WO2013085358A1 - 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템 - Google Patents

체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템 Download PDF

Info

Publication number
WO2013085358A1
WO2013085358A1 PCT/KR2012/010661 KR2012010661W WO2013085358A1 WO 2013085358 A1 WO2013085358 A1 WO 2013085358A1 KR 2012010661 W KR2012010661 W KR 2012010661W WO 2013085358 A1 WO2013085358 A1 WO 2013085358A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
aerobic tank
water quality
water treatment
residence time
Prior art date
Application number
PCT/KR2012/010661
Other languages
English (en)
French (fr)
Inventor
카미야마타카오
김현욱
박병권
Original Assignee
(주)씨스이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨스이엔지 filed Critical (주)씨스이엔지
Publication of WO2013085358A1 publication Critical patent/WO2013085358A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a continuous biological water treatment system using activated sludge model simulation for optimization of residence time
  • the biological treatment process for sewage and wastewater is improved to improve the biological treatment of continuous biological water treatment processes, particularly A2O (Anaerobic-Anoxic-Oxic) processes.
  • A2O Anaerobic-Anoxic-Oxic
  • the present invention relates to a continuous biological water treatment system capable of reducing power costs used for aeration by setting the optimum aerobic residence time by increasing and decreasing the aerobic residence time in a manner of increasing and decreasing the volume of the aerobic tank by moving the food partition.
  • BNR Bio Nutrient Removal
  • the generalized BNR process is divided into floating growth process and adhesion growth process according to the growth state of microorganisms, and the floating growth process is a process of removing organic matter and nitrogen by flowing and freely moving by the air flow supplied with microorganisms in the reactor. It is an activated sludge process designed to remove nutrients and nutrients at the same time.It is a continuous flow single sludge system, a continuous flow multiple sludge system, and a batch process depending on the type of sludge and the treatment state of the treatment plant. Divided by.
  • Adhesion growth process is to maintain the microbial amount necessary for removing the biological organic matter and nutrients in the reaction tank by attaching the microorganism to the carrier or media made of microorganisms in various forms and materials.
  • the deposition growth process is classified not only by media type, shape and filling method, but also by process type depending on whether the media is fluid or stationary and filled with 60% or more of the effective volume of the reactor.
  • Representative deposition growth processes include sprinkling water phase, RBC, fluidized bed, and fixed bed reactors, and the existing treatment sludge process can be converted to nutrient removal process to operate the existing treatment plant according to the operating conditions, shape, and process arrangement of each reactor.
  • benefits such as increasing treatment capacity and ensuring stable treatment water quality depending on the type of medium, filling rate, and specific surface area.
  • the Biological Nutrient Removal (BNR) process which can be selected according to the quality of treatment, can be divided into nitrogen removal, simultaneous removal of nitrogen and phosphorus, and phosphorus removal.
  • BNR Biological Nutrient Removal
  • nitrification / denitrification tank There is nitrification / denitrification tank.
  • the nitric oxide is returned in various ways.
  • the key to optimizing these processes is to stabilize the phosphorus release by providing internal and external carbon sources and creating anaerobic conditions.
  • Modified Ludzac-Ettinger can remove 80% of nitrogen in sewage. Process, A2 / O process, UCT and VIP. Simultaneous removal of nitrogen and phosphorus can be done using the Modified Bardenpho process, the A2 / O process with an additional denitrification filter, and the UCT process. Particularly, in order to remove more than 80% of phosphorus, coagulation removal using the Phostrip process has been suggested as the most reliable method. For example, if you want to remove more than 85% of nitrogen, you can choose the four-stage Bardenpho process as the BNR process. If you want to remove phosphorus, you can remove nitrogen and phosphorus simultaneously by adding chemical flocculation sedimentation process.
  • MLE Modified Ludzac-Ettinger
  • the batch biological water treatment method which can be said to correspond to the continuous biological water treatment method described above, is an intermittent inflow continuous batch reactor represented by SBR (Sequencing Batch Reactor) according to the inflow method, and the Intermittent Cycle Extended ICEAS. It can be classified as a continuous inflow batch reactor represented by Aeration System.
  • An anoxic / aerobic (AAA) system which is applied to continuous biological water treatment processes and includes intermittent aeration tanks, simply turns ON / OFF the aeration device for different reactions. By turning OFF, the other environments required for nitrification (aerobic) / denitrification (oxygen free), phosphorus release (oxygen free) / phosphorus excess intake (aerobic) are continuously created in one reactor.
  • the incoming ammonia is nitrified by an autotrophic microorganism (nitrification microorganism). In the subsequent aeration period, the resulting nitrate is denitrated with nitrogen gas in the presence of the incoming organic carbon.
  • Batch biological water treatment has the advantage of low initial investment because the reaction and precipitation occur in one reactor at the same time.
  • wastewater such as domestic wastewater, livestock wastewater, commercial wastewater, and septic tank wastewater contains high concentrations of organic substances and high concentrations of nitrogen and phosphorus. Therefore, organic matter, nitrogen, phosphorus in accordance with environmental standards to prevent eutrophication of nearby streams are prevented.
  • the standard value is regulated to remove the back, etc., and it is regulated by the law.
  • Patent Registration No. 10-0386191 (May 21, 2003) [Reactor having a variable partition wall]
  • the registered patent can actively respond to the inflow and load fluctuations by installing a variable partition wall inside the reaction tank to partition the reaction tank reacting physically, chemically and biologically into sewage or wastewater into one or more reaction spaces
  • the present invention relates to a reactor equipped with a variable partition wall capable of rapidly applying a modified advanced treatment process by varying the nitrification tank and the denitrification tank corresponding to the inflow load, and improving the treatment efficiency by freely changing the flow in the reactor.
  • the main constitution is a reactor for chemically and biologically reacting while waste water flows in and remains for a predetermined time, comprising: a frame installed inside the reactor and having a shape similar to that of the cross section of the reactor; A plurality of diaphragms rotatably mounted to said frame; Conveying means for conveying said diaphragm; Rotating means for rotating the diaphragm.
  • the above patent discloses by separating or integrating one reactor into a plurality of reaction chambers by opening or closing one or more variable partition walls installed in a continuous batch reactor of a predetermined size, so as to easily cope with fluctuations in the flow rate and load of raw water, It is possible to achieve a pure anaerobic or anoxic state by separating it, and to increase the denitrification and dephosphorization efficiency by repeatedly forming an aerobic and anaerobic or anoxic state in time and space, and to omit a circulation pump for circulating sewage and sludge.
  • the present invention relates to a continuous batch reactor equipped with a variable bulkhead that reduces installation costs and facilitates operation and maintenance, and a method for advanced biological sewage and wastewater treatment using the same.
  • the registered patent comprises an anaerobic tank connected by an inflow tank and an induction pipe, and a bioreactor comprising an anaerobic tank and an aerobic tank, a general purpose separation tank, and a degassing tank continuously installed at the right end of the anaerobic tank, wherein the anaerobic tank and the aerobic tank are before and after
  • a plurality of guide blocks are respectively installed inside the surface so as to face each other, and a partition is inserted into each of the guide blocks so that the internal space thereof can be changed, and the treatment capacity of the anaerobic tank and the anaerobic tank is changed according to the inflow water quality and the inflow flow rate.
  • Patent Registration No.0975301 (Aug. 05, 2010) of Exen Co., Ltd. is a biofilter-integrated deodorization cover device for preventing odor of sewage water treatment plant.
  • This patent is for concentration tank, sedimentation tank, storage tank, etc. of sewage treatment plant.
  • the microorganism deodorizer having odor decomposition function is integrally installed in the same odor generating facility.
  • the present invention relates to a functional deodorizing cover device capable of controlling biological deodorization and odor control while preventing diffusion.
  • Patent Publication No. 2009-0127852 published December 14, 2009 of BB Techno Co., Ltd.
  • the published patent is processed by using various additives or by fermentation It is to solve the problem by discharging the treated wastewater due to the odor remaining in the stream immediately and discharging roughly by discharging the whole amount due to the excessive capacity in the treatment through the filtration device. It is to provide a residual odor removal device that can be additionally installed in facilities (both already installed and newly established) to promote effective fermentation activation.
  • the registration proposal is a livestock barn, septic tank attached to the barn, and fermentation drying plant for fermentation drying treatment of livestock manure. Exhaust the nasty odors generated from the cattle manure odor generating facilities, and by deodorizing by effective water spraying and deodorization by scoria and charcoal filtering, only the purified air can be released to the air.
  • the present invention relates to a livestock manure odor removal device that can be easily distributed to small livestock farms and help a lot as it can be easily implemented and implemented at a cost.
  • the registered patent is a sewage / wastewater treatment plant It collects odorous substances generated from wastewater storage tanks and aeration tanks of the wastewater and irradiates electron beams to the odors to directly reintroduce odor decomposition and ozone water to help treatment of wastewater, or to remove gases generating odorous substances.
  • the present invention relates to a device for removing odors and a method thereof in a wastewater treatment plant, and proposes a method for capturing and treating odors in a sewage storage tank, sedimentation basin, sedimentation tank, aeration tank, and concentration tank.
  • roof-like covers are installed in various reactors as much as possible, pipes and pumps are installed on the covers, and the odor is only buried in the method of collecting and treating odors.
  • the chemical liquid cleaning method has the advantage of being suitable for the treatment of water-soluble odorous substances, inexpensive installation cost, and dust treatment.
  • the chemical cleaning method determines the efficiency according to the replacement cycle of purified water.
  • the biofilter method has a low maintenance cost and shows very high processing efficiency for some materials.
  • the installation area is large and the biological treatment of the material is difficult.
  • the adsorption method can handle most odorous substances and the efficiency is determined by the replacement cycle of the adsorbent.
  • the cost of activated carbon replacement and excessive cost in the treatment of high concentration odor.
  • Patent Registration No. 0930987 (December 7, 2009) [Integrated odor treatment apparatus using a highly efficient deodorizing combination scrubber system with an ozone generator] there is,
  • the registered patent relates to an integrated odor treatment apparatus using a high-efficiency deodorizing combination scrubber system with an ozone generating unit capable of simultaneously ozone oxidation, wet cleaning, and adsorption by providing an ozone generator in the odor treatment apparatus.
  • the integrated odor treatment device using the built-in high-efficiency deodorizing combination scrubber system is a odor treatment device consisting of a charging part, a wet treatment part, a mist removal part, and an adsorption treatment part, which is located above the mist removal part and oxidizes the odor introduced into the odor inlet. While supplying ozone for the purpose, there is a technical feature to further include an ozone generator for using the heat emitted when ozone generation in the ozone discharge tube to lower the relative humidity contained in the odor passed through the wet treatment.
  • Patent registration No. 1005636 (December 27, 2010) [Purification system for removing harmful gases and mixed odor using an underwater plasma generator] efficiently connects and integrates an underwater plasma technology and a wet scrubber type cleaning device.
  • the present invention relates to a purification system for removing harmful gases and mixed odors using an underwater plasma to efficiently purify a large amount of harmful gases and mixed odors.
  • the present invention is a continuous treatment of biological water treatment method, specifically A2O to A / O (or various modified method) water treatment facility is applied, more specifically variable variable wall equipped with a variable partition moving by the displacement means
  • A2O Anaerobic-Anoxic-Oxic
  • water quality measurement values of inflow and outflow water for the reaction tank including an aerobic tank are measured through a water quality automatic measuring device.
  • the control unit generates and compares the activated sludge model simulation in real time, and moves the variable bulkhead through the displacement means to increase and decrease the volume of the aerobic tank so that optimal water treatment is achieved. By setting the time, you can reduce the energy costs of aeration. Soksik aims to provide an autumn biological water treatment system.
  • the present invention is installed above the aerobic tank shear bulkhead, especially above the bulkhead between the anaerobic tank and the aerobic tank in the water treatment facilities applying the continuous biological water treatment method, in particular A2O to A / O (or various modified methods) method
  • the present invention provides a biological water treatment system in which the odor collecting means further introduces a odor detection sensor, in particular TRS sensor in order to be able to actively cope with the odor generated in the water treatment facility to enable intensive selective and efficient odor collection and removal
  • a odor detection sensor in particular TRS sensor
  • the odor collecting means includes a cover, and the cover covers a part of the anaerobic tank and the aerobic tank including the partition wall, and the lower end thereof is immersed in the treated water of the anoxic tank and the aerobic tank, so that the odor collection and treatment are simple and extremely effective. It is an object to provide a possible biological water treatment system.
  • the internal space of the reaction tank is divided by a variable partition wall
  • variable partition wall is moved by the displacement means
  • Some or all of the front end, the rear end of the reactor and the inside of the reactor is provided with a water quality automatic measuring device,
  • the activated sludge model simulation is generated by receiving the water quality measurement value measured by the water quality measuring device in real time, and the water quality measurement value measured by the water quality measuring device is compared with the water quality measurement value predicted by the water quality measuring device. It is characterized in that it comprises a control unit for increasing and decreasing the aerobic residence time in a manner to increase and decrease the space of the aerobic tank by moving the variable partition wall through the displacement means.
  • the control unit receives the water quality measurement values of the influent and the effluent measured in real time by the automatic water quality meter, and the linearized module of ASM 2d.
  • a linearization model unit for predicting the concentration of the state variable using a model, and correcting a difference between the concentration of the state variable predicted by the linearization model unit and the concentration of the state variable actually measured by the water quality measuring instrument, thereby
  • a correction unit for calculating an allowable concentration, and an aeration period optimizer for automatically optimizing the aeration period every cycle using the concentration of the state variable predicted by the linearization model unit and the maximum allowable concentration of the state variable calculated by the correction unit.
  • the control unit preferably increases or decreases the aerobic residence time by 0.5 HRT.
  • the continuous biological water treatment system using the activated sludge model simulation for the optimization of residence time according to the present invention in order to further introduce the concentrated selective odor collecting means.
  • a concentrated selective odor collecting means installed at an upper portion of the exhalation tank in contact with the front partition wall;
  • the odor collecting means includes a TRS sensor,
  • the odor collecting means includes a cover,
  • the cover covers a part of the anaerobic tank and the aerobic tank including a partition wall, and the lower end thereof is immersed in the treated water of the anoxic tank and the aerobic tank.
  • Continuous biological water treatment system to improve the treatment efficiency of the continuous advanced water treatment process and to ensure the stability of the treated water quality, the water quality measurement value of the influent and effluent water for the reaction tank including the aerobic tank through a water quality automatic measuring instrument
  • the control unit generates and compares the activated sludge model simulation in real time, and moves the variable bulkhead through displacement means to increase or decrease the volume of the aerobic tank so that optimal water treatment is achieved.
  • By setting the aerobic tank residence time it is possible to reduce the power cost used for aeration, and it is possible to optimize the operating conditions by being able to actively respond to changes in inflow conditions and temperature conditions in real time.
  • the biological water treatment system according to the present invention is above all the aerobic tank shear bulkhead, especially between the anaerobic tank and the aerobic tank in the water treatment facilities to apply the continuous biological water treatment method, in particular A2O to A / O (or various modified method) method It is installed at the upper part of the bulkhead and is configured to concentrate the treatment of odor generated in the aerobic tank. It is selective and concentrated, so that most of the odor can be collected by simply installing the odor collecting means, and the efficiency is greatly improved.
  • the odor collecting means further introduces a odor detection sensor, in particular, a TRS sensor, to enable intensive selective and efficient odor collection and removal, and furthermore, the odor collecting means includes a cover, and the cover is a partition wall. Covering part of the anaerobic and aerobic tanks, The bottom can be also very effective odor trap, it is locked to the handle by simple treatment of the anoxic tank and the aerobic tank.
  • FIG. 1 is a schematic diagram of a continuous biological water treatment system using activated sludge model simulation for optimization of residence time.
  • FIG. 2 is a schematic diagram of an A2O process system applying the concept of a biological water treatment system having a concentrated selective odor collecting means according to the present invention.
  • Figure 3 is a graph comparing the TRS release amount for the anaerobic phase and aeration (aeration) phase over time in the AAA activated sludge system.
  • the same reference numerals in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same or similar functions, and unless otherwise specified, each member in the figures The member referred to by the reference numeral may be regarded as a member conforming to these criteria.
  • the continuous biological water treatment system using the activated sludge model simulation for optimizing the residence time according to the present invention is a continuous biological water treatment method, more specifically, A2O to A / O (or various It is based on biological water treatment system applying modified method.
  • the water treatment system according to the present invention is based on various continuous water treatment methods such as A 2 O to A / O, and has a reaction tank (T) including an aeration tank (T3), and the internal space of the reaction tank (T) is variable. It is divided by the expression partitions Tp1 and Tp2.
  • variable partition walls Tp1 and Tp2 are moved by displacement means (not shown).
  • reaction tank (T) may be provided with a water quality automatic measuring device at the front, rear and inside or some of the inside of the reaction tank.
  • a water quality automatic measuring device at the front, rear and inside or some of the inside of the reaction tank.
  • the water quality measuring machine Wa is provided in front of the reaction tank T.
  • the control unit may simply be a control panel including a microcomputer (or PLC control) provided at the site where the reactor is installed, or may be a computer integrated in the central control room that controls the entire water treatment facility.
  • the control unit C generates various types of water component measurement values (eg, TN concentration) measured by the water quality measuring instrument Wa in real time to generate an activated sludge model simulation, and measures the water components predicted by the model simulation.
  • the operating condition is improved by moving the variable partition walls Tp1 and Tp2 through the displacement means by comparing the values with the measured values of the water quality components measured by the water quality automatic measuring device.
  • control unit increases or decreases the aerobic residence time by 0.5 HRT (Hydraulic Retention Time) in consideration of the optimization of operation and ease of control.
  • the continuous biological water treatment system according to the present invention shown in Figure 1 is based on the A2O method, the reaction tank (T), the first variable partition (Tp1), the second variable partition (Tp2), the displacement means, Aeration means (B), conveying means (P1, P2) and the control unit (C) is provided.
  • the reaction tank (T) includes an anaerobic tank (T1), an anaerobic tank (T2) and an aerobic tank (T3), in the anaerobic tank (T1) occurs the release of phosphorus introduced from the raw water, an aerobic tank (T3) ) Decomposition and nitrification of organic matter occurs.
  • Anoxic tank (T2) is denitrification (denitrification) occurs under the condition that the air is not supplied to the nitrate nitrogen introduced through the internal transport in the aerobic tank (T3).
  • Other specific reactor operations are similar to those of conventional techniques, and thus detailed descriptions thereof will be omitted.
  • the first variable partition wall Tp1 is provided between the anaerobic tank T1 and the anaerobic tank T2, and the displacement means (variably) to control the treatment volume, that is, the residence time, of the anaerobic tank T1 and the anaerobic tank T2. To the left and right sides).
  • the lower part of the first variable partition wall Tp1 is spaced apart from the bottom of the reaction tank T at predetermined intervals to secure the mobility of the partition wall.
  • the second variable partition Tp2 is arranged between the anoxic tank T2 and the aerobic tank T3, and the displacement means (not used) to variably adjust the treatment volume, that is, the residence time, of the anoxic tank T2 and the aerobic tank T3. To the left and right sides).
  • the lower portion of the second variable partition wall Tp2 is spaced apart from the bottom of the reaction tank T by a predetermined distance for its mobility, and the air supplied to the aerobic tank T3 into the spaced space flows out into the anaerobic tank T2.
  • a soft plate (described as 'Rubber Plate' in the drawing) at the bottom.
  • the first variable partition Tp1 and the second variable partition Tp2 are independent of each other and individually move by displacement means.
  • the displacement means is for moving the first variable partition Tp1 and the second variable partition Tp2 independently, and may be, for example, a guide rail or a motor installed on an upper portion of the reaction tank T.
  • This motor is preferably a spindle motor controlled by the control unit C in the forward or reverse direction.
  • the aeration means (B) is for supplying air into the aerobic tank (T3) from the lower portion of the reaction tank (T), may be composed of a conventional diffuser and blower.
  • the aeration means B includes a plurality of diffusers (a kind of nozzle) installed at the bottom of the reaction tank T, a pipe connecting the two, and a plurality of solenoid valves installed at a branch of the pipe. (V).
  • the diffuser is arranged in the lower portion of the anaerobic tank (T2) and the aerobic tank (T3) at regular intervals, and in the aerobic tank (T3) area to secure the maximum volume regardless of the movement range of the second variable partition wall (Tp2). It is desirable to arrange them accordingly.
  • the solenoid valve V is turned on or off according to the position of the second variable partition Tp2. do.
  • the solenoid valve is 'on' because air must be supplied from the diffuser on the right side of the second variable partition Tp2. In the diffuser on the left side of the second variable partition Tp2, the air supply must be shut off, so that the solenoid valve is controlled to shut off.
  • the position of the second variable partition Tp2 should be accurately sensed. This is provided with a sensor, the signal of the sensor is transmitted to the control unit (C).
  • conveying means in particular conveying pumps P1 and P2 and conveying lines, are provided, wherein the first conveying pump P1 conveyed from the anaerobic tank T2 to the anaerobic tank T1 is selected as necessary.
  • the second conveying pump P2 which is returned from the aerobic tank T3 to the anoxic tank T2, recovers the nitrified sewage from the aerobic tank T3 to the anoxic tank T2 and denitrates under the condition that no air is supplied to the nitrate nitrogen. It is preferable to be provided because it is to cause the reaction again to more efficiently process the nitrogen in the sewage.
  • the present invention is to improve the treatment efficiency of the continuous water treatment method, especially A2O (Anaerobic-Anoxic-Oxic) process and to ensure the stability of the treated water quality
  • the activated water sludge model simulation is generated by receiving the water quality measurement value measured by the water quality automatic measuring device Wa in real time through the control unit Wa, and the water quality component measured value predicted by the model simulation and the water quality automatic measuring device are The aerobic tank residence time is increased or decreased in such a manner that the variable partition wall is moved through the displacement means to increase and decrease the space of the aerobic tank by comparing the measured water component measured values.
  • control unit receives a water quality measurement value of the influent and effluent measured in real time by the automatic water quality meter, a linearization model unit for predicting the concentration of the state variable using the linearized modular model of ASM 2d,
  • an aeration cycle optimizer for automatically optimizing the aeration cycle every cycle using the concentration of the state variable predicted by the linearization model unit and the maximum allowable concentration of the state variable calculated by the correction unit.
  • variable partition wall is moved to increase and decrease the aerobic residence time, thereby setting an optimal aerobic residence time, thereby reducing the power cost used for aeration.
  • the aerobic tank residence time was reduced in summer when microbial activity was active, and the aerobic tank residence time was increased in winter.
  • the water quality measuring instrument Wa and the control unit C are introduced and constructed, and the water quality measuring instrument Wa and the control unit C are introduced and constructed, and the water quality measuring instrument is measured.
  • the calculated TN concentration is compared with the predicted water quality measurement value (TN concentration) based on the simulation generated by the control unit, and then the optimizer is driven based on the correction value of the rm correction unit.
  • variable partition wall especially the second variable partition wall Tp2
  • the second variable partition wall Tp2 By moving the second variable partition Tp2 (to the right) through the displacement means, the residence time of the excitation tank is increased or decreased in such a manner as to reduce the space of the exhalation tank T3.
  • reaction time changes according to the characteristics of raw water and external conditions, and it is possible to optimize the residence time, improve the treatment efficiency, and secure the stability of the treated water, thereby securing the fundamental active water treatment technology.
  • the water quality component measured by the automatic water quality meter may be at least one selected from the total intake water of the reactor (T) and the outflow water, NH 4 + -N, NO 3 -- N, and PO 4 3- -P.
  • a control method for predicting the value of a state variable in a system in which a process is performed by a model that simulates the process, and optimizing various operating conditions based on the prediction forms a field.
  • Mathematical models used to quantify a process consist of one or more equations related to the input, output, and characteristic data of the target system.
  • Dual mechanical models are more preferably used for successful control because they better mimic events in a given system.
  • Process control methods applied based on model predictions have some degree of uncertainty, which is typically minimized through feedback of errors.
  • the degree of correction depends on the model's prediction accuracy, with more accurate models requiring less correction and ensuring more stable process control.
  • ASM Activated Sludge Model
  • the model is organized in a logical matrix, providing detailed biological kinetics and accurate information in understanding nitrification and denitrification. All state variables are related to the arrangement of stoichiometric coefficients and reaction rate equations.
  • the mass balance equation for each component can be derived from the vertical direction using a suitable combination of stoichiometric coefficients and reaction rate equations.
  • IWA's ASM 2d model is an integrated model of ASM 1 and ASM 2 that mathematically models the reactions of various microorganisms, such as the oxidation, nitrification, denitrification, phosphorus release and uptake of organic substances in biological nutrient removal processes.
  • the existing ASM 2d model (hereinafter, referred to as the 'ASM 2d full model', which is distinguished from the model used in the present invention, the existing ASM 2d model), it is possible to simulate the process, Difficult to use for control for real-time optimization.
  • the present invention is applicable to all activated sludge processes including anaerobic and intermittent aeration processes, such as totally intermittent aeration processes (oxygen / aerobic) and Modified Ludzack-Ettinger (MLE) processes, to change the influent carbon / nitrogen, phosphorus load changes. Therefore, we propose an activated sludge process that optimizes the aeration cycle to minimize energy costs while proactively coping.
  • ASM Active Sludge Model
  • the predictive model used in the present invention is a linearized model of nonlinear monod terms in IWA's ASM 2d model, and in particular, a modular type that simulates the anaerobic, anaerobic, and aerobic processes of biological reactions individually. It may be a model of. This is hereinafter referred to as the linearized modular model of ASM 2d.
  • the linearization model unit predicts the concentration of the state variable, and the difference between the concentration of the state variable predicted by the linearization model unit and the concentration of the state variable actually measured by the automatic water quality measuring instrument.
  • the linearized modular model of ASM 2d classifies the activated sludge process into 17 unit processes, sets 11 state variables for each of the 17 unit processes, and each stoichiometric coefficient and anaerobic according to the state variables. Simulate independently the reaction rate equations for each of anoxic, aerobic,
  • Each of the 17 unit processes, the stoichiometric coefficients according to the 11 state variables, and the reaction rate equation for each of the anaerobic, anaerobic, and aerobic conditions is a modular model determined by the following table.
  • 'Modular model' means a model that can be used in combination in the form of a block. By using each module constituting the model, it is possible to predict the performance of each unit process, and by simply combining the modules, It is a model that makes it easy to simulate the whole process of a system consisting of a reactor.
  • each module of the linear modular model can be used to predict the performance of each unit process, and by simply combining the modules according to the reactor configuration of the entire sewage treatment system, the model can easily simulate the whole system process. In this way, the water quality items in the activated sludge process can be predicted simply, accurately and quickly.
  • the model used in the present invention is a modular model that independently simulates the activated sludge process for each of three conditions: anaerobic, anaerobic, and aerobic, and the reaction rate equation is given differently according to three conditions of anaerobic, anaerobic, and aerobic.
  • the concentrated selective odor collecting means is basically applied to a system having a separate aerobic tank, more specifically an aerobic tank and a system having an aerobic tank.
  • the core of the present invention is the front of the aerobic tank (determines the front and rear direction according to the flow order of the treated sewage, etc.), the upper part of the position in contact with the partition, more specifically, the partition between the anoxic tank and the aerobic tank is installed in the concentrated selective odor collecting means It is to deploy.
  • the present invention allows the odor collecting means to introduce a odor detection sensor, in particular, TRS sensor in order to actively cope with the odor generated in various water treatment facilities to enable the selective and efficient odor collection and removal, and the introduction of the TRS sensor It is also preferable to the organic connection configuration with the malodor treatment means provided with the malodor active monitoring function described later.
  • the present invention is based on a continuous biological water treatment method, more specifically, a biological water treatment system to which A2O to A / O (or various modified methods) is applied, and various reaction tanks such as sedimentation tanks and anaerobic tanks include Instead, it is essential to introduce a selective and simple 'central selective odor collecting means' which is concentrated only on the upper part of the partition between the oxygen tank and the aerobic tank.
  • FIG. 2 is a schematic diagram of a simplified A2O system
  • it is composed of anaerobic tank (T1), anoxic tank (T2), and aerobic tank (T3) (if necessary, flow rate adjustment is provided at the front and settling tank at the rear).
  • T1 anaerobic tank
  • T2 anoxic tank
  • T3 aerobic tank
  • flow rate adjustment is provided at the front and settling tank at the rear.
  • the cover C is covered by the concentrated selective odor collecting means on the partition Tp between the anoxic tank T2 and the aerobic tank T3 to collect the odor.
  • anoxic tank (T2) and the aerobic tank (T3) in the form of a roof but covers the part of the anoxic tank and the aerobic tank including the bulkhead (Tp), thereby lowering the cost of both the existing water treatment facilities and the new water treatment facilities. It can be installed casually and is simple and extremely effective.
  • Odors that occur throughout the 42O type biological water treatment system for example, covering the anaerobic tank (T2) and the aerobic tank (T3), including the partition wall (Tp), and especially covering only one-third (about 30%) of the aerobic tank near the bulkhead. Up to about 75% of the material was found to be possible.
  • the lower end of the cover (C) constituting the concentrated selective odor collecting means is preferably such that the lower end of the cover (C) is immersed in the treated water of the anaerobic tank and the aerobic tank in order to avoid the problem of odor leakage without additional configuration.
  • an automatic water quality analyzer (Wa) is further introduced in order to measure the quality of the influent, the quality of the influent is measured, and an oxidation reduction potential (ORP) for measuring the redox potential value of the water containing the oxide in the aeration tank (T3).
  • Wa automatic water quality analyzer
  • ORP oxidation reduction potential
  • T3 aeration tank
  • the water quality meter may be configured as a device for measuring some or all of the COD, BOD, TOC, T-N, T-P, DO and pH.
  • the measurement items and measuring method of the automatic water quality analyzer Wa are summarized as follows.
  • the upper space gas (Head Space Gas) of the exhalation tank (T3) that is, the odor source is a conventional biofilter unit 20 and the adsorption treatment unit 30, which is a subsequent odor treatment means through a forced transfer by the pump rather than the flow of natural flow. It is preferable to be processed through.
  • the concentrated selective odor collecting means may be provided with a separate TRS sensor (S).
  • the arrangement of the odor collecting means and the operating time are as follows.
  • the cover forming the concentrated selective odor collecting means covers the entire upper portion of the aerobic tank
  • the aerobic tank plane area covers 30% of the aerobic tank plane area while contacting the front bulkhead of the aerobic tank.
  • the collection time in the aerobic tank is based on the AAA test results (see graph in FIG. 3) on the bench scale.
  • odor gas collection proceeds for the first 40 minutes of the aeration stage. It is good, and even more preferably, the odor gas collection is performed for the first 30 minutes of the abandonment stage.
  • the collection time in the aerobic tank is based on the total residence time.
  • the aerobic or anoxic tank head space gas is preferably forcedly transferred through a pump or a blower.
  • the concept of the present invention can be applied to a water treatment system utilizing a continuous biological water treatment method including A2O to A / O (or various modified methods) method, and to a water treatment system in which a minimum aerobic tank (or aerobic tank) is disposed separately. It is preferable to be applied, and in consideration of water treatment efficiency and the like, it is more preferable to be applied to a water treatment system equipped with an oxygen-free tank and an aerobic tank.
  • a bench scale that is, laboratory scale AAA and A / O (Anoxic-Oxic) activated sludge systems were fabricated and operated using an on-line TRS analyzer. Through this, the main odor gas emission sources from the bioreactors of sewage treatment plants were identified, and the odor emission mechanisms were revealed to suggest ways to reduce odor emissions.
  • the sewage sample used was the first sedimentation tank effluent from the Seoul Jungrang sewage treatment plant near the laboratory.
  • Sewage samples were analyzed for COD, TN, NH 3 , NO -3 items according to ASTM for AAA reactor influent and effluent.
  • a laboratory scale A / O activated sludge system was installed to experiment with the optimal control of the odor emitted from the bioreactor operation.
  • the A / O activated sludge system was provided with one anoxic reactor having a capacity of 10 L and two aeration reactors each having a capacity of 10 L.
  • the influent storage tank, the bioreactor, and the sedimentation tank were configured in the same way.
  • a / O reactor operating condition was HRT 10 hours, Solid Retention Time 12 days, Return of Activated Sludge (RAS) 100%, pH about 7, DO 2-3mg / L, MLVSS 3-4g / L was maintained.
  • RAS Activated Sludge
  • the lab scale scale AAA activated sludge system was installed to identify the odor tendency in the bioreactor.
  • the AAA activated sludge system is a 4L bioreactor with a sedimentation tank at the rear end and a storage tank for influent at the front end.
  • the upper part was sealed with a cover, and a gas collecting device for TRS analysis and a gas collecting tube for instrument analysis were installed.
  • the air injector of the bioreactor was operated at intervals of 2 hours for aeration and 2 hours for aeration without intermittent aeration.
  • a stirring device was installed for smooth mixing between the inflow wastewater and the sludge inside the reactor.
  • a stirring device was installed to keep the characteristics of the wastewater constant, and a top of the storage tank was installed with a cover.
  • the operating conditions of the AAA reactor were HRT 8 hours, Solid Retention Time 15 days, Return of Activated Sludge (RAS) 100%, pH 7, DO 2-3mg / L, MLVSS 3-4g / L. .
  • pH, DO concentration, and ORP in the reactor were measured separately by aeration / aeration.
  • a laboratory-scale AAA activated sludge system was installed to evaluate total reducing sulfur compound emissions. From the real-time TRS measurement results, it was confirmed that the reducing sulfur compound accumulated in the anoxic state before the aeration phase was discharged by the degassing at the early stage of the aeration phase.
  • laboratory-scale A / O activated sludge system was installed to identify the odor emission characteristics in the anaerobic and aerobic tanks .
  • the amount of malodorous substances discharged from the front third of the aerobic tank was 75.6% of the total aerobic malodor emission amount. Therefore, it is considered that if the wastewater treatment plant is covered with about 30% of the aerobic tank and the head space gas is collected and treated, it will be an economical and effective way to control the smell of the sewage treatment plant.
  • the treatment for the odor collected in the concentrated selective odor collecting means of the biological water treatment system according to the present invention is discharged after being treated in the biofilter unit 20, the adsorption treatment unit 30, the chemical liquid cleaning processing unit as necessary Can be introduced further.
  • the biofilter unit 20 has a low maintenance cost and shows very high processing efficiency for some materials. However, there are disadvantages in that the installation area is large and the biological treatment of the material is difficult.
  • the core technology of the biofilter uses a known media filling member which can absorb microorganisms capable of decomposing odors and odorous substances and provide a space for microorganisms to maintain their function.
  • the adsorption treatment unit 30 is capable of treating most odorous substances and the efficiency is determined according to the replacement cycle of the adsorbent.
  • the sensor is installed at the rear end as possible as shown in FIG.
  • the adsorption treatment unit 30 filled with various porous grains, especially activated carbon, is filled with an adsorbent capable of reacting with a basic gas in order to effectively adsorb ammonia and amines, which are the main substances of odor, and finally, the processing gas is processed into the atmosphere. Is released.
  • the adsorbent basically has fine pores formed therein and has a specific surface area and strong adsorptive properties.
  • the chemical liquid cleaning treatment unit may be configured as a chemical liquid cleaning tower, the chemical liquid cleaning treatment unit has an advantage that it is suitable for the treatment of water-soluble odorous substances, the installation cost is low, and dust treatment is possible. In addition, the efficiency of chemical cleaning is determined by the replacement cycle of purified water. However, there is a disadvantage in that the treatment water cost is generated and the water-insoluble odor treatment is difficult.
  • Acid washing towers and basic washing towers for alkaline and acidic odor removal, or simple water (water) washing towers, or neutralization washing towers after acidic and basic washings may be further roughened.
  • the solenoid valve V for supplying or blocking air to the diffuser of the aeration means B is turned on / off and returned.
  • the solenoid valve V, the transfer pumps P1, P2, or the illumination lamp be provided with a control signal radio receiver RS.
  • the wireless switch can be found in its specific configuration in FIGS. 4-7, the core of which is a diagram relating to a self-generator for more complete wireless control of the power actuation component.
  • the non-strict approximate direction reference is specified with reference to FIGS. 4 to 7 to divide up, down, left, and right in the state as shown.
  • the present invention realistically proposes a self-generator that can be applied to the switch to be introduced into the road cleaning system using the sewage treatment plant treatment water according to the present invention.
  • the self-generator applied to such a switch can be applied for the on / off control of electrical operation components, such as the transfer pump 20 or lighting lamp.
  • an actuator type operation panel 170 that performs a seesaw motion similar to a normal lamp flashing panel is introduced into the case 61 of the switch 60, and the mounting recess 65 of the case 61 is self-inserted.
  • the main part of the generator is accommodated in a particularly tight fit.
  • the case 61 has a structure and size for only one operating panel 170, but if necessary to deform to have a structure and size for two or more operating panels can be easily modified and applied by those skilled in the art from the present invention It corresponds to matter.
  • the circumference of the case 61 is formed with a coupling groove 67 for the wire-type antenna 183 for emitting a wireless control signal in accordance with the operation of the operation panel 170.
  • FIG. 4 [A] is an exploded perspective view
  • [B] is an exploded perspective view
  • FIG. 5 the self-generator 100 placed in the mounting recess 65 of the case 60 of the switch 60 is
  • the housing (100A) is composed of a body 101 and a cover (102).
  • the body 101 has a seating portion 101B for accommodating [permanent magnet 110-magnetic panel 120-induction coil 130-drive member 140-relay member 150-PCB 180 assembly] ),
  • the shaft mounting portion 101a to which the swing shaft 151 of the relay member 150 which transmits the seesaw operation of the operation panel 170 to the driving member 140 is coupled is formed.
  • the cover 103 is provided with a pressing piece 103A provided with a return elasticity from the connecting piece 103a,
  • the pressure of the operating panel 170 for the seesaw swing operation is transmitted to the pressing piece 103A through the pressing protrusion 171, and then the pressing point 105A of the buffer pad 105 made of elastomer is interlocked with the PCB 180.
  • the control signal (on / off of the transfer pump 20 or the lighting lamp) can be emitted to the outside by the power delivered to the sensor 181 mounted in the) and transmitted from the end 131 of the induction coil 130. .
  • operation panel 170 is a seesaw movement around the axis
  • the method is possible because the shaft projection 173 below the operation panel 170 is coupled to the fitting shaft 103b provided at the center of both fitting holes 103B of the cover 103 through the shaft groove 173c.
  • the PCB 180 having various devices mounted thereon includes a sensor 181 for sensing a pressure and a pressurized position applied as the operation panel 170 moves on the seesaw to generate a control signal.
  • the upper portion of the PCB 180 buffers the pressure of the operation panel 170 delivered through the pressing piece 103A of the cover 103 to be delivered to the sensor to protect the sensor and to accurately press the sensor 181.
  • the shock absorbing pad 105 having the pressing point 105A at that position is covered.
  • the lower portion of the PCB 180 is soldered and coupled through the end 131 of the induction coil 130 protruding upward from the bobbin 133 [magnetic panel 120-induction coil 130-bobbin 133 -Drive member 140 assembly] is mounted.
  • the magnetic body panel 120 (usually between the permanent magnets 110 fixed to the seating portion 101B of the body 101 of the housing 100A, in particular, the upper and lower auxiliary panels 113).
  • the self-generator serves to form a magnetic path, and is assembled so that both ends of the contact portion 121 of the traditional material properties (sometimes referred to as 'iron core') are located.
  • the power is transmitted to the induction coil 130 according to the relative position variation of the permanent magnet 110 and the magnetic panel 120.
  • the magnetic panel 120 having a '-like' shape is inserted into a moving hole 133A of the bobbin 133 (indicated by a hidden line in a perspective concept in the front center one-dot chain line in FIG. 6).
  • a driving member 140 fastened through the rivet pin 141 the driving member is beryllium copper (BeCu for the purpose of reinforcing the function and guarantee strength) ) Preferably consisting of panels).
  • the end of the drive member 140 also contacts the linkage 153 of the relay member 150 such that the pressing force of the operation panel 170 is uniformly transmitted to the drive member 140.
  • the two swing shafts 151 of each of the two relay members 150 are coupled to the shaft mounting portions 101A of the side walls of the body 101 of the housing 100A, respectively.
  • each relay member 150 Since the left and right outer side of each relay member 150 forms a pressurized portion 155 and is pressed by both bottom surfaces of the operation panel 170, the relay member 150 performs a seesaw movement around the swing shaft 151.
  • an interlocking portion 153 is formed, and end portions of the driving member 140 are arranged in the interlocking portion.
  • Only one relay member 150 interlocking portion 153 is provided with a slit 153A into which an end of the driving member 140 is fitted (see a side view in the lower left one-dot chain line circle in FIG. 5A).
  • the other linking portion 153 of the relay member 150 has the same shape as the right-bottom dashed-dotted side view of FIG. 5A,
  • Both linkages 153 of the other relay member 150 have the same shape as the right-bottom dashed-dotted side view of FIG. 5A.
  • the return means 160 includes a coil spring 161 and a coil spring lower portion mounted on the guide portion 103C formed inside the cover 103 of the housing 100A. It consists of a cap 163 to be coupled.
  • the relay member 150 always returns to the state before the initial pressurization.
  • the magnetic panel 120 connected to the drive member 140 coupled to the interlocking part 153 of the one relay member 150 and the slit 153A is also positioned at a predetermined position regardless of the magnetic force of the N pole or the S pole of the permanent magnet 110. Stay on.
  • the contact portion 121 of the magnetic panel 120 is attached to the N pole or the S pole of the permanent magnet 110 according to the pressing direction (exactly provided on the upper and lower surfaces of the magnet body 111). Or attached to the lower auxiliary panel 113,
  • the contact portion 121 of the magnetic panel 120 is positioned in the middle of the upper and lower auxiliary panels 113 by the return means 160.
  • the permanent magnet 110 is a secondary magnet coupled to the cylindrical magnet body 111 and the upper and lower surfaces of the magnet body 111 in consideration of ease of manufacture, assembly strength, magnetic strength, and easy displacement relative to the magnetic panel 120. It is made of a panel 113,
  • the synthetic resin protrusion 111a fitted into the hollow of the magnet body 111 is inserted into each hole 113a of the upper and lower auxiliary panels 113, and heat is applied to the protrusion 111a.
  • the ends are bottled to ensure mutual bonding.
  • both ends 131 of the induction coil 130 wound on the bobbin 133 having a flow hole 133A having a size that enables the seesaw movement of the magnetic body panel 120 is the upper end of the bobbin (Fig. 6), and serves as a pin for mounting on the PCB 180.
  • FIG. 7 illustrates a permanent magnet 110-a magnetic panel 120A, 120B-an induction coil 130-a driving member 140 assembly different from FIG.
  • the relative displacement method of the permanent magnet and the magnetic panel is that the magnetic panel is fixed and the permanent magnet is raised and lowered.
  • the induction coil wound bobbin is provided in each of the two magnetic panels.
  • FIG. 7A is a perspective view
  • [B] is a plan view
  • [C] is a side view.
  • the magnetic panel 120A is coupled to the left side of the base panel 100B, which serves as a kind of housing.
  • the magnetic panel (120A) is the upper portion is bent and raised so that the contact portion is located on the upper portion of the permanent magnet (110), protruding coil coupling portion 123 to which the bobbin 133 wound around the induction coil 130 is fitted Is formed (see in FIG. 7B left-dotted circle).
  • the other magnetic panel 120B is coupled to the right side of the base panel 100B, and the magnetic panel 120B forms a flat plate shape such that the contact portion is positioned below the permanent magnet 110.
  • the disk-shaped permanent magnet 110 located between the upper and lower contact portions of each of the magnetic panels 120A and 120B is connected to the driving member 140 of beryllium copper material.
  • the driving member 140 is penetrated and fixed to the shaft pin 165 coupled to the base panel 100B, and is supported by the coil spring 161 arranged on the outer circumferential surface of the shaft pin 165 to form the return means 160. Keep it.
  • the driving member 140 fitted into the slit 153A of the linkage 153 may be interlocked.
  • each induction coil 130 may be mounted on the PCB in a similar manner.
  • T2 anaerobic tank
  • T3 aerobic tank
  • Tp1, Tp2 Variable bulkhead P1, P2: Transfer pump
  • biofilter unit 30 adsorption treatment unit

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템에 관한 것으로, 보다 상세하게는 변위수단에 의하여 움직이는 가변식 격벽이 구비된 가변식 고도하수 처리 시스템에서 하수 및 오폐수에 대한 생물학적 처리 공정을 개선하여 연속식 생물학적 수처리 공정, 특히 A2O(Anaerobic-Anoxic-Oxic) 공정의 처리효율을 개선하고 처리수질의 안정성을 확보하고자, 호기조를 포함하는 반응조에 대한 유입수 및 유출수의 수질 성분 측정값을 수질자동측정기를 통하여 계측하고, 이를 컨트롤부에서 활성슬러지 모델 시물레이션을 실시간으로 생성시켜 비교하여 최적의 수처리가 이루어지도록 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 체적을 증감시키는 방식으로 호기조 체류시간을 증감시킴으로써 최적의 호기조 체류시간을 설정하여 폭기에 사용되는 동력비를 절감시킬 수 있도록 한 연속식 생물학적 수처리 시스템에 관한 것이다. 본 발명에 따른 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템은 호기조를 포함하는 반응조를 갖고, 반응조의 내부 공간이 가변식 격벽에 의하여 분할된 연속식 생물학적 수처리 시스템에 있어서, 상기 가변식 격벽은 변위수단에 의하여 이동되며, 상기 반응조의 전단, 후단 및 반응조 내부의 일부 또는 모두에는 수질자동측정기가 구비되어 있고, 상기 수질자동측정기에서 측정된 수질 성분 측정값을 실시간으로 입력받아 활성슬러지 모델 시물레이션을 생성하고, 이 모델 시물레이션에서 예측된 수질 성분 측정값과 상기 수질자동측정기에서 측정된 수질 성분 측정값을 비교하여 상기 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 공간을 증감시키는 방식으로 호기조 체류시간을 증감시키는 컨트롤부를 포함하여 이루어진다.

Description

체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템
본 발명은 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템에 관한 것으로,
보다 상세하게는 변위수단에 의하여 움직이는 가변식 격벽이 구비된 가변식 고도하수 처리 시스템에서 하수 및 오폐수에 대한 생물학적 처리 공정을 개선하여 연속식 생물학적 수처리 공정, 특히 A2O(Anaerobic-Anoxic-Oxic) 공정의 처리효율을 개선하고 처리수질의 안정성을 확보하고자,
호기조를 포함하는 반응조에 대한 유입수 및 유출수의 수질 성분 측정값을 수질자동측정기를 통하여 계측하고, 이를 컨트롤부에서 활성슬러지 모델 시물레이션을 실시간으로 생성시켜 비교하여 최적의 수처리가 이루어지도록 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 체적을 증감시키는 방식으로 호기조 체류시간을 증감시킴으로써 최적의 호기조 체류시간을 설정하여 폭기에 사용되는 동력비를 절감시킬 수 있도록 한 연속식 생물학적 수처리 시스템에 관한 것이다.
초기의 기존 하수처리장 및 처리시설의 개조는 설계용량 이상으로 유입유량이 증가되거나 유량은 증가되지 않았으나 총오염물질 유입량이 증가되어 배출기준에 부합되는 수질을 얻지 못할 때 수행되었다. 현재 호소와 바다에서의 부영양화가 가속화되어 상수원이 오염되고 이로 인한 생태계 파괴로 자연환경이 크게 영향을 받게 된 이후로는 영양염을 제거하기 위한 공정을 도입하기 위하여 기존 처리장을 개선 및 보완하였다.
특히, 하수처리장의 경우 주로 질소와 인과 같은 영양염류를 처리하기 위하여 현재 공정에서 새로운 공정을 추가하거나 기존공정을 보완하는 방법으로 여러 가지 공법들과 방안들이 제시되어 왔다. 1980년대부터 개발되기 시작한 생물학적 영양염 제거(BNR, Biological Nutrient Removal) 공정은 처리 대상과 처리목적에 따라 매우 다양화 및 세분화된 다양한 공법들이 상용화되어 현장에 적용되고 있다. 상용화된 BNR주어진 처리장 조건에 의하여 다양한 공법들을 선택할 수 있을 정도로 상용화된 공저뿐만 아니라 배출기준에 맞는 처리공정을 선택할 수 있다.
일반화된 BNR공정은 미생물의 성장 상태에 따라 크게 부유성장 공정과 부착성장 공정으로 나누며, 부유성장 공정은 반응조에서 미생물이 공급된 공기 흐름에 의하여 유동 및 자유롭게 이동하며 유기물 및 질소를 제거하는 공정으로 유기물과 영양염을 동시에 제거하도록 설계된 활성슬러지 공정을 말하며 처리시설의 슬러지 종류 및 처리 상태에 따라 연속흐름 단일슬러지공정(continuous flow single sludge system)과 연속흐름 다단 슬러지공정(continuos flow multiple sludge system) 및 회분식 공정으로 나누어진다.
부착성장 공정은 미생물을 다양한 형태와 재질로 제작된 담체 또는 여재에 미생물을 부착성장시켜 반응조에서 생물학적 유기물 및 영양염 제거에 필요한 미생물량이 안정적으로 유지되도록 한 것이다. 부착성장 공정은 메디아 종류, 형상 및 그 충진 방법에 따라서 분류될 뿐만 아니라 메디아가 유동성이냐 고정상이냐에 반응조 유효용적의 60%이상으로 충진되어 있느냐에 따라서 공정형태가 달라진다. 대표적인 부착성장 공정으로는 살수여상, RBC, 유동상, 침적고정상 반응기 등이 있으며, 각 반응기의 운전조건, 형태, 공정 배열에 따라 기존 활성슬러지공정을 영양염제거 공정으로 전환시켜 기존 처리장을 운전할 수 있으며, 사용매체의 종류와 충전율, 비표면적 등에 따라서 처리용량 증대 및 안정적인 처리수질 확보와 같은 이득을 얻을 수 있다.
위와 같이 다양한 종류의 BNR공정이 개발되어 현장에 적용되고 있으나, 처리하고자 하는 대상의 특성과 요구되는 처리수질에 따라서 각 공정을 최적화하여야 할 필요성이 있다. 특히, 국내에서 자체 개발된 기술이 아니라 국외 기술을 도입하여 국내에 적용하고자 하는 경우는 거시적인 환경조건 및 운전조건은 문제가 되지 않으나 미시적인 환경 및 운전조건에 따라 그 처리수질 및 공정효율이 결정되게 되므로 다양한 형태 또는 접근법으로 기존 처리장을 개선 및 보완하는 것이 필요하다.
처리수질에 따라 선택할 수 있는 생물학적 영양염 제거(BNR, Biological Nutrient Removal) 공정은 질소만 제거, 질소와 인의 동시 제거, 그리고 인만 제거하는 경우로 나눌 수 있는데,
생물학적 영양염류 제거공정(Biological Nutrient Removal, BNR)들은 질소·인의 제거를 위해 여러 가지로 개발되어 왔다. 일반적으로 이들 공정은 다음과 같은 공통점을 가지고 있다.
○ 호기조와 질산성 질소의 순환에 따라 혐기조와 무산소조로 구분된다.
○ 인을 방출하는 조가 있다. 용존산소와 질산성 질소가 존재하지 않는 혐기조로서 유입수나 탄소원 또는 아세트산 등의 휘발성 지방산(Volatile Fatty Acid)이 존재해야 한다.
○ 질산화/탈질조가 있다. 여러 가지 방법으로 질산화액을 반송시킨다.
이 공정들을 최적화하는 요체는 내·외부 탄소원의 공급과 혐기성 상태를 조성하여 인방출을 안정화시키는 것이다.
기존 활성슬러지 공정, 즉 생물학적 수처리 공정에서는 질소는 10~30%, 인은 10~25%를 제거할 수 있으며, 하수 내 질소를 80%까지 제거할 수 있는 공정으로는 MLE(Modified Ludzac-Ettinger)공정, A2/O 공정, UCT와 VIP 등이 있다. 질소와 인의 동시 제거에는 Modified Bardenpho공정, 탈질화 여과기를 부가적으로 설치한 A2/O공정, 그리고 UCT공정을 사용할 수 있다. 특히, 인을 80%이상 제거하기 위해서는 Phostrip 공정을 이용한 응집제거가 가장 확실한 방법으로 제시되고 있다. 예를 들어 질소만 85% 이상 제거하고자 하는 경우는 4단계 Bardenpho 공정을 BNR공정으로 선택할 수 있으며, 인을 제거하고자 하는 경우에는 화학적 응집침전 공정을 첨가하여 질소와 인을 동시에 제거할 수 있다.
한편 이상과 같은 연속식(continuos) 생물학적 수처리 공법에 대응된다고 할 수 있는 회분식(batch) 생물학적 수처리 공법은 유입방식에 따라 SBR(Sequencing Batch Reactor)로 대표되는 간헐유입 연속회분식 반응조와 ICEAS(Intermittent Cycle Extended Aeration System)로 대표되는 연속유입 회분식반응조로 분류될 수 있다.
또 연속식(continuos) 생물학적 수처리 공법에 적용되고 간헐 포기조를 포함하는 시스템인 무산소/호기 교호형(AAA: alternative anoxic aerobic) 시스템은, 각기 다른 반응을 위해, 간단히 포기(또는 폭기) 장치를 ON/OFF 함으로써 질산화(호기)/탈질(무산소), 인 방출(무산소)/인 과잉 섭취(호기)에 필요한 다른 환경을 하나의 반응조 내에서 연속적으로 만든다. 포기되는 동안 유입 암모니아는 독립 영양 미생물(질산화 미생물)에 의해 질산화된다. 이어지는 비포기 기간에, 생성된 질산염은 유입 유기 탄소의 존재하에 질소 가스로 탈질된다.
회분식(batch) 생물학적 수처리 공법은 한 반응조에서 반응 및 침전이 동시에 일어나므로 초기투자비가 저렴한 장점을 갖는다.
일반적으로 생활하수, 축산 폐수, 상업 오폐수, 정화조 폐수 등과 같은 오폐수에는 고농도의 유기물질과 고농도의 질소 및 인이 다량 포함되어 있으므로, 주변 하천의 부영양화의 방지를 위하여 환경기준에 맞추어 유기물, 질소, 인 등을 제거하도록 기준치를 정하여 법률로 규제하고 있으며, 이를 위하여 정화시설에 의하여 방류수 배출허용기준치 이하로 적정 처리하여 배출하도록 하고 있다.
기존 표준 활성 슬러지 공정은 온도, pH, 유입수내 오염물질의 농도 등과 같은 주변 조건 변화에 의해 침강성이 달라져 최종 처리수 내 수질의 변동이 심하게 된다. 침강성의 악화에 의해 활성슬러지가 최종처리수 내 포함되어 유출될 경우 유출된 활성슬러지에 의해 높은 유기물 농도를 나타내는 단점을 가지고 있다.
무엇보다도 4계절이 뚜렷하고 계절적 변화에 따라 물의 사용량 변화, 수온변화 등이 특징지어지는 지역에서는 계절변화에 따른 오폐수의 성상 및 수온 변화가 심하기 때문에 동일한 미생물 농도 및 체류시간에서는 서로 다른 처리효율을 나타낼 수밖에 없다. 그러나 계절적 변화에 따른 원수의 성상 변화는 일정한 패턴을 유지하게 된다. 가장 쉽게 생각할 수 있는 수온의 경우에도 계절 변화에 따라 일정한 패턴을 유지하게 되며, 물 사용량이 계절적 변화에 많은 영향을 받으므로, 이로 인해 원수의 농도변화 또한 일정한 패턴을 유지하게 된다. 따라서, 이러한 일정한 원수의 특성 변화에 맞추어 생물학적 처리공정의 체류시간 가변성을 모델을 통하여 예측하고 대응할 수 있다.
종래 변위수단에 의하여 움직이는 가변식 격벽이 구비된 가변식 고도하수 처리 기술로는
특허등록 제10-0386191호(2003년05월21일) [가변형 격벽이 구비된 반응조]가 있는데,
상기 등록특허는 하수나 폐수가 유입되어 물리, 화학 및 생물적으로 반응하는 반응조를 하나 이상의 반응공간으로 구획할 수 있도록 반응조 내부에 가변형 격벽을 설치함으로써 유입 수량 및 부하 변동에 능동적으로 대응할 수 있고, 질산화조와 탈질산화조를 유입부하에 대응하여 가변적으로 조정함으로써 변형된 고도처리공정을 신속히 적용할 수 있으며, 반응조 내의 흐름을 자유롭게 변경시켜 처리효율을 향상시킬 수 있는 가변형 격벽이 구비된 반응조에 관한 것이며,
주요 구성은 하폐수가 유입되어 일정시간 체류하면서 화학적 및 생물학적으로 반응하는 반응조에 있어서, 상기 반응조의 내부에 설치되고 상기 반응조의 단면과 유사한 형태를 갖는 프레임과; 상기 프레임에 슬라이드 및 회전가능하게 설치된 다수의 격판과; 상기 격판을 이송시키기 위한 이송수단 및; 상기 격판을 회전시키기 위한 회전수단을 포함한다.
또 특허등록 제10-0454362호(2004년10월15일) [가변형 간벽이 설치된 연속 회분식 반응조 및 이를 이용한생물학적 하·폐수 고도처리방법]이 있는데,
상기 등록특허는 소정 크기의 연속 회분식 반응조에 설치된 하나 이상의 가변형 간벽을 열거나 닫아 하나의 반응조를 다수의 반응실로 분리시키거나 통합시킴으로써, 원수의 유량 및 부하변동에 용이하게 대처할 수 있고, 반응조를 공간적으로 분리시켜 순혐기 또는 무산소 상태를 달성할 수 있으며, 시간 및 공간적으로 호기와 혐기 또는 무산소 상태를 반복적으로 조성함으로써 탈질 및 탈인 효율을 증대시킬 뿐만 아니라 하폐수와 슬러지를 순환시키기 위한 순환펌프 등을 생략하여 설치비용을 절감하고 운영 및 유지관리가 용이하게 되는 가변형 격벽이 설치된 연속 회분식 반응조 및 이를 이용한 생물학적 하·폐수 고도처리방법에 관한 것이다
아울러 특허등록 제10-0850488호(등록일자 2008년07월30일) [용량가변형 하폐수처리장치]가 있는데,
상기 등록특허는 유입탱크와 유도배관에 의하여 연결되는 혐기조와, 상기 혐기조의 우단에 연속적으로 설치되는 무산소조와 호기조와 범용분리조 및 탈기조로 이루어지는 생물반응조;로 구성되되, 상기 무산소조와 호기조는 전후면 내측에 복수개의 가이드블록이 상호 대향되도록 각각 설치되고, 상기 각각의 가이드블록에 이동격벽이 끼움되어 그 내부 공간이 변경가능하도록 구획되어, 혐기조와 무산소조의 처리용량을 유입수질 및 유입유량에 따라 조절할 수 있는 효과가 있다.
그러나 이러한 종래 가변식 고도하수 처리 기술들은 단순히 계절별로 유입수 수온변화에 따라서 호기조의 체적을 증감하는 것이어서 능동적 대응의 한계를 갖고, 이에 따라 폭기를 상대적으로 과도하게 사용하므로 운전비용 증가나 최적의 반응조건 제시 등에 문제가 있었다.
한편, 다양한 오수, 폐수, 하수를 정화 처리하기 위하여 연속식(continuos) 생물학적 수처리 공법 또는 회분식(batch) 생물학적 수처리 공법을 적용한 다양한 생물학적 수처리 시설이 설치, 운전되는데, 이때 다양한 반응조에서 악취가 발생되며, 이 악취가스를 대기 중으로 방출하지 않도록 하는 것이 필요하다.
특히 다양한 반응조에서 발생된 악취의 포집과 관련된 기술로는
(주)엑센 등의 특허등록 제0975301호(2010년08월05일) [하폐수처리장의 악취방지를 위한 바이오필터 일체형 탈취커버장치]가 있는데, 이 등록특허는 하폐수처리장의 농축조, 침전조, 저류조 등과 같은 악취발생 시설에 악취의 확산방지를 위해 일반적으로 설치되는 커버에 악취 분해기능을 구비하는 미생물 탈취장치를 일체로 설치하여, 악취발생 시설에 연결되는 배관이나 별도의 탈취장치가 없이도 발생하는 냄새의 확산을 방지함과 동시에 생물학적 탈취와 악취제어가 가능한 기능성 탈취커버장치에 관한 것이다.
또 주식회사 비비 테크노의 특허공개 제2009-0127852호(공개일자 2009년12월14일) [가축분뇨처리설비의 잔류악취제거장치]가 있는데, 상기 공개특허는 각종 첨가제를 사용하거나 발효를 통해 처리하여도 잔류되는 악취로 인해 처리오수를 즉각 하천에 방류하지 못하고 일단 여과장치를 경유하여 처리하는데서 용량이 과다하여 전량 처리하지 못하고 대충 처리해 방류를 해 문제를 해결하기 위한 것으로, 특히 집단양돈장을 위한 종합처리시설들(이미 설치되거나 신설되는 시설 모두)에 부가 설치할 수 있는 잔류악취제거장치를 제공하여 효과적인 발효활성화를 촉진시킬 수 있도록 한 것이다.
또 백구엔지니어링(주)의 특허등록 제0949132호(등록일자 2010년03월16일) [가축분뇨 등 부산물을 이용한 퇴비화시설의 악취 배출시스템]이 있는데, 상기 등록특허는 퇴비화시설의 지붕에 솟을지붕을 형성해 악취의 포집공간부를 터널식으로 형성하고, 포집공간부에 덕트를 설치해 포집된 악취를 배출 시킬 뿐만 아니라 악취가 심한부분을 윈치커튼으로 분리하여 나머지 부분에서 자연순환식 공기 배출이 되도록 구성하며, 악취가 거의 발생되지 않는 후숙시설에는 솟을지붕 내부에 먼지를 제거하도록 구성된 가축분뇨 등 부산물을 이용한 퇴비화시설의 악취 배출시스템에 관한 것이다.
또 김태현의 실용신안등록 제0446050호(등록일자 2009년09월11일) [축분뇨 악취 제거 장치]가 있는데, 상기 등록고안은 축사, 축사에 부설된 정화조 및 축분뇨를 발효 건조 처리하는 발효 건조장 등의 축분뇨 악취 발생 시설로부터 발생되는 고약한 악취를 배기시키면서 효과적인 물 분사에 의한 탈취와 아울러 제주송이(scoria)와 숯의 필터링에 의한 탈취를 통해 완벽하게 제거하여 정화된 공기만을 대기 방출할 수 있고, 특히 적은 비용으로 용이하게 구현 및 실시 가능함에 따라 영세한 축산 농가에 원활히 보급되어 많은 도움을 줄 수 있는 축분뇨 악취 제거 장치에 관한 것이다.
그러나 이들은 모두 반응조의 전체를 지붕식으로 덮은 다음 악취를 포집하거나 처리하는 형태이다.
이러한 점은 학교법인 건국대학교의 특허등록 제0556338호(2006년02월23일) [하/폐수종말처리장에서의 악취 제거장치 및 그 방법]에서도 마찬가지인데, 즉 이 등록특허는 하/폐수종말처리장의 하폐수저장조나 포기조에서 발생하는 악취물질을 포집하고, 그 악취에 전자빔을 조사함으로써 직접 악취 분해 및 발생하는 오존수를 재투입시켜 하폐수처리에 도움을 주거나, 악취물질을 발생하는 기체를 제거토록 하는 하/폐수종말처리장에서의 악취제거장치 및 그 방법에 관한 것으로, 하폐수저장조, 침사지, 침전조, 포기조, 농축조 모두에서 악취를 포집하여 처리하는 방안을 제시하고 있다.
이와 같이 종래 생물학적 수처리 시설에서는 가급적 다양한 반응조 모두에 지붕과 같은 덮개를 설치하고 덮개에 배관과 펌프를 설치하여 악취를 포집한 후 처리하는 방안에만 매몰되어 있는데,
이러한 비선택적이고 무차별, 무계획적인 방안은 이론적으로는 악취를 완벽하게 포집 처리하여 냄새로 인한 혐오감과 피해를 줄일 수 있을 것 같으나, 현실적으로는 신규 시설은 물론 기존 시설까지 모든 반응조에 지붕이나 덮개를 설치한다는 것은 비용측면이나 수처리 시설 운전 및 관리면에서도 불가능하여 실제 적용되기에는 무리가 있다.
즉, 단순히 각 공정의 반응조 마다 덮개를 씌우고, 덮개 안의 공기를 포집하여 바이오필터 등의 악취처리시설에서 처리하는 것은 각 공정의 반응조들에서 포집되는 공기의 양이 너무 많기 때문에 후단에 용량이 큰 송풍기와 바이오필터 등을 요구하게 된다. 이는 결국 운영자들에게 경제적인 부담을 주게 된다.
한편, 종래 공지의 생물학적 수처리 시설 등에서 발생된 악취의 처리 방법으로는 토양 탈취법, 흡착법, 미생물처리법, 바이오 필터법, 일반 세정법 등이 있는데, 각각이 장단점을 갖고 있다.
예를 들어 약액 세정법은 수용성 악취물질 처리에 적합하고 설치비가 저렴하며, 분진처리가 가능하다는 장점을 갖는다. 약액 세정법은 순화수의 교체 주기에 따라 효율이 결정된다. 하지만 처리수 비용이 발생하고 비수용성 악취 처리가 어렵다는 단점이 있다.
또 바이오 필터법은 유지비용이 저렴하고 일부 물질에 대해 아주 높은 처리효율을 보인다. 하지만 상대적으로 설치면적이 크고 물질의 생물학적 처리가 어렵다는 단점이 있다.
흡착법은 대부분의 악취 물질 처리가 가능하고 흡착제의 교체 주기에 따라 효율이 결정된다. 하지만 활성탄 교체 비용이 발생하고 고농도 악취 처리시 비용이 과다한 문제점이 있다.
종래 다양한 악취, 즉 기체오염원에 대한 효율적 처리를 위한 기술로는 특허등록 제0930987호(등록일자 2009년12월07일) [오존발생부가 내장된 고효율 탈취 조합 스크러버 시스템을 이용한 통합형 악취처리장치]가 있는데,
상기 등록특허는 악취처리 장치내에 오존발생부를 구비함으로써, 악취를 오존산화, 습식세정 및 흡착을 동시에 할 수 있는 오존발생부가 내장된 고효율 탈취 조합 스크러버 시스템을 이용한 통합형 악취처리장치에 관한 것으로, 오존발생부가 내장된 고효율 탈취 조합 스크러버 시스템을 이용한 통합형 악취처리장치는 충전부, 습식처리부, 미스트 제거부 및 흡착처리부로 이루어진 악취 처리장치에 있어서, 상기 미스트 제거부 상부에 위치하여 악취 유입구로 유입된 악취를 산화시키기 위한 오존을 공급하면서, 상기 습식처리부를 통과한 상기 악취에 포함된 상대습도를 낮추기 위하여 오존방전관에서 오존발생시 방출하는 열을 이용하기 위한 오존 발생부를 더 포함함에 기술적 특징이 있다.
또 특허등록 제1005636호(등록일자 2010년12월27일) [수중 플라즈마 발생장치를 이용한 유해가스 및 복합악취 제거용 정화시스템]은 수중 플라즈마 기술과 습식 스크러버 형태의 세정장치를 효율적으로 연계ㆍ접목시켜 대용량의 유해가스 및 복합악취를 효율적으로 정화할 수 있도록 한 수중 플라즈마를 이용한 유해가스 및 복합악취 제거용 정화시스템에 관한 것이다.
그러나 이들은 모두 시스템으로 유입되는 악취의 종류 및 농도에 따른 효율적인 처리방법이나 시설비용, 유지관리비용의 저하 방안, 배출 가스의 법적 기준 충족, 그리고 종합 악취 관제 시스템 구현을 통한 악취 능동감시 및 처리시스템을 구현하기에는 부족한 점이 많다.
이에 본 발명은 연속식(continuos) 생물학적 수처리 공법, 구체적으로는 A2O 내지 A/O(또는 다양한 변형공법) 공법을 적용한 수처리 시설, 보다 구체적으로는 변위수단에 의하여 움직이는 가변식 격벽이 구비된 가변식 A2O(Anaerobic-Anoxic-Oxic) 수처리 시스템에서 A2O 공정의 처리효율을 개선하고 처리수질의 안정성을 확보하고자, 호기조를 포함하는 반응조에 대한 유입수 및 유출수의 수질 성분 측정값을 수질자동측정기를 통하여 계측하고, 이를 컨트롤부에서 활성슬러지 모델 시물레이션을 실시간으로 생성시켜 비교하여 최적의 수처리가 이루어지도록 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 체적을 증감시키는 방식으로 호기조 체류시간을 증감시킴으로써 최적의 호기조 체류시간을 설정하여 폭기에 사용되는 동력비를 절감시킬 수 있도록 한 연속식 생물학적 수처리 시스템에을 제공하는 것을 목적으로 한다.
한편, 본 발명은 연속식(continuos) 생물학적 수처리 공법, 특히 A2O 내지 A/O(또는 다양한 변형공법) 공법을 적용한 수처리 시설에서 무엇보다도 호기조 전단 격벽 상부, 특히 무산소조와 호기조 사이의 격벽 상부에 설치되어 호기조에서 발생되는 악취를 집중 포집 처리하도록 구성하여 선택적이고 집중되어 있어 단순화된 악취포집수단 설치만으로도 악취의 대부분을 포집 처리할 수 있어 효율이 크게 증진된 생물학적 수처리 시스템을 제공하는 것을 목적으로 한다.
또 본 발명은 수처리 시설에서 발생되는 악취에 능동적으로 대처할 수 있도록 하기 위하여 악취포집수단이 악취 감지 센서, 특히 TRS센서를 더 도입하여 집중 선택적이고 효율적인 악취 포집 및 제거를 가능케 하는 생물학적 수처리 시스템을 제공하는 것을 목적으로 한다.
나아가 본 발명은 악취포집수단이 덮개를 포함하고, 이 덮개가 격벽을 포함하여 무산소조 및 호기조의 일부를 덮고, 그 하단은 무산소조 및 호기조의 처리수에 잠겨 있어 단순하여도 극히 효과적인 악취 포집, 처리가 가능한 생물학적 수처리 시스템을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템은
호기조를 포함하는 반응조를 갖고, 반응조의 내부 공간이 가변식 격벽에 의하여 분할된 연속식 생물학적 수처리 시스템에 있어서,
상기 가변식 격벽은 변위수단에 의하여 이동되며,
상기 반응조의 전단, 후단 및 반응조 내부의 일부 또는 모두에는 수질자동측정기가 구비되어 있고,
상기 수질자동측정기에서 측정된 수질 성분 측정값을 실시간으로 입력받아 활성슬러지 모델 시물레이션을 생성하고, 이 모델 시물레이션에서 예측된 수질 성분 측정값과 상기 수질자동측정기에서 측정된 수질 성분 측정값을 비교하여 상기 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 공간을 증감시키는 방식으로 호기조 체류시간을 증감시키는 컨트롤부를 포함하여 이루어진 것을 특징으로 한다.
본 발명에 따른 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템에서 상기 컨트롤부는 수질자동측정기에서 실시간으로 측정되는 유입수 및 유출수의 수질 성분 측정값을 입력받아, ASM 2d의 선형화된 모듈형 모델을 이용하여 상태변수의 농도를 예측하는 선형화 모델부와, 상기 선형화 모델부가 예측한 상태변수의 농도와 상기 수질자동측정기에서 실제 측정한 상태변수의 농도 간의 차이를 보정하여 상기 상태변수의 최대 허용농도를 산출하는 보정부와, 상기 선형화 모델부가 예측한 상태변수의 농도 및 상기 보정부가 산출한 상태변수의 최대 허용 농도를 이용하여 폭기 주기를 매 주기마다 자동으로 최적화하는 폭기 주기 최적화부를 포함하여 이루어지고,
또 상기 컨트롤부는 호기조 체류시간을 0.5HRT씩 증감시키는 것이 바람직하다.
나아가 본 발명에 따른 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템은 집중 선택형 악취포집수단을 더 도입하기 위하여
호기조; 및
상기 호기조의 전방 격벽과 접하는 위치 상부에 설치되어 있는 집중 선택형 악취포집수단;
을 포함하여 이루어진다.
또 본 발명에 따른 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템에서
상기 호기조 전단에 위치한 무산소조를 더 포함하고, 상기 악취포집수단은 상기 무산소조 및 상기 호기조 사이의 격벽 상부에 설치되어 있으며,
상기 악취포집수단은 TRS센서를 포함하고,
상기 악취포집수단은 덮개를 포함하며,
상기 덮개는 격벽을 포함하여 무산소조 및 호기조의 일부를 덮고, 그 하단은 무산소조 및 호기조의 처리수에 잠겨 있는 것이 바람직하다.
본 발명에 따른 연속식 생물학적 수처리 시스템은 연속식 고도 수처리 공정의 처리효율을 개선하고 처리수질의 안정성을 확보하고자, 호기조를 포함하는 반응조에 대한 유입수 및 유출수의 수질 성분 측정값을 수질자동측정기를 통하여 계측하고, 이를 컨트롤부에서 활성슬러지 모델 시물레이션을 실시간으로 생성시켜 비교하여 최적의 수처리가 이루어지도록 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 체적을 증감시키는 방식으로 호기조 체류시간을 증감시킴으로써 최적의 호기조 체류시간을 설정하여 폭기에 사용되는 동력비를 절감시킬 수 있으며, 유입수 조건, 온도조건 등의 변화에 실시간으로 능동적인 대처가 가능하여 운전조건의 최적화가 가능하다.
한편, 본 발명에 따른 생물학적 수처리 시스템은 연속식(continuos) 생물학적 수처리 공법, 특히 A2O 내지 A/O(또는 다양한 변형공법) 공법을 적용한 수처리 시설에서 무엇보다도 호기조 전단 격벽 상부, 특히 무산소조와 호기조 사이의 격벽 상부에 설치되어 호기조에서 발생되는 악취를 집중 포집 처리하도록 구성하여 선택적이고 집중되어 있어 단순화된 악취포집수단 설치만으로도 악취의 대부분을 포집 처리할 수 있어 효율이 크게 증진되며, 또 수처리 시설에서 발생되는 악취에 능동적으로 대처할 수 있도록 하기 위하여 악취포집수단이 악취 감지 센서, 특히 TRS센서를 더 도입하여 집중 선택적이고 효율적인 악취 포집 및 제거를 가능케 하고, 나아가 악취포집수단이 덮개를 포함하고, 이 덮개가 격벽을 포함하여 무산소조 및 호기조의 일부를 덮고, 그 하단은 무산소조 및 호기조의 처리수에 잠겨 있어 단순하여도 극히 효과적인 악취 포집, 처리가 가능하다.
도 1은 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템의 개략도.
도 2는 본 발명에 따른 집중 선택형 악취포집수단을 구비한 생물학적 수처리 시스템의 개념을 적용한 A2O 공법 시스템의 개략도.
도 3은 AAA 활성슬러지 시스템에서 시간경과에 따라 무산소단계 및 호기(포기)단계에 대한 TRS 방출양 비교 그래프.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하도록 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 구현예(態樣, aspect)(또는 실시예)들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면에서 동일한 참조부호, 특히 십의 자리 및 일의 자리 수, 또는 십의 자리, 일의 자리 및 알파벳이 동일한 참조부호는 동일 또는 유사한 기능을 갖는 부재를 나타내고, 특별한 언급이 없을 경우 도면의 각 참조부호가 지칭하는 부재는 이러한 기준에 준하는 부재로 파악하면 된다.
또 각 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께를 과장되게 크거나(또는 두껍게) 작게(또는 얇게) 표현하거나, 단순화하여 표현하고 있으나 이에 의하여 본 발명의 보호범위가 제한적으로 해석되어서는 안 된다.
본 명세서에서 사용한 용어는 단지 특정한 구현예(태양, 態樣, aspect)(또는 실시예)를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, ~포함하다~ 또는 ~이루어진다~ 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1에 도시된 바와 같이, 본 발명에 따른 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템은 연속식(continuos) 생물학적 수처리 공법, 보다 구체적으로는 A2O 내지 A/O(또는 다양한 변형공법) 공법을 적용한 생물학적 수처리 시스템을 기본으로 한다.
보다 상세하게는 본 발명에 따른 수처리 시스템은 A2O 내지 A/O 등 다양한 연속식 수처리 공법을 기반으로 하는데, 호기조(T3)를 포함하는 반응조(T)를 갖고, 반응조(T)의 내부 공간이 가변식 격벽(Tp1,Tp2)에 의하여 분할되어 있다.
상기 가변식 격벽(Tp1,Tp2)은 변위수단(미도시됨)에 의하여 이동된다.
또 상기 반응조(T)는 그 전단, 후단 및 반응조 내부의 일부 또는 모두에는 수질자동측정기가 구비될 수 있는데, 편의상 도 1에서는 유출수의 수질 측정을 위하여 반응조(T) 후단에 수질측정기(Wa)가 구비되어 있고, 또 도 2에서는 반응조(T) 전단에 수질측정기(Wa)가 구비되어 있다.
이 수질자동측정기는 컨트롤부(C)와 교신한다. 컨트롤부는 단순히 반응조가 설치된 현장에 구비된 마이컴(또는 PLC 제어)을 포함하는 컨트롤 판넬일 수 있으며, 수처리 시설 전체를 제어하는 중앙 통제실에 구비되고, 통합 구축된 컴퓨터일 수 있다.
상기 컨트롤부(C)에서는 상기 수질자동측정기(Wa)에서 측정된 각종 수질 성분 측정값(예: TN 농도)을 실시간으로 입력받아 활성슬러지 모델 시물레이션을 생성하고, 이 모델 시물레이션에서 예측된 수질 성분 측정값과 상기 수질자동측정기에서 측정된 수질 성분 측정값을 비교하여 상기 변위수단을 통하여 가변식 격벽(Tp1,Tp2)을 이동시켜 운전 조건을 개선한다.
이하에서는 주로 호기조의 공간을 증감에 대하여 설명하나, 이는 일례일 뿐이며, 각종 연식식 수처리 공법의 호기, 혐기, 무산소 조건과 관련된 공간을 증감시키는 방식으로 가변식 격벽을 움직이는 것을 포괄하는 개념으로 본 발명의 보호범위를 확장해석하여야 한다.
또 이러한 호기조 체류시간 증감은 운전 최적화, 제어 용이성 등을 고려하여 상기 컨트롤부는 호기조 체류시간을 0.5HRT(Hydraulic Retention Time, 수리학적 체류 시간)씩 증감되는 것이 바람직하다.
이를 좀 더 구체적으로 살펴보면 다음과 같다.
도 1에 도시된 본 발명에 따른 연속식 생물학적 수처리 시스템은 A2O 공법을 기반으로 한 것으로 반응조(T)와, 제1가변식 격벽(Tp1), 제2가변식 격벽(Tp2), 변위수단과, 포기수단(B), 반송수단(P1,P2), 컨트롤부(C)를 구비한다.
도 1에서 확인할 수 있는 바와 같이, 상기 반응조(T)는 혐기조(T1), 무산소조(T2) 및 호기조(T3)를 포함하며, 혐기조(T1)에서는 원수에서 유입된 인의 방출이 일어나며, 호기조(T3)에서는 유기물의 분해 및 질산화(nitrification)가 일어난다. 무산소조(T2)는 호기조(T3)에서 내부반송을 통해 유입된 질산성 질소가 공기가 공급되지 않는 조건에서 탈질화(denitrification)가 일어난다. 기타 구체적인 반응기작은 통상의 기술과 대동소이하므로 구체적인 설명은 생략한다.
상기 제1가변식 격벽(Tp1)은 혐기조(T1)와 무산소조(T2) 사이에 구비되며, 혐기조(T1)와 무산소조(T2)의 처리부피, 즉 체류시간을 가변적으로 조절하기 위하여 변위수단(미도시됨)에 의하여 좌우 양측으로 움직인다.
제1가변식 격벽(Tp1)의 하부는 혐기조(T1)나 무산소조(T2)나 모두가 공기가 공급되지 않으므로, 격벽의 이동성 확보를 위하여 반응조(T)의 저면과 소정 간격으로 이격되게 설치된다.
상기 제2가변식 격벽(Tp2)은 무산소조(T2)와 호기조(T3) 사이에 배열되어 있으며, 무산소조(T2)와 호기조(T3)의 처리부피 즉 체류시간을 가변적으로 조절하기 위하여 변위수단(미도시됨)에 의하여 좌우 양측으로 움직인다.
제2가변식 격벽(Tp2)의 하부는 그 이동성을 위하여 반응조(T)의 저면과 소정 거리로 이격되며, 그 이격된 공간으로 호기조(T3)로 공급되는 공기가 무산소조(T2)로 유출되는 것을 방지하고 격벽(Tp2)의 이동성을 보장하기 위하여 하단에 연질 플레이트(도면에는 'Rubber Plate'로 기재되어 있음)가 구비되어 있다.
제1가변식 격벽(Tp1)과 제2가변식 격벽(Tp2)은 서로 독립적이고 개별적으로 변위수단에 의해 이동한다.
상기 변위수단은, 제1가변식 격벽(Tp1)과 제2가변식 격벽(Tp2)을 각각 독립적으로 이동시키기 위한 것으로서, 예를 들어 반응조(T)의 상부에 설치되는 가이드레일, 모터 등일 수 있고, 이 모터는 컨트롤부(C)에 의해 정방향 또는 역방향 구동 제어되는 스핀들모터인 것이 바람직하다.
상기 포기수단(B)은 반응조(T)의 하부에서 상기 호기조(T3) 내부로 공기를 공급하기 위한 것으로, 통상의 산기관과 블러어로 구성될 수 있다.
이러한 포기수단(B)은 구체적으로 반응조(T)의 내부의 저부에 설치되는 다수의 산기관(일종의 노즐)과, 그리고 이 둘을 연결하는 관로와, 관로 중 분기부에 설치되는 다수의 솔레노이드밸브(V)를 포함한다.
상기 산기관은 무산소조(T2)와 호기조(T3)의 하부에 일정 간격으로 배열되며, 제2가변식 격벽(Tp2)의 이동범위와는 무관하게 운최대의 체적을 확보하는 호기조(T3) 영역에 맞게 배열되어 있는 것이 바람직하다.
또 호기조(T3)로는 공기가 공급되어야 하고 무산소조(T2) 및 혐기조(T1)에는 공기가 공급되지 않아야 하므로 솔레노이드밸브(V)의 온/오프는 제2가변식 격벽(Tp2)의 위치에 따라 제어된다.
즉, 제2가변식 격벽(Tp2)의 위치에서는 제2가변식 격벽(Tp2)의 우측에 있는 산기관에서는 공기가 공급되어야 하고 제2가변식 격벽(Tp2)의 좌측에 있는 산기관에서는 공기 공급이 차단되어야 하므로 제2가변식 격벽의 우측에 있는 솔레노이드밸브(V)는 'on'상태(솔레노이드밸브와 산기관을 청색으로 표시)가 되어 오픈되고, 제2가변식 격벽(Tp2)의 좌측에 있는 솔레노이드밸브는 'off'상태가 되어 차단된다(솔레노이드밸브와 산기관을 적색으로 표시). 이러한 솔레노이드밸브(V)의 온/프 동작은 컨트롤부(C)의 제어신호에 의해 제어된다.
이후, 제2가변식 격벽(Tp2)이 도 2에 도시된 위치로 이동되는 경우에는 그에 맞게 제2가변식 격벽(Tp2)의 우측에 있는 산기관에서는 공기가 공급되어야 하므로 솔레노이드밸브가 'on'상태가 되어 오픈되고, 제2가변식 격벽(Tp2)의 좌측에 있는 산기관에서는 공기 공급이 차단되어야 하므로 솔레노이드밸브가 'off'상태가 되도록 제어되어 차단된다.
한편, 상기와 같이 제2가변식 격벽(Tp2)의 위치에 따라서 솔레노이드밸브들(V)의 온/오프를 선택적으로 제어하기 위해서는, 제2 가변식 격벽(Tp2)의 위치를 정확하게 감지해야 하며, 이를 센서가 구비되며, 센서의 신호는 컨트롤부(C)로 전달된다.
다음으로 반송수단, 특히 반송펌프(P1,P2) 및 반송라인이 구비되는데, 무산소조(T2)에서 혐기조(T1)로 반송하는 제1반송펌프(P1)는 필요에 따라 선택된다.
또 호기조(T3)에서 무산소조(T2)로 반송하는 제2반송펌프(P2)는 호기조(T3)에서 질산화된 하수를 재차 무산소조(T2)로 회수하여 질산성 질소가 공기가 공급되지 않는 조건에서 탈질화반응을 재차 일으키도록 하여 보다 효율적으로 하수 중 질소가 처리되도록 하므로 구비되는 것이 바람직하다.
본 발명은 연속식 수처리 공법, 특히 A2O(Anaerobic-Anoxic-Oxic) 공정의 처리효율을 개선하고 처리수질의 안정성을 확보하고자
상기 컨트롤부(Wa)를 통하여 수질자동측정기(Wa)에서 측정된 수질 성분 측정값을 실시간으로 입력받아 활성슬러지 모델 시물레이션을 생성하고, 이 모델 시물레이션에서 예측된 수질 성분 측정값과 상기 수질자동측정기에서 측정된 수질 성분 측정값을 비교하여 상기 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 공간을 증감시키는 방식으로 호기조 체류시간을 증감시킨다.
특히 상기 컨트롤부는 수질자동측정기에서 실시간으로 측정되는 유입수 및 유출수의 수질 성분 측정값을 입력받아, ASM 2d의 선형화된 모듈형 모델을 이용하여 상태변수의 농도를 예측하는 선형화 모델부와,
상기 선형화 모델부가 예측한 상태변수의 농도와 상기 수질자동측정기에서 실제 측정한 상태변수의 농도 간의 차이를 보정하여 상기 상태변수의 최대 허용농도를 산출하는 보정부와,
상기 선형화 모델부가 예측한 상태변수의 농도 및 상기 보정부가 산출한 상태변수의 최대 허용 농도를 이용하여 폭기 주기를 매 주기마다 자동으로 최적화하는 폭기 주기 최적화부를 포함한다.
이러한 선형 모델을 통하여 보정값에 기초하여 최적화를 달성하기 위하여 가변식 격벽을 이동시켜 호기조 체류시간을 증감시킴으로써 최적의 호기조 체류시간을 설정하여 폭기에 사용되는 동력비를 절감시킬 수 있다.
기존 가변식 고도하수 처리 시스템에서는 미생물 활동이 활발한 여름철에는 호기조 체류시간을 감소시켜 운전하고, 겨울철에는 호기조 체류시간을 증가시켜 운전하였다.
그러나 본 발명에서는 예를 들어 상기 수질자동측정기(Wa)와 컨트롤부(C)를 도입, 구축하고, 상기 수질자동측정기(Wa)와 컨트롤부(C)를 도입, 구축하고, 수질자동측정기에서 측정된 TN 농도를 컨트롤부에서 생성된 시뮬레이션에 기초한 예측 수질 성분 측정값(TN 농도)과 비교하여 rm 보정부의 보정값에 근거하여 최적화부를 구동시켜
가변식 격벽, 특히 제2가변식 격벽(Tp2)을 이동(좌측으로)시켜 호기조(T3)의 공간을 더 크게 하여 질산화 반응시간을 늘이고, 기준 TN 농도값 보다 측정 TN 농도값이 큰 작은 경우에는 상기 변위수단을 통하여 제2가변식 격벽(Tp2)을 이동시켜(우측으로) 호기조(T3)의 공간을 줄이는 방식으로 여 호기조 체류시간을 증감시킨다.
이에 따라 원수의 특성, 외부 조건 변화에 따라 반응시간(처리시간)이 변경하고, 체류시간 최적화 및 처리효율을 개선과 처리수질의 안정성을 확보가 가능하여 근원적인 능동형 수처리 기술의 확보가 가능하다.
상기 수질자동측정기가 측정하는 수질 성분은, 상기 반응조(T) 유입수 및 상기 유출수의 총 COD, NH4 +-N, NO3 --N, PO4 3--P 중에서 선택된 적어도 하나일 수 있다.
일반적인 공정 제어 방법의 하나로서, 공정을 모사하는 모델에 의해 공정이 행해지는 시스템 중의 어떤 상태변수의 값을 예측하고, 이 예측에 기반하여 각종 운전 조건 등을 최적화하는 제어 방법이 하나의 분야를 이루고 있다.
공정을 양적으로 모사하는 데에 사용되는 수학적 모델들은, 대상 시스템의 입력, 출력, 그리고 특징적 자료들과 관련 있는 하나 또는 그 이상의 수식들로 이루어져 있다.
이러한 수학적 모델은, 반응 공정에 관여하는 상태변수들의 동적 변화를 표현해주는 역학적 모델(예: ASM 1, ASM 2d)과, 경험에만 의존하여 오차를 보정하는 블랙 박스 모델(예: 인공 신경망, 퍼지 알고리즘)로 나눌 수 있다.
이중 역학적 모델은, 주어진 시스템에 있어서의 사건을 더 잘 모사하기 때문에, 성공적인 제어를 위해서 보다 바람직하게 사용된다.
모델의 예측을 기반으로 적용되는 공정 제어 방법은 어느 정도의 불확실도를 갖는데, 이 불확실도는 일반적으로 오차의 피드백 과정을 통해서 최소화한다. 보정의 정도는 모델의 예측 정확도에 의존하는데, 보다 정확한 모델일수록 적은 정도 보정을 요구하고, 보다 안정적인 공정 제어를 보장한다.
IWA(International Water Association)의 업무추진그룹에 의해 개발된 활성 슬러지 공정 설계 및 운전을 위한 수학적 모델 중 하나인 ASM(Activated Sludge Model) 1 모델이, BOD 및 질소 제거를 위한 많은 시스템에 적용되었다.
이 모델은 논리적 행렬 형태로 구성되었으며, 세부적인 생물학적 동역학들을 제공하고 질산화 및 탈질산화를 이해하는데 있어서 정확한 정보를 제공한다. 모든 상태변수들은 화학양론적인 계수들과 반응 속도 방정식들의 배열과 관련되어 있다. 각 성분에 대한 물질 수지 방정식은 화학양론계수들과 반응 속도 방정식들의 적절한 조합을 이용하여 연직 방향으로부터 이끌어낼 수 있다.
이전에 간헐 폭기 공정의 폭기/비폭기 공정 주기 제어를 위하여, IWA의 ASM1-3 모델을 이용한 모델 예측 기반 제어 방법이 제안(Henze et al, 1986, Henze et al., 1999, Gujer et al, 1999)되기도 했지만, 모델의 복잡성 때문에 실제 성공적으로 적용된 경우가 없다.
IWA의 ASM 2d 모델은 ASM 1과 ASM 2를 통합한 모델로서, 생물학적 영양물질 제거 공정에서 나타나는 유기물질의 산화, 질산화, 탈질, 인의 방출 및 섭취 등과 같은 다양한 미생물들의 반응들을 수학적으로 모델화한 것이다.
그러나 기존의 ASM 2d 모델(Henze et al., 1999)의 경우, 비선형 모델로서, 매우 복잡한 고차방정식으로 된 17개의 모델 방정식과 46개의 변수들이 포함되어 있어, 방정식을 적절하게 통합하기 위한 많은 계산적인 노력을 필요로 한다.
따라서 기존의 ASM 2d 모델(이하, 이러한 기존의 ASM 2d 모델을 본 발명에서 이용하는 모델과 구분하여, 'ASM 2d 풀(full) 모델'이라 한다)에 의하면, 공정의 모사는 가능하지만, 이를 공정의 실시간 최적화를 위한 제어에 사용하기에는 어려움이 있었다.
본 발명은 전적 간헐 폭기 공정(무산소/호기) 및 MLE(Modified Ludzack-Ettinger) 공정과 같이 혐기공정 및 간헐 폭기 공정을 포함하는 모든 활성 슬러지 공정에 적용하여, 유입수의 탄소/질소, 인 부하 변화에 따라 능동적으로 대처하면서도 에너지 비용을 최소화하도록 폭기 주기를 최적화하는 활성 슬러지 공정을 제시하고자,
IWA(International Water Association) 모델 시뮬레이션 중 ASM(Activated Sludge Model)(예: 특히 ASM 2d의 선형화된 모듈형 모델)을 이용한다.
특히 본 발명에서 이용하는 예측 모델은, IWA의 ASM 2d 모델 중의 비선형 모노드 텀(Monod term)들을 선형화한 모델로서, 특히 생물 반응의 혐기, 무산소, 호기의 각 조건별 공정을 개별적으로 모사하는 모듈형의 모델일 수 있다. 이하, 이를 ‘ASM 2d의 선형화된 모듈형 모델’이라 한다.
ASM 2d의 선형화된 모듈형 모델을 이용하는 경우 상태변수의 농도를 예측하는 선형화 모델부와, 상기 선형화 모델부가 예측한 상태변수의 농도와 상기 수질 자동 측정기기에서 실제 측정한 상태변수의 농도 간의 차이를 보정하여 상기 상태변수의 최대 허용 농도를 산출하는 보정부와, 상기 선형화 모델부가 예측한 상태변수의 농도 및 상기 보정부가 산출한 상태변수의 최대 허용 농도를 이용하여 상기 폭기 주기를 매 주기마다 최적화하는 폭기 주기 최적화부를 포함하여 이루어진다.
상기 ASM 2d의 선형화된 모듈형 모델은 활성 슬러지 공정을 17개의 각 단위 공정으로 분류하고, 상기 17개의 각 단위 공정에 대해 11개의 상태변수를 설정하며, 상기 상태변수에 따른 각 화학양론계수 및 혐기, 무산소, 호기 조건별로의 반응 속도식을 각각 독립적으로 모사하되,
상기 17개의 각 단위 공정, 상기 11개의 상태 변수에 따른 각 화학양론계수 및 상기 혐기, 무산소, 호기 조건별로의 반응 속도식은 하기의 표에 의해 결정되는 모듈형 모델인 것을 특징으로 한다.
'모듈형 모델'이란, 블럭 형태로 조합하여 사용할 수 있는 모델이라는 의미로서, <84> 모델을 이루는 각 모듈을 이용하면 각 단위 공정의 성능을 예측할 수 있고, 그 모듈을 단순 조합함에 의해, 다양한 반응조로 이루어진 시스템의 전체 공정을 간단히 모사할 수 있게 해 주는 모델을 말한다.
본 발명에 의하면 선형의 모듈형 모델의 각 모듈을 이용하여 각 단위 공정의 성능을 예측할 수 있고, 그 모듈을 하수 처리 시스템 전체의 반응조 구성에 따라 단순 조합함에 의해, 시스템 전체 공정을 간단히 모사하는 모델을 얻을 수 있으며, 이에 따라 활성 슬러지 공정 중의 수질 항목을, 간단하고도 정확 및 신속하게 예측할 수 있다.
또한 이 예측에 기반하여, 간헐 폭기 공정의 폭기 주기 등의 운전 조건을 최적화할 수 있다.
본 발명에서 이용하는 모델은 활성 슬러지 공정을 혐기, 무산소, 호기의 3개의 조건별로 각각 독립적으로 모사하는 모듈형 모델로서, 혐기, 무산소, 호기의 3개의 조건별로 반응속도식이 다르게 주어진다.
한편, 도 2와 관련하여, 본 발명에 따른 생물학적 수처리 시스템에서 집중 선택형 악취포집수단은 기본적으로 호기조를 별도로 구비한 시스템, 보다 구체적으로는 무산소조와 호기조를 구비한 시스템에 적용된다.
본 발명의 핵심은 상기 호기조의 전방(처리 대상 오수 등의 흐름 순서에 따라 전후 방향을 정한다) 격벽과 접하는 위치 상부, 보다 한정하여서는 상기 무산소조 및 호기조 사이의 격벽 상부에 설치되어 집중 선택형 악취포집수단을 배치하는 것에 있다.
또 본 발명은 다양한 수처리 시설에서 발생되는 악취에 능동적으로 대처할 수 있도록 하기 위하여 악취포집수단이 악취 감지 센서, 특히 TRS센서를 더 도입하여 집중 선택적이고 효율적인 악취 포집 및 제거를 가능케 하며, TRS센서의 도입은 후술하는 악취 능동감시 기능이 구비된 악취 처리수단과의 유기적 연계구성에도 바람직하다.
본 발명은 구체적으로 연속식(continuos) 생물학적 수처리 공법, 보다 구체적으로는 A2O 내지 A/O(또는 다양한 변형공법) 공법을 적용한 생물학적 수처리 시스템을 기본으로 하며, 여기에 침전조나 혐기조 등의 다양한 반응조가 아니라 산소조 및 호기조 사이의 격벽 상부에만 집중된, 그리고 선택적이고 단순한 '집중 선택형 악취포집수단'을 도입하는 것을 필수 사항으로 한다.
예를 들어 단순화시킨 A2O 시스템의 개략도인 도 2에서 확인할 수 있는 바와 같이, 혐기조(T1), 무산소조(T2), 호기조(T3)로 구성(필요에 따라 최전방에 유량조정도가 구비되고 후방에 침전조가 더 구비될 수 있다)되어 전형적인 혐기-무산소-포기 공정(Anaerobic/Anoxic/Oxic), 즉 A2O 타입의 생물학적 수처리 시스템(편의상 반응조 후단의 수질자동측정기는 생략하였다)에서,
무산소조(T2) 및 호기조(T3) 사이의 격벽(Tp) 상부에 집중 선택형 악취포집수단으로 특히 덮개(C)를 씌워 악취를 포집하도록 한다.
더 나아가 무산소조(T2) 및 호기조(T3) 상면 전체를 지붕형태로 씌우는 것이 아니라 격벽(Tp)을 포함하여 무산소조 및 호기조의 일부를 덮는 형태로 구성하여, 기성 수처리 시설이나 신규 수처리 시설 모두에 저렴한 비용으로 부담 없이 설치할 수 있고, 단순하여도 극히 효과적이다.
예를 들어 격벽(Tp)을 포함하여 무산소조(T2) 및 호기조(T3)를 덮되, 특히 격벽 인접 부위의 호기조 1/3(약 30%)부분만을 덮어도 42O 타입 생물학적 수처리 시스템 전체에서 발생하는 악취 물질의 약 75%까지 포집이 가능한 것으로 나타났다.
또 집중 선택형 악취포집수단을 구성하는 덮개(C)의 하단은 별도의 추가 구성 없이도 악취 누설 문제가 없도록 하기 위하여 덮개(C) 하단이 무산소조 및 호기조의 처리수에 잠겨 있도록 하는 것이 바람직하다.
아울러 본 발명에서는 수질자동분석기(Wa)를 유입수의 수질을 측정기 위하여 더 도입하고 유입수의 수질을 측정하고, 또 호기조(T3)에 산화물을 함유한 물의 산화환원전위 값을 측정하는 산화환원전위(ORP, xidation Reduction Potential) 센서(Sp)를 도입하여 기준값 보다 산화 상태가 낮게 측정되는 경우 악취 포집량을 증가시켜 악취를 제거하는 것이 바람직하다. 악취 포집량의 증감은 악취 이송 배관에 구비된 펌프나 블로어 등에 의한 악취 이송량을 증감시키는 방식으로 구현할 수 있다.
수질자동분석기(Wa) 및 산화환원전위(ORP, xidation Reduction Potential) 센서(Sp)는 컨PLC(programmable logic controller)나 마이컴 등을 통하여 구성되는 컨트롤로에 측정값을 전달하며, 이 컨트롤로는 펌프 등을 제어하여 악취 이송량을 증감시킨다.
상기 수질자동측정기는 COD, BOD, TOC, T-N, T-P, DO 및 pH의 일부 또는 모두를 측정하는 기기로 구성될 수 있다.
상기 수질자동분석기(Wa)의 측정항목 및 측정방법을 표로 정리하면 다음과 같다.
Figure PCTKR2012010661-appb-I000001
상기 호기조(T3)의 상부 공간 가스(Head Space Gas), 즉 악취원은 자연 유하의 흐름 보다는 펌프에 의한 강제 이송을 통하여 후속 악취 처리수단인 통상의 바이오필터부(20) 및 흡착처리부(30)를 거쳐 처리되는 것이 바람직하다. 또 필요에 따라 집중 선택형 악취포집수단은 별도의 TRS 센서(S)를 구비할 수 있다.
이상 악취포집수단의 설치 형태 및 운전 시간을 정리하면 다음과 같다.
본 발명에 따른 생물학적 수처리 시스템에서 호기조의 평면 면적을 기준으로,
집중 선택형 악취포집수단을 이루는 덮개는 호기조의 상부 전체를 덮거나,
한정하여 호기조의 전방 격벽과 접하면서 호기조 평면 면적의 80%를 덮는 것이 바람직하고,
더 한정하여 호기조의 전방 격벽과 접하면서 호기조 평면 면적의 70%를 덮는 것이 더 바람직하고,
보다 더 한정하여 호기조의 전방 격벽과 접하면서 호기조 평면 면적의 50%를 덮는 것이 보다 바람직하고,
더욱 한정하여 호기조의 전방 격벽과 접하면서 호기조 평면 면적의 40%를 덮는 것이 보다 더 바람직하고,
가장 한정하여 호기조의 전방 격벽과 접하면서 호기조 평면 면적의 30%를 덮는 것이 바람직하다.
또 하기 실험실 규모(bench scale)의 AAA 실험 결과(도 3의 그래프 참조)를 토대로 근거하여 호기조(또는 무산소조 및 호기조)에서의 포집시간은
호기조의 체류시간 전체에 대하여 초기 120분, 한정하여 100분, 더 한정하여 80분, 보다 더 한정하여 60분간 진행되는 것이 바람직하고, 보다 바람직하기로는 악취가스 포집은 포기단계 초기 40분간 진행되는 것이 좋고, 이 보다 더 바람직하기로는 악취가스 포집은 포기단계 초기 30분간 진행되는 것이 좋다.
이를 전체 포기 시간(또는 체류시간) 120분에 대하여 비율(%)로 대략적으로 환산하면(실험 결과 기준), 호기조(또는 무산소조 및 호기조)에서의 포집시간은 전체 체류시간에 대하여
100%, 한정하여 80%, 더 한정하여 70%, 보다 더 한정하여 50%, 더욱 한정하여 35%, 가장 한정하여 25% 진행되는 것이 바람직하다.
또 연속식(continuos) 생물학적 수처리 공법에서 호기조 또는 무산소조 상부 공간 가스(Head Space Gas)는 펌프 또는 블로어 등을 통하여 강제 이송하는 것이 바람직하다.
이상 본 발명의 개념은 A2O 내지 A/O(또는 다양한 변형공법) 공법을 비롯한 연속식(continuos) 생물학적 수처리 공법을 활용할 수처리시스템에 적용될 수 있으며, 최소 호기조(또는 호기조)를 별도로 배치한 수처리 시스템에 적용되는 것이 바람직하며, 수처리 효율 등을 고려하면 무산소조와 호기조가 구비된 수처리 시스템에 적용되는 것이 보다 바람직하다.
A/O 및 AAA 활성슬러지 시스템 실험
실시간(on-line) TRS 분석기기(analyzer)를 이용하여 벤치 스케일(bench scale), 즉 실험실 규모의 AAA 및 A/O (Anoxic-Oxic) 활성슬러지 시스템을 제작하여 운영하였다. 이를 통해 실제 하수처리장의 생물반응조에서 발생되는 주요 악취가스 배출원을 확인하고, 악취발생 메커니즘을 밝힘으로써 악취배출을 저감할 수 있는 방안을 제시하고자 하였다.
사용한 하수시료는 실험실 인근의 서울시중랑하수처리장의 1차 침전조 유출수로 하였다.
하수시료는 AAA 반응조 유입수 및 유출수에 대해 ASTM에 따라 COD, TN, NH3,NO-3항목을 분석하였다.
또한 하수시료, 반송 활성슬러지 및 생물반응조의 상부공간 가스(head space gas)에 대한 황화물(Sulfates)류(Methyl mercaptan, Dimethyl sulfide, Dimethyl disulfide) 분석은 GC/MS로 분석하였다.
( A/O 활성슬러지 시스템 실험 )
생물반응조 운전시 배출되는 악취를 최적으로 제어하기 위한 방안을 실험하기 위해 실험실 규모의 A/O 활성슬러지 시스템을 설치하였다. A/O 활성슬러지 시스템은 용량이 10L인 무산소(anoxic) 반응조 1개와, 각 10L 용량의 포기(aeration) 반응조 2개를 연속하여 설치하였다. 아래 AAA 활성슬러지시스템 구성과 마찬가지로 유입수 저류조, 생물반응조, 침전조 등으로 동일하게 구성하였다.
A/O 반응조 운전조건으로는 HRT 10시간, Solid Retention Time은 12일, 슬러지반송률(Return of Activated Sludge, RAS)은 100%, pH 약 7, DO 2-3mg/L, MLVSS 3-4g/L로 유지하였다.
( AAA 활성슬러지 시스템 실험 )
또 생물반응조에서의 악취 발생 경향을 파악하고자 lab scale 규모의 AAA 활성슬러지 시스템을 설치하였다. AAA 활성슬러지시스템은 용량이 4L인 생물반응조로서, 후단에 침전조와 앞단에 유입수를 위한 저류조를 설치하였다. 생물반응조의 경우 상부를 덮개로 밀폐하였고, 여기에는 TRS 분석을 위한 가스 포집 장치와 기기분석을 위한 가스 포집 튜브를 설치하였다. 생물반응조의 공기주입장치는 간헐포기방식으로 포기 2시간과 비포기 2시간 간격으로 작동되었다. 또한 반응조 내부의 유입폐수와 슬러지 간 원활한 혼합을 위해 교반장치를 설치하였다. 유입폐수 저류조의 경우 교반장치를 설치하여 폐수의 성상을 일정하게 유지하도록 하였으며 저류조 상부는 덮개를 설치하였다.
AAA 반응조 운전조건으로는 HRT 8시간, Solid Retention Time 15일, 슬러지반송률(Return of Activated Sludge, RAS)은 100%이고, pH 7, DO 2-3mg/L, MLVSS 3-4g/L로 유지하였다.
반응조 운전기간 동안 반응조 내 pH, DO농도와 ORP를 비포기/ 포기시로 구분하여 측정하였다.
결과 요약
실험실 규모의 AAA 활성슬러지 시스템 을 설치하여 총 환원성황화합물 배출 특성을 평가하였다. 실시간 TRS 측정결과로부터 포기 이전 단계인 무산소 상태에서 축적된 환원성황화합물이 포기 단계의 초기에 탈기현상에 의해 배출됨을 확인하였다.
또한 도 3에서 시간경과에 따라 무산소단계 및 호기(포기)단계에 대한 TRS 방출양 비교 그래프에서 확인할 수 있는 바와 같이, 악취가스 배출은 포기 초기단계 30분 이내에 상당량이 발생되었으며, 포기 초기단계에서만 반응조 상단의 가스를 포집하여 처리할 경우 악취를 상당량 제거할 수 있음을 확인하였다.
또 실험실 규모 A/O 활성슬러지 시스템 을 설치하여 무산소조 및 호기조에서 악취배출량 특성을 파악한 결과,
AAA 활성슬러지 시스템에서의 도 3의 그래프 결과와 유사하게, 호기조의 앞부분 1/3에서 배출되는 악취물질의 양이 전체 호기조 악취배출량의 75.6%에 달하는 것으로 나타났다. 따라서 실제 하수처리장에서 호기조의 약 30% 부분에 덮개를 씌워 이 부분의 상부 공간(head space) 가스를 포집하여 처리할 경우 경제적이고 효과적인 하수처리장 악취 제어 방안이 될 것으로 판단된다.
이상의 결과에 기초하여 앞서 도 2와 관련하여 설명한 바와 같은,
연속식(continuos) 생물학적 수처리 공법, 특히 A/O 또는 A2O 공법에 기반한 수처리 시스템에 적합한 집중 선택형 악취포집수단을 개발하였고,
또 회분식(batch) 생물학적 수처리 공법, 특히 AAA 공법에 기반한 수처리 시스템에 적합한 집중 선택형 악취포집수단을 개발할 수 있다.
다음으로 이하에서는 본 발명에 따른 생물학적 수처리 시스템의 집중 선택형 악취포집수단에서 포집된 악취에 대한 처리는 바이오필터부(20), 흡착처리부(30)에서 처리된 후 배출되며, 필요에 따라 약액세정처리부를 더 도입할 수 있다.
상기 바이오필터부(20)는 유지비용이 저렴하고 일부 물질에 대해 아주 높은 처리효율을 보인다. 하지만 상대적으로 설치면적이 크고 물질의 생물학적 처리가 어렵다는 단점이 있다.
바이오필터의 핵심 기술은 악취를 분해할 수 있는 미생물과 악취 물질을 흡수하고 미생물들의 서식 공간을 제공하여 미생물의 기능을 유지시킬 수 있는 공지의 메디아 충진부재를 사용한다.
상기 흡착처리부(30)는 대부분의 악취 물질 처리가 가능하고 흡착제의 교체 주기에 따라 효율이 결정된다. 하지만 활성탄 교체 비용이 발생하고 고농도 악취 처리시 비용이 과다한 문제점이 있다. 따라서 도 2와 같이 가능한 후단에 설치하여 전단에서의 처리에도 악취물질이 기준을 충족할 정도로 제거되지 않은 것으로 센싱, 판정된 경우 거치는 것이 바람직하다.
다양한 다공성 알갱이, 특히 활성탄이 충진된 흡착처리부(30)는 악취의 주물질인 암모니아 및 아민을 효과적으로 흡착처리하기 위하여 염기성 가스와 반응할 수 있는 흡착제를 충진하여 처리하며, 최종적으로 처리 가스는 대기중으로 방출된다. 흡착제는 기본적으로 내부에 미세한 세공이 형성되어 비표면적이 넓고 흡착성이 강한 특성을 지니고 있다.
또 약액세정처리부는 약액세정탑으로 구성될 수 있고, 약액 세정처리부는 수용성 악취물질 처리에 적합하고 설치비가 저렴하며, 또한 분진처리가 가능하다는 장점을 갖는다. 또 약액 세정법은 순화수의 교체 주기에 따라 효율이 결정된다. 하지만 처리수 비용이 발생하고 비수용성 악취 처리가 어렵다는 단점이 있다.
알칼리성 및 산성 악취 제거를 위한 산성 세정탑 및 염기성 세정탑, 또는 단순 수(물) 세정탑, 또는 산성 및 염기성 세정 후의 중화처리 세정탑을 더 거칠 수 있다.
한편, 도 1 및 도 4 내지 도 5에서, 본 발명에 따른 하연속식 생물학적 수처리 시스템에서, 포기수단(B)의 산기관으로 공기를 공급 또는 차단하는 솔레노이드밸브(V)의 on/off, 반송펌프(P1)(P2), 기타 수처리 시스템의 조명램프 등의 전기 관련 설비를 on/off 하기 위하여 시설 영역 내에 설치된 기둥 등의 설치 부재의 일측(도면에서는 우측)에 구비된 스위치, 특히 무선 스위치(60)를 활용할 수 있다.
또 하폐수 처리장의 반응조 또는 임시 저장탱크 주변위 설치부재(50)에 장착된 무선 스위치(60)에 의하여 솔레노이드밸브(V), 반송펌프(P1)(P2), 기타 조명램프가 on/off되도록 하기 위하여 솔레노이드밸브(V), 반송펌프(P1)(P2)나 조명램프에는 제어신호 무선 수신부(RS)가 구비되어 있는 것이 바람직하다.
상기 무선 스위치는 도 4 내지 도 7에서 그 구체 구성을 확인할 수 있으며, 그 핵심은 전력 작동 구성요소의 보다 완벽한 무선 제어를 위한 자가발전기와 관련된 도면이다.
이러한 자가발전기(100)를 설명함에 있어 편의를 위하여 엄밀하지 않은 대략의 방향 기준을 도 4 내지 도 7을 참고하여 특정하면, 도시한 그대로의 상태에서 상하좌우를 나눈다.
전원 요소의 on/off 제어를 무선 자가전원 방식으로 하기 위한 스위치의 개발은 오래전부터 제안되어 왔으며, 영구자석과 유도코일을 이용한 소형 자가발전기는 그 보다 훨씬 오래된 기술에 해당한다.
예를 들어 특허공개 제2004-0031713호(2004년04월13일) [자력발전 스위치 구동시스템], 특허공개 제2004-0036734호(2004년04월30일) [스위치 자기장치], 특허 제0862175호(2008년10월01일) [완화된 영구 자석 정렬 조건을 가지는 마이크로-마그네틱래칭 스위치], 특허공개 제2009-0113941호(2009년11월03일) [전등기구 점ㆍ소등 원격조정장치] 등이 있다. 그러나 여러 가지 이유로 시장성을 확보하지 못하여 활발하게 일상생활에까지 적용되지 못하고 있다.
본 발명에서는 본 발명에 따른 하폐수 처리장 처리수를 이용한 도로청소 시스템에 도입할 수 있도록 스위치에 적용할 수 있는 자가발전기를 현실성 있게 제시한다. 그러나 이러한 스위치에 적용되는 자가발전기는 이송펌프(20)나 조명램프 등의 전기 작동 구성요소의 on/off 제어를 위하여 적용될 수 있다.
먼저 도 4에서, 스위치(60)의 케이스(61)에 통상의 램프점멸패널과 같은 시소운동을 하는 액추에이터 타입의 작동패널(170)을 도입하고, 케이스(61)의 장착요홈(65)에는 자가발전기의 요부가 특히 억지끼움 방식으로 수용된다.
상기 케이스(61)는 하나의 작동패널(170)만을 위한 구조 및 크기를 갖지만, 필요에 따라 둘 이상의 작동패널을 위한 구조 및 크기를 갖도록 변형하는 것은 당업자가 본 발명으로부터 용이하게 변형 적용할 수 있는 사항에 해당한다.
또 케이스(61)의 둘레에는 작동패널(170)의 동작에 따라 무선 제어신호를 발하는 와이어 타입 안테나(183)를 위한 결합홈(67)이 형성되어 있다.
다음으로 도 4([A]는 결합사시도, [B]는 분해사시도) 및 도 5을 살펴 보면, 스위치(60) 케이스(61)의 장착요홈(65)에 안치되는 자가발전기(100)는
하우징(100A)에 내장되어 있는데, 상기 하우징(100A)은 바디(101)와 커버(102)로 이루어진다.
상기 바디(101)에는 [영구자석(110)-자성체패널(120)-유도코일(130)-구동부재(140)-중계부재(150)-PCB(180) 어셈블리]를 수용하는 안착부(101B)가 구비되어 있고,
작동패널(170)의 시소 동작을 구동부재(140)로 전달하는 중계부재(150)의 스윙축(151)이 결합되는 축장착부(101a)가 형성되어 있다.
또 상기 바디(101)의 안착부(101B) 저면에는 보빈(133) 하부에 돌출된 고정돌기(133a)가 결합되는 고정공(101C)이 2개 형성되어 있어, [자성체패널(120)-유도코일(130)-구동부재(140)-PCB(180) 어셈블리]의 안착고정이 손쉽게 이루어질 수 있다.
다음으로 상기 커버(103)에는 연결편(103a)으로부터 복귀 탄성을 제공받는 가압편(103A)이 구비되어 있어,
시소 스윙동작을 하는 작동패널(170)의 압력이 가압돌기(171)를 통하여 가압편(103A)으로 전달되고, 이어 엘라스토머 소재의 완충패드(105)의 가압점(105A)이 연동하여 PCB(180)에 실장된 센서(181)로 전달되고 유도코일(130)의 단부(131)에서 전달되는 전력에 의하여 외부로 제어신호(이송펌프(20)나 조명램프 등의 on/off)를 발할 수 있다.
또 상기 작동패널(170)은 축을 중심으로 시소운동을 하는데,
그 방식은 커버(103)의 양 끼움공(103B) 중앙에 구비된 끼움축(103b)에 작동패널(170) 하부의 축돌기(173)가 축홈(173c)을 통하여 결합됨으로 가능하다.
각종 소자가 실장된 PCB(180)에는 앞서 언급한 바와 같이 상부에 작동패널(170)이 시소운동을 함에 따라 가해지는 압력과 가압위치를 감지하여 제어신호를 발하기 위한 센서(181)가 구비되어 있고,
상기 PCB(180)의 상부에는 커버(103)의 가압편(103A)을 통하여 전달되는 작동패널(170)의 압력을 완충하여 센서에 전달하여 센서를 보호하고 정확한 센서(181)의 가압이 가능하도록 해당 위치에 가압점(105A)을 갖는 완충패드(105)가 덮인다.
또 상기 PCB(180)의 하부에는 보빈(133) 상부로 연장 돌출된 유도코일(130)의 단부(131)를 통하여 솔더링 결합된 [자성체패널(120)-유도코일(130)-보빈(133)-구동부재(140) 어셈블리]가 마운트되어 있다.
도 5 및 도 6에 도시된 바와 같이, 하우징(100A)의 바디(101) 안착부(101B)에 고정된 영구자석(110), 특히 상하 보조패널(113) 사이에는 자성체패널(120)(통상 자가발전기에서는 자로를 형성하는 역할을 하며, 전통적인 소재 특성으로 부터 '철심'으로 지칭하기도 한다)의 양단 접촉부(121)가 위치하도록 조립된다.
상기 영구자석(110)과 상기 자성체패널(120)의 상대적인 위치 변동에 따라 전력은 유도코일(130)로 전달되는데,
도 5 및 도 6에서는 자성체패널(120)을 움직이는 방식을 취하고 있고, 도 7에서는 영구자석(110)을 움직이는 방식을 취하고 있다.
도 6에서, 'ㄷ'자 유사 형상의 자성체패널(120)은 보빈(133)의 유동공(133A)(도 6의 우측 중앙 일점 쇄선 원내 정면도에서 투시개념으로 은선으로 표시함)에 끼워져 움직이는데, 상기 자성체패널(120) 일측(도 6에서는 좌측)에 리벳핀(141)을 통하여 체결된 구동부재(140)가 구비된다(상기 구동부재는 자로 기능의 강화와 강도보장 등을 위하여 베릴륨동(BeCu) 패널로 구성된 것이 바람직하다).
상기 구동부재(140)의 단부는 또 상기 작동패널(170)의 가압력이 균일하게 상기 구동부재(140)로 전달되도록 하는 중계부재(150)의 연동부(153)와 접촉한다.
상기 두 중계부재(150) 각각의 두 스윙축(151)은 상기 하우징(100A)의 바디(101) 양측벽의 축장착부(101A)에 각각 결합되며,
각 중계부재(150)의 좌우 외측이 피가압부(155)를 이루어 작동패널(170)의 양단 하면에 의하여 가압되므로 중계부재(150)가 스윙축(151)을 중심으로 시소 운동을 하고,
두 중계부재(150) 내측 마주보는 면에는 각각 연동부(153)를 형성하고, 이 연동부에 상기 구동부재(140)의 단부가 배열된다.
특히 두 중계부재(150) 연동부(153) 단부가 동일하게 승하강 하지 않으므로,
하나의 중계부재(150) 연동부(153)에만 구동부재(140)의 단부가 끼워지는 슬릿(153A)이 형성되어 있다(도 5 [A]의 좌하부 일점 쇄선 원 내 측면도 참조).
이 중계부재(150)의 다른 연동부(153)는 도 5 [A]의 우하부 일점 쇄선 원내 측면도와 같은 형상을 갖고,
다른 중계부재(150)의 두 연동부(153)는 모두 도 5 [A]의 우하부 일점 쇄선 원내 측면도와 같은 형상을 갖는다.
또 상기 중계부재의 복귀를 위한 스프링을 포함하는 복귀수단을 도입하여 반복된 작동패널(170)의 누름 동작만으로도 이송펌프(20)나 조명램프 등의 on/off를 위한 무선 제어신호를 발하는 것이 가능하다.
구체적으로 상기 복귀수단(160)은 도 5 [B]에 도시된 바와 같이, 하우징(100A)의 커버(103) 내측에 형성된 가이드부(103C)에 안착된 코일스프링(161)과 코일스프링 하단부에 결합되는 캡(163)으로 이루어진다.
이 코일스프링(161) 하단부에 결합된 캡(163)은 동일한 형상(슬릿(153A)이 형성되지 않은 쪽)을 갖고 마주보는 두 중계부재(150)의 연동부(153)를 가압하므로,
외력이 가해지지 않은면 항상 중계부재(150)가 최초 가압 전 상태로 복귀하므로
일 중계부재(150)의 연동부(153) 슬릿(153A)에 결합된 구동부재(140)와 연결된 자성체패널(120) 역시 영구자석(110)의 N극 또는 S극의 자력과 무관하게 일정 위치에 머물게 된다.
도 5 및 도 6면에서, 상기 자성체패널(120)의 접촉부(121)는 가압 방향에 따라 영구자석(110)의 N극 또는 S극에 부착(정확하게는 자석본체(111) 상하면에 구비된 상부 또는 하부 보조패널(113)에 부착)되는데,
외력이 가해지지 않은 상태에서는 상기 복귀수단(160)에 의하여 상기 자성체패널(120)의 접촉부(121)는 상하 보조패널(113) 중간에 위치하게 된다.
상기 영구자석(110)은 제조용이성, 조립성과 함께 자력 세기, 자성체패널(120)과의 상대적인 변위 용이성 등을 고려하여 원기둥형 자석본체(111)와, 이 자석본체(111) 상하면에 결합된 보조패널(113)으로 이루어지며,
도 6의 하부 일점 쇄선 원 내 분해사시도에서 와 같이, 자석본체(111) 중공에 끼워진 합성수지 돌기(111a)를 상하 보조패널(113)의 각 구멍(113a)에 끼우고 열을 가하여 돌기(111a) 단부를 병형시켜 상호 결합을 확고하게 한다.
앞서 언급한 바와 같이, 자성체패널(120)의 시소운동을 가능하게 하는 크기를 갖는 유동공(133A)이 형성된 보빈(133)에 권취된 유도코일(130)의 양단부(131)는 보빈 상단(도 6 참조)으로 돌출되어 있고, PCB(180)에의 실장을 위한 핀 역할을 한다.
다음으로 도 7에는 도 6와는 다른 [영구자석(110)-자성체패널(120A,120B)-유도코일(130)-구동부재(140) 어셈블리]가 도시되어 있는데,
구체적인 차이점은 구조 외에 도 7의 모델에서는 영구자석과 자성체패널의 상대적인 변위 방식이 자성체패널은 고정되어 있고, 영구자석이 승하강한다는 점과,
보다 강한 전력 획득을 위하여 유도코일이 권취된 보빈이 두 자성체 패널 각각에 구비되어 있다는 점이다.
도 7의 [A]는 사시도이고, [B]는 평면도, [C]는 측면도에 해당한다.
일종의 하우징 역하을 하는 베이스패널(100B)의 좌측에는 자성체패널(120A)이 결합되어 있는데,
이 자성체패널(120A)은 영구자석(110) 상부에 접촉부가 위치하도록 상부가 절곡 상승되어 있고, 하부에 유도코일(130)이 권취된 보빈(133)이 끼워지는 돌출형 코일결합부(123)가 형성되어 있다(도 7 [B] 좌측 일점쇄선 원 내 참조).
또 상기 베이스패널(100B) 우측에는 다른 자성체패널(120B)이 결합되어 있고, 이 자성체패널(120B)은 영구자석(110) 하부에 접촉부가 위치하도록 평판형상을 이루며,
역히 유도코일(130)이 권취된 보빈(133)이 끼워지는 돌출형 코일결합부(123)가 형성되어 있다(도 7 [B] 우측 일점쇄선 원 내 참조).
각 자성체패널(120A)(120B)의 상하 접촉부 사이에 위치하는 원반형 영구자석(110)은 베릴륨동 소재의 구동부재(140)가 연결되며,
이 구동부재(140)는 베이스패널(100B)에 결합되는 축핀(165)에 관통 고정되며, 다시 축핀(165) 외주면에 배열되어 복귀수단(160)을 이루는 코일스프링(161)에 의하여 지지되어 수평을 유지한다.
이러한 [영구자석(110)-자성체패널(120A,120B)-유도코일(130)-구동부재(140) 어셈블리]는 유사하게 도 5에 도시된 바디(101)에 안착되고,
작동패널(170)의 가압력이 중계부재(150)의 피가압부(155)로 전달되면, 연동부(153)의 슬릿(153A)에 끼워진 구동부재(140)의 연동이 가능해 진다.
또 각 유도코일(130)의 단부(4개)는 유사한 방식으로 PCB에 실장될 수 있다.
이상의 설명에서 연속식(continuos) 생물학적 수처리 공법 또는 회분식(batch) 생물학적 수처리 공법의 다양하고, 구체적인 공정, 가변식 격벽, 그 변위수단, 악취포집수단을 이루는 덮개에 대한 소재, 치수 등에 대한 구체 설명, 악취의 각종 성분을 측정하는 센서의 종류, 구체적인 약액세정처리부의 약액 성분, 바이오필터부에 적용되는 미생물 및 메디아의 종류, 흡착처리부의 구체 사용 등과 관련된 통상의 공지된 기술을 생략되어 있으나, 당업자라면 용이하게 이를 추측 및 추론하고 재현할 수 있다.
또 이상에서 본 발명을 설명함에 있어 첨부된 도면을 참조하여 특정 구성 및 배열을 갖는 수처리 시스템을 위주로 설명하였으나 본 발명은 당업자에 의하여 다양한 수정, 변경 및 치환이 가능하고, 이러한 수정, 변경 및 치환은 본 발명의 보호범위에 속하는 것으로 해석되어야 한다.
[부호의 설명]
T: 반응조 T1: 혐기조
T2: 무산소조 T3: 호기조
Tp1,Tp2: 가변식 격벽 P1,P2: 반송펌프
V: 솔레노이드밸브 B: 블로어
Wa: 수질자동측정기
20: 바이오필터부 30: 흡착처리부

Claims (4)

  1. 호기조를 포함하는 반응조를 갖고, 반응조의 내부 공간이 가변식 격벽에 의하여 분할된 연속식 생물학적 수처리 시스템에 있어서,
    상기 가변식 격벽은 변위수단에 의하여 이동되며,
    상기 반응조의 전단, 후단 및 반응조 내부의 일부 또는 모두에는 수질자동측정기가 구비되어 있고,
    상기 수질자동측정기에서 측정된 수질 성분 측정값을 실시간으로 입력받아 활성슬러지 모델 시물레이션을 생성하고, 이 모델 시물레이션에서 예측된 수질 성분 측정값과 상기 수질자동측정기에서 측정된 수질 성분 측정값을 비교하여 상기 변위수단을 통하여 가변식 격벽을 이동시켜 호기조의 공간을 증감시키는 방식으로 호기조 체류시간을 증감시키는 컨트롤부를 포함하여 이루어진 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템.
  2. 제 1 항에 있어서,
    상기 컨트롤부는 수질자동측정기에서 실시간으로 측정되는 유입수 및 유출수의 수질 성분 측정값을 입력받아, ASM 2d의 선형화된 모듈형 모델을 이용하여 상태변수의 농도를 예측하는 선형화 모델부와,
    상기 선형화 모델부가 예측한 상태변수의 농도와 상기 수질자동측정기에서 실제 측정한 상태변수의 농도 간의 차이를 보정하여 상기 상태변수의 최대 허용농도를 산출하는 보정부와,
    상기 선형화 모델부가 예측한 상태변수의 농도 및 상기 보정부가 산출한 상태변수의 최대 허용 농도를 이용하여 폭기 주기를 매 주기마다 자동으로 최적화하는 폭기 주기 최적화부를 포함하여 이루어지는 것을 특징으로 하는 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 호기조의 전방 격벽과 접하는 위치 상부에 설치되어 있는 집중 선택형 악취포집수단이 더 구비되어 있는 것을 특징으로 하는 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템.
  4. 제 3 항에 있어서,
    상기 호기조 전단에 위치한 무산소조를 더 포함하고,
    상기 악취포집수단은 상기 무산소조 및 상기 호기조 사이의 격벽 상부에 설치되어 있는 것을 특징으로 하는 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템.
PCT/KR2012/010661 2011-12-09 2012-12-07 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템 WO2013085358A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0131744 2011-12-09
KR20110131744A KR20130065053A (ko) 2011-12-09 2011-12-09 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템

Publications (1)

Publication Number Publication Date
WO2013085358A1 true WO2013085358A1 (ko) 2013-06-13

Family

ID=48574631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010661 WO2013085358A1 (ko) 2011-12-09 2012-12-07 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템

Country Status (2)

Country Link
KR (1) KR20130065053A (ko)
WO (1) WO2013085358A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129993A (zh) * 2015-10-13 2015-12-09 黎海纤 用于处理食品厂高盐高氮磷废水的工艺和系统
CN106186297A (zh) * 2016-08-31 2016-12-07 深圳市绿洲生态科技有限公司 一种高效节能的废水处理方法及系统
CN107364974A (zh) * 2016-09-29 2017-11-21 北京航空航天大学 一种预测生化处理工艺水力停留时间的生物电化学方法
CN108083437A (zh) * 2018-01-02 2018-05-29 江苏裕隆环保有限公司 一种农村生活污水处理装置及处理工艺
CN110790381A (zh) * 2019-11-28 2020-02-14 北京协同创新智慧水务有限公司 一种基于aao污水处理工艺的全流程智能控制系统
CN116562412A (zh) * 2022-11-16 2023-08-08 广州市净水有限公司 一种污水生物处理低碳运行优化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991960B (zh) * 2014-05-27 2015-11-18 青岛思普润水处理股份有限公司 一种生物膜和活性污泥复合污水处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386191B1 (en) * 2002-03-14 2003-06-18 Dae Yang Biotech Co Ltd Reaction tank with variable partition
KR20040000365A (ko) * 2003-10-22 2004-01-03 대양바이오테크 주식회사 가변형 간벽이 설치된 연속 회분식 반응조 및 이를 이용한생물학적 하·폐수 고도처리방법
KR100912032B1 (ko) * 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 활성 슬러지 공정을 위한 제어 장치 및 방법
KR20090102409A (ko) * 2008-03-26 2009-09-30 삼창기업 주식회사 2단 반응조를 갖는 고도 처리장치
KR100980029B1 (ko) * 2009-05-04 2010-09-07 (주)씨스이엔지 가변식 고도하수 처리장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386191B1 (en) * 2002-03-14 2003-06-18 Dae Yang Biotech Co Ltd Reaction tank with variable partition
KR20040000365A (ko) * 2003-10-22 2004-01-03 대양바이오테크 주식회사 가변형 간벽이 설치된 연속 회분식 반응조 및 이를 이용한생물학적 하·폐수 고도처리방법
KR20090102409A (ko) * 2008-03-26 2009-09-30 삼창기업 주식회사 2단 반응조를 갖는 고도 처리장치
KR100912032B1 (ko) * 2008-05-19 2009-08-12 효성에바라엔지니어링 주식회사 활성 슬러지 공정을 위한 제어 장치 및 방법
KR100980029B1 (ko) * 2009-05-04 2010-09-07 (주)씨스이엔지 가변식 고도하수 처리장치

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129993A (zh) * 2015-10-13 2015-12-09 黎海纤 用于处理食品厂高盐高氮磷废水的工艺和系统
CN106186297A (zh) * 2016-08-31 2016-12-07 深圳市绿洲生态科技有限公司 一种高效节能的废水处理方法及系统
CN107364974A (zh) * 2016-09-29 2017-11-21 北京航空航天大学 一种预测生化处理工艺水力停留时间的生物电化学方法
CN107364974B (zh) * 2016-09-29 2020-09-15 北京航空航天大学 一种预测生化处理工艺水力停留时间的生物电化学方法
CN108083437A (zh) * 2018-01-02 2018-05-29 江苏裕隆环保有限公司 一种农村生活污水处理装置及处理工艺
CN110790381A (zh) * 2019-11-28 2020-02-14 北京协同创新智慧水务有限公司 一种基于aao污水处理工艺的全流程智能控制系统
CN116562412A (zh) * 2022-11-16 2023-08-08 广州市净水有限公司 一种污水生物处理低碳运行优化方法
CN116562412B (zh) * 2022-11-16 2024-02-20 广州市净水有限公司 一种污水生物处理低碳运行优化方法

Also Published As

Publication number Publication date
KR20130065053A (ko) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2013085358A1 (ko) 체류시간 최적화를 위한 활성슬러지 모델 시뮬레이션을 이용한 연속식 생물학적 수처리 시스템
Maranon et al. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale
WO2019107948A2 (ko) 생물반응조 종합관리 자동제어 시스템과 신재생 발전기능을 구비하여 하수 처리 및 에너지 효율을 향상시킨 하수 고도처리장치 및 하수 고도처리방법
Burgess et al. Developments in odour control and waste gas treatment biotechnology: a review
WO2013085359A1 (ko) 체류시간 최적화를 위한 수질자동측정기를 이용한 연속식 생물학적 수처리 시스템
DK0924168T3 (da) Fremgangsmåde til reduktion af slam i et aerobt spildevandsrensningsanlæg
Jokela et al. Anaerobic solubilisation of nitrogen from municipal solid waste (MSW)
Allen et al. Biofiltration control of hydrogen sulfide emissions.
KR100288474B1 (ko) 무기성 악취와 휘발성 유기화합물이 혼합된 공기를 동시에 제거하는 미생물 담체충전형 모듈러 생물여과장치
WO2019066230A1 (ko) 단축질소제거 및 아질산 산화 미생물 활성 저해를 위한 장치 및 방법
KR100260979B1 (ko) 원형의 섬모상 접촉여재에 미생물을 고정화한 고농도 유기성 악취의 처리장치 및 방법
Vandevivere et al. Environmental applications
KR100925537B1 (ko) 정화조용 악취저감장치
Xing et al. Excess sludge production in membrane bioreactors: a theoretical investigation
CN210448735U (zh) 废气处理装置
KR102031066B1 (ko) 배양조를 이용한 탈취시스템
CN113797724A (zh) 一种环保废气处理用净化除臭系统及方法
Patria et al. Odour removal with a trickling filter at a small WWTP strongly influenced by the tourism season
CN219136584U (zh) 一种生活垃圾渗滤液处理系统
Gałwa-Widera et al. Biofiltration–an ecological method of removing odors generated during drying sewage sludge-case study
CN210729154U (zh) 一种通过微生物对恶臭及VOCs进行治理的设备
CA2238792A1 (en) Apparatus for use in a sewage clarifier
Alex et al. A fuzzy controller for activated sludge waste water plants
Standefer Evaluating biofiltration
CN116002894A (zh) 一种生活垃圾渗滤液处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855445

Country of ref document: EP

Kind code of ref document: A1