WO2013085158A1 - Alternating current direct-coupled type light-emitting diode lighting apparatus - Google Patents

Alternating current direct-coupled type light-emitting diode lighting apparatus Download PDF

Info

Publication number
WO2013085158A1
WO2013085158A1 PCT/KR2012/009598 KR2012009598W WO2013085158A1 WO 2013085158 A1 WO2013085158 A1 WO 2013085158A1 KR 2012009598 W KR2012009598 W KR 2012009598W WO 2013085158 A1 WO2013085158 A1 WO 2013085158A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
circuit
emitting diode
light emitting
diode
Prior art date
Application number
PCT/KR2012/009598
Other languages
French (fr)
Korean (ko)
Inventor
이진효
이규홍
이상용
Original Assignee
(주)알에프세미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)알에프세미 filed Critical (주)알에프세미
Publication of WO2013085158A1 publication Critical patent/WO2013085158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a light emitting diode lighting apparatus, and more particularly, to an AC direct-type light emitting diode lighting apparatus which directly connects a light emitting diode to an AC power source through a half-wave or full-wave rectifier circuit to reduce luminous efficiency and reduce total harmonic distortion. will be.
  • the light emitting diode has a characteristic that a current flows when a forward threshold voltage or more is applied when a forward voltage is applied like a general diode characteristic.
  • a direct-type LED that is directly driven by alternating current has one or more LEDs connected in series and in parallel to each other via a full-wave rectifier diode. When full-wave rectified power is applied, the light emitting diode is turned on at a voltage equal to or higher than the forward threshold voltage, and current flows to start emitting light.
  • FIG. 1 illustrates an AC LED driving circuit in which a rectifier diode Dr, a current regulating resistor Rr, and a light emitting diode De are connected in series.
  • FIG. 2 illustrates waveforms of the AC power supply voltage V AC , the current I AC , the rectified voltage Vcc, and the current Icc flowing in FIG. 1.
  • the rectified voltage Vcc of the form in which the AC power source V AC passes through the rectifying diode Dr is propagated and applied to the light emitting diode De through the resistor Rr.
  • the current Icc does not flow for a predetermined time t1 and t3 as shown in FIG. 2. Do not.
  • the rectified voltage Vcc is greater than the forward threshold voltage Vth (t2), the current Icc starts to flow, and the magnitude of the current Icc flows between the rectified voltage Vcc and the forward threshold voltage Vth. Since a value corresponding to a value divided by the resistance Rr is increased, when the input rectified voltage is increased, the current flowing through the light emitting diode increases accordingly.
  • the forward threshold voltage (Vth) increases in proportion to the number of unit light-emitting diodes connected in series, the turn-on period of the light emitting diode is shortened, which increases total harmonic distortion (THD) and decreases optical efficiency.
  • TDD total harmonic distortion
  • the forward threshold voltage is lowered or the power supply voltage is increased, more than the allowable current may flow in the light emitting diode, which may shorten the lifespan and reduce the reliability.
  • the total harmonic distortion is regulated worldwide due to various electric noises, and when the light efficiency of the light emitting diode is lowered, more light emitting diodes have to be used as they are lowered, thereby increasing the cost of manufacturing a light emitting device having a predetermined amount or more.
  • FIG. 3 shows an AC LED driving circuit for improving total harmonic distortion (THD), in which the first light emitting diode Da and the second light emitting diode Db in the anti-parallel form are in series with the current regulating resistor R. And a capacitor C1 for improving total harmonic distortion is connected between the connection point na between the resistor R and the first light emitting diode Da and between the first light emitting diode Da and the second light emitting diode Db.
  • the power supply (V AC ) is connected to the light emitting diode directly through a resistor without a rectifier diode.
  • FIG. 4 is a view showing a voltage V AC and a current I AC , a voltage waveform Vcc and a current waveform IDa and a second light emitting diode (Da) applied to the light emitting diode of FIG. 3.
  • the current waveform IDb flowing through Db) is shown.
  • the charging current flows through the capacitor C1 when the voltage rises in the positive direction even under the forward threshold voltage Vth, and discharges through the capacitor C1 even when the voltage rises in the negative direction. Current flows
  • the current IDb2 flows through the forward first light emitting diode Da2 in the positive half cycle, and the reverse first light emitting diode Da1 in the negative half cycle.
  • the current IDb1 flows through the reverse second light emitting diode Db1 to become the second light emitting diode current Idb.
  • no current flows through the capacitor C1, and no current flows like the first light emitting diode Da below the threshold voltage Vth.
  • charge / discharge current may be generated in the capacitor C1 through the second light emitting diode Db, thereby improving the total harmonic distortion of the current I AC flowing in the power supply V AC .
  • the capacitor price is high and the size of the capacitor makes it difficult to miniaturize the product.
  • the charge / discharge current of the capacitor C1 for reducing the total harmonic distortion flows only in the second light emitting diode Db, which is half of the light emitting diode used, so that the current flowing in the second light emitting diode Db is transmitted to the first light emitting diode Da.
  • the second light emitting diode Db may not supply sufficient light-emitting current to the light emitting diode because an excessive current flows.
  • An object of the present invention for solving the above-mentioned conventional problems is to control the range turned on in one power cycle, and the AC direct connection type to improve the total harmonic distortion and light efficiency by flowing a constant current to all light emitting diodes below the forward threshold voltage To provide a light emitting diode lighting device.
  • Another object of the present invention is to provide an AC direct-type LED lighting apparatus which reduces manufacturing costs by configuring a single semiconductor device.
  • the present invention for solving the above conventional problems and to achieve the above object,
  • a light emitting diode lighting apparatus comprising a rectifying diode for converting an AC power source into a DC power source, a first light emitting diode including at least one light emitting diode, and a second light emitting diode including at least one light emitting diode,
  • a first constant current circuit allowing a constant current to flow through the first and second light emitting diodes;
  • a current sensing circuit for sensing a sensing current flowing through the first light emitting diode to the second light emitting diode;
  • a second constant current circuit for supplying a second constant current to the first light emitting diode when there is no sense current flowing through the first light emitting diode to the second light emitting diode;
  • a third constant current circuit for supplying a third constant current to the second light emitting diode when there is no sensing current flowing through the first light emitting diode to the second light emitting diode.
  • the first constant current circuit is connected between the rectifying diode and the first light emitting diode.
  • the first constant current circuit is connected between the first light emitting diode and the current sensing circuit.
  • the first constant current circuit is connected between the current sensing circuit and the second light emitting diode.
  • the first constant current circuit is connected in series to a second light emitting diode.
  • the first constant current circuit is configured as a first JFET.
  • the first constant current circuit is configured as a current regulator diode (CRD).
  • CCD current regulator diode
  • the first constant current circuit is configured by a first JFET and a first BJT or a second BJT.
  • the first constant current circuit is configured of a bipolar current regulator (BCR) including a first BJT or a second BJT, a first resistor, a second resistor, a first diode, and a second diode.
  • BCR bipolar current regulator
  • the current sensing circuit is characterized in that the third diode and the third resistor and the fourth resistor are connected in series.
  • the second constant current circuit includes: a constant current circuit having a current sensing terminal, a current input terminal and a current output terminal, the constant current circuit comprising a second JFET; A sensing current potential converting circuit comprising a fifth BJT for converting a potential of the sensing current and a fifth JFET for making the sensing current constant; A current sensing circuit comprising a third JFET sensing current and a fifth resistor providing a reference potential; An output current regulation circuit comprising a fourth JFET for sensing an output current, a fourth diode for adjusting a reference potential, a sixth resistor, and a seventh resistor; And an output current amplifier circuit configured as a third BJT.
  • the output current control circuit is characterized in that it further comprises a fifth diode and connected in series with the fourth diode.
  • the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure.
  • the output current control circuit further comprises a fifth diode and connected in series with the fourth diode
  • the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure. do.
  • the third constant current circuit includes: a constant current circuit comprising a sensing current reference terminal, a current sensing terminal, a current input terminal, and a current output terminal, the second JFET; A current sensing circuit comprising a third JFET for sensing current and a fifth resistor providing a reference potential; An output current control circuit comprising a fourth JFET for detecting an output current, a fourth diode for adjusting a reference potential, a sixth resistor, and a seventh resistor; And an output current amplifier circuit configured as a third BJT.
  • the output current control circuit further comprises a fifth diode, characterized in that connected to the fourth diode in series.
  • the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure.
  • the output current control circuit further comprises a fifth diode and connected in series with the fourth diode
  • the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure. do.
  • the present invention implements a current switch to sense the current flowing in the light emitting diode when the AC power is applied, and to flow the current to all the light emitting diode below the LED threshold voltage, AC harmonic distortion and light efficiency There is an effect to easily adjust.
  • the present invention has a high light efficiency, prevents overcurrent due to voltage fluctuations, very high reliability of the lighting device and has an effect of improving the total harmonic distortion.
  • FIG. 1 is a view showing a conventional LED lighting apparatus for AC
  • FIG. 2 is a waveform showing the current and voltage characteristics in FIG.
  • Figure 3 is another embodiment showing a conventional LED lighting device for AC
  • FIG. 4 is a waveform showing the current and voltage characteristics in FIG.
  • FIG. 6 is a waveform showing the current and voltage characteristics in FIG.
  • FIG. 7 is a circuit diagram showing an application result of an embodiment in the first constant current circuit, the current sensing circuit, the second constant current circuit, and the third constant current circuit of FIG.
  • 8A to 8C illustrate embodiments in which the positions of the first constant current circuit of FIG. 5 are different.
  • 9A to 9E illustrate another embodiment of the first constant current circuit of FIG. 5.
  • 10A to 10B illustrate another embodiment of the current sensing circuit of FIG. 5.
  • 11A to 11C illustrate another embodiment of the second constant current circuit of FIG. 5.
  • 12A to 12C illustrate another embodiment of the third constant current circuit of FIG. 5.
  • FIG. 5 is a circuit diagram of an AC direct type LED lighting apparatus according to the present invention
  • FIG. 6 is a waveform showing current and voltage characteristics of FIG. 5.
  • the use of a rectifying diode 10 the AC power source (V AC) to be supplied to the home or office, the direct-current power supply, that is, the rectified power supply (Vcc) is rectified in a constant cycle as shown in Figure 6 It has a characteristic in the form of voltage (11).
  • the power supply (Vcc) voltage may include a first light emitting diode 20 including a first constant current circuit 100 connected in series and at least one light emitting diode, a second light emitting diode 21 including a current sensing circuit 200 and at least one light emitting diode.
  • the light emitting current that is, the sensing current 12 flows when the voltage is equal to or greater than the forward threshold voltage of the series structure. At this time, the current of the voltage increases with an exponential function above the threshold voltage due to the physical characteristics of the diode, so the role of the first constant current circuit 100 to constantly flow the current is very important.
  • the first constant current circuit 100 is composed of a power input terminal (a) and an output terminal (b) for outputting a constant current, if there is no first constant current circuit 100 to some extent that the overcurrent flows using a resistor Although it can be prevented, the life of the lighting device is greatly shortened by the overcurrent caused by the change of the power supply voltage.
  • the safety device is configured below the overcurrent, the light efficiency is reduced due to the short period of light emission at the power supply voltage of one cycle.
  • the first constant current circuit 100 may not only maximize the light emission period in one power cycle by supplying a constant current regardless of the change in the rectified voltage Vcc, but also supply the current up to the maximum current allowed by the light emitting diode. Therefore, the life and the light efficiency of the lighting device can be optimized.
  • the first constant current circuit 100 may be connected in series with any one of the rectifying diode 10, the first light emitting diode 20, and the second light emitting diode 21 as shown in FIGS. 8A to 8C. That is, the first constant current circuit 100 includes the rectifying diode 10 and the first light emitting diode 20, the first light emitting diode 10, the current sensing circuit 200, the current sensing circuit 200, and the second.
  • the light emitting diodes 21 may be connected to any one of the light emitting diodes 21, or may be connected to the second light emitting diodes 21 in series.
  • the constant current is applied to the first light emitting diode 20 by the sensing current circuit 200 and the second constant current circuit 300 of FIG. 5. That is, the second constant current is supplied, and at the same time, the third constant current circuit 400 supplies a constant current, that is, the third constant current, to provide the additional current 13 to provide the total harmonic distortion and power factor. to improve the power factor and light efficiency.
  • the current amount is the sum of the second constant current and the third constant current, and appears in the form of an additional current 13 before and after the sensing current 12 of FIG. 6, and the operating voltage is a threshold voltage Vth and a half threshold voltage 1 / 2Vth. It works in the interval.
  • the sensing current circuit 200 includes a current input terminal (c) connected to the first light emitting diode 20 and a current output terminal (d) and a second constant current circuit 300 connected to the second light emitting diode circuit 21. And a first sensing terminal (e) connected to the second sensing terminal (f) connected to the third constant current circuit (400), and detecting when a pass current occurs in the input terminal (c) and the output terminal (d). Voltage is generated at the terminals e and f to cut off currents of the second constant current circuit 300 and the third constant current circuit 400.
  • the second constant current circuit 300 is connected to a constant current input terminal j connected to a connection point n2 between the first light emitting diode 20 and the sensing current circuit 200 and a reference voltage GND of a power supply voltage.
  • Constant current output terminal (m) the sense current input terminal (k) connected to the first sense terminal (d) of the sense current circuit 200 and the connection point between the sense current circuit 200 and the second light emitting diode 21 ( and a sensing current reference terminal l connected to n3), and a circuit for supplying a constant current to the first light emitting diode 20 when there is no sensing current, and the rectified voltage Vcc is about half of the forward threshold voltage.
  • a constant current is supplied to the first light emitting diode 20 when there is no sensing current up to the forward threshold voltage.
  • the third constant current circuit 400 is connected to a constant current input terminal g connected to the rectified voltage Vcc terminal n1 and a connection point n3 between the sensing current circuit 200 and the second light emitting diode 21. It consists of a constant current output terminal (i) and a sense current input terminal (h) connected to the second sense terminal (d) of the sense current circuit 200, there is no sense current as the second constant current circuit (300) At this time, as a circuit for supplying a constant current to the second light emitting diode 21, a constant current is supplied to the second light emitting diode 21 until the sensed current flows at about half of the forward threshold voltage.
  • FIG. 7 is a circuit diagram showing an application result of an embodiment in the first constant current circuit, the current sensing circuit, the second constant current circuit, and the third constant current circuit of FIG.
  • the first constant current circuit 100a includes the first JFET J1, and the gate terminal is connected to the source terminal, whereby the gate voltage is constant, thereby implementing a constant current.
  • the current sensing circuit 200a is composed of a resistor R3 and a diode D3. When a sensing current flows, a sensing potential is generated across the resistor R3 to sense current, and the diode D3 detects the current. ) And the second light emitting diode 21 are electrically separated.
  • the second constant current circuit 300a includes a constant current circuit 510 consisting of a second JFET J2, a sensing consisting of a fifth BJT Q5 for converting the potential of the sensing current, and a fifth JFET J5 for keeping the sensing current constant.
  • a current sensing circuit 520 comprising a current potential converting circuit 550, a third JFET J3 sensing current, and a fifth resistor R5 providing a reference potential of the third JFET J3, and a current sensing circuit sensing the output current.
  • an output current control circuit comprising a fourth diode D4 for adjusting the reference potential of the fourth JFET J4, a sixth resistor R6, and a seventh resistor R7 for sensing the second constant current ( 530, an output current amplifying circuit 540 configured as a third BJT Q3.
  • the third constant current circuit 400a includes a constant current circuit 510 composed of a second JFET J2, a third JFET J3 sensing current, and a fifth resistor R5 providing a reference potential of the third JFET J3.
  • An output current control circuit 530 composed of a seventh resistor R7 and an output current amplifier circuit 540 composed of a third BJT Q3 are implemented.
  • the additional current 13 is restricted by the second constant current circuits 300 and 300a and the third constant current circuits 400 and 400a. If the rectified voltage (Vcc) is greater than the threshold voltage (Vth), the detection current 12 is flowed by being limited by the first constant current circuit (100, 100a).
  • the additional current 13 flows from the sensing current 12. Is the turning point at which.
  • FIG. 9A illustrates an embodiment of the first constant current circuit 100a of FIG. 7, and the first constant current circuit 100b is implemented with a current regulator diode (CRD).
  • CCD current regulator diode
  • FIG. 9B is another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100c includes a first JFET J1 and a first PNP BJT Q1, and is connected to the first JFET J1.
  • the current flowing through the first PNP BJT (Q1) is implemented by amplification.
  • FIG. 9C illustrates another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100d includes a first JFET J1 and a second NPN BJT Q2, and the first JFET J1.
  • the current flowing in the amplified by the second NPN BJT (Q2) is implemented.
  • FIG. 9D illustrates another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100e includes a first resistor R1, a second resistor R2, a first diode D1, and a first diode.
  • Bipolar Current Regulator including a second diode (D2) and a first PNP BJT (Q1), wherein the first diode (D1) and the second diode (D2) are connected in series to form a constant threshold voltage Amplified by the first PNP BJT (Q1) so that the current flowing through the resistor (R1) flows uniformly, and the second resistor (R2) is implemented to operate a constant current by changing the voltage at the base terminal of the first PNP BJT (Q1). .
  • the first constant current circuit 100f includes a first resistor R1, a second resistor R2, a first diode D1, and a first diode. It consists of a BCR including a second diode (D2) and a second NPN BJT (Q2), and the first diode (D1) and the second diode (D2) are connected in series to form a constant threshold voltage to the first resistor (R1).
  • the current is amplified by the second NPN BJT (Q2) so as to flow uniformly, and the second resistor R2 is implemented to operate a constant current by changing a voltage at the base terminal of the second NPN BJT (Q2).
  • FIG. 10A illustrates an embodiment of the current sensing circuit 200a of FIG. 7, in which the third resistor R3, the third diode D3, and the fourth resistor R4 are connected in series to each other.
  • the current input to (c) flows to the output terminal d through the third resistor R3, the third diode D3, and the fourth resistor R4, the first sensing terminal e and the second sensing terminal.
  • FIG. 10B illustrates another embodiment of the current sensing circuit 200a of FIG. 7, wherein the current sensing circuit 200c is connected to a third diode D3, a third resistor R3, and a fourth resistor R4 in series.
  • the current input to the terminal c flows to the output terminal d through the third resistor R3, the third diode D3, and the fourth resistor R4, the first sensing terminal e and the second sensing The voltage is generated at the terminal f.
  • FIG. 11A illustrates an embodiment of the second constant current circuit 300a of FIG. 7.
  • the output current amplifying circuit 541 has the fourth BJT Q3 and the third BJT Q3 having a Darlington structure. This increases the degree of current amplification.
  • FIG. 11B is another embodiment of the second constant current circuit 300a of FIG. 7.
  • the output current control circuit 531 connects the fourth diode D4 and the fifth diode D5 in series. Connect to change the control potential.
  • FIG. 11C illustrates another embodiment of the second constant current circuit 300a of FIG. 7.
  • the output current amplifier circuit 541 is driven by the fourth BJT Q3 and the third BJT Q3.
  • the tone structure is increased to increase the current amplification degree, and the output current control circuit 531 changes the control potential by connecting the fourth diode D4 and the fourth diode D5 in series.
  • FIG. 12A illustrates an embodiment of the third constant current circuit 400a of FIG. 7.
  • the output current amplifier circuit 541 has a fourth Darlington structure in which the fourth BJT Q3 and the third BJT Q3 are formed. This increases the degree of current amplification.
  • FIG. 12B illustrates another embodiment of the third constant current circuit 400a of FIG. 7, wherein the third constant current circuit 400c includes an output current control circuit 531 in which a fourth diode D4 and a fourth diode D5 are connected in series. Connect to change the control potential.
  • FIG. 12C illustrates another embodiment of the third constant current circuit 400a of FIG. 7, wherein the third constant current circuit 400d includes the output current amplifier circuit 541 having the fourth BJT Q3 and the third BJT Q3 darlington.
  • This structure increases the current amplification degree, and the output current control circuit 531 changes the control potential by connecting the fourth diode D4 and the fourth diode D5 in series.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

The present invention relates to an alternating current direct-coupled type light-emitting diode lighting apparatus, and more particularly, to a light-emitting diode lighting apparatus which includes a rectifier diode for converting alternating current power into direct current power, a first light-emitting diode constituted by one or more light-emitting diodes, and a second light-emitting diode constituted by one or more light-emitting diodes, the lighting apparatus including: a first constant current circuit which allows constant current to flow to the first and second light-emitting diodes; a current sensing circuit which senses sensing current flowing to the second light-emitting diode through the first light-emitting diode; a second constant current circuit which supplies second constant current to the first light-emitting diode when the sensing current does not exist; and a third constant current circuit which supplies third constant current to the second light-emitting diode when the sensing current does not exist.

Description

교류 직결형 발광다이오드 조명장치AC direct-type LED lighting device
본 발명은 발광다이오드 조명장치에 관한 것으로, 더욱 상세하게는 교류전원에 반파 또는 전파 정류회로를 통해서 발광 다이오드를 직접 연결하여 발광효율 개선과 전고조파 왜곡현상을 줄이는 교류 직결형 발광다이오드 조명장치에 관한 것이다.The present invention relates to a light emitting diode lighting apparatus, and more particularly, to an AC direct-type light emitting diode lighting apparatus which directly connects a light emitting diode to an AC power source through a half-wave or full-wave rectifier circuit to reduce luminous efficiency and reduce total harmonic distortion. will be.
발광다이오드는 일반적인 다이오드 특성과 같이 순방향 전압 인가 시 순방향 문턱전압 이상 인가되는 경우 전류가 흐르는 특성을 가지고 있다. 교류에 직접 구동되는 직결형태의 발광다이오드는 전파 정류 다이오드를 거쳐서 한 개 또는 그 이상의 발광 다이오드가 직렬, 직병렬 형태로 연결되어 있다. 전파 정류된 전원이 인가되면 순방향 문턱전압 이상의 전압에서 발광다이오드가 턴온(Turn-on)되어 전류가 흘러 빛을 방출하기 시작한다. The light emitting diode has a characteristic that a current flows when a forward threshold voltage or more is applied when a forward voltage is applied like a general diode characteristic. A direct-type LED that is directly driven by alternating current has one or more LEDs connected in series and in parallel to each other via a full-wave rectifier diode. When full-wave rectified power is applied, the light emitting diode is turned on at a voltage equal to or higher than the forward threshold voltage, and current flows to start emitting light.
발광다이오드 턴온 전압 이하에서는 전압은 인가되고 있어도 발광다이오드에는 전류가 흐르지 않아, 한 주기를 기준으로 할 때 발광다이오드의 턴온 구간이 짧음으로 인해 광 효율 저하와 전고조파 왜곡 현상이 발생한다. Under the LED turn-on voltage, even though a voltage is applied, no current flows to the LED, and thus, when the turn-on period of the LED is short based on one cycle, light efficiency and total harmonic distortion occur.
직렬 연결되는 발광다이오드의 수가 증가하면 턴온에 필요한 전압이 더욱 증가하며, 턴온 구간은 더욱 짧아져서 이러한 문제점들은 더욱 심하게 나타나며 제조원가도 증가하게 된다. As the number of LEDs connected in series increases, the voltage required for turn-on increases further, and the turn-on period becomes shorter, so that these problems appear more severely and manufacturing costs increase.
반대로 직렬 연결되는 발광다이오드의 수를 줄이면 작동에 필요한 전압은 감소하나 발광다이오드에 과전류가 흘러서 수명을 크게 단축시키는 결정적인 단점이 있다. 또한 교류 전원의 전압변동에 따라 상기한 광 효율저하와 과전류 현상이 나타나는 문제점이 있다. On the contrary, if the number of LEDs connected in series is reduced, the voltage required for operation decreases, but there is a decisive disadvantage in that the overcurrent flows to the LEDs, which greatly shortens the life. In addition, there is a problem in that the above-described light efficiency degradation and overcurrent phenomenon appear according to the voltage variation of the AC power source.
따라서 전원의 전압변동에 영향을 받지 않고, 광 효율을 증가시키고, 전고조파 왜곡을 감소시켜, 과전류를 방지하고, 제조원가를 줄일 수 있는 발광다이오드 장치 개발이 필요하다.Therefore, there is a need to develop a light emitting diode device capable of increasing optical efficiency, reducing total harmonic distortion, preventing overcurrent, and reducing manufacturing cost without being affected by voltage fluctuations of a power supply.
도 1은 정류 다이오드(Dr)과 전류조절저항(Rr) 및 발광다이오드(De)가 직렬 연결된 형태의 교류 발광 다이오드 구동 회로를 보이고 있다. 도 2는 도 1에서 인가한 교류전원전압(VAC)와 전류(IAC) 및 정류전압(Vcc)과 흐르는 전류(Icc) 파형을 나타내고 있다. 1 illustrates an AC LED driving circuit in which a rectifier diode Dr, a current regulating resistor Rr, and a light emitting diode De are connected in series. FIG. 2 illustrates waveforms of the AC power supply voltage V AC , the current I AC , the rectified voltage Vcc, and the current Icc flowing in FIG. 1.
도 1과 같이 교류전원(VAC)가 정류다이오드(Dr)를 통과하여 전파 정류된 형태의 정류전압(Vcc)이 저항(Rr)을 거쳐서 발광다이오드(De)에 인가된다. 직렬 연결된 발광다이오드(De)의 순방향 문턱전압(발광다이오드(De)에 포함된 단위 발광다이오드의 순방향 문턱전압의 합) 이하에서는 도 2와 같이 일정시간(t1, t3) 동안 전류(Icc)가 흐르지 않는다. 정류전압(Vcc)이 순방향 문턱전압(Vth)보다 큰 경우(t2)에 전류(Icc)가 흐르기 시작하고, 흐르는 전류(Icc)의 크기는 정류전압(Vcc)과 순방향 문턱전압(Vth) 차이를 저항(Rr)으로 나눈 값에 해당하는 값을 갖기 때문에 입력정류전압이 증가하면 그에 따라서 발광다이오드에 흐르는 전류가 허용 최대전류 보다 커지는 문제가 있다.As shown in FIG. 1, the rectified voltage Vcc of the form in which the AC power source V AC passes through the rectifying diode Dr is propagated and applied to the light emitting diode De through the resistor Rr. Below the forward threshold voltage of the light emitting diodes De connected in series (the sum of the forward threshold voltages of the unit light emitting diodes included in the light emitting diodes De), the current Icc does not flow for a predetermined time t1 and t3 as shown in FIG. 2. Do not. When the rectified voltage Vcc is greater than the forward threshold voltage Vth (t2), the current Icc starts to flow, and the magnitude of the current Icc flows between the rectified voltage Vcc and the forward threshold voltage Vth. Since a value corresponding to a value divided by the resistance Rr is increased, when the input rectified voltage is increased, the current flowing through the light emitting diode increases accordingly.
직렬 연결되는 단위 발광 다이오드의 수에 비례하여 턴온에 필요한 전압 즉 순방향문턱전압(Vth)이 증가하므로 발광다이오드의 턴온 구간이 짧아져서 전고조파 왜곡(Total Harmonics Distortion, THD)이 증가하고 광 효율도 저하되며, 순방향 문턱 전압을 낮추거나 전원 전압이 증가한 경우 허용 전류 이상이 발광다이오드에 흐를 수 있어 수명 단축과 신뢰성이 떨어지는 문제점이 발생할 수 있다. As the voltage required for turn-on, that is, the forward threshold voltage (Vth) increases in proportion to the number of unit light-emitting diodes connected in series, the turn-on period of the light emitting diode is shortened, which increases total harmonic distortion (THD) and decreases optical efficiency. In addition, when the forward threshold voltage is lowered or the power supply voltage is increased, more than the allowable current may flow in the light emitting diode, which may shorten the lifespan and reduce the reliability.
상기 전고조파 왜곡은 여러 전기적 잡음을 일으키는 원인으로 세계적으로 규제대상이며, 발광다이오드의 광 효율이 저하되면 저하된 만큼 더 많은 발광다이오드를 사용하여야 함으로 일정량 이상의 발광장치를 제조하는데 비용이 증가한다. The total harmonic distortion is regulated worldwide due to various electric noises, and when the light efficiency of the light emitting diode is lowered, more light emitting diodes have to be used as they are lowered, thereby increasing the cost of manufacturing a light emitting device having a predetermined amount or more.
도 3은 전고조파 왜곡(THD)을 개선하기 위한 교류 발광 다이오드 구동 회로를 보이며, 역병렬 형태의 제1발광다이오드(Da)와 제2발광다이오드(Db)가 전류 조절 저항(R)과 직렬로 연결되며, 전고조파 왜곡을 개선하기 위한 캐패시터(C1)가 저항(R)과 제1발광다이오드(Da)사이의 연결점(na)과 제1발광다이오드(Da)와 제2발광다이오드(Db)사이의 연결점(nb)에 구성되며, 전원(VAC)은 정류 다이오드 없이 저항을 거처 직접 발광다이오드에 연결된 구성이다.3 shows an AC LED driving circuit for improving total harmonic distortion (THD), in which the first light emitting diode Da and the second light emitting diode Db in the anti-parallel form are in series with the current regulating resistor R. And a capacitor C1 for improving total harmonic distortion is connected between the connection point na between the resistor R and the first light emitting diode Da and between the first light emitting diode Da and the second light emitting diode Db. The power supply (V AC ) is connected to the light emitting diode directly through a resistor without a rectifier diode.
도 4는 도 3에서 발광다이오드에 인가한 전압(VAC)와 전류(IAC), 전압파형(Vcc)과 제1발광다이오드(Da)을 통하여 흐르는 전류파형(IDa) 및 제2발광다이오드(Db)을 통하여 흐르는 전류파형(IDb)을 표시하고 있다.FIG. 4 is a view showing a voltage V AC and a current I AC , a voltage waveform Vcc and a current waveform IDa and a second light emitting diode (Da) applied to the light emitting diode of FIG. 3. The current waveform IDb flowing through Db) is shown.
제1발광다이오드(Da)에는 순방향문턱전압(Vth) 이하에서는 전류가 흐르지 않으며, 순방향문턱전압(Vth) 이상일 때 양의 반주기에서는 제1발광다이오드(Da) 중에서 순방향 제1발광다이오드(Da2)에 전류(IDa2)가 흐르며, 음의 반주기에서는 역방향 제1발광다이오드(Da1)에 전류(IDa1)가 흘러서 제1발광다이오드 전류(Ida)가 된다.No current flows in the first light emitting diode Da below the forward threshold voltage Vth, and at a positive half period when the forward threshold voltage Vth is higher than the first light emitting diode Da, the first light emitting diode Da is connected to the forward first light emitting diode Da2. The current IDa2 flows, and in the negative half cycle, the current IDa1 flows through the reverse first light emitting diode Da1 to become the first light emitting diode current Ida.
제2발광다이오드(Db)에는 순방향문턱전압(Vth) 이하에서도 전압이 양의 방향으로 상승할 때 캐패시터(C1)를 통하여 충전 전류가 흐르며, 음의 방향으로 상승할 때에도 캐패시터(C1)를 통하여 방전 전류가 흐른다. In the second light emitting diode Db, the charging current flows through the capacitor C1 when the voltage rises in the positive direction even under the forward threshold voltage Vth, and discharges through the capacitor C1 even when the voltage rises in the negative direction. Current flows
순방향 문턱전압(Vth) 이상일 때 양의 반주기에서는 순방향 제1발광다이오드(Da2)를 통하여 순방향 제2발광 다이오드(Db2)에 전류(IDb2)가 흐르며, 음의 반주기에서는 역방향 제1발광 다이오드(Da1)를 통하여 역방향 제2발광다이오드(Db1)에 전류(IDb1)가 흘러서 제2 발광다이오드전류(Idb)가 된다. 그러나 전압이 하강할 때는 캐패시터(C1)를 통한 전류가 흐르지 않으며 문턱전압(Vth) 이하에서는 제1발광다이오드(Da)와 같이 전류가 흐르지 않는다.When the threshold voltage Vth is greater than or equal to the forward threshold voltage Vth, the current IDb2 flows through the forward first light emitting diode Da2 in the positive half cycle, and the reverse first light emitting diode Da1 in the negative half cycle. The current IDb1 flows through the reverse second light emitting diode Db1 to become the second light emitting diode current Idb. However, when the voltage decreases, no current flows through the capacitor C1, and no current flows like the first light emitting diode Da below the threshold voltage Vth.
전원 전압이 상승할 때는 제2발광다이오드(Db)를 통하여 캐패시터(C1)에 충방전 전류을 발생하여 전원(VAC)에서 흐르는 전류(IAC)의 전고조파 왜곡을 어느 정도 개선시킬 수 있으나 캐패시터의 경우 수명이 짧고, 고전압에 견뎌야 하므로 캐패시터 가격이 비싼 문제점과 커패시터의 크기로 인해 제품의 소형화가 어려운 점이 있다.When the power supply voltage rises, charge / discharge current may be generated in the capacitor C1 through the second light emitting diode Db, thereby improving the total harmonic distortion of the current I AC flowing in the power supply V AC . In the case of short life and high voltage, the capacitor price is high and the size of the capacitor makes it difficult to miniaturize the product.
또한 사용된 발광 다이오드의 절반인 제2발광다이오드(Db)에서만 전고조파 왜곡을 줄이기 위한 캐패시터(C1)의 충방전 전류가 흐르게 되어 제2 발광 다이오드(Db)에 흐르는 전류가 제1발광다이오드(Da)에 흐르는 전류보다 크게 되어, 제1발광다이오드(Da)에 전류를 최대로 공급할 경우 제2발광다이오드(Db)는 과 전류가 흐르게 되므로 발광 다이오드에 충분한 발광 전류를 공급할 수 없는 문제점이 있다.In addition, the charge / discharge current of the capacitor C1 for reducing the total harmonic distortion flows only in the second light emitting diode Db, which is half of the light emitting diode used, so that the current flowing in the second light emitting diode Db is transmitted to the first light emitting diode Da. When the current is larger than the current flowing in the N-th and the maximum current is supplied to the first light emitting diode Da, the second light emitting diode Db may not supply sufficient light-emitting current to the light emitting diode because an excessive current flows.
따라서 단위 발광다이오드의 최대 허용전류를 제1발광다이오드(Da)와 제2발광다이오드에 흐르게 할 수 없어서 광 효율이 떨어지는 문제점을 갖고 있다.Therefore, since the maximum allowable current of the unit light emitting diode cannot flow through the first light emitting diode Da and the second light emitting diode, there is a problem in that light efficiency is lowered.
또한 전원 전압(VAC)이 전압 변동에 의해서 높아지게 되면 제1 및 제2의 발광다이오드에 흐르는 전류값이 최대 허용 전류값 보다 커지는 문제점이 있어서 전압 변동을 고려하면 발광다이오드에 흐르는 전류를 최대 허용치까지 사용할 수 없어 광 효율이 떨어지는 문제점을 갖고 있다.In addition, when the power supply voltage V AC becomes high due to voltage variation, the current value flowing through the first and second light emitting diodes becomes larger than the maximum allowable current value. There is a problem in that light efficiency is lowered because it cannot be used.
상기한 종래 기술에서의 문제점을 요약하면, 전고조파 왜곡을 감소시키기 위해서 발광다이오드의 순방향 문턱전압 이하에서도 전원 전류(IAC)가 일정량 흐르도록 하는데 이는 발광다이오드의 일부에서만 전류가 흐르게 되어서 개별 발광다이오드의 최대 허용전류를 흐르게 할 수 없게 되어 광 효율이 떨어지는 문제와 전고조파 왜곡을 감소시키기 위해서 고전압용 커패시터를 사용하는데 이는 커패시터의 수명이 짧고 가격이 비싸서 제조원가 높아지는 문제 및 전원 전압의 전압 변동에 의해서 전압이 높아지게 되면 발광다이오드에 흐르는 전류값이 최대 허용 전류값 보다 커져서 발광다이오드의 수명을 단축하게 되는 문제점을 갖고 있다.To summarize the above problems in the prior art, in order to reduce the total harmonic distortion, a certain amount of power current (I AC ) flows even below the forward threshold voltage of the light emitting diode, which causes the current to flow only in a part of the light emitting diode, so that the individual LEDs In order to reduce the efficiency of optical efficiency and to reduce the total harmonic distortion, it is impossible to flow the maximum allowable current of the high voltage capacitor. When the value increases, the current flowing through the light emitting diode becomes larger than the maximum allowable current value, thereby shortening the lifespan of the light emitting diode.
상기한 종래 문제점을 해결하기 위한 본 발명의 목적은 한 전원 주기에서 턴온 되는 범위를 조절할 수 있고 순방향 문턱 전압 이하에서 일정 전류를 모든 발광다이오드에 흐르게 함으로써 전고조파 왜곡과 광 효율을 개선하는 교류 직결형 발광다이오드 조명장치를 제공하는데 있다., An object of the present invention for solving the above-mentioned conventional problems is to control the range turned on in one power cycle, and the AC direct connection type to improve the total harmonic distortion and light efficiency by flowing a constant current to all light emitting diodes below the forward threshold voltage To provide a light emitting diode lighting device.
본 발명의 다른 목적은 하나의 반도체 장치로 구성함으로써 제조단가를 줄이는 교류 직결형 발광다이오드 조명장치를 제공하는데 있다.Another object of the present invention is to provide an AC direct-type LED lighting apparatus which reduces manufacturing costs by configuring a single semiconductor device.
상기한 종래 문제점을 해결하고 상기 목적을 달성하기 위한 본 발명은, The present invention for solving the above conventional problems and to achieve the above object,
교류전원을 직류전원으로 변환하는 정류다이오드, 하나 이상의 발광다이오드로 구성된 제1발광다이오드와 하나 이상의 발광다이오드로 구성된 제2발광다이오드를 포함하는 발광다이오드 조명장치에 있어서,A light emitting diode lighting apparatus comprising a rectifying diode for converting an AC power source into a DC power source, a first light emitting diode including at least one light emitting diode, and a second light emitting diode including at least one light emitting diode,
상기 제1, 제2 발광다이오드에 일정전류를 흐르게 하는 제1정전류회로와; 상기 제1발광다이오드를 통해서 제2발광다이오드로 흐르는 감지전류를 감지하는 전류감지회로와; 상기 제1발광다이오드를 통해서 제2발광다이오드로 흐르는 감지전류가 없을 때 제1발광다이오드에 제2정전류를 공급하는 제2 정전류회로; 및 상기 제1발광다이오드를 통해서 제2발광다이오드로 흐르는 감지전류가 없을 때 제2발광다이오드에 제3정전류를 공급하는 제3 정전류회로;로 구성하는 것을 특징으로 한다. A first constant current circuit allowing a constant current to flow through the first and second light emitting diodes; A current sensing circuit for sensing a sensing current flowing through the first light emitting diode to the second light emitting diode; A second constant current circuit for supplying a second constant current to the first light emitting diode when there is no sense current flowing through the first light emitting diode to the second light emitting diode; And a third constant current circuit for supplying a third constant current to the second light emitting diode when there is no sensing current flowing through the first light emitting diode to the second light emitting diode.
본 발명에 따르면, 상기 제1정전류회로는 정류다이오드와 제1발광다이오드 사이에 연결하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is connected between the rectifying diode and the first light emitting diode.
본 발명에 따르면, 상기 제1정전류회로는 제1발광다이오드와 전류감지회로 사이에 연결하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is connected between the first light emitting diode and the current sensing circuit.
본 발명에 따르면, 상기 제1정전류회로는 전류감지회로와 제2발광다이오드 사이에 연결하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is connected between the current sensing circuit and the second light emitting diode.
본 발명에 따르면, 상기 제1정전류회로는 제2발광다이오드에 직렬 연결하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is connected in series to a second light emitting diode.
본 발명에 따르면, 상기 제1정전류회로는 제1JFET로 구성하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is configured as a first JFET.
본 발명에 따르면, 상기 제1정전류회로는 CRD(Current Regulator Diode)로 구성하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is configured as a current regulator diode (CRD).
본 발명에 따르면, 상기 제1정전류회로는 제1JFET와 제1BJT 또는 제2BJT로 구성하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is configured by a first JFET and a first BJT or a second BJT.
본 발명에 따르면, 상기 제1정전류회로는 제1BJT 또는 제2BJT, 제1저항, 제2저항, 제1다이오드, 제2다이오드를 포함한 BCR(Bipolar Current Regulator)로 구성하는 것을 특징으로 한다.According to the present invention, the first constant current circuit is configured of a bipolar current regulator (BCR) including a first BJT or a second BJT, a first resistor, a second resistor, a first diode, and a second diode.
본 발명에 따르면, 상기 전류감지회로는 제3다이오드와 제3저항 및 제4저항이 직렬 연결하는 것을 특징으로 한다.According to the present invention, the current sensing circuit is characterized in that the third diode and the third resistor and the fourth resistor are connected in series.
본 발명에 따르면, 상기 제2정전류회로는, 전류감지단자, 전류입력단자, 전류출력단자를 갖고, 제2JFET로 구성된 정전류회로와; 감지전류의 전위를 변환하기 위한 제5BJT와 감지전류를 일정하게 하기 위한 제5JFET로 구성된 감지전류 전위변환회로와; 전류를 감지하는 제3JFET와 기준전위를 제공하는 제5저항으로 구성된 전류감지회로와; 출력 전류 감지하는 제4JFET와 기준전위를 조정하는 제4다이오드와 제6저항 및 제7저항으로 구성된 출력전류조절회로; 및 제3BJT으로 구성된 출력전류증폭회로;를 포함하는 것을 특징으로 한다. According to the present invention, the second constant current circuit includes: a constant current circuit having a current sensing terminal, a current input terminal and a current output terminal, the constant current circuit comprising a second JFET; A sensing current potential converting circuit comprising a fifth BJT for converting a potential of the sensing current and a fifth JFET for making the sensing current constant; A current sensing circuit comprising a third JFET sensing current and a fifth resistor providing a reference potential; An output current regulation circuit comprising a fourth JFET for sensing an output current, a fourth diode for adjusting a reference potential, a sixth resistor, and a seventh resistor; And an output current amplifier circuit configured as a third BJT.
본 발명에 따르면, 상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하는 것을 특징으로 한다. According to the invention, the output current control circuit is characterized in that it further comprises a fifth diode and connected in series with the fourth diode.
본 발명에 따르면, 상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 한다. According to the present invention, the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure.
본 발명에 따르면, 상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하고, 상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 한다.According to the present invention, the output current control circuit further comprises a fifth diode and connected in series with the fourth diode, and the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure. do.
본 발명에 따르면, 상기 제3정전류회로는, 감지전류기준단자, 전류감지단자, 전류입력단자, 전류출력단자를 갖고, 제2JFET으로 구성된 정전류회로와; 전류를 감지하는 제3JFET와 기준 전위를 제공하는 제5저항으로 구성된 전류감지회로와; 출력전류 감지하는 제4JFET와 기준전위를 조정하는 제4다이오드와 제6저항 및 제7저항으로 구성된 출력전류조절회로; 및 제3BJT으로 구성된 출력전류증폭회로;를 포함하는 것을 특징으로 한다.According to the present invention, the third constant current circuit includes: a constant current circuit comprising a sensing current reference terminal, a current sensing terminal, a current input terminal, and a current output terminal, the second JFET; A current sensing circuit comprising a third JFET for sensing current and a fifth resistor providing a reference potential; An output current control circuit comprising a fourth JFET for detecting an output current, a fourth diode for adjusting a reference potential, a sixth resistor, and a seventh resistor; And an output current amplifier circuit configured as a third BJT.
본 발명에 따르면, 상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4 다이오드와 직렬 연결하는 것을 특징으로 한다.According to the present invention, the output current control circuit further comprises a fifth diode, characterized in that connected to the fourth diode in series.
본 발명에 따르면, 상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 한다. According to the present invention, the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure.
본 발명에 따르면, 상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하고, 상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 한다.According to the present invention, the output current control circuit further comprises a fifth diode and connected in series with the fourth diode, and the output current amplifying circuit further comprises a fourth BJT and comprises a third BJT and a Darlington structure. do.
상기한 바와 같이, 본 발명은 교류 전원이 인가되었을 때, 발광다이오드에 흐르는 전류를 감지하여 발광다이오드 문턱전압 이하에서는 모든 발광다이오드에 전류가 흐르도록 하는 전류스위치를 구현하여 교류 전고조파 왜곡과 광 효율을 용이하게 조절하는 효과가 있다.As described above, the present invention implements a current switch to sense the current flowing in the light emitting diode when the AC power is applied, and to flow the current to all the light emitting diode below the LED threshold voltage, AC harmonic distortion and light efficiency There is an effect to easily adjust.
또한, 본 발명은 광 효율이 높고 전압변동에 따른 과전류를 방지하여 조명장치의 신뢰성이 매우 높으며 전고조파 왜곡이 개선된 효과가 있다.In addition, the present invention has a high light efficiency, prevents overcurrent due to voltage fluctuations, very high reliability of the lighting device and has an effect of improving the total harmonic distortion.
도 1은 종래의 교류용 발광다이오드 조명장치를 나타낸 실시예 1 is a view showing a conventional LED lighting apparatus for AC
도 2는 도 1에서의 전류 및 전압 특성을 나타낸 파형2 is a waveform showing the current and voltage characteristics in FIG.
도 3은 종래의 교류용 발광다이오드 조명장치를 나타낸 다른 실시예 Figure 3 is another embodiment showing a conventional LED lighting device for AC
도 4는 도 3에서의 전류 및 전압 특성을 나타낸 파형4 is a waveform showing the current and voltage characteristics in FIG.
도 5는 본 발명의 교류직결형 발광다이오드 조명장치를 나타낸 실시예5 is an embodiment showing an AC direct type LED lighting apparatus of the present invention
도 6은 도 5에서의 전류 및 전압 특성을 나타낸 파형6 is a waveform showing the current and voltage characteristics in FIG.
도 7은 도 5의 제1정전류회로, 전류감지회로, 제2정전류회로, 제3정전류회로에 있어서 실시예의 적용 결과를 도시한 회로도FIG. 7 is a circuit diagram showing an application result of an embodiment in the first constant current circuit, the current sensing circuit, the second constant current circuit, and the third constant current circuit of FIG.
도 8a 내지 도 8c은 도 5의 제1정전류회로의 위치가 다른 실시예8A to 8C illustrate embodiments in which the positions of the first constant current circuit of FIG. 5 are different.
도 9a 내지 도 9e은 도 5의 제1정전류회로의 다른 실시예 9A to 9E illustrate another embodiment of the first constant current circuit of FIG. 5.
도 10a 내지 도 10b은 도 5의 전류감지회로의 다른 실시예10A to 10B illustrate another embodiment of the current sensing circuit of FIG. 5.
도 11a 내지 도 11c은 도 5의 제2정전류회로의 다른 실시예11A to 11C illustrate another embodiment of the second constant current circuit of FIG. 5.
도 12a 내지 도 12c은 도 5의 제3정전류회로의 다른 실시예12A to 12C illustrate another embodiment of the third constant current circuit of FIG. 5.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 5는 본 발명에 따른 교류직결형 발광 다이오드 조명장치의 회로도이고, 도 6은 도 5에서의 전류 및 전압 특성을 나타낸 파형이다.FIG. 5 is a circuit diagram of an AC direct type LED lighting apparatus according to the present invention, and FIG. 6 is a waveform showing current and voltage characteristics of FIG. 5.
도 5 및 도 6을 참조하면, 일반 가정이나 사무실에 공급되는 교류전원(VAC)를 정류다이오드(10)를 이용하여 직류전원, 즉 정류된 전원(Vcc)는 도 6와 같이 일정한 주기의 정류전압(11) 형태의 특성을 갖는다.5 and 6, the use of a rectifying diode 10, the AC power source (V AC) to be supplied to the home or office, the direct-current power supply, that is, the rectified power supply (Vcc) is rectified in a constant cycle as shown in Figure 6 It has a characteristic in the form of voltage (11).
상기 전원(Vcc) 전압은 직렬 연결된 제1정전류회로(100)와 하나 이상의 발광다이오드로 구성된 제1발광다이오드(20)와 전류감지회로(200)와 하나 이상의 발광다이오드로 구성된 제2발광다이오드(21)에 공급되어, 상기 직렬 구조의 순방향 문턱전압 이상일 때 발광전류, 즉 감지전류(12)가 흐르게 된다. 이때 다이오드의 물리적 특성에 의하여 문턱 전압 이상에서는 전압 증가에 따른 전류는 지수함수로 증가하므로 전류가 일정하게 흐르도록 하는 제1정전류회로(100)의 역할이 매우 중요하다.The power supply (Vcc) voltage may include a first light emitting diode 20 including a first constant current circuit 100 connected in series and at least one light emitting diode, a second light emitting diode 21 including a current sensing circuit 200 and at least one light emitting diode. The light emitting current, that is, the sensing current 12 flows when the voltage is equal to or greater than the forward threshold voltage of the series structure. At this time, the current of the voltage increases with an exponential function above the threshold voltage due to the physical characteristics of the diode, so the role of the first constant current circuit 100 to constantly flow the current is very important.
상기 제1정전류회로(100)는 전원 입력단자(a)와 일정 전류를 출력하는 출력단자(b)로 구성되며, 제1정전류회로(100)가 없는 경우 저항을 이용하여 과전류가 흐르는 것을 어느 정도 방지할 수 있으나, 전원 전압의 변동에 따른 과전류로 조명장치의 수명을 크게 단축시키며, 상기 과전류 이하에서 안전하게 구성하는 경우에는 한 주기의 전원 전압에서 발광 되는 주기가 짧아서 광 효율이 감소하게 된다. The first constant current circuit 100 is composed of a power input terminal (a) and an output terminal (b) for outputting a constant current, if there is no first constant current circuit 100 to some extent that the overcurrent flows using a resistor Although it can be prevented, the life of the lighting device is greatly shortened by the overcurrent caused by the change of the power supply voltage. When the safety device is configured below the overcurrent, the light efficiency is reduced due to the short period of light emission at the power supply voltage of one cycle.
그러나 상기 제1정전류회로(100)는 정류전압(Vcc)의 변화에 관계없이 일정 전류를 공급함으로써 한 전원 주기에서 발광 주기를 극대화시킬 수 있을 뿐 아니라 전류도 발광다이오드가 허용되는 최대 전류까지 공급할 수 있으므로, 조명장치의 수명과 광효율을 최적화시킬 수 있다. However, the first constant current circuit 100 may not only maximize the light emission period in one power cycle by supplying a constant current regardless of the change in the rectified voltage Vcc, but also supply the current up to the maximum current allowed by the light emitting diode. Therefore, the life and the light efficiency of the lighting device can be optimized.
이때 상기 제1정전류회로(100)는 도 8a 내지 도 8c와 같이 정류다이오드(10), 제1발광다이오드(20), 제2발광다이오드(21) 중 어느 한 회로와 직렬 연결되어 사용할 수 있다. 즉, 상기 제1정전류회로(100)는, 정류다이오드(10)와 제1발광다이오드(20), 제1발광다이오드(10)와 전류감지회로(200), 전류감지회로(200)와 제2발광다이오드(21)중 어느 하나의 사이에 연결되어 사용하거나, 제2발광다이오드(21)에 직렬 연결하여 사용할 수 있다.In this case, the first constant current circuit 100 may be connected in series with any one of the rectifying diode 10, the first light emitting diode 20, and the second light emitting diode 21 as shown in FIGS. 8A to 8C. That is, the first constant current circuit 100 includes the rectifying diode 10 and the first light emitting diode 20, the first light emitting diode 10, the current sensing circuit 200, the current sensing circuit 200, and the second. The light emitting diodes 21 may be connected to any one of the light emitting diodes 21, or may be connected to the second light emitting diodes 21 in series.
도 6과 같이 정류전압(11)과 감지전류(12)만으로 동작하는 경우 전압 대비 전류 특성은 여러 전기적 잡음을 일으키는 원인이 되는 전고조파 왜곡 현상이 나타나게 된다. As shown in FIG. 6, when only the rectified voltage 11 and the sensing current 12 are operated, a total harmonic distortion phenomenon may occur in which the current versus voltage characteristics cause various electrical noises.
이러한 전고조파 왜곡 현상을 감소시키는 방법으로 순방향 문턱전압 이하, 즉 감지전류가 없을 때 도 5의 감지전류회로(200)와 제2정전류회로(300)에 의하여 제1발광다이오드(20)에 일정 전류, 즉 제2정전류를 공급하고, 동시에 제3정전류회로(400)에 의하여 제2발광다이오드(21)에 일정 전류, 즉 제3정전류를 공급하여 부가전류(13)를 제공하여 전고조파 왜곡과 역률(power factor) 및 광 효율을 개선하게 된다.As a method of reducing the total harmonic distortion, when the forward threshold voltage is lower than the threshold voltage, that is, there is no sensing current, the constant current is applied to the first light emitting diode 20 by the sensing current circuit 200 and the second constant current circuit 300 of FIG. 5. That is, the second constant current is supplied, and at the same time, the third constant current circuit 400 supplies a constant current, that is, the third constant current, to provide the additional current 13 to provide the total harmonic distortion and power factor. to improve the power factor and light efficiency.
이때 전류량은 제2정전류와 제3정전류의 합으로 도 6의 감지전류(12) 전후에서 부가전류(13) 파형 형태로 나타나며, 동작 전압은 문턱전압(Vth)과 절반문턱전압(1/2Vth) 구간에서 동작한다. At this time, the current amount is the sum of the second constant current and the third constant current, and appears in the form of an additional current 13 before and after the sensing current 12 of FIG. 6, and the operating voltage is a threshold voltage Vth and a half threshold voltage 1 / 2Vth. It works in the interval.
상기 감지전류회로(200)는 제1발광다이오드(20)에 연결되는 전류입력단자(c)와 제2발광다이오드회(21)로에 연결되는 전류출력단자(d)와 제2정전류회로(300)에 연결되는 제1감지단자(e) 및 제3정전류회로(400)에 연결되는 제2감지단자(f)로 구성되어, 입력단자(c)와 출력단자(d)에 통과 전류가 발생하면 감지단자(e,f)에 전압이 발생하여 제2정전류회로(300)와 제3정전류회로(400)의 전류를 차단시킨다.The sensing current circuit 200 includes a current input terminal (c) connected to the first light emitting diode 20 and a current output terminal (d) and a second constant current circuit 300 connected to the second light emitting diode circuit 21. And a first sensing terminal (e) connected to the second sensing terminal (f) connected to the third constant current circuit (400), and detecting when a pass current occurs in the input terminal (c) and the output terminal (d). Voltage is generated at the terminals e and f to cut off currents of the second constant current circuit 300 and the third constant current circuit 400.
상기 제2정전류회로(300)은 제1발광다이오드(20)와 감지전류회로(200) 사이의 연결점(n2)에 연결되는 정전류 입력단자(j), 전원 전압의 기준전압(GND)에 연결되는 정전류 출력단자(m), 감지전류회로(200)의 제1감지단자(d)에 연결되는 감지전류 입력단자(k) 및 감지전류회로(200)와 제2발광다이오드(21) 사이의 연결점(n3)에 연결되는 감지전류 기준단자(l)로 구성되며, 감지전류가 없을 때 제1발광다이오드(20)에 일정 전류를 공급하는 회로로서 정류된 전압(Vcc)가 순방향 문턱전압의 절반 정도에서 순방향 문턱전압까지, 즉 감지전류가 없을 때 제1발광다이오드(20)에 일정 전류를 공급한다.The second constant current circuit 300 is connected to a constant current input terminal j connected to a connection point n2 between the first light emitting diode 20 and the sensing current circuit 200 and a reference voltage GND of a power supply voltage. Constant current output terminal (m), the sense current input terminal (k) connected to the first sense terminal (d) of the sense current circuit 200 and the connection point between the sense current circuit 200 and the second light emitting diode 21 ( and a sensing current reference terminal l connected to n3), and a circuit for supplying a constant current to the first light emitting diode 20 when there is no sensing current, and the rectified voltage Vcc is about half of the forward threshold voltage. A constant current is supplied to the first light emitting diode 20 when there is no sensing current up to the forward threshold voltage.
상기 제3정전류회로(400)은 정류전압(Vcc) 단자(n1)에 연결되는 정전류 입력단자(g), 감지전류회로(200) 와 제2발광다이오드(21) 사이의 연결점(n3)에 연결되는 정전류 출력단자(i) 및 감지전류회로(200)의 제2감지단자(d)에 연결되는 감지전류 입력단자(h)로 구성되며, 상기 제2정전류회로(300)와 같이 감지전류가 없을 때 제2발광다이오드(21)에 일정 전류를 공급하는 회로로서 정류된 전압(Vcc)가 순방향 문턱전압의 절반 정도에서 감지전류가 흐를 때까지 제2발광다이오드(21)에 일정 전류를 공급한다.The third constant current circuit 400 is connected to a constant current input terminal g connected to the rectified voltage Vcc terminal n1 and a connection point n3 between the sensing current circuit 200 and the second light emitting diode 21. It consists of a constant current output terminal (i) and a sense current input terminal (h) connected to the second sense terminal (d) of the sense current circuit 200, there is no sense current as the second constant current circuit (300) At this time, as a circuit for supplying a constant current to the second light emitting diode 21, a constant current is supplied to the second light emitting diode 21 until the sensed current flows at about half of the forward threshold voltage.
도 7은 도 5의 제1정전류회로, 전류감지회로, 제2정전류회로, 제3정전류회로에 있어서 실시예의 적용 결과를 도시한 회로도이다.FIG. 7 is a circuit diagram showing an application result of an embodiment in the first constant current circuit, the current sensing circuit, the second constant current circuit, and the third constant current circuit of FIG.
도 7을 참조하면, 제1정전류회로(100a)는 제1JFET(J1)로 구성되며, 게이트 단자가 소오스 단자에 연결되어서 게이트 전압이 일정하여 정전류가 구현된다. Referring to FIG. 7, the first constant current circuit 100a includes the first JFET J1, and the gate terminal is connected to the source terminal, whereby the gate voltage is constant, thereby implementing a constant current.
전류감지회로(200a)는 저항(R3)과 다이오드(D3)로 구성되어 감지전류가 흐르면 저항(R3) 양단에 감지 전위가 발생하여 전류를 감지하며, 다이오드(D3)는 제1발광다이오드(20)와 제2발광다이오드(21)를 전기적으로 분리하는 역할을 한다.The current sensing circuit 200a is composed of a resistor R3 and a diode D3. When a sensing current flows, a sensing potential is generated across the resistor R3 to sense current, and the diode D3 detects the current. ) And the second light emitting diode 21 are electrically separated.
제2정전류회로(300a)는 제2JFET(J2)로 구성된 정전류회로(510), 감지전류의 전위를 변환하기 위한 제5BJT(Q5)와 감지전류를 일정하게 하기 위한 제5JFET(J5)로 구성된 감지전류 전위변환회로(550), 전류를 감지하는 제3JFET(J3)와 제3JFET(J3)의 기준 전위를 제공하는 제5저항(R5)으로 구성된 전류감지회로(520), 출력전류를 감지하는 제4JFET(J4), 상기 제4JFET(J4)의 기준전위를 조정하는 제4다이오드(D4), 제6저항(R6) 및 제2정전류를 감지하는 제7저항(R7)으로 구성된 출력전류 조절회로(530), 제3BJT(Q3)로 구성된 출력전류 증폭회로(540)로 구현된다. The second constant current circuit 300a includes a constant current circuit 510 consisting of a second JFET J2, a sensing consisting of a fifth BJT Q5 for converting the potential of the sensing current, and a fifth JFET J5 for keeping the sensing current constant. A current sensing circuit 520 comprising a current potential converting circuit 550, a third JFET J3 sensing current, and a fifth resistor R5 providing a reference potential of the third JFET J3, and a current sensing circuit sensing the output current. 4JFET J4, an output current control circuit comprising a fourth diode D4 for adjusting the reference potential of the fourth JFET J4, a sixth resistor R6, and a seventh resistor R7 for sensing the second constant current ( 530, an output current amplifying circuit 540 configured as a third BJT Q3.
제3정전류회로(400a)는 제2JFET(J2)로 구성된 정전류회로(510), 전류를 감지하는 제3JFET(J3)와 제3JFET(J3)의 기준 전위를 제공하는 제5저항(R5)으로 구성된 전류감지회로(520), 출력전류를 감지하는 제4JFET(J4), 상기 제4JFET(J4)의 기준전위를 조정하는 제4다이오드(D4), 제6저항(R6) 및 제3정전류를 감지하는 제7저항(R7)으로 구성된 출력전류 조절회로(530), 제3BJT(Q3)로 구성된 출력전류 증폭회로(540)로 구현된다. The third constant current circuit 400a includes a constant current circuit 510 composed of a second JFET J2, a third JFET J3 sensing current, and a fifth resistor R5 providing a reference potential of the third JFET J3. A current sensing circuit 520, a fourth JFET J4 sensing the output current, a fourth diode D4 adjusting the reference potential of the fourth JFET J4, a sixth resistor R6, and a third constant current An output current control circuit 530 composed of a seventh resistor R7 and an output current amplifier circuit 540 composed of a third BJT Q3 are implemented.
도 5 내지 도 7을 중심으로 기본작동원리를 설명하면, 정류전압(Vcc)가 절반문턱전압(1/2Vth) 보다 작을 경우에는 제1정전류회로(100), 제2정전류회로(300) 및 제3정전류회로(400)가 작동하지 않으므로 LED도 작동을 하지 않는다. 5 to 7, the basic operation principle will be described. When the rectified voltage Vcc is smaller than the half threshold voltage 1 / 2Vth, the first constant current circuit 100, the second constant current circuit 300, and the first 3 because the constant current circuit 400 does not operate, the LED also does not operate.
정류전압(Vcc)가 절반문턱전압(1/2Vth) 보다는 크고 문턱전압(Vth)보다 작을 때 제2정전류회로(300,300a)와 제3정전류회로(400,400a)의 제한을 받아서 부가전류(13)을 흐르게 하며, 정류전압(Vcc)이 문턱전압(Vth)보다 클 경우는 제1정전류회로(100, 100a)에 의해서 제한을 받아서 감지전류(12)를 흐르게 한다. When the rectified voltage Vcc is greater than the half threshold voltage 1 / 2Vth and less than the threshold voltage Vth, the additional current 13 is restricted by the second constant current circuits 300 and 300a and the third constant current circuits 400 and 400a. If the rectified voltage (Vcc) is greater than the threshold voltage (Vth), the detection current 12 is flowed by being limited by the first constant current circuit (100, 100a).
정류전압(Vcc)가 문턱전압(Vth)보다 크고, 제2정전류회로(300,300a)와 제3정전류회로(400,400a)의 합보다 클 때 부가전류(13)가 흐르는 것으로부터 감지전류(12)가 흐르게 되는 전환점이 된다.When the rectified voltage Vcc is greater than the threshold voltage Vth and greater than the sum of the second constant current circuits 300 and 300a and the third constant current circuits 400 and 400a, the additional current 13 flows from the sensing current 12. Is the turning point at which.
도 9a는 도 7의 제1정전류회로(100a)의 실시예로서, 제1정전류회로(100b)는 CRD(Current Regulator Diode)로 구현한다.FIG. 9A illustrates an embodiment of the first constant current circuit 100a of FIG. 7, and the first constant current circuit 100b is implemented with a current regulator diode (CRD).
도 9b은 도 7의 제1정전류회로(100a)의 다른 실시예로서, 제1정전류회로(100c)는 제1JFET(J1)와 제1PNP BJT(Q1)로 구성되며, 상기 제1JFET(J1)에 흐르는 전류를 제1PNP BJT(Q1)로 증폭하여 구현한다.FIG. 9B is another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100c includes a first JFET J1 and a first PNP BJT Q1, and is connected to the first JFET J1. The current flowing through the first PNP BJT (Q1) is implemented by amplification.
도 9c은 도 7의 제1정전류회로(100a)의 또 다른 실시예로서, 제1정전류회로(100d)는 제1JFET(J1)와 제2NPN BJT(Q2)로 구성되며, 상기 제1JFET(J1)에 흐르는 전류를 제2NPN BJT(Q2)로 증폭하여 구현한다.FIG. 9C illustrates another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100d includes a first JFET J1 and a second NPN BJT Q2, and the first JFET J1. The current flowing in the amplified by the second NPN BJT (Q2) is implemented.
도 9d은 도 7의 제1정전류회로(100a)의 또 다른 실시예로서, 제1정전류회로(100e)는 제1저항(R1), 제2저항(R2), 제1다이오드(D1), 제2다이오드(D2) 및 제1PNP BJT(Q1)를 포함한 BCR(Bipolar Current Regulator)로 구성되며, 상기 제1다이오드(D1)와 제2다이오드(D2)가 직렬 연결되어 일정한 문턱전압을 형성하여 제1저항(R1)에 흐르는 전류를 일정하게 흐르도록 제1PNP BJT(Q1)로 증폭하여 구현하며, 제2저항(R2)는 제1PNP BJT(Q1)의 베이스 단자에 전압을 변화시켜 정전류 동작하도록 구현한다.9D illustrates another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100e includes a first resistor R1, a second resistor R2, a first diode D1, and a first diode. Bipolar Current Regulator (BCR) including a second diode (D2) and a first PNP BJT (Q1), wherein the first diode (D1) and the second diode (D2) are connected in series to form a constant threshold voltage Amplified by the first PNP BJT (Q1) so that the current flowing through the resistor (R1) flows uniformly, and the second resistor (R2) is implemented to operate a constant current by changing the voltage at the base terminal of the first PNP BJT (Q1). .
도 9e은 도 7의 제1정전류회로(100a)의 또 다른 실시예로서, 제1정전류회로(100f)는 제1저항(R1), 제2저항(R2), 제1다이오드(D1), 제2다이오드(D2) 및 제2NPN BJT(Q2)를 포함한 BCR로 구성되며, 상기 제1다이오드(D1)와 제2다이오드(D2)가 직렬 연결 되어 일정한 문턱전압을 형성하여 제1저항(R1)에 흐르는 전류를 일정하게 흐르도록 제2NPN BJT(Q2)로 증폭하여 구현하며, 제2저항(R2)는 제2NPN BJT(Q2)의 베이스 단자에 전압을 변화시켜 정전류 동작하도록 구현한다.9E illustrates another embodiment of the first constant current circuit 100a of FIG. 7, wherein the first constant current circuit 100f includes a first resistor R1, a second resistor R2, a first diode D1, and a first diode. It consists of a BCR including a second diode (D2) and a second NPN BJT (Q2), and the first diode (D1) and the second diode (D2) are connected in series to form a constant threshold voltage to the first resistor (R1). The current is amplified by the second NPN BJT (Q2) so as to flow uniformly, and the second resistor R2 is implemented to operate a constant current by changing a voltage at the base terminal of the second NPN BJT (Q2).
도 10a는 도 7의 전류감지회로(200a)의 실시예로서, 전류감지회로(200b)는 제3저항(R3), 제3다이오드(D3) 및 제4저항(R4)가 직렬 연결되어 입력단자(c)에 입력된 전류가 제3저항(R3)과 제3다이오드(D3)및 제4저항(R4)을 통하여 출력단자(d)로 흐를 때 제1감지단자(e)와 제2감지단자(f)에 전압이 발생하도록 구현한다.FIG. 10A illustrates an embodiment of the current sensing circuit 200a of FIG. 7, in which the third resistor R3, the third diode D3, and the fourth resistor R4 are connected in series to each other. When the current input to (c) flows to the output terminal d through the third resistor R3, the third diode D3, and the fourth resistor R4, the first sensing terminal e and the second sensing terminal. Implement the voltage at (f).
도 10b는 도 7의 전류감지회로(200a)의 다른 실시예로서, 전류감지회로(200c)는 제3다이오드(D3), 제3저항(R3)및 제4저항(R4)가 직렬 연결되어 입력단자(c)에 입력된 전류가 제3저항(R3)과 제3다이오드(D3)및 제4저항(R4)을 통하여 출력단자(d)로 흐를 때 제1감지단자(e)와 제2감지단자(f)에 전압이 발생하도록 구현한다.FIG. 10B illustrates another embodiment of the current sensing circuit 200a of FIG. 7, wherein the current sensing circuit 200c is connected to a third diode D3, a third resistor R3, and a fourth resistor R4 in series. When the current input to the terminal c flows to the output terminal d through the third resistor R3, the third diode D3, and the fourth resistor R4, the first sensing terminal e and the second sensing The voltage is generated at the terminal f.
도 11a는 도 7의 제2정전류회로(300a)의 실시예로서, 제2정전류회로(300b)는 출력전류 증폭회로(541)가 제4BJT(Q3)와 제3BJT(Q3)가 달링톤 구조를 이루어 전류 증폭도를 증가시킨다.FIG. 11A illustrates an embodiment of the second constant current circuit 300a of FIG. 7. In the second constant current circuit 300b, the output current amplifying circuit 541 has the fourth BJT Q3 and the third BJT Q3 having a Darlington structure. This increases the degree of current amplification.
도 11b는 도 7의 제2정전류회로(300a)의 다른 실시예로서, 제2정전류회로(300c)는 출력전류 조절회로(531)가 제4다이오드(D4)와 제5다이오드(D5)을 직렬 연결하여 조절 전위를 변화시킨다.FIG. 11B is another embodiment of the second constant current circuit 300a of FIG. 7. In the second constant current circuit 300c, the output current control circuit 531 connects the fourth diode D4 and the fifth diode D5 in series. Connect to change the control potential.
도 11c는 도 7의 제2 정전류회로(300a)의 또 다른 실시예로서, 제2정전류회로(300d)는 출력전류 증폭회로(541)가 제4 BJT(Q3)와 제3BJT(Q3)가 달링톤 구조를 이루어 전류 증폭도를 증가시키고, 출력전류 조절회로(531)가 제4다이오드(D4)와 제4다이오드(D5)을 직렬 연결하여 조절 전위를 변화시킨다.FIG. 11C illustrates another embodiment of the second constant current circuit 300a of FIG. 7. In the second constant current circuit 300d, the output current amplifier circuit 541 is driven by the fourth BJT Q3 and the third BJT Q3. The tone structure is increased to increase the current amplification degree, and the output current control circuit 531 changes the control potential by connecting the fourth diode D4 and the fourth diode D5 in series.
도 12a는 도 7의 제3정전류회로(400a)의 실시예로서, 제3정전류회로(400b)는 출력전류 증폭회로(541)가 제4BJT(Q3)와 제3BJT(Q3)가 달링톤 구조를 이루어 전류 증폭도를 증가시킨다. FIG. 12A illustrates an embodiment of the third constant current circuit 400a of FIG. 7. In the third constant current circuit 400b, the output current amplifier circuit 541 has a fourth Darlington structure in which the fourth BJT Q3 and the third BJT Q3 are formed. This increases the degree of current amplification.
도 12b는 도 7의 제3정전류회로(400a)의 다른 실시예로서, 제3정전류회로(400c)는 출력전류 조절회로(531)가 제4다이오드(D4)와 제4다이오드(D5)을 직렬 연결하여 조절 전위를 변화시킨다.12B illustrates another embodiment of the third constant current circuit 400a of FIG. 7, wherein the third constant current circuit 400c includes an output current control circuit 531 in which a fourth diode D4 and a fourth diode D5 are connected in series. Connect to change the control potential.
도 12c는 도 7의 제3정전류회로(400a)의 또 다른 실시예로서, 제3정전류회로(400d)는 출력전류 증폭회로(541)가 제4BJT(Q3)와 제3BJT(Q3)가 달링톤 구조를 이루어 전류 증폭도를 증가시키고, 출력전류 조절회로(531)가 제4다이오드(D4)와 제4다이오드(D5)을 직렬 연결하여 조절 전위를 변화시킨다. 12C illustrates another embodiment of the third constant current circuit 400a of FIG. 7, wherein the third constant current circuit 400d includes the output current amplifier circuit 541 having the fourth BJT Q3 and the third BJT Q3 darlington. This structure increases the current amplification degree, and the output current control circuit 531 changes the control potential by connecting the fourth diode D4 and the fourth diode D5 in series.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to preferred embodiments of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the present invention Of course this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined by the equivalents thereof, as well as the following claims.

Claims (18)

  1. 교류전원을 직류전원으로 변환하는 정류다이오드, 하나 이상의 발광다이오드로 구성된 제1발광다이오드와 하나 이상의 발광다이오드로 구성된 제2발광다이오드를 포함하는 발광다이오드 조명장치에 있어서,A light emitting diode lighting apparatus comprising a rectifying diode for converting an AC power source into a DC power source, a first light emitting diode including at least one light emitting diode, and a second light emitting diode including at least one light emitting diode,
    상기 제1, 제2 발광다이오드에 일정전류를 흐르게 하는 제1정전류회로와;A first constant current circuit allowing a constant current to flow through the first and second light emitting diodes;
    상기 제1발광다이오드를 통해서 제2발광다이오드로 흐르는 감지전류를 감지하는 전류감지회로와;A current sensing circuit for sensing a sensing current flowing through the first light emitting diode to the second light emitting diode;
    상기 제1발광다이오드를 통해서 제2발광다이오드로 흐르는 감지전류가 없을 때 제1발광다이오드에 제2정전류를 공급하는 제2 정전류회로; 및A second constant current circuit for supplying a second constant current to the first light emitting diode when there is no sense current flowing through the first light emitting diode to the second light emitting diode; And
    상기 제1발광다이오드를 통해서 제2발광다이오드로 흐르는 감지전류가 없을 때 제2발광다이오드에 제3정전류를 공급하는 제3 정전류회로;로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And a third constant current circuit for supplying a third constant current to the second light emitting diode when there is no sense current flowing through the first light emitting diode to the second light emitting diode.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 정류다이오드와 제1발광다이오드 사이에 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit is connected between the rectifying diode and the first light emitting diode.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 제1발광다이오드와 전류감지회로 사이에 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit is connected between the first light emitting diode and the current sensing circuit.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 전류감지회로와 제2발광다이오드 사이에 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit is connected between the current sensing circuit and the second light emitting diode.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 제2발광다이오드에 직렬 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit is connected in series to a second light emitting diode.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 제1JFET로 구성하는 것을 특징으로 하는 교류 직결형 발광다이오드 조명장치.And the first constant current circuit comprises a first JFET.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 CRD(Current Regulator Diode)로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit comprises a current regulator diode (CRD).
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 제1JFET와 제1BJT 또는 제2BJT로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit comprises a first JFET and a first BJT or a second BJT.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 제1정전류회로는 제1BJT 또는 제2BJT, 제1저항, 제2저항, 제1다이오드, 제2다이오드를 포함한 BCR(Bipolar Current Regulator)로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.And the first constant current circuit comprises a first polarity regulator (BCR) including a first BJT or a second BJT, a first resistor, a second resistor, a first diode, and a second diode.
  10. 청구항 1에 있어서, The method according to claim 1,
    상기 전류감지회로는 제3다이오드와 제3저항 및 제4저항이 직렬 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.The current sensing circuit is an AC direct-connected LED lighting apparatus, characterized in that the third diode and the third resistor and the fourth resistor is connected in series.
  11. 청구항 1에 있어서, The method according to claim 1,
    전류감지단자, 전류입력단자, 전류출력단자를 갖는 상기 제2정전류회로는,The second constant current circuit having a current sensing terminal, a current input terminal and a current output terminal,
    제2JFET로 구성된 정전류회로와; A constant current circuit composed of a second JFET;
    감지전류의 전위를 변환하기 위한 제5BJT와 감지전류를 일정하게 하기 위한 제5JFET로 구성된 감지전류 전위변환회로와;A sensing current potential converting circuit comprising a fifth BJT for converting a potential of the sensing current and a fifth JFET for making the sensing current constant;
    전류를 감지하는 제3JFET와 기준전위를 제공하는 제5저항으로 구성된 전류감지회로와; A current sensing circuit comprising a third JFET sensing current and a fifth resistor providing a reference potential;
    출력 전류 감지하는 제4JFET와 기준전위를 조정하는 제4다이오드와 제6저항 및 제7저항으로 구성된 출력전류조절회로; 및 An output current regulation circuit comprising a fourth JFET for sensing an output current, a fourth diode for adjusting a reference potential, a sixth resistor, and a seventh resistor; And
    제3BJT으로 구성된 출력전류증폭회로;를 포함하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.AC direct-connected LED lighting apparatus comprising a; output current amplifying circuit composed of a third BJT.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.The output current control circuit further comprises a fifth diode AC direct-connected LED lighting apparatus, characterized in that connected in series with the fourth diode.
  13. 청구항 11에 있어서, The method according to claim 11,
    상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.The output current amplifying circuit further comprises a fourth BJT, AC direct connection type LED lighting apparatus, characterized in that the third BJT and a Darlington structure.
  14. 청구항 11에 있어서, The method according to claim 11,
    상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하고, 상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.The output current control circuit further includes a fifth diode connected in series with the fourth diode, and the output current amplification circuit further includes a fourth BJT to form a third BJT and a Darlington structure. Diode lighting.
  15. 청구항 1에 있어서, The method according to claim 1,
    감지전류기준단자, 전류감지단자, 전류입력단자, 전류출력단자를 갖는 상기 제3정전류회로는,The third constant current circuit having a sensing current reference terminal, a current sensing terminal, a current input terminal, and a current output terminal,
    제2JFET으로 구성된 정전류회로와; A constant current circuit composed of a second JFET;
    전류를 감지하는 제3JFET와 기준 전위를 제공하는 제5저항으로 구성된 전류감지회로와;A current sensing circuit comprising a third JFET for sensing current and a fifth resistor providing a reference potential;
    출력전류 감지하는 제4JFET와 기준전위를 조정하는 제4다이오드와 제6저항 및 제7저항으로 구성된 출력전류조절회로; 및 An output current control circuit comprising a fourth JFET for detecting an output current, a fourth diode for adjusting a reference potential, a sixth resistor, and a seventh resistor; And
    제3BJT으로 구성된 출력전류증폭회로;를 포함하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.AC direct-connected LED lighting apparatus comprising a; output current amplifying circuit composed of a third BJT.
  16. 청구항 15에 있어서, The method according to claim 15,
    상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.The output current control circuit further comprises a fifth diode AC direct-connected LED lighting apparatus, characterized in that connected in series with the fourth diode.
  17. 청구항 15에 있어서, The method according to claim 15,
    상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치.The output current amplifying circuit further comprises a fourth BJT, AC direct connection type LED lighting apparatus, characterized in that the third BJT and a Darlington structure.
  18. 청구항 15에 있어서, The method according to claim 15,
    상기 출력전류조절회로는 제5다이오드를 더 포함하여 제4다이오드와 직렬 연결하고, 상기 출력전류증폭회로는 제4BJT을 더 포함하여 제3BJT와 달링톤 구조로 구성하는 것을 특징으로 하는 교류 직결형 발광 다이오드 조명장치The output current control circuit further includes a fifth diode connected in series with a fourth diode, and the output current amplification circuit further includes a fourth BJT to form a third BJT and a Darlington structure. Diode lighting
PCT/KR2012/009598 2011-12-05 2012-11-14 Alternating current direct-coupled type light-emitting diode lighting apparatus WO2013085158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110128716A KR101128680B1 (en) 2011-12-05 2011-12-05 Ac direct coupled led lighting device
KR10-2011-0128716 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013085158A1 true WO2013085158A1 (en) 2013-06-13

Family

ID=46142563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009598 WO2013085158A1 (en) 2011-12-05 2012-11-14 Alternating current direct-coupled type light-emitting diode lighting apparatus

Country Status (3)

Country Link
KR (1) KR101128680B1 (en)
CN (1) CN103139982B (en)
WO (1) WO2013085158A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298486B1 (en) 2012-05-31 2013-08-21 주식회사 실리콘웍스 Led lighting system and control circuit thereof
KR101478782B1 (en) * 2012-10-30 2015-01-02 한국전기연구원 LED Driving Circuit for AC Driving and Dimming Based on Constant Current of Sine Wave
CN103096591B (en) * 2013-01-07 2015-01-28 浙江工业大学 High voltage light-emitting diode (LED) lamp bead driving power supply controlled by sectional type negative sinusoidal current
CN103096592B (en) * 2013-01-07 2015-01-28 浙江工业大学 High voltage light-emitting diode (LED) lamp bead driving power supply controlled by sectional indentation type current
KR101301087B1 (en) * 2013-03-06 2013-08-28 (주) 알에프세미 Apparatus for driving light emitting diode
US9113523B2 (en) 2013-05-15 2015-08-18 Iml International Light-emitting diode lighting device having multiple driving stages
CN104284488A (en) * 2014-09-28 2015-01-14 大连工业大学 Method for designing alternating-current light-emitting diode circuit
CN105792443B (en) * 2016-05-06 2017-07-07 熊晓丹 It is driving IC power supply circuits in a kind of LED power
CN106793253B (en) * 2016-11-24 2018-12-28 深圳市明微电子股份有限公司 A kind of LED linear constant-current drive circuit and LED light device
KR102003365B1 (en) 2017-05-24 2019-07-24 그린칩 주식회사 Driving apparatus for light emitting diode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990084247A (en) * 1998-05-02 1999-12-06 이종규 AC power LED drive circuit
JP2001215913A (en) * 2000-02-04 2001-08-10 Toko Inc Lighting circuit
KR101027717B1 (en) * 2010-07-22 2011-04-12 주식회사 에어텍시스템 Dimming assitant apparatus for ac drived light emitted device and dimming apparatus using it
KR20110045247A (en) * 2009-10-26 2011-05-04 주식회사 에어텍시스템 Unidirectional lighting emitting diode module device to drive with constant current
KR20110104337A (en) * 2010-03-16 2011-09-22 주식회사 에어텍시스템 Unidirectional lighting emitting diode module device with reduction to harmonics distortion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730350B (en) * 2008-10-13 2013-10-16 云辰电子开发股份有限公司 Illuminating device starting control method
CN201467510U (en) * 2009-07-08 2010-05-12 阎智广 AC temperature-control constant-current multi-section voltage-limiting protective LED lighting lamp circuit
WO2011052834A1 (en) * 2009-10-26 2011-05-05 (주)에어텍시스템 Constant-current-drive led module device
CN201752150U (en) * 2010-06-07 2011-02-23 上海合亚经贸有限公司 LED (light-emitting diode) light non-luminous decay controlled device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990084247A (en) * 1998-05-02 1999-12-06 이종규 AC power LED drive circuit
JP2001215913A (en) * 2000-02-04 2001-08-10 Toko Inc Lighting circuit
KR20110045247A (en) * 2009-10-26 2011-05-04 주식회사 에어텍시스템 Unidirectional lighting emitting diode module device to drive with constant current
KR20110104337A (en) * 2010-03-16 2011-09-22 주식회사 에어텍시스템 Unidirectional lighting emitting diode module device with reduction to harmonics distortion
KR101027717B1 (en) * 2010-07-22 2011-04-12 주식회사 에어텍시스템 Dimming assitant apparatus for ac drived light emitted device and dimming apparatus using it

Also Published As

Publication number Publication date
KR101128680B1 (en) 2012-03-23
CN103139982B (en) 2015-05-20
CN103139982A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2013085158A1 (en) Alternating current direct-coupled type light-emitting diode lighting apparatus
WO2010095813A2 (en) Power-saving led lighting apparatus
WO2014025159A2 (en) Lighting dimming system using light-emitting device
WO2014209009A1 (en) Light-emitting diode lighting device and control circuit for same
US20100001661A1 (en) Led current-supplying circuit and led current-controlling circuit
US20090212721A1 (en) Led drive circuit
WO2015041393A1 (en) Control circuit of light emitting diode lighting apparatus
WO2012091258A1 (en) Power supply
WO2014137099A1 (en) Apparatus for driving light-emitting diodes
WO2013040876A1 (en) Variable energy light control circuit and variable energy light control board
WO2016036090A1 (en) Led driving circuit and led lighting device
WO2014148767A1 (en) Led driving circuit using double bridge diode and led illumination device comprising same
WO2014209008A1 (en) Light-emitting diode lighting device and control circuit for same
WO2014133335A1 (en) Control circuit for light emitting diode lighting device
WO2015122635A1 (en) Ac direct connection type smart led driver module
WO2013027886A1 (en) Apparatus for driving led strings
WO2016122182A1 (en) Control circuit for light-emitting diode lighting apparatus and method for controlling same
WO2014208989A1 (en) Driver circuit for light-emitting device, and semiconductor chip employing said driver circuit
WO2014092499A1 (en) Light-emitting diode lamp and light-emitting diode lighting device
WO2015020265A1 (en) Led lighting apparatus
US20140285115A1 (en) Multi-channel driver and illuminating device
TW201446074A (en) LED driving device
WO2017086674A1 (en) Light-emitting diode lighting device
WO2015012630A1 (en) Led luminaire
WO2014133328A1 (en) Light emitting diode lighting device and control circuit for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854871

Country of ref document: EP

Kind code of ref document: A1