WO2013084880A1 - Surface light source device, light control device and display device using same, and illumination device - Google Patents

Surface light source device, light control device and display device using same, and illumination device Download PDF

Info

Publication number
WO2013084880A1
WO2013084880A1 PCT/JP2012/081373 JP2012081373W WO2013084880A1 WO 2013084880 A1 WO2013084880 A1 WO 2013084880A1 JP 2012081373 W JP2012081373 W JP 2012081373W WO 2013084880 A1 WO2013084880 A1 WO 2013084880A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source unit
light guide
emitted
Prior art date
Application number
PCT/JP2012/081373
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 篠崎
豪 鎌田
昇平 勝田
昌洋 ▲辻▼本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011266172A external-priority patent/JP2015038811A/en
Priority claimed from JP2011281478A external-priority patent/JP2015038814A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013084880A1 publication Critical patent/WO2013084880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Definitions

  • the present invention relates to a surface light source device, a light control device, a display device using the same, and an illumination device.
  • This application claims priority based on Japanese Patent Application No. 2011-266172 filed in Japan on December 5, 2011 and Japanese Patent Application No. 2011-281478 filed in Japan on December 22, 2011. The contents are incorporated here.
  • a transmissive liquid crystal display device that performs display using light emitted from a surface light source device.
  • This type of liquid crystal display device has a liquid crystal panel and a surface light source device disposed on the back side of the liquid crystal panel.
  • a conventional surface light source device includes a light source such as a light emitting diode (hereinafter abbreviated as LED) and a light guide plate.
  • LED light emitting diode
  • the light emitted from the light source is propagated inside the light guide plate and emitted from the entire surface of the light guide plate.
  • the surface light source device provided on the back side of the display panel may be referred to as a backlight.
  • Patent Documents 1 to 3 Surface light source devices for obtaining emitted light with different directivities have been proposed (see Patent Documents 1 to 3 below).
  • a lighting device for obtaining outgoing light having different directivity characteristics a first lighting device that makes light from a light source incident from the side of a light guide and emits light having directivity from one main surface of the light guide
  • a lighting device having a two-layer structure in which a light from a light source is incident on a diffusing member and a second lighting device that emits a diffused light beam is laminated see, for example, Patent Document 1).
  • the first illumination device is an edge light type illumination device for obtaining highly directional emitted light
  • the second illumination device is a direct illumination device for obtaining diffused light.
  • Patent Document 1 discloses an illumination device in which a first illumination device and a second illumination device having different directivities of emitted light are stacked in the thickness direction of a light guide plate.
  • a light guide plate including a plurality of prisms arranged concentrically, a first light source arranged at the center of the concentric circle of the light guide plate, and a position off the center of the concentric circle of the light guide plate.
  • An illumination device including a second light source arranged is disclosed.
  • Patent Document 3 a light guide plate, a first light source that makes light incident on the first end surface of the light guide plate, and a second light that makes light incident on a second end surface adjacent to the first end surface of the light guide plate are disclosed.
  • a characteristic adjusting unit for adjusting directivity of emitted light is provided on the light guide plate corresponding to each light source.
  • JP 2008-300206 A Japanese Patent No. 4274921 JP 2008-269865 A
  • the lighting device of Patent Document 1 Since the lighting device of Patent Document 1 has a configuration in which two sets of lighting devices, a first lighting device and a second lighting device, are stacked, the number of parts is large and the manufacturing cost is increased. There are problems such as thickening. Further, in order to increase the area, it is necessary to provide a large number of light sources for diffusion, and thus there is a problem that the manufacturing cost increases.
  • the illumination device of Patent Document 2 has a problem that it is difficult to increase the size of the light guide plate because the positional relationship between the plurality of prisms and the two types of light sources is determined with respect to the light guide plate having a predetermined area.
  • Some aspects of the present invention have been made in view of the above circumstances, and an object thereof is to provide a light control device capable of switching emitted light between light having directivity and scattered light.
  • a surface light source device includes a first light source unit that includes a first light emitting element, and emits light from the first light emitting element.
  • a second light source unit that emits light from the second light emitting element as light having an angular distribution wider than the angular distribution of light emitted from the first light source unit,
  • a light guide that causes light emitted from the first light source unit and light emitted from the second light source unit to be incident from an end surface and to be emitted from a main surface, and includes the first light source unit and the light source
  • the second light source unit is provided on one end surface of the plurality of end surfaces of the light guide, and lighting / extinguishing can be independently controlled.
  • any one of the first light source unit and the second light source unit includes an angular distribution of light emitted from the first light source unit and the second light source. You may provide the angle distribution conversion member for making different the angle distribution of the light inject
  • the first light source unit includes a concave mirror that reflects light emitted from the first light emitting element as the angle distribution conversion member, and the concave mirror includes: The cross-sectional shape when cut along a plane parallel to the main surface of the light guide body has at least part of a curved shape having a focal point, and the first light emitting element is a light emitting surface of the first light emitting element.
  • the light source from the first light emitting element may be reflected by the concave mirror and incident on the light guide.
  • the second light emitting element emits light having an angular distribution wider than the angular distribution of light emitted from the first light source unit, and the second light emission.
  • the light emitted from the element may enter the light guide without passing through the concave mirror.
  • the first light emitting element and the second light emitting element may be arranged such that surfaces opposite to each other's light emitting surface face each other.
  • the first light source unit includes the plurality of light emitting elements and the plurality of concave mirrors arranged along one end surface of the light guide,
  • the light emitting elements may be arranged along the boundary between adjacent concave mirrors.
  • the concave mirror has a linear shape when the concave mirror is cut along a plane perpendicular to the main surface of the light guide, and is perpendicular to the main surface of the light guide.
  • the first light emitting element is disposed along a direction perpendicular to the main surface of the light guide, and the second light emitting element is formed on the main surface of the light guide. You may arrange
  • the first light source unit includes a convex lens disposed in a recess of the concave mirror, and the focal position of the convex lens substantially coincides with the focal position of the concave mirror. It may be.
  • the concave mirror may be formed of a metal film or a dielectric multilayer film formed on a convex surface of the convex lens.
  • the first light source unit includes, as the angle distribution conversion member, a reflective element having a reflective surface that reflects light emitted from the first light emitting element,
  • the reflective element includes the reflective surface inclined at a constant angle with respect to the one end surface of the light guide, and a light exit surface facing the one end surface of the light guide,
  • One light emitting element may be disposed on one end face of the reflecting element, and light from the first light emitting element may be reflected by the reflecting surface and incident on the light guide.
  • the second light emitting element emits light having an angular distribution wider than the angular distribution of light emitted from the first light source unit, and the second light emission.
  • the light emitted from the element may enter the light guide without passing through the reflective element.
  • a plurality of the reflective elements may be provided for the one end surface of the light guide.
  • the reflective element has a wedge shape whose thickness decreases from a side closer to an end face on which the first light emitting element is disposed to a side farther from the end face.
  • the entire end surface facing the surface may be the reflecting surface.
  • the reflection element has a plurality of prism structures on a surface facing the light emission surface, and one inclined surface of the prism structure is the reflection surface. Also good.
  • the second light source unit includes a light scattering member that scatters light emitted from the second light emitting element as the angle distribution conversion member, Light emitted from the light emitting element may enter the light guide through the light scattering member.
  • the first light source unit includes a lens that substantially parallelizes light emitted from the first light emitting element as the angle distribution conversion member.
  • the light emitted from the light emitting element may enter the light guide through the lens.
  • the light guide may have a reflecting surface that forms a predetermined inclination angle with respect to the main surface in the light propagation direction.
  • the light guide has a wedge shape that decreases in thickness toward a side farther from the side closer to the one end surface, and the entire surface facing the main surface is the It may be a reflective surface.
  • the light guide has a plurality of prism structures on a surface facing the main surface, and one inclined surface of the prism structure is the reflection surface. Also good.
  • the surface light source device further includes a direction changing member for changing the traveling direction of the light emitted from the main surface of the light guide to a direction closer to the normal line of the main surface. Also good.
  • a display device includes the surface light source device and a display element that performs display using light emitted from the surface light source device.
  • An illumination device in still another aspect of the present invention includes the surface light source device.
  • the illumination device may include the first light source unit and the second light source unit of the surface light source device.
  • the modulated light source device includes a light source unit, a light guide body having the light source unit at an end thereof, and the light guide body between the light source unit and the light guide body or in the light source unit.
  • a light distribution conversion element disposed on a side opposite to the end of the light distribution conversion element, and the light distribution characteristic of the light distribution conversion element is variable.
  • the light distribution conversion element is provided on a surface of the light source unit opposite to a surface facing the one end surface of the light guide, and from the light source unit. It may be a parabolic mirror-shaped lens provided with a reflecting mirror having a reflecting surface for reflecting light.
  • the lens may have a hollow structure.
  • the lens may be filled with resin.
  • the reflection mirror may be made of a metal vapor deposition film.
  • the reflection mirror may be a dielectric mirror.
  • a scattering liquid crystal cell may be provided on the reflection surface of the reflection mirror.
  • the lens may be provided with a plurality of protrusions that can be taken in and out of the light source unit under the control of a micro electro mechanical system.
  • the reflection mirror is an electrochromic mirror, and is transmitted through the electrochromic mirror on a surface opposite to the surface facing the light source part of the electrochromic mirror. Reflecting means for reflecting the reflected light may be provided.
  • the light distribution conversion element may be provided between the light source unit and one end surface of the light guide.
  • the light distribution conversion element may be a scattering liquid crystal cell.
  • the light distribution conversion element may be a liquid crystal lens.
  • the light distribution conversion element may be a scatterer that can be inserted and removed between the light source unit and one end surface of the light guide.
  • the light distribution conversion element includes a light incident part disposed to face one end face of the light guide, the light incident part, and the one end face.
  • a gel capable of optical bonding; a scattering pattern provided on the one end face; and a pair of reflectors that sandwich a boundary between the gel and the one end face from the thickness direction of the light guide. May be.
  • the light distribution conversion element includes a wedge-shaped light guide and a prism that faces the light guide and has a light incident surface having a saw blade shape. May be.
  • the light guide may have a wedge shape.
  • a display device includes the light control device.
  • the illuminating device in the further another aspect of this invention is equipped with the said light control apparatus.
  • a surface light source device that can switch directivity, does not increase the number of parts and the manufacturing cost, and does not increase the thickness of the entire device. According to the present invention, it is possible to realize a surface light source device that can switch directivity and can maintain a uniform luminance before and after switching directivity. According to the present invention, it is possible to realize a display device and an illumination device including the surface light source device having the above-described effects. According to some aspects of the present invention, by using a light distribution conversion element that imparts directivity to light from the light source unit, light emitted from the light control device is converted into light having directivity and scattered light. Can be switched.
  • FIG. 2 is a cross-sectional view taken along the line A1-A1 'of FIG. It is a perspective view which shows the 1st light source part and the 2nd light source part in the surface light source device of this embodiment.
  • FIG. 4 is a cross-sectional view taken along line B1-B1 'of FIG.
  • FIG. 4 is a cross-sectional view taken along line C1-C1 ′ of FIG. It is a figure which shows the effect
  • FIG. 1 It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of a comparative example. It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of a comparative example. It is sectional drawing of the liquid crystal display device which is one structural example of the display apparatus of this invention. It is a schematic plan view which shows 9th Embodiment of a light modulation apparatus. FIG.
  • 32C is a cross-sectional view taken along line AA of FIG. 32A, showing a ninth embodiment of the light control device. It is a schematic sectional drawing which shows one Embodiment of a scattering liquid crystal cell. It is a figure explaining the case where a normal mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell. It is a figure explaining the case where a normal mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell. It is a figure explaining the case where a reverse mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell.
  • FIG. 40B is a cross-sectional view taken along line B2-B2 of FIG. 40A.
  • FIG. 41B is a cross-sectional view taken along the line CC of FIG. 41A. It is the schematic top view which shows the state which inserted the scatterer between the light source part and the one end surface of a light guide. It is the front view seen from the one end surface side of a light guide.
  • FIG. 42B is a cross-sectional view taken along the line DD of FIG. 42A. It is a schematic sectional drawing which shows 12th Embodiment of a light modulation apparatus.
  • FIG. 57B is a cross-sectional view taken along line EE in FIG. 57A.
  • FIG. 57B is a cross-sectional view taken along line EE in FIG. 57A.
  • FIG. 57B is a cross-sectional view taken along line EE in FIG. 57A.
  • FIG. 57B is a cross-sectional view taken along line EE in FIG. 57A.
  • 20th Embodiment of a light modulation apparatus and is a general view. It is the figure which expanded the area
  • FIG. 1 is a perspective view showing the surface light source device of this embodiment.
  • FIG. 2 is a sectional view taken along line A1-A1 ′ of FIG.
  • FIG. 3 is a perspective view showing one light source in the surface light source device of the present embodiment.
  • 4A is a cross-sectional view taken along line BB ′ of FIG. 4B is a cross-sectional view taken along the line CC ′ of FIG.
  • the surface light source device 11 of the present embodiment includes a light source unit 12, a light guide 13, and a prism sheet 14 (direction changing member).
  • the light guide 13 has a function of causing light emitted from the light source unit 12 to enter from the end face and to be emitted from the main surface while propagating inside.
  • the prism sheet 14 has a function of changing the traveling direction of the light emitted from the main surface of the light guide 13 to a direction closer to the normal line of the main surface. The detailed configuration of the light source unit 12 will be described later.
  • the light guide 13 is a plate made of a resin having optical transparency such as acrylic resin.
  • the light guide 13 has a wedge shape in which the thickness gradually decreases from the side closer to the end surface 13 a where the light source unit 12 is provided to the side farther from the side. That is, as shown in FIG. 2, the cross-sectional shape of the light guide 13 when cut along a plane (yz plane) perpendicular to the first main surface 13b described later is a right triangle.
  • the end surface 13 a of the light guide 13 is a light incident surface on which light emitted from the light source unit 12 is incident.
  • the first main surface 13b (upper surface in FIG. 2) of the light guide plate 3 is a light emitting surface for emitting light incident on the inside.
  • the light propagation direction in the first main surface 13b of the light guide 13 is the y-axis direction
  • the direction orthogonal to the light propagation direction is the x-axis direction
  • the first main surface is orthogonal.
  • the direction (thickness direction of the light guide 13) is defined as the z-axis direction. That is, the “light propagation direction” in this specification means a direction in which light (indicated by a dashed line arrow L) propagates while reflecting in the yz section of the light guide 13 shown in FIG. Instead, it means the direction (indicated by solid arrow Y) in which light propagates when viewed from the normal direction of the first main surface 13b of the light guide 13.
  • the second main surface 13c (the lower surface in FIG. 2) facing the first main surface 13b of the light guide 13 is inclined with a certain inclination angle with respect to the first main surface 13b in the light propagation direction.
  • the inclination angle ⁇ 1 of the second main surface 13c with respect to the first main surface 13b (the angle between the first main surface 13b and the second main surface 13c, sometimes referred to as the tip angle of the light guide 13) is, for example, 2 °. Set to degree.
  • the second main surface 13c is provided with a reflection mirror 15 made of a metal film having a high light reflectance such as aluminum.
  • the reflection mirror 15 may be a metal film directly formed on the second main surface 13 c of the light guide 13, or a configuration in which a reflection plate manufactured separately from the light guide 13 is bonded. There may be.
  • the light source unit 12 has a configuration in which a plurality of light sources 16 are arranged in a line in a direction (x-axis direction) orthogonal to the light propagation direction Y.
  • the light source 16 includes a light source unit for high directivity (first light source unit) 113 and a light source unit for wide angle (second light source unit) 114.
  • the light source unit 113 for high directivity emits light having a high directivity because the angular distribution of the emitted light is relatively narrow.
  • the wide-angle light source unit 114 emits light having a relatively wide angular distribution and low directivity.
  • the high directivity light source unit 113 includes a first LED 17 (first light emitting element), a cylindrical lens 18 (convex lens), and a concave mirror 19. ing.
  • the cylindrical lens 18 is made of, for example, acrylic resin, phenyl-based or dimethyl-based silicon resin, or the like.
  • the cylindrical lens 18 is a so-called plano-convex lens in which one is a convex surface and the other is a flat surface. Since light is emitted from the flat surface 18a, the flat surface 18a is hereinafter referred to as a light emission surface.
  • the convex surface is a curved surface that is gently curved.
  • the convex surface has a curved shape having a focal point P1, as shown in FIG. 4A.
  • the cross-sectional shape of the convex surface 18b is a parabolic shape.
  • the curved surface 8b is linear as shown in FIG. 4B. That is, the convex surface 18b of the cylindrical lens 18 is a parabolic surface that has a curvature in the xy plane and has no curvature in the yz plane.
  • a concave mirror 19 is provided along the convex surface 18 b of the cylindrical lens 18.
  • the concave mirror 19 is made of a metal film having a high light reflectance such as aluminum directly formed on the convex surface 18 b of the cylindrical lens 18.
  • the concave mirror 19 may be composed of a dielectric multilayer film such as ESR. Since the convex surface 18b of the cylindrical lens 18 and the concave mirror 19 are in close contact, the shape of the concave mirror 19 is a parabolic surface reflecting the shape of the convex surface 18b. Therefore, the focal position of the concave mirror 19 coincides with the focal position of the cylindrical lens 18. The focal point is indicated by point P1 in FIG. 4A.
  • a configuration may be adopted in which a concave mirror (also referred to as an angle distribution conversion member) manufactured separately from the cylindrical lens 18 is bonded.
  • the light exit surface 18a of the cylindrical lens 18 is provided with a groove 110 having a depth that allows the first LED 17 to be inserted therein.
  • the cross-sectional shape of the bottom of the groove 110 when the cylindrical lens 18 is cut along the xy plane is rounded into an arc.
  • the first LED 17 is disposed inside the groove 110.
  • the first LED (also referred to as a first light emitting element) 17 is disposed so that the light emitting surface 17 a faces the concave mirror 19.
  • the first LED 17, the concave mirror 19 and the cylindrical lens 18 are set such that their positional relationship, dimensions, and shape are set so that the focal point P11 of the concave mirror 19 and the cylindrical lens 18 is located on the light emitting surface 17a. ing.
  • the first LED 17 Since the light emitting surface 17a of the first LED 17 faces the concave mirror 19, almost all of the light emitted from the light emitting surface 17a of the first LED 17 is directed to the concave mirror 19 and reflected by the concave mirror 19, The light exits from the light exit surface 18 a of the cylindrical lens 18. Therefore, among the light emitted from the light emitting surface 17 a of the first LED 17, there is almost no light emitted directly without being reflected by the concave mirror 19.
  • the first LED 17 is not particularly directional, and a general LED that emits light at a predetermined diffusion angle can be used.
  • a groove 110 is provided so as to penetrate from the upper surface to the lower surface of each cylindrical lens 18.
  • the first LED 17 is provided over the entire groove 110 so as to reach from the upper end to the lower end of the cylindrical lens 18.
  • Two wires (not shown) on the positive electrode side and the negative electrode side for supplying a current to the first LED 17 are drawn from the upper end or the lower end of the cylindrical lens 18. It is desirable that the two wires are led out to be aligned with either the upper end or the lower end of the cylindrical lens 18.
  • a slight gap 112 is provided between the first LED 17 and the groove 110.
  • the gap 112 may be filled with an optical adhesive or the like, or air may be present without filling anything.
  • a plurality of separate cylindrical lenses 18 are connected, but a lenticular lens having a structure in which these plurality of cylindrical lenses are integrated may be used.
  • the wide-angle light source unit 114 includes a second LED (also referred to as a second light emitting element) 115 as shown in FIGS. 3, 4A, and 4B.
  • the second LED 115 is arranged such that the light emitting surface 115 a faces the end surface 13 a of the light guide 13. Accordingly, the first LED 17 and the second LED 115 are arranged such that the surfaces opposite to the light emitting surfaces 17a and 115a face each other. In other words, the first LED 17 and the second LED 115 are arranged back to back. Therefore, the light from the second LED 115 enters the light guide 13 without passing through the cylindrical lens 18 or the concave mirror 19.
  • the heights (dimensions in the z-axis direction) of the first LED 17 and the second LED 115 may be different as in the present embodiment, or may be the same.
  • a wiring (not shown) for supplying a current to the second LED 115 is drawn out from the gap between the cylindrical lens 18 and the light guide 13.
  • Two wires (not shown) on the positive electrode side and the negative electrode side for supplying a current to the second LED 115 are drawn from the upper end or the lower end of the cylindrical lens 18. Similar to the first LED 17, it is desirable that the two wires are drawn out to be aligned with either the upper end or the lower end of the cylindrical lens 18.
  • the first LED 17 and the second LED 115 can be controlled to turn on / off independently.
  • the light emitting surface 115a of the second LED 115 faces the end surface 13a of the light guide 13, almost all of the light emitted from the light emitting surface 115a of the second LED 115 enters the light guide 13.
  • the light emitting surface 115a of the second LED 115 is in contact with the end surface 13a of the light guide 13, but the light emitting surface 115a of the second LED 115 is not necessarily in contact with the end surface 13a of the light guide 13. It does not have to be.
  • the second LED 115 a general LED that emits light at a predetermined diffusion angle can be used.
  • the prism sheet 14 is provided at a position facing the light exit surface 13b of the light guide 13 (above the light guide 13 in FIG. 2).
  • the prism sheet 14 is provided with a plurality of prism structures 111 extending in a direction orthogonal to the light propagation direction Y on one surface.
  • the prism sheet 14 is disposed so that the surface on which the plurality of prism structures 111 are provided faces the light exit surface 13 b of the light guide 13.
  • the cross-sectional shape of one prism structure 111 in the cross section cut along the yz plane is a right triangle.
  • the prism structure 111 includes a first surface 111a that is orthogonal to the light exit surface 13b of the light guide 13, and a second surface 111b that forms a predetermined tip angle ⁇ 2 with respect to the first surface 111a. Yes.
  • the operation of the surface light source device 11 configured as described above will be described. Since the light emitting surface 17a of the first LED 17 has a predetermined area, not all points on the light emitting surface 17a necessarily coincide with the positions of the concave mirror 19 and the focal point P11 of the cylindrical lens 18. However, for the sake of simplicity, the following description will be made assuming that the area of the light emitting surface 17a is sufficiently small and the light emitting surface 17a coincides with the focal point P11.
  • the light L11 emitted from the light emitting surface 17a of the first LED 17 is directed to the concave mirror 19 with a predetermined diffusion angle and reflected by the concave mirror 19.
  • the behavior of light in a plane (xy plane) parallel to the light exit surface 13b of the light guide 13 is considered.
  • the position of the light emitting surface 17a coincides with the focal point P11, the light L emitted from the first LED 17 can be incident on the concave mirror 19 at any angle. After being reflected by the concave mirror 19, it proceeds in a direction parallel to the optical axis of the concave mirror 19.
  • the diffused light immediately after being emitted from the light emitting surface 17a of the first LED 17 is converted into light reflected and collimated by the concave mirror 19, that is, light having high directivity.
  • the light L11 exits from the light exit surface 18a of the cylindrical lens 18 and enters the light guide 13.
  • the light L12 emitted from the light emitting surface 115a of the second LED 115 enters the light guide 13 with a predetermined diffusion angle. Therefore, the angular distribution of the light L12 emitted from the wide-angle light source unit 114 is wider than the angular distribution of the light L11 emitted from the high-directivity light source unit 113.
  • the concave mirror 19 has no curvature, so that the concave mirror 19 functions like a plane mirror. That is, the light L11 emitted from the first LED 17 is reflected by the concave mirror 19 at a reflection angle equal to the incident angle. Therefore, the light L ⁇ b> 11 is emitted from the cylindrical lens 18 and is incident on the light guide 13 while maintaining the diffusion angle immediately after being emitted from the light emitting surface 17 a of the first LED 17.
  • the light L12 emitted from the second LED 115 propagates through the light guide 13 while maintaining the diffusion angle immediately after being emitted from the light emitting surface 115a.
  • the light L11 is a plane (xy plane) parallel to the light exit surface 13b of the light guide 13 when it is emitted from the light exit surface 18a of the cylindrical lens 18. ), And has no directivity in a plane (yz plane) parallel to the light propagation direction Y and perpendicular to the light exit surface 13 b of the light guide 13.
  • Such light L11 enters the light guide 13 from the light incident surface (end surface) 13a and propagates inside the light guide 13.
  • the light L12 is emitted in a plane (xy plane) parallel to the light emission surface 13b of the light guide 13 and parallel to the light propagation direction Y and emitted from the light guide 13. There is no directivity in both planes (yz plane) perpendicular to the surface 13b.
  • Such light L ⁇ b> 12 propagates through the light guide 13.
  • the light L1 propagating through the light guide 13 is repeatedly reflected between the first main surface 13b (light emission surface) and the second main surface 13c (reflection surface) as shown in FIG. Meanwhile, the light guide 13 travels in the light propagation direction Y (right side in FIG. 2). Assuming that the first main surface and the second main surface are parallel, the incident angle of the light to the first main surface and the second main surface does not change even if light is repeatedly reflected.
  • the light guide 13 has a wedge shape in which the thickness gradually decreases with increasing distance from the light incident surface 13a side, and the second main surface 13c has a predetermined inclination angle with respect to the first main surface 13b. Have. Therefore, each time the light L1 is reflected by the first main surface 13b and the second main surface 13c, the incident angle on the first main surface 13b and the second main surface 13c becomes small.
  • the critical angle on the first main surface 13b (light emission surface) of the light guide 13 is shown. That is, the critical angle at the interface between the acrylic resin constituting the light guide 13 and the air is about 42 ° from Snell's law.
  • the total reflection condition is satisfied as long as the incident angle of the light L1 on the first main surface 13b is larger than 42 ° which is a critical angle. Therefore, the light L1 is totally reflected by the first main surface 13b.
  • the incident angle of the light L1 to the first main surface 13b becomes smaller than 42 ° which is a critical angle.
  • the total reflection condition is not satisfied, and the light L1 is emitted to the external space.
  • the light L1 is confined inside the light guide 13 while the incident angle on the first main surface 13b is larger than the critical angle, and the incident angle on the first main surface 13b becomes smaller than the critical angle.
  • the first main surface 13b is sequentially ejected. Since the light L1 is refracted when emitted from the first main surface 13b, the light having an incident angle of about 42 ° to the first main surface 13b is emitted as light having an emission angle of about 70 °.
  • the light L1 when viewed in a plane (yz plane) parallel to the light propagation direction Y and perpendicular to the light exit surface 13b of the light guide 13, the light L1 is directional at the point of incidence on the light guide 13. However, it has high directivity at the time of emission from the light guide 13.
  • the emission angle of the light L1 when emitted from the light guide 13 is about 70 °, and the light L1 is emitted in a substantially horizontal direction. Therefore, using the prism sheet 14, the light L ⁇ b> 1 emitted from the light guide 13 is raised in a direction close to the normal direction of the first main surface 13 b of the light guide 13.
  • a prism sheet 14 having a prism structure 111 with a tip angle ⁇ 2 of about 38.5 ° is used, and light L1 is incident from the first surface 111a of the prism structure 111 and reflected by the second surface 111b. By doing so, the light guide 13 can be raised in a substantially normal direction with respect to the first main surface 13b.
  • the second LED 115 is turned on as shown in FIG. Light may be emitted.
  • diffused light L12 having a wide angular distribution in the xy plane is emitted.
  • the optical path of the diffused light L12 is raised in the z-axis direction by the action of the light guide 13 and the prism sheet 14, the diffused light L12 having a wide angular distribution in the xz plane is emitted.
  • the surface light source device 11 of the present embodiment when used in a mode in which light close to parallel light having a narrow angular distribution is emitted, that is, a so-called high directivity mode, as shown in FIG. Is turned on and light is emitted from the light source unit 113 for high directivity.
  • a so-called high directivity mode as shown in FIG. Is turned on and light is emitted from the light source unit 113 for high directivity.
  • light L11 close to parallel light having a narrow angular distribution in the xy plane is emitted.
  • the optical path of the light L11 is raised in the z-axis direction by the action of the light guide 13 and the prism sheet 14, the diffused light L11 having a narrow angular distribution in the xz plane is emitted.
  • the first LED 17 and the second LED 115 can be controlled to be turned on and off independently, the first LED 17 and the second LED 115 can be turned on simultaneously.
  • the diffused light L12 having a wide angular distribution and the light L11 close to parallel light having a narrow angular distribution are mixed and emitted from the light guide 13.
  • a large amount of light is emitted in the normal direction of the first main surface 13b of the light guide 13, and as a whole, emitted light having a wide angular distribution is obtained. Therefore, when the first LED 17 and the second LED 115 are turned on simultaneously, the wide-angle mode is set.
  • the angle distribution in the yz plane (not shown) emits light having a somewhat narrow angle distribution due to the effect of using the wedge-shaped light guide 13. .
  • the present inventors performed a simulation on the angular distribution of light emitted from the surface light source device of this embodiment.
  • lighting design analysis software Light Tools (ver. 7.2) was used.
  • the simulation conditions are as follows: the planar dimension of the light guide 13 is 130 mm (x-axis direction) ⁇ 130 mm (y-axis direction), the width of the cylindrical lens 18 (x-axis direction) is 26 mm, and the depth on the optical axis of the cylindrical lens 18 ( y-axis direction) is 7.5 mm, the height of the cylindrical lens 18 (z-axis direction) is 4 mm, the width of the light emission surface of the first LED 17 and the second LED 115 (x-axis direction) is 1 mm, the first The height (z-axis direction) of the light emission surface of the LED 17 and the second LED 115 was 4 mm.
  • the number of rays was set to 100,000, and the detector mesh was set at 1 ° intervals.
  • FIG. 6 is a diagram comparing the angle distribution in the x-axis direction between the wide angle mode and the high directivity mode.
  • the horizontal axis in FIG. 6 represents the polar angle (°) with the normal direction of the first main surface 13b of the light guide 13 as a reference (0 °).
  • the vertical axis in FIG. 6 indicates the luminance normalized with the maximum luminance value being 1.
  • the solid line in FIG. 6 shows the angle distribution in the wide angle mode.
  • the broken line in FIG. 6 shows the angular distribution in the high directivity mode.
  • the surface light source device 11 of the present embodiment exhibits a wide angular distribution with a luminance of 0.2 or more over a polar angle in the range of ⁇ 60 ° to + 60 ° in the wide-angle mode.
  • the surface light source device 11 of the present embodiment exhibits a narrow angular distribution over a polar angle in the range of about ⁇ 3 ° to + 3 ° in the high directivity mode. In this way, the surface light source device 11 of the present embodiment can switch the directivity of the emitted light between the wide angle mode and the high directivity mode.
  • FIG. 7 is a diagram comparing the angular distribution in the high directivity mode in the x-axis direction and the y-axis direction.
  • the horizontal axis in FIG. 7 indicates the polar angle (°) with the normal direction of the first main surface 13b of the light guide 13 as a reference (0 °).
  • the vertical axis in FIG. 7 indicates the luminance normalized with the maximum luminance value being 1.
  • a broken line in FIG. 7 indicates a luminance distribution in the x-axis direction.
  • the solid line in FIG. 7 shows the luminance distribution in the y-axis direction.
  • the angular distribution in the x-axis direction is the same as the angular distribution shown in FIG. That is, the surface light source device 11 of the present embodiment exhibits a narrow angular distribution over polar angles in the range of about ⁇ 3 ° to + 3 °.
  • the angular distribution in the y-axis direction is wider than the angular distribution in the x-axis direction, but is narrow over a polar angle in the range of about ⁇ 10 ° to + 20 °.
  • An angular distribution is shown.
  • the angular distribution in the y-axis direction is asymmetric because even if the optical path of the emitted light is raised in the vertical direction by the prism sheet 14, it cannot be raised yet and is opposite to the end face 13 a of the light guide 13 ( This is probably because the proportion of light emitted toward the side where the polar angle is positive) is large.
  • the surface light source device 11 of the present embodiment it is not necessary to prepare two sets of light guides and to stack these two light guides when switching between two types of directivities. Therefore, it is possible to solve problems such as a large number of parts, a high manufacturing cost, and a large thickness of the entire lighting device.
  • the design for making the luminance of the light emitted from the light guide 13 uniform is effective for the light from either LED 17 or 115. To work. Therefore, it becomes easy to keep the luminance uniform before and after switching the directivity.
  • the second LED 115 is hidden from the back side of the first LED 17 when viewed from the concave mirror 19 side. Become. For this reason, when the first LED 17 is turned on, the area behind the first LED 17 is originally a shadow area, so that the shadow of the second LED 115 does not increase any more.
  • the light guide 118 of the surface light source device 117 of the present modification includes a plurality of prism structures 119 on the second main surface 118c side facing the first main surface 118b (light emission surface). ing.
  • Each prism structure 119 extends in a direction orthogonal to the light propagation direction Y.
  • the cross-sectional shape of the prism structure 119 in the cross section cut along the yz plane is a right triangle.
  • the prism structure 119 includes a first surface 119a that is orthogonal to the first main surface 118b of the light guide 118, and a second surface 119b that forms a predetermined tip angle ⁇ 2 with respect to the first surface 119a. ing.
  • the second surface 119b functions as a reflecting surface that reflects light propagating through the light guide 118.
  • the light guide 118 of the present modification has a plurality of divided reflection surfaces. Therefore, the light guide 118 of this modification can also give high directivity to the emitted light by the same action as the wedge-shaped light guide.
  • the wedge-shaped light guide is used, but instead of this configuration, the light guide shown in FIG. 9 may be used.
  • the surface light source device 121 of the present modification includes a light guide body 122 formed of parallel flat plates in which a first main surface 122b (light emission surface) and a second main surface 122c are parallel.
  • the second main surface 122c of the light guide 122 is provided with a plurality of grooves and printed matter (not shown) having a prismatic cross-sectional shape.
  • the plurality of grooves and printed matter are arranged so that the density is lower as the distance from the end surface 122a provided with the light source unit 12 is lower, and the density is higher as the distance from the end surface 122a is longer.
  • the light propagating through the light guide 122 is changed in reflection angle by a plurality of grooves and printed matter, and emitted from the light guide 122.
  • the light propagation direction Y does not change before and after switching the directivity, and therefore, the arrangement of the plurality of grooves and printed matter for making the brightness of the emitted light uniform is which LED 17, It works effectively against the light from 115. Therefore, it becomes easy to keep the luminance uniform before and after switching the directivity.
  • FIG. 10 is a perspective view showing a light source unit in the surface light source device of this embodiment.
  • FIG. 11 is a plan view showing the surface light source device of this embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the second LED is arranged back to back with the first LED.
  • the second LED 115 is disposed along the boundary between two adjacent concave mirrors 19.
  • the second LEDs 115 are not arranged at every boundary between the two adjacent concave mirrors 19 but are arranged at every other boundary.
  • the first LED 17 and the second LED 115 have the same size, but may be different as in the first embodiment.
  • 2nd LED115 is arrange
  • the light emitting surface 115a of the second LED 115 occupies a sufficient size with respect to the light emitting surface 18a of the cylindrical lens 18, the light emitting surface 115a of the second LED 115 may face the cylindrical lens 18. .
  • the light L12 from the second LED 115 enters the cylindrical lens 18, is reflected by the concave mirror 19, and then enters the light guide 13.
  • the installation position of the second LED 115 is greatly deviated from the focal point of the concave mirror 19, the light emitted from the second LED 115 and reflected by the concave mirror 19 is not collimated. As a result, diffused light can be obtained from the second LED 115 even when the light emitting surface 115a of the second LED 115 faces the cylindrical lens 18 side.
  • lighting in the high directivity mode can be realized by turning on the first LED 17, and lighting in the wide angle mode can be realized by turning on the second LED 115.
  • achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
  • the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
  • the luminance distribution of light emitted from the cylindrical lens 18 has a tendency that the luminance of light emitted from the central portion of the cylindrical lens 18 is large and the luminance of light emitted from the end portion of the cylindrical lens 18 is small.
  • the second LED 115 is disposed along the boundary between two adjacent concave mirrors 19. Therefore, if the first LED 17 and the second LED 115 are simultaneously turned on in the wide-angle mode, the light from the second LED 115 is applied to an area where the light intensity of the first LED 17 is low. As a result, luminance unevenness can be reduced.
  • 2nd LED115 was arrange
  • the second LED 115 may be arranged as shown in FIG.
  • the second LEDs 115 are arranged on all the boundaries between two adjacent concave mirrors 19. Therefore, in one surface light source device 26, the number of the first LEDs 17 and the number of the second LEDs 115 may be the same or different.
  • FIG. 13 is a perspective view showing a light source unit in the surface light source device of this embodiment.
  • FIG. 14A is a side view showing the surface light source device of the present embodiment.
  • FIG. 14B is a plan view showing the surface light source device of the present embodiment.
  • symbol is attached
  • the second LED is arranged back to back with the first LED.
  • the second LED 115 is arranged along a direction parallel to the upper surface and the lower surface of the cylindrical lens 18. Has been. Therefore, the first LED 17 and the second LED 115 are arranged so that their longitudinal directions are orthogonal to each other.
  • the concave mirror 19 has a straight cross-sectional shape when cut along the yz plane, and has no curvature in a direction perpendicular to the first main surface 3 a of the light guide 13.
  • the concave mirror 19 has a focal point that continuously exists along the z-axis direction, but in the yz plane, the concave mirror 19 exists continuously along the x-axis direction.
  • the second LED 115 is arranged along the x-axis direction, the light emitting surface 115 a of the second LED 115 is shifted from the focal point of the concave mirror 19.
  • 2nd LED115 is arrange
  • the second LED 115 may be arranged such that the light emitting surface 115a faces the cylindrical lens 18. In that case, the light from the second LED 115 enters the cylindrical lens 18, is reflected by the concave mirror 19, and then enters the light guide 13. However, since the light emitting surface 115a of the second LED 115 is shifted from the focal point of the concave mirror 19, the light emitted from the second LED 115 and reflected by the concave mirror 19 is not collimated. As a result, diffused light can be obtained from the second LED 115 even when the light emitting surface 115a of the second LED 115 faces the cylindrical lens 18 side.
  • lighting in the high directivity mode can be realized by turning on the first LED 17, and lighting in the wide angle mode can be realized by turning on the second LED 115.
  • achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
  • the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
  • the second LED was arrange
  • the second LED may be configured as shown in FIG.
  • the light source 130 according to the present modification includes a plurality of second LEDs 115 arranged at predetermined intervals along the x-axis direction.
  • FIG. 16 is a perspective view showing a light source unit in the surface light source device of this embodiment.
  • FIG. 17 is a plan view showing the surface light source device of this embodiment.
  • symbol is attached
  • the second LED 115 extends across the plurality of cylindrical lenses 18 and is parallel to the upper and lower surfaces of each cylindrical lens 18. It is arranged to extend long in the direction.
  • 2nd LED115 is arrange
  • the second LED 115 may be arranged such that the light emitting surface 115a faces the cylindrical lens 18. As described above, even when the light emitting surface 115a of the second LED 115 is directed toward the cylindrical lens 18, the diffused light can be obtained from the second LED 115.
  • 1st LED17 is alternately arrange
  • lighting in the high directivity mode can be realized by turning on the first LED 17, and lighting in the wide angle mode can be realized by turning on the second LED 115.
  • achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
  • the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
  • FIG. 18 is a perspective view showing a light source unit in the surface light source device of this embodiment.
  • FIG. 19A is a plan view of the light source unit.
  • FIG. 19B is a side view of the light source unit.
  • FIG. 20 is a diagram for explaining the action of light in the light source unit for high directivity.
  • FIG. 21 is a diagram for explaining the effect of the present embodiment. 18 to 21, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the light source unit 136 includes a high directivity light source unit 137 (stacked in the thickness direction (z-axis direction) of the light guide 13 as shown in FIGS. 18 and 19B.
  • the first light source unit and a wide-angle light source unit 138 (second light source unit).
  • the high directivity light source unit 137 is arranged in the upper stage, and the wide angle light source unit 138 is arranged in the lower stage.
  • the wide-angle light source unit 138 may be disposed in the upper stage, and the high directivity light source unit 137 may be disposed in the lower stage.
  • the high directivity light source unit 137 includes a first LED 17 (first light emitting element), a wedge-shaped light guide rod 139 (also referred to as a reflective element or an angle distribution conversion member), And an incident angle adjusting prism 140.
  • the first LED 17 is provided on the end surface 139 a in the longitudinal direction of the wedge-shaped light guide bar 139.
  • the first LED 17 is in contact with the wedge-shaped light guide rod 139, and is fixed so that the light emitting surface 17a faces the end surface 139a of the wedge-shaped light guide rod 139.
  • the incident angle adjusting prism 140 is disposed between the wedge-shaped light guide rod 139 and the light guide 13.
  • the wedge-shaped light guide rod 139 is a rod body made of a resin having optical transparency such as acrylic resin.
  • the same material as that of the light guide 13 can be used.
  • the wedge-shaped light guide rod 139 has a wedge shape in which the width (dimension in the y-axis direction) gradually decreases from the side closer to the end surface 139a provided with the first LED 17 toward the far side. That is, as shown in FIG. 19A, the planar shape of the wedge-shaped light guide bar 139 when viewed from the normal direction of the first main surface 3a of the light guide 13 is a right triangle.
  • the end surface 139a of the wedge-shaped light guide rod 139 is a light incident surface on which light emitted from the first LED 17 is incident.
  • the first side surface 139b of the wedge-shaped light guide rod 139 (a surface perpendicular to the end surface 139a in FIG. 19A) is a light emitting surface that emits light incident on the inside.
  • the second side surface 139c (the inclined surface in FIG. 19A) facing the first side surface 139b of the wedge-shaped light guide rod 139 is an inclined surface that is inclined with a certain inclination angle with respect to the first side surface 139b in the light propagation direction X.
  • the second side surface 139c may be provided with a reflection mirror made of a metal film having a high light reflectance such as aluminum.
  • the reflection mirror may be a metal film directly formed on the second side surface 139c of the wedge-shaped light guide rod 139, or a configuration in which a reflector made separately from the wedge-shaped light guide rod 139 is bonded. It may be.
  • the incident angle adjusting prism 140 includes a plurality of prism structures 141 provided on one surface.
  • the incident angle adjusting prism 140 is disposed such that the surface on which the plurality of prism structures 141 are provided faces the light exit surface 39b of the wedge-shaped light guide rod 139.
  • the cross-sectional shape of the prism structure 141 in the cross section cut along the xy plane is a right triangle.
  • the prism structure 141 has a first surface 141a orthogonal to the light exit surface 39b of the wedge-shaped light guide rod 139, and a second surface 141b that forms a predetermined tip angle ⁇ 13 with respect to the first surface 141a. ing.
  • the wide-angle light source unit 138 includes three second LEDs 115 as shown in FIGS. 18 and 19A.
  • three LEDs are used as the second LED 115, but the number of LEDs is not particularly limited.
  • the second LED 115 is disposed so that the light emitting surface 115 a faces the end surface 13 a of the light guide 13. Therefore, the light emitted from the second LED 115 enters the light guide 13 without passing through the wedge-shaped light guide rod 139 and the incident angle adjusting prism 140.
  • As the second LED 115 a general LED that emits diffused light can be used.
  • the light L11 emitted from the first LED 17 enters the wedge-shaped light guide rod 139 and propagates in the x-axis direction through the inside of the wedge-shaped light guide rod 139.
  • the light L11 propagating through the inside of the wedge-shaped light guide rod 139 is repeatedly reflected between the first side surface 139b (light emitting surface) and the second side surface 139c (reflecting surface) while being guided by the wedge shape.
  • the light rod 139 travels in the light propagation direction X (upper side in FIG. 20).
  • the incident angle of the light to the first side surface and the second side surface does not change even if light is repeatedly reflected.
  • the width of the wedge-shaped light guide bar 139 gradually decreases as the distance from the end face 139a side increases. That is, the second side surface 139c has a predetermined inclination angle with respect to the first side surface 139b. Therefore, each time the light L11 is reflected by the first side surface 139b and the second side surface 139c, the incident angle to the first side surface 139b and the second side surface 139c becomes small.
  • the criticality at the first side surface 139b (light emission surface) of the wedge-shaped light guide rod 139 is determined.
  • the critical angle at the interface between the acrylic resin and the air constituting the wedge-shaped light guide rod 139 is about 42 ° from Snell's law.
  • the light L11 is repeatedly reflected between the first side surface 139b and the second side surface 139c, and when the incident angle of the light L11 to the first side surface 139b becomes smaller than 42 ° which is a critical angle, the total reflection condition The light L11 is emitted from the first side surface 139b to the external space.
  • the light L11 is confined inside the wedge-shaped light guide rod 139 while the incident angle on the first side surface 139b is larger than the critical angle, and the incident angle on the first side surface 139b becomes smaller than the critical angle.
  • the incident angle on the first side surface 139b becomes smaller than the critical angle.
  • the light L1 enters the wedge-shaped light guide rod 139 when viewed in a plane (xy plane) parallel to the light propagation direction X and perpendicular to the light exit surface 39b of the wedge-shaped light guide rod 139.
  • it does not have directivity, but has high directivity at the time of emission from the wedge-shaped light guide rod 139.
  • the emission angle of the light L11 when emitted from the wedge-shaped light guide rod 139 is about 70 °, and the light L11 is emitted toward the distal end side of the wedge-shaped light guide rod 139. Therefore, using the incident angle adjusting prism 140, the light L11 emitted from the wedge-shaped light guide rod 139 is raised in a direction close to the normal direction of the end face 13a (light incident end face) of the light guide 13. Specifically, using the incident angle adjusting prism 140 having the prism structure 141 with the tip angle ⁇ 2 of about 38.5 °, the light L11 is incident from the first surface 141a of the prism structure 141, and the second surface.
  • the light guide 13 By reflecting at 141 b, the light guide 13 can be raised in a substantially normal direction with respect to the end face 13 a. In this way, the incident angle adjusting prism 140 can adjust the incident angle of light incident on the end surface 13a of the light guide 13 while maintaining high directivity.
  • the wide-angle light source unit 138 As shown in FIG. 18, the light L12 emitted from the light emitting surface 115a of the second LED 115 enters the light guide 13 with a predetermined diffusion angle. Therefore, the angular distribution of the light L12 emitted from the wide-angle light source unit 138 is wider than the angular distribution of the light L11 emitted from the high-directivity light source unit 137.
  • the light L11 is in a plane (xy plane) parallel to the light exit surface 13b of the light guide 13 when it is emitted from the incident angle adjusting prism 140.
  • the plane (yz plane) parallel to the light propagation direction inside the light guide and perpendicular to the light exit surface 13b of the light guide 13 it has no directivity.
  • Such light L ⁇ b> 1 enters the light guide 13 from the light incident surface (end surface) 3 a and propagates inside the light guide 13.
  • the light L1 is parallel to the light propagation direction in the plane (xy plane) parallel to the light exit surface 13b of the light guide 13 and inside the light guide 13. There is no directivity in both planes (yz plane) perpendicular to the light exit surface 13b of the light body 13. Such light L1 propagates in the light guide 13.
  • the behavior until the lights L11 and L12 from the light source units 137 and 138 are emitted from the light guide 13 and the prism sheet 140 to the external space is the same as in the first embodiment.
  • lighting in the high directivity mode can be realized by turning on the first LED 5 of the light source unit 137 for high directivity, and the second LED 115 of the light source unit 138 for wide angle is realized.
  • wide-angle mode illumination can be realized.
  • the 1st LED17 and the 2nd LED115 are lighted simultaneously, the point which can implement
  • the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
  • the concave mirror 19 and the cylindrical lens 18 as in the first to fourth embodiments are used as means for giving directivity to the light emitted from the first LED 17, as shown on the right side of FIG. Due to the curved surface shape of the cylindrical lens 18, the dimension of the light source 16 in the light propagation direction (y-axis direction) inside the light guide is increased to some extent.
  • the wedge-shaped light guide rod 139 as in this embodiment is used, even if the dimensions in the x-axis direction are the same as shown on the left side of FIG.
  • the dimension in the direction (y-axis direction) can be made smaller than that of the concave mirror 19. As a result, according to this embodiment, it is possible to reduce the size of the surface light source device.
  • the surface light source device of the said embodiment was provided with 1 set of units which consist of 1st LED and a wedge-shaped light guide rod as a high directivity light source part.
  • the light source unit for high directivity may be configured as shown in FIG.
  • the surface light source device 143 according to the present modification includes a plurality of units each including a first LED 17 and a wedge-shaped light guide rod 139 as the light source unit 137 for high directivity. In this modification, three sets of units are provided, but the number of units is not particularly limited.
  • the number of the first LEDs 17 is larger than that of the surface light source device of the above embodiment, and thus the amount of light emitted from the high directivity light source unit 137 is increased. Can do.
  • the wedge-shaped light guide rod 139 is used as means for giving directivity to the light emitted from the first LED.
  • the light guide rod shown in FIG. 23 may be used.
  • the light source unit 145 for high directivity of the present modification includes a light guide bar 146 and a first LED 17 provided on the end surface of the light guide bar 146 in the longitudinal direction.
  • the light guide rod 146 is provided with a plurality of prism structures 147 on the second side surface 146c facing the first side surface 146b (light emission surface).
  • the planar shape of the prism structure 147 is a right triangle.
  • the prism structure 147 includes a first surface 147a and a second surface 147b that forms a predetermined tip angle with respect to the first surface 147a.
  • the second surface 147 b functions as a reflecting surface that reflects light propagating through the light guide rod 146.
  • the wedge-shaped light guide rod 139 has one continuous reflection surface, whereas the light guide rod 146 of this modification has a plurality of divided reflection surfaces. Therefore, the light guide bar 146 of this modification can also give high directivity to the emitted light by the same action as the wedge-shaped light guide bar 139.
  • FIGS. 24, 25A, and 25B The configuration of the light guide of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
  • FIG. 24 is an exploded perspective view showing a light source unit in the surface light source device of this embodiment.
  • FIG. 25A is a plan view of the light source unit.
  • FIG. 25B is a side view of the light source unit. 24, FIG. 25A, and FIG. 25B, the same code
  • the light source unit 150 includes a highly directional light source unit 151 (stacked in the thickness direction (z-axis direction) of the light guide 13 (see FIG. 24 and FIG. 25B).
  • the first light source unit and a wide-angle light source unit 152 (second light source unit).
  • the light source unit 151 for high directivity is arranged at the lower stage, and the light source unit 152 for wide angle is arranged at the upper stage.
  • the wide-angle light source unit 152 may be disposed in the lower stage, and the high directivity light source unit 151 may be disposed in the upper stage.
  • the high directivity light source unit 151 includes a first LED 17 (first light emitting element), a wedge-shaped light guide bar 139 (reflective element), and an incident angle adjusting prism 140. It is equipped with. That is, the configuration of the high directivity light source unit 151 is the same as that of the fifth embodiment.
  • the wide-angle light source unit 152 includes a second LED 115 (second light emitting element), a wedge-shaped light guide rod 139 (reflective element), and a light scattering member 153.
  • the light scattering member 153 is disposed on the light emission side of the wedge-shaped light guide bar 139.
  • the light scattering member 153 is a light-transmitting member that has been processed to scatter light on the surface.
  • the processing for scattering the light is performed by a technique such as printing, polishing, or providing an uneven shape. Note that it is desirable that the scattering characteristics of the light scattering member 153 be adjusted so that the proportion of light that is scattered forward is increased as much as possible, and the proportion of light that is scattered backward is minimized.
  • the light source unit 151 for high directivity and the light source unit 152 for wide angle are arranged so that the first LED 17 and the second LED 115 are located on the opposite sides. Therefore, the wedge-shaped light guide rods 139 of the high directivity light source 151 and the wide-angle light source 152 are also arranged in opposite directions. This configuration is preferable because the wiring (not shown) for supplying current to the first LED 17 and the wiring (not shown) for supplying current to the second LED 115 do not interfere with each other. However, the first LED 17 and the second LED 115 may be located on the same side.
  • the light emitted from the first side surface 139 b of the wedge-shaped light guide rod 139 in the wide-angle light source unit 152 is scattered and emitted when passing through the light scattering member 153. Therefore, the angular distribution of light finally emitted from the wide-angle light source unit 152 is wider than the angular distribution of light emitted from the high-directivity light source unit 151.
  • the “light scattering member” in the present embodiment corresponds to an “angle distribution conversion member” in the claims.
  • the various angle distribution conversion members used in the first to fifth embodiments function in a direction in which light having low directivity is incident and the directivity of the light is increased.
  • the light scattering member 153 of this embodiment functions in a direction in which light having high directivity is incident and the directivity of the light is reduced.
  • the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
  • the surface light source device of the above-described embodiment includes a set of units each including a first LED and a wedge-shaped light guide bar as a high directivity light source unit, and the first LED and a wedge-shaped light guide bar as a wide-angle light source unit. And a unit consisting of a light scattering member.
  • the light source unit may be configured as shown in FIG.
  • the surface light source device 155 of the present modification includes a plurality of units each including the first LED 17 and a wedge-shaped light guide bar 139 as the high directivity light source unit 151.
  • the wide-angle light source unit 152 includes a plurality of units each including a second LED 115, a wedge-shaped light guide rod 139, and a light scattering member 153.
  • each of the light source units 151 and 152 includes three sets of units, but the number of units is not particularly limited.
  • the number of LEDs is increased as compared with the surface light source device of the above embodiment, and thus the amount of light emitted from each light source unit can be increased.
  • FIG. 27A is a plan view showing a light source unit in the surface light source device of the present embodiment.
  • FIG. 27B is a side view of the light source unit.
  • symbol is attached
  • the light source unit 158 includes a plurality of high directivity light source units 159 (first light source units) and a plurality of wide angle light source units 160 (see FIG. 27A and FIG. 27B). 2nd light source part).
  • the plurality of high directivity light source units 159 and the plurality of wide angle light source units 160 are alternately arranged along a direction (x-axis direction) perpendicular to the light propagation direction Y inside the light guide 13.
  • the light source unit 159 for high directivity includes a first LED 17 (first light emitting element) and a collimating lens (also referred to as an angle distribution converting member) 161.
  • a first LED 17 first light emitting element
  • a collimating lens also referred to as an angle distribution converting member
  • the collimating lens 161 has a function of substantially collimating the light emitted from the first LED 17.
  • the collimating lens 161 is disposed in contact with the end surface 13 a of the light guide 13.
  • the first LED 17 is disposed at a position separated from the collimating lens 161 by the focal length of the collimating lens 161.
  • the wide-angle light source unit 160 includes a second LED 115 (second light emitting element).
  • a second LED 115 second light emitting element
  • a general LED that emits diffused light can be used as the second LED 115.
  • the second LED 115 is disposed such that the light emitting surface is in contact with the end surface 13 a of the light guide 13.
  • the first LED 17 when the first LED 17 is turned on, the light L11 emitted from the first LED 17 is substantially collimated by the collimating lens 161 and is incident on the light guide 13.
  • the second LED 115 when the second LED 115 is turned on, the diffused light L12 emitted from the second LED 115 is incident on the light guide 13.
  • both the first LED 17 and the second LED 115 may be lit.
  • the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
  • FIG. 28A is a plan view showing the surface light source device of this embodiment.
  • 28B is a cross-sectional view taken along the line AA ′ of FIG. 28A.
  • 29A to 29C are diagrams showing simulation results of the illuminance distribution in the surface light source device of this embodiment.
  • 30A to 30C are diagrams illustrating simulation results of illuminance distribution in the surface light source device of the comparative example.
  • the surface light source device 181 of the present embodiment includes a light guide 182 made of parallel flat plates in which a first main surface 182b (light emission surface) and a second main surface 182c are parallel. ing.
  • a plurality of light extraction prisms 183 extending in a direction perpendicular to the light propagation direction Y (x-axis direction) are provided on the first main surface 182b of the light guide 182 at a predetermined interval.
  • the light extraction prism 183 is preferably made of a material having the same refractive index as that of the light guide 182.
  • the cross-sectional shape of the light extraction prism 183 is a so-called reverse taper shape in which the width on the side in contact with the first main surface 182b of the light guide 182 is narrow and the width on the side opposite to the first main surface 182b is wide.
  • the plurality of light extraction prisms 183 are not arranged at equal intervals. That is, the plurality of light extraction prisms 183 are provided such that the closer to the end surface 182a of the light guide 182 provided with the light source unit 12, the lower the density and the farther from the end surface 182a, the higher the density.
  • the light L ⁇ b> 1 emitted from the light source unit 12 is incident on one of the plurality of light extraction prisms 183 while propagating through the light guide 182.
  • the light L1 that has entered the light extraction prism 183 is reflected by the reflection surface 183a, and then the angle is changed, and the light L1 is extracted to the outside of the light guide 182.
  • the surface light source device 181 of the present embodiment the surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. Similar effects can be obtained.
  • the high directivity light source unit 113 and the wide-angle light source unit 114 are arranged on one end surface 182a of the light guide 182. Therefore, the following effects can be obtained.
  • the amount of light extraction tends to be large on the light exit surface of the light guide near the light source and small on the side far from the light source. Therefore, the illuminance distribution on the light exit surface of the light guide becomes non-uniform.
  • the plurality of light extraction prisms 183 are arranged such that the density is lower as the distance from the end face 182a of the light guide 182 is lower, and the density is higher as the distance from the end face 182a is higher. Can be made more uniform.
  • the illumination device described in Patent Document 3 if two light source units are arranged on different end faces of the light guide, a plurality of light extraction prisms 183 for making the illuminance distribution uniform can be obtained.
  • the arrangement only works for one of the light source sections.
  • the light source unit for high directivity 113 and the light source unit for wide angle 114 are arranged on one end surface 182a of the light guide 182 so that light can be transmitted before and after switching the directivity.
  • the propagation direction Y does not change. Therefore, the arrangement of the plurality of light extraction prisms 183 for making the illuminance distribution uniform works effectively for both light source units 113 and 114. Therefore, it is easy to keep the illuminance distribution uniform before and after switching the directivity.
  • the inventors performed a simulation on the illuminance distribution on the light exit surface of the surface light source device of this embodiment and the surface light source device of the comparative example.
  • lighting design analysis software Light Tools (ver. 7.2) was used.
  • the simulation conditions were set in the same manner as in the first embodiment.
  • FIG. 29A shows the surface light source device of the present embodiment, in which light from the high directivity light source unit 113 and the wide angle light source unit 114 is incident from one end surface 182 a of the light guide 182.
  • FIG. 29B shows the illuminance distribution by light from the light source unit 113 for high directivity
  • FIG. 29C shows the illuminance distribution by light from the light source unit 114 for wide angle.
  • the arrangement of the plurality of light extraction prisms 183 was not sufficiently optimized, and the illuminance distribution could not be sufficiently uniformed.
  • the illuminance distribution hardly changes before and after switching the directivity. Therefore, if the arrangement of the plurality of light extraction prisms 183 is sufficiently optimized, the illuminance distribution can be sufficiently uniformed in both the high directivity mode and the wide angle mode.
  • FIG. 30A shows a surface light source device of a comparative example, in which light from the light source unit for high directivity is incident from the end surface 182a of the light guide 182 to guide light from the light source unit for wide angle. Incident light is incident from the end face 182d of the light body 182.
  • FIG. 30B shows an illuminance distribution by light from the wide-angle light source unit.
  • the arrangement of the light extraction prism 183 is optimized with respect to the light from the light source unit for high directivity arranged on the end surface 182a. Therefore, for the light from the wide-angle light source unit, as shown in FIG. 30B, the light extraction amount is large on the side close to the high directivity light source unit, and the light extraction amount is small on the side far from the light source. It was. Thus, in the surface light source device of the comparative example, it was found that the illuminance distribution changed greatly before and after the switching of directivity, and the illuminance distribution became non-uniform in either one of the modes.
  • FIG. 32A and 32B are schematic views showing a ninth embodiment of the light control device, FIG. 32A is a plan view, and FIG. 32B is a cross-sectional view taken along the line A2-A2 of FIG. 32A.
  • the light control device 210 is generally configured by a light source unit 211, a light guide 212, a scattering liquid crystal cell 213, and a parabolic mirror-shaped lens 215 including a reflection mirror 214.
  • the light guide 212 is disposed to face the light source unit 211.
  • the light guide 212 introduces light from the light source unit 211 from the one end face 212a side, and guides light from the light source unit 211 in the longitudinal direction.
  • the scattering liquid crystal cell 213 is provided between the light source unit 211 and the one end surface 212 a of the light guide 212.
  • the parabolic mirror-shaped lens 215 is provided on the surface opposite to the surface 211 a facing the one end surface 212 a of the light guide 212 of the light source unit 211.
  • the reflection mirror 214 has a reflection surface 214 a that reflects light from the light source unit 211.
  • the scattering liquid crystal cell 213 is used as a light distribution conversion element that changes the directivity of light from the light source unit 211.
  • the light distribution conversion element of this embodiment has a variable light distribution characteristic of changing the directivity of light from the light source unit. The configuration of the light distribution conversion element will be described below.
  • the scattering liquid crystal cell 213 is roughly composed of a polymer dispersed liquid crystal 221 and a pair of transparent conductive substrates 222 and 223 that sandwich the polymer dispersed liquid crystal 221.
  • the transparent conductive substrate 222 is roughly composed of a transparent substrate 224 and a transparent conductive film 225 provided on one surface 224a thereof.
  • the transparent conductive substrate 223 is roughly composed of a transparent substrate 226 and a transparent conductive film 227 provided on one surface 226a thereof.
  • FIG. 34A when a voltage is not applied between the transparent conductive substrates 222 and 223, the liquid crystal 231 is not oriented and is scattered like the random polymer 32. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is scattered by the liquid crystal 231 and is emitted from the scattering liquid crystal cell 213 as scattered light.
  • FIG. 34A when a voltage is not applied between the transparent conductive substrates 222 and 223, the liquid crystal 231 is not oriented and is scattered like the random polymer 32. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is scattered by the liquid crystal 231 and is emitted from the scattering liquid crystal cell 213 as scattered light.
  • FIG. 34A when a voltage is not applied between the transparent conductive substrates 222 and 223, the liquid crystal 231 is not oriented and is scattered like the random polymer 32. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is scattered by
  • the liquid crystal 231 when a voltage is applied between the transparent conductive substrates 222 and 223, the liquid crystal 231 is aligned in the thickness direction of the scattering liquid crystal cell 213, so that the scattering liquid crystal cell 213 becomes transparent. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is not scattered by the liquid crystal 231 and has directivity from the scattering liquid crystal cell 213 (the directivity in the thickness direction of the scattering liquid crystal cell 213). Light).
  • FIG. 35A A case where a reverse mode polymer dispersed liquid crystal is used as the polymer dispersed liquid crystal 221 constituting the scattering liquid crystal cell 213 will be described with reference to FIG. 35A and FIG. 35B.
  • the liquid crystal 241 As shown in FIG. 35A, when no voltage is applied between the transparent conductive substrates 222 and 223, the liquid crystal 241 is aligned with the liquid crystal polymer 243 in a direction perpendicular to the thickness direction of the scattering liquid crystal cell 213.
  • the scattering liquid crystal cell 213 becomes transparent.
  • the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is not scattered by the liquid crystal 241 or the liquid crystal polymer 243, and has directivity from the scattering liquid crystal cell 213 (in the thickness direction of the scattering liquid crystal cell 213). Of light having a directivity of 2).
  • the liquid crystal 241 is oriented in the thickness direction of the scattering liquid crystal cell 213 and is different from the random polymer 242 and the liquid crystal polymer 243. In an oriented state. Therefore, light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is scattered by the liquid crystal 241, the random polymer 242 and the liquid crystal polymer 243, and is emitted from the scattering liquid crystal cell 213 as scattered light.
  • FIG. 36A and 36B the liquid crystal 231 constituting the scattering liquid crystal cell 213 is oriented as shown in FIG. 34B, or the liquid crystal 241 constituting the scattering liquid crystal cell 213 is oriented as shown in FIG. 35A.
  • FIG. 36A is a plan view.
  • FIG. 36B is a front view seen from one end surface side of the light guide. At this time, when the light from the light source unit 211 is reflected by the reflection surface 214 a of the reflection mirror 214 and the reflected light enters the scattering liquid crystal cell 213, the reflected light is scattered by the liquid crystal in the scattering liquid crystal cell 213.
  • the light guide 212 Without incident, light having directivity enters the light guide 212 from the one end surface 212a. Therefore, the light emitted from the upper surface 212 b of the light guide 212 is emitted at a narrow emission angle without spreading in the width direction of the light guide 212.
  • the emission angle of the light emitted from the upper surface 212b of the light guide 212 is extremely narrow, for example, as shown by the broken line in FIG.
  • FIG. 37A and 37B show a state where the liquid crystal 231 constituting the scattering liquid crystal cell 213 is not oriented as shown in FIG. 34A, or the liquid crystal 241 constituting the scattering liquid crystal cell 213 is oriented as shown in FIG. 35B. It is the schematic explaining the case where the light control apparatus 210 is used in the state which is not made.
  • FIG. 37A is a plan view.
  • FIG. 37B is a front view seen from one end surface side of the light guide.
  • the light from the light source unit 211 is reflected by the reflecting surface 214a of the reflecting mirror 214 and the reflected light enters the scattering liquid crystal cell 213, the reflected light is scattered by the liquid crystal in the scattering liquid crystal cell 213, It becomes scattered light and enters the light guide 212 from the one end face 212a. Therefore, the light emitted from the upper surface 212b of the light guide 212 spreads in the width direction of the light guide 212 and is emitted at a wide emission angle.
  • the emission angle of the light emitted from the upper surface 212b of the light guide 212 is widened, for example, as shown by the solid line in FIG.
  • the scattering liquid crystal cell 213 As described above, by using the scattering liquid crystal cell 213, the light emitted from the light control device 210 can be switched between directional light and scattered light. It suffices to install it only on the end face 212a side, and the light guide 212 may be used only in one layer without being laminated as in the prior art. Further, by installing the light source unit 211 only on the one end surface 212a side of the light guide 212, the traveling direction of the light from the light source unit 211 before and after switching the directivity of the light transmitted through the scattering liquid crystal cell 213 is does not change. Thereby, in the light guide 212, whether the design for making the emitted light uniform (such as thinning of the structure for raising the guided light) is either directional light or scattered light, Works effectively. Therefore, before and after switching the directivity of the light transmitted through the scattering liquid crystal cell 213, the uniformity of the luminance of the emitted light from the illumination device 10 can be maintained to some extent.
  • Examples of the light source constituting the light source unit 211 include an LED, an inorganic EL, and an organic EL.
  • the light guide 212 has a sheet shape and is composed of an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbonate, polyimide, polymethyl methacrylate (polymethyl methacrylate, PMMA), or the like. ing.
  • the transparent substrates 224 and 226 of the transparent conductive substrates 222 and 223 constituting the scattering liquid crystal cell 213 are in the form of a sheet, and are made of an inorganic material substrate made of glass, quartz, etc., polyethylene terephthalate, polycarbonate, polyimide, polymethyl methacrylate ( A plastic substrate made of polymethylmethacrylate, PMMA) or the like.
  • the transparent conductive films 225 and 227 of the transparent conductive substrates 222 and 23 constituting the scattering liquid crystal cell 213 are made of indium tin oxide (ITO) or the like.
  • Examples of the reflecting mirror 214 include an aluminum vapor deposition film formed on the outer surface of the lens 215, and a dielectric mirror attached to the outer surface of the lens 215.
  • the surface in contact with the lens 215 is a reflection surface 214a.
  • the lens 215 is made of a light transmissive material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like. Further, the lens 215 may have an outer skeleton portion made of the above-described material and may have a hollow structure inside, or may have a solid structure made entirely of the above-described material.
  • FIG. 38A is a schematic diagram illustrating a tenth embodiment of the light control device.
  • FIG. 38A is a side view.
  • FIG. 38B is an enlarged perspective view of a part of FIG. 38A.
  • the light control device 250 is generally configured by a light source unit 251, a light guide 252, and a liquid crystal lens 253.
  • the light guide 252 is disposed to face the light source unit 251.
  • the light guide 252 guides the light from the light source 251 in the longitudinal direction while the light from the light source 251 is introduced from the one end face 252a side.
  • the liquid crystal lens 253 is provided between the light source unit 251 and the one end surface 252a of the light guide 252.
  • a liquid crystal lens 253 is used as a light distribution conversion element that changes the directivity of light from the light source unit 251.
  • the liquid crystal lens 253 is not particularly limited, and a known liquid crystal lens can be used as long as the refractive index is changed by applying a voltage.
  • the liquid crystal lens 253 includes, for example, a first transparent substrate 254, a second transparent substrate 255, a first transparent electrode 256, a second transparent electrode 257, an insulating spacer 258, and a liquid crystal layer 259. A unit in which a plurality of units are connected is used.
  • the light source unit 251 and the light guide 252 are the same as those in the ninth embodiment.
  • FIG. 39A is a schematic side view illustrating the case where the light control device 250 is used without applying a voltage to the liquid crystal lens 253.
  • FIG. 39A since the liquid crystal constituting the liquid crystal lens 253 is aligned in the thickness direction of the liquid crystal lens 253, when light from the light source unit 251 enters the liquid crystal lens 253, the incident light is liquid crystal in the liquid crystal lens 253.
  • the light having directivity enters the light guide 252 from the one end face 252a without being scattered by the light. Therefore, the light emitted from the upper surface 252b of the light guide 252 is emitted at a narrow emission angle without spreading in the width direction of the light guide 252.
  • FIG. 39B is a schematic side view for explaining a case where a voltage is applied to the liquid crystal lens 253 and the light control device 250 is used.
  • the liquid crystal constituting the liquid crystal lens 253 is scattered without being oriented in the thickness direction of the liquid crystal lens 253, when the light from the light source unit 251 enters the liquid crystal lens 253, the incident light is the liquid crystal lens 253. It is scattered by the liquid crystal inside and becomes scattered light, and enters the light guide 252 from the one end face 252a. Therefore, the light emitted from the upper surface 252b of the light guide 252 spreads in the width direction of the light guide 252 and is emitted with a wide emission angle.
  • FIG. 40A and 40B are schematic views illustrating an eleventh embodiment of the light control device.
  • FIG. 40A is a plan view.
  • 40B is a cross-sectional view taken along line B2-B2 of FIG. 40A.
  • the light control device 260 is schematically configured by a light source unit 261, a light guide 262, a scatterer 263, and a parabolic mirror-shaped lens 265 including a reflection mirror 264.
  • the light guide 262 is disposed to face the light source unit 261.
  • the light guide 262 guides the light from the light source 261 in the longitudinal direction while the light from the light source 261 is introduced from the one end face 262a side.
  • the scatterer 263 is provided between the light source unit 261 and the one end surface 262a of the light guide 262 so as to be insertable / removable.
  • the parabolic mirror-shaped lens 265 is provided on the surface opposite to the surface 261 a facing the one end surface 262 a of the light guide 262 of the light source unit 261.
  • the reflection mirror 264 has a reflection surface 264 a that reflects light from the light source unit 261.
  • a scatterer 263 is used as a light distribution conversion element that changes directivity to light from the light source unit 261.
  • the scatterer 263 As a material of the scatterer 263, it is preferable to use a material in which light-scattering particles are dispersed in a light-transmitting resin.
  • particles (inorganic fine particles) made of an inorganic material for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide beads (Refractive index anatase type: 2.50, rutile type: 2.70), zirconia bead (refractive index: 2.05), zinc oxide bead (refractive index: 2.00), barium titanate (BaTiO 3 ) ( Refractive index: 2.4) etc. are mentioned.
  • particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic -Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57) Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68) And silicone beads (refractive index: 1.50).
  • polymethyl methacrylate beads reffractive index: 1.49
  • acrylic beads refractive index: 1.50
  • acrylic -Styrene copolymer beads refractive index: 1.54
  • Examples of the resin material used by mixing with light scattering particles include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene ( Refractive index: 1.60), melamine beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.
  • polyvinyl acetate (refractive index: 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium Density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), Polytetrafu Oroechiren (refractive index: 1.35), and the like.
  • the scatterer 263 can be inserted / removed between the light source 261 and the one end surface 262a of the light guide 262 by manual or micro electro mechanical system (MEMS) control (actuator).
  • MEMS micro electro mechanical system
  • the light source unit 261, the light guide 262, the reflection mirror 264, and the lens 265 are the same as those in the ninth embodiment described above.
  • FIG. 41A to 41C are schematic views showing a state in which no scatterer is inserted between the light source section and one end face of the light guide.
  • FIG. 41A is a plan view.
  • FIG. 41B is a front view seen from one end surface side of the light guide.
  • 41C is a cross-sectional view taken along line C2-C2 of FIG. 41A.
  • the light from the light source unit 261 is reflected by the reflection surface 264a of the reflection mirror 264, and the reflected light travels toward the light guide 262, but does not pass through the scatterer 263.
  • the light enters the light guide 262 from the one end surface 262a. Therefore, the light emitted from the upper surface 262b of the light guide 262 is emitted at a narrow emission angle without spreading in the width direction of the light guide 262.
  • FIG. 42A to 42C are schematic views showing a state in which a scatterer is inserted between the light source section and one end face of the light guide.
  • FIG. 42A is a plan view.
  • FIG. 42B is a front view seen from one end surface side of the light guide.
  • FIG. 42C is a sectional view taken along line D2-D2 of FIG. 42A.
  • FIG. 43 is a schematic cross-sectional view showing a twelfth embodiment of the light control device.
  • the light control device 270 is roughly composed of a light source 271, a light guide 272, a parabolic mirror-shaped lens 274 provided with a reflection mirror 273, a gel 275, a scattering pattern 276, and a pair of reflection plates 277 and 278. It is configured.
  • the light guide 272 is disposed to face the light source unit 271.
  • the light guide 272 guides the light from the light source 271 in the longitudinal direction while the light from the light source 271 is introduced from the one end face 272a side.
  • the parabolic mirror-shaped lens 274 is provided on the side opposite to the surface 271 a facing the one end surface 272 a of the light guide 272 of the light source unit 271.
  • the reflection mirror 273 has a reflection surface 273 a that reflects light from the light source unit 271.
  • the gel 275 is provided between the light source unit 271 and the lens 274 and the one end surface 272a of the light guide 272.
  • the gel 275 can optically bond the light source portion 271 and the lens 274 to the one end surface 272a of the light guide 272.
  • the scattering pattern 276 is provided on the one end surface 272 a of the light guide 272.
  • the pair of reflectors 277 and 278 is generally configured by a pair of reflectors 277 and 278 that sandwich the boundary between the gel 275 and the one end surface 272a of the light guide 272 from the thickness direction of the light guide 272. Yes.
  • the reflection mirror 273 and the lens 274 constitute a light incident part.
  • the gel 275 is used as a light distribution conversion element that changes the directivity to the light from the light source unit 271.
  • the gel 275 is not particularly limited, but any gel can be used as long as it is light transmissive and can optically bond the light source 271 and the lens 274 to the one end surface 272a of the light guide 272. Used. Further, the boundary portion between the gel 275 and the one end surface 272a of the light guide 272 is movable along the longitudinal direction of the light guide 272 by manual or micro electro mechanical system (MEMS) control (actuator). ing. Thereby, the gel 275 and the one end surface 272a of the light guide 272 are separated from each other by a predetermined distance and in contact with each other.
  • MEMS micro electro mechanical system
  • the scattering pattern 276 is an uneven pattern formed on the one end surface 272a of the light guide 272.
  • the reflecting plates 277 and 278 are not particularly limited, but materials made of a material having a refractive index lower than that of the gel 275 and the light guide plate 272 or a metal are used.
  • the light source 271, the light guide 272, the reflection mirror 273, and the lens 274, the same ones as those in the ninth embodiment described above are used.
  • FIG. 44A is a schematic cross-sectional view showing a state in which the light control device is used with the gel and one end face of the light guide spaced apart from each other with a predetermined interval.
  • the light from the light source unit 271 is reflected by the reflection surface 273a of the reflection mirror 273, and the reflected light passes through the gel 275 and further passes through the scatterer pattern 276, the reflected light becomes the scatterer pattern.
  • the light is scattered by 276 to become scattered light and enters the light guide 272 from the one end surface 272a. Therefore, the light emitted from the upper surface 272b of the light guide 272 spreads in the width direction of the light guide 272 and is emitted with a wide emission angle.
  • FIG. 44B is a schematic cross-sectional view showing a state where the light control device is used in a state where the gel and one end surface of the light guide are in contact with each other.
  • the reflected light is scattered.
  • the light having directivity is not scattered by the body pattern 276 and enters the light guide 272 from the one end surface 272a. Therefore, the light emitted from the upper surface 272b of the light guide 272 is emitted at a narrow emission angle without spreading in the width direction of the light guide 272.
  • the light incident portion may be a wedge-shaped light guide, a convex lens, or the like.
  • FIG. 45A and 45B are schematic views showing a thirteenth embodiment of the light control device.
  • FIG. 45A is a plan view.
  • FIG. 45B is a side view.
  • the light control device 280 is generally configured by a light source unit 281, a wedge-shaped light guide 282, a prism 283, a light guide 284, and a scattering liquid crystal cell 285.
  • the light guide 282 is disposed to face the light source unit 281.
  • Light from the light source unit 281 is introduced into the light guide 282 from the one end surface 282a side.
  • the prism 283 faces the side surface (the surface facing the inclined surface 282b) 282c of the light guide 282.
  • a light incident surface (a surface facing the side surface 282c of the light guide 282) 283a has a saw blade shape.
  • the light guide 284 guides the light from the light source unit 281 guided by the light guide 282 and the prism 283 in the longitudinal direction thereof.
  • the scattering liquid crystal cell 285 is provided between the prism 283 and the one end surface 284 a of the light guide 284.
  • a light guide 282 and a prism 283 are used as light distribution conversion elements that change the directivity of light from the light source unit 281.
  • the light guide 282 is made of an optically transparent material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
  • the prism 283 is made of a light-transmitting material such as an inorganic material made of glass, quartz or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
  • the light incident on the light guide 282 from the light source unit 281 is repeatedly reflected by the inclined surface 282b and the side surface 282c of the light guide 282, and the light guide 282 is passed through. Although propagating, a part of the light is transmitted through the side surface 282c.
  • the angle ⁇ at which the light transmitted through the side surface 282c of the light guide 282 exits the side surface 282c is less than the angle at which the light is totally reflected at the incident surface 283a of the prism 283, the light is scattered by the incident surface 283a of the prism 283. Instead, the light having directivity enters the light guide 284 from the one end face 284a. Therefore, the light emitted from the upper surface 284 b of the light guide 284 is emitted at a narrow emission angle without spreading in the width direction of the light guide 284.
  • the light from the light source unit 281 is opposed to the wedge-shaped light guide 282 to which the light is introduced from the one end face 282a side, and the side 282c of the light guide 282, and the light incident surface 283a has a saw blade shape.
  • the prism 283 formed the light emitted from the light control device 280 can be changed to light having directivity.
  • FIG. 48 is a schematic plan view showing a fourteenth embodiment of the light control device, and shows a parabolic mirror-shaped lens constituting the light control device.
  • the parabolic mirror-shaped lens 291 of the present embodiment is provided on the side opposite to the surface 2101 a facing the one end surface of the light guide (not shown) of the light source unit 2101.
  • the lens 291 includes a reflection mirror 292 having a reflection surface 292 a that reflects light from the light source unit 2101, and a three-scattering liquid crystal cell 293 provided along the reflection surface 292 a of the reflection mirror 292.
  • a lens 291 including a scattering liquid crystal cell 293 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2101.
  • the directivity of light emitted from the light control device varies depending on the thickness of the scattering liquid crystal cell 293 and the refractive index difference between the lens 291 and the scattering liquid crystal cell 293. Therefore, in order to reduce the influence on the directivity of the emitted light from the light control device, it is preferable that the thickness of the scattering liquid crystal cell 293 is thin, and the difference in refractive index between the lens 291 and the scattering liquid crystal cell 293 is small. preferable.
  • the light source unit 2101 and the lens 291 are the same as those in the ninth embodiment.
  • FIG. 49A when no voltage is applied to the scattering liquid crystal cell 293, the liquid crystal is aligned in a direction perpendicular to the thickness direction of the scattering liquid crystal cell 293, so that the scattering liquid crystal cell 293 becomes transparent. Therefore, even if the light from the light source unit 2101 is reflected by the reflection surface 292a of the reflection mirror 292 and the reflected light passes through the scattering liquid crystal cell 293, the reflected light is not scattered by the liquid crystal, and the scattered liquid crystal.
  • Light is emitted from the cell 293 as light having directivity.
  • the liquid crystal is aligned in the thickness direction of the scattering liquid crystal cell 293. Accordingly, when light from the light source unit 2101 is reflected by the reflection surface 292a of the reflection mirror 292 and the reflected light enters the scattering liquid crystal cell 293, the light is scattered by the liquid crystal and scattered from the scattering liquid crystal cell 293. Emits light.
  • a normal mode polymer dispersed liquid crystal may be used as the polymer dispersed liquid crystal constituting the scattering liquid crystal cell 293.
  • the directivity of outgoing light depending on whether or not voltage is applied to the scattering liquid crystal cell 293 is opposite to that when reverse mode polymer dispersed liquid crystal is used.
  • FIG. 50 is a schematic plan view showing the fifteenth embodiment of the light control device, and shows a parabolic mirror-shaped lens that constitutes the light control device.
  • the parabolic mirror-shaped lens 2111 of this embodiment is moved in and out of the light source unit 2121 side by a reflection mirror 2112 having a reflection surface 2112a that reflects light from the light source unit 2121 and a micro electro mechanical system (MEMS) control (actuator).
  • MEMS micro electro mechanical system
  • actuator micro electro mechanical system
  • a plurality of possible projections 2113 are provided at predetermined intervals along the reflection surface 2112 a of the reflection mirror 2112.
  • a lens 2111 provided with protrusions 2113 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2121.
  • FIG. 51A is a schematic plan view showing a state in which the light control device is used without projecting the plurality of protrusions 2113 on the light source unit 2121 side.
  • the light from the light source unit 2121 is reflected by the reflecting surface 2112a of the reflecting mirror 2112 and the reflected light is incident on the lens 2111 again.
  • the reflected light is not scattered in the lens 2111 and is reflected from the lens 2111. It emits as directional light.
  • FIG. 51B is a schematic plan view illustrating a state in which a plurality of protrusions 2113 are protruded toward the light source unit 2121 and the light control device is used.
  • the light from the light source unit 2121 is reflected by the reflection surface 2112a of the reflection mirror 2112, and the reflected light is incident on the lens 2111 again.
  • the reflected light is scattered by the plurality of protrusions 2113, and the lens 2111 To be emitted as scattered light.
  • the protrusion 2113 is accommodated (retracted) inside the reflection surface 2112a of the reflection mirror 2112, and a groove or hole is formed in the reflection surface 2112a of the reflection mirror 2112.
  • the reflected light may be scattered.
  • FIG. 52 is a schematic plan view illustrating the sixteenth embodiment of the light control device, and is a diagram illustrating a light source unit and a parabolic mirror-shaped lens that constitute the light control device.
  • the light source unit 2131 is provided so as to be movable in a parabolic mirror-shaped lens 2132. That is, the light source unit 2131 has a light emission surface 2131a that is on the same plane as a surface (hereinafter referred to as “one surface”) 2132a that faces the light guide (not shown) of the lens 2132.
  • the lens 2132 is movable in a direction perpendicular to the one surface 2132a until the exit surface 2131a is located inside the lens 2132.
  • the lens 2132 includes a reflection mirror 2133 having a reflection surface 2133a that reflects light from the light source unit 2131.
  • the light source part 2131 the thing similar to the above-mentioned 9th Embodiment is used.
  • a lens 2132 is used as a light distribution conversion element that changes directivity to light from the light source unit 2131.
  • the light source unit 2131 has a light output surface 2131a on the same surface as the surface 2132a facing the light guide (not shown) of the lens 2132, and the focus of the output light on one end surface of the light guide. Is provided to fit. Therefore, when the light source unit 2131 is located at this position, light incident on the light guide from the light source unit 2131 propagates through the light guide as directional light. On the other hand, when the emission surface 2131a of the light source unit 2131 is inside the one surface 2132a of the lens 2132, the focus of the emission light from the light source unit 2131 does not match the one end surface of the light guide. Therefore, when the light source unit 2131 is present at this position, the light incident on the light guide from the light source unit 2131 propagates through the light guide as scattered light.
  • FIG. 53 is a schematic sectional view showing a seventeenth embodiment of the light control device.
  • the light control device 2140 is generally configured by a light source unit 2141, a light guide 2142, and a parabolic mirror-shaped lens 2144 including a reflection mirror 2143.
  • the light guide 2142 is disposed to face the light source unit 2141.
  • the light guide 2142 guides the light from the light source unit 2141 in the longitudinal direction while the light from the light source unit 2141 is introduced from the one end surface 2142a side.
  • the parabolic mirror-shaped lens 2144 is provided on the side opposite to the surface 2141a facing the one end surface 2142a of the light guide 2142 of the light source unit 2141.
  • the reflection mirror 2143 has a reflection surface 2143 a that reflects light from the light source unit 2141.
  • the light guide 2142 and the lens 2144 are arranged so as to face each other with the light source unit 2141 interposed therebetween. That is, a gap due to the thickness of the light source unit 2141 is formed between the light guide 2142 and the lens 2144.
  • the wirings 2145 and 2146 of the light source unit 2141 are connected to a power source (not shown) through the gap.
  • a lens 2144 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2141.
  • the light source unit 2141 is disposed at the center of a surface (hereinafter referred to as “one surface”) 2144a of the lens 2144 facing the light guide 2142.
  • the lens 2144 is rotatable around the light source unit 2141.
  • the light source unit 2141 As the light source unit 2141, the light guide 2142, the reflection mirror 2143, and the lens 2144, the same ones as those in the ninth embodiment described above are used.
  • the focal point of the emitted light from the light source unit 2141 is the one end surface 2142a of the light guide 2142. Does not fit. Therefore, when the lens 2144 is present at this position, light incident on the light guide 2142 from the light source unit 2141 propagates in the light guide 2142 as scattered light.
  • FIG. 55 is a schematic sectional view showing an eighteenth embodiment of the light control device.
  • the light control device 2150 is generally configured by a light source unit 2151, a light guide 2152, and a parabolic mirror-shaped lens 2154 including a reflection mirror 2153.
  • the light guide 2152 is disposed to face the light source unit 2151.
  • the light guide 2152 guides the light from the light source 2151 in the longitudinal direction while the light from the light source 2151 is introduced from the one end face 2152a side.
  • the parabolic mirror-shaped lens 2154 is provided on the surface opposite to the surface 2151 a facing the one end surface 2152 a of the light guide 2152 of the light source unit 2151.
  • the reflection mirror 2153 has a reflection surface 2153 a that reflects light from the light source unit 2151.
  • the light guide 2152 and the lens 2154 are disposed so as to face each other with the light source unit 2151 interposed therebetween. That is, a gap due to the thickness of the light source unit 2151 is formed between the light guide 2152 and the lens 2154.
  • the wirings 2155 and 2156 of the light source unit 2151 are connected to a power source (not shown) through the gap.
  • a lens 2154 is used as a light distribution conversion element that changes the directivity to light from the light source unit 2151.
  • the light source unit 2151 is disposed at the center of a surface (hereinafter referred to as “one surface”) 2154a of the lens 2154 facing the light guide 2152.
  • the light source unit 2151 is rotatable on one surface 2154a of the lens 2154.
  • the light source unit 2151 As the light source unit 2151, the light guide body 2152, the reflection mirror 2153, and the lens 2154, the same ones as those in the ninth embodiment described above are used.
  • the focal point of the emitted light from the light source unit 2151 is one end surface 2152a of the light guide 2152a. Does not fit. Therefore, when the lens 2154 is at this position, the light incident on the light guide 2152 from the light source unit 2151 propagates in the light guide 2152 as scattered light.
  • FIG. 57A and 57B are schematic views showing a nineteenth embodiment of the light control device, and FIG. 57A is a plan view.
  • FIG. 57B is a cross-sectional view taken along line E2-E2 of FIG. 57A.
  • the light control device 2160 is generally configured by a light source unit 2161, a wedge-shaped light guide 2162, a scattering liquid crystal cell 2163, a parabolic mirror-shaped lens 2165 including a reflection mirror 2164, and a prism 2166.
  • the wedge-shaped light guide 2162 is disposed to face the light source portion 2161.
  • the wedge-shaped light guide 2162 introduces the light from the light source 2161 from the one end face 2162a side and guides the light from the light source 2161 in the longitudinal direction.
  • the scattering liquid crystal cell 2163 is provided between the light source unit 2161 and the one end surface 2162a of the light guide 2162.
  • the parabolic mirror-shaped lens 2165 is provided on the surface opposite to the surface 2161a facing the one end surface 2162a of the light guide 2162 of the light source unit 2161.
  • the reflection mirror 2164 has a reflection surface 2164 a that reflects light from the light source unit 2161.
  • the prism 2166 is provided on the upper surface 2165b of the lens 2165. In the prism 2166, a surface 2166a facing the upper surface 2165b has a saw blade shape.
  • a scattering liquid crystal cell 2163 is used as a light distribution conversion element that changes the directivity to light from the light source unit 2161.
  • the light guide 2162 is made of a light-transmitting material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
  • the prism 2166 is made of a light-transmitting material such as an inorganic material made of glass, quartz or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
  • the light source unit 2161 As the light source unit 2161, the scattering liquid crystal cell 2163, and the reflection mirror 2164, the same ones as in the ninth embodiment are used.
  • the light control device 2160 for example, in a state where the liquid crystal constituting the scattering liquid crystal cell 2163 is aligned, the light from the light source unit 2161 is reflected by the reflecting surface 2164a of the reflecting mirror 2164, and the reflected light is scattered liquid crystal.
  • the reflected light is not scattered by the liquid crystal in the scattering liquid crystal cell 2163 but enters the light guide 2162 from one end surface 2162 a as directional light.
  • the light incident on the light guide 2162 is light that does not spread in the width direction of the light guide 2162.
  • the light incident on the light guide 2162 is repeatedly reflected on the upper surface 2162b and the slope 2162c of the light guide 2162, and spreads in the thickness direction of the light guide 2162 as it propagates in the light guide 2162.
  • the light has no light. Therefore, the light emitted from the upper surface 2162b of the light guide 2162 is emitted at a narrow emission angle without spreading in the width direction and the thickness direction of the light guide 2162. For example, as shown in FIG. 7, the emission angle of light emitted from the upper surface 2162b of the light guide 2162 becomes extremely narrow in the width direction and the thickness direction of the light guide 2162.
  • FIG. 58A and 58B are schematic plan views showing the twentieth embodiment of the light control device.
  • FIG. 58A is an overall view.
  • 58B is an enlarged view of a region surrounded by a broken line ⁇ in FIG. 58A.
  • the light control device 2170 is generally configured by a light source unit 2171, a light guide 2172, a parabolic mirror-shaped lens 2174 including an electrochromic mirror 2173, and a reflection unit 2175.
  • the light guide 2172 is disposed to face the light source unit 2171.
  • the light guide 2172 guides the light from the light source part 2171 in the longitudinal direction while the light from the light source part 2171 is introduced from the one end face 2172a side.
  • the parabolic mirror-shaped lens 2174 is provided on the surface opposite to the surface 2171a facing the one end surface 2172a of the light guide 2172 of the light source unit 2171.
  • the electrochromic mirror 2173 has a reflection surface 2173a that reflects light from the light source unit 2171.
  • the reflection means 2175 is provided on the surface of the electrochromic mirror 2173 opposite to the surface facing the light source unit 2171.
  • the reflection means 2175 reflects the light transmitted through the electrochromic mirror 2173.
  • a plurality of units each including a light source unit 2171, an electrochromic mirror 2173, a lens 2174, and a reflection unit 2175 are provided along the one end surface 2172 a of the light guide 2172.
  • a lens 2174 provided with an electrochromic mirror 2173 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2171.
  • the electrochromic mirror 2173 can switch between reflection and transmission of light on the reflection surface 2173a by application of an electric field.
  • a general mirror (reflection mirror) is provided on the inner side surfaces 2175a, 2175b, and 2175c of the reflection means 2175, or a scatterer is provided as in the above-described eleventh embodiment. Thereby, the light emitted from the light source unit 2171 and transmitted through the electrochromic mirror 2173 can be reflected to the light guide 2172 side.
  • the same ones as those in the ninth embodiment described above are used.
  • the reflecting means 2175 is made of a light transmissive material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like. Further, the reflecting means 2175 may have an outer skeleton portion made of the above-mentioned material and an inside having a hollow structure, or may have a solid structure made entirely of the above-described material.
  • FIG. 59A is a schematic plan view showing a state in which the light control device is used when a voltage is applied to the electrochromic mirror 2173.
  • FIG. 59A shows a state in which the light control device is used when a voltage is applied to the electrochromic mirror 2173.
  • light from the light source unit 2171 is reflected by the reflection surface 2173a of the electrochromic mirror 2173, and the reflected light is scattered by mirrors and scatterers provided on the inner surfaces 2175a, 2175b, and 2175c of the reflection means 2175.
  • the light enters the light guide 2172 from the one end surface 2172a as light having directivity. Therefore, the light emitted from the upper surface 2172b of the light guide 2172 is emitted at a narrow emission angle without spreading in the width direction of the light guide 2172.
  • FIG. 59B is a schematic plan view showing a state in which the light control device is used when no voltage is applied to the electrochromic mirror 2173.
  • light from the light source unit 2171 passes through the electrochromic mirror 2173, and the transmitted light is scattered by mirrors and scatterers provided on the inner side surfaces 2175a, 2175b, and 2175c of the reflecting means 2175, and the scattered light.
  • the light enters the light guide 2172 from the one end surface 2172a. Therefore, the light emitted from the upper surface 2172b of the light guide 2172 spreads in the width direction of the light guide 2172 and is emitted with a wide emission angle.
  • FIG. 31 an example of a display device including the surface light source device of the above embodiment is shown.
  • the present embodiment is an example of a liquid crystal display device that includes the surface light source device of the first embodiment as a backlight.
  • the liquid crystal display device 165 of this embodiment includes a backlight 166 (surface light source device), a first polarizing plate 167, a liquid crystal panel (also referred to as a liquid crystal cell) 168, a second A polarizing plate 169.
  • the backlight 166 is disposed on the surface 168b side of the liquid crystal panel 168 opposite to the display screen 168a.
  • the liquid crystal panel 168 is schematically illustrated as a single plate. The observer views the display from the upper side of the liquid crystal display device 165 in FIG. 31 in which the second polarizing plate 169 is disposed.
  • the side on which the second polarizing plate 169 is disposed is referred to as a viewing side
  • the side on which the backlight 166 is disposed is referred to as a back side.
  • the backlight 166 is composed of any of the light control devices of the first to twentieth embodiments described above.
  • the light emitted from the backlight 166 is modulated by the liquid crystal panel 168, and a predetermined image, characters, or the like is displayed by the modulated light.
  • the liquid crystal panel 168 for example, an active matrix transmissive liquid crystal panel can be used.
  • the liquid crystal panel is not limited to an active matrix transmissive liquid crystal panel, and does not include, for example, a transflective (transmissive / reflective) liquid crystal panel and each pixel includes a switching thin film transistor (hereinafter abbreviated as TFT).
  • TFT switching thin film transistor
  • a simple matrix type liquid crystal panel may be used. Since a known general liquid crystal panel can be used for the liquid crystal panel 168, a detailed description of the configuration is omitted.
  • the liquid crystal television 170 of this configuration example includes the liquid crystal display device 165 of this embodiment as a display screen.
  • a liquid crystal panel 168 is disposed on the viewer side (front side in FIG. 63), and a backlight 166 (surface light source device) is disposed on the side opposite to the viewer (back side in FIG. 63).
  • a backlight 166 including the surface light source device 11 of the first embodiment capable of switching directivity is used. Therefore, by setting the backlight 166 to the high directivity mode, light emitted to the viewer side of the liquid crystal display device 165 (the display screen 168a side of the liquid crystal panel 168) is not diffused. This is suitable when a person watches a liquid crystal television from the front of the screen. Further, by setting the backlight 166 to the wide angle mode, light emitted to the viewer side of the display device 165 (the display screen 168a side of the liquid crystal cell 168) is diffused, so that the viewing angle can be widened.
  • the viewing angle of the display device 165 can be adjusted by using any one of the dimming devices of the first to twentieth embodiments described above as the backlight 166.
  • FIG. 64A shows a table lamp 175 provided with the light source unit of the above embodiment.
  • FIG. 64B shows the light source unit 12 of the desk lamp 175, which includes a high directivity light source unit 113 and a wide-angle light source unit 114.
  • a narrow range can be illuminated as shown by a solid arrow in FIG. 64A.
  • a wide range can be illuminated as shown by the dashed arrows in FIG. 64B.
  • FIG. 65A shows a table lamp 176 provided with a light source unit 12a having a circular irradiation surface.
  • FIG. 65B shows the light source unit 12a of the desk lamp 176, which includes a highly directional light source unit 113a having a circular concave mirror and a wide-angle light source unit 114a.
  • the desk lamp 176 by setting the light source unit 12a to the high directivity mode, a narrow range can be illuminated as shown by the dashed-dotted arrow in FIG. 65A.
  • the light source unit 112a By setting the light source unit 112a to the wide-angle mode, a wide range can be illuminated as shown by the dashed arrows in FIG. 65A.
  • FIG. 62 is a schematic perspective view showing a lighting stand as an embodiment of the lighting device.
  • the illumination stand 2200 is generally configured by a light emitting unit 2201, a stand 2202, a main switch 2203, and a power cord 2204.
  • the light emitting unit 2201 is configured from any of the light control devices of the first to twentieth embodiments described above.
  • the illumination stand 2200 is an illumination device that can adjust the light irradiation region by including the light control device of the first to twentieth embodiments described above as the light emitting unit 2201.
  • 66A and 66B show a ceiling light 177 provided with the surface light source device of the above embodiment.
  • this ceiling light 177 by setting the surface light source device in the high directivity mode, it is possible to illuminate a narrow range as shown in FIG. 66A.
  • the illuminating device may be configured with only the light source unit described above, or the illuminating device may be configured with a surface light source device.
  • the light source unit or the surface light source device is used as a lighting device, high directivity is not required as compared with the case of using it as a display device. Therefore, a larger light source can be used to increase the light output.
  • the ceiling light of this embodiment may have the form shown in FIG. FIG. 61 is a schematic perspective view showing a ceiling light as one embodiment of a lighting device.
  • the ceiling light 2190 includes a light emitting unit 2191, a hanging line 2192, and a power cord 2193.
  • the light emitting unit 2191 is composed of any of the light control devices of the first to twentieth embodiments described above.
  • the ceiling light 2190 is an illuminating device that can adjust the region irradiated with light by including the light control device of the first to twentieth embodiments described above as the light emitting unit 2191.
  • the concave mirror and the lens have a parabolic surface.
  • the shape of the concave mirror or lens that can be used in the above embodiment is not necessarily limited to a parabolic surface, but may be a conical curved surface as a concept including a paraboloid.
  • a curve indicating the shape of a cross section passing through the apex of the conical curved surface is called a quadratic curve.
  • a quadratic curve is a curve obtained from a cross section obtained by cutting a cone at an arbitrary plane.
  • the quadratic curve can be expressed by the following equations (1) and (2).
  • the shape of the quadratic curve changes depending on the value of the conic coefficient k in the equations (1) and (2).
  • the region where the light from the LED reaches may be at least a conical curved surface, and the region where the light from the LED does not reach may be, for example, a flat surface.
  • each component of the surface light source device exemplified in the above embodiment can be appropriately changed.
  • various materials can be used for members such as a light guide, a concave mirror, and a wedge-shaped light guide rod, but it is desirable to use a material having high heat resistance for the members in contact with these light sources.
  • Some embodiments of the present invention can be used in various display devices such as liquid crystal display devices, organic electroluminescence display devices, plasma displays, or surface light source devices used in these display devices. It can be used as a light control device that enlarges the angle. Or it can utilize for various illuminating devices, such as an illuminating device which can adjust the area
  • High directivity light source section (first light source section), 14, 114a, 138, 152, 160 ... Wide-angle light source (second light source), 115 ... Second LED (second light-emitting element), 119 ... Prism structure, 139 ... Wedge-shaped light guide rod (angle) (Distribution conversion member), 146... Light guide rod (angle distribution conversion member), 153... Light scattering member (angle distribution conversion member), 161 .. collimating lens (angle distribution conversion member), 165... Liquid crystal display device (display device) 166, 2184 ... Backlight (surface light source device), 168 ... Liquid crystal panel, 175, 176 ... Desk lamp (illumination device), 177, 2190 ...
  • Ceiling light (illumination device), 210, 250, 260, 270, 280, 2140, 2150, 2160, 2170 ... light control device, 213 ... scattering liquid crystal cell, 214, 264, 273, 292, 2112, 2133, 2143, 2153 2163: Reflection mirror, 215, 265, 274, 291, 2111, 1322, 2144, 2154, 2165, 2174 ... Lens, 221 ... Polymer dispersed liquid crystal, 222, 223 ... Transparent conductive substrate, 224, 226 ... Transparent substrate, 225 , 227 ... transparent conductive film, 231,241 ... liquid crystal, 232,243 ... random polymer, 243 ... liquid crystal polymer, 253 ...
  • liquid crystal lens 254 ... first transparent substrate, 255 ... second transparent substrate, 256 ... first transparent electrode 257 ... second transparent electrode, 258 ... insulating spacer, 259 ... liquid crystal layer, 263 ... scatterer, 275 ... gel, 276 ... scattering pattern, 277,278 ... reflecting plate, 283,2166 ... prism, 285,293, 2163 ... scattering liquid crystal cell, 2113 ... projection, 2173 ... electrochromic mirror, 2175 ... anti Projection means, 2180 ... display device, 2181 ... liquid crystal cell, 2182, 2183 ... polarizing plate, 2192 ... hanging line, 2193 ... power cord, 2200 ... lighting stand, 2202 ... stand, 2203 ... main switch, 2204 ... power cord.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

In the present invention, a surface light source device is provided with the following: a first light source unit that has a first light-emitting element and that emits the light from the first light-emitting element; a second light source unit that has a second light-emitting element and that emits the light from the second light-emitting element at an angular distribution wider than that of the light emitted from the first light source; and a light guide that causes the light emitted from the first light source and the light emitted from the second light source to enter from an end face and be emitted from a main surface. The first and second light source units are disposed on one of a plurality of end faces of the light guide, and can be controlled independently to be turned on and off.

Description

面光源装置、調光装置およびそれを用いた表示装置、照明装置Surface light source device, light control device, display device using the same, and lighting device
 本発明は、面光源装置、調光装置およびそれを用いた表示装置、照明装置に関する。
 本願は、2011年12月5日に、日本に出願された特願2011-266172号及び2011年12月22日に、日本に出願された特願2011-281478号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a surface light source device, a light control device, a display device using the same, and an illumination device.
This application claims priority based on Japanese Patent Application No. 2011-266172 filed in Japan on December 5, 2011 and Japanese Patent Application No. 2011-281478 filed in Japan on December 22, 2011. The contents are incorporated here.
 表示装置の一例として、面光源装置から射出される光を利用して表示を行う透過型液晶表示装置が知られている。この種の液晶表示装置は、液晶パネルと、液晶パネルの背面側に配置された面光源装置と、を有している。従来の面光源装置は、発光ダイオード(Light Emitting Diode, 以下、LEDと略記する)等の光源と、導光板と、を備えている。この面光源装置では、光源から射出された光を導光板の内部で伝播させ、導光板の全面から射出させる。以下、本明細書では、表示パネルの背面側に設けられる面光源装置のことをバックライトと記す場合もある。 As an example of a display device, a transmissive liquid crystal display device that performs display using light emitted from a surface light source device is known. This type of liquid crystal display device has a liquid crystal panel and a surface light source device disposed on the back side of the liquid crystal panel. A conventional surface light source device includes a light source such as a light emitting diode (hereinafter abbreviated as LED) and a light guide plate. In this surface light source device, the light emitted from the light source is propagated inside the light guide plate and emitted from the entire surface of the light guide plate. Hereinafter, in this specification, the surface light source device provided on the back side of the display panel may be referred to as a backlight.
 指向性が異なる射出光を得るための面光源装置が提案されている(下記の特許文献1~3参照)。 Surface light source devices for obtaining emitted light with different directivities have been proposed (see Patent Documents 1 to 3 below).
 異なる指向特性の出射光を得るための照明装置として、光源からの光を導光体の側方から入射させ、導光体の一方の主面から指向性を有する光を出射する第1照明装置と、光源からの光を拡散部材に入射させて拡散した光束を出射する第2照明装置とが積層された2層構造の照明装置が知られている(例えば、特許文献1参照)。第1照明装置は、高指向性の出射光を得るためのエッジライト型の照明装置であり、第2照明装置は、拡散光を得るための直下型の照明装置である。これら2つの照明装置を切り替えて操作することにより、高指向性(狭視野角)の光および拡散(広視野角)の光を得ることができる。 As a lighting device for obtaining outgoing light having different directivity characteristics, a first lighting device that makes light from a light source incident from the side of a light guide and emits light having directivity from one main surface of the light guide There is known a lighting device having a two-layer structure in which a light from a light source is incident on a diffusing member and a second lighting device that emits a diffused light beam is laminated (see, for example, Patent Document 1). The first illumination device is an edge light type illumination device for obtaining highly directional emitted light, and the second illumination device is a direct illumination device for obtaining diffused light. By switching and operating these two illumination devices, light with high directivity (narrow viewing angle) and light with diffusion (wide viewing angle) can be obtained.
 特許文献1には、射出光の指向性が互いに異なる第1照明装置と第2照明装置とを導光板の厚さ方向に積層した照明装置が開示されている。
 特許文献2には、同心円状に配置された複数のプリズムを備えた導光板と、導光板の前記同心円の中心に配置された第1光源と、導光板の前記同心円の中心から外れた位置に配置された第2光源と、を備えた照明装置が開示されている。
 特許文献3には、導光板と、導光板の第1の端面に光を入射させる第1の光源と、導光板の前記第1の端面と隣り合う第2の端面に光を入射させる第2の光源と、を備え、前記導光板に、射出光の指向性を調整する特性調整部が各光源に対応して設けられた照明装置が開示されている。
Patent Document 1 discloses an illumination device in which a first illumination device and a second illumination device having different directivities of emitted light are stacked in the thickness direction of a light guide plate.
In Patent Document 2, a light guide plate including a plurality of prisms arranged concentrically, a first light source arranged at the center of the concentric circle of the light guide plate, and a position off the center of the concentric circle of the light guide plate. An illumination device including a second light source arranged is disclosed.
In Patent Document 3, a light guide plate, a first light source that makes light incident on the first end surface of the light guide plate, and a second light that makes light incident on a second end surface adjacent to the first end surface of the light guide plate are disclosed. There is disclosed an illuminating device in which a characteristic adjusting unit for adjusting directivity of emitted light is provided on the light guide plate corresponding to each light source.
特開2008-300206号公報JP 2008-300206 A 特許第4274921号公報Japanese Patent No. 4274921 特開2008-269865号公報JP 2008-269865 A
 特許文献1の照明装置は、第1照明装置と第2照明装置の2組の照明装置が積層された構成を有しているため、部品点数が多い、製造コストが高騰する、照明装置全体の厚さが厚くなる、などの問題がある。また、大面積化するためには、拡散用の光源を多数設ける必要があるため、製造コストが高くなるという問題があった。
 特許文献2の照明装置では、所定の面積の導光板に対して複数のプリズムと2種類の光源の位置関係が決まるため、導光板を大型化するのが難しい、という問題がある。また、いずれの光源を点灯させるかにより導光板内での光の進行方向が変わるため、光源の切り替え前後で輝度を均一に保つのが難しい、という問題がある。また、光の指向性を大きく変えることが難しい、という問題がある。
 特許文献3の照明装置では、特許文献2の照明装置と同様、いずれの光源を点灯させるかにより導光板内での光の進行方向が変わるため、光源の切り替え前後で輝度を均一に保つのが難しい、という問題がある。
Since the lighting device of Patent Document 1 has a configuration in which two sets of lighting devices, a first lighting device and a second lighting device, are stacked, the number of parts is large and the manufacturing cost is increased. There are problems such as thickening. Further, in order to increase the area, it is necessary to provide a large number of light sources for diffusion, and thus there is a problem that the manufacturing cost increases.
The illumination device of Patent Document 2 has a problem that it is difficult to increase the size of the light guide plate because the positional relationship between the plurality of prisms and the two types of light sources is determined with respect to the light guide plate having a predetermined area. Further, since the traveling direction of light in the light guide plate changes depending on which light source is turned on, there is a problem that it is difficult to keep the luminance uniform before and after switching the light source. Another problem is that it is difficult to change the directivity of light.
In the illuminating device of Patent Document 3, as in the illuminating device of Patent Document 2, since the traveling direction of light in the light guide plate changes depending on which light source is turned on, the luminance is kept uniform before and after switching of the light source. There is a problem that it is difficult.
 本発明のいくつかの態様は、上記の課題を解決するためになされたものであって、指向性の切り替えが可能であり、部品点数や製造コストの増大を招くことなく、装置全体の厚さが厚くなることのない面光源装置を提供することを目的とする。また、本発明のいくつかの態様は、指向性の切り替えが可能であり、指向性の切り替え前後で輝度を均一に保つことができる面光源装置を提供することを目的とする。また、本発明のいくつかの態様は、この種の面光源装置を備えた表示装置および照明装置を提供することを目的とする。 Some aspects of the present invention have been made in order to solve the above-described problem, and can change the directivity, and the thickness of the entire apparatus without causing an increase in the number of parts or manufacturing cost. An object of the present invention is to provide a surface light source device that does not become thick. It is another object of some aspects of the present invention to provide a surface light source device that can switch directivity and can maintain uniform luminance before and after switching directivity. Another object of some aspects of the present invention is to provide a display device and an illumination device provided with this type of surface light source device.
本発明のいくつかの態様は、上記事情に鑑みてなされたものであって、出射光を、指向性を有する光と散乱光とに切り替え可能な調光装置を提供することを目的とする。 Some aspects of the present invention have been made in view of the above circumstances, and an object thereof is to provide a light control device capable of switching emitted light between light having directivity and scattered light.
 上記の目的を達成するために、本発明の一態様における面光源装置は、第1の発光素子を有し、前記第1の発光素子からの光を射出する第1の光源部と、第2の発光素子を有し、前記第2の発光素子からの光を、前記第1の光源部から射出される光の角度分布よりも広い角度分布を有する光として射出する第2の光源部と、前記第1の光源部から射出された光および前記第2の光源部から射出された光を端面から入射させ、主面から射出させる導光体と、を備え、前記第1の光源部と前記第2の光源部とは、前記導光体の複数の端面のうちの一つの端面に設けられ、点灯/消灯を各々独立して制御可能とされる。 In order to achieve the above object, a surface light source device according to an aspect of the present invention includes a first light source unit that includes a first light emitting element, and emits light from the first light emitting element. A second light source unit that emits light from the second light emitting element as light having an angular distribution wider than the angular distribution of light emitted from the first light source unit, A light guide that causes light emitted from the first light source unit and light emitted from the second light source unit to be incident from an end surface and to be emitted from a main surface, and includes the first light source unit and the light source The second light source unit is provided on one end surface of the plurality of end surfaces of the light guide, and lighting / extinguishing can be independently controlled.
 本発明の一態様における面光源装置において、前記第1の光源部および前記第2の光源部のいずれか一方は、前記第1の光源部から射出される光の角度分布と前記第2の光源部から射出される光の角度分布とを異ならせるための角度分布変換部材を備えてもよい。 In the surface light source device according to one aspect of the present invention, any one of the first light source unit and the second light source unit includes an angular distribution of light emitted from the first light source unit and the second light source. You may provide the angle distribution conversion member for making different the angle distribution of the light inject | emitted from a part.
 本発明の一態様における面光源装置において、前記第1の光源部が、前記角度分布変換部材として、前記第1の発光素子から射出された光を反射する凹面ミラーを備え、前記凹面ミラーは、前記導光体の主面に平行な平面で切断したときの断面形状が、焦点を有する曲線形状を少なくとも一部に有し、前記第1の発光素子は、前記第1の発光素子の発光面上に前記焦点が位置するように配置され、前記第1の発光素子からの光が、前記凹面ミラーで反射して前記導光体に入射してもよい。 In the surface light source device according to the aspect of the present invention, the first light source unit includes a concave mirror that reflects light emitted from the first light emitting element as the angle distribution conversion member, and the concave mirror includes: The cross-sectional shape when cut along a plane parallel to the main surface of the light guide body has at least part of a curved shape having a focal point, and the first light emitting element is a light emitting surface of the first light emitting element. The light source from the first light emitting element may be reflected by the concave mirror and incident on the light guide.
 本発明の一態様における面光源装置において、前記第2の発光素子が、前記第1の光源部から射出される光の角度分布よりも広い角度分布を有する光を射出し、前記第2の発光素子から射出された光が、前記凹面ミラーを介することなく前記導光体に入射してもよい。 In the surface light source device according to one embodiment of the present invention, the second light emitting element emits light having an angular distribution wider than the angular distribution of light emitted from the first light source unit, and the second light emission. The light emitted from the element may enter the light guide without passing through the concave mirror.
 本発明の一態様における面光源装置において、前記第1の発光素子と前記第2の発光素子とが、互いの発光面と反対側の面同士が対向するように配置されてもよい。 In the surface light source device according to an aspect of the present invention, the first light emitting element and the second light emitting element may be arranged such that surfaces opposite to each other's light emitting surface face each other.
 本発明の一態様における面光源装置において、前記第1の光源部が、前記導光体の一つの端面に沿って配列された複数の前記発光素子および複数の前記凹面ミラーを備え、前記第2の発光素子は、隣り合う凹面ミラー同士の境界に沿って配置されてもよい。 In the surface light source device according to an aspect of the present invention, the first light source unit includes the plurality of light emitting elements and the plurality of concave mirrors arranged along one end surface of the light guide, The light emitting elements may be arranged along the boundary between adjacent concave mirrors.
 本発明の一態様における面光源装置において、前記凹面ミラーが、前記導光体の主面に垂直な平面で切断したときの断面形状が直線形状であって、前記導光体の主面に垂直な方向には曲率を持たず、前記第1の発光素子が、前記導光体の主面に垂直な方向に沿って配置され、前記第2の発光素子が、前記導光体の主面に平行な方向に沿って配置されてもよい。 In the surface light source device according to an aspect of the present invention, the concave mirror has a linear shape when the concave mirror is cut along a plane perpendicular to the main surface of the light guide, and is perpendicular to the main surface of the light guide. The first light emitting element is disposed along a direction perpendicular to the main surface of the light guide, and the second light emitting element is formed on the main surface of the light guide. You may arrange | position along a parallel direction.
 本発明の一態様における面光源装置において、前記第1の光源部が、前記凹面ミラーの窪みに配置された凸レンズを備え、前記凸レンズの焦点の位置が前記凹面ミラーの焦点の位置と略一致していてもよい。 In the surface light source device according to one aspect of the present invention, the first light source unit includes a convex lens disposed in a recess of the concave mirror, and the focal position of the convex lens substantially coincides with the focal position of the concave mirror. It may be.
 本発明の一態様における面光源装置において、前記凹面ミラーが、前記凸レンズの凸面に形成された金属膜もしくは誘電体多層膜で構成されていいてもよい。 In the surface light source device according to one aspect of the present invention, the concave mirror may be formed of a metal film or a dielectric multilayer film formed on a convex surface of the convex lens.
 本発明の一態様における面光源装置において、前記第1の光源部が、前記角度分布変換部材として、前記第1の発光素子から射出された光を反射する反射面を有する反射素子を備え、前記反射素子が、前記導光体の前記一つの端面に対して一定の角度で傾斜した前記反射面と、前記導光体の前記一つの端面に対向する光射出面と、を有し、前記第1の発光素子が、前記反射素子の一つの端面に配置され、前記第1の発光素子からの光が、前記反射面で反射して前記導光体に入射してもよい。 In the surface light source device according to one aspect of the present invention, the first light source unit includes, as the angle distribution conversion member, a reflective element having a reflective surface that reflects light emitted from the first light emitting element, The reflective element includes the reflective surface inclined at a constant angle with respect to the one end surface of the light guide, and a light exit surface facing the one end surface of the light guide, One light emitting element may be disposed on one end face of the reflecting element, and light from the first light emitting element may be reflected by the reflecting surface and incident on the light guide.
 本発明の一態様における面光源装置において、前記第2の発光素子が、前記第1の光源部から射出される光の角度分布よりも広い角度分布を有する光を射出し、前記第2の発光素子から射出された光が、前記反射素子を介することなく前記導光体に入射してもよい。 In the surface light source device according to one embodiment of the present invention, the second light emitting element emits light having an angular distribution wider than the angular distribution of light emitted from the first light source unit, and the second light emission. The light emitted from the element may enter the light guide without passing through the reflective element.
 本発明の一態様における面光源装置において、前記反射素子が、前記導光体の前記一つの端面に対して複数個設けられてもよい。 In the surface light source device according to an aspect of the present invention, a plurality of the reflective elements may be provided for the one end surface of the light guide.
 本発明の他の態様における面光源装置は、前記反射素子が、前記第1の発光素子が配置された端面に近い側から遠い側に向けて厚みが薄くなる楔形状を有し、前記光射出面と対向する端面全体が前記反射面であってもよい。 In the surface light source device according to another aspect of the present invention, the reflective element has a wedge shape whose thickness decreases from a side closer to an end face on which the first light emitting element is disposed to a side farther from the end face. The entire end surface facing the surface may be the reflecting surface.
 本発明の一態様における面光源装置は、前記反射素子が、前記光射出面と対向する面に複数のプリズム構造体を有し、前記プリズム構造体の一つの傾斜面が前記反射面であってもよい。 In the surface light source device according to one aspect of the present invention, the reflection element has a plurality of prism structures on a surface facing the light emission surface, and one inclined surface of the prism structure is the reflection surface. Also good.
 本発明の一態様における面光源装置は、前記第2の光源部が、前記角度分布変換部材として、前記第2の発光素子から射出された光を散乱させる光散乱部材を備え、前記第2の発光素子から射出された光が、前記光散乱部材を介して前記導光体に入射してもよい。 In the surface light source device according to an aspect of the present invention, the second light source unit includes a light scattering member that scatters light emitted from the second light emitting element as the angle distribution conversion member, Light emitted from the light emitting element may enter the light guide through the light scattering member.
 本発明の一態様における面光源装置において、前記第1の光源部が、前記角度分布変換部材として、前記第1の発光素子から射出された光を略平行化するレンズを備え、前記第1の発光素子から射出された光が、前記レンズを介して前記導光体に入射してもよい。 In the surface light source device according to an aspect of the present invention, the first light source unit includes a lens that substantially parallelizes light emitted from the first light emitting element as the angle distribution conversion member. The light emitted from the light emitting element may enter the light guide through the lens.
 本発明の一態様における面光源装置において、前記導光体が、光の伝播方向において前記主面に対して所定の傾斜角をなす反射面を有してもよい。 In the surface light source device according to an aspect of the present invention, the light guide may have a reflecting surface that forms a predetermined inclination angle with respect to the main surface in the light propagation direction.
 本発明の一態様における面光源装置において、前記導光体が、前記一つの端面に近い側から遠い側に向けて厚みが薄くなる楔形状を有し、前記主面と対向する面全体が前記反射面であってもよい。 In the surface light source device according to one aspect of the present invention, the light guide has a wedge shape that decreases in thickness toward a side farther from the side closer to the one end surface, and the entire surface facing the main surface is the It may be a reflective surface.
 本発明の一態様における面光源装置において、前記導光体が、前記主面と対向する面に複数のプリズム構造体を有し、前記プリズム構造体の一つの傾斜面が前記反射面であってもよい。 In the surface light source device according to one aspect of the present invention, the light guide has a plurality of prism structures on a surface facing the main surface, and one inclined surface of the prism structure is the reflection surface. Also good.
 本発明の一態様における面光源装置は、さらに前記導光体の主面から射出された光の進行方向を、前記主面の法線により近い方向に変更するための方向変更用部材を備えてもよい。 The surface light source device according to an aspect of the present invention further includes a direction changing member for changing the traveling direction of the light emitted from the main surface of the light guide to a direction closer to the normal line of the main surface. Also good.
 本発明の他の態様における表示装置は、前記面光源装置と、前記面光源装置から射出される光を用いて表示を行う表示素子と、を備える。 A display device according to another aspect of the present invention includes the surface light source device and a display element that performs display using light emitted from the surface light source device.
 本発明のさらに他の態様における照明装置は、前記面光源装置を備える。 An illumination device in still another aspect of the present invention includes the surface light source device.
 本発明のさらに他の態様における照明装置は、前記面光源装置の前記第1の光源部および前記第2の光源部を備えてもよい。 The illumination device according to still another aspect of the present invention may include the first light source unit and the second light source unit of the surface light source device.
 本発明のさらに他の態様における調光源装置は、光源部と、前記光源部を端部に持つ導光体と、前記光源部と前記導光体との間または前記光源部における前記導光体の端部とは反対側に配設された配光変換素子と、を備え、前記配光変換素子の配光特性が可変である。 The modulated light source device according to still another aspect of the present invention includes a light source unit, a light guide body having the light source unit at an end thereof, and the light guide body between the light source unit and the light guide body or in the light source unit. A light distribution conversion element disposed on a side opposite to the end of the light distribution conversion element, and the light distribution characteristic of the light distribution conversion element is variable.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、前記光源部の前記導光体の一端面と対向する面とは反対の面側に設けられ、前記光源部からの光を反射する反射面を有する反射ミラーを備えたパラボラミラー形状のレンズであってもよい。 In the light control device according to yet another aspect of the present invention, the light distribution conversion element is provided on a surface of the light source unit opposite to a surface facing the one end surface of the light guide, and from the light source unit. It may be a parabolic mirror-shaped lens provided with a reflecting mirror having a reflecting surface for reflecting light.
 本発明のさらに他の態様における調光装置において、前記レンズは、中空構造をなしていてもよい。 In the light control device according to still another aspect of the present invention, the lens may have a hollow structure.
 本発明のさらに他の態様における調光装置において、前記レンズ内は、樹脂が充填されていてもよい。 In the light control device according to still another aspect of the present invention, the lens may be filled with resin.
 本発明のさらに他の態様における調光装置において、前記反射ミラーは、金属の蒸着膜からなってもよい。 In the light control device according to still another aspect of the present invention, the reflection mirror may be made of a metal vapor deposition film.
 本発明のさらに他の態様における調光装置において、前記反射ミラーは、誘電体ミラーからなってもよい。 In the light control device according to still another aspect of the present invention, the reflection mirror may be a dielectric mirror.
 本発明のさらに他の態様における調光装置において、前記反射ミラーの反射面に、散乱液晶セルが設けられてもよい。 In the light control device according to still another aspect of the present invention, a scattering liquid crystal cell may be provided on the reflection surface of the reflection mirror.
 本発明のさらに他の態様における調光装置において、前記レンズには、微小電子機械システム制御により、前記光源部側に出し入れ可能な複数の突起が設けられてもよい。 In the light control device according to still another aspect of the present invention, the lens may be provided with a plurality of protrusions that can be taken in and out of the light source unit under the control of a micro electro mechanical system.
 本発明のさらに他の態様における調光装置において、前記反射ミラーは、エレクトロクロミックミラーからなり、前記エレクトロクロミックミラーの前記光源部と対向する面とは反対の面側に、前記エレクトロクロミックミラーを透過した光を反射する反射手段が設けられてもよい。 In the light control device according to still another aspect of the present invention, the reflection mirror is an electrochromic mirror, and is transmitted through the electrochromic mirror on a surface opposite to the surface facing the light source part of the electrochromic mirror. Reflecting means for reflecting the reflected light may be provided.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、前記光源部と前記導光体の一端面との間に設けられてもよい。 In the light control device according to still another aspect of the present invention, the light distribution conversion element may be provided between the light source unit and one end surface of the light guide.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、散乱液晶セルであってもよい。 In the light control device according to still another aspect of the present invention, the light distribution conversion element may be a scattering liquid crystal cell.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、液晶レンズであってもよい。 In the light control device according to still another aspect of the present invention, the light distribution conversion element may be a liquid crystal lens.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、前記光源部と前記導光体の一端面との間に挿抜可能な散乱体であってもよい。 In the light control device according to still another aspect of the present invention, the light distribution conversion element may be a scatterer that can be inserted and removed between the light source unit and one end surface of the light guide.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、前記導光体の一端面に対向して配設された入光部と、前記入光部と前記一端面とを光学接着が可能なゲルと、前記一端面に設けられた散乱パターンと、前記ゲルと前記一端面との境界部を、前記導光体の厚さ方向から挟持する一対の反射板と、を備えてなってもよい。 In the light control device according to still another aspect of the present invention, the light distribution conversion element includes a light incident part disposed to face one end face of the light guide, the light incident part, and the one end face. A gel capable of optical bonding; a scattering pattern provided on the one end face; and a pair of reflectors that sandwich a boundary between the gel and the one end face from the thickness direction of the light guide. May be.
 本発明のさらに他の態様における調光装置において、前記配光変換素子は、楔形状の導光体と、前記導光体に対向し、光の入射面が鋸刃形状をなすプリズムとからなってもよい。 In the light control device according to still another aspect of the present invention, the light distribution conversion element includes a wedge-shaped light guide and a prism that faces the light guide and has a light incident surface having a saw blade shape. May be.
 本発明のさらに他の態様における調光装置において、前記導光体は、楔形状であってもよい。 In the light control device according to still another aspect of the present invention, the light guide may have a wedge shape.
 本発明のさらに他の態様における表示装置は、前記の調光装置を備える。 A display device according to still another aspect of the present invention includes the light control device.
 本発明のさらに他の態様における照明装置は、前記の調光装置を備える。 The illuminating device in the further another aspect of this invention is equipped with the said light control apparatus.
 本発明のいくつかの態様によれば、指向性の切り替えが可能であり、部品点数や製造コストの増大を招くことなく、装置全体の厚さが厚くなることのない面光源装置が実現できる。本発明によれば、指向性の切り替えが可能であり、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる。本発明によれば、上記の効果を有する面光源装置を備えた表示装置および照明装置が実現できる。
 本発明のいくつかの態様によれば、光源部からの光に指向性を付与する配光変換素子を用いることにより、調光装置から出射する光を、指向性を有する光と散乱光とに切り替えることができる。
According to some aspects of the present invention, it is possible to realize a surface light source device that can switch directivity, does not increase the number of parts and the manufacturing cost, and does not increase the thickness of the entire device. According to the present invention, it is possible to realize a surface light source device that can switch directivity and can maintain a uniform luminance before and after switching directivity. According to the present invention, it is possible to realize a display device and an illumination device including the surface light source device having the above-described effects.
According to some aspects of the present invention, by using a light distribution conversion element that imparts directivity to light from the light source unit, light emitted from the light control device is converted into light having directivity and scattered light. Can be switched.
本発明の第1実施形態の面光源装置を示す斜視図である。It is a perspective view which shows the surface light source device of 1st Embodiment of this invention. 図1のA1-A1’線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line A1-A1 'of FIG. 本実施形態の面光源装置における第1の光源部および第2の光源部を示す斜視図である。It is a perspective view which shows the 1st light source part and the 2nd light source part in the surface light source device of this embodiment. 図3のB1-B1’線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line B1-B1 'of FIG. 図3のC1-C1’線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line C1-C1 ′ of FIG. 広角モードにおける光の作用を示す図である。It is a figure which shows the effect | action of the light in a wide angle mode. 広角モードにおける光の作用を示す図である。It is a figure which shows the effect | action of the light in a wide angle mode. 高指向性モードにおける光の作用を説明するための図である。It is a figure for demonstrating the effect | action of the light in a high directivity mode. 広角モード、高指向性モードのそれぞれにおけるx軸方向の輝度分布を示す図である。It is a figure which shows the luminance distribution of the x-axis direction in each of a wide angle mode and a high directivity mode. 楔状導光板によるy軸方向の輝度分布を示す図である。It is a figure which shows the luminance distribution of the y-axis direction by a wedge-shaped light-guide plate. 第1実施形態の第1変形例の面光源装置を示す断面図である。It is sectional drawing which shows the surface light source device of the 1st modification of 1st Embodiment. 第1実施形態の第2変形例の面光源装置を示す断面図である。It is sectional drawing which shows the surface light source device of the 2nd modification of 1st Embodiment. 本発明の第2実施形態の面光源装置における光源部を示す斜視図である。It is a perspective view which shows the light source part in the surface light source device of 2nd Embodiment of this invention. 広角モード、高指向性モードのそれぞれにおける光の作用を示す図である。It is a figure which shows the effect | action of the light in each of a wide angle mode and a high directivity mode. 第2実施形態の第1変形例の面光源装置を示す断面図である。It is sectional drawing which shows the surface light source device of the 1st modification of 2nd Embodiment. 本発明の第3実施形態の面光源装置における光源部を示す斜視図である。It is a perspective view which shows the light source part in the surface light source device of 3rd Embodiment of this invention. 本実施形態の面光源装置を示す側面図である。It is a side view which shows the surface light source device of this embodiment. 本実施形態の面光源装置を示す平面図である。It is a top view which shows the surface light source device of this embodiment. 第3実施形態の第1変形例の面光源装置における光源部を示す斜視図である。It is a perspective view which shows the light source part in the surface light source device of the 1st modification of 3rd Embodiment. 本発明の第4実施形態の面光源装置における光源部を示す斜視図である。It is a perspective view which shows the light source part in the surface light source device of 4th Embodiment of this invention. 本実施形態の面光源装置を示す平面図である。It is a top view which shows the surface light source device of this embodiment. 本発明の第5実施形態の面光源装置を示す分解斜視図である。It is a disassembled perspective view which shows the surface light source device of 5th Embodiment of this invention. 本実施形態の面光源装置を示す平面図である。It is a top view which shows the surface light source device of this embodiment. 本実施形態の面光源装置を示す側面図である。It is a side view which shows the surface light source device of this embodiment. 本実施形態の面光源装置における楔形導光棒の作用を説明するための図である。It is a figure for demonstrating the effect | action of the wedge-shaped light guide rod in the surface light source device of this embodiment. 本実施形態の面光源装置の効果を説明するための図である。It is a figure for demonstrating the effect of the surface light source device of this embodiment. 第5実施形態の第1変形例の面光源装置を示す平面図である。It is a top view which shows the surface light source device of the 1st modification of 5th Embodiment. 第5実施形態の第2変形例の面光源装置における導光棒を示す平面図である。It is a top view which shows the light guide bar in the surface light source device of the 2nd modification of 5th Embodiment. 本発明の第6実施形態の面光源装置を示す分解斜視図である。It is a disassembled perspective view which shows the surface light source device of 6th Embodiment of this invention. 本実施形態の面光源装置を示す平面図である。It is a top view which shows the surface light source device of this embodiment. 本実施形態の面光源装置を示す側面図である。It is a side view which shows the surface light source device of this embodiment. 第6実施形態の第1変形例の面光源装置を示す平面図である。It is a top view which shows the surface light source device of the 1st modification of 6th Embodiment. 本発明の第7実施形態の面光源装置を示す平面図である。It is a top view which shows the surface light source device of 7th Embodiment of this invention. 本実施形態の面光源装置を示す側面図である。It is a side view which shows the surface light source device of this embodiment. 本実施形態の面光源装置を示す平面図である。It is a top view which shows the surface light source device of this embodiment. 図28AのA1-A1’線に沿う断面図である。It is sectional drawing which follows the A1-A1 'line | wire of FIG. 28A. 本実施形態の面光源装置における照度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. 本実施形態の面光源装置における照度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. 本実施形態の面光源装置における照度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of this embodiment. 比較例の面光源装置における照度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of a comparative example. 比較例の面光源装置における照度分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the illumination intensity distribution in the surface light source device of a comparative example. 本発明の表示装置の一構成例である液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device which is one structural example of the display apparatus of this invention. 調光装置の第9実施形態を示す概略平面図である。It is a schematic plan view which shows 9th Embodiment of a light modulation apparatus. 調光装置の第9実施形態を示す概略図32AのA-A線に沿う断面図である。FIG. 32C is a cross-sectional view taken along line AA of FIG. 32A, showing a ninth embodiment of the light control device. 散乱液晶セルの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a scattering liquid crystal cell. 散乱液晶セルを構成する高分子分散液晶としてノーマルモード高分子分散液晶を用いた場合について説明する図である。It is a figure explaining the case where a normal mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell. 散乱液晶セルを構成する高分子分散液晶としてノーマルモード高分子分散液晶を用いた場合について説明する図である。It is a figure explaining the case where a normal mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell. 散乱液晶セルを構成する高分子分散液晶としてリバースモード高分子分散液晶を用いた場合について説明する図である。It is a figure explaining the case where a reverse mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell. 散乱液晶セルを構成する高分子分散液晶としてリバースモード高分子分散液晶を用いた場合について説明する図である。It is a figure explaining the case where a reverse mode polymer dispersion liquid crystal is used as a polymer dispersion liquid crystal which comprises a scattering liquid crystal cell. 散乱液晶セルを構成する液晶を配向させて、調光装置を用いた場合を説明する概略平面図である。It is a schematic plan view explaining the case where the liquid crystal which comprises a scattering liquid crystal cell is orientated and a light control apparatus is used. 散乱液晶セルを構成する液晶を配向させて、調光装置を用いた場合を説明する導光体の一端面側から見た正面図である。It is the front view seen from the end surface side of the light guide explaining the case where the liquid crystal which comprises a scattering liquid crystal cell is orientated and a light control apparatus is used. 散乱液晶セルを構成する液晶を配向させずに、調光装置を用いた場合を説明する概略図平面図である。It is the schematic top view explaining the case where a light control apparatus is used, without aligning the liquid crystal which comprises a scattering liquid crystal cell. 散乱液晶セルを構成する液晶を配向させずに、調光装置を用いた場合を説明する導光体の一端面側から見た正面図である。It is the front view seen from the end surface side of the light guide explaining the case where a light control device is used, without aligning the liquid crystal which comprises a scattering liquid crystal cell. 調光装置の第10実施形態を示す概略側面図である。It is a schematic side view which shows 10th Embodiment of a light modulation apparatus. 図38Aの一部を拡大した斜視図である。It is the perspective view which expanded a part of FIG. 38A. 液晶レンズを用いた調光装置の使用方法を説明する概略側面図である。It is a schematic side view explaining the usage method of the light modulation apparatus using a liquid crystal lens. 液晶レンズを用いた調光装置の使用方法を説明する概略側面図である。It is a schematic side view explaining the usage method of the light modulation apparatus using a liquid crystal lens. 調光装置の第11実施形態を示す概略平面図である。It is a schematic plan view which shows 11th Embodiment of a light modulation apparatus. 図40AのB2-B2線に沿う断面図である。FIG. 40B is a cross-sectional view taken along line B2-B2 of FIG. 40A. 光源部と導光体の一端面との間に、散乱体を挿入していない状態を示す概略図平面図である。It is the schematic top view which shows the state which has not inserted the scatterer between the light source part and the end surface of a light guide. 導光体の一端面側から見た正面図である。It is the front view seen from the one end surface side of a light guide. 図41AのC-C線に沿う断面図である。FIG. 41B is a cross-sectional view taken along the line CC of FIG. 41A. 光源部と導光体の一端面との間に、散乱体を挿入した状態を示す概略図平面図である。It is the schematic top view which shows the state which inserted the scatterer between the light source part and the one end surface of a light guide. 導光体の一端面側から見た正面図である。It is the front view seen from the one end surface side of a light guide. 図42AのD-D線に沿う断面図である。FIG. 42B is a cross-sectional view taken along the line DD of FIG. 42A. 調光装置の第12実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 12th Embodiment of a light modulation apparatus. 入光部と導光体の一端面との間にゲルを設けた調光装置の使用方法を示す概略断面図である。It is a schematic sectional drawing which shows the usage method of the light modulation apparatus which provided the gel between the light-incidence part and the one end surface of the light guide. 入光部と導光体の一端面との間にゲルを設けた調光装置の使用方法を示す概略断面図である。It is a schematic sectional drawing which shows the usage method of the light modulation apparatus which provided the gel between the light-incidence part and the one end surface of the light guide. 調光装置の第13実施形態を示す概略図平面図である。It is the schematic plan view which shows 13th Embodiment of a light modulation apparatus. 調光装置の第13実施形態を示す概略側面図である。It is a schematic side view which shows 13th Embodiment of a light modulation apparatus. 調光装置の第13実施形態の作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of 13th Embodiment of a light modulation apparatus. 調光装置の第13実施形態の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of 13th Embodiment of a light modulation apparatus. 調光装置の第14実施形態を示す概略平面図であり、調光装置を構成するパラボラミラー形状のレンズを示す図である。It is a schematic plan view which shows 14th Embodiment of a light modulation apparatus, and is a figure which shows the parabolic mirror-shaped lens which comprises a light modulation apparatus. 散乱液晶セルを備えたパラボラミラー形状のレンズの作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of the parabolic mirror-shaped lens provided with the scattering liquid crystal cell. 散乱液晶セルを備えたパラボラミラー形状のレンズの作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of the parabolic mirror-shaped lens provided with the scattering liquid crystal cell. 調光装置の第15実施形態を示す概略平面図であり、調光装置を構成するパラボラミラー形状のレンズを示す図である。It is a schematic plan view which shows 15th Embodiment of a light modulation apparatus, and is a figure which shows the parabolic mirror-shaped lens which comprises a light modulation apparatus. 複数の突起を備えたパラボラミラー形状のレンズの作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of the parabolic mirror-shaped lens provided with the some protrusion. 複数の突起を備えたパラボラミラー形状のレンズの作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of the parabolic mirror-shaped lens provided with the some protrusion. 調光装置の第16実施形態を示す概略平面図であり、調光装置を構成する光源部およびパラボラミラー形状のレンズを示す図である。It is a schematic plan view which shows 16th Embodiment of a light modulation apparatus, and is a figure which shows the light source part and parabolic mirror-shaped lens which comprise a light modulation apparatus. 調光装置の第17実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 17th Embodiment of a light modulation apparatus. 調光装置の第17実施形態の作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of 17th Embodiment of a light modulation apparatus. 調光装置の第17実施形態の作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of 17th Embodiment of a light modulation apparatus. 調光装置の第18実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 18th Embodiment of a light modulation apparatus. 調光装置の第18実施形態の作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of 18th Embodiment of a light modulation apparatus. 調光装置の第18実施形態の作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of 18th Embodiment of a light modulation apparatus. 調光装置の第19実施形態を示す概略図平面図である。It is the schematic plan view which shows 19th Embodiment of a light modulation apparatus. 図57AのE-E線に沿う断面図である。FIG. 57B is a cross-sectional view taken along line EE in FIG. 57A. 調光装置の第20実施形態を示す概略平面図であり、全体図である。It is a schematic plan view which shows 20th Embodiment of a light modulation apparatus, and is a general view. 図58Aにおいて破線αで囲んだ領域を拡大した図である。It is the figure which expanded the area | region enclosed with the broken line (alpha) in FIG. 58A. エレクトロクロミックミラーを備えたパラボラミラー形状のレンズの作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of the parabolic mirror-shaped lens provided with the electrochromic mirror. エレクトロクロミックミラーを備えたパラボラミラー形状のレンズの作用を示す概略平面図である。It is a schematic plan view which shows the effect | action of the parabolic mirror-shaped lens provided with the electrochromic mirror. 表示装置の一実施形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of a display apparatus. 照明装置の第一実施形態として、シーリングライトを示す概略斜視図である。It is a schematic perspective view which shows a ceiling light as 1st embodiment of an illuminating device. 照明装置の第二実施形態として、照明スタンドを示す概略斜視図である。It is a schematic perspective view which shows an illumination stand as 2nd embodiment of an illuminating device. 液晶表示装置の正面図である。It is a front view of a liquid crystal display device. 本発明の照明装置の一構成例である電気スタンドを示す図である。It is a figure which shows the table lamp which is one structural example of the illuminating device of this invention. 本発明の照明装置の一構成例である電気スタンドを示す図である。It is a figure which shows the table lamp which is one structural example of the illuminating device of this invention. 本発明の照明装置の一構成例である電気スタンドを示す図である。It is a figure which shows the table lamp which is one structural example of the illuminating device of this invention. 本発明の照明装置の一構成例である電気スタンドを示す図である。It is a figure which shows the table lamp which is one structural example of the illuminating device of this invention. 本発明の照明装置の一構成例であるシーリングライトを示す図である。It is a figure which shows the ceiling light which is one structural example of the illuminating device of this invention. 本発明の照明装置の一構成例であるシーリングライトを示す図である。It is a figure which shows the ceiling light which is one structural example of the illuminating device of this invention.
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図7を用いて説明する。
 本実施形態では、例えば液晶表示装置のバックライトとして用いて好適な面光源装置(調光装置ともいう)の一例を示す。
 図1は、本実施形態の面光源装置を示す斜視図である。図2は、図1のA1-A1’線に沿う断面図である。図3は、本実施形態の面光源装置における一つの光源を示す斜視図である。図4Aは、図3のB-B’線に沿う断面図である。図4Bは、図3のC-C’線に沿う断面図である。
 なお、以下に示す実施形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
また、以下の説明で用いる図面は、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。 
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, an example of a surface light source device (also referred to as a light control device) suitable for use as a backlight of a liquid crystal display device, for example, is shown.
FIG. 1 is a perspective view showing the surface light source device of this embodiment. FIG. 2 is a sectional view taken along line A1-A1 ′ of FIG. FIG. 3 is a perspective view showing one light source in the surface light source device of the present embodiment. 4A is a cross-sectional view taken along line BB ′ of FIG. 4B is a cross-sectional view taken along the line CC ′ of FIG.
The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.
In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience. Not necessarily.
 本実施形態の面光源装置11は、図1および図2に示すように、光源部12と、導光体13と、プリズムシート14(方向変更用部材)と、から構成されている。導光体13は、光源部12から射出された光を端面から入射させ、内部で伝播させる間に主面から射出させる機能を有する。プリズムシート14は、導光体13の主面から射出された光の進行方向を、主面の法線により近い方向に変更する機能を有する。なお、光源部12の詳細な構成は後述する。 1 and 2, the surface light source device 11 of the present embodiment includes a light source unit 12, a light guide 13, and a prism sheet 14 (direction changing member). The light guide 13 has a function of causing light emitted from the light source unit 12 to enter from the end face and to be emitted from the main surface while propagating inside. The prism sheet 14 has a function of changing the traveling direction of the light emitted from the main surface of the light guide 13 to a direction closer to the normal line of the main surface. The detailed configuration of the light source unit 12 will be described later.
 導光体13は、例えばアクリル樹脂等の光透過性を有する樹脂からなる板体である。導光体13は、光源部12が設けられた端面13aに近い側から遠い側に向けて厚みが徐々に薄くなる楔形の形状を有している。すなわち、図2に示すように、後述する第1主面13bに垂直な面(yz平面)で切断したときの導光体13の断面形状は直角三角形である。導光体13の端面13aは、光源部12から射出された光を入射させる光入射面である。導光板3の第1主面13b(図2における上側の面)は、内部に入射した光を射出させる光射出面である。 The light guide 13 is a plate made of a resin having optical transparency such as acrylic resin. The light guide 13 has a wedge shape in which the thickness gradually decreases from the side closer to the end surface 13 a where the light source unit 12 is provided to the side farther from the side. That is, as shown in FIG. 2, the cross-sectional shape of the light guide 13 when cut along a plane (yz plane) perpendicular to the first main surface 13b described later is a right triangle. The end surface 13 a of the light guide 13 is a light incident surface on which light emitted from the light source unit 12 is incident. The first main surface 13b (upper surface in FIG. 2) of the light guide plate 3 is a light emitting surface for emitting light incident on the inside.
 なお、本実施形態において、導光体13の第1主面13bの面内における光の伝播方向をy軸方向、光の伝播方向と直交する方向をx軸方向、第1主面と直交する方向(導光体13の厚み方向)をz軸方向、と定義する。すなわち、本明細書における「光の伝播方向」とは、図2に示す導光体13のyz断面内で光(1点鎖線の矢印Lで示す)が反射しつつ伝播する方向を意味するのではなく、導光体13の第1主面13bの法線方向から見て光が伝播する方向(実線の矢印Yで示す)を意味する。 In the present embodiment, the light propagation direction in the first main surface 13b of the light guide 13 is the y-axis direction, the direction orthogonal to the light propagation direction is the x-axis direction, and the first main surface is orthogonal. The direction (thickness direction of the light guide 13) is defined as the z-axis direction. That is, the “light propagation direction” in this specification means a direction in which light (indicated by a dashed line arrow L) propagates while reflecting in the yz section of the light guide 13 shown in FIG. Instead, it means the direction (indicated by solid arrow Y) in which light propagates when viewed from the normal direction of the first main surface 13b of the light guide 13.
 導光体13の第1主面13bに対向する第2主面13c(図2における下側の面)は、光の伝播方向において第1主面13bに対して一定の傾斜角をもって傾斜した傾斜面である。第1主面13bに対する第2主面13cの傾斜角θ1(第1主面13bと第2主面13cとのなす角度、導光体13の先端角と呼ぶ場合もある)は、例えば2°程度に設定される。第2主面13cには、例えばアルミニウム等の光反射率の高い金属膜からなる反射ミラー15が設けられている。反射ミラー15が設けられたことで、第2主面13cは、導光体13の内部を伝播する光を反射させる反射面として機能する。なお、反射ミラー15は、導光体13の第2主面13cに直接形成された金属膜であっても良いし、導光体13とは別体に作製した反射板を貼り合わせた構成であっても良い。 The second main surface 13c (the lower surface in FIG. 2) facing the first main surface 13b of the light guide 13 is inclined with a certain inclination angle with respect to the first main surface 13b in the light propagation direction. Surface. The inclination angle θ1 of the second main surface 13c with respect to the first main surface 13b (the angle between the first main surface 13b and the second main surface 13c, sometimes referred to as the tip angle of the light guide 13) is, for example, 2 °. Set to degree. The second main surface 13c is provided with a reflection mirror 15 made of a metal film having a high light reflectance such as aluminum. By providing the reflection mirror 15, the second main surface 13 c functions as a reflection surface that reflects light propagating through the light guide 13. The reflection mirror 15 may be a metal film directly formed on the second main surface 13 c of the light guide 13, or a configuration in which a reflection plate manufactured separately from the light guide 13 is bonded. There may be.
 光源部12は、図1に示すように、複数の光源16が、光の伝播方向Yと直交する方向(x軸方向)に1列に配列された構成を有している。光源16は、図3に示すように、高指向性用光源部(第1光源部)113と、広角用光源部(第2光源部)114と、から構成されている。高指向性用光源部113は、射出光の角度分布が相対的に狭く、高い指向性を有する光を射出する。広角用光源部114は、射出光の角度分布が相対的に広く、低い指向性を有する光を射出する。 As shown in FIG. 1, the light source unit 12 has a configuration in which a plurality of light sources 16 are arranged in a line in a direction (x-axis direction) orthogonal to the light propagation direction Y. As illustrated in FIG. 3, the light source 16 includes a light source unit for high directivity (first light source unit) 113 and a light source unit for wide angle (second light source unit) 114. The light source unit 113 for high directivity emits light having a high directivity because the angular distribution of the emitted light is relatively narrow. The wide-angle light source unit 114 emits light having a relatively wide angular distribution and low directivity.
 高指向性用光源部113は、図3、図4A、図4Bに示すように、第1のLED17(第1の発光素子)と、シリンドリカルレンズ18(凸レンズ)と、凹面ミラー19と、を備えている。シリンドリカルレンズ18は、例えばアクリル樹脂、フェニール系もしくはジメチル系のシリコン樹脂等で構成されている。シリンドリカルレンズ18は、一方が凸面、他方が平坦面となったレンズ、いわゆる平凸レンズである。光は平坦面18aから射出されるため、以降、この平坦面18aを光射出面と称する。一方、凸面は、なだらかに湾曲した湾曲面となっている。 As shown in FIGS. 3, 4A, and 4B, the high directivity light source unit 113 includes a first LED 17 (first light emitting element), a cylindrical lens 18 (convex lens), and a concave mirror 19. ing. The cylindrical lens 18 is made of, for example, acrylic resin, phenyl-based or dimethyl-based silicon resin, or the like. The cylindrical lens 18 is a so-called plano-convex lens in which one is a convex surface and the other is a flat surface. Since light is emitted from the flat surface 18a, the flat surface 18a is hereinafter referred to as a light emission surface. On the other hand, the convex surface is a curved surface that is gently curved.
 シリンドリカルレンズ18をxy平面で切断した断面形状を見ると、図4Aに示すように、凸面は焦点P1を有する曲線形状を有している。本実施形態の場合、具体的には、凸面18bの断面形状はパラボラ形状である。一方、シリンドリカルレンズ18をyz平面で切断した断面形状を見ると、図4Bに示すように、湾曲面8bは直線形状である。すなわち、シリンドリカルレンズ18の凸面18bは、xy平面内において曲率を持ち、yz平面内においては曲率を持たないパラボラ面である。 Referring to the cross-sectional shape of the cylindrical lens 18 cut along the xy plane, the convex surface has a curved shape having a focal point P1, as shown in FIG. 4A. In the case of this embodiment, specifically, the cross-sectional shape of the convex surface 18b is a parabolic shape. On the other hand, when the cross-sectional shape obtained by cutting the cylindrical lens 18 along the yz plane is viewed, the curved surface 8b is linear as shown in FIG. 4B. That is, the convex surface 18b of the cylindrical lens 18 is a parabolic surface that has a curvature in the xy plane and has no curvature in the yz plane.
 シリンドリカルレンズ18の凸面18bに沿って凹面ミラー19が設けられている。凹面ミラー19は、シリンドリカルレンズ18の凸面18bに直接形成されたアルミニウム等の光反射率の高い金属膜で構成されている。もしくは、凹面ミラー19は、ESR等の誘電体多層膜で構成されていてもよい。シリンドリカルレンズ18の凸面18bと凹面ミラー19とが密着しているため、凹面ミラー19の形状は凸面18bの形状が反映されたパラボラ面となる。したがって、凹面ミラー19の焦点の位置はシリンドリカルレンズ18の焦点の位置と一致する。焦点を図4Aに点P1で示す。なお、シリンドリカルレンズ18の凸面18bに凹面ミラー19を直接形成する構成に代えて、シリンドリカルレンズ18とは別体に作製した凹面ミラー(角度分布変換部材ともいう)を貼り合わせた構成としても良い。 A concave mirror 19 is provided along the convex surface 18 b of the cylindrical lens 18. The concave mirror 19 is made of a metal film having a high light reflectance such as aluminum directly formed on the convex surface 18 b of the cylindrical lens 18. Alternatively, the concave mirror 19 may be composed of a dielectric multilayer film such as ESR. Since the convex surface 18b of the cylindrical lens 18 and the concave mirror 19 are in close contact, the shape of the concave mirror 19 is a parabolic surface reflecting the shape of the convex surface 18b. Therefore, the focal position of the concave mirror 19 coincides with the focal position of the cylindrical lens 18. The focal point is indicated by point P1 in FIG. 4A. Instead of the configuration in which the concave mirror 19 is directly formed on the convex surface 18b of the cylindrical lens 18, a configuration may be adopted in which a concave mirror (also referred to as an angle distribution conversion member) manufactured separately from the cylindrical lens 18 is bonded.
 図4Aに示すように、シリンドリカルレンズ18の光射出面18aには、第1のLED17を内部に挿入できるだけの深さを有する溝110が設けられている。シリンドリカルレンズ18をxy平面で切断したときの溝110の底部の断面形状は円弧状に丸められている。溝110の内部には、第1のLED17が配置されている。第1のLED(第1の発光素子ともいう)17は、発光面17aが凹面ミラー19に向くように配置されている。また、第1のLED17と凹面ミラー19およびシリンドリカルレンズ18とは、凹面ミラー19およびシリンドリカルレンズ18の焦点P11が発光面17a上に位置するように、互いの位置関係や寸法、形状等が設定されている。 As shown in FIG. 4A, the light exit surface 18a of the cylindrical lens 18 is provided with a groove 110 having a depth that allows the first LED 17 to be inserted therein. The cross-sectional shape of the bottom of the groove 110 when the cylindrical lens 18 is cut along the xy plane is rounded into an arc. Inside the groove 110, the first LED 17 is disposed. The first LED (also referred to as a first light emitting element) 17 is disposed so that the light emitting surface 17 a faces the concave mirror 19. The first LED 17, the concave mirror 19 and the cylindrical lens 18 are set such that their positional relationship, dimensions, and shape are set so that the focal point P11 of the concave mirror 19 and the cylindrical lens 18 is located on the light emitting surface 17a. ing.
 第1のLED17の発光面17aが凹面ミラー19を向いていることにより、第1のLED17の発光面17aから射出された光の略全てが凹面ミラー19に向かい、凹面ミラー19で反射した後、シリンドリカルレンズ18の光射出面18aから射出される。したがって、第1のLED17の発光面17aから射出された光のうち、凹面ミラー19で反射することなく、直接射出される光はほとんど存在しない。第1のLED17は、特に指向性を有するものではなく、所定の拡散角で光を射出する一般的なLEDを用いることができる。 Since the light emitting surface 17a of the first LED 17 faces the concave mirror 19, almost all of the light emitted from the light emitting surface 17a of the first LED 17 is directed to the concave mirror 19 and reflected by the concave mirror 19, The light exits from the light exit surface 18 a of the cylindrical lens 18. Therefore, among the light emitted from the light emitting surface 17 a of the first LED 17, there is almost no light emitted directly without being reflected by the concave mirror 19. The first LED 17 is not particularly directional, and a general LED that emits light at a predetermined diffusion angle can be used.
 本実施形態においては、図4Bに示すように、各シリンドリカルレンズ18の上面から下面までを貫通するように溝110が設けられている。第1のLED17は、シリンドリカルレンズ18の上端から下端まで達するように、溝110の全体にわたって設けられている。
 第1のLED17に電流を供給するための正極側、負極側の2本の配線(図示略)は、シリンドリカルレンズ18の上端もしくは下端から引き出されている。2本の配線は、シリンドリカルレンズ18の上端もしくは下端のいずれか一方に揃えて引き出されていることが望ましい。第1のLED17と溝110との間には僅かな間隙112が設けられている。この間隙112には、光学接着剤等が充填されても良いし、何も充填されずに空気が存在していても良い。なお、本実施形態では、複数の別体のシリンドリカルレンズ18を連結した構成としたが、これら複数のシリンドリカルレンズを一体にした構成のレンチキュラーレンズを用いても良い。
In the present embodiment, as shown in FIG. 4B, a groove 110 is provided so as to penetrate from the upper surface to the lower surface of each cylindrical lens 18. The first LED 17 is provided over the entire groove 110 so as to reach from the upper end to the lower end of the cylindrical lens 18.
Two wires (not shown) on the positive electrode side and the negative electrode side for supplying a current to the first LED 17 are drawn from the upper end or the lower end of the cylindrical lens 18. It is desirable that the two wires are led out to be aligned with either the upper end or the lower end of the cylindrical lens 18. A slight gap 112 is provided between the first LED 17 and the groove 110. The gap 112 may be filled with an optical adhesive or the like, or air may be present without filling anything. In the present embodiment, a plurality of separate cylindrical lenses 18 are connected, but a lenticular lens having a structure in which these plurality of cylindrical lenses are integrated may be used.
 広角用光源部114は、図3、図4A、及び図4Bに示すように、第2のLED(第2の発光素子ともいう)115を備えている。第2のLED115は、発光面115aが導光体13の端面13aに向けて配置されている。したがって、第1のLED17と第2のLED115とは、互いの発光面17a,115aと反対側の面同士が対向して接するように配置されている。言い換えると、第1のLED17と第2のLED115とは、背中合わせに配置されている。そのため、第2のLED115からの光は、シリンドリカルレンズ18や凹面ミラー19を通ることなく、導光体13に入射する。 The wide-angle light source unit 114 includes a second LED (also referred to as a second light emitting element) 115 as shown in FIGS. 3, 4A, and 4B. The second LED 115 is arranged such that the light emitting surface 115 a faces the end surface 13 a of the light guide 13. Accordingly, the first LED 17 and the second LED 115 are arranged such that the surfaces opposite to the light emitting surfaces 17a and 115a face each other. In other words, the first LED 17 and the second LED 115 are arranged back to back. Therefore, the light from the second LED 115 enters the light guide 13 without passing through the cylindrical lens 18 or the concave mirror 19.
 第1のLED17と第2のLED115の高さ(z軸方向の寸法)は、本実施形態のように異なっていてもよいし、同じであってもよい。第2のLED115に電流を供給するための配線(図示略)は、シリンドリカルレンズ18と導光体13との間隙から引き出されている。
 第2のLED115に電流を供給するための正極側、負極側の2本の配線(図示略)は、シリンドリカルレンズ18の上端もしくは下端から引き出されている。第1のLED17と同様、2本の配線は、シリンドリカルレンズ18の上端もしくは下端のいずれか一方に揃えて引き出されていることが望ましい。第1のLED17と第2のLED115とは、点灯/消灯を各々独立して制御できるようになっている。
The heights (dimensions in the z-axis direction) of the first LED 17 and the second LED 115 may be different as in the present embodiment, or may be the same. A wiring (not shown) for supplying a current to the second LED 115 is drawn out from the gap between the cylindrical lens 18 and the light guide 13.
Two wires (not shown) on the positive electrode side and the negative electrode side for supplying a current to the second LED 115 are drawn from the upper end or the lower end of the cylindrical lens 18. Similar to the first LED 17, it is desirable that the two wires are drawn out to be aligned with either the upper end or the lower end of the cylindrical lens 18. The first LED 17 and the second LED 115 can be controlled to turn on / off independently.
 第2のLED115の発光面115aが導光体13の端面13aを向いていることにより、第2のLED115の発光面115aから射出された光の略全てが導光体13に入射する。本実施形態の場合、第2のLED115の発光面115aは導光体13の端面13aに当接しているが、第2のLED115の発光面115aは導光体13の端面13aに必ずしも当接していなくてもよい。第2のLED115としては、所定の拡散角で光を射出する一般的なLEDを用いることができる。 Since the light emitting surface 115a of the second LED 115 faces the end surface 13a of the light guide 13, almost all of the light emitted from the light emitting surface 115a of the second LED 115 enters the light guide 13. In the present embodiment, the light emitting surface 115a of the second LED 115 is in contact with the end surface 13a of the light guide 13, but the light emitting surface 115a of the second LED 115 is not necessarily in contact with the end surface 13a of the light guide 13. It does not have to be. As the second LED 115, a general LED that emits light at a predetermined diffusion angle can be used.
 図1および図2に示すように、プリズムシート14は、導光体13の光射出面13bに対向する位置(図2における導光体13の上方)に設けられている。プリズムシート14は、光の伝播方向Yと直交する方向に延在する複数のプリズム構造体111が一面に設けられたものである。プリズムシート14は、複数のプリズム構造体111が設けられた面が導光体13の光射出面13bに対向するように配置されている。yz平面で切断した断面における一つのプリズム構造体111の断面形状は直角三角形状である。プリズム構造体111は、導光体13の光射出面13bに対して直交する第1面111aと、第1面111aに対して所定の先端角θ2をなす第2面111bと、を有している。 As shown in FIGS. 1 and 2, the prism sheet 14 is provided at a position facing the light exit surface 13b of the light guide 13 (above the light guide 13 in FIG. 2). The prism sheet 14 is provided with a plurality of prism structures 111 extending in a direction orthogonal to the light propagation direction Y on one surface. The prism sheet 14 is disposed so that the surface on which the plurality of prism structures 111 are provided faces the light exit surface 13 b of the light guide 13. The cross-sectional shape of one prism structure 111 in the cross section cut along the yz plane is a right triangle. The prism structure 111 includes a first surface 111a that is orthogonal to the light exit surface 13b of the light guide 13, and a second surface 111b that forms a predetermined tip angle θ2 with respect to the first surface 111a. Yes.
 以下、上記構成の面光源装置11の作用について説明する。
 第1のLED17の発光面17aは所定の面積を有しているため、発光面17a上の全ての点が凹面ミラー19およびシリンドリカルレンズ18の焦点P11の位置に必ずしも一致するわけではない。ただし、以下では説明を簡単にするため、発光面17aの面積が十分に小さく、発光面17aが焦点P11と一致しているものとして説明する。
Hereinafter, the operation of the surface light source device 11 configured as described above will be described.
Since the light emitting surface 17a of the first LED 17 has a predetermined area, not all points on the light emitting surface 17a necessarily coincide with the positions of the concave mirror 19 and the focal point P11 of the cylindrical lens 18. However, for the sake of simplicity, the following description will be made assuming that the area of the light emitting surface 17a is sufficiently small and the light emitting surface 17a coincides with the focal point P11.
 第1のLED17の発光面17aから発せられた光L11は、所定の拡散角をもって凹面ミラー19に向かい、凹面ミラー19で反射する。ここで、導光体13の光射出面13bに平行な平面(xy平面)内での光の振る舞いを考える。図4Aに示すように、発光面17aの位置が焦点P11と一致しているため、第1のLED17から発せられた光Lは、凹面ミラー19に対してどのような角度で入射したとしても、凹面ミラー19で反射した後は凹面ミラー19の光軸に平行な方向に進行する。したがって、第1のLED17の発光面17aから発せられた直後の拡散光は、凹面ミラー19で反射して平行化された光、すなわち高い指向性を持つ光に変換される。この光L11がシリンドリカルレンズ18の光射出面18aから射出し、導光体13に入射する。 The light L11 emitted from the light emitting surface 17a of the first LED 17 is directed to the concave mirror 19 with a predetermined diffusion angle and reflected by the concave mirror 19. Here, the behavior of light in a plane (xy plane) parallel to the light exit surface 13b of the light guide 13 is considered. As shown in FIG. 4A, since the position of the light emitting surface 17a coincides with the focal point P11, the light L emitted from the first LED 17 can be incident on the concave mirror 19 at any angle. After being reflected by the concave mirror 19, it proceeds in a direction parallel to the optical axis of the concave mirror 19. Therefore, the diffused light immediately after being emitted from the light emitting surface 17a of the first LED 17 is converted into light reflected and collimated by the concave mirror 19, that is, light having high directivity. The light L11 exits from the light exit surface 18a of the cylindrical lens 18 and enters the light guide 13.
 一方、第2のLED115の発光面115aから発せられた光L12は、所定の拡散角をもって導光体13に入射する。したがって、広角用光源部114から射出された光L12の角度分布は、高指向性用光源部113から射出された光L11の角度分布よりも広くなる。 Meanwhile, the light L12 emitted from the light emitting surface 115a of the second LED 115 enters the light guide 13 with a predetermined diffusion angle. Therefore, the angular distribution of the light L12 emitted from the wide-angle light source unit 114 is wider than the angular distribution of the light L11 emitted from the high-directivity light source unit 113.
 次に、光の伝播方向Yに平行、かつ導光体13の光射出面13bに垂直な平面(yz平面)内での光の振る舞いを考える。図4Bに示すように、yz平面内で見る限り、凹面ミラー19は曲率を有していないので、凹面ミラー19は平面ミラーのように機能する。すなわち、第1のLED17から射出された光L11は、凹面ミラー19において入射角に等しい反射角で反射する。よって、光L11は、第1のLED17の発光面17aから発せられた直後の拡散角を維持したまま、シリンドリカルレンズ18から射出され、導光体13に入射する。 Next, consider the behavior of light in a plane (yz plane) parallel to the light propagation direction Y and perpendicular to the light exit surface 13 b of the light guide 13. As shown in FIG. 4B, as long as viewed in the yz plane, the concave mirror 19 has no curvature, so that the concave mirror 19 functions like a plane mirror. That is, the light L11 emitted from the first LED 17 is reflected by the concave mirror 19 at a reflection angle equal to the incident angle. Therefore, the light L <b> 11 is emitted from the cylindrical lens 18 and is incident on the light guide 13 while maintaining the diffusion angle immediately after being emitted from the light emitting surface 17 a of the first LED 17.
 第2のLED115から射出された光L12は、発光面115aから発せられた直後の拡散角を維持したまま、導光体13の内部を伝播する。 The light L12 emitted from the second LED 115 propagates through the light guide 13 while maintaining the diffusion angle immediately after being emitted from the light emitting surface 115a.
 以上をまとめると、高指向性用光源部113については、シリンドリカルレンズ18の光射出面18aから射出された時点において、光L11は、導光体13の光射出面13bに平行な平面(xy平面)内でのみ高い指向性を持ち、光の伝播方向Yに平行、かつ導光体13の光射出面13bに垂直な平面(yz平面)内では指向性を持たない。このような光L11が、光入射面(端面)13aから導光体13に入射され、導光体13の内部を伝播する。 In summary, with respect to the high directivity light source unit 113, the light L11 is a plane (xy plane) parallel to the light exit surface 13b of the light guide 13 when it is emitted from the light exit surface 18a of the cylindrical lens 18. ), And has no directivity in a plane (yz plane) parallel to the light propagation direction Y and perpendicular to the light exit surface 13 b of the light guide 13. Such light L11 enters the light guide 13 from the light incident surface (end surface) 13a and propagates inside the light guide 13.
 一方、広角用光源部114については、光L12は、導光体13の光射出面13bに平行な平面(xy平面)内、および光の伝播方向Yに平行、かつ導光体13の光射出面13bに垂直な平面(yz平面)内の双方で指向性を持たない。このような光L12が、導光体13の内部を伝播する。 On the other hand, with respect to the wide-angle light source unit 114, the light L12 is emitted in a plane (xy plane) parallel to the light emission surface 13b of the light guide 13 and parallel to the light propagation direction Y and emitted from the light guide 13. There is no directivity in both planes (yz plane) perpendicular to the surface 13b. Such light L <b> 12 propagates through the light guide 13.
 次に、導光体13の内部を伝播する光L1は、図2に示すように、第1主面13b(光射出面)と第2主面13c(反射面)との間で反射を繰り返しつつ、導光体13の内部を光の伝播方向Y(図2の右側)に向けて進行する。仮に第1主面と第2主面とが平行であったとすると、光が反射を繰り返しても、第1主面および第2主面への光の入射角は変化しない。ところが、本実施形態の場合、導光体13は光入射面13a側から離れるにつれて厚みが徐々に薄くなる楔形であり、第1主面13bに対して第2主面13cが所定の傾斜角を有している。
 そのため、光L1は、第1主面13bおよび第2主面13cで反射する毎に第1主面13bおよび第2主面13cへの入射角が小さくなる。
Next, the light L1 propagating through the light guide 13 is repeatedly reflected between the first main surface 13b (light emission surface) and the second main surface 13c (reflection surface) as shown in FIG. Meanwhile, the light guide 13 travels in the light propagation direction Y (right side in FIG. 2). Assuming that the first main surface and the second main surface are parallel, the incident angle of the light to the first main surface and the second main surface does not change even if light is repeatedly reflected. However, in the case of the present embodiment, the light guide 13 has a wedge shape in which the thickness gradually decreases with increasing distance from the light incident surface 13a side, and the second main surface 13c has a predetermined inclination angle with respect to the first main surface 13b. Have.
Therefore, each time the light L1 is reflected by the first main surface 13b and the second main surface 13c, the incident angle on the first main surface 13b and the second main surface 13c becomes small.
 ここで、例えば導光体13を構成するアクリル樹脂の屈折率が1.5、空気の屈折率を1.0とすると、導光体13の第1主面13b(光射出面)における臨界角、すなわち導光体13を構成するアクリル樹脂と空気との界面における臨界角は、Snellの法則から42°程度となる。導光体13に入射した直後の光が第1主面13bに入射した際、第1主面13bへの光L1の入射角が臨界角である42°よりも大きい間は全反射条件を満たすため、光L1は第1主面13bで全反射する。その後、光L1が第1主面13bと第2主面13cとの間で反射を繰り返し、第1主面13bへの光L1の入射角が臨界角である42°よりも小さくなった時点で全反射条件を満たさなくなり、光L1は外部空間に射出される。 Here, for example, when the refractive index of the acrylic resin constituting the light guide 13 is 1.5 and the refractive index of air is 1.0, the critical angle on the first main surface 13b (light emission surface) of the light guide 13 is shown. That is, the critical angle at the interface between the acrylic resin constituting the light guide 13 and the air is about 42 ° from Snell's law. When the light immediately after entering the light guide 13 enters the first main surface 13b, the total reflection condition is satisfied as long as the incident angle of the light L1 on the first main surface 13b is larger than 42 ° which is a critical angle. Therefore, the light L1 is totally reflected by the first main surface 13b. Thereafter, when the light L1 is repeatedly reflected between the first main surface 13b and the second main surface 13c, the incident angle of the light L1 to the first main surface 13b becomes smaller than 42 ° which is a critical angle. The total reflection condition is not satisfied, and the light L1 is emitted to the external space.
 すなわち、光L1は、第1主面13bへの入射角が臨界角よりも大きい間は導光体13の内部に閉じ込められ、第1主面13bへの入射角が臨界角よりも小さくなった時点で第1主面13bから順次射出される。光L1は第1主面13bから射出される際に屈折するので、第1主面13bへの入射角が42°程度の光は、射出角が70°程度の光となって射出される。このように、光の伝播方向Yに平行、かつ導光体13の光射出面13bに垂直な平面(yz平面)内で見たとき、光L1は導光体13に入射した時点では指向性を持たないが、導光体13から射出する時点では高い指向性を有する。 That is, the light L1 is confined inside the light guide 13 while the incident angle on the first main surface 13b is larger than the critical angle, and the incident angle on the first main surface 13b becomes smaller than the critical angle. At the time, the first main surface 13b is sequentially ejected. Since the light L1 is refracted when emitted from the first main surface 13b, the light having an incident angle of about 42 ° to the first main surface 13b is emitted as light having an emission angle of about 70 °. Thus, when viewed in a plane (yz plane) parallel to the light propagation direction Y and perpendicular to the light exit surface 13b of the light guide 13, the light L1 is directional at the point of incidence on the light guide 13. However, it has high directivity at the time of emission from the light guide 13.
 導光体13から射出するときの光L1の射出角は70°程度であり、光L1はかなり水平に近い方向に射出される。したがって、プリズムシート14を用いて、導光体13から射出された光L1を導光体13の第1主面13bの法線方向に近い方向に立ち上げる。具体的には、先端角θ2が38.5°程度のプリズム構造体111を有するプリズムシート14を用い、光L1を、プリズム構造体111の第1面111aから入射させ、第2面111bで反射させることで、導光体13の第1主面13bに対して略法線方向に立ち上げることができる。 The emission angle of the light L1 when emitted from the light guide 13 is about 70 °, and the light L1 is emitted in a substantially horizontal direction. Therefore, using the prism sheet 14, the light L <b> 1 emitted from the light guide 13 is raised in a direction close to the normal direction of the first main surface 13 b of the light guide 13. Specifically, a prism sheet 14 having a prism structure 111 with a tip angle θ2 of about 38.5 ° is used, and light L1 is incident from the first surface 111a of the prism structure 111 and reflected by the second surface 111b. By doing so, the light guide 13 can be raised in a substantially normal direction with respect to the first main surface 13b.
 本実施形態の面光源装置11を、広い角度分布を有する拡散光を射出するモード、いわゆる広角モードで用いる場合、図5Aに示すように、第2のLED115を点灯させ、広角用光源部114から光を射出させればよい。この場合、xy平面において広い角度分布を有する拡散光L12が射出される。そして、拡散光L12の光路が導光体13とプリズムシート14の作用によりz軸方向に立ち上げられたとき、xz平面において広い角度分布を有する拡散光L12が射出される。 When the surface light source device 11 of the present embodiment is used in a mode in which diffused light having a wide angular distribution is emitted, so-called wide angle mode, the second LED 115 is turned on as shown in FIG. Light may be emitted. In this case, diffused light L12 having a wide angular distribution in the xy plane is emitted. When the optical path of the diffused light L12 is raised in the z-axis direction by the action of the light guide 13 and the prism sheet 14, the diffused light L12 having a wide angular distribution in the xz plane is emitted.
 これに対して、本実施形態の面光源装置11を、狭い角度分布を有する平行光に近い光を射出するモード、いわゆる高指向性モードで用いる場合、図5Cに示すように、第1のLED17を点灯させ、高指向性用光源部113から光を射出させればよい。この場合、xy平面において狭い角度分布を有する平行光に近い光L11が射出される。そして、光L11の光路が導光体13とプリズムシート14の作用によりz軸方向に立ち上げられたとき、xz平面において狭い角度分布を有する拡散光L11が射出される。 On the other hand, when the surface light source device 11 of the present embodiment is used in a mode in which light close to parallel light having a narrow angular distribution is emitted, that is, a so-called high directivity mode, as shown in FIG. Is turned on and light is emitted from the light source unit 113 for high directivity. In this case, light L11 close to parallel light having a narrow angular distribution in the xy plane is emitted. When the optical path of the light L11 is raised in the z-axis direction by the action of the light guide 13 and the prism sheet 14, the diffused light L11 having a narrow angular distribution in the xz plane is emitted.
 また、第1のLED17と第2のLED115とは点灯、消灯が独立に制御できるため、第1のLED17と第2のLED115とを同時に点灯させることも可能である。その場合、図5Bに示すように、広い角度分布を有する拡散光L12と狭い角度分布を有する平行光に近い光L11とが混在して導光体13から射出される。このとき、導光体13の第1主面13bの法線方向に多くの光が射出されつつ、全体として見れば、広い角度分布を有する射出光が得られる。したがって、第1のLED17と第2のLED115とを同時に点灯させた場合には広角モードとなる。 Further, since the first LED 17 and the second LED 115 can be controlled to be turned on and off independently, the first LED 17 and the second LED 115 can be turned on simultaneously. In this case, as shown in FIG. 5B, the diffused light L12 having a wide angular distribution and the light L11 close to parallel light having a narrow angular distribution are mixed and emitted from the light guide 13. At this time, a large amount of light is emitted in the normal direction of the first main surface 13b of the light guide 13, and as a whole, emitted light having a wide angular distribution is obtained. Therefore, when the first LED 17 and the second LED 115 are turned on simultaneously, the wide-angle mode is set.
 広角モード、高指向性モードのいずれの場合であっても、図示しないyz平面内の角度分布については、楔状の導光体13を用いた効果により、ある程度狭い角度分布を有する光が射出される。 Regardless of the wide angle mode or the high directivity mode, the angle distribution in the yz plane (not shown) emits light having a somewhat narrow angle distribution due to the effect of using the wedge-shaped light guide 13. .
 本発明者らは、本実施形態の面光源装置から射出される光の角度分布についてシミュレーションを行った。
 シミュレーションには、照明設計解析ソフトウェア:Light Tools(ver7.2)を用いた。
 シミュレーションの条件は、導光体13の平面寸法を130mm(x軸方向)×130mm(y軸方向)、シリンドリカルレンズ18の幅(x軸方向)を26mm、シリンドリカルレンズ18の光軸上の奥行き(y軸方向)を7.5mm、シリンドリカルレンズ18の高さ(z軸方向)を4mm、第1のLED17と第2のLED115との光射出面の幅(x軸方向)を1mm、第1のLED17と第2のLED115との光射出面の高さ(z軸方向)を4mm、とした。光線の本数を100000本、ディテクターのメッシュを1°間隔に設定した。
The present inventors performed a simulation on the angular distribution of light emitted from the surface light source device of this embodiment.
For the simulation, lighting design analysis software: Light Tools (ver. 7.2) was used.
The simulation conditions are as follows: the planar dimension of the light guide 13 is 130 mm (x-axis direction) × 130 mm (y-axis direction), the width of the cylindrical lens 18 (x-axis direction) is 26 mm, and the depth on the optical axis of the cylindrical lens 18 ( y-axis direction) is 7.5 mm, the height of the cylindrical lens 18 (z-axis direction) is 4 mm, the width of the light emission surface of the first LED 17 and the second LED 115 (x-axis direction) is 1 mm, the first The height (z-axis direction) of the light emission surface of the LED 17 and the second LED 115 was 4 mm. The number of rays was set to 100,000, and the detector mesh was set at 1 ° intervals.
 図6は、x軸方向における角度分布を広角モードと高指向性モードとで比較した図である。図6の横軸は、導光体13の第1主面13bの法線方向を基準(0°)とした極角(°)を示す。図6の縦軸は、最大輝度値を1として規格化した輝度を示す。図6の実線は、広角モードでの角度分布を示す。図6の破線は、高指向性モードでの角度分布を示す。 FIG. 6 is a diagram comparing the angle distribution in the x-axis direction between the wide angle mode and the high directivity mode. The horizontal axis in FIG. 6 represents the polar angle (°) with the normal direction of the first main surface 13b of the light guide 13 as a reference (0 °). The vertical axis in FIG. 6 indicates the luminance normalized with the maximum luminance value being 1. The solid line in FIG. 6 shows the angle distribution in the wide angle mode. The broken line in FIG. 6 shows the angular distribution in the high directivity mode.
 図6に示すように、本実施形態の面光源装置11は、広角モードにおいて、-60°から+60°程度の範囲の極角にわたって0.2以上の輝度となる広い角度分布を示す。これに対して、本実施形態の面光源装置11は、高指向性モードにおいては、-3°から+3°程度の範囲の極角にわたる狭い角度分布を示す。このようにして、本実施形態の面光源装置11は、広角モードと高指向性モードとで射出光の指向性を切り替えることができる。 As shown in FIG. 6, the surface light source device 11 of the present embodiment exhibits a wide angular distribution with a luminance of 0.2 or more over a polar angle in the range of −60 ° to + 60 ° in the wide-angle mode. In contrast, the surface light source device 11 of the present embodiment exhibits a narrow angular distribution over a polar angle in the range of about −3 ° to + 3 ° in the high directivity mode. In this way, the surface light source device 11 of the present embodiment can switch the directivity of the emitted light between the wide angle mode and the high directivity mode.
 図7は、高指向性モードにおける角度分布を、x軸方向とy軸方向とで比較した図である。図7の横軸は、導光体13の第1主面13bの法線方向を基準(0°)とした極角(°)を示す。図7の縦軸は、最大輝度値を1として規格化した輝度を示す。図7の破線は、x軸方向での輝度分布を示す。図7の実線は、y軸方向での輝度分布を示す。 FIG. 7 is a diagram comparing the angular distribution in the high directivity mode in the x-axis direction and the y-axis direction. The horizontal axis in FIG. 7 indicates the polar angle (°) with the normal direction of the first main surface 13b of the light guide 13 as a reference (0 °). The vertical axis in FIG. 7 indicates the luminance normalized with the maximum luminance value being 1. A broken line in FIG. 7 indicates a luminance distribution in the x-axis direction. The solid line in FIG. 7 shows the luminance distribution in the y-axis direction.
 図7に示すように、x軸方向の角度分布は、図6に示す角度分布と同じものである。すなわち、本実施形態の面光源装置11は、-3°から+3°程度の範囲の極角にわたる狭い角度分布を示す。これに対して、本実施形態の面光源装置11は、y軸方向の角度分布については、x軸方向の角度分布に比べると広がるものの、-10°から+20°程度の範囲の極角にわたる狭い角度分布を示す。なお、y軸方向の角度分布が非対称となるのは、射出光の光路をプリズムシート14で垂直方向に立ち上げたとしても、まだ立ち上げきれず、導光体13の端面13aと反対側(極角が正となる側)に向けて射出する光の割合が多いからと思われる。 As shown in FIG. 7, the angular distribution in the x-axis direction is the same as the angular distribution shown in FIG. That is, the surface light source device 11 of the present embodiment exhibits a narrow angular distribution over polar angles in the range of about −3 ° to + 3 °. In contrast, in the surface light source device 11 of the present embodiment, the angular distribution in the y-axis direction is wider than the angular distribution in the x-axis direction, but is narrow over a polar angle in the range of about −10 ° to + 20 °. An angular distribution is shown. Note that the angular distribution in the y-axis direction is asymmetric because even if the optical path of the emitted light is raised in the vertical direction by the prism sheet 14, it cannot be raised yet and is opposite to the end face 13 a of the light guide 13 ( This is probably because the proportion of light emitted toward the side where the polar angle is positive) is large.
 本実施形態の面光源装置11においては、2種類の指向性を切り替えるにあたって2組の導光体を用意し、これら2つの導光体を積層する必要がない。したがって、部品点数が多い、製造コストが高騰する、照明装置全体の厚さが厚くなる、などを解決することができる。また、指向性の切り替え前後で光の伝播方向が変わらないため、導光体13から射出される光の輝度を均一にするための設計が、どちらのLED17,115からの光に対しても有効に働く。したがって、指向性の切り替え前後で輝度を均一に保ちやすくなる。 In the surface light source device 11 of the present embodiment, it is not necessary to prepare two sets of light guides and to stack these two light guides when switching between two types of directivities. Therefore, it is possible to solve problems such as a large number of parts, a high manufacturing cost, and a large thickness of the entire lighting device. In addition, since the light propagation direction does not change before and after switching the directivity, the design for making the luminance of the light emitted from the light guide 13 uniform is effective for the light from either LED 17 or 115. To work. Therefore, it becomes easy to keep the luminance uniform before and after switching the directivity.
 本実施形態の場合、第1のLED17と第2のLED115とが背中合わせに配置されているため、凹面ミラー19の側から見ると、第2のLED115は第1のLED17の裏側に隠れた状態となる。そのため、第1のLED17を点灯させた際に、第1のLED17の裏側の領域はもともと影となる領域であるから、第2のLED115による影がそれ以上に増えることがない。 In the case of this embodiment, since the first LED 17 and the second LED 115 are arranged back to back, the second LED 115 is hidden from the back side of the first LED 17 when viewed from the concave mirror 19 side. Become. For this reason, when the first LED 17 is turned on, the area behind the first LED 17 is originally a shadow area, so that the shadow of the second LED 115 does not increase any more.
[第1変形例]
 上記実施形態では、楔状の導光体を用いたが、この構成に代えて、図8に示す導光体を用いてもよい。
 本変形例の面光源装置117の導光体118は、図8に示すように、第1主面118b(光射出面)と対向する第2主面118c側に複数のプリズム構造体119を備えている。各プリズム構造体119は、光の伝播方向Yと直交する方向に延在している。yz平面で切断した断面におけるプリズム構造体119の断面形状は直角三角形状である。プリズム構造体119は、導光体118の第1主面118bに対して直交する第1面119aと、第1面119aに対して所定の先端角θ2をなす第2面119bと、を有している。第2面119bは、導光体118の内部を伝播する光を反射させる反射面として機能する。
[First Modification]
In the above embodiment, a wedge-shaped light guide is used, but instead of this configuration, a light guide shown in FIG. 8 may be used.
As shown in FIG. 8, the light guide 118 of the surface light source device 117 of the present modification includes a plurality of prism structures 119 on the second main surface 118c side facing the first main surface 118b (light emission surface). ing. Each prism structure 119 extends in a direction orthogonal to the light propagation direction Y. The cross-sectional shape of the prism structure 119 in the cross section cut along the yz plane is a right triangle. The prism structure 119 includes a first surface 119a that is orthogonal to the first main surface 118b of the light guide 118, and a second surface 119b that forms a predetermined tip angle θ2 with respect to the first surface 119a. ing. The second surface 119b functions as a reflecting surface that reflects light propagating through the light guide 118.
 すなわち、楔状の導光体が連続した一つの反射面を有するのに対し、本変形例の導光体118は分割された複数の反射面を有する。したがって、本変形例の導光体118も、楔状の導光体と同様の作用により、射出光に高い指向性を与えることができる。 That is, while the wedge-shaped light guide has one continuous reflection surface, the light guide 118 of the present modification has a plurality of divided reflection surfaces. Therefore, the light guide 118 of this modification can also give high directivity to the emitted light by the same action as the wedge-shaped light guide.
[第2変形例]
 上記実施形態では、楔状の導光体を用いたが、この構成に代えて、図9に示す導光体を用いてもよい。
 本変形例の面光源装置121は、図9に示すように、第1主面122b(光射出面)と第2主面122cとが平行な平行平板からなる導光体122を備えている。導光体122の第2主面122cには、プリズム状の断面形状を有する複数の溝や印刷物(図示略)が設けられている。複数の溝や印刷物は、光源部12が設けられた端面122aに近い程密度が低く、端面122aから遠い程密度が高くなるように配置されている。導光体122を伝播する光は、複数の溝や印刷物によって反射角度を変更され、導光体122から射出される。
[Second Modification]
In the above embodiment, the wedge-shaped light guide is used, but instead of this configuration, the light guide shown in FIG. 9 may be used.
As shown in FIG. 9, the surface light source device 121 of the present modification includes a light guide body 122 formed of parallel flat plates in which a first main surface 122b (light emission surface) and a second main surface 122c are parallel. The second main surface 122c of the light guide 122 is provided with a plurality of grooves and printed matter (not shown) having a prismatic cross-sectional shape. The plurality of grooves and printed matter are arranged so that the density is lower as the distance from the end surface 122a provided with the light source unit 12 is lower, and the density is higher as the distance from the end surface 122a is longer. The light propagating through the light guide 122 is changed in reflection angle by a plurality of grooves and printed matter, and emitted from the light guide 122.
 本変形例の面光源装置121の場合も、指向性の切り替え前後で光の伝播方向Yが変わらないため、射出光の輝度を均一にするための複数の溝や印刷物の配置がどちらのLED17,115からの光に対しても有効に働く。したがって、指向性の切り替え前後で輝度を均一に保ちやすくなる。 Also in the case of the surface light source device 121 of this modification, the light propagation direction Y does not change before and after switching the directivity, and therefore, the arrangement of the plurality of grooves and printed matter for making the brightness of the emitted light uniform is which LED 17, It works effectively against the light from 115. Therefore, it becomes easy to keep the luminance uniform before and after switching the directivity.
[第2実施形態]
 以下、本発明の第2実施形態について、図10を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、光源部の構成が第1実施形態と異なる。
 図10は、本実施形態の面光源装置における光源部を示す斜視図である。図11は、本実施形態の面光源装置を示す平面図である。
 図10、図11において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
The basic configuration of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
FIG. 10 is a perspective view showing a light source unit in the surface light source device of this embodiment. FIG. 11 is a plan view showing the surface light source device of this embodiment.
In FIG. 10 and FIG. 11, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 第1実施形態では、第2のLEDが第1のLEDと背中合わせに配置されていた。これに対して、本実施形態の面光源装置124では、図10、図11に示すように、第2のLED115は、隣り合う2つの凹面ミラー19の境界に沿って配置されている。ただし、第2のLED115は、隣り合う2つの凹面ミラー19の全ての境界に配置されておらず、一つおきの境界に配置されている。本実施形態では、第1のLED17と第2のLED115を同じ大きさとしたが、第1実施形態のように異なっていてもよい。 In the first embodiment, the second LED is arranged back to back with the first LED. On the other hand, in the surface light source device 124 of this embodiment, as shown in FIGS. 10 and 11, the second LED 115 is disposed along the boundary between two adjacent concave mirrors 19. However, the second LEDs 115 are not arranged at every boundary between the two adjacent concave mirrors 19 but are arranged at every other boundary. In the present embodiment, the first LED 17 and the second LED 115 have the same size, but may be different as in the first embodiment.
 第2のLED115は、第1実施形態と同様、発光面115aが導光体13の端面13aを向くように配置されている。ただし、第2のLED115の発光面115aがシリンドリカルレンズ18の光射出面18aに対して充分な大きさを占める場合には、第2のLED115の発光面115aがシリンドリカルレンズ18を向いていてもよい。その場合、第2のLED115からの光L12は、シリンドリカルレンズ18に入射し、凹面ミラー19で反射した後に導光体13に入射する。ところが、第2のLED115の設置位置が凹面ミラー19の焦点から大きくずれているため、第2のLED115から射出されて凹面ミラー19で反射した光は平行化されることがない。その結果、第2のLED115の発光面115aをシリンドリカルレンズ18側に向けた場合も、第2のLED115からは拡散光が得られることになる。 2nd LED115 is arrange | positioned so that the light emission surface 115a may face the end surface 13a of the light guide 13 similarly to 1st Embodiment. However, when the light emitting surface 115a of the second LED 115 occupies a sufficient size with respect to the light emitting surface 18a of the cylindrical lens 18, the light emitting surface 115a of the second LED 115 may face the cylindrical lens 18. . In that case, the light L12 from the second LED 115 enters the cylindrical lens 18, is reflected by the concave mirror 19, and then enters the light guide 13. However, since the installation position of the second LED 115 is greatly deviated from the focal point of the concave mirror 19, the light emitted from the second LED 115 and reflected by the concave mirror 19 is not collimated. As a result, diffused light can be obtained from the second LED 115 even when the light emitting surface 115a of the second LED 115 faces the cylindrical lens 18 side.
 本実施形態においても、第1実施形態と同様、第1のLED17を点灯させることにより高指向性モードの照明が実現でき、第2のLED115を点灯させることにより広角モードの照明が実現できる。また、第1のLED17と第2のLED115とを同時に点灯させた場合、広角モードの照明が実現できる点も第1実施形態と同様である。 Also in this embodiment, as in the first embodiment, lighting in the high directivity mode can be realized by turning on the first LED 17, and lighting in the wide angle mode can be realized by turning on the second LED 115. Moreover, when the 1st LED17 and the 2nd LED115 are lighted simultaneously, the point which can implement | achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
 本実施形態においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
 その他、本実施形態特有の効果として、以下の点が挙げられる。
 シリンドリカルレンズ18から射出される光の輝度分布は、シリンドリカルレンズ18の中央部から射出される光の輝度が大きく、シリンドリカルレンズ18の端部から射出される光の輝度が小さくなる傾向を持っている。ここで、本実施形態の面光源装置124の場合、第2のLED115が隣り合う2つの凹面ミラー19の境界に沿って配置されている。したがって、広角モードにおいて第1のLED17と第2のLED115とを同時に点灯させたとすると、第1のLED17による光の輝度が小さい領域に第2のLED115からの光が照射される。その結果、輝度ムラを低減することができる。
In addition, the following points can be cited as effects unique to the present embodiment.
The luminance distribution of light emitted from the cylindrical lens 18 has a tendency that the luminance of light emitted from the central portion of the cylindrical lens 18 is large and the luminance of light emitted from the end portion of the cylindrical lens 18 is small. . Here, in the case of the surface light source device 124 of the present embodiment, the second LED 115 is disposed along the boundary between two adjacent concave mirrors 19. Therefore, if the first LED 17 and the second LED 115 are simultaneously turned on in the wide-angle mode, the light from the second LED 115 is applied to an area where the light intensity of the first LED 17 is low. As a result, luminance unevenness can be reduced.
[第1変形例]
 上記実施形態では、第2のLED115は、隣り合う2つの凹面ミラー19の境界のうち、一つおきの境界に配置されていた。この構成に代えて、第2のLED115を図12に示す配置としてもよい。
 本変形例の面光源装置26は、図12に示すように、第2のLED115が、隣り合う2つの凹面ミラー19の境界の全てに配置されている。したがって、一つの面光源装置26において、第1のLED17の数と第2のLED115の数は同じでもよいし、異なっていてもよい。
[First Modification]
In the said embodiment, 2nd LED115 was arrange | positioned at every other boundary among the boundaries of the adjacent two concave mirrors 19. FIG. Instead of this configuration, the second LED 115 may be arranged as shown in FIG.
In the surface light source device 26 of this modification, as shown in FIG. 12, the second LEDs 115 are arranged on all the boundaries between two adjacent concave mirrors 19. Therefore, in one surface light source device 26, the number of the first LEDs 17 and the number of the second LEDs 115 may be the same or different.
[第3実施形態]
 以下、本発明の第3実施形態について、図13、図14A、及び図14Bを用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、光源部の構成が第1実施形態と異なる。
 図13は、本実施形態の面光源装置における光源部を示す斜視図である。図14Aは、本実施形態の面光源装置を示す側面図である。図14Bは、本実施形態の面光源装置を示す平面図である。
 図13、図14A、及び図14Bにおいて、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 13, 14A, and 14B.
The basic configuration of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
FIG. 13 is a perspective view showing a light source unit in the surface light source device of this embodiment. FIG. 14A is a side view showing the surface light source device of the present embodiment. FIG. 14B is a plan view showing the surface light source device of the present embodiment.
In FIG. 13, FIG. 14A, and FIG. 14B, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and description is abbreviate | omitted.
 第1実施形態では、第2のLEDが第1のLEDと背中合わせに配置されていた。これに対して、本実施形態の面光源装置128では、図13、図14A、及び図14Bに示すように、第2のLED115は、シリンドリカルレンズ18の上面および下面と平行な方向に沿って配置されている。したがって、第1のLED17と第2のLED115とは、互いの長手方向が直交するように配置される。 In the first embodiment, the second LED is arranged back to back with the first LED. On the other hand, in the surface light source device 128 of the present embodiment, as shown in FIGS. 13, 14A, and 14B, the second LED 115 is arranged along a direction parallel to the upper surface and the lower surface of the cylindrical lens 18. Has been. Therefore, the first LED 17 and the second LED 115 are arranged so that their longitudinal directions are orthogonal to each other.
 凹面ミラー19は、図14Aに示すように、yz平面で切断したときの断面形状が直線形状であって、導光体13の第1主面3aに垂直な方向には曲率を持っていない。これにより、xy平面においては、凹面ミラー19は、z軸方向に沿って連続して存在する焦点を有するが、yz平面においては、凹面ミラー19は、x軸方向に沿って連続して存在する焦点を有していない。したがって、第1のLED17がz軸方向に沿って配置されている場合、第1のLED17の発光面17aは凹面ミラー19の焦点と一致する。一方、第2のLED115がx軸方向に沿って配置されている場合、第2のLED115の発光面115aは凹面ミラー19の焦点からずれた位置となる。 As shown in FIG. 14A, the concave mirror 19 has a straight cross-sectional shape when cut along the yz plane, and has no curvature in a direction perpendicular to the first main surface 3 a of the light guide 13. Thus, in the xy plane, the concave mirror 19 has a focal point that continuously exists along the z-axis direction, but in the yz plane, the concave mirror 19 exists continuously along the x-axis direction. Has no focus. Therefore, when the first LED 17 is arranged along the z-axis direction, the light emitting surface 17 a of the first LED 17 coincides with the focal point of the concave mirror 19. On the other hand, when the second LED 115 is arranged along the x-axis direction, the light emitting surface 115 a of the second LED 115 is shifted from the focal point of the concave mirror 19.
 第2のLED115は、第1実施形態と同様、発光面115aが導光体13の端面13aを向くように配置されている。ただし、第2のLED115は、発光面115aがシリンドリカルレンズ18を向くくように配置されていてもよい。その場合、第2のLED115からの光は、シリンドリカルレンズ18に入射し、凹面ミラー19で反射した後に導光体13に入射する。ところが、第2のLED115の発光面115aが凹面ミラー19の焦点からずれているため、第2のLED115から射出されて凹面ミラー19で反射した光は平行化されることがない。その結果、第2のLED115の発光面115aをシリンドリカルレンズ18側に向けた場合も、第2のLED115からは拡散光が得られることになる。 2nd LED115 is arrange | positioned so that the light emission surface 115a may face the end surface 13a of the light guide 13 similarly to 1st Embodiment. However, the second LED 115 may be arranged such that the light emitting surface 115a faces the cylindrical lens 18. In that case, the light from the second LED 115 enters the cylindrical lens 18, is reflected by the concave mirror 19, and then enters the light guide 13. However, since the light emitting surface 115a of the second LED 115 is shifted from the focal point of the concave mirror 19, the light emitted from the second LED 115 and reflected by the concave mirror 19 is not collimated. As a result, diffused light can be obtained from the second LED 115 even when the light emitting surface 115a of the second LED 115 faces the cylindrical lens 18 side.
 本実施形態においても、第1実施形態と同様、第1のLED17を点灯させることにより高指向性モードの照明が実現でき、第2のLED115を点灯させることにより広角モードの照明が実現できる。また、第1のLED17と第2のLED115とを同時に点灯させた場合、広角モードの照明が実現できる点も第1実施形態と同様である。 Also in this embodiment, as in the first embodiment, lighting in the high directivity mode can be realized by turning on the first LED 17, and lighting in the wide angle mode can be realized by turning on the second LED 115. Moreover, when the 1st LED17 and the 2nd LED115 are lighted simultaneously, the point which can implement | achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
 本実施形態においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
[第1変形例]
 上記実施形態では、一つの第2のLEDがx軸方向に沿って配置されていた。この構成に代えて、第2のLEDを図15に示す構成としてもよい。
 本変形例の光源130は、図15に示すように、複数個の第2のLED115がx軸方向に沿って所定の間隔をおいて配置されている。このように、複数個の第2のLED115を、点光源のように、シリンドリカルレンズ18の上面および下面と平行な方向に沿って配置してもよい。
[First Modification]
In the said embodiment, one 2nd LED was arrange | positioned along the x-axis direction. Instead of this configuration, the second LED may be configured as shown in FIG.
As shown in FIG. 15, the light source 130 according to the present modification includes a plurality of second LEDs 115 arranged at predetermined intervals along the x-axis direction. Thus, you may arrange | position several 2nd LED115 along the direction parallel to the upper surface and lower surface of the cylindrical lens 18 like a point light source.
[第4実施形態]
 以下、本発明の第4実施形態について、図16、図17を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、光源部の構成が第1実施形態と異なる。
 図16は、本実施形態の面光源装置における光源部を示す斜視図である。図17は、本実施形態の面光源装置を示す平面図である。
 図16、図17において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS. 16 and 17.
The basic configuration of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
FIG. 16 is a perspective view showing a light source unit in the surface light source device of this embodiment. FIG. 17 is a plan view showing the surface light source device of this embodiment.
In FIG. 16 and FIG. 17, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and description is abbreviate | omitted.
 本実施形態の面光源装置32の光源部33において、図16、図17に示すように、第2のLED115は、複数のシリンドリカルレンズ18に跨って、各シリンドリカルレンズ18の上面および下面と平行な方向に長く延在して配置されている。 In the light source unit 33 of the surface light source device 32 of the present embodiment, as shown in FIGS. 16 and 17, the second LED 115 extends across the plurality of cylindrical lenses 18 and is parallel to the upper and lower surfaces of each cylindrical lens 18. It is arranged to extend long in the direction.
 第2のLED115は、第1実施形態と同様、発光面115aが導光体13の端面13aを向くように配置されている。ただし、第2のLED115は、発光面115aがシリンドリカルレンズ18を向くように配置されていてもよい。上述したように、第2のLED115の発光面115aをシリンドリカルレンズ18側に向けた場合も、第2のLED115からは拡散光が得られる。 2nd LED115 is arrange | positioned so that the light emission surface 115a may face the end surface 13a of the light guide 13 similarly to 1st Embodiment. However, the second LED 115 may be arranged such that the light emitting surface 115a faces the cylindrical lens 18. As described above, even when the light emitting surface 115a of the second LED 115 is directed toward the cylindrical lens 18, the diffused light can be obtained from the second LED 115.
 第1のLED17は、隣り合うシリンドリカルレンズ18において、シリンドリカルレンズ18の上部もしくは下部に交互に配置されている。第1のLED17は、凹面ミラー19の焦点に位置していればよいため、必ずしもシリンドリカルレンズ18の上面および下面と垂直な方向(z軸方向)に長く延在している必要はなく、このように点光源として設置されていてもよい。 1st LED17 is alternately arrange | positioned in the upper part or the lower part of the cylindrical lens 18 in the cylindrical lens 18 adjacent. Since the first LED 17 only needs to be positioned at the focal point of the concave mirror 19, it does not necessarily have to extend long in the direction (z-axis direction) perpendicular to the upper surface and the lower surface of the cylindrical lens 18. It may be installed as a point light source.
 本実施形態においても、第1実施形態と同様、第1のLED17を点灯させることにより高指向性モードの照明が実現でき、第2のLED115を点灯させることにより広角モードの照明が実現できる。また、第1のLED17と第2のLED115とを同時に点灯させた場合、広角モードの照明が実現できる点も第1実施形態と同様である。 Also in this embodiment, as in the first embodiment, lighting in the high directivity mode can be realized by turning on the first LED 17, and lighting in the wide angle mode can be realized by turning on the second LED 115. Moreover, when the 1st LED17 and the 2nd LED115 are lighted simultaneously, the point which can implement | achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
 本実施形態においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
[第5実施形態]
 以下、本発明の第5実施形態について、図18~図21を用いて説明する。
 本実施形態の面光源装置の導光体の構成は第1実施形態と同様であり、光源部の構成が第1実施形態と異なる。
 図18は、本実施形態の面光源装置における光源部を示す斜視図である。図19Aは、光源部の平面図である。図19Bは、光源部の側面図である。図20は、高指向性用光源部における光の作用を説明するための図である。図21は、本実施形態の効果を説明するための図である。
 図18~図21において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fifth Embodiment]
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS.
The configuration of the light guide of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
FIG. 18 is a perspective view showing a light source unit in the surface light source device of this embodiment. FIG. 19A is a plan view of the light source unit. FIG. 19B is a side view of the light source unit. FIG. 20 is a diagram for explaining the action of light in the light source unit for high directivity. FIG. 21 is a diagram for explaining the effect of the present embodiment.
18 to 21, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
 本実施形態の面光源装置135において、光源部136は、図18、図19Bに示すように、導光体13の厚さ方向(z軸方向)に積層された高指向性用光源部137(第1の光源部)と広角用光源部138(第2の光源部)とから構成されている。本実施形態では、上段に高指向性用光源部137が配置され、下段に広角用光源部138が配置されている。ただし、これとは逆に、上段に広角用光源部138が配置され、下段に高指向性用光源部137が配置されていてもよい。 In the surface light source device 135 of the present embodiment, the light source unit 136 includes a high directivity light source unit 137 (stacked in the thickness direction (z-axis direction) of the light guide 13 as shown in FIGS. 18 and 19B. The first light source unit) and a wide-angle light source unit 138 (second light source unit). In the present embodiment, the high directivity light source unit 137 is arranged in the upper stage, and the wide angle light source unit 138 is arranged in the lower stage. However, conversely, the wide-angle light source unit 138 may be disposed in the upper stage, and the high directivity light source unit 137 may be disposed in the lower stage.
 高指向性用光源部137は、図18、図19Aに示すように、第1のLED17(第1の発光素子)と、楔形導光棒139(反射素子または角度分布変換部材ともいう)と、入射角調整用プリズム140と、を備えている。第1のLED17は、楔形導光棒139の長手方向の端面139aに設けられている。
 第1のLED17は楔形導光棒139と当接し、発光面17aが楔形導光棒139の端面139aを向くように固定されている。入射角調整用プリズム140は、楔形導光棒139と導光体13との間に配置されている。第1のLED17には、拡散光を射出する一般のLEDを用いることができる。 
As shown in FIGS. 18 and 19A, the high directivity light source unit 137 includes a first LED 17 (first light emitting element), a wedge-shaped light guide rod 139 (also referred to as a reflective element or an angle distribution conversion member), And an incident angle adjusting prism 140. The first LED 17 is provided on the end surface 139 a in the longitudinal direction of the wedge-shaped light guide bar 139.
The first LED 17 is in contact with the wedge-shaped light guide rod 139, and is fixed so that the light emitting surface 17a faces the end surface 139a of the wedge-shaped light guide rod 139. The incident angle adjusting prism 140 is disposed between the wedge-shaped light guide rod 139 and the light guide 13. As the first LED 17, a general LED that emits diffused light can be used.
 楔形導光棒139は、例えばアクリル樹脂等の光透過性を有する樹脂からなる棒体である。楔形導光棒139の構成材料は、導光体13と同様のものを用いることができる。楔形導光棒139は、第1のLED17が設けられた端面139aに近い側から遠い側に向けて幅(y軸方向の寸法)が徐々に狭くなる楔形の形状を有している。すなわち、図19Aに示すように、導光体13の第1主面3aの法線方向から見たときの楔形導光棒139の平面形状は直角三角形である。楔形導光棒139の端面139aは、第1のLED17から射出された光を入射させる光入射面である。楔形導光棒139の第1側面139b(図19Aにおける端面139aに垂直な面)は、内部に入射した光を射出させる光射出面である。 The wedge-shaped light guide rod 139 is a rod body made of a resin having optical transparency such as acrylic resin. As the constituent material of the wedge-shaped light guide rod 139, the same material as that of the light guide 13 can be used. The wedge-shaped light guide rod 139 has a wedge shape in which the width (dimension in the y-axis direction) gradually decreases from the side closer to the end surface 139a provided with the first LED 17 toward the far side. That is, as shown in FIG. 19A, the planar shape of the wedge-shaped light guide bar 139 when viewed from the normal direction of the first main surface 3a of the light guide 13 is a right triangle. The end surface 139a of the wedge-shaped light guide rod 139 is a light incident surface on which light emitted from the first LED 17 is incident. The first side surface 139b of the wedge-shaped light guide rod 139 (a surface perpendicular to the end surface 139a in FIG. 19A) is a light emitting surface that emits light incident on the inside.
 楔形導光棒139の第1側面139bに対向する第2側面139c(図19Aにおける斜面)は、光の伝播方向Xにおいて第1側面139bに対して一定の傾斜角をもって傾斜した傾斜面である。第2側面139cには、例えばアルミニウム等の光反射率の高い金属膜からなる反射ミラーが設けられていてもよい。その場合、反射ミラーは、楔形導光棒139の第2側面139cに直接形成された金属膜であっても良いし、楔形導光棒139とは別体に作製した反射板を貼り合わせた構成であっても良い。 The second side surface 139c (the inclined surface in FIG. 19A) facing the first side surface 139b of the wedge-shaped light guide rod 139 is an inclined surface that is inclined with a certain inclination angle with respect to the first side surface 139b in the light propagation direction X. The second side surface 139c may be provided with a reflection mirror made of a metal film having a high light reflectance such as aluminum. In that case, the reflection mirror may be a metal film directly formed on the second side surface 139c of the wedge-shaped light guide rod 139, or a configuration in which a reflector made separately from the wedge-shaped light guide rod 139 is bonded. It may be.
 入射角調整用プリズム140は、複数のプリズム構造体141が一面に設けられたものである。入射角調整用プリズム140は、複数のプリズム構造体141が設けられた面が楔形導光棒139の光射出面39bに対向するように配置されている。xy平面で切断した断面におけるプリズム構造体141の断面形状は直角三角形状である。プリズム構造体141は、楔形導光棒139の光射出面39bに対して直交する第1面141aと、第1面141aに対して所定の先端角θ13をなす第2面141bと、を有している。 The incident angle adjusting prism 140 includes a plurality of prism structures 141 provided on one surface. The incident angle adjusting prism 140 is disposed such that the surface on which the plurality of prism structures 141 are provided faces the light exit surface 39b of the wedge-shaped light guide rod 139. The cross-sectional shape of the prism structure 141 in the cross section cut along the xy plane is a right triangle. The prism structure 141 has a first surface 141a orthogonal to the light exit surface 39b of the wedge-shaped light guide rod 139, and a second surface 141b that forms a predetermined tip angle θ13 with respect to the first surface 141a. ing.
 広角用光源部138は、図18、図19Aに示すように、3個の第2のLED115を備えている。本実施形態では、第2のLED115として3個のLEDを用いるが、LEDの個数は特に限定されない。第2のLED115は、発光面115aが導光体13の端面13aに向くように配置されている。したがって、第2のLED115から射出された光は、楔形導光棒139や入射角調整用プリズム140を通ることなく、導光体13に入射する。第2のLED115には、拡散光を射出する一般のLEDを用いることができる。 The wide-angle light source unit 138 includes three second LEDs 115 as shown in FIGS. 18 and 19A. In the present embodiment, three LEDs are used as the second LED 115, but the number of LEDs is not particularly limited. The second LED 115 is disposed so that the light emitting surface 115 a faces the end surface 13 a of the light guide 13. Therefore, the light emitted from the second LED 115 enters the light guide 13 without passing through the wedge-shaped light guide rod 139 and the incident angle adjusting prism 140. As the second LED 115, a general LED that emits diffused light can be used.
 以下、上記構成の面光源装置135の作用について説明する。
 最初に、高指向性用光源部137について、図20を用いて説明する。
 第1のLED17から射出された光L11は、楔形導光棒139に入射し、楔形導光棒139の内部をx軸方向に伝播する。楔形導光棒139の内部を伝播する光L11は、図20に示すように、第1側面139b(光射出面)と第2側面139c(反射面)との間で反射を繰り返しつつ、楔形導光棒139の内部を光の伝播方向X(図20の上側)に向けて進行する。仮に第1側面と第2側面とが平行であったとすると、光が反射を繰り返しても、第1側面および第2側面への光の入射角は変化しない。ところが、楔形導光棒139は端面139a側から離れるにつれて幅が徐々に狭くなっている。すなわち、第1側面139bに対して第2側面139cが所定の傾斜角を有している。そのため、光L11は、第1側面139bおよび第2側面139cで反射する毎に第1側面139bおよび第2側面139cへの入射角が小さくなる。
Hereinafter, the operation of the surface light source device 135 having the above configuration will be described.
First, the light source unit 137 for high directivity will be described with reference to FIG.
The light L11 emitted from the first LED 17 enters the wedge-shaped light guide rod 139 and propagates in the x-axis direction through the inside of the wedge-shaped light guide rod 139. As shown in FIG. 20, the light L11 propagating through the inside of the wedge-shaped light guide rod 139 is repeatedly reflected between the first side surface 139b (light emitting surface) and the second side surface 139c (reflecting surface) while being guided by the wedge shape. The light rod 139 travels in the light propagation direction X (upper side in FIG. 20). If the first side surface and the second side surface are parallel to each other, the incident angle of the light to the first side surface and the second side surface does not change even if light is repeatedly reflected. However, the width of the wedge-shaped light guide bar 139 gradually decreases as the distance from the end face 139a side increases. That is, the second side surface 139c has a predetermined inclination angle with respect to the first side surface 139b. Therefore, each time the light L11 is reflected by the first side surface 139b and the second side surface 139c, the incident angle to the first side surface 139b and the second side surface 139c becomes small.
 ここで、例えば楔形導光棒139を構成するアクリル樹脂の屈折率が1.5、空気の屈折率を1.0とすると、楔形導光棒139の第1側面139b(光射出面)における臨界角、すなわち楔形導光棒139を構成するアクリル樹脂と空気との界面における臨界角は、Snellの法則から42°程度となる。楔形導光棒139に入射した直後の光が第1側面139bに入射した際、第1側面139bへの光L11の入射角が臨界角である42°よりも大きい間は全反射条件を満たすため、光L11は第1側面139bで全反射する。その後、光L11が第1側面139bと第2側面139cとの間で反射を繰り返し、第1側面139bへの光L11の入射角が臨界角である42°よりも小さくなった時点で全反射条件を満たさなくなり、光L11は第1側面139bから外部空間に射出される。 Here, for example, when the refractive index of the acrylic resin constituting the wedge-shaped light guide rod 139 is 1.5 and the refractive index of air is 1.0, the criticality at the first side surface 139b (light emission surface) of the wedge-shaped light guide rod 139 is determined. The critical angle at the interface between the acrylic resin and the air constituting the wedge-shaped light guide rod 139 is about 42 ° from Snell's law. When the light immediately after entering the wedge-shaped light guide rod 139 enters the first side surface 139b, the total reflection condition is satisfied as long as the incident angle of the light L11 on the first side surface 139b is larger than 42 ° which is a critical angle. The light L11 is totally reflected by the first side surface 139b. Thereafter, the light L11 is repeatedly reflected between the first side surface 139b and the second side surface 139c, and when the incident angle of the light L11 to the first side surface 139b becomes smaller than 42 ° which is a critical angle, the total reflection condition The light L11 is emitted from the first side surface 139b to the external space.
 すなわち、光L11は、第1側面139bへの入射角が臨界角よりも大きい間は楔形導光棒139の内部に閉じ込められ、第1側面139bへの入射角が臨界角よりも小さくなった時点で第1側面139bから順次射出される。光L11は第1側面139bから射出される際に屈折するので、第1側面139bへの入射角が42°程度の光は、射出角が70°程度の光となって射出される。このようにして、光の伝播方向Xに平行、かつ楔形導光棒139の光射出面39bに垂直な平面(xy平面)内で見たとき、光L1は楔形導光棒139に入射した時点では指向性を持たないが、楔形導光棒139から射出する時点では高い指向性を有することになる。 That is, the light L11 is confined inside the wedge-shaped light guide rod 139 while the incident angle on the first side surface 139b is larger than the critical angle, and the incident angle on the first side surface 139b becomes smaller than the critical angle. Are sequentially ejected from the first side surface 139b. Since the light L11 is refracted when emitted from the first side surface 139b, light having an incident angle of about 42 ° to the first side surface 139b is emitted as light having an emission angle of about 70 °. In this way, when the light L1 enters the wedge-shaped light guide rod 139 when viewed in a plane (xy plane) parallel to the light propagation direction X and perpendicular to the light exit surface 39b of the wedge-shaped light guide rod 139. However, it does not have directivity, but has high directivity at the time of emission from the wedge-shaped light guide rod 139.
 楔形導光棒139から射出するときの光L11の射出角は70°程度であり、光L11は楔形導光棒139の先端側に向けて射出される。したがって、入射角調整用プリズム140を用いて、楔形導光棒139から射出された光L11を導光体13の端面13a(光入射端面)の法線方向に近い方向に立ち上げる。具体的には、先端角θ2が38.5°程度のプリズム構造体141を有する入射角調整用プリズム140を用い、光L11を、プリズム構造体141の第1面141aから入射させ、第2面141bで反射させることで、導光体13の端面13aに対して略法線方向に立ち上げることができる。このようにして、入射角調整用プリズム140は、高い指向性を保ったまま、導光体13の端面13aに入射する光の入射角を調整することができる。 The emission angle of the light L11 when emitted from the wedge-shaped light guide rod 139 is about 70 °, and the light L11 is emitted toward the distal end side of the wedge-shaped light guide rod 139. Therefore, using the incident angle adjusting prism 140, the light L11 emitted from the wedge-shaped light guide rod 139 is raised in a direction close to the normal direction of the end face 13a (light incident end face) of the light guide 13. Specifically, using the incident angle adjusting prism 140 having the prism structure 141 with the tip angle θ2 of about 38.5 °, the light L11 is incident from the first surface 141a of the prism structure 141, and the second surface. By reflecting at 141 b, the light guide 13 can be raised in a substantially normal direction with respect to the end face 13 a. In this way, the incident angle adjusting prism 140 can adjust the incident angle of light incident on the end surface 13a of the light guide 13 while maintaining high directivity.
 一方、広角用光源部138については、図18に示すように、第2のLED115の発光面115aから発せられた光L12は、所定の拡散角をもって導光体13に入射する。したがって、広角用光源部138から射出された光L12の角度分布は、高指向性用光源部137から射出された光L11の角度分布よりも広くなる。 On the other hand, as for the wide-angle light source unit 138, as shown in FIG. 18, the light L12 emitted from the light emitting surface 115a of the second LED 115 enters the light guide 13 with a predetermined diffusion angle. Therefore, the angular distribution of the light L12 emitted from the wide-angle light source unit 138 is wider than the angular distribution of the light L11 emitted from the high-directivity light source unit 137.
 以上をまとめると、高指向性用光源部137については、入射角調整用プリズム140から射出された時点において、光L11は、導光体13の光射出面13bに平行な平面(xy平面)内でのみ高い指向性を持ち、導光体内部での光の伝播方向に平行、かつ導光体13の光射出面13bに垂直な平面(yz平面)内では指向性を持たない。このような光L1が、光入射面(端面)3aから導光体13に入射され、導光体13の内部を伝播する。 In summary, in the light source unit 137 for high directivity, the light L11 is in a plane (xy plane) parallel to the light exit surface 13b of the light guide 13 when it is emitted from the incident angle adjusting prism 140. In the plane (yz plane) parallel to the light propagation direction inside the light guide and perpendicular to the light exit surface 13b of the light guide 13, it has no directivity. Such light L <b> 1 enters the light guide 13 from the light incident surface (end surface) 3 a and propagates inside the light guide 13.
 一方、広角用光源部138については、光L1は、導光体13の光射出面13bに平行な平面(xy平面)内、導光体13の内部での光の伝播方向に平行、かつ導光体13の光射出面13bに垂直な平面(yz平面)内の双方で指向性を持たない。このような光L1が、導光体13の内部を伝播する。 On the other hand, for the wide-angle light source unit 138, the light L1 is parallel to the light propagation direction in the plane (xy plane) parallel to the light exit surface 13b of the light guide 13 and inside the light guide 13. There is no directivity in both planes (yz plane) perpendicular to the light exit surface 13b of the light body 13. Such light L1 propagates in the light guide 13.
 以下、各光源部137,138からの光L11,L12が導光体13およびプリズムシート140から外部空間に射出されるまでの振る舞いは、第1実施形態と同様である。本実施形態においても、第1実施形態と同様、高指向性用光源部137の第1のLED5を点灯させることにより高指向性モードの照明が実現でき、広角用光源部138の第2のLED115を点灯させることにより広角モードの照明が実現できる。また、第1のLED17と第2のLED115とを同時に点灯させた場合、広角モードの照明が実現できる点も第1実施形態と同様である。 Hereinafter, the behavior until the lights L11 and L12 from the light source units 137 and 138 are emitted from the light guide 13 and the prism sheet 140 to the external space is the same as in the first embodiment. Also in the present embodiment, similarly to the first embodiment, lighting in the high directivity mode can be realized by turning on the first LED 5 of the light source unit 137 for high directivity, and the second LED 115 of the light source unit 138 for wide angle is realized. By turning on, wide-angle mode illumination can be realized. Moreover, when the 1st LED17 and the 2nd LED115 are lighted simultaneously, the point which can implement | achieve illumination of a wide angle mode is the same as that of 1st Embodiment.
 本実施形態においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
その他、本実施形態特有の効果として、以下の点が挙げられる。
 第1のLED17からの射出光に指向性を与える手段として、第1~第4実施形態のような凹面ミラー19およびシリンドリカルレンズ18を用いた場合、図21の右側に示すように、凹面ミラー19およびシリンドリカルレンズ18の曲面形状に起因して、導光体内部の光の伝播方向(y軸方向)の光源16の寸法はある程度大きくなる。これに対して、本実施形態のような楔形導光棒139を用いた場合、図21の左側に示すように、x軸方向の寸法を同じにしたとしても、導光体内部の光の伝播方向(y軸方向)の寸法を凹面ミラー19の場合に比べて小さくすることができる。その結果、本実施形態によれば、面光源装置の小型化を図ることができる。
In addition, the following points can be cited as effects unique to the present embodiment.
When the concave mirror 19 and the cylindrical lens 18 as in the first to fourth embodiments are used as means for giving directivity to the light emitted from the first LED 17, as shown on the right side of FIG. Due to the curved surface shape of the cylindrical lens 18, the dimension of the light source 16 in the light propagation direction (y-axis direction) inside the light guide is increased to some extent. On the other hand, when the wedge-shaped light guide rod 139 as in this embodiment is used, even if the dimensions in the x-axis direction are the same as shown on the left side of FIG. The dimension in the direction (y-axis direction) can be made smaller than that of the concave mirror 19. As a result, according to this embodiment, it is possible to reduce the size of the surface light source device.
[第1変形例]
 上記実施形態の面光源装置は、高指向性用光源部として、第1のLEDと楔形導光棒からなるユニットを1組備えていた。この構成に代えて、高指向性用光源部を図22に示す構成としてもよい。
 本変形例の面光源装置143は、図22に示すように、高指向性用光源部137として、第1のLED17と楔形導光棒139とからなるユニットを複数組備えている。本変形例では、3組のユニットを備えているが、ユニットの数は特に限定されない。
[First Modification]
The surface light source device of the said embodiment was provided with 1 set of units which consist of 1st LED and a wedge-shaped light guide rod as a high directivity light source part. Instead of this configuration, the light source unit for high directivity may be configured as shown in FIG.
As shown in FIG. 22, the surface light source device 143 according to the present modification includes a plurality of units each including a first LED 17 and a wedge-shaped light guide rod 139 as the light source unit 137 for high directivity. In this modification, three sets of units are provided, but the number of units is not particularly limited.
 本変形例の面光源装置143によれば、第1のLED17の数が上記実施形態の面光源装置に比べて多くなるため、高指向性用光源部137から射出される光の量を増やすことができる。 According to the surface light source device 143 of the present modification, the number of the first LEDs 17 is larger than that of the surface light source device of the above embodiment, and thus the amount of light emitted from the high directivity light source unit 137 is increased. Can do.
[第2変形例]
 上記実施形態では、第1のLEDからの射出光に指向性を与える手段として、楔状導光棒139を用いたが、これに代えて、図23に示す導光棒を用いてもよい。
 本変形例の高指向性用光源部145は、図23に示すように、導光棒146と、導光棒146の長手方向の端面に設けられた第1のLED17と、を備えている。導光棒146は、第1側面146b(光射出面)と対向する第2側面146c側に複数のプリズム構造体147が設けられている。プリズム構造体147の平面形状は直角三角形状である。プリズム構造体147は、第1面147aと、第1面147aに対して所定の先端角をなす第2面147bと、を有している。第2面147bは、導光棒146の内部を伝播する光を反射させる反射面として機能する。
[Second Modification]
In the above embodiment, the wedge-shaped light guide rod 139 is used as means for giving directivity to the light emitted from the first LED. However, instead of this, the light guide rod shown in FIG. 23 may be used.
As shown in FIG. 23, the light source unit 145 for high directivity of the present modification includes a light guide bar 146 and a first LED 17 provided on the end surface of the light guide bar 146 in the longitudinal direction. The light guide rod 146 is provided with a plurality of prism structures 147 on the second side surface 146c facing the first side surface 146b (light emission surface). The planar shape of the prism structure 147 is a right triangle. The prism structure 147 includes a first surface 147a and a second surface 147b that forms a predetermined tip angle with respect to the first surface 147a. The second surface 147 b functions as a reflecting surface that reflects light propagating through the light guide rod 146.
 すなわち、楔状導光棒139が連続した一つの反射面を有するのに対し、本変形例の導光棒146は分割された複数の反射面を有する。したがって、本変形例の導光棒146も、楔状導光棒139と同様の作用により、射出光に高い指向性を与えることができる。 That is, the wedge-shaped light guide rod 139 has one continuous reflection surface, whereas the light guide rod 146 of this modification has a plurality of divided reflection surfaces. Therefore, the light guide bar 146 of this modification can also give high directivity to the emitted light by the same action as the wedge-shaped light guide bar 139.
[第6実施形態]
 以下、本発明の第6実施形態について、図24、図25A、および図25Bを用いて説明する。
 本実施形態の面光源装置の導光体の構成は第1実施形態と同様であり、光源部の構成が第1実施形態と異なる。
 図24は、本実施形態の面光源装置における光源部を示す分解斜視図である。図25Aは、光源部の平面図である。図25Bは、光源部の側面図である。
 図24、図25A、及び図25Bにおいて、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Sixth Embodiment]
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIGS. 24, 25A, and 25B.
The configuration of the light guide of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
FIG. 24 is an exploded perspective view showing a light source unit in the surface light source device of this embodiment. FIG. 25A is a plan view of the light source unit. FIG. 25B is a side view of the light source unit.
24, FIG. 25A, and FIG. 25B, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and description is abbreviate | omitted.
 本実施形態の面光源装置149において、光源部150は、図24、図25Bに示すように、導光体13の厚さ方向(z軸方向)に積層された高指向性用光源部151(第1の光源部)と広角用光源部152(第2の光源部)とから構成されている。本実施形態では、下段に高指向性用光源部151が配置され、上段に広角用光源部152が配置されている。ただし、これとは逆に、下段に広角用光源部152が配置され、上段に高指向性用光源部151が配置されていてもよい。 In the surface light source device 149 of the present embodiment, the light source unit 150 includes a highly directional light source unit 151 (stacked in the thickness direction (z-axis direction) of the light guide 13 (see FIG. 24 and FIG. 25B). The first light source unit) and a wide-angle light source unit 152 (second light source unit). In the present embodiment, the light source unit 151 for high directivity is arranged at the lower stage, and the light source unit 152 for wide angle is arranged at the upper stage. However, conversely, the wide-angle light source unit 152 may be disposed in the lower stage, and the high directivity light source unit 151 may be disposed in the upper stage.
 高指向性用光源部151は、図24、図25Aに示すように、第1のLED17(第1の発光素子)と、楔形導光棒139(反射素子)と、入射角調整用プリズム140と、を備えている。すなわち、高指向性用光源部151の構成は第5実施形態と同一である。 As shown in FIGS. 24 and 25A, the high directivity light source unit 151 includes a first LED 17 (first light emitting element), a wedge-shaped light guide bar 139 (reflective element), and an incident angle adjusting prism 140. It is equipped with. That is, the configuration of the high directivity light source unit 151 is the same as that of the fifth embodiment.
 広角用光源部152は、第2のLED115(第2の発光素子)と、楔形導光棒139(反射素子)と、光散乱部材153と、を備えている。第2のLED115と楔形導光棒139とを備えただけの構成では、光の射出方向こそ異なるものの、高指向性用光源部151と同様に高い指向性の光が得られることになる。そこで、広角用光源部152においては、楔形導光棒139の光射出側に光散乱部材153が配置されている。光散乱部材153は、表面に光を散乱させるための加工が施された光透過性の部材である。光を散乱させるための加工は、具体的には印刷、研磨、凹凸形状の付与等の手法により行われている。なお、光散乱部材153の散乱特性は、前方散乱する光の割合をできるだけ多くし、後方散乱する光の割合をできるだけ少なくするように調整されることが望ましい。 The wide-angle light source unit 152 includes a second LED 115 (second light emitting element), a wedge-shaped light guide rod 139 (reflective element), and a light scattering member 153. In the configuration in which only the second LED 115 and the wedge-shaped light guide bar 139 are provided, light having a high directivity can be obtained in the same manner as the light source unit 151 for high directivity although the light emission direction is different. Therefore, in the wide-angle light source unit 152, the light scattering member 153 is disposed on the light emission side of the wedge-shaped light guide bar 139. The light scattering member 153 is a light-transmitting member that has been processed to scatter light on the surface. Specifically, the processing for scattering the light is performed by a technique such as printing, polishing, or providing an uneven shape. Note that it is desirable that the scattering characteristics of the light scattering member 153 be adjusted so that the proportion of light that is scattered forward is increased as much as possible, and the proportion of light that is scattered backward is minimized.
 高指向性用光源部151と広角用光源部152とは、第1のLED17と第2のLED115とが反対側に位置するように配置されている。したがって、高指向性用光源部151、広角用光源部152の各々の楔形導光棒139も逆向きに配置されている。この構成であれば、第1のLED17に電流を供給する配線(図示略)と第2のLED115に電流を供給する配線(図示略)が干渉しないため、好ましい。ただし、第1のLED17と第2のLED115とが同じ側に位置してもよい。 The light source unit 151 for high directivity and the light source unit 152 for wide angle are arranged so that the first LED 17 and the second LED 115 are located on the opposite sides. Therefore, the wedge-shaped light guide rods 139 of the high directivity light source 151 and the wide-angle light source 152 are also arranged in opposite directions. This configuration is preferable because the wiring (not shown) for supplying current to the first LED 17 and the wiring (not shown) for supplying current to the second LED 115 do not interfere with each other. However, the first LED 17 and the second LED 115 may be located on the same side.
 この構成によれば、広角用光源部152において、楔形導光棒139の第1側面139bから射出された光は、光散乱部材153を透過するときに散乱されて射出される。よって、最終的に広角用光源部152から射出される光の角度分布は、高指向性用光源部151から射出される光の角度分布に比べて広くなる。
 本実施形態の「光散乱部材」は、特許請求の範囲の「角度分布変換部材」に相当する。
ただし、第1~第5実施形態で用いられた各種の角度分布変換部材は指向性が低い光を入射させ、その光の指向性を高くする方向に機能する。これに対して、本実施形態の光散乱部材153は、指向性が高い光を入射させ、その光の指向性を低下させる方向に機能する。
According to this configuration, the light emitted from the first side surface 139 b of the wedge-shaped light guide rod 139 in the wide-angle light source unit 152 is scattered and emitted when passing through the light scattering member 153. Therefore, the angular distribution of light finally emitted from the wide-angle light source unit 152 is wider than the angular distribution of light emitted from the high-directivity light source unit 151.
The “light scattering member” in the present embodiment corresponds to an “angle distribution conversion member” in the claims.
However, the various angle distribution conversion members used in the first to fifth embodiments function in a direction in which light having low directivity is incident and the directivity of the light is increased. On the other hand, the light scattering member 153 of this embodiment functions in a direction in which light having high directivity is incident and the directivity of the light is reduced.
 本実施形態においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
[第1変形例]
 上記実施形態の面光源装置は、高指向性用光源部として、第1のLEDと楔形導光棒とからなるユニットを1組備え、広角用光源部として、第1のLEDと楔形導光棒と光散乱部材とからなるユニットを1組備えていた。この構成に代えて、光源部を図26に示す構成としてもよい。
 本変形例の面光源装置155は、図26に示すように、高指向性用光源部151として、第1のLED17と楔形導光棒139とからなるユニットを複数組備えている。また、広角用光源部152として、第2のLED115と楔形導光棒139と光散乱部材153とからなるユニットを複数組備えている。本変形例では、各光源部151,152とも3組のユニットを備えているが、ユニットの数は特に限定されない。
[First Modification]
The surface light source device of the above-described embodiment includes a set of units each including a first LED and a wedge-shaped light guide bar as a high directivity light source unit, and the first LED and a wedge-shaped light guide bar as a wide-angle light source unit. And a unit consisting of a light scattering member. Instead of this configuration, the light source unit may be configured as shown in FIG.
As shown in FIG. 26, the surface light source device 155 of the present modification includes a plurality of units each including the first LED 17 and a wedge-shaped light guide bar 139 as the high directivity light source unit 151. The wide-angle light source unit 152 includes a plurality of units each including a second LED 115, a wedge-shaped light guide rod 139, and a light scattering member 153. In this modification, each of the light source units 151 and 152 includes three sets of units, but the number of units is not particularly limited.
 本変形例の面光源装置155によれば、LEDの数が上記実施形態の面光源装置に比べて多くなるため、各光源部から射出される光の量を増やすことができる。 According to the surface light source device 155 of the present modification, the number of LEDs is increased as compared with the surface light source device of the above embodiment, and thus the amount of light emitted from each light source unit can be increased.
[第7実施形態]
 以下、本発明の第7実施形態について、図27Aおよび図27Bを用いて説明する。
 本実施形態の面光源装置の導光体の構成は第1実施形態と同様であり、光源部の構成が第1実施形態と異なる。
 図27Aは、本実施形態の面光源装置における光源部を示す平面図である。図27Bは、光源部の側面図である。
 図27A、図27Bにおいて、上記実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Seventh Embodiment]
Hereinafter, a seventh embodiment of the present invention will be described with reference to FIGS. 27A and 27B.
The configuration of the light guide of the surface light source device of this embodiment is the same as that of the first embodiment, and the configuration of the light source unit is different from that of the first embodiment.
FIG. 27A is a plan view showing a light source unit in the surface light source device of the present embodiment. FIG. 27B is a side view of the light source unit.
In FIG. 27A and FIG. 27B, the same code | symbol is attached | subjected to the same component as drawing used in the said embodiment, and description is abbreviate | omitted.
 本実施形態の面光源装置157において、光源部158は、図27A及び図27Bに示すように、複数の高指向性用光源部159(第1の光源部)と複数の広角用光源部160(第2の光源部)とを備えている。複数の高指向性用光源部159および複数の広角用光源部160は、導光体13の内部の光の伝播方向Yに垂直な方向(x軸方向)に沿って交互に配置されている。 In the surface light source device 157 of the present embodiment, the light source unit 158 includes a plurality of high directivity light source units 159 (first light source units) and a plurality of wide angle light source units 160 (see FIG. 27A and FIG. 27B). 2nd light source part). The plurality of high directivity light source units 159 and the plurality of wide angle light source units 160 are alternately arranged along a direction (x-axis direction) perpendicular to the light propagation direction Y inside the light guide 13.
 図27Aに示すように、高指向性用光源部159は、第1のLED17(第1の発光素子)と、平行化レンズ(角度分布変換部材ともいう)161と、を備えている。第1のLED17には、拡散光を射出する一般のLEDを用いることができる。平行化レンズ161は、第1のLED17から射出された光を略平行化する機能を有する。平行化レンズ161は、導光体13の端面13aに接するように配置されている。第1のLED17は、平行化レンズ161の焦点距離分だけ平行化レンズ161から離れた位置に配置されている。  As shown in FIG. 27A, the light source unit 159 for high directivity includes a first LED 17 (first light emitting element) and a collimating lens (also referred to as an angle distribution converting member) 161. As the first LED 17, a general LED that emits diffused light can be used. The collimating lens 161 has a function of substantially collimating the light emitted from the first LED 17. The collimating lens 161 is disposed in contact with the end surface 13 a of the light guide 13. The first LED 17 is disposed at a position separated from the collimating lens 161 by the focal length of the collimating lens 161. *
 広角用光源部160は、第2のLED115(第2の発光素子)を備えている。第2のLED115には、拡散光を射出する一般のLEDを用いることができる。第2のLED115は、発光面が導光体13の端面13aに接するように配置されている。 The wide-angle light source unit 160 includes a second LED 115 (second light emitting element). As the second LED 115, a general LED that emits diffused light can be used. The second LED 115 is disposed such that the light emitting surface is in contact with the end surface 13 a of the light guide 13.
 高指向性モードにおいては、第1のLED17を点灯させると、第1のLED17から射出された光L11が平行化レンズ161によって略平行化され、導光体13に入射される。広角モードにおいては、第2のLED115を点灯させると、第2のLED115から射出された拡散光L12が導光体13に入射される。広角モードにおいては、第1のLED17、第2のLED115の双方を点灯させてもよい。 In the high directivity mode, when the first LED 17 is turned on, the light L11 emitted from the first LED 17 is substantially collimated by the collimating lens 161 and is incident on the light guide 13. In the wide-angle mode, when the second LED 115 is turned on, the diffused light L12 emitted from the second LED 115 is incident on the light guide 13. In the wide angle mode, both the first LED 17 and the second LED 115 may be lit.
 本実施形態においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the first embodiment can be obtained that a surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. It is done.
[第8実施形態]
 以下、本発明の第8実施形態について、図28A~図30Cを用いて説明する。
 本実施形態の面光源装置の構成は、第1実施形態の第2変形例の図9に示す面光源装置と略同様である。
 図28Aは、本実施形態の面光源装置を示す平面図である。図28Bは、図28AのA-A’線に沿う断面図である。図29A~図29Cは、本実施形態の面光源装置における照度分布のシミュレーション結果を示す図である。図30A~図30Cは、比較例の面光源装置における照度分布のシミュレーション結果を示す図である。
 図28A、図28Bにおいて、図9と共通の構成要素には同一の符号を付し、説明を省略する。
[Eighth Embodiment]
The eighth embodiment of the present invention will be described below with reference to FIGS. 28A to 30C.
The configuration of the surface light source device of the present embodiment is substantially the same as the surface light source device shown in FIG. 9 of the second modification of the first embodiment.
FIG. 28A is a plan view showing the surface light source device of this embodiment. 28B is a cross-sectional view taken along the line AA ′ of FIG. 28A. 29A to 29C are diagrams showing simulation results of the illuminance distribution in the surface light source device of this embodiment. 30A to 30C are diagrams illustrating simulation results of illuminance distribution in the surface light source device of the comparative example.
28A and 28B, the same components as those in FIG. 9 are denoted by the same reference numerals, and description thereof is omitted.
 本実施形態の面光源装置181は、図28A及び図28Bに示すように、第1主面182b(光射出面)と第2主面182cとが平行な平行平板からなる導光体182を備えている。導光体182の第1主面182bには、光の伝播方向Yと垂直な方向(x軸方向)に延在する複数の光取り出し用プリズム183が所定の間隔をおいて設けられている。光取り出し用プリズム183は、導光体182と同じ屈折率を有する材料で構成されることが望ましい。光取り出し用プリズム183の断面形状は、導光体182の第1主面182bに接する側の幅が狭く、第1主面182bと反対側の幅が広い形状、いわゆる逆テーパ形状である。 As shown in FIGS. 28A and 28B, the surface light source device 181 of the present embodiment includes a light guide 182 made of parallel flat plates in which a first main surface 182b (light emission surface) and a second main surface 182c are parallel. ing. A plurality of light extraction prisms 183 extending in a direction perpendicular to the light propagation direction Y (x-axis direction) are provided on the first main surface 182b of the light guide 182 at a predetermined interval. The light extraction prism 183 is preferably made of a material having the same refractive index as that of the light guide 182. The cross-sectional shape of the light extraction prism 183 is a so-called reverse taper shape in which the width on the side in contact with the first main surface 182b of the light guide 182 is narrow and the width on the side opposite to the first main surface 182b is wide.
 複数の光取り出し用プリズム183は、等間隔に配置されていない。すなわち、複数の光取り出し用プリズム183は、光源部12が設けられた導光体182の端面182aに近いほど密度が低く、端面182aから遠いほど密度が高くなるように設けられている。光源部12から射出された光L1は、導光体182の内部を伝播する間に、複数の光取り出し用プリズム183のうちのいずれかに入射する。光取り出し用プリズム183に入射した光L1は、反射面183aで反射した後、角度を変え、導光体182の外部に取り出される。 The plurality of light extraction prisms 183 are not arranged at equal intervals. That is, the plurality of light extraction prisms 183 are provided such that the closer to the end surface 182a of the light guide 182 provided with the light source unit 12, the lower the density and the farther from the end surface 182a, the higher the density. The light L <b> 1 emitted from the light source unit 12 is incident on one of the plurality of light extraction prisms 183 while propagating through the light guide 182. The light L1 that has entered the light extraction prism 183 is reflected by the reflection surface 183a, and then the angle is changed, and the light L1 is extracted to the outside of the light guide 182.
 本実施形態の面光源装置181においても、部品点数や製造コストの増大を招くことなく、指向性の切り替え前後で輝度を均一に保つことができる面光源装置が実現できる、という第1実施形態と同様の効果が得られる。 Also in the surface light source device 181 of the present embodiment, the surface light source device that can keep the luminance uniform before and after switching the directivity without increasing the number of parts and the manufacturing cost can be realized. Similar effects can be obtained.
 特に本実施形態の場合、高指向性用光源部113と広角用光源部114とが導光体182の一つの端面182aに配置されているため、以下の効果を得ることができる。
 一般に、導光体の端面に光源を配置した場合、光の取り出し量は、導光体の光射出面のうち、光源に近い側で多く、光源に遠い側では少ない傾向を示す。したがって、導光体の光射出面での照度分布が不均一になる。そこで、本実施形態のように、複数の光取り出し用プリズム183を、導光体182の端面182aに近いほど密度が低く、端面182aから遠いほど密度が高くなるように配置することで、照度分布をより均一にすることができる。
In particular, in the case of the present embodiment, the high directivity light source unit 113 and the wide-angle light source unit 114 are arranged on one end surface 182a of the light guide 182. Therefore, the following effects can be obtained.
In general, when a light source is arranged on the end face of the light guide, the amount of light extraction tends to be large on the light exit surface of the light guide near the light source and small on the side far from the light source. Therefore, the illuminance distribution on the light exit surface of the light guide becomes non-uniform. Therefore, as in the present embodiment, the plurality of light extraction prisms 183 are arranged such that the density is lower as the distance from the end face 182a of the light guide 182 is lower, and the density is higher as the distance from the end face 182a is higher. Can be made more uniform.
 ここで、例えば特許文献3に記載の照明装置のように、導光体の異なる端面に2つの光源部が配置されていたとすると、照度分布を均一にするための複数の光取り出し用プリズム183の配置がいずれか一方の光源部に対してしか働かない。これに対し、本実施形態の面光源装置181では、高指向性用光源部113と広角用光源部114とが導光体182の一つの端面182aに配置され、指向性の切り替え前後で光の伝播方向Yが変わらない。そのため、照度分布を均一にするための複数の光取り出し用プリズム183の配置がどちらの光源部113,114に対しても有効に働く。したがって、指向性の切り替え前後で照度分布を均一に保ちやすくなる。 Here, for example, as in the illumination device described in Patent Document 3, if two light source units are arranged on different end faces of the light guide, a plurality of light extraction prisms 183 for making the illuminance distribution uniform can be obtained. The arrangement only works for one of the light source sections. On the other hand, in the surface light source device 181 of this embodiment, the light source unit for high directivity 113 and the light source unit for wide angle 114 are arranged on one end surface 182a of the light guide 182 so that light can be transmitted before and after switching the directivity. The propagation direction Y does not change. Therefore, the arrangement of the plurality of light extraction prisms 183 for making the illuminance distribution uniform works effectively for both light source units 113 and 114. Therefore, it is easy to keep the illuminance distribution uniform before and after switching the directivity.
 本発明者らは、本実施形態の面光源装置と比較例の面光源装置に対して、光射出面での照度分布についてシミュレーションを行った。
 シミュレーションには、照明設計解析ソフトウェア:Light Tools(ver7.2)を用いた。
シミュレーションの条件は第1実施形態と同様に設定した。
The inventors performed a simulation on the illuminance distribution on the light exit surface of the surface light source device of this embodiment and the surface light source device of the comparative example.
For the simulation, lighting design analysis software: Light Tools (ver. 7.2) was used.
The simulation conditions were set in the same manner as in the first embodiment.
 図29Aは、本実施形態の面光源装置を示しており、高指向性用光源部113と広角用光源部114とからの光を、導光体182の一つの端面182aから入射させている。図29Bは、高指向性用光源部113からの光による照度分布を示し、図29Cは、広角用光源部114からの光による照度分布を示している。 FIG. 29A shows the surface light source device of the present embodiment, in which light from the high directivity light source unit 113 and the wide angle light source unit 114 is incident from one end surface 182 a of the light guide 182. FIG. 29B shows the illuminance distribution by light from the light source unit 113 for high directivity, and FIG. 29C shows the illuminance distribution by light from the light source unit 114 for wide angle.
 図29Aおよび図29Bに示すように、今回のシミュレーションでは、複数の光取り出し用プリズム183の配置が充分に最適化されておらず、照度分布が充分に均一化できなかった。しかしながら、本実施形態の面光源装置では、指向性の切り替え前後で照度分布がほとんど変化しないことが確認された。したがって、複数の光取り出し用プリズム183の配置が充分に最適化されれば、高指向性モードにおいても広角モードにおいても、照度分布が充分に均一化できる感触を得た。 As shown in FIGS. 29A and 29B, in this simulation, the arrangement of the plurality of light extraction prisms 183 was not sufficiently optimized, and the illuminance distribution could not be sufficiently uniformed. However, in the surface light source device of this embodiment, it has been confirmed that the illuminance distribution hardly changes before and after switching the directivity. Therefore, if the arrangement of the plurality of light extraction prisms 183 is sufficiently optimized, the illuminance distribution can be sufficiently uniformed in both the high directivity mode and the wide angle mode.
 これに対して、図30Aは、比較例の面光源装置を示しており、高指向性用光源部からの光を導光体182の端面182aから入射させ、広角用光源部からの光を導光体182の端面182dから入射させている。図30Bは、広角用光源部からの光による照度分布を示している。 On the other hand, FIG. 30A shows a surface light source device of a comparative example, in which light from the light source unit for high directivity is incident from the end surface 182a of the light guide 182 to guide light from the light source unit for wide angle. Incident light is incident from the end face 182d of the light body 182. FIG. 30B shows an illuminance distribution by light from the wide-angle light source unit.
 比較例の面光源装置では、端面182aに配置された高指向性用光源部からの光に対して、光取り出し用プリズム183の配置が最適化されている。したがって、広角用光源部からの光に対しては、図30Bに示すように、高指向性用光源部に近い側で光の取り出し量が多く、光源に遠い側では光の取り出し量が少なくなった。このように、比較例の面光源装置では、指向性の切り替え前後で照度分布が大きく変化し、いずれか一方のモードで照度分布が不均一になることが判った。 In the surface light source device of the comparative example, the arrangement of the light extraction prism 183 is optimized with respect to the light from the light source unit for high directivity arranged on the end surface 182a. Therefore, for the light from the wide-angle light source unit, as shown in FIG. 30B, the light extraction amount is large on the side close to the high directivity light source unit, and the light extraction amount is small on the side far from the light source. It was. Thus, in the surface light source device of the comparative example, it was found that the illuminance distribution changed greatly before and after the switching of directivity, and the illuminance distribution became non-uniform in either one of the modes.
 [第9実施形態]
 図32Aおよび図32Bは、調光装置の第9実施形態を示す概略図であり、図32Aは平面図、図32Bは図32AのA2-A2線に沿う断面図である。
 調光装置210は、光源部211と、導光体212と、散乱液晶セル213と、反射ミラー214を備えたパラボラミラー形状のレンズ215と、から概略構成されている。導光体212は、光源部211に対向して配置されている。導光体212は、光源部211からの光がその一端面212a側から導入されるとともに、光源部211からの光をその長手方向に導光する。散乱液晶セル213は、光源部211と導光体212の一端面212aとの間に設けられる。パラボラミラー形状のレンズ215は、光源部211の導光体212の一端面212aと対向する面211aとは反対の面側に設けられる。反射ミラー214は、光源部211からの光を反射する反射面214aを有する。
 本実施形態では、光源部211からの光の指向性を変化させる配光変換素子として、散乱液晶セル213を用いている。本実施形態の配光変換素子は、光源部からの光の指向性を変化させるという配光特性が可変である。以下に配光変換素子の構成について説明する。
[Ninth Embodiment]
32A and 32B are schematic views showing a ninth embodiment of the light control device, FIG. 32A is a plan view, and FIG. 32B is a cross-sectional view taken along the line A2-A2 of FIG. 32A.
The light control device 210 is generally configured by a light source unit 211, a light guide 212, a scattering liquid crystal cell 213, and a parabolic mirror-shaped lens 215 including a reflection mirror 214. The light guide 212 is disposed to face the light source unit 211. The light guide 212 introduces light from the light source unit 211 from the one end face 212a side, and guides light from the light source unit 211 in the longitudinal direction. The scattering liquid crystal cell 213 is provided between the light source unit 211 and the one end surface 212 a of the light guide 212. The parabolic mirror-shaped lens 215 is provided on the surface opposite to the surface 211 a facing the one end surface 212 a of the light guide 212 of the light source unit 211. The reflection mirror 214 has a reflection surface 214 a that reflects light from the light source unit 211.
In this embodiment, the scattering liquid crystal cell 213 is used as a light distribution conversion element that changes the directivity of light from the light source unit 211. The light distribution conversion element of this embodiment has a variable light distribution characteristic of changing the directivity of light from the light source unit. The configuration of the light distribution conversion element will be described below.
 散乱液晶セル213は、図33に示すように、高分子分散液晶221と、高分子分散液晶221を挟持する一対の透明導電基板222,223とから概略構成されている。
 透明導電基板222は、透明基板224と、その一方の面224aに設けられた透明導電膜225とから概略構成されている。
 透明導電基板223は、透明基板226と、その一方の面226aに設けられた透明導電膜227とから概略構成されている。
As shown in FIG. 33, the scattering liquid crystal cell 213 is roughly composed of a polymer dispersed liquid crystal 221 and a pair of transparent conductive substrates 222 and 223 that sandwich the polymer dispersed liquid crystal 221.
The transparent conductive substrate 222 is roughly composed of a transparent substrate 224 and a transparent conductive film 225 provided on one surface 224a thereof.
The transparent conductive substrate 223 is roughly composed of a transparent substrate 226 and a transparent conductive film 227 provided on one surface 226a thereof.
 ここで、図34Aおよび図34Bを参照して、散乱液晶セル213を構成する高分子分散液晶221としてノーマルモード高分子分散液晶を用いた場合について説明する。
 図34Aに示すように、透明導電基板222,223の間に電圧を印加していない場合、液晶231は配向することなく、ランダムポリマー32と同様に散乱した状態をなしている。したがって、透明導電基板223側から散乱液晶セル213に入射した光は、液晶231によって散乱されて、散乱液晶セル213から散乱光となって出射する。
 一方、図34Bに示すように、透明導電基板222,223の間に電圧を印加した場合、液晶231は散乱液晶セル213の厚さ方向に配向するので、散乱液晶セル213は透明になる。したがって、透明導電基板223側から散乱液晶セル213に入射した光は、液晶231によって散乱されることなく、散乱液晶セル213から指向性を有する光(散乱液晶セル213の厚さ方向の指向性を有する光)となって出射する。
Here, with reference to FIG. 34A and FIG. 34B, the case where a normal mode polymer dispersed liquid crystal is used as the polymer dispersed liquid crystal 221 constituting the scattering liquid crystal cell 213 will be described.
As shown in FIG. 34A, when a voltage is not applied between the transparent conductive substrates 222 and 223, the liquid crystal 231 is not oriented and is scattered like the random polymer 32. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is scattered by the liquid crystal 231 and is emitted from the scattering liquid crystal cell 213 as scattered light.
On the other hand, as shown in FIG. 34B, when a voltage is applied between the transparent conductive substrates 222 and 223, the liquid crystal 231 is aligned in the thickness direction of the scattering liquid crystal cell 213, so that the scattering liquid crystal cell 213 becomes transparent. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is not scattered by the liquid crystal 231 and has directivity from the scattering liquid crystal cell 213 (the directivity in the thickness direction of the scattering liquid crystal cell 213). Light).
 また、図35をAおよび図35B参照して、散乱液晶セル213を構成する高分子分散液晶221としてリバースモード高分子分散液晶を用いた場合について説明する。
 図35Aに示すように、透明導電基板222,223の間に電圧を印加していない場合、液晶241は、液晶ポリマー243とともに、散乱液晶セル213の厚さ方向と垂直な方向に配向するので、散乱液晶セル213は透明になる。したがって、透明導電基板223側から散乱液晶セル213に入射した光は、液晶241や液晶ポリマー243によって散乱されることなく、散乱液晶セル213から指向性を有する光(散乱液晶セル213の厚さ方向の指向性を有する光)となって出射する。
 一方、図35Bに示すように、透明導電基板222,223の間に電圧を印加した場合、液晶241は散乱液晶セル213の厚さ方向に配向し、ランダムポリマー242や液晶ポリマー243とは異なる方向に配向した状態をなす。したがって、透明導電基板223側から散乱液晶セル213に入射した光は、液晶241、ランダムポリマー242および液晶ポリマー243によって散乱されて、散乱液晶セル213から散乱光となって出射する。
A case where a reverse mode polymer dispersed liquid crystal is used as the polymer dispersed liquid crystal 221 constituting the scattering liquid crystal cell 213 will be described with reference to FIG. 35A and FIG. 35B.
As shown in FIG. 35A, when no voltage is applied between the transparent conductive substrates 222 and 223, the liquid crystal 241 is aligned with the liquid crystal polymer 243 in a direction perpendicular to the thickness direction of the scattering liquid crystal cell 213. The scattering liquid crystal cell 213 becomes transparent. Therefore, the light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is not scattered by the liquid crystal 241 or the liquid crystal polymer 243, and has directivity from the scattering liquid crystal cell 213 (in the thickness direction of the scattering liquid crystal cell 213). Of light having a directivity of 2).
On the other hand, as shown in FIG. 35B, when a voltage is applied between the transparent conductive substrates 222 and 223, the liquid crystal 241 is oriented in the thickness direction of the scattering liquid crystal cell 213 and is different from the random polymer 242 and the liquid crystal polymer 243. In an oriented state. Therefore, light incident on the scattering liquid crystal cell 213 from the transparent conductive substrate 223 side is scattered by the liquid crystal 241, the random polymer 242 and the liquid crystal polymer 243, and is emitted from the scattering liquid crystal cell 213 as scattered light.
 図36Aおよび図36Bは、図34Bに示すように、散乱液晶セル213を構成する液晶231を配向させるか、あるいは、図35Aに示すように、散乱液晶セル213を構成する液晶241を配向させて、調光装置210を用いた場合を説明する概略図である。図36Aは、平面図である。図36Bは、導光体の一端面側から見た正面図である。
 このとき、光源部211からの光が、反射ミラー214の反射面214aで反射して、その反射光が、散乱液晶セル213に入射すると、反射光は散乱液晶セル213内の液晶によって散乱されることなく、指向性を有する光として、一端面212aから導光体212に入射する。
 したがって、導光体212の上面212bから出射する光は、導光体212の幅方向に拡がることなく、狭い出射角で出射する。導光体212の上面212bから出射する光の出射角は、例えば、図6の破線で示すように、極めて狭くなる。
36A and 36B, the liquid crystal 231 constituting the scattering liquid crystal cell 213 is oriented as shown in FIG. 34B, or the liquid crystal 241 constituting the scattering liquid crystal cell 213 is oriented as shown in FIG. 35A. It is the schematic explaining the case where the light control apparatus 210 is used. FIG. 36A is a plan view. FIG. 36B is a front view seen from one end surface side of the light guide.
At this time, when the light from the light source unit 211 is reflected by the reflection surface 214 a of the reflection mirror 214 and the reflected light enters the scattering liquid crystal cell 213, the reflected light is scattered by the liquid crystal in the scattering liquid crystal cell 213. Without incident, light having directivity enters the light guide 212 from the one end surface 212a.
Therefore, the light emitted from the upper surface 212 b of the light guide 212 is emitted at a narrow emission angle without spreading in the width direction of the light guide 212. The emission angle of the light emitted from the upper surface 212b of the light guide 212 is extremely narrow, for example, as shown by the broken line in FIG.
 また、図37Aおよび図37Bは、図34Aに示すように、散乱液晶セル213を構成する液晶231が配向させない状態、あるいは、図35Bに示すように、散乱液晶セル213を構成する液晶241を配向させない状態で、調光装置210を用いた場合を説明する概略図である。図37A、は平面図である。図37Bは、導光体の一端面側から見た正面図である。
 このとき、光源部211からの光が、反射ミラー214の反射面214aで反射して、その反射光が、散乱液晶セル213に入射すると、反射光は散乱液晶セル213内の液晶によって散乱され、散乱光となって、一端面212aから導光体212に入射する。したがって、導光体212の上面212bから出射する光は、導光体212の幅方向に拡がり、広い出射角で出射する。導光体212の上面212bから出射する光の出射角は、例えば、図6の実線で示すように、広くなる。
37A and 37B show a state where the liquid crystal 231 constituting the scattering liquid crystal cell 213 is not oriented as shown in FIG. 34A, or the liquid crystal 241 constituting the scattering liquid crystal cell 213 is oriented as shown in FIG. 35B. It is the schematic explaining the case where the light control apparatus 210 is used in the state which is not made. FIG. 37A is a plan view. FIG. 37B is a front view seen from one end surface side of the light guide.
At this time, when the light from the light source unit 211 is reflected by the reflecting surface 214a of the reflecting mirror 214 and the reflected light enters the scattering liquid crystal cell 213, the reflected light is scattered by the liquid crystal in the scattering liquid crystal cell 213, It becomes scattered light and enters the light guide 212 from the one end face 212a. Therefore, the light emitted from the upper surface 212b of the light guide 212 spreads in the width direction of the light guide 212 and is emitted at a wide emission angle. The emission angle of the light emitted from the upper surface 212b of the light guide 212 is widened, for example, as shown by the solid line in FIG.
 このように、散乱液晶セル213を用いることにより、調光装置210から出射する光を、指向性を有する光と散乱光とに切り替えることができるので、光源部211は、導光体212の一端面212a側にのみ設置すればよく、また、導光体212も従来のように積層することなく、1層のみ用いればよい。
 また、光源部211を、導光体212の一端面212a側にのみ設置することによって、散乱液晶セル213を透過する光の指向性の切り替えの前後において、光源部211からの光の進行方向は変わらない。これにより、導光体212において、出射光を均一にするための設計(導波光立ち上げ用の構造の間引きなど)が、入射光が指向性を有する光または散乱光のいずれであっても、有効に機能する。したがって、散乱液晶セル213を透過する光の指向性の切り替えの前後において、照明装置10からの出射光の輝度の均一性をある程度保つことができる。
As described above, by using the scattering liquid crystal cell 213, the light emitted from the light control device 210 can be switched between directional light and scattered light. It suffices to install it only on the end face 212a side, and the light guide 212 may be used only in one layer without being laminated as in the prior art.
Further, by installing the light source unit 211 only on the one end surface 212a side of the light guide 212, the traveling direction of the light from the light source unit 211 before and after switching the directivity of the light transmitted through the scattering liquid crystal cell 213 is does not change. Thereby, in the light guide 212, whether the design for making the emitted light uniform (such as thinning of the structure for raising the guided light) is either directional light or scattered light, Works effectively. Therefore, before and after switching the directivity of the light transmitted through the scattering liquid crystal cell 213, the uniformity of the luminance of the emitted light from the illumination device 10 can be maintained to some extent.
 光源部211を構成する光源としては、LED、無機EL、有機ELなどが挙げられる。 Examples of the light source constituting the light source unit 211 include an LED, an inorganic EL, and an organic EL.
 導光体212は、シート状をなしており、ガラス、石英などからなる無機材料基板、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチック基板などから構成されている。 The light guide 212 has a sheet shape and is composed of an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbonate, polyimide, polymethyl methacrylate (polymethyl methacrylate, PMMA), or the like. ing.
 散乱液晶セル213を構成する透明導電基板222,223の透明基板224,226は、シート状をなしており、ガラス、石英などからなる無機材料基板、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチック基板などから構成されている。
 散乱液晶セル213を構成する透明導電基板222,23の透明導電膜225,227は、インジウム錫酸化物(Indium Tin Oxide、ITO)などから構成されている。
The transparent substrates 224 and 226 of the transparent conductive substrates 222 and 223 constituting the scattering liquid crystal cell 213 are in the form of a sheet, and are made of an inorganic material substrate made of glass, quartz, etc., polyethylene terephthalate, polycarbonate, polyimide, polymethyl methacrylate ( A plastic substrate made of polymethylmethacrylate, PMMA) or the like.
The transparent conductive films 225 and 227 of the transparent conductive substrates 222 and 23 constituting the scattering liquid crystal cell 213 are made of indium tin oxide (ITO) or the like.
 反射ミラー214としては、レンズ215の外面に形成されたアルミニウムの蒸着膜、レンズ215の外面に貼着された誘電体ミラーなどが挙げられる。そして、反射ミラー214では、レンズ215と接する面が反射面214aとなっている。
 反射ミラー214が誘電体ミラーからなる場合、1つの誘電体ミラーが単純に設置される場合と、2つ以上の誘電体ミラーが光学接着されて設置される場合とがある。
Examples of the reflecting mirror 214 include an aluminum vapor deposition film formed on the outer surface of the lens 215, and a dielectric mirror attached to the outer surface of the lens 215. In the reflection mirror 214, the surface in contact with the lens 215 is a reflection surface 214a.
When the reflecting mirror 214 is made of a dielectric mirror, there are a case where one dielectric mirror is simply installed and a case where two or more dielectric mirrors are optically bonded.
 レンズ215は、ガラス、石英などからなる無機材料、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチックなどの光透過性の材料から構成されている。また、レンズ215は、外側の骨格部分が前記の材料からなり、内部が中空構造をなしていてもよく、あるいは、全体が前記の材料からなる中実構造をなしていてもよい。 The lens 215 is made of a light transmissive material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like. Further, the lens 215 may have an outer skeleton portion made of the above-described material and may have a hollow structure inside, or may have a solid structure made entirely of the above-described material.
 [第10実施形態]
 図38Aは、調光装置の第10実施形態を示す概略図である。図38Aは側面図である。図38Bは、図38Aの一部を拡大した斜視図である。
 調光装置250は、光源部251と、導光体252と、液晶レンズ253とから概略構成されている。導光体252は、光源部251に対向して配置される。導光体252は、光源部251からの光がその一端面252a側から導入されるとともに、光源部251からの光をその長手方向に導光する。液晶レンズ253は、光源部251と導光体252の一端面252aとの間に設けられる。
 本実施形態では、光源部251からの光に指向性を変化させる配光変換素子として、液晶レンズ253を用いている。
[Tenth embodiment]
FIG. 38A is a schematic diagram illustrating a tenth embodiment of the light control device. FIG. 38A is a side view. FIG. 38B is an enlarged perspective view of a part of FIG. 38A.
The light control device 250 is generally configured by a light source unit 251, a light guide 252, and a liquid crystal lens 253. The light guide 252 is disposed to face the light source unit 251. The light guide 252 guides the light from the light source 251 in the longitudinal direction while the light from the light source 251 is introduced from the one end face 252a side. The liquid crystal lens 253 is provided between the light source unit 251 and the one end surface 252a of the light guide 252.
In the present embodiment, a liquid crystal lens 253 is used as a light distribution conversion element that changes the directivity of light from the light source unit 251.
 液晶レンズ253としては、特に限定されるものではなく、電圧を印加することにより屈折率が変化するものであれば、公知の液晶レンズを適用することができる。液晶レンズ253としては、例えば、第一透明基板254と、第二透明基板255と、第一透明電極256と、第二透明電極257と、絶縁性スペーサ258と、液晶層259とから構成される単位が複数連設されたものが用いられる。 The liquid crystal lens 253 is not particularly limited, and a known liquid crystal lens can be used as long as the refractive index is changed by applying a voltage. The liquid crystal lens 253 includes, for example, a first transparent substrate 254, a second transparent substrate 255, a first transparent electrode 256, a second transparent electrode 257, an insulating spacer 258, and a liquid crystal layer 259. A unit in which a plurality of units are connected is used.
 光源部251、導光体252としては、上述の第9実施形態と同様のものが用いられる。 The light source unit 251 and the light guide 252 are the same as those in the ninth embodiment.
 図39Aは、液晶レンズ253に電圧を印加せずに、調光装置250を用いた場合を説明する概略側面図である。
 このとき、液晶レンズ253を構成する液晶が、液晶レンズ253の厚さ方向に配向しているので、光源部251からの光が液晶レンズ253に入射すると、その入射光は液晶レンズ253内の液晶によって散乱されることなく、指向性を有する光として、一端面252aから導光体252に入射する。したがって、導光体252の上面252bから出射する光は、導光体252の幅方向に拡がることなく、狭い出射角で出射する。
FIG. 39A is a schematic side view illustrating the case where the light control device 250 is used without applying a voltage to the liquid crystal lens 253. FIG.
At this time, since the liquid crystal constituting the liquid crystal lens 253 is aligned in the thickness direction of the liquid crystal lens 253, when light from the light source unit 251 enters the liquid crystal lens 253, the incident light is liquid crystal in the liquid crystal lens 253. The light having directivity enters the light guide 252 from the one end face 252a without being scattered by the light. Therefore, the light emitted from the upper surface 252b of the light guide 252 is emitted at a narrow emission angle without spreading in the width direction of the light guide 252.
 図39Bは、液晶レンズ253に電圧を印加して、調光装置250を用いた場合を説明する概略側面図である。
 このとき、液晶レンズ253を構成する液晶が、液晶レンズ253の厚さ方向に配向することなく、散乱するので、光源部251からの光が液晶レンズ253に入射すると、その入射光は液晶レンズ253内の液晶によって散乱され、散乱光となって、一端面252aから導光体252に入射する。したがって、導光体252の上面252bから出射する光は、導光体252の幅方向に拡がり、広い出射角で出射する。
FIG. 39B is a schematic side view for explaining a case where a voltage is applied to the liquid crystal lens 253 and the light control device 250 is used.
At this time, since the liquid crystal constituting the liquid crystal lens 253 is scattered without being oriented in the thickness direction of the liquid crystal lens 253, when the light from the light source unit 251 enters the liquid crystal lens 253, the incident light is the liquid crystal lens 253. It is scattered by the liquid crystal inside and becomes scattered light, and enters the light guide 252 from the one end face 252a. Therefore, the light emitted from the upper surface 252b of the light guide 252 spreads in the width direction of the light guide 252 and is emitted with a wide emission angle.
 [第11実施形態]
 図40Aおよび図40Bは、調光装置の第11実施形態を示す概略図である。図40Aは、平面図である。図40Bは、図40AのB2-B2線に沿う断面図である。
 調光装置260は、光源部261と、導光体262と、散乱体263と、反射ミラー264を備えたパラボラミラー形状のレンズ265とから概略構成されている。導光体262は、光源部261に対向して配置される。導光体262は、光源部261からの光がその一端面262a側から導入されるとともに、光源部261からの光をその長手方向に導光する。散乱体263は、光源部261と導光体262の一端面262aとの間に、挿抜可能に設けられる。パラボラミラー形状のレンズ265は、光源部261の導光体262の一端面262aと対向する面261aとは反対の面側に設けられる。反射ミラー264は、光源部261からの光を反射する反射面264aを有する。
 本実施形態では、光源部261からの光に指向性を変化させる配光変換素子として、散乱体263を用いている。
[Eleventh embodiment]
40A and 40B are schematic views illustrating an eleventh embodiment of the light control device. FIG. 40A is a plan view. 40B is a cross-sectional view taken along line B2-B2 of FIG. 40A.
The light control device 260 is schematically configured by a light source unit 261, a light guide 262, a scatterer 263, and a parabolic mirror-shaped lens 265 including a reflection mirror 264. The light guide 262 is disposed to face the light source unit 261. The light guide 262 guides the light from the light source 261 in the longitudinal direction while the light from the light source 261 is introduced from the one end face 262a side. The scatterer 263 is provided between the light source unit 261 and the one end surface 262a of the light guide 262 so as to be insertable / removable. The parabolic mirror-shaped lens 265 is provided on the surface opposite to the surface 261 a facing the one end surface 262 a of the light guide 262 of the light source unit 261. The reflection mirror 264 has a reflection surface 264 a that reflects light from the light source unit 261.
In the present embodiment, a scatterer 263 is used as a light distribution conversion element that changes directivity to light from the light source unit 261.
 散乱体263の材料としては、光透過性の樹脂中に光散乱性粒子を分散したものを用いることが好ましい。
 光散乱性粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合には、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)などが挙げられる。
As a material of the scatterer 263, it is preferable to use a material in which light-scattering particles are dispersed in a light-transmitting resin.
When particles (inorganic fine particles) made of an inorganic material are used as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide beads (Refractive index anatase type: 2.50, rutile type: 2.70), zirconia bead (refractive index: 2.05), zinc oxide bead (refractive index: 2.00), barium titanate (BaTiO 3 ) ( Refractive index: 2.4) etc. are mentioned.
 光散乱性粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合には、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)などが挙げられる。 When particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic -Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57) Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68) And silicone beads (refractive index: 1.50).
 光散乱性粒子と混合して用いる樹脂材料としては、例えば、アクリル樹脂(屈折率:1.49)、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)などが挙げられる。 Examples of the resin material used by mixing with light scattering particles include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene ( Refractive index: 1.60), melamine beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1. 61), polyvinyl acetate (refractive index: 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium Density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), Polytetrafu Oroechiren (refractive index: 1.35), and the like.
 散乱体263は、手動または微小電子機械システム(MEMS)制御(アクチュエーター)などによって、光源部261と導光体262の一端面262aとの間に、挿抜可能となっている。 The scatterer 263 can be inserted / removed between the light source 261 and the one end surface 262a of the light guide 262 by manual or micro electro mechanical system (MEMS) control (actuator).
 光源部261、導光体262、反射ミラー264、レンズ265としては、上述の第9実施形態と同様のものが用いられる。 The light source unit 261, the light guide 262, the reflection mirror 264, and the lens 265 are the same as those in the ninth embodiment described above.
 図41A~図41Cは、光源部と導光体の一端面との間に、散乱体を挿入していない状態を示す概略図である。図41Aは、平面図である。図41Bは、導光体の一端面側から見た正面図である。図41Cは、図41AのC2-C2線に沿う断面図である。
 このとき、光源部261からの光が、反射ミラー264の反射面264aで反射して、その反射光が、導光体262側に向かうが、散乱体263を透過しないので、指向性を有する光として、一端面262aから導光体262に入射する。したがって、導光体262の上面262bから出射する光は、導光体262の幅方向に拡がることなく、狭い出射角で出射する。
41A to 41C are schematic views showing a state in which no scatterer is inserted between the light source section and one end face of the light guide. FIG. 41A is a plan view. FIG. 41B is a front view seen from one end surface side of the light guide. 41C is a cross-sectional view taken along line C2-C2 of FIG. 41A.
At this time, the light from the light source unit 261 is reflected by the reflection surface 264a of the reflection mirror 264, and the reflected light travels toward the light guide 262, but does not pass through the scatterer 263. The light enters the light guide 262 from the one end surface 262a. Therefore, the light emitted from the upper surface 262b of the light guide 262 is emitted at a narrow emission angle without spreading in the width direction of the light guide 262.
 図42A~図42Cは、光源部と導光体の一端面との間に、散乱体を挿入した状態を示す概略図である。図42Aは、平面図である。図42Bは、導光体の一端面側から見た正面図である。図42Cは、図42AのD2-D2線に沿う断面図である。
 このとき、光源部261からの光が、反射ミラー264の反射面264aで反射して、その反射光が、散乱体263に入射すると、反射光は散乱体263内の光散乱性粒子によって散乱され、散乱光となって、一端面262aから導光体262に入射する。したがって、導光体262の上面262bから出射する光は、導光体262の幅方向に拡がり、広い出射角で出射する。
42A to 42C are schematic views showing a state in which a scatterer is inserted between the light source section and one end face of the light guide. FIG. 42A is a plan view. FIG. 42B is a front view seen from one end surface side of the light guide. FIG. 42C is a sectional view taken along line D2-D2 of FIG. 42A.
At this time, when the light from the light source unit 261 is reflected by the reflection surface 264a of the reflection mirror 264 and the reflected light enters the scatterer 263, the reflected light is scattered by the light scattering particles in the scatterer 263. The light becomes scattered light and enters the light guide 262 from the one end surface 262a. Therefore, the light emitted from the upper surface 262b of the light guide 262 spreads in the width direction of the light guide 262 and is emitted with a wide emission angle.
 このように、散乱体263を、光源部261と導光体262の一端面262aとの間に挿抜可能に設けることにより、調光装置260から出射する光を、指向性を有する光と散乱光とに切り替えることができる。 In this manner, by providing the scatterer 263 so as to be insertable / removable between the light source unit 261 and the one end surface 262a of the light guide 262, light emitted from the light control device 260 is converted into light having directivity and scattered light. And can be switched.
 [第12実施形態]
 図43は、調光装置の第12実施形態を示す概略断面図である。
 調光装置270は、光源部271と、導光体272と、反射ミラー273を備えたパラボラミラー形状のレンズ274と、ゲル275と、散乱パターン276と、一対の反射板277,278とから概略構成されている。導光体272は、光源部271に対向して配置される。導光体272は、光源部271からの光がその一端面272a側から導入されるとともに、光源部271からの光をその長手方向に導光する。パラボラミラー形状のレンズ274は、光源部271の導光体272の一端面272aと対向する面271aとは反対の面側に設けられる。反射ミラー273は、光源部271からの光を反射する反射面273aを有する。ゲル275は、光源部271およびレンズ274と導光体272の一端面272aとの間に設けられる。ゲル275は、光源部271およびレンズ274と導光体272の一端面272aとを光学接着が可能である。散乱パターン276は、導光体272の一端面272aに設けられる。一対の反射板277,278は、ゲル275と導光体272の一端面272aとの境界部を、導光体272の厚さ方向から挟持する一対の反射板277,278とから概略構成されている。
 本実施形態では、反射ミラー273とレンズ274が入光部を構成している。また、本実施形態では、光源部271からの光に指向性を変化させる配光変換素子として、ゲル275を用いている。
[Twelfth embodiment]
FIG. 43 is a schematic cross-sectional view showing a twelfth embodiment of the light control device.
The light control device 270 is roughly composed of a light source 271, a light guide 272, a parabolic mirror-shaped lens 274 provided with a reflection mirror 273, a gel 275, a scattering pattern 276, and a pair of reflection plates 277 and 278. It is configured. The light guide 272 is disposed to face the light source unit 271. The light guide 272 guides the light from the light source 271 in the longitudinal direction while the light from the light source 271 is introduced from the one end face 272a side. The parabolic mirror-shaped lens 274 is provided on the side opposite to the surface 271 a facing the one end surface 272 a of the light guide 272 of the light source unit 271. The reflection mirror 273 has a reflection surface 273 a that reflects light from the light source unit 271. The gel 275 is provided between the light source unit 271 and the lens 274 and the one end surface 272a of the light guide 272. The gel 275 can optically bond the light source portion 271 and the lens 274 to the one end surface 272a of the light guide 272. The scattering pattern 276 is provided on the one end surface 272 a of the light guide 272. The pair of reflectors 277 and 278 is generally configured by a pair of reflectors 277 and 278 that sandwich the boundary between the gel 275 and the one end surface 272a of the light guide 272 from the thickness direction of the light guide 272. Yes.
In the present embodiment, the reflection mirror 273 and the lens 274 constitute a light incident part. In this embodiment, the gel 275 is used as a light distribution conversion element that changes the directivity to the light from the light source unit 271.
 ゲル275としては、特に限定されるものではないが、光透過性であり、光源部271およびレンズ274と導光体272の一端面272aとを光学接着が可能なものであれば、いかなるものでも用いられる。
 また、ゲル275と導光体272の一端面272aとの境界部は、手動または微小電子機械システム(MEMS)制御(アクチュエーター)などによって、導光体272の長手方向に沿って可動するようになっている。これにより、ゲル275と導光体272の一端面272aとは、所定の間隔を置いて離隔した状態と、互いに接触した状態とをなすようになっている。
The gel 275 is not particularly limited, but any gel can be used as long as it is light transmissive and can optically bond the light source 271 and the lens 274 to the one end surface 272a of the light guide 272. Used.
Further, the boundary portion between the gel 275 and the one end surface 272a of the light guide 272 is movable along the longitudinal direction of the light guide 272 by manual or micro electro mechanical system (MEMS) control (actuator). ing. Thereby, the gel 275 and the one end surface 272a of the light guide 272 are separated from each other by a predetermined distance and in contact with each other.
 散乱パターン276は、導光体272の一端面272aに形成された凹凸パターンなどである。 The scattering pattern 276 is an uneven pattern formed on the one end surface 272a of the light guide 272.
 反射板277,278としては、特に限定されるものではないが、ゲル275および導光板272よりも屈折率の低い材料、あるいは、金属などから構成されるものが用いられる。 The reflecting plates 277 and 278 are not particularly limited, but materials made of a material having a refractive index lower than that of the gel 275 and the light guide plate 272 or a metal are used.
 光源部271、導光体272、反射ミラー273、レンズ274としては、上述の第9実施形態と同様のものが用いられる。 As the light source 271, the light guide 272, the reflection mirror 273, and the lens 274, the same ones as those in the ninth embodiment described above are used.
 図44Aは、ゲルと導光体の一端面とが所定の間隔を置いて離隔して調光装置を用いた状態を示す概略断面図である。
 このとき、光源部271からの光が、反射ミラー273の反射面273aで反射して、その反射光が、ゲル275を透過し、さらに、散乱体パターン276を透過すると、反射光は散乱体パターン276によって散乱され、散乱光となって、一端面272aから導光体272に入射する。したがって、導光体272の上面272bから出射する光は、導光体272の幅方向に拡がり、広い出射角で出射する。
FIG. 44A is a schematic cross-sectional view showing a state in which the light control device is used with the gel and one end face of the light guide spaced apart from each other with a predetermined interval.
At this time, when the light from the light source unit 271 is reflected by the reflection surface 273a of the reflection mirror 273, and the reflected light passes through the gel 275 and further passes through the scatterer pattern 276, the reflected light becomes the scatterer pattern. The light is scattered by 276 to become scattered light and enters the light guide 272 from the one end surface 272a. Therefore, the light emitted from the upper surface 272b of the light guide 272 spreads in the width direction of the light guide 272 and is emitted with a wide emission angle.
 図44Bは、ゲルと導光体の一端面とが互いに接触した状態で調光装置を用いた状態を示す概略断面図である。
 このとき、光源部271からの光が、反射ミラー273の反射面273aで反射して、その反射光が、ゲル275を透過し、さらに、散乱体パターン276を透過しても、反射光は散乱体パターン276によって散乱されず、指向性を有する光として、一端面272aから導光体272に入射する。したがって、導光体272の上面272bから出射する光は、導光体272の幅方向に拡がることなく、狭い出射角で出射する。
FIG. 44B is a schematic cross-sectional view showing a state where the light control device is used in a state where the gel and one end surface of the light guide are in contact with each other.
At this time, even if the light from the light source unit 271 is reflected by the reflection surface 273a of the reflection mirror 273 and the reflected light passes through the gel 275 and further passes through the scatterer pattern 276, the reflected light is scattered. The light having directivity is not scattered by the body pattern 276 and enters the light guide 272 from the one end surface 272a. Therefore, the light emitted from the upper surface 272b of the light guide 272 is emitted at a narrow emission angle without spreading in the width direction of the light guide 272.
このように、光源部271およびレンズ274と導光体272の一端面272aとを光学接着が可能なゲル275を設けることにより、調光装置270から出射する光を、指向性を有する光と散乱光とに切り替えることができる。 In this way, by providing the gel 275 capable of optically bonding the light source unit 271 and the lens 274 and the one end surface 272a of the light guide 272, light emitted from the light control device 270 is scattered with light having directivity. You can switch to light.
なお、本実施形態では、反射ミラー273とレンズ274が入光部を構成する場合を例示したが、本実施形態はこれに限定されない。本実施形態にあっては、入光部が楔形状の導光体、凸レンズなどであってもよい。 In the present embodiment, the case where the reflection mirror 273 and the lens 274 configure the light incident part is illustrated, but the present embodiment is not limited to this. In the present embodiment, the light incident portion may be a wedge-shaped light guide, a convex lens, or the like.
 [第13実施形態]
 図45Aおよび図45Bは、調光装置の第13実施形態を示す概略図である。図45Aは、平面図である。図45Bは、側面図である。
 調光装置280は、光源部281と、楔形状の導光体282と、プリズム283と、導光体284と、散乱液晶セル285とから概略構成されている。導光体282は、光源部281に対向して配置される。導光体282は、光源部281からの光がその一端面282a側から導入される。プリズム283は、導光体282の側面(斜面282bと対向する面)282cに対向する。プリズム283は、光の入射面(導光体282の側面282cと対向する面)283aが鋸刃形状をなす。導光体284は、導光体282およびプリズム283によって導かれた、光源部281からの光をその長手方向に導光する。散乱液晶セル285は、プリズム283と導光体284の一端面284aとの間に設けられる。
 本実施形態では、光源部281からの光に指向性を変化させる配光変換素子として、導光体282とプリズム283を用いている。
[Thirteenth embodiment]
45A and 45B are schematic views showing a thirteenth embodiment of the light control device. FIG. 45A is a plan view. FIG. 45B is a side view.
The light control device 280 is generally configured by a light source unit 281, a wedge-shaped light guide 282, a prism 283, a light guide 284, and a scattering liquid crystal cell 285. The light guide 282 is disposed to face the light source unit 281. Light from the light source unit 281 is introduced into the light guide 282 from the one end surface 282a side. The prism 283 faces the side surface (the surface facing the inclined surface 282b) 282c of the light guide 282. In the prism 283, a light incident surface (a surface facing the side surface 282c of the light guide 282) 283a has a saw blade shape. The light guide 284 guides the light from the light source unit 281 guided by the light guide 282 and the prism 283 in the longitudinal direction thereof. The scattering liquid crystal cell 285 is provided between the prism 283 and the one end surface 284 a of the light guide 284.
In the present embodiment, a light guide 282 and a prism 283 are used as light distribution conversion elements that change the directivity of light from the light source unit 281.
 導光体282は、ガラス、石英などからなる無機材料、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチックなどの光透過性の材料から構成されている。 The light guide 282 is made of an optically transparent material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
 プリズム283は、ガラス、石英などからなる無機材料、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチックなどの光透過性の材料から構成されている。 The prism 283 is made of a light-transmitting material such as an inorganic material made of glass, quartz or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
 光源部281、導光体284としては、上述の第9実施形態と同様のものが用いられる。 As the light source unit 281 and the light guide 284, those similar to those in the ninth embodiment are used.
 図46に示すように、調光装置280では、光源部281から導光体282に入射された光が、導光体282の斜面282bと側面282cで反射を繰り返して、導光体282内を伝搬するが、その光の一部が側面282cを透過する。導光体282の側面282cを透過した光が、側面282cを出射する角度αが、プリズム283の入射面283aにおいて全反射する角度未満である場合、その光はプリズム283の入射面283aによって散乱されず、指向性を有する光として、一端面284aから導光体284に入射する。したがって、導光体284の上面284bから出射する光は、導光体284の幅方向に拡がることなく、狭い出射角で出射する。 As shown in FIG. 46, in the light control device 280, the light incident on the light guide 282 from the light source unit 281 is repeatedly reflected by the inclined surface 282b and the side surface 282c of the light guide 282, and the light guide 282 is passed through. Although propagating, a part of the light is transmitted through the side surface 282c. When the angle α at which the light transmitted through the side surface 282c of the light guide 282 exits the side surface 282c is less than the angle at which the light is totally reflected at the incident surface 283a of the prism 283, the light is scattered by the incident surface 283a of the prism 283. Instead, the light having directivity enters the light guide 284 from the one end face 284a. Therefore, the light emitted from the upper surface 284 b of the light guide 284 is emitted at a narrow emission angle without spreading in the width direction of the light guide 284.
 このように、光源部281からの光がその一端面282a側から導入される楔形状の導光体282と、導光体282の側面282cに対向し、光の入射面283aが鋸刃形状をなすプリズム283とを設けることにより、調光装置280から出射する光を、指向性を有する光とすることができる。 In this way, the light from the light source unit 281 is opposed to the wedge-shaped light guide 282 to which the light is introduced from the one end face 282a side, and the side 282c of the light guide 282, and the light incident surface 283a has a saw blade shape. By providing the prism 283 formed, the light emitted from the light control device 280 can be changed to light having directivity.
 なお、本実施形態では、光源部281と導光体282がそれぞれ1つずつ設けられた場合を例示したが、本実施形態はこれに限定されない。本実施形態にあっては、図47に示すように、光源部281と導光体282からなる単位を複数設けてもよい。 In addition, in this embodiment, although the case where the light source part 281 and the light guide 282 were each provided 1 each was illustrated, this embodiment is not limited to this. In the present embodiment, as shown in FIG. 47, a plurality of units each including a light source unit 281 and a light guide 282 may be provided.
 [第14実施形態]
 図48は、調光装置の第14実施形態を示す概略平面図であり、調光装置を構成するパラボラミラー形状のレンズを示す図である。
 本実施形態のパラボラミラー形状のレンズ291は、光源部2101の導光体(図示略)の一端面と対向する面2101aとは反対の面側に設けられている。レンズ291は、光源部2101からの光を反射する反射面292aを有する反射ミラー292と、反射ミラー292の反射面292aに沿って設けられた3散乱液晶セル293とを備えている。
 本実施形態では、光源部2101からの光に指向性を変化させる配光変換素子として、散乱液晶セル293を備えたレンズ291を用いている。
[Fourteenth embodiment]
FIG. 48 is a schematic plan view showing a fourteenth embodiment of the light control device, and shows a parabolic mirror-shaped lens constituting the light control device.
The parabolic mirror-shaped lens 291 of the present embodiment is provided on the side opposite to the surface 2101 a facing the one end surface of the light guide (not shown) of the light source unit 2101. The lens 291 includes a reflection mirror 292 having a reflection surface 292 a that reflects light from the light source unit 2101, and a three-scattering liquid crystal cell 293 provided along the reflection surface 292 a of the reflection mirror 292.
In the present embodiment, a lens 291 including a scattering liquid crystal cell 293 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2101.
 本実施形態では、散乱液晶セル293の厚さと、レンズ291と散乱液晶セル293の屈折率差とによって、調光装置からの出射光の指向性が変化する。
 したがって、調光装置からの出射光の指向性に与える影響を小さくするためには、散乱液晶セル293の厚さが薄いことが好ましく、レンズ291と散乱液晶セル293の屈折率差が小さいことが好ましい。
 光源部2101、レンズ291としては、上述の第9実施形態と同様のものが用いられる。
In the present embodiment, the directivity of light emitted from the light control device varies depending on the thickness of the scattering liquid crystal cell 293 and the refractive index difference between the lens 291 and the scattering liquid crystal cell 293.
Therefore, in order to reduce the influence on the directivity of the emitted light from the light control device, it is preferable that the thickness of the scattering liquid crystal cell 293 is thin, and the difference in refractive index between the lens 291 and the scattering liquid crystal cell 293 is small. preferable.
The light source unit 2101 and the lens 291 are the same as those in the ninth embodiment.
 ここで、図49Aおよび図49Bを参照して、例えば、散乱液晶セル293を構成する高分子分散液晶としてリバースモード高分子分散液晶を用いた場合について説明する。
 図49Aに示すように、散乱液晶セル293に電圧を印加していない場合、液晶が散乱液晶セル293の厚さ方向と垂直な方向に配向するので、散乱液晶セル293は透明になる。したがって、光源部2101からの光が、反射ミラー292の反射面292aで反射して、その反射光が、散乱液晶セル293を透過しても、反射光は液晶によって散乱されずることなく、散乱液晶セル293から指向性を有する光として出射する。
 一方、図49Bに示すように、散乱液晶セル293に電圧を印加した場合、液晶が散乱液晶セル293の厚さ方向に配向する。したがって、光源部2101からの光が、反射ミラー292の反射面292aで反射して、その反射光が、散乱液晶セル293に入射すると、その光が液晶によって散乱されて、散乱液晶セル293から散乱光となって出射する。
Here, with reference to FIG. 49A and FIG. 49B, for example, a case where a reverse mode polymer dispersed liquid crystal is used as the polymer dispersed liquid crystal constituting the scattering liquid crystal cell 293 will be described.
As shown in FIG. 49A, when no voltage is applied to the scattering liquid crystal cell 293, the liquid crystal is aligned in a direction perpendicular to the thickness direction of the scattering liquid crystal cell 293, so that the scattering liquid crystal cell 293 becomes transparent. Therefore, even if the light from the light source unit 2101 is reflected by the reflection surface 292a of the reflection mirror 292 and the reflected light passes through the scattering liquid crystal cell 293, the reflected light is not scattered by the liquid crystal, and the scattered liquid crystal. Light is emitted from the cell 293 as light having directivity.
On the other hand, as shown in FIG. 49B, when a voltage is applied to the scattering liquid crystal cell 293, the liquid crystal is aligned in the thickness direction of the scattering liquid crystal cell 293. Accordingly, when light from the light source unit 2101 is reflected by the reflection surface 292a of the reflection mirror 292 and the reflected light enters the scattering liquid crystal cell 293, the light is scattered by the liquid crystal and scattered from the scattering liquid crystal cell 293. Emits light.
 なお、本実施形態では、散乱液晶セル293を構成する高分子分散液晶としてノーマルモード高分子分散液晶を用いてもよい。ノーマルモード高分子分散液晶を用いた場合、散乱液晶セル293に対する電圧の印加の有無による出射光の指向性は、リバースモード高分子分散液晶を用いた場合とは逆になる。 In this embodiment, a normal mode polymer dispersed liquid crystal may be used as the polymer dispersed liquid crystal constituting the scattering liquid crystal cell 293. When normal mode polymer dispersed liquid crystal is used, the directivity of outgoing light depending on whether or not voltage is applied to the scattering liquid crystal cell 293 is opposite to that when reverse mode polymer dispersed liquid crystal is used.
 [第15実施形態]
 図50は、調光装置の第15実施形態を示す概略平面図であり、調光装置を構成するパラボラミラー形状のレンズを示す図である。
 本実施形態のパラボラミラー形状のレンズ2111は、光源部2121からの光を反射する反射面2112aを有する反射ミラー2112と、微小電子機械システム(MEMS)制御(アクチュエーター)により、光源部2121側に出し入れ可能な複数の突起2113とを備えている。
 複数の突起2113は、反射ミラー2112の反射面2112aに沿って、所定の間隔を置いて設けられている。
 本実施形態では、光源部2121からの光に指向性を変化させる配光変換素子として、突起2113を備えたレンズ2111を用いている。
[Fifteenth embodiment]
FIG. 50 is a schematic plan view showing the fifteenth embodiment of the light control device, and shows a parabolic mirror-shaped lens that constitutes the light control device.
The parabolic mirror-shaped lens 2111 of this embodiment is moved in and out of the light source unit 2121 side by a reflection mirror 2112 having a reflection surface 2112a that reflects light from the light source unit 2121 and a micro electro mechanical system (MEMS) control (actuator). And a plurality of possible projections 2113.
The plurality of protrusions 2113 are provided at predetermined intervals along the reflection surface 2112 a of the reflection mirror 2112.
In the present embodiment, a lens 2111 provided with protrusions 2113 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2121.
 図51Aは、光源部2121側に複数の突起2113を突出させずに調光装置を用いた状態を示す概略平面図である。
 このとき、光源部2121からの光が、反射ミラー2112の反射面2112aで反射して、その反射光が、再びレンズ2111に入射するが、反射光はレンズ2111内で散乱されず、レンズ2111から指向性を有する光として出射する。
FIG. 51A is a schematic plan view showing a state in which the light control device is used without projecting the plurality of protrusions 2113 on the light source unit 2121 side.
At this time, the light from the light source unit 2121 is reflected by the reflecting surface 2112a of the reflecting mirror 2112 and the reflected light is incident on the lens 2111 again. However, the reflected light is not scattered in the lens 2111 and is reflected from the lens 2111. It emits as directional light.
 図51Bは、光源部2121側に複数の突起2113を突出させて調光装置を用いた状態を示す概略平面図である。
 このとき、光源部2121からの光が、反射ミラー2112の反射面2112aで反射して、その反射光が、再びレンズ2111に入射し、反射光は、複数の突起2113によって散乱されて、レンズ2111から散乱光となって出射する。
 なお、本実施形態では、突起2113を反射ミラー2112の反射面2112aよりも内側に収納して(引っ込めて)、反射ミラー2112の反射面2112aに溝や穴を形成して、その溝や穴によって反射光を散乱させてもよい。
FIG. 51B is a schematic plan view illustrating a state in which a plurality of protrusions 2113 are protruded toward the light source unit 2121 and the light control device is used.
At this time, the light from the light source unit 2121 is reflected by the reflection surface 2112a of the reflection mirror 2112, and the reflected light is incident on the lens 2111 again. The reflected light is scattered by the plurality of protrusions 2113, and the lens 2111 To be emitted as scattered light.
In this embodiment, the protrusion 2113 is accommodated (retracted) inside the reflection surface 2112a of the reflection mirror 2112, and a groove or hole is formed in the reflection surface 2112a of the reflection mirror 2112. The reflected light may be scattered.
 [第16実施形態]
 図52は、調光装置の第16実施形態を示す概略平面図であり、調光装置を構成する光源部およびパラボラミラー形状のレンズを示す図である。
 本実施形態では、光源部2131が、パラボラミラー形状のレンズ2132内において移動可能に設けられている。すなわち、光源部2131は、その光の出射面2131aが、レンズ2132の導光体(図示略)と対向する面(以下、「一方の面」と言う。)2132aと同一面上となる位置から、出射面2131aがレンズ2132の内側となる位置まで、レンズ2132の一方の面2132aと垂直な方向に移動可能となっている。
 また、レンズ2132は、光源部2131からの光を反射する反射面2133aを有する反射ミラー2133を備えている。
 光源部2131としては、上述の第9実施形態と同様のものが用いられる。
 本実施形態では、光源部2131からの光に指向性を変化させる配光変換素子として、レンズ2132を用いている。
[Sixteenth Embodiment]
FIG. 52 is a schematic plan view illustrating the sixteenth embodiment of the light control device, and is a diagram illustrating a light source unit and a parabolic mirror-shaped lens that constitute the light control device.
In the present embodiment, the light source unit 2131 is provided so as to be movable in a parabolic mirror-shaped lens 2132. That is, the light source unit 2131 has a light emission surface 2131a that is on the same plane as a surface (hereinafter referred to as “one surface”) 2132a that faces the light guide (not shown) of the lens 2132. The lens 2132 is movable in a direction perpendicular to the one surface 2132a until the exit surface 2131a is located inside the lens 2132.
The lens 2132 includes a reflection mirror 2133 having a reflection surface 2133a that reflects light from the light source unit 2131.
As the light source part 2131, the thing similar to the above-mentioned 9th Embodiment is used.
In the present embodiment, a lens 2132 is used as a light distribution conversion element that changes directivity to light from the light source unit 2131.
 光源部2131は、その光の出射面2131aが、レンズ2132の導光体(図示略)と対向する面2132aと同一面上に位置するときに、導光体の一端面に、出射光の焦点が合うように設けられている。したがって、この位置に光源部2131があるとき、光源部2131から導光体に入射された光は、指向性を有する光として、導光体内を伝搬する。
 一方、光源部2131の出射面2131aが、レンズ2132の一方の面2132aよりも内側にあるとき、光源部2131からの出射光の焦点は、導光体の一端面に合わない。したがって、この位置に光源部2131があるとき、光源部2131から導光体に入射された光は、散乱光として、導光体内を伝搬する。
The light source unit 2131 has a light output surface 2131a on the same surface as the surface 2132a facing the light guide (not shown) of the lens 2132, and the focus of the output light on one end surface of the light guide. Is provided to fit. Therefore, when the light source unit 2131 is located at this position, light incident on the light guide from the light source unit 2131 propagates through the light guide as directional light.
On the other hand, when the emission surface 2131a of the light source unit 2131 is inside the one surface 2132a of the lens 2132, the focus of the emission light from the light source unit 2131 does not match the one end surface of the light guide. Therefore, when the light source unit 2131 is present at this position, the light incident on the light guide from the light source unit 2131 propagates through the light guide as scattered light.
 [第17実施形態]
 図53は、調光装置の第17実施形態を示す概略断面図である。
 調光装置2140は、光源部2141と、導光体2142と、反射ミラー2143を備えたパラボラミラー形状のレンズ2144とから概略構成されている。導光体2142は、光源部2141に対向して配置される。導光体2142は、光源部2141からの光がその一端面2142a側から導入されるとともに、光源部2141からの光をその長手方向に導光する。パラボラミラー形状のレンズ2144は、光源部2141の導光体2142の一端面2142aと対向する面2141aとは反対の面側に設けられる。反射ミラー2143は、光源部2141からの光を反射する反射面2143aを有する。
 調光装置2140では、導光体2142とレンズ2144とが、光源部2141を介して対向するように配設されている。すなわち、導光体2142とレンズ2144との間には、光源部2141の厚さによる隙間が形成されている。そして、その隙間を通して、光源部2141の配線2145,2146が電源(図示略)に接続されている。
 本実施形態では、光源部2141からの光に指向性を変化させる配光変換素子として、レンズ2144を用いている。
[Seventeenth embodiment]
FIG. 53 is a schematic sectional view showing a seventeenth embodiment of the light control device.
The light control device 2140 is generally configured by a light source unit 2141, a light guide 2142, and a parabolic mirror-shaped lens 2144 including a reflection mirror 2143. The light guide 2142 is disposed to face the light source unit 2141. The light guide 2142 guides the light from the light source unit 2141 in the longitudinal direction while the light from the light source unit 2141 is introduced from the one end surface 2142a side. The parabolic mirror-shaped lens 2144 is provided on the side opposite to the surface 2141a facing the one end surface 2142a of the light guide 2142 of the light source unit 2141. The reflection mirror 2143 has a reflection surface 2143 a that reflects light from the light source unit 2141.
In the light control device 2140, the light guide 2142 and the lens 2144 are arranged so as to face each other with the light source unit 2141 interposed therebetween. That is, a gap due to the thickness of the light source unit 2141 is formed between the light guide 2142 and the lens 2144. The wirings 2145 and 2146 of the light source unit 2141 are connected to a power source (not shown) through the gap.
In this embodiment, a lens 2144 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2141.
 また、光源部2141は、レンズ2144の導光体2142と対向する面(以下、「一方の面」と言う。)2144aの中央部に配設されている。そして、光源部2141を中心として、レンズ2144は回転可能となっている。 The light source unit 2141 is disposed at the center of a surface (hereinafter referred to as “one surface”) 2144a of the lens 2144 facing the light guide 2142. The lens 2144 is rotatable around the light source unit 2141.
 光源部2141、導光体2142、反射ミラー2143、レンズ2144としては、上述の第9実施形態と同様のものが用いられる。 As the light source unit 2141, the light guide 2142, the reflection mirror 2143, and the lens 2144, the same ones as those in the ninth embodiment described above are used.
 本実施形態では、図54Aに示すように、光源部2141の長手方向が、レンズ2144の突出面を横切る断面と垂直に交わるときに、導光体2142の一端面2142aに、光源部2141の出射光の焦点が合うようになっている。したがって、この位置にレンズ2144があるとき、光源部2141から導光体2142に入射された光は、指向性を有する光として、導光体2142内を伝搬する。
 一方、図54Bに示すように、光源部2141の長手方向が、レンズ2144の突出面を横切る断面と平行であるとき、光源部2141からの出射光の焦点は、導光体2142の一端面2142aに合わない。したがって、この位置にレンズ2144があるとき、光源部2141から導光体2142に入射された光は、散乱光として、導光体2142内を伝搬する。
In this embodiment, as shown in FIG. 54A, when the longitudinal direction of the light source unit 2141 intersects the cross section perpendicular to the projecting surface of the lens 2144 perpendicularly, the light source unit 2141 protrudes from the one end surface 2142a of the light guide 2142. The incident light is in focus. Therefore, when the lens 2144 is present at this position, light incident on the light guide 2142 from the light source unit 2141 propagates in the light guide 2142 as directional light.
On the other hand, as shown in FIG. 54B, when the longitudinal direction of the light source unit 2141 is parallel to the cross section crossing the protruding surface of the lens 2144, the focal point of the emitted light from the light source unit 2141 is the one end surface 2142a of the light guide 2142. Does not fit. Therefore, when the lens 2144 is present at this position, light incident on the light guide 2142 from the light source unit 2141 propagates in the light guide 2142 as scattered light.
 [第18実施形態]
 図55は、調光装置の第18実施形態を示す概略断面図である。
 調光装置2150は、光源部2151と、導光体2152と、反射ミラー2153を備えたパラボラミラー形状のレンズ2154とから概略構成されている。導光体2152は、光源部2151に対向して配置される。導光体2152は、光源部2151からの光がその一端面2152a側から導入されるとともに、光源部2151からの光をその長手方向に導光する。パラボラミラー形状のレンズ2154は、光源部2151の導光体2152の一端面2152aと対向する面2151aとは反対の面側に設けられる。反射ミラー2153は、光源部2151からの光を反射する反射面2153aを有する。
 調光装置2150では、導光体2152とレンズ2154とが、光源部2151を介して対向するように配設されている。すなわち、導光体2152とレンズ2154との間には、光源部2151の厚さによる隙間が形成されている。そして、その隙間を通して、光源部2151の配線2155,2156が電源(図示略)に接続されている。
 本実施形態では、光源部2151からの光に指向性を変化させる配光変換素子として、レンズ2154を用いている。
[Eighteenth embodiment]
FIG. 55 is a schematic sectional view showing an eighteenth embodiment of the light control device.
The light control device 2150 is generally configured by a light source unit 2151, a light guide 2152, and a parabolic mirror-shaped lens 2154 including a reflection mirror 2153. The light guide 2152 is disposed to face the light source unit 2151. The light guide 2152 guides the light from the light source 2151 in the longitudinal direction while the light from the light source 2151 is introduced from the one end face 2152a side. The parabolic mirror-shaped lens 2154 is provided on the surface opposite to the surface 2151 a facing the one end surface 2152 a of the light guide 2152 of the light source unit 2151. The reflection mirror 2153 has a reflection surface 2153 a that reflects light from the light source unit 2151.
In the light control device 2150, the light guide 2152 and the lens 2154 are disposed so as to face each other with the light source unit 2151 interposed therebetween. That is, a gap due to the thickness of the light source unit 2151 is formed between the light guide 2152 and the lens 2154. The wirings 2155 and 2156 of the light source unit 2151 are connected to a power source (not shown) through the gap.
In the present embodiment, a lens 2154 is used as a light distribution conversion element that changes the directivity to light from the light source unit 2151.
 また、光源部2151は、レンズ2154の導光体2152と対向する面(以下、「一方の面」と言う。)2154aの中央部に配設されている。そして、光源部2151は、レンズ2154の一方の面2154a上において、回転可能となっている。 The light source unit 2151 is disposed at the center of a surface (hereinafter referred to as “one surface”) 2154a of the lens 2154 facing the light guide 2152. The light source unit 2151 is rotatable on one surface 2154a of the lens 2154.
 光源部2151、導光体2152、反射ミラー2153、レンズ2154としては、上述の第9実施形態と同様のものが用いられる。 As the light source unit 2151, the light guide body 2152, the reflection mirror 2153, and the lens 2154, the same ones as those in the ninth embodiment described above are used.
 本実施形態では、図56Aに示すように、光源部2151の長手方向が、レンズ2154の突出面を横切る断面と垂直に交わるときに、導光体2152の一端面2152aに、光源部2151の出射光の焦点が合うようになっている。したがって、この位置にレンズ2154があるとき、光源部2151から導光体2152に入射された光は、指向性を有する光として、導光体2152内を伝搬する。
 一方、図56Bに示すように、光源部2151の長手方向が、レンズ2154の突出面を横切る断面と平行であるとき、光源部2151からの出射光の焦点は、導光体2152の一端面2152aに合わない。したがって、この位置にレンズ2154があるとき、光源部2151から導光体2152に入射された光は、散乱光として、導光体2152内を伝搬する。
In the present embodiment, as shown in FIG. 56A, when the longitudinal direction of the light source unit 2151 intersects the cross section perpendicular to the projecting surface of the lens 2154 perpendicularly, the light source unit 2151 protrudes from the one end surface 2152a of the light guide 2152. The incident light is in focus. Therefore, when the lens 2154 is present at this position, light incident on the light guide 2152 from the light source unit 2151 propagates in the light guide 2152 as directional light.
On the other hand, as shown in FIG. 56B, when the longitudinal direction of the light source unit 2151 is parallel to the cross section crossing the protruding surface of the lens 2154, the focal point of the emitted light from the light source unit 2151 is one end surface 2152a of the light guide 2152a. Does not fit. Therefore, when the lens 2154 is at this position, the light incident on the light guide 2152 from the light source unit 2151 propagates in the light guide 2152 as scattered light.
 [第19実施形態]
 図57Aおよび図57Bは、調光装置の第19実施形態を示す概略図であり、図57Aは平面図である。図57Bは、図57AのE2-E2線に沿う断面図である。
 調光装置2160は、光源部2161と、楔形状の導光体2162と、散乱液晶セル2163と、反射ミラー2164を備えたパラボラミラー形状のレンズ2165と、プリズム2166とから概略構成されている。楔形状の導光体2162は、光源部2161に対向して配置される。楔形状の導光体2162は、光源部2161からの光がその一端面2162a側から導入されるとともに、光源部2161からの光をその長手方向に導光する。散乱液晶セル2163は、光源部2161と導光体2162の一端面2162aとの間に設けられる。パラボラミラー形状のレンズ2165は、光源部2161の導光体2162の一端面2162aと対向する面2161aとは反対の面側に設けられる。反射ミラー2164は、光源部2161からの光を反射する反射面2164aを有する。プリズム2166は、レンズ2165の上面2165b上に設けられる。プリズム2166は、その上面2165bと対向する面2166aが鋸刃形状をなす。
 本実施形態では、光源部2161からの光に指向性を変化させる配光変換素子として、散乱液晶セル2163を用いている。
[Nineteenth Embodiment]
57A and 57B are schematic views showing a nineteenth embodiment of the light control device, and FIG. 57A is a plan view. FIG. 57B is a cross-sectional view taken along line E2-E2 of FIG. 57A.
The light control device 2160 is generally configured by a light source unit 2161, a wedge-shaped light guide 2162, a scattering liquid crystal cell 2163, a parabolic mirror-shaped lens 2165 including a reflection mirror 2164, and a prism 2166. The wedge-shaped light guide 2162 is disposed to face the light source portion 2161. The wedge-shaped light guide 2162 introduces the light from the light source 2161 from the one end face 2162a side and guides the light from the light source 2161 in the longitudinal direction. The scattering liquid crystal cell 2163 is provided between the light source unit 2161 and the one end surface 2162a of the light guide 2162. The parabolic mirror-shaped lens 2165 is provided on the surface opposite to the surface 2161a facing the one end surface 2162a of the light guide 2162 of the light source unit 2161. The reflection mirror 2164 has a reflection surface 2164 a that reflects light from the light source unit 2161. The prism 2166 is provided on the upper surface 2165b of the lens 2165. In the prism 2166, a surface 2166a facing the upper surface 2165b has a saw blade shape.
In the present embodiment, a scattering liquid crystal cell 2163 is used as a light distribution conversion element that changes the directivity to light from the light source unit 2161.
 導光体2162は、ガラス、石英などからなる無機材料、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチックなどの光透過性の材料から構成されている。 The light guide 2162 is made of a light-transmitting material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
 プリズム2166は、ガラス、石英などからなる無機材料、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチックなどの光透過性の材料から構成されている。 The prism 2166 is made of a light-transmitting material such as an inorganic material made of glass, quartz or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like.
 光源部2161、散乱液晶セル2163、反射ミラー2164としては、上述の第9実施形態と同様のものが用いられる。 As the light source unit 2161, the scattering liquid crystal cell 2163, and the reflection mirror 2164, the same ones as in the ninth embodiment are used.
 調光装置2160では、例えば、散乱液晶セル2163を構成する液晶を配向させた状態で、光源部2161からの光が、反射ミラー2164の反射面2164aで反射して、その反射光が、散乱液晶セル2163に入射すると、反射光は散乱液晶セル2163内の液晶によって散乱されることなく、指向性を有する光として、一端面2162aから導光体2162に入射する。このとき、導光体2162に入射した光は、導光体2162の幅方向に広がりをもたない光となっている。そして、この導光体2162に入射した光は、導光体2162の上面2162bと斜面2162cで反射を繰り返して、導光体2162内を伝搬するに従って、導光体2162の厚さ方向にも広がりをもたない光となる。したがって、導光体2162の上面2162bから出射する光は、導光体2162の幅方向および厚さ方向に拡がることなく、狭い出射角で出射する。導光体2162の上面2162bから出射する光の出射角は、例えば、図7に示すように、導光体2162の幅方向および厚さ方向において、極めて狭くなる。 In the light control device 2160, for example, in a state where the liquid crystal constituting the scattering liquid crystal cell 2163 is aligned, the light from the light source unit 2161 is reflected by the reflecting surface 2164a of the reflecting mirror 2164, and the reflected light is scattered liquid crystal. When entering the cell 2163, the reflected light is not scattered by the liquid crystal in the scattering liquid crystal cell 2163 but enters the light guide 2162 from one end surface 2162 a as directional light. At this time, the light incident on the light guide 2162 is light that does not spread in the width direction of the light guide 2162. The light incident on the light guide 2162 is repeatedly reflected on the upper surface 2162b and the slope 2162c of the light guide 2162, and spreads in the thickness direction of the light guide 2162 as it propagates in the light guide 2162. The light has no light. Therefore, the light emitted from the upper surface 2162b of the light guide 2162 is emitted at a narrow emission angle without spreading in the width direction and the thickness direction of the light guide 2162. For example, as shown in FIG. 7, the emission angle of light emitted from the upper surface 2162b of the light guide 2162 becomes extremely narrow in the width direction and the thickness direction of the light guide 2162.
 [第20実施形態]
 図58Aおよび図58Bは、調光装置の第20実施形態を示す概略平面図である。図58Aは、全体図である。図58Bは、図58Aにおいて破線αで囲んだ領域を拡大した図である。
 調光装置2170は、光源部2171と、導光体2172と、エレクトロクロミックミラー2173を備えたパラボラミラー形状のレンズ2174と、反射手段2175とから概略構成されている。導光体2172は、光源部2171に対向して配置される。導光体2172は、光源部2171からの光がその一端面2172a側から導入されるとともに、光源部2171からの光をその長手方向に導光する。パラボラミラー形状のレンズ2174は、光源部2171の導光体2172の一端面2172aと対向する面2171aとは反対の面側に設けられる。エレクトロクロミックミラー2173は、光源部2171からの光を反射する反射面2173aを有する。反射手段2175は、エレクトロクロミックミラー2173の光源部2171と対向する面とは反対の面側に設けられる。反射手段2175は、エレクトロクロミックミラー2173を透過した光を反射する。
 また、光源部2171、エレクトロクロミックミラー2173、レンズ2174および反射手段2175からなる単位が、導光体2172の一端面2172aに沿って複数設けられている。
 本実施形態では、光源部2171からの光に指向性を変化させる配光変換素子として、エレクトロクロミックミラー2173を備えたレンズ2174を用いている。
[20th embodiment]
58A and 58B are schematic plan views showing the twentieth embodiment of the light control device. FIG. 58A is an overall view. 58B is an enlarged view of a region surrounded by a broken line α in FIG. 58A.
The light control device 2170 is generally configured by a light source unit 2171, a light guide 2172, a parabolic mirror-shaped lens 2174 including an electrochromic mirror 2173, and a reflection unit 2175. The light guide 2172 is disposed to face the light source unit 2171. The light guide 2172 guides the light from the light source part 2171 in the longitudinal direction while the light from the light source part 2171 is introduced from the one end face 2172a side. The parabolic mirror-shaped lens 2174 is provided on the surface opposite to the surface 2171a facing the one end surface 2172a of the light guide 2172 of the light source unit 2171. The electrochromic mirror 2173 has a reflection surface 2173a that reflects light from the light source unit 2171. The reflection means 2175 is provided on the surface of the electrochromic mirror 2173 opposite to the surface facing the light source unit 2171. The reflection means 2175 reflects the light transmitted through the electrochromic mirror 2173.
Further, a plurality of units each including a light source unit 2171, an electrochromic mirror 2173, a lens 2174, and a reflection unit 2175 are provided along the one end surface 2172 a of the light guide 2172.
In this embodiment, a lens 2174 provided with an electrochromic mirror 2173 is used as a light distribution conversion element that changes the directivity of light from the light source unit 2171.
 エレクトロクロミックミラー2173は、電界の印加により、反射面2173aにおける光の反射と透過を切り替えることができるものである。 The electrochromic mirror 2173 can switch between reflection and transmission of light on the reflection surface 2173a by application of an electric field.
 反射手段2175の内側面2175a、2175b、2175cには、一般的な鏡(反射ミラー)が設けられているか、あるいは、上述の第11実施形態と同様に散乱体が設けられている。これにより、光源部2171から発せられ、エレクトロクロミックミラー2173を透過した光を、導光体2172側に反射することができる。 A general mirror (reflection mirror) is provided on the inner side surfaces 2175a, 2175b, and 2175c of the reflection means 2175, or a scatterer is provided as in the above-described eleventh embodiment. Thereby, the light emitted from the light source unit 2171 and transmitted through the electrochromic mirror 2173 can be reflected to the light guide 2172 side.
 光源部2171、導光体2172、2レンズ174としては、上述の第9実施形態と同様のものが用いられる。 As the light source unit 2171, the light guide 2172, and the second lens 174, the same ones as those in the ninth embodiment described above are used.
 反射手段2175は、ガラス、石英などからなる無機材料、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)などからなるプラスチックなどの光透過性の材料から構成されている。また、反射手段2175は、外側の骨格部分が前記の材料からなり、内部が中空構造をなしていてもよく、あるいは、全体が前記の材料からなる中実構造をなしていてもよい。 The reflecting means 2175 is made of a light transmissive material such as an inorganic material made of glass, quartz, or the like, or a plastic made of polymethyl methacrylate (polymethyl methacrylate, PMMA) or the like. Further, the reflecting means 2175 may have an outer skeleton portion made of the above-mentioned material and an inside having a hollow structure, or may have a solid structure made entirely of the above-described material.
 図59Aは、エレクトロクロミックミラー2173に電圧を印加した場合、調光装置を用いた状態を示す概略平面図である。
 このとき、光源部2171からの光が、エレクトロクロミックミラー2173の反射面2173aで反射して、その反射光が、反射手段2175の内側面2175a、2175b、2175cに設けられた鏡や散乱体によって散乱されず、指向性を有する光として、一端面2172aから導光体2172に入射する。したがって、導光体2172の上面2172bから出射する光は、導光体2172の幅方向に拡がることなく、狭い出射角で出射する。
FIG. 59A is a schematic plan view showing a state in which the light control device is used when a voltage is applied to the electrochromic mirror 2173. FIG.
At this time, light from the light source unit 2171 is reflected by the reflection surface 2173a of the electrochromic mirror 2173, and the reflected light is scattered by mirrors and scatterers provided on the inner surfaces 2175a, 2175b, and 2175c of the reflection means 2175. Instead, the light enters the light guide 2172 from the one end surface 2172a as light having directivity. Therefore, the light emitted from the upper surface 2172b of the light guide 2172 is emitted at a narrow emission angle without spreading in the width direction of the light guide 2172.
 図59Bは、エレクトロクロミックミラー2173に電圧を印加しない場合、調光装置を用いた状態を示す概略平面図である。
 このとき、光源部2171からの光が、エレクトロクロミックミラー2173を透過して、その透過光が、反射手段2175の内側面2175a、2175b、2175cに設けられた鏡や散乱体によって散乱され、散乱光となって、一端面2172aから導光体2172に入射する。したがって、導光体2172の上面2172bから出射する光は、導光体2172の幅方向に拡がり、広い出射角で出射する。
FIG. 59B is a schematic plan view showing a state in which the light control device is used when no voltage is applied to the electrochromic mirror 2173.
At this time, light from the light source unit 2171 passes through the electrochromic mirror 2173, and the transmitted light is scattered by mirrors and scatterers provided on the inner side surfaces 2175a, 2175b, and 2175c of the reflecting means 2175, and the scattered light. Then, the light enters the light guide 2172 from the one end surface 2172a. Therefore, the light emitted from the upper surface 2172b of the light guide 2172 spreads in the width direction of the light guide 2172 and is emitted with a wide emission angle.
[第21実施形態]
 以下、本発明の第21実施形態について、図31、図60、図63を用いて説明する。
 第21実施形態では、上記実施形態の面光源装置を備えた表示装置の一例を示す。本実施形態は、第1実施形態の面光源装置をバックライトとして備えた液晶表示装置の一例である。
[Twenty-first embodiment]
Hereinafter, a twenty-first embodiment of the present invention will be described with reference to FIGS. 31, 60, and 63. FIG.
In the twenty-first embodiment, an example of a display device including the surface light source device of the above embodiment is shown. The present embodiment is an example of a liquid crystal display device that includes the surface light source device of the first embodiment as a backlight.
 本実施形態の液晶表示装置165は、図31および図60に示すように、バックライト166(面光源装置)と、第1偏光板167と、液晶パネル(液晶セルともいう)168と、第2偏光板169と、から構成されている。バックライト166は、液晶パネル168の表示画面168aとは反対側の面168b側に配置される。なお、図31では、液晶パネル168を模式的に1枚の板状に図示している。観察者は、第2偏光板169が配置された図31における液晶表示装置165の上側から表示を見ることになる。よって、以下の説明では、第2偏光板169が配置された側を視認側と称し、バックライト166が配置された側を背面側と称する。
 液晶表示装置165において、バックライト166は、上述の第1実施形態~第20実施形態の調光装置のいずれかから構成されている。
As shown in FIGS. 31 and 60, the liquid crystal display device 165 of this embodiment includes a backlight 166 (surface light source device), a first polarizing plate 167, a liquid crystal panel (also referred to as a liquid crystal cell) 168, a second A polarizing plate 169. The backlight 166 is disposed on the surface 168b side of the liquid crystal panel 168 opposite to the display screen 168a. In FIG. 31, the liquid crystal panel 168 is schematically illustrated as a single plate. The observer views the display from the upper side of the liquid crystal display device 165 in FIG. 31 in which the second polarizing plate 169 is disposed. Therefore, in the following description, the side on which the second polarizing plate 169 is disposed is referred to as a viewing side, and the side on which the backlight 166 is disposed is referred to as a back side.
In the liquid crystal display device 165, the backlight 166 is composed of any of the light control devices of the first to twentieth embodiments described above.
 本実施形態の液晶表示装置165においては、バックライト166から射出された光を液晶パネル168で変調し、変調した光によって所定の画像や文字等を表示する。
 液晶パネル168としては、例えばアクティブマトリクス方式の透過型液晶パネルを用いることができる。ただし、アクティブマトリクス方式の透過型液晶パネルに限らず、例えば半透過型(透過・反射兼用型)液晶パネル、各画素がスイッチング用薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を備えていない単純マトリクス方式の液晶パネルであっても良い。液晶パネル168には周知の一般的な液晶パネルを用いることができるため、詳細な構成の説明は省略する。
In the liquid crystal display device 165 of this embodiment, the light emitted from the backlight 166 is modulated by the liquid crystal panel 168, and a predetermined image, characters, or the like is displayed by the modulated light.
As the liquid crystal panel 168, for example, an active matrix transmissive liquid crystal panel can be used. However, the liquid crystal panel is not limited to an active matrix transmissive liquid crystal panel, and does not include, for example, a transflective (transmissive / reflective) liquid crystal panel and each pixel includes a switching thin film transistor (hereinafter abbreviated as TFT). A simple matrix type liquid crystal panel may be used. Since a known general liquid crystal panel can be used for the liquid crystal panel 168, a detailed description of the configuration is omitted.
 本構成例の液晶テレビジョン170は、図63に示すように、表示画面として本実施形態の液晶表示装置165を備えている。観察者側(図63の手前側)には液晶パネル168が配置され、観察者と反対側(図63の奥側)にはバックライト166(面光源装置)が配置されている。 As shown in FIG. 63, the liquid crystal television 170 of this configuration example includes the liquid crystal display device 165 of this embodiment as a display screen. A liquid crystal panel 168 is disposed on the viewer side (front side in FIG. 63), and a backlight 166 (surface light source device) is disposed on the side opposite to the viewer (back side in FIG. 63).
 本実施形態の液晶表示装置165では、指向性の切り替えが可能な第1実施形態の面光源装置11からなるバックライト166を用いている。そのため、バックライト166を高指向性モードとすることにより、液晶表示装置165の視聴者側(液晶パネル168の表示画面168a側)に出射される光が拡散することがないので、例えば一人の観察者が画面の正面から液晶テレビジョンを見る際に好適なものとなる。また、バックライト166を広角モードとすることにより、表示装置165の視聴者側(液晶セル168の表示画面168a側)に出射される光が拡散するので、視野角を広げることができる。この場合、例えば多くの観察者が画面の様々な方向から液晶テレビジョンを見る際に好適なものとなる。
 すなわち、バックライト166として、上述の第1実施形態~第20実施形態の調光装置のいずれかを用いることにより、表示装置165の視野角を調整することができる。
In the liquid crystal display device 165 of this embodiment, a backlight 166 including the surface light source device 11 of the first embodiment capable of switching directivity is used. Therefore, by setting the backlight 166 to the high directivity mode, light emitted to the viewer side of the liquid crystal display device 165 (the display screen 168a side of the liquid crystal panel 168) is not diffused. This is suitable when a person watches a liquid crystal television from the front of the screen. Further, by setting the backlight 166 to the wide angle mode, light emitted to the viewer side of the display device 165 (the display screen 168a side of the liquid crystal cell 168) is diffused, so that the viewing angle can be widened. In this case, for example, it is suitable when many observers watch the liquid crystal television from various directions on the screen.
That is, the viewing angle of the display device 165 can be adjusted by using any one of the dimming devices of the first to twentieth embodiments described above as the backlight 166.
[第22実施形態]
 以下、本発明の第22実施形態について、図61~図66Bを用いて説明する。
 第22実施形態では、上記実施形態の面光源装置を備えた照明装置の一例を示す。
[Twenty-second embodiment]
Hereinafter, a twenty-second embodiment of the present invention will be described with reference to FIGS. 61 to 66B.
In the twenty-second embodiment, an example of a lighting device including the surface light source device of the above-described embodiment is shown.
 図64Aは、上記実施形態の光源部を備えた電気スタンド175を示している。図64Bは、電気スタンド175の光源部12を示しており、高指向性用光源部113と広角用光源部114とを備えている。この電気スタンド175では、光源部12を高指向性モードとすることにより、図64Aに実線の矢印で示すように、狭い範囲を照明することができる。光源部12を広角モードとすることにより、図64Bに破線の矢印で示すように、広い範囲を照明することができる。 FIG. 64A shows a table lamp 175 provided with the light source unit of the above embodiment. FIG. 64B shows the light source unit 12 of the desk lamp 175, which includes a high directivity light source unit 113 and a wide-angle light source unit 114. In the desk lamp 175, by setting the light source unit 12 in the high directivity mode, a narrow range can be illuminated as shown by a solid arrow in FIG. 64A. By setting the light source unit 12 to the wide-angle mode, a wide range can be illuminated as shown by the dashed arrows in FIG. 64B.
 図65Aは、照射面が円形の光源部12aを備えた電気スタンド176を示している。
図65Bは、電気スタンド176の光源部12aを示しており、円形の凹面ミラーを有する高指向性光源部113aと広角用光源部114aとを備えている。この電気スタンド176では、光源部12aを高指向性モードとすることにより、図65Aに1点鎖線の矢印で示すように、狭い範囲を照明することができる。光源部112aを広角モードとすることにより、図65Aに破線の矢印で示すように、広い範囲を照明することができる。
FIG. 65A shows a table lamp 176 provided with a light source unit 12a having a circular irradiation surface.
FIG. 65B shows the light source unit 12a of the desk lamp 176, which includes a highly directional light source unit 113a having a circular concave mirror and a wide-angle light source unit 114a. In the desk lamp 176, by setting the light source unit 12a to the high directivity mode, a narrow range can be illuminated as shown by the dashed-dotted arrow in FIG. 65A. By setting the light source unit 112a to the wide-angle mode, a wide range can be illuminated as shown by the dashed arrows in FIG. 65A.
本実施形態の証明スタンドは、図62に示す形態でもよい。図62は、照明装置の一実施形態として、照明スタンドを示す概略斜視図である。
 照明スタンド2200は、発光部2201と、スタンド2202と、メインスイッチ2203と、電源コード2204とから概略構成されている。
 照明スタンド2200において、発光部2201は、上述の第1実施形態~第20実施形態の調光装置のいずれかから構成されている。
The form shown in FIG. 62 may be sufficient as the proof stand of this embodiment. FIG. 62 is a schematic perspective view showing a lighting stand as an embodiment of the lighting device.
The illumination stand 2200 is generally configured by a light emitting unit 2201, a stand 2202, a main switch 2203, and a power cord 2204.
In the illumination stand 2200, the light emitting unit 2201 is configured from any of the light control devices of the first to twentieth embodiments described above.
 照明スタンド2200は、上述の第1実施形態~第20実施形態の調光装置を発光部2201として備えることにより、光の照射する領域を調節可能な照明装置となる。 The illumination stand 2200 is an illumination device that can adjust the light irradiation region by including the light control device of the first to twentieth embodiments described above as the light emitting unit 2201.
 図66A、図66Bは、上記実施形態の面光源装置を備えたシーリングライト177を示している。このシーリングライト177では、面光源装置を高指向性モードとすることにより、図66Aに示すように、狭い範囲を照明することができる。面光源装置を広角モードとすることにより、図66Bに示すように、広い範囲を照明することができる。 66A and 66B show a ceiling light 177 provided with the surface light source device of the above embodiment. With this ceiling light 177, by setting the surface light source device in the high directivity mode, it is possible to illuminate a narrow range as shown in FIG. 66A. By setting the surface light source device to the wide angle mode, a wide range can be illuminated as shown in FIG. 66B.
 以上のように、上記の光源部だけで照明装置を構成してもよいし、面光源装置で照明装置を構成してもよい。上記の光源部や面光源装置を照明装置として用いる場合、表示装置として用いる場合に比べて高い指向性は要求されない。したがって、光の出力を高めるために、大きめの光源を用いることができる。 As described above, the illuminating device may be configured with only the light source unit described above, or the illuminating device may be configured with a surface light source device. When the light source unit or the surface light source device is used as a lighting device, high directivity is not required as compared with the case of using it as a display device. Therefore, a larger light source can be used to increase the light output.
本実施形態のシーリングライトは、図61に示す形態であってもよい。図61は、照明装置の一実施形態として、シーリングライトを示す概略斜視図である。
 シーリングライト2190は、発光部2191と、吊下線2192と、電源コード2193とから概略構成されている。
 シーリングライト2190において、発光部2191は、上述の第1実施形態~第20実施形態の調光装置のいずれかから構成されている。
The ceiling light of this embodiment may have the form shown in FIG. FIG. 61 is a schematic perspective view showing a ceiling light as one embodiment of a lighting device.
The ceiling light 2190 includes a light emitting unit 2191, a hanging line 2192, and a power cord 2193.
In the ceiling light 2190, the light emitting unit 2191 is composed of any of the light control devices of the first to twentieth embodiments described above.
 シーリングライト2190は、上述の第1実施形態~第20実施形態の調光装置を発光部2191として備えることにより、光の照射する領域を調節可能な照明装置となる。 The ceiling light 2190 is an illuminating device that can adjust the region irradiated with light by including the light control device of the first to twentieth embodiments described above as the light emitting unit 2191.
 なお、本発明の態様における技術範囲は上記実施形態に限定されるものではなく、本発明の態様における趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記第1実施形態~第4実施形態、第9実施形態、第11実施形態~第12実施形態、第14実施形態~第20実施形態においては、凹面ミラーやレンズの形状はパラボラ面を有すると述べた。これに対し、上記の実施形態で用いることが可能な凹面ミラーやレンズの有する形状は、必ずしもパラボラ面に限ることなく、放物面を含む概念として円錐曲面であれば良い。円錐曲面の頂点を通る断面の形状を示す曲線は二次曲線と呼ばれる。二次曲線は、円錐を任意の平面で切り取った断面から得られる曲線である。凹面ミラーの径方向の座標をρ、凹面ミラーの中心軸方向の座標をz、コーニック係数をkとすると、二次曲線を下記の(1)式、(2)式で表すことができる。
The technical scope in the aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
For example, in the first embodiment to the fourth embodiment, the ninth embodiment, the eleventh embodiment to the twelfth embodiment, and the fourteenth embodiment to the twentieth embodiment, the concave mirror and the lens have a parabolic surface. I said. On the other hand, the shape of the concave mirror or lens that can be used in the above embodiment is not necessarily limited to a parabolic surface, but may be a conical curved surface as a concept including a paraboloid. A curve indicating the shape of a cross section passing through the apex of the conical curved surface is called a quadratic curve. A quadratic curve is a curve obtained from a cross section obtained by cutting a cone at an arbitrary plane. When the coordinate in the radial direction of the concave mirror is ρ, the coordinate in the central axis direction of the concave mirror is z, and the conic coefficient is k, the quadratic curve can be expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (1)式、(2)式におけるコーニック係数kの値によって二次曲線の形状は変化する。二次曲線は、例えばk=0のときに円となり、k=-0.25のときに楕円曲線となり、k=-1のときに放物線となり、k=-2のときに双曲線となる。上記の実施形態では、これらの二次曲線をxy平面における断面形状とする凹面ミラーを用いることができる。なお、第1実施形態でも述べたように、LEDからの光が到達する領域が少なくとも円錐曲面であれば良いので、LEDからの光が到達しない領域は例えば平坦な面であっても良い。 The shape of the quadratic curve changes depending on the value of the conic coefficient k in the equations (1) and (2). The quadratic curve is, for example, a circle when k = 0, an elliptic curve when k = −0.25, a parabola when k = −1, and a hyperbola when k = −2. In the above embodiment, it is possible to use a concave mirror having these quadratic curves as cross-sectional shapes in the xy plane. As described in the first embodiment, the region where the light from the LED reaches may be at least a conical curved surface, and the region where the light from the LED does not reach may be, for example, a flat surface.
 また、凹面ミラーの内部に配置されたシリンドリカルレンズはなくてもよい。シリンドリカルレンズが配置されていた部分が中空であってもよい。その他、上記実施形態で例示した面光源装置の各構成要素の形状、数、配置、材質等に関しては、適宜変更が可能である。例えば、導光体、凹面ミラー、楔形導光棒等の部材には種々の材料を用いることができるが、これらの光源と接する部材には、耐熱性の高い材料を用いることが望ましい。 Also, there may be no cylindrical lens disposed inside the concave mirror. The portion where the cylindrical lens is disposed may be hollow. In addition, the shape, number, arrangement, material, and the like of each component of the surface light source device exemplified in the above embodiment can be appropriately changed. For example, various materials can be used for members such as a light guide, a concave mirror, and a wedge-shaped light guide rod, but it is desirable to use a material having high heat resistance for the members in contact with these light sources.
 本発明のいくつかの態様は、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマディスプレイなどの各種表示装置、もしくはこれらの表示装置に用いられる面光源装置に利用可能であり、これらの表示装置の視野角を拡大する調光装置として利用することができる。もしくは光の照射する領域を調節可能な照明装置等の各種照明装置に利用可能である。 Some embodiments of the present invention can be used in various display devices such as liquid crystal display devices, organic electroluminescence display devices, plasma displays, or surface light source devices used in these display devices. It can be used as a light control device that enlarges the angle. Or it can utilize for various illuminating devices, such as an illuminating device which can adjust the area | region which light irradiates.
 11,117,121,124,126,128,132,135,143,149,155,157,181…面光源装置、12,12a,133,136,150,158,211,251,261,271,281,2101、2121,2131,2141,2151,2161,2171,2191,2201…光源部、13,118,122,182,212,252,262,272,282,284,2142,2152,2162,2172…導光体、14…プリズムシート(方向変更用部材)、17…第1のLED(第1の発光素子)、18…シリンドリカルレンズ(凸レンズ)、19…凹面ミラー(角度分布変換部材)、113,113a,137,145,151,159…高指向性用光源部(第1の光源部)、114,114a,138,152,160…広角用光源部(第2の光源部)、115…第2のLED(第2の発光素子)、119…プリズム構造体、139…楔形導光棒(角度分布変換部材)、146…導光棒(角度分布変換部材)、153…光散乱部材(角度分布変換部材)、161…平行化レンズ(角度分布変換部材)、165…液晶表示装置(表示装置)、166,2184…バックライト(面光源装置)、168…液晶パネル、175,176…電気スタンド(照明装置)、177,2190…シーリングライト(照明装置)、210,250,260,270,280,2140,2150,2160,2170…調光装置、213…散乱液晶セル、214,264,273,292,2112,2133,2143,2153,2163…反射ミラー、215,265,274,291,2111,2132,2144,2154,2165,2174…レンズ、221…高分子分散液晶、222,223…透明導電基板、224,226…透明基板、225,227…透明導電膜、231,241…液晶、232,243…ランダムポリマー、243…液晶ポリマー、253…液晶レンズ、254…第一透明基板、255…第二透明基板、256…第一透明電極、257…第二透明電極、258…絶縁性スペーサ、259…液晶層、263…散乱体、275…ゲル、276…散乱パターン、277,278…反射板、283,2166…プリズム、285,293,2163…散乱液晶セル、2113…突起、2173…エレクトロクロミックミラー、2175…反射手段、2180…表示装置、2181…液晶セル、2182,2183…偏光板、2192…吊下線、2193…電源コード、2200…照明スタンド、2202…スタンド、2203…メインスイッチ、2204…電源コード。 11, 117, 121, 124, 126, 128, 132, 135, 143, 149, 155, 157, 181... Surface light source device, 12, 12a, 133, 136, 150, 158, 211, 251, 261, 271, 281, 2101, 2121, 2131, 2141, 2151, 2161, 2171, 2191, 2201... ... light guide, 14 ... prism sheet (direction changing member), 17 ... first LED (first light emitting element), 18 ... cylindrical lens (convex lens), 19 ... concave mirror (angle distribution converting member), 113 , 113a, 137, 145, 151, 159... High directivity light source section (first light source section), 14, 114a, 138, 152, 160 ... Wide-angle light source (second light source), 115 ... Second LED (second light-emitting element), 119 ... Prism structure, 139 ... Wedge-shaped light guide rod (angle) (Distribution conversion member), 146... Light guide rod (angle distribution conversion member), 153... Light scattering member (angle distribution conversion member), 161 .. collimating lens (angle distribution conversion member), 165... Liquid crystal display device (display device) 166, 2184 ... Backlight (surface light source device), 168 ... Liquid crystal panel, 175, 176 ... Desk lamp (illumination device), 177, 2190 ... Ceiling light (illumination device), 210, 250, 260, 270, 280, 2140, 2150, 2160, 2170 ... light control device, 213 ... scattering liquid crystal cell, 214, 264, 273, 292, 2112, 2133, 2143, 2153 2163: Reflection mirror, 215, 265, 274, 291, 2111, 1322, 2144, 2154, 2165, 2174 ... Lens, 221 ... Polymer dispersed liquid crystal, 222, 223 ... Transparent conductive substrate, 224, 226 ... Transparent substrate, 225 , 227 ... transparent conductive film, 231,241 ... liquid crystal, 232,243 ... random polymer, 243 ... liquid crystal polymer, 253 ... liquid crystal lens, 254 ... first transparent substrate, 255 ... second transparent substrate, 256 ... first transparent electrode 257 ... second transparent electrode, 258 ... insulating spacer, 259 ... liquid crystal layer, 263 ... scatterer, 275 ... gel, 276 ... scattering pattern, 277,278 ... reflecting plate, 283,2166 ... prism, 285,293, 2163 ... scattering liquid crystal cell, 2113 ... projection, 2173 ... electrochromic mirror, 2175 ... anti Projection means, 2180 ... display device, 2181 ... liquid crystal cell, 2182, 2183 ... polarizing plate, 2192 ... hanging line, 2193 ... power cord, 2200 ... lighting stand, 2202 ... stand, 2203 ... main switch, 2204 ... power cord.

Claims (28)

  1.  第1の発光素子を有し、前記第1の発光素子からの光を射出する第1の光源部と、
     第2の発光素子を有し、前記第2の発光素子からの光を、前記第1の光源部から射出される光の角度分布よりも広い角度分布を有する光として射出する第2の光源部と、
     前記第1の光源部から射出された光および前記第2の光源部から射出された光を端面から入射させ、主面から射出させる導光体と、を備え、
     前記第1の光源部と前記第2の光源部とは、前記導光体の複数の端面のうちの一つの端面に設けられ、点灯および消灯を各々独立して制御可能とされる面光源装置。
    A first light source unit having a first light emitting element and emitting light from the first light emitting element;
    A second light source unit having a second light emitting element and emitting light from the second light emitting element as light having an angular distribution wider than the angular distribution of light emitted from the first light source unit When,
    A light guide that makes the light emitted from the first light source unit and the light emitted from the second light source unit incident from an end surface, and emits the light from the main surface,
    The first light source unit and the second light source unit are provided on one end surface of the plurality of end surfaces of the light guide, and can be independently controlled to be turned on and off. .
  2.  前記第1の光源部および前記第2の光源部のいずれか一方が、前記第1の光源部から射出される光の角度分布と前記第2の光源部から射出される光の角度分布とを異ならせるための角度分布変換部材を備える請求項1に記載の面光源装置。 Either one of the first light source unit and the second light source unit calculates an angular distribution of light emitted from the first light source unit and an angular distribution of light emitted from the second light source unit. The surface light source device according to claim 1, further comprising an angle distribution conversion member for making the difference.
  3.  前記第1の光源部は、前記角度分布変換部材として、前記第1の発光素子から射出された光を反射する凹面ミラーを備え、
     前記凹面ミラーは、前記導光体の主面に平行な平面で切断したときの断面形状が、焦点を有する曲線形状を少なくとも一部に有し、
     前記第1の発光素子は、前記第1の発光素子の発光面上に前記焦点が位置するように配置され、
     前記第1の発光素子からの光が、前記凹面ミラーで反射して前記導光体に入射する請求項2に記載の面光源装置。
    The first light source unit includes a concave mirror that reflects light emitted from the first light emitting element as the angle distribution conversion member,
    The concave mirror has, at least in part, a curved shape in which a cross-sectional shape when cut along a plane parallel to the main surface of the light guide has a focal point,
    The first light emitting element is disposed so that the focal point is located on a light emitting surface of the first light emitting element,
    The surface light source device according to claim 2, wherein light from the first light emitting element is reflected by the concave mirror and enters the light guide.
  4.  前記第2の発光素子は、前記第1の光源部から射出される光の角度分布よりも広い角度分布を有する光を射出し、
     前記第2の発光素子から射出された光が、前記凹面ミラーを介することなく前記導光体に入射する請求項3に記載の面光源装置。
    The second light emitting element emits light having an angular distribution wider than the angular distribution of light emitted from the first light source unit,
    The surface light source device according to claim 3, wherein light emitted from the second light emitting element enters the light guide without passing through the concave mirror.
  5.  前記第1の発光素子と前記第2の発光素子とは、互いの発光面と反対側の面同士が対向するように配置される請求項4に記載の面光源装置。 The surface light source device according to claim 4, wherein the first light emitting element and the second light emitting element are arranged so that surfaces opposite to each other's light emitting surface face each other.
  6.  前記第1の光源部は、前記導光体の一つの端面に沿って配列された複数の前記発光素子および複数の前記凹面ミラーを備え、
     前記第2の発光素子は、隣り合う凹面ミラー同士の境界に沿って配置される請求項4に記載の面光源装置。
    The first light source unit includes a plurality of the light emitting elements and a plurality of concave mirrors arranged along one end surface of the light guide,
    The surface light source device according to claim 4, wherein the second light emitting element is disposed along a boundary between adjacent concave mirrors.
  7.  前記凹面ミラーは、前記導光体の主面に垂直な平面で切断したときの断面形状が直線形状であって、前記導光体の主面に垂直な方向には曲率を持たず、
     前記第1の発光素子は、前記導光体の主面に垂直な方向に沿って配置され、
     前記第2の発光素子は、前記導光体の主面に平行な方向に沿って配置される請求項4に記載の面光源装置。
    The concave mirror has a linear shape when cut in a plane perpendicular to the main surface of the light guide, and has no curvature in the direction perpendicular to the main surface of the light guide.
    The first light emitting element is disposed along a direction perpendicular to a main surface of the light guide,
    The surface light source device according to claim 4, wherein the second light emitting element is disposed along a direction parallel to a main surface of the light guide.
  8.  前記第1の光源部が、前記凹面ミラーの窪みに配置された凸レンズを備え、
     前記凸レンズの焦点の位置が前記凹面ミラーの焦点の位置と略一致している請求項3ないし7のいずれか一項に記載の面光源装置。
    The first light source unit includes a convex lens disposed in a recess of the concave mirror;
    The surface light source device according to claim 3, wherein a focal position of the convex lens substantially coincides with a focal position of the concave mirror.
  9.  前記凹面ミラーが、前記凸レンズの凸面に形成された金属膜もしくは誘電体多層膜で構成されている請求項8に記載の面光源装置。 9. The surface light source device according to claim 8, wherein the concave mirror is made of a metal film or a dielectric multilayer film formed on a convex surface of the convex lens.
  10.  前記第1の光源部は、前記角度分布変換部材として、前記第1の発光素子から射出された光を反射する反射面を有する反射素子を備え、
     前記反射素子は、前記導光体の前記一つの端面に対して一定の角度で傾斜した前記反射面と、前記導光体の前記一つの端面に対向する光射出面と、を有し、
     前記第1の発光素子は、前記反射素子の一つの端面に配置されるとともに、前記第1の発光素子からの光が、前記反射面で反射して前記導光体に入射する請求項2に記載の面光源装置。
    The first light source unit includes a reflection element having a reflection surface that reflects light emitted from the first light emitting element as the angle distribution conversion member,
    The reflective element includes the reflective surface inclined at a constant angle with respect to the one end surface of the light guide, and a light exit surface facing the one end surface of the light guide.
    The first light emitting element is disposed on one end face of the reflecting element, and light from the first light emitting element is reflected by the reflecting surface and enters the light guide. The surface light source device described.
  11.  前記第2の発光素子は、前記第1の光源部から射出される光の角度分布よりも広い角度分布を有する光を射出し、
     前記第2の発光素子から射出された光が、前記反射素子を介することなく前記導光体に入射する請求項10に記載の面光源装置。
    The second light emitting element emits light having an angular distribution wider than the angular distribution of light emitted from the first light source unit,
    The surface light source device according to claim 10, wherein light emitted from the second light emitting element enters the light guide without passing through the reflective element.
  12.  前記反射素子が、前記導光体の前記一つの端面に対して複数個設けられる請求項10または11に記載の面光源装置。 The surface light source device according to claim 10 or 11, wherein a plurality of the reflective elements are provided for the one end face of the light guide.
  13.  前記反射素子は、前記第1の発光素子が配置された端面に近い側から遠い側に向けて厚みが薄くなる楔形状を有し、前記光射出面と対向する端面全体が前記反射面である請求項10ないし12のいずれか一項に記載の面光源装置。 The reflective element has a wedge shape whose thickness decreases toward a side farther from a side closer to the end face on which the first light emitting element is disposed, and the entire end face facing the light emitting face is the reflective face. The surface light source device according to claim 10.
  14.  前記反射素子は、前記光射出面と対向する面に複数のプリズム構造体を有し、前記プリズム構造体の一つの傾斜面が前記反射面である請求項10ないし12のいずれか一項に記載の面光源装置。 The said reflective element has a some prism structure in the surface facing the said light-projection surface, and one inclined surface of the said prism structure is the said reflective surface. Surface light source device.
  15.  前記第2の光源部は、前記角度分布変換部材として、前記第2の発光素子から射出された光を散乱させる光散乱部材を備え、
     前記第2の発光素子から射出された光が、前記光散乱部材を介して前記導光体に入射する請求項2に記載の面光源装置。
    The second light source unit includes a light scattering member that scatters light emitted from the second light emitting element as the angle distribution conversion member,
    The surface light source device according to claim 2, wherein light emitted from the second light emitting element enters the light guide via the light scattering member.
  16.  前記第1の光源部は、前記角度分布変換部材として、前記第1の発光素子から射出された光を略平行化するレンズを備え、
     前記第1の発光素子から射出された光が、前記レンズを介して前記導光体に入射する請求項2に記載の面光源装置。
    The first light source unit includes a lens that substantially parallelizes the light emitted from the first light emitting element as the angle distribution conversion member,
    The surface light source device according to claim 2, wherein light emitted from the first light emitting element is incident on the light guide through the lens.
  17.  光源部と、
     前記光源部を端部に持つ導光体と、
     前記光源部と前記導光体との間または前記光源部における前記導光体の端部とは反対側に配設された配光変換素子と、を備え、
     前記配光変換素子の配光特性が可変である調光装置。
    A light source unit;
    A light guide having the light source portion at an end;
    A light distribution conversion element disposed between the light source section and the light guide body or on the opposite side of the light source section from the end of the light guide body,
    A light control device in which a light distribution characteristic of the light distribution conversion element is variable.
  18.  前記配光変換素子は、前記光源部の前記導光体の一端面と対向する面とは反対の面側に設けられ、前記光源部からの光を反射する反射面を有する反射ミラーを備えたパラボラミラー形状のレンズである請求項17に記載の調光装置。 The light distribution conversion element includes a reflection mirror that is provided on a surface opposite to a surface facing the one end surface of the light guide of the light source unit and has a reflection surface that reflects light from the light source unit. The light control device according to claim 17, wherein the light control device is a parabolic mirror-shaped lens.
  19.  前記反射ミラーは、誘電体ミラーからなる請求項18に記載の調光装置。 The light control device according to claim 18, wherein the reflection mirror is a dielectric mirror.
  20.  前記反射ミラーの反射面に、散乱液晶セルが設けられる請求項18または19に記載の調光装置。 The light control device according to claim 18 or 19, wherein a scattering liquid crystal cell is provided on a reflection surface of the reflection mirror.
  21.  前記レンズには、微小電子機械システム制御により、前記光源部側に出し入れ可能な複数の突起が設けられる請求項18~20のいずれか1項に記載の調光装置。 The light control device according to any one of claims 18 to 20, wherein the lens is provided with a plurality of protrusions that can be taken in and out of the light source unit by a micro electro mechanical system control.
  22.  前記反射ミラーは、エレクトロクロミックミラーからなり、前記エレクトロクロミックミラーの前記光源部と対向する面とは反対の面側に、前記エレクトロクロミックミラーを透過した光を反射する反射手段が設けられる請求項18に記載の調光装置。 The reflection mirror is composed of an electrochromic mirror, and reflection means for reflecting light transmitted through the electrochromic mirror is provided on a surface of the electrochromic mirror opposite to a surface facing the light source unit. The light control apparatus as described in.
  23.  前記配光変換素子は、前記光源部と前記導光体の一端面との間に設けられる請求項17に記載の調光装置。 The light control device according to claim 17, wherein the light distribution conversion element is provided between the light source unit and one end surface of the light guide.
  24.  前記配光変換素子は、散乱液晶セルである請求項23に記載の調光装置。 The light control device according to claim 23, wherein the light distribution conversion element is a scattering liquid crystal cell.
  25.  前記配光変換素子は、液晶レンズである請求項23に記載の調光装置。 The light control device according to claim 23, wherein the light distribution conversion element is a liquid crystal lens.
  26. 前記配光変換素子は、前記光源部と前記導光体の一端面との間に挿抜可能な散乱体である請求項23に記載の調光装置。 24. The light control device according to claim 23, wherein the light distribution conversion element is a scatterer that can be inserted and removed between the light source unit and one end surface of the light guide.
  27.  前記配光変換素子は、前記導光体の一端面に対向して配設された入光部と、前記入光部と前記一端面とを光学接着が可能なゲルと、前記一端面に設けられた散乱パターンと、前記ゲルと前記一端面との境界部を、前記導光体の厚さ方向から挟持する一対の反射板と、を備えてなる請求項23に記載の調光装置。 The light distribution conversion element is provided on the one end surface, a light incident portion disposed opposite to one end surface of the light guide, a gel capable of optically bonding the light incident portion and the one end surface, and 24. The light control device according to claim 23, further comprising: a scattering pattern formed, and a pair of reflectors that sandwich a boundary between the gel and the one end face from a thickness direction of the light guide.
  28.  前記配光変換素子は、楔形状の導光体と、前記導光体に対向し、光の入射面が鋸刃形状をなすプリズムとからなる請求項23に記載の調光装置。 The light control device according to claim 23, wherein the light distribution conversion element includes a wedge-shaped light guide and a prism facing the light guide and having a light incident surface having a saw blade shape.
PCT/JP2012/081373 2011-12-05 2012-12-04 Surface light source device, light control device and display device using same, and illumination device WO2013084880A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011266172A JP2015038811A (en) 2011-12-05 2011-12-05 Surface light source device, display device, and illumination device
JP2011-266172 2011-12-05
JP2011281478A JP2015038814A (en) 2011-12-22 2011-12-22 Dimmer, display device using the same, and lighting device using the same
JP2011-281478 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013084880A1 true WO2013084880A1 (en) 2013-06-13

Family

ID=48574241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081373 WO2013084880A1 (en) 2011-12-05 2012-12-04 Surface light source device, light control device and display device using same, and illumination device

Country Status (1)

Country Link
WO (1) WO2013084880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020166938A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Linear light source and surface light emitting device
TWI738458B (en) * 2020-08-12 2021-09-01 達運精密工業股份有限公司 Optical plate and display apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303578A (en) * 2003-03-31 2004-10-28 Toyoda Gosei Co Ltd Planar light source device
JP2006235436A (en) * 2005-02-28 2006-09-07 Optrex Corp Liquid crystal display device
JP2007234385A (en) * 2006-02-28 2007-09-13 Yamaha Corp Backlight device
JP2007294458A (en) * 2006-04-21 2007-11-08 Samsung Electronics Co Ltd Backlight unit and displaying device employing the same
WO2008102762A1 (en) * 2007-02-20 2008-08-28 Nobuo Oyama Light source apparatus, lighting apparatus using the light source apparatus, and plant growing apparatus using lighting apparatus
JP2010165572A (en) * 2009-01-16 2010-07-29 Sony Corp Planar light emitting device, panel, and display device
JP2010527105A (en) * 2007-05-10 2010-08-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device
JP2010225554A (en) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd Lighting device
JP2010287548A (en) * 2009-06-15 2010-12-24 Ccs Inc Light irradiation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303578A (en) * 2003-03-31 2004-10-28 Toyoda Gosei Co Ltd Planar light source device
JP2006235436A (en) * 2005-02-28 2006-09-07 Optrex Corp Liquid crystal display device
JP2007234385A (en) * 2006-02-28 2007-09-13 Yamaha Corp Backlight device
JP2007294458A (en) * 2006-04-21 2007-11-08 Samsung Electronics Co Ltd Backlight unit and displaying device employing the same
WO2008102762A1 (en) * 2007-02-20 2008-08-28 Nobuo Oyama Light source apparatus, lighting apparatus using the light source apparatus, and plant growing apparatus using lighting apparatus
JP2010527105A (en) * 2007-05-10 2010-08-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device
JP2010165572A (en) * 2009-01-16 2010-07-29 Sony Corp Planar light emitting device, panel, and display device
JP2010225554A (en) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd Lighting device
JP2010287548A (en) * 2009-06-15 2010-12-24 Ccs Inc Light irradiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020166938A (en) * 2019-03-28 2020-10-08 日亜化学工業株式会社 Linear light source and surface light emitting device
TWI738458B (en) * 2020-08-12 2021-09-01 達運精密工業股份有限公司 Optical plate and display apparatus

Similar Documents

Publication Publication Date Title
WO2011151942A1 (en) Light-guide panel, planar light-source device, and display device
KR20090085099A (en) Back-lit displays with high illumination uniformity
JP5803320B2 (en) Surface light source device, liquid crystal display device, and optical member
KR20090085059A (en) Back-lit displays with high illumination uniformity
CN110730926B (en) Optical structure and display device
US11460730B2 (en) Light source module and dual display device
JP6650132B2 (en) Optical structure and display device
JP5533310B2 (en) Light guide plate, surface light source device and display device
JP6447654B2 (en) Optical structure and display device
JPWO2018181966A1 (en) Optical sheet, light control member, surface light source device, image source unit, and display device
WO2013084880A1 (en) Surface light source device, light control device and display device using same, and illumination device
JP5939107B2 (en) Surface light source device and transmissive display device
JP2011171105A (en) Planar light source device and display device
JP2012048914A (en) Lighting device and liquid crystal display using the same
WO2013081038A1 (en) Light source device, surface light source device, display device and lighting device
TWM561814U (en) Light source module and dual display device
JP2013218826A (en) Light source device, planar light source device, display device, and lighting device
JP5822121B2 (en) Optical sheet, surface light source device and display device
CN107966760B (en) Light guide plate assembly, backlight module and display device
JP5614634B2 (en) Surface light source device, liquid crystal display device, and optical member
JP2015038811A (en) Surface light source device, display device, and illumination device
JP2019053323A (en) Optical structure and display device
US20230205039A1 (en) Front light module and eletrophoretic display
WO2021199652A1 (en) Illumination device
JP2011171103A (en) Light guide plate, planar light source device, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP