterized in that the filtration step (d) is carried out in a simple filtration system at room temperature.
9. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de concentração (e) ser realizada em um sistema de remoção de água, preferencialmente destilação. 9. Process, according to claim 1, characterized in that the concentration step (e) is carried out in a water removal system, preferably distillation.
10. Processo, de acordo com a reivindicação 1 , caracterizado pelo fato da etapa (e) ser realizada opcionalmente. 10. Process, according to claim 1, characterized in that step (e) is performed optionally.
1 1. Hidrogel de nanopartículas de sílica caracterizado por ser obtido de acordo com as etapas descritas nas reivindicações de 1 a 10. 1 1. Silica nanoparticle hydrogel characterized by being obtained according to the steps described in claims 1 to 10.
12. Hidrogel de nanopartículas de sílica, de acordo com a reivindicação12. Silica nanoparticle hydrogel as claimed
1 1 , caracterizada pelo fato de compreender nanopartículas com um diâmetro médio variando entre 1 e 100 nm, preferencialmente 10 nm. 1 1 , characterized by the fact that it comprises nanoparticles with an average diameter varying between 1 and 100 nm, preferably 10 nm.
13. Hidrogel de nanopartículas de sílica, de acordo com a reivindicação13. Silica nanoparticle hydrogel as claimed
1 1 , caracterizada pelo fato de compreender um potencial zeta variável entre -100 a +100 mV, preferencialmente -35 mV. 1 1 , characterized by the fact that it comprises a zeta potential variable between -100 to +100 mV, preferably -35 mV.
14. Uso do hidrogel de nanopartículas de sílica, de acordo com a reivindicação 1 1 , caracterizado por ser empregado como suporte para catalisadores, materiais adsorventes de fase estacionária para cromatografia em fase gasosa e líquida, agente reforçador de borracha, elastômeros, agente texturizante, material de enchimento, abrasivos, material de polimento, sistemas carreadores e inertes/aditivos para indústria agroquímica, home e personal care, cerâmica, polímeros e tintas. 14. Use of the silica nanoparticle hydrogel, according to claim 11, characterized in that it is used as a support for catalysts, stationary phase adsorbent materials for gas and liquid phase chromatography, rubber, elastomers, texturizing agent, filler material, abrasives, polishing material, carrier systems and fillers/additives for the agrochemical industry, home and personal care, ceramics, polymers and paints.
15. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de secagem (f) do hidrogel obtido nas etapas (e) ou (f) preferencialmente em spray dryer a temperatura de 100 a 200 °C, preferencialmente a 150°C, com um fluxo de 1 a 20 mL/min, preferencialmente a 5 mL/min, e com bico de 0,7 a 2,0 mm, preferencialmente de 1 ,5 mm. 15. Process, according to claim 1, characterized by the drying step (f) of the hydrogel obtained in steps (e) or (f) preferably in a spray dryer at a temperature of 100 to 200 °C, preferably at 150 °C, with a flow rate of 1 to 20 mL/min, preferably 5 mL/min, and with a nozzle of 0.7 to 2.0 mm, preferably 1.5 mm.
16. Nanopartículas de sílica caracterizado por ser obtido de acordo com as etapas descritas nas reivindicações de 1 a 10 e 15 16. Silica nanoparticles characterized by being obtained according to the steps described in claims 1 to 10 and 15
17. Nanopartículas de sílica, de acordo com a reivindicação 16, caracterizada pelo fato de compreender um diâmetro médio variando entre 5 e 200 nm, preferencialmente 20 nm. 17. Silica nanoparticles, according to claim 16, characterized by the fact that it comprises an average diameter ranging between 5 and 200 nm, preferably 20 nm.
18. Uso das nanopartículas de sílica, de acordo com a reivindicação 16, caracterizado por ser empregado como suporte para catalisadores, materiais adsorventes de fase estacionária para cromatografia em fase gasosa e líquida, agente reforçador de borracha, elastômeros, agente texturizante, material de enchimento, abrasivos, material de polimento, sistemas carreadores e inertes/aditivos para indústria agroquímica, home e personal care, cerâmica, polímeros e tintas. 18. Use of silica nanoparticles, according to claim 16, characterized by being used as a support for catalysts, stationary phase adsorbent materials for gas and liquid phase chromatography, rubber reinforcing agent, elastomers, texturizing agent, filler material , abrasives, polishing material, carrier systems and inerts/additives for the agrochemical industry, home and personal care, ceramics, polymers and paints.
19. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de adsorção (g) compreender adição de um sal solúvel do íon de interesse a uma suspensão de nanopartículas de sílica obtidas nas etapas (d), (e) ou (f). 19. Process, according to claim 1, characterized by the adsorption step (g) comprising adding a soluble salt of the ion of interest to a suspension of silica nanoparticles obtained in steps (d), (e) or (f) .
20. Processo, de acordo com a reivindicação 19, caracterizado por compreender um sal solúvel do íon de interesse selecionado dentre os sais de cloreto, nitrato ou sulfato. 20. Process, according to claim 19, characterized by comprising a soluble salt of the ion of interest selected from chloride, nitrate or sulfate salts.
21. Processo, de acordo com a reivindicação 20, caracterizado por compreender um íon selecionado do grupo cobre(l), cobre(ll), mercúrio(ll), prata(l), zinco(ll), ferro(ll), ferro(lll), chumbo(ll), chumbo(lll) e bismuto(ll), preferencialmente cobre(ll). 21. Process, according to claim 20, characterized by comprising an ion selected from the group copper(l), copper(ll), mercury(ll), silver(l), zinc(ll), iron(ll), iron(lll), lead(ll), lead(lll) and bismuth(ll), preferably copper(ll).
22. Processo, de acordo com a reivindicação 19, caracterizado por compreender uma suspensão das nanopartículas em pH entre 1 ,0 e 1 1 ,0, preferencialmente 8,0. 22. Process, according to claim 19, characterized by comprising a suspension of nanoparticles at a pH between 1.0 and 11.0, preferably 8.0.
23. Processo, de acordo com a reivindicação 19, caracterizado por compreender a adição de uma solução de ácido orgânico fraco selecionado dentre ácido pícrico, ácido esquárico, ácido oxálico, ácido cítrico, ácido fórmico, ácido ascórbico, ácido benzóico, ácido acético, p-nitrofenol, ácido peracético, ácido propiônico, ácido butírico, ácido valírico, ácido capróico, ácido caprílico, ácido cáprico, ácido succínico, ácido glutárico, ácido adípico, ácido D-tartárico, ácido L-tartárico, ácido lático, ácido úrico, ácido maleico, ácido fumárico, ácido isovalírico, ácido furóico, ácido sórbico, ácido salicílico, ácido trans-cinâmico, ácido acetilsalicílico, ácido mirístico). 23. Process according to claim 19, characterized by adding a weak organic acid solution selected from picric acid, squaric acid, oxalic acid, citric acid, formic acid, ascorbic acid, benzoic acid, acetic acid, p. -nitrophenol, peracetic acid, propionic acid, butyric acid, valyric acid, caproic acid, caprylic acid, capric acid, succinic acid, glutaric acid, adipic acid, D-tartaric acid, L-tartaric acid, lactic acid, uric acid, acid maleic acid, fumaric acid, isovalyric acid, furoic acid, sorbic acid, salicylic acid, trans-cinnamic acid, acetylsalicylic acid, myristic acid).
24. Processo, de acordo com a reivindicação 23, caracterizado pelo fato de que o ácido orgânico é preferencialmente o ácido cítrico. 24. Process according to claim 23, characterized in that the organic acid is preferably citric acid.
25. Processo, de acordo com a reivindicação 23, caracterizado por compreender uma concentração de ácido cítrico variando entre 0,5 e 5 mol L"1, preferencialmente 1 mol L"1. 25. Process, according to claim 23, characterized by comprising a concentration of citric acid varying between 0.5 and 5 mol L "1 , preferably 1 mol L "1 .
26. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa de secagem (h) compreender o processamento da solução obtida na etapa (g), preferencialmente em spray dryer a temperatura de 100 a 200 °C, preferencialmente a 150°C, com um fluxo de 1 a 20 mL/min, preferencialmente a 5 mL/min, e com bico de 0,7 a 2,0 mm, preferencialmente de 1 ,5 mm. 26. Process, according to claim 1, characterized in that the drying step (h) comprises the processing of the solution obtained in step (g), preferably in a spray dryer at a temperature of 100 to 200 °C, preferably at 150 °C, with a flow rate of 1 to 20 mL/min, preferably 5 mL/min, and with a nozzle of 0.7 to 2.0 mm, preferably 1.5 mm.
27. Nanopartícula de sílica com íons adsorvidos caracterizado por ser obtido de acordo com as etapas descritas nas reivindicações de 1 a 10, 15 e 19 a 26. 27. Silica nanoparticle with adsorbed ions characterized by being obtained according to the steps described in claims 1 to 10, 15 and 19 to 26.
28. Nanopartícula de sílica com íons adsorvidos, de acordo com a reivindicação 27, caracterizada pelo fato de compreender um diâmetro médio variando entre 5 e 200 nm, preferencialmente 20 nm.28. Silica nanoparticle with adsorbed ions, according to claim 27, characterized by the fact that it comprises an average diameter ranging between 5 and 200 nm, preferably 20 nm.
29. Nanopartícula de sílica com íons adsorvidos, de acordo com a reivindicação 27, caracterizada pelo fato de compreender um potencial zeta entre -150 e +150 mV, preferencialmente a -80 mV.29. Silica nanoparticle with adsorbed ions, according to claim 27, characterized by the fact that it comprises a zeta potential between -150 and +150 mV, preferably at -80 mV.
30. Uso da nanopartícula de sílica com íons adsorvidos, de acordo com a reivindicação 27, caracterizado por ser empregado como agente fungicida e/ou bactericida na indústria agroquímica, farmacêutica, home e personal care. 30. Use of the silica nanoparticle with adsorbed ions, according to claim 27, characterized by being used as a fungicidal and/or bactericidal agent in the agrochemical, pharmaceutical, home and personal care industries.
PCT/BR2012/000508 2011-12-13 2012-12-07 Process for producing a silica nanoparticle hydrogel, silica nanoparticles and silica nanoparticles with adsorbed ions; products produced and the corresponding uses thereof WO2013086596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1105171-0A BRPI1105171B1 (en) 2011-12-13 2011-12-13 Process of obtaining silica-based nanoproducts, hydrogel of silica nanoparticles, silica nanoparticles, nanoparticle with adsorbed ions and their uses
BRPI1105171-0 2011-12-13

Publications (1)

Publication Number Publication Date
WO2013086596A1 true WO2013086596A1 (en) 2013-06-20

Family

ID=48611734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000508 WO2013086596A1 (en) 2011-12-13 2012-12-07 Process for producing a silica nanoparticle hydrogel, silica nanoparticles and silica nanoparticles with adsorbed ions; products produced and the corresponding uses thereof

Country Status (2)

Country Link
BR (1) BRPI1105171B1 (en)
WO (1) WO2013086596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210189161A1 (en) * 2019-12-18 2021-06-24 Kronos Worldwide, Inc. Printing ink containing undried, coated titanium dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474824A (en) * 1978-05-24 1984-10-02 W. R. Grace & Co. Methods of preparing hydrous silica gels
JPH0442807A (en) * 1990-06-06 1992-02-13 Mizusawa Ind Chem Ltd Amorphous silica-based agent
JPH08169710A (en) * 1994-12-20 1996-07-02 Nippon Silica Ind Co Ltd Silica gel having high specific surface area and low controlled constructive property and its production
WO2006034239A2 (en) * 2004-09-20 2006-03-30 Iowa State University Research Foundation, Inc. Antimicrobial mesoporous silica nanoparticles
WO2010068275A1 (en) * 2008-12-10 2010-06-17 University Of Central Florida Research Foundation, Inc. Silica-based antibacterial and antifungal nanoformulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474824A (en) * 1978-05-24 1984-10-02 W. R. Grace & Co. Methods of preparing hydrous silica gels
JPH0442807A (en) * 1990-06-06 1992-02-13 Mizusawa Ind Chem Ltd Amorphous silica-based agent
JPH08169710A (en) * 1994-12-20 1996-07-02 Nippon Silica Ind Co Ltd Silica gel having high specific surface area and low controlled constructive property and its production
WO2006034239A2 (en) * 2004-09-20 2006-03-30 Iowa State University Research Foundation, Inc. Antimicrobial mesoporous silica nanoparticles
WO2010068275A1 (en) * 2008-12-10 2010-06-17 University Of Central Florida Research Foundation, Inc. Silica-based antibacterial and antifungal nanoformulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210189161A1 (en) * 2019-12-18 2021-06-24 Kronos Worldwide, Inc. Printing ink containing undried, coated titanium dioxide

Also Published As

Publication number Publication date
BRPI1105171A2 (en) 2014-05-27
BRPI1105171B1 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
Yaqoob et al. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review
Zhang et al. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study
US7326399B2 (en) Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
Garnweitner et al. Large‐Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in Organic–Inorganic Nanocomposites for Efficient Volume Holography
Scholes et al. Influence of hydrogen peroxide in the preparation of nanocrystalline ceria
Stoimenov et al. Novel halogen and interhalogen adducts of nanoscale magnesium oxide
Buha et al. Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile
Yang et al. Surfactant‐free and controlled synthesis of hexagonal CeVO4 nanoplates: photocatalytic activity and superhydrophobic property
Alishah et al. A green approach for the synthesis of silver nanoparticles using root extract of Chelidonium majus: characterization and antibacterial evaluation
CN103539205A (en) Method for preparing controllable-morphology-and-size mixed-valence tungsten-based nanoparticles
Wasmi et al. Novel approach: tungsten oxide nanoparticle as a catalyst for malonic acid ester synthesis via ozonolysis
JP4739120B2 (en) Conductive titanium oxide and method for producing the same
Wan et al. Bioreduction and stabilization of nanosilver using Chrysanthemum phytochemicals for antibacterial and wastewater treatment
CN103482697A (en) Method for preparing titanium dioxide microspheres with adjustable particle sizes under anhydrous solvothermal condition
Bogatyrov et al. The effect of photoactivated transformations of Ag+ and Ag 0 in silica fillers on their biocidal activity
Karlsson et al. Synthesis of zinc oxide nanorods via the formation of sea urchin structures and their photoluminescence after heat treatment
TWI520909B (en) Production method of rutile form-titanium oxide sol
Khachatryan et al. Formation of nanometal particles in the dialdehyde starch matrix
CN102985366B (en) Method of manufacturing silica nanopowders with fungicidal properties, especially for polymer composites
Wolska-Pietkiewicz et al. Towards bio-safe and easily redispersible bare ZnO quantum dots engineered via organometallic wet-chemical processing
Bachhav et al. Silver nanoparticles: A comprehensive review on mechanism, synthesis and biomedical applications
Roca et al. Size and shape tailoring of titania nanoparticles synthesized by solvothermal route in different solvents
WO2013086596A1 (en) Process for producing a silica nanoparticle hydrogel, silica nanoparticles and silica nanoparticles with adsorbed ions; products produced and the corresponding uses thereof
CN108821296A (en) A kind of preparation method of mesoporous spherical nano Sio 2 particle
Zhang et al. Hydrothermal synthesis of hydroxyapatite assisted by gemini cationic surfactant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857383

Country of ref document: EP

Kind code of ref document: A1