WO2013081038A1 - Light source device, surface light source device, display device and lighting device - Google Patents

Light source device, surface light source device, display device and lighting device Download PDF

Info

Publication number
WO2013081038A1
WO2013081038A1 PCT/JP2012/080877 JP2012080877W WO2013081038A1 WO 2013081038 A1 WO2013081038 A1 WO 2013081038A1 JP 2012080877 W JP2012080877 W JP 2012080877W WO 2013081038 A1 WO2013081038 A1 WO 2013081038A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
anisotropic scattering
emitted
Prior art date
Application number
PCT/JP2012/080877
Other languages
French (fr)
Japanese (ja)
Inventor
昌洋 ▲辻▼本
豪 鎌田
昇平 勝田
大祐 篠崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013081038A1 publication Critical patent/WO2013081038A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present invention relates to a light source device, a surface light source device, a display device, and an illumination device.
  • Patent Document 1 discloses a monolithic optical element in which a plurality of microstructures are formed on one surface of a parabolic convex lens.
  • a plurality of microstructures are integrally formed on the side surface opposite to the parabolic convex lens surface.
  • the parabolic convex lens surface provides macro optical characteristics of the lens, and the micro structure provides light diffusion characteristics so that a smoothly varying intensity distribution can be obtained.
  • Patent Literature 2 discloses a backlight assembly having a diffuser surface structure on the front and rear surfaces of an optical waveguide (light guide plate). According to this backlight assembly, it is possible to obtain a light output pattern diffused into an elongated elliptical shape.
  • JP 2009-157404 A Japanese Patent No. 4687730
  • a surface light source device used for a backlight of a liquid crystal display or the like is required to have high directivity in all directions in order to improve display characteristics such as color shift and contrast ratio.
  • a method of obtaining biaxial directivity as a whole surface light source device by combining a light source having uniaxial directivity and a light guide plate having uniaxial directivity in a direction orthogonal to the directivity of the light source can be considered.
  • the light incident from the light source is directed to the front and rear surfaces of the light guide plate even if the light incident portion of the light guide plate has directivity. Multiple scattering of light occurs due to the action of the provided diffuser surface structure, and the directivity is disturbed.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a light source device having excellent uniaxial directivity. Moreover, it aims at providing the surface light source device excellent in biaxial directivity. It is another object of the present invention to provide a display device and an illumination device that are equipped with this type of light source device or surface light source device and have excellent characteristics.
  • the light source device of the present invention has a light source unit that emits light having different directivities in two axial directions orthogonal to each other and a scattering property different from each other in two axial directions orthogonal to each other. And an anisotropic scattering unit that emits light incident from the light source unit as scattered light, and an axial direction in which directivity of light emitted from the light source unit is low, and scattering of the anisotropic scattering unit It is characterized in that the axial direction with high properties is generally matched.
  • the light source device of the present invention is characterized in that the anisotropic scattering portion is composed of an anisotropic scattering sheet in which a plurality of irregular shapes are formed aperiodically.
  • the light source device of the present invention is characterized in that the anisotropic scattering sheet is formed by extending a concavo-convex structure in a uniaxial direction.
  • the light source device of the present invention is characterized in that the anisotropic scattering portion is composed of a lenticular lens in which a plurality of columnar lenses are arranged.
  • the light source device of the present invention is characterized in that a reflecting member that reflects light emitted from the anisotropic scattering portion is provided in an axial direction in which the anisotropic scattering portion has a high scattering property.
  • a regulating member that regulates the spread of light emitted from the anisotropic scattering portion in the axial direction with low scattering property is provided on the light emission side of the anisotropic scattering portion. It is characterized by.
  • the light source unit includes a light emitting element, a concave mirror that reflects light emitted from the light emitting element, and a convex lens that is disposed in a recess of the concave mirror, and the concave mirror is provided.
  • the cross-sectional shape when cut along a predetermined plane has at least a part of a curved shape having a focal point, the focal point is located on the light emitting surface of the light emitting element, and the convex lens is parallel to the predetermined plane. It has a pair of parallel planes, and light from the light emitting element is reflected by the concave mirror after passing through the convex lens, and is emitted from the light exit surface of the convex lens through the convex lens.
  • the light source device of the present invention is characterized in that the anisotropic scattering portion is formed of a concavo-convex structure formed on the light exit surface of the convex lens.
  • the light source device of the present invention is characterized in that the light emitting element is a light emitting diode.
  • the light source device of the present invention is characterized in that the curved shape is substantially a parabola.
  • the light source device of the present invention is characterized in that the concave mirror is made of a metal film or a dielectric multilayer film.
  • the surface light source device of the present invention includes the above-described light source device of the present invention and a light guide that allows light emitted from the light source device to be incident from an end surface and to be emitted from the main surface while propagating inside. It is characterized by.
  • the surface light source device of the present invention is characterized in that the anisotropic scattering portion is formed of a concavo-convex structure formed on the end face of the light guide.
  • the surface light source device of the present invention is characterized in that the light guide has a reflecting surface having a predetermined inclination angle with respect to the main surface in the light propagation direction.
  • the light guide has a wedge shape in which the thickness decreases toward the side farther from the side closer to the end surface, and the entire surface facing the main surface is the reflective surface.
  • the light guide has a plurality of prism structures on a surface facing the main surface, and one inclined surface of the prism structure is the reflection surface. To do.
  • the surface light source device of the present invention is provided with a direction changing member that changes the traveling direction of light emitted from the main surface of the light guide to a direction closer to the normal line of the main surface. .
  • a display device includes the above surface light source device according to the present invention and a display element that performs display using light emitted from the surface light source device.
  • the illumination device of the present invention includes the light source device of the present invention.
  • the illumination device according to the present invention includes the surface light source device according to the present invention.
  • a light source device having excellent uniaxial directivity can be provided.
  • the surface light source device excellent in biaxial directivity can be provided.
  • FIG. 2 is a cross-sectional view of the light source device of the present embodiment, and is a cross-sectional view taken along the line A-A ′ of FIG. 1.
  • FIG. 10 is a cross-sectional view of the surface light source device of the present embodiment, and is a cross-sectional view taken along the line A-A ′ of FIG. 9.
  • FIG. 1 is a perspective view showing the light source device of the present embodiment.
  • FIG. 2 is a plan view of the light source device of the present embodiment.
  • FIG. 3 is a cross-sectional view of the light source device of the present embodiment, and is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 4 is a view showing the surface structure of the anisotropic scattering sheet used in the light source device of the present embodiment.
  • the scale of the size may be varied depending on the component.
  • the light source device 1 of the present embodiment includes a light source unit 2 and an anisotropic scattering sheet 3 (anisotropic scattering unit) as shown in FIGS.
  • the light source unit 2 includes an LED 4 (light emitting element), a cylindrical lens 5 (convex lens), and a concave mirror 6.
  • the cylindrical lens 5 is made of a resin such as an acrylic resin.
  • the cylindrical lens 5 is a so-called plano-convex lens in which one is a convex surface and the other is a flat surface. Since the light L is emitted from the flat surface 5a, the flat surface 5a is hereinafter referred to as a light emission surface.
  • the convex surface has a curved surface 5b that is gently curved and two flat side surfaces 5c that are continuous to both ends of the curved surface 5b.
  • the curved surface 5b of the convex surface has a curved shape having a focal point P as shown in FIG.
  • the cross-sectional shape of the curved surface 5b is parabolic.
  • the curved surface 5b has a linear shape as shown in FIG. That is, the curved surface 5b of the cylindrical lens 5 is a paraboloid that is curved in the xz plane and not curved in the yz plane.
  • the upper surface 5d and the lower surface 5e of the cylindrical lens 5 are a pair of parallel planes parallel to the xz plane.
  • a concave mirror 6 is provided along the curved surface 5 b of the cylindrical lens 5.
  • the concave mirror 6 is made of a metal film having a high light reflectivity such as aluminum or a dielectric multilayer film directly formed on the curved surface 5b of the cylindrical lens 5.
  • the cylindrical lens 5 is disposed in a recess inside the concave mirror 6.
  • the shape of the concave mirror 6 is a paraboloid reflecting the shape of the curved surface 5b. Therefore, the focal position of the concave mirror 6 coincides with the focal position of the cylindrical lens 5.
  • the position of the focal point is indicated by a point P in FIG.
  • a configuration may be adopted in which a concave mirror manufactured separately from the cylindrical lens is bonded.
  • the light exit surface 5 a of the cylindrical lens 5 is provided with a through hole 7 having a depth that allows the LED 4 to be inserted therein.
  • the cross-sectional shape of the through-hole 7 on the concave mirror 6 side when the cylindrical lens 5 is cut along the xz plane is rounded into an arc shape.
  • An LED 4 is disposed inside the through hole 7. The LED 4 is arranged with the light emitting surface 4a facing the concave mirror 6, and the back surface opposite to the light emitting surface 4a is fixed with an adhesive or the like.
  • the height Y1 (dimension in the y-axis direction) of the LED 4 is smaller than the thickness Y2 (dimension in the y-axis direction) of the cylindrical lens 5, and is about 1/3 of the thickness of the cylindrical lens 5, for example.
  • the LED 4, the concave mirror 6, and the cylindrical lens 5 are set to have a positional relationship, dimensions, shape, and the like such that the focal point P of the concave mirror 6 and the cylindrical lens 5 is positioned on the light emitting surface 4 a of the LED 4.
  • the LED 4 Since the light emitting surface 4 a of the LED 4 faces the concave mirror 6, almost all of the light emitted from the light emitting surface 4 a of the LED 4 passes through the cylindrical lens 5 toward the concave mirror 6 and is reflected by the concave mirror 6. The light reflected by the concave mirror 6 passes through the cylindrical lens 5 again and is emitted from the light exit surface 5 a of the cylindrical lens 5. Therefore, among the light emitted from the light emitting surface 4 a of the LED 4, there is almost no light emitted directly without being reflected by the concave mirror 6.
  • the LED 4 is not particularly directional, and a general LED that emits light at a predetermined diffusion angle can be used.
  • the convex surface of the cylindrical lens 5 At least a paraboloid is provided up to the position where the light emitted from the LED 4 reaches at the maximum diffusion angle, and the concave mirror 6 exists. Therefore, the portion where the light from the LED 4 does not reach is a flat side surface 5c, and the concave mirror 6 does not exist.
  • the directivity of light emitted from the light source unit 2 having the above configuration will be described. Since the light emitting surface 4a of the LED 4 has a finite size, not all points on the light emitting surface 4a necessarily coincide with the positions of the focal point P of the concave mirror 6 and the cylindrical lens 5. However, for the sake of simplicity, the following description will be made assuming that the area of the light emitting surface 4a is sufficiently small and the light emitting surface 4a coincides with the focus P.
  • the light L emitted from the light emitting surface 4 a of the LED 4 is directed to the concave mirror 6 with a predetermined diffusion angle and reflected by the concave mirror 6.
  • the behavior of light in a plane (xz plane) parallel to the upper surface 5d and the lower surface 5e of the cylindrical lens 5 will be considered.
  • the light L emitted from the LED 4 is incident on the concave mirror 6 at any angle. Then, the light travels in a direction parallel to the optical axis of the concave mirror 6.
  • the diffused light emitted from the light emitting surface 4a of the LED 4 is converted into parallel light by being reflected by the concave mirror 6, that is, light having high directivity, and emitted from the light emitting surface 5a of the cylindrical lens 5. Is done.
  • the concave mirror 6 functions like a plane mirror. That is, the light L is reflected by the concave mirror 6 at a reflection angle equal to the incident angle. Therefore, the light L is emitted from the light emitting surface 5a of the cylindrical lens 5 while maintaining the diffusion angle immediately after being emitted from the light emitting surface 4a of the LED 4.
  • the light L when the light is emitted from the light exit surface 5a of the cylindrical lens 5 (light source unit 2), the light L is in the x-axis in a plane (xz plane) parallel to the upper surface 5d and the lower surface 5e of the cylindrical lens 5. High directivity in the direction, and low directivity in the y-axis direction in a plane (yz plane) perpendicular to the upper surface 5d and the lower surface 5e of the cylindrical lens 5. In this way, light L having different directivities in two axial directions orthogonal to each other is incident on the anisotropic diffusion sheet 3 from the light source unit 2.
  • the anisotropic scattering sheet 3 is installed on the light exit surface of the light source unit 2, that is, the light exit surface 5a of the cylindrical lens 5.
  • the anisotropic scattering sheet 3 has a plurality of uneven structures formed on the surface thereof aperiodically. Each unevenness extends in one axial direction, and is formed such that the average pitch of the unevenness in two axial directions orthogonal to each other in the plane is different. With such a configuration, the anisotropic scattering sheet 3 has different scattering properties in the two orthogonal directions such that the full width at half maximum of the scattered light in the two orthogonal directions is 30 ° and 1 °, for example. It will have.
  • the anisotropic scattering sheet 3 as shown in FIG. 4, there is a sheet made of a resin sheet such as polycarbonate or acrylic, and the sheet surface unevenness is elongated in one direction, and is orthogonal to the unevenness extending direction. The direction is a highly scattering direction.
  • a light diffusion control film (trade name: LSD) manufactured by Luminit, Inc. can be used.
  • Light diffusion control film in which the full width at half maximum of scattered light in two axial directions orthogonal to each other is 40 ° on the high scattering side and 0.2 ° on the low scattering side, or 60 ° on the high scattering side and 1 ° on the low scattering side Is commercially available.
  • a light scattering film in which particles having an aspect ratio of about 5 to 500 are dispersed in a continuous layer can be used instead of the surface having an uneven shape.
  • the anisotropic scattering sheet 3 is arranged so that the axial direction with high scattering properties substantially coincides with the thickness direction (y-axis direction) of the cylindrical lens 5. That is, the axial direction in which the directivity of light emitted from the light source unit 2 is low and the axial direction in which the anisotropic scattering sheet 3 has high scattering properties substantially coincide with each other.
  • the anisotropic scattering sheet 3 may be disposed between the cylindrical lens 5 and an air layer. That is, the anisotropic scattering sheet 3 may be arranged away from the cylindrical lens 5. Alternatively, the anisotropic scattering sheet 3 may be disposed in close contact with the cylindrical lens 5.
  • the anisotropic scattering sheet 3 when the anisotropic scattering sheet 3 is in close contact with the cylindrical lens 5, the anisotropic scattering sheet 3 may be optically bonded to the cylindrical lens 5 with an optical adhesive. Further, when used in a surface light source device to be described later, the anisotropic scattering sheet 3 may be optically bonded to the light guide with an optical adhesive, or may be sandwiched between the cylindrical lens 5 and the light guide. It may be fixed.
  • FIGS. 6A and 6B consider a comparative light source device that does not have an anisotropic scattering sheet.
  • the height of the LED dimension in the y-axis direction
  • the thickness of the cylindrical lens 8 dimension in the y-axis direction
  • the light emission angle is uniquely determined by the number of reflections on the parallel reflecting surfaces (the upper surface and the lower surface of the cylindrical lens).
  • a dashed arrow L0 among the light emitted from the LED 102 indicates a trajectory of light having zero reflections.
  • a two-dot chain line arrow L1 indicates the trajectory of light whose number of reflections is once on the upper surface 101d and the lower surface 101e of the cylindrical lens 101.
  • a one-dot chain line arrow L2 indicates the locus of light whose number of reflections is twice on the upper surface 101d and the lower surface 101e.
  • the light emission angle shows a discrete distribution in the y-axis direction, and causes spatial variation for each light emission position.
  • the illuminance distribution of the emitted light becomes discrete.
  • points with high illuminance and points with low illuminance appear alternately along the y-axis direction, and illuminance non-uniformity becomes more prominent.
  • the light source device 1 of the present embodiment is discrete because it includes the anisotropic scattering sheet 3 having high scattering properties in the y-axis direction, as shown in FIGS. 5A and 5B.
  • the illuminance distribution in the y-axis direction is made uniform.
  • the scattering property in the x-axis direction of the anisotropic scattering sheet 3 is low, the high directivity in the x-axis direction of the light emitted from the light source unit 2 is maintained.
  • the present inventors do not include the light source device of the present embodiment including the anisotropic scattering sheet and the anisotropic scattering sheet using optical simulation.
  • the light intensity distribution of the emitted light was compared with the light source device of the comparative example.
  • the results are shown in FIGS. 7A and 7B.
  • the curves shown in FIGS. 7A and 7B are isoluminous curves.
  • the horizontal axis of FIGS. 7A and 7B indicates the polar angle (°) in the x-axis direction when the normal direction of the light exit surface is 0 °.
  • the vertical axis in FIGS. 7A and 7B represents the polar angle (°) in the y-axis direction when the normal direction of the light exit surface is 0 °.
  • LED width X1 (dimension in the x-axis direction, see FIG. 2) is 1.4 mm
  • LED height Y1 (dimension in the y-axis direction, see FIG. 3) is 1 mm
  • LED depth Z1 (z-axis). 3 mm)
  • the cylindrical lens width X2 (x-axis dimension, see FIG. 2) is 40 mm
  • the cylindrical lens height Y2 (y-axis dimension, see FIG. 3).
  • the distance Z2 from the light emitting surface of the LED to the light exit surface of the cylindrical lens (dimension in the z-axis direction, see FIG. 2) is 3 mm
  • the focal length Z3 of the cylindrical lens (dimension in the z-axis direction, see FIG. 2) is 10 mm.
  • the full width at half maximum of scattered light in the y-axis direction was 30 °
  • the full width at half maximum of scattered light in the x-axis direction was 1 °.
  • an anisotropic scattering sheet is used as means for imparting an anisotropic scattering function, but a light source device shown in FIG. 8A may be used instead of this configuration.
  • the light source device 10 of the present modification is provided with a concavo-convex structure 12 for causing anisotropic scattering on the light exit surface 11 a of the cylindrical lens 11. That is, the concavo-convex structure as shown in FIG. 4 is formed on the light exit surface 11a of the cylindrical lens 11 itself.
  • Such a configuration can be realized, for example, by giving a shape obtained by inverting the concavo-convex structure 12 to a mold used when manufacturing the cylindrical lens 11 in advance and performing injection molding using the mold. It is. According to this structure, an anisotropic scattering sheet becomes unnecessary.
  • the light source device shown in FIG. 8B may be used.
  • the light source device 15 of the present modification includes a louver 16 (a regulating member) on the light emission side of the anisotropic scattering sheet 3.
  • the louver 16 has a slit (opening, not shown) extending in the y-axis direction.
  • the louver 16 functions as a regulating member that regulates the spread in the axial direction (x-axis direction) where the scattering property of light emitted from the anisotropic scattering sheet 3 is low.
  • the member that restricts the spread of light in the axial direction (x-axis direction) with low scattering is not limited to the louver 16, and other optical members having a function of focusing light in one direction may be used.
  • the light emitted from the anisotropic scattering sheet 3 is slightly scattered not only in the axial direction (y-axis direction) with high scattering properties but also in the axial direction (x-axis direction) with low scattering properties.
  • the scattered light component in the x-axis direction slightly reduces the directivity in the x-axis direction.
  • the louver 16 is provided on the light emitting side of the anisotropic scattering sheet 3, high directivity in the x-axis direction is reliably maintained.
  • FIG. 9 is an exploded perspective view showing the surface light source device of this embodiment.
  • FIG. 10 is a cross-sectional view of the surface light source device of this embodiment, and is a cross-sectional view taken along the line AA ′ of FIG.
  • symbol is attached
  • the surface light source device 19 of this embodiment is provided with the light source device 1, the light guide 20, the reflective mirror 21, and the prism sheet 22 (direction changing member) as shown in FIG. 9, FIG. Yes.
  • the light guide 20 has a function of causing light emitted from the light source device 1 to enter from the end face and to be emitted from the main surface while propagating inside.
  • the reflection mirror 21 has a function of reflecting light propagating inside the light guide 20.
  • the prism sheet 22 has a function of changing the traveling direction of the light emitted from the main surface of the light guide 20 to a direction closer to the normal line of the main surface. Since the light source device 1 is the light source device of the first embodiment, the description thereof is omitted.
  • the light guide 20 is a plate made of a resin having optical transparency such as acrylic resin.
  • the light guide 20 has a wedge shape in which the thickness gradually decreases from the side closer to the end surface 3 a where the light source device 1 is provided to the side farther from the side. That is, as shown in FIG. 10, the cross-sectional shape of the light guide 20 when cut along a plane (yz plane) perpendicular to the first main surface 20b described later is a right triangle.
  • the end surface 20 a of the light guide 20 is a light incident surface on which light emitted from the light source device 1 is incident. Therefore, the light emission surface 5 a of the cylindrical lens 5 of the light source device 1 faces the end surface 20 a of the light guide 20.
  • the first main surface 20b (upper surface in FIG. 10) of the light guide 20 is a light emission surface that emits light incident on the inside.
  • the light propagation direction within the first main surface 20b of the light guide 20 is the z-axis direction
  • the direction orthogonal to the light propagation direction is the x-axis direction
  • the first main surface 20b is the first main surface 20b.
  • An orthogonal direction (thickness direction of the light guide 20) is defined as a y-axis direction. Therefore, the “light propagation direction” in the present embodiment means a direction in which light (indicated by an arrow L) propagates while reflecting in the yz section of the light guide 20 as shown in FIG. Rather, it means the direction in which light propagates when viewed from the normal direction of the first main surface 20b of the light guide 20 (shown by the solid arrow Z in FIGS. 10 and 11).
  • the second main surface 20c (the lower surface in FIG. 10) facing the first main surface 20b of the light guide 20 is a surface inclined at a constant inclination angle with respect to the first main surface 20b in the light propagation direction. It is.
  • the inclination angle ⁇ of the second main surface 20c with respect to the first main surface 20b (the angle between the first main surface 20b and the second main surface 20c, sometimes called the apex angle of the light guide 20) is, for example, 1 °. It is set to about 2 °.
  • the second main surface 20c is provided with a reflecting mirror 21 made of a metal film having a high light reflectance such as aluminum.
  • the entire second main surface 20 c functions as a reflection surface that reflects light propagating through the light guide 20.
  • the reflection mirror 21 may be formed of a metal film directly formed on the second main surface 20c of the light guide 20, or a structure in which a reflection plate manufactured separately from the light guide 20 is bonded. It is also good.
  • the prism sheet 22 is provided at a position facing the light exit surface 20b of the light guide 20 (above the light guide 20 in FIG. 10).
  • a plurality of prism structures 23 are provided on a surface facing the light exit surface 20 b of the light guide 20.
  • Each prism structure 23 extends in a direction orthogonal to the light propagation direction Z.
  • the prism sheet 22 is disposed so that the surface on which the prism structure 23 is provided faces the light exit surface 20 b of the light guide 20.
  • the cross-sectional shape of the prism structure 23 in the cross section cut along the yz plane is a right triangle.
  • the prism structure 23 includes a first surface 23a that is orthogonal to the light exit surface 20b of the light guide 20, and a second surface 23b that forms a predetermined tip angle with respect to the first surface 23a. .
  • the operation of the surface light source device 19 configured as described above will be described.
  • the incident light I0 (y0, ⁇ 0) is By repeating reflection inside the light guide 20, the critical angle condition is broken, and the light is emitted from the interface between the first main surface 20 b of the light guide 20 and air to the outside.
  • the light L incident on the light guide 20 is guided while being repeatedly reflected between the first main surface 20b (light emission surface) and the second main surface 20c (reflection surface), as shown in FIG.
  • the light 20 travels in the light propagation direction Z (right side in FIG. 11).
  • the incident angle of the light to the first main surface and the second main surface does not change even if light is repeatedly reflected.
  • the light guide 20 has a wedge shape in which the thickness gradually decreases with increasing distance from the light incident surface 20a side, and the second main surface 20c has a predetermined inclination angle with respect to the first main surface 20b.
  • the incident angle on the first main surface 20b and the second main surface 20c becomes small.
  • the first main surface 20b (light emission surface) of the light guide 20
  • the critical angle that is, the critical angle at the interface between the acrylic resin constituting the light guide 20 and the air is about 42 ° from Snell's law.
  • the critical angle condition is satisfied as long as the incident angle of the light L on the first main surface 20b is larger than the critical angle of 42 °. Therefore, the light L is totally reflected by the first main surface 20b.
  • the incident angle of the light L on the first main surface 20b becomes smaller than 42 ° which is a critical angle.
  • the critical angle condition is broken and the light L is emitted to the external space.
  • the light that has reached the second major surface 20c is reflected by the reflecting mirror 21 even if the incident angle becomes smaller than the critical angle.
  • the light L is confined inside the light guide 20 while the incident angle on the first main surface 20b is larger than the critical angle, and the incident angle on the first main surface 20b becomes smaller than the critical angle. It is sequentially injected immediately after. Therefore, the emission angles of light emitted from the first main surface 20b are substantially constant. Since the light L is refracted when exiting from the first main surface 20b, the light having an incident angle of about 42 ° to the first main surface 20b is emitted as light having an exit angle that is substantially horizontal. Thus, when viewed in a plane (yz plane) parallel to the light propagation direction Z and perpendicular to the light exit surface 20 b of the light guide 20, the light L becomes x when it enters the light guide 20.
  • the light L has a high directivity in the z-axis direction when the light path (traveling direction) is bent and emitted from the first main surface 20b of the light guide 20.
  • the light L is emitted in a direction substantially horizontal. Therefore, using the prism sheet 22, the light L emitted from the light guide 20 is raised in a direction close to the normal direction of the first main surface 20 b of the light guide 20. Specifically, by using the prism sheet 22 having the prism structure 23 with a tip angle of about 40 °, the light L is incident from the first surface 23a of the prism structure 23 and reflected by the second surface 23b.
  • the light guide 20 can be raised in a direction substantially perpendicular to the first main surface 20b.
  • the surface light source device 19 of the present embodiment includes the light source device 1 of the first embodiment, that is, the light source device 1 including the anisotropic scattering sheet 3 having a strong scattering property in the y-axis direction. Therefore, the illuminance distribution in the y-axis direction of the light emitted from the light source device 1 is made uniform, and the illuminance distribution in the z-axis direction of the light emitted from the light guide 20 is anisotropically scattered, reflecting the illuminance distribution. It is made uniform compared to the case where there is no sheet.
  • the inventors compared the illuminance distribution of the emitted light between the surface light source device of this embodiment and the surface light source device of the comparative example using optical simulation. .
  • the results are shown in FIGS. 12A and 12B. 12A and 12B, it is shown that the illuminance is higher as the color of the light exit surface of the light guide is closer to white, and the illuminance is lower as the color is closer to black.
  • the simulation conditions the same simulation conditions as in the first embodiment were used for the light source device.
  • the apex angle ⁇ of the light guide is 1.4 °
  • the length of the light guide (dimension in the z-axis direction) is 120 mm
  • the thickness of the end face side of the light guide is the thickness of the cylindrical lens. To 3 mm.
  • the light source device shown in FIG. 13 may be used instead of this configuration.
  • the light source device 26 of the present modification is provided with an uneven structure for generating anisotropic scattering exhibiting strong scattering in the y-axis direction on the end surface 27 a of the light guide 27. . That is, the concavo-convex structure as shown in FIG. 4 is formed in the end surface 27 a itself of the light guide 27.
  • Such a configuration can be realized, for example, by previously imparting a shape in which the concavo-convex structure is inverted to a mold used when producing the light guide 27 and performing injection molding using this mold. It is. According to this configuration, there is no need to use a light source device provided with an anisotropic scattering sheet.
  • FIG. 14 is an exploded perspective view showing the surface light source device of the present embodiment.
  • FIG. 15 is a cross-sectional view of the surface light source device of this embodiment, and is a cross-sectional view taken along the line AA ′ of FIG.
  • the same reference numerals are given to the same components as those used in the second embodiment, and the description will be omitted.
  • a lenticular lens 31 as an anisotropic scattering part is provided between the light source part 2 and the light guide 20 as shown in FIGS.
  • the lenticular lens 31 is formed by arranging a plurality of columnar lenses 32 having a curvature in the short direction and not having a curvature in the longitudinal direction perpendicular thereto.
  • the lenticular lens 31 is arranged such that the direction in which the plurality of columnar lenses 32 are arranged is the thickness direction (y-axis direction) of the cylindrical lens 5. That is, the direction in which the columnar lens 32 has a curvature coincides with the thickness direction (y-axis direction) of the cylindrical lens 5.
  • gaps are provided between the cylindrical lens 5 and the lenticular lens 31 and between the lenticular lens 31 and the light guide 20, but all of the cylindrical lens 5, the lenticular lens 31, and the light guide 20 are in contact with each other. You may do it.
  • Reflecting plates 33 are provided above and below the lenticular lens 31.
  • the reflection plate 33 may be made of a metal having high light reflectivity, or may be made of a dielectric multilayer film. That is, the light source device 34 of the present embodiment includes the light source unit 2, the lenticular lens 31, and the reflection plate 33.
  • the direction in which the columnar lens 32 has a curvature coincides with the thickness direction (y-axis direction) of the cylindrical lens 5. Therefore, the light scattering property of the lenticular lens 31 is high in the thickness direction (y-axis direction) of the cylindrical lens 5 and low in the width direction (x-axis direction) of the cylindrical lens 5. Therefore, the lenticular lens 31 has the same action as the anisotropic scattering sheet 3 of the first and second embodiments. That is, the discrete illuminance distribution of the light emitted from the light source unit 2 by the lenticular lens 31 is improved, and the illuminance can be made uniform. Thereby, the effect similar to 1st Embodiment that the surface light source device excellent in biaxial directivity is realizable is acquired.
  • the lenticular lens 31 and the light guide 20 are separated from each other, the light is scattered from the lenticular lens 31 in a highly scattering direction (y-axis direction), particularly toward the outside of the light guide 20. Some of the light may not enter the light guide 20.
  • the reflecting plate 33 is provided above and below the lenticular lens 31, the light scattered by the lenticular lens 31 can be reflected by the reflecting plate 33 and incident on the light guide 20. As a result, the utilization efficiency of the light emitted from the light source device 34 can be increased.
  • This type of reflector 33 is effective not only in the present embodiment including the lenticular lens 31 but also in the second embodiment including the anisotropic scattering sheet 3.
  • the example of the light source device provided with the wedge-shaped light guide has been described, but the light source device shown in FIG. 16 may be used instead of this configuration.
  • the light guide 38 of the surface light source device 37 of the present modification has a plurality of prism structures 39 formed on the second main surface 38 c facing the first main surface 38 b (light emission surface). ing.
  • Each prism structure 39 extends in a direction (x-axis direction) orthogonal to the light propagation direction Z.
  • the cross-sectional shape of the prism structure 39 in the cross section cut along the yz plane is a right triangle.
  • the prism structure 39 includes a first surface 39a that is orthogonal to the first main surface 38b of the light guide 38, and a second surface 39b that forms a predetermined tip angle with respect to the first surface 39a. Yes.
  • the second surface 39b functions as a reflecting surface that reflects light propagating through the light guide 18.
  • the light guide 38 of the present modification has a plurality of divided reflection surfaces. Therefore, the light guide 38 of the present modification can also obtain the same operation as the wedge-shaped light guide. Thereby, the light guide 38 can give high directivity in the z-axis direction to the emitted light.
  • the surface light source device 41 of the present modification includes the light source device 1, a light guide 42, and a reflection mirror 21.
  • the light guide 42 has a configuration in which three layers of a light guide layer 43, a low refractive index layer 44, and a prism layer 45 are laminated. A plurality of prism structures 46 are formed on the upper surface of the light guide layer 43.
  • the prism structure 46 includes a first surface 46a that is orthogonal to the lower surface of the light guide layer 43, and a second surface 46b that forms a predetermined tip angle with respect to the first surface 46a. Similar to the inclined surface of the wedge-shaped light guide, the second surface 46b functions as a reflective surface that reflects light propagating through the light guide layer 43 and changes the incident angle.
  • the low refractive index layer 44 is a layer made of a material having a refractive index lower than that of the light guide layer 43.
  • a plurality of prism structures 47 are formed on the lower surface of the prism layer 45.
  • the prism structure 47 includes a first surface 47a that is orthogonal to the upper surface of the prism layer 45, and a second surface 47b that forms a predetermined tip angle with respect to the first surface 47a.
  • the surface light source device 41 of the present modification the light emitted from the low refractive index layer 44 and the prism layer 45 rises in a direction perpendicular to the light exit surface of the light guide 42 without using a prism sheet. be able to.
  • FIG. 18 is a cross-sectional view showing the liquid crystal display device of the present embodiment. 18, the same code
  • the liquid crystal display device 68 of the present embodiment includes a backlight 69 (surface light source device) including the surface light source device 19 of the second embodiment, a first polarizing plate 70, a liquid crystal panel 71, A second polarizing plate 72 and a viewing angle widening film 73 are provided.
  • the liquid crystal panel 71 is schematically illustrated as a single plate. The observer views the display from the upper side of the liquid crystal display device 68 in FIG. 18 in which the viewing angle widening film 73 is arranged. Therefore, in the following description, the side on which the viewing angle widening film 73 is disposed is referred to as a viewing side, and the side on which the backlight 69 is disposed is referred to as a back side.
  • the light emitted from the backlight 69 is modulated by the liquid crystal panel 71, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 71 passes through the viewing angle widening film 73, the angle distribution of the emitted light becomes wider than before entering the viewing angle widening film 73 and the light is widened. Is injected from. Thereby, the observer can visually recognize the display with a wide viewing angle.
  • the liquid crystal panel 71 for example, an active matrix transmissive liquid crystal panel can be used.
  • the liquid crystal panel is not limited to the active matrix transmissive liquid crystal panel.
  • each pixel does not include a switching thin film transistor (Thin Film Transistor, hereinafter abbreviated as TFT).
  • TFT Thin Film Transistor
  • a simple matrix type liquid crystal panel may be used. Since a well-known general liquid crystal panel can be used as the liquid crystal panel 71, a detailed description of the configuration is omitted.
  • a viewing angle widening film 73 is disposed on the viewing side of the liquid crystal display device 68.
  • the viewing angle widening film 73 includes a base material 74, a plurality of light diffusion portions 75 formed on one surface of the base material 74 (a surface opposite to the viewing side), and a black layer 76 formed on one surface of the base material 74. (Light absorption layer).
  • the viewing angle widening film 73 is disposed on the second polarizing plate 72 in such a posture that the side where the light diffusing portion 75 is provided faces the second polarizing plate 72 and the base 74 side faces the viewing side.
  • the base material 74 a base material made of a transparent resin such as a triacetyl cellulose (TAC) film is preferably used.
  • the light diffusing portion 75 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin.
  • the light diffusing unit 75 has a horizontal cross section (xz cross section) having a circular shape, and has a small surface area on the base material 74 side serving as a light emission end face, and an area of a face opposite to the base material 74 serving as a light incident end face. The area of the horizontal cross section gradually increases from the base material 74 side to the side opposite to the base material 74.
  • the light diffusing unit 75 has a so-called reverse tapered frustoconical shape when viewed from the base material 74 side.
  • the light diffusion part 75 is a part that contributes to the transmission of light in the viewing angle widening film 73. That is, the light incident on the light diffusing portion 75 is totally reflected by the tapered side surface of the light diffusing portion 75, guided in a state of being substantially confined inside the light diffusing portion 75, and diffused in all directions. It is injected at.
  • the black layer 76 is formed in a region other than the formation region of the plurality of light diffusion portions 75 in the surface of the base 74 on the side where the light diffusion portions 75 are formed.
  • the black layer 76 is made of an organic material having light absorption and photosensitivity such as a black resist.
  • the screen is not displayed in a liquid crystal display device using a conventional backlight having no directivity. Color misregistration occurs when viewed from the front direction and when viewed from the oblique direction.
  • the backlight 69 composed of the surface light source device 19 of the second embodiment having high directivity in both the biaxial directions, that is, the x-axis direction and the z-axis direction. Is used. As a result, light is transmitted through only the angle range where the color change is small in the liquid crystal panel 71. Thereafter, since the light is diffused in all directions by the viewing angle widening film 73, the observer can see a high-quality image with little color shift when viewed from any direction.
  • the present embodiment is an example of a fluorescence excitation type liquid crystal display device including the surface light source device of the second embodiment as a backlight.
  • the liquid crystal display device 78 of the present embodiment includes a backlight 69 (surface light source device) including the surface light source device 19 of the second embodiment, a liquid crystal element 79, and a light emitting element 80. Yes.
  • a red subpixel 81R for displaying with red light a green subpixel 81G for displaying with green light, and a blue subpixel 81B for displaying with blue light are arranged adjacent to each other.
  • These three sub-pixels 81R, 81G, and 81B constitute one pixel that is a minimum unit that constitutes a display.
  • the backlight 69 emits excitation light L1 that excites the phosphor layers 82R, 82G, and 82B of the light emitting element 80.
  • the backlight 69 of the present embodiment emits ultraviolet light or blue light as the excitation light L1.
  • the liquid crystal element 79 modulates the transmittance of the excitation light L1 emitted from the backlight 69 for each of the subpixels 81R, 81G, and 81B. Excitation light L1 modulated by the liquid crystal element 79 is incident on the light emitting element 80, and the phosphor layers 82R, 82G, and 82B are excited and emitted light is emitted to the outside.
  • the upper side of the liquid crystal display device 78 shown in FIG. 19 is the viewing side on which the observer views the display.
  • the liquid crystal element 79 has a configuration in which a liquid crystal layer 85 is sandwiched between a first transparent substrate 83 and a second transparent substrate 84.
  • the second transparent substrate 84 positioned on the front side as viewed from the observer also serves as the substrate of the light emitting element 80.
  • a first transparent electrode 86 is formed for each subpixel on the inner surface (the surface on the liquid crystal layer 85 side) of the first transparent substrate 83, and an alignment film (not shown) is formed so as to cover the first transparent electrode 86. Yes.
  • a first polarizing plate 87 is provided on the outer surface of the first transparent substrate 83 (the surface opposite to the liquid crystal layer 85 side).
  • the first transparent substrate 83 for example, a substrate that can transmit excitation light made of glass, quartz, plastic, or the like can be used.
  • a transparent conductive material such as indium tin oxide (Indium Tin Oxide, hereinafter abbreviated as ITO) is used.
  • ITO Indium Tin Oxide
  • the first polarizing plate 87 a conventional general external polarizing plate can be used.
  • the phosphor layer 82 and the first light absorption layer 88 are laminated in this order from the substrate side on the inner surface (surface on the liquid crystal layer 85 side) of the second transparent substrate 84.
  • the phosphor material constituting the phosphor layer 82 has a different emission wavelength band for each subpixel.
  • the red subpixel 81R is provided with a phosphor layer 82R made of a phosphor material that absorbs ultraviolet light and emits red light.
  • the green subpixel 81G is provided with a phosphor layer 82G made of a phosphor material that absorbs ultraviolet light and emits green light.
  • the blue subpixel 81B is provided with a phosphor layer 82B made of a phosphor material that absorbs ultraviolet light and emits blue light.
  • the red subpixel 81R and the green subpixel 81G are made of phosphor materials that absorb blue light and emit red light and green light, respectively.
  • the phosphor layers 82R and 82G are provided.
  • the blue subpixel 81B is provided with a light diffusion layer that diffuses the blue light that is the excitation light without converting the wavelength and emits the light to the outside.
  • a second polarizing plate 89 is formed on the inner surface of the second transparent substrate 84 so as to cover the first light absorption layer 88, and the second transparent electrode 90 and an alignment film (not shown) are formed on the surface of the second polarizing plate 89. ) Are stacked.
  • the second polarizing plate 89 is a polarizing plate made by using a coating technique or the like in the manufacturing process of the liquid crystal element 79, and is a so-called in-cell polarizing plate.
  • a transparent conductive material such as ITO is used for the second transparent electrode 90.
  • a second light absorption layer 91 is formed on the outer surface side of the second transparent substrate 84.
  • the first light absorption layer 88 provided on the inner surface of the second transparent substrate 84 is for suppressing a decrease in contrast due to leakage of the excitation light L ⁇ b> 1 from the backlight 69.
  • the 2nd light absorption layer 91 provided in the outer surface of the 2nd transparent substrate 84 is for suppressing the contrast fall by external light.
  • an ordinary liquid crystal display device has a color shift when viewed from an oblique direction.
  • the fluorescence excitation type liquid crystal display device 78 of the present embodiment uses a surface light source device that emits ultraviolet light or blue light having high directivity in two axial directions as the backlight 69, and the ultraviolet light or Blue light is color-converted by the phosphor layer 82. At this time, since the light of each color is emitted isotropically from the phosphor layer 82, the observer can see a high-quality image with little color shift when viewed from any direction.
  • FIG. 20 is a front view illustrating a schematic configuration of a liquid crystal display device which is a configuration example of the display device.
  • the liquid crystal television 93 of this configuration example includes the liquid crystal display device 68 of the fourth embodiment or the liquid crystal display device 78 of the fifth embodiment as a display screen.
  • a liquid crystal panel is disposed on the viewer side (front side in FIG. 20), and a backlight (surface light source device) is disposed on the side opposite to the viewer (back side in FIG. 20). Since the liquid crystal television 93 of this configuration example includes the liquid crystal display devices 68 and 78 of the above embodiment, the liquid crystal television 93 is capable of high-quality display.
  • FIG. 21 is a perspective view showing the lighting device of the present embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the illumination device 51 of the present embodiment has a configuration in which three rows of light source units 52 including the light source device 1 of the first embodiment are arranged. Note that the number of columns of the light source units 52 is not limited to three, and may be one.
  • the illuminating device 51 of this embodiment is provided with the light source part 52 which consists of the light source device 1 of 1st Embodiment which has the anisotropic scattering sheet 3, it has high directivity in the direction (x-axis direction) where the light source device was located in a line. On the other hand, it has no directivity in the direction orthogonal to it (y-axis direction), and the illuminance is made uniform. As a result, according to the illumination device of the present embodiment, it is possible to uniformly illuminate a wide area in the direction (x-axis direction) that is narrow in the direction in which the light source devices are arranged (x-axis direction).
  • FIG. 22 is a cross-sectional view showing the lighting device of the present embodiment. 22, the same code
  • the illumination device 55 according to the present embodiment includes the surface light source device 19 according to the second embodiment, as shown in FIG. Therefore, the illuminating device 55 of this embodiment has biaxial directivity, and illuminance is made uniform. As a result, according to the illuminating device 55 of the present embodiment, the illumination light can be condensed in a narrow area, and the area can be illuminated uniformly. If the lighting device 55 of the present embodiment is installed near the ceiling of the hall, for example, light with high directivity is emitted downward from the lighting device 55 due to the use of the prism sheet 22. Can be suitably used.
  • the shape of the concave mirror is a paraboloid.
  • the shape of the concave mirror that can be used in the above embodiment is not necessarily limited to a paraboloid, and may be a conical curved surface as a concept including a paraboloid.
  • a curve indicating the shape of a cross section passing through the apex of the conical curved surface is called a quadratic curve.
  • a quadratic curve is a curve obtained from a cross section obtained by cutting a cone at an arbitrary plane.
  • the quadratic curve can be expressed by the following equations (1) and (2).
  • the shape of the quadratic curve changes depending on the value of the conic coefficient k in the equations (1) and (2).
  • the region where the light from the LED reaches may be at least a conical curved surface, and the region where the light from the LED does not reach may be, for example, a flat surface.
  • each member constituting the light source device and the surface light source device exemplified in the above embodiment can be appropriately changed without being limited to the above embodiment.
  • the present invention can be used for various display devices such as a liquid crystal display device, an organic electroluminescence display device, and a plasma display, or a light source device and a surface light source device used in these display devices, or various illumination devices.
  • display devices such as a liquid crystal display device, an organic electroluminescence display device, and a plasma display, or a light source device and a surface light source device used in these display devices, or various illumination devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A light source device is provided with: a light source section that shines light having a different directivity in each of two mutually orthogonal axial directions; and an anisotropic scattering sheet (anisotropic scattering section) having mutually different scattering characteristics in two mutually orthogonal axial directions, said anisotropic scattering sheet outputting as scattered light, light input from the light source section. The axial direction for which the directivity of the light output from the light source section is low is substantially aligned with the axial direction for which the scattering characteristic of the anisotropic scattering sheet is high.

Description

光源装置、面光源装置、表示装置および照明装置Light source device, surface light source device, display device, and illumination device
 本発明は、光源装置、面光源装置、表示装置および照明装置に関する。
 本願は、2011年11月30日に、日本に出願された特願2011-262890号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light source device, a surface light source device, a display device, and an illumination device.
This application claims priority based on Japanese Patent Application No. 2011-262890 filed in Japan on November 30, 2011, the contents of which are incorporated herein by reference.
 光源から射出された光に指向性を付与する光学素子が従来から提案されている。例えば、下記の特許文献1には、パラボラ凸面レンズの一面に複数の微小構造を形成したモノリシック光学要素が開示されている。この光学要素においては、パラボラ凸レンズ面と反対側の側面に複数の微小構造が一体形成されている。パラボラ凸レンズ面はレンズのマクロ光学的特性を与え、微小構造は滑らかに変化する強度分布が得られるような光拡散特性を与える。 An optical element that imparts directivity to light emitted from a light source has been proposed. For example, Patent Document 1 below discloses a monolithic optical element in which a plurality of microstructures are formed on one surface of a parabolic convex lens. In this optical element, a plurality of microstructures are integrally formed on the side surface opposite to the parabolic convex lens surface. The parabolic convex lens surface provides macro optical characteristics of the lens, and the micro structure provides light diffusion characteristics so that a smoothly varying intensity distribution can be obtained.
 また、液晶ディスプレイのバックライト等に用いる面光源装置が従来から提案されている。例えば、下記の特許文献2には、光導波路(導光板)の前面と後面にディフューザ表面構造を備えたバックライトアセンブリが開示されている。このバックライトアセンブリによれば、細長い楕円形状に拡散した光線出力パターンを得ることができる。 Also, a surface light source device used for a backlight of a liquid crystal display has been conventionally proposed. For example, Patent Literature 2 below discloses a backlight assembly having a diffuser surface structure on the front and rear surfaces of an optical waveguide (light guide plate). According to this backlight assembly, it is possible to obtain a light output pattern diffused into an elongated elliptical shape.
特開2009-157404号公報JP 2009-157404 A 特許第4689730号公報Japanese Patent No. 4687730
 液晶ディスプレイのバックライト等に用いる面光源装置には、色ずれ、コントラスト比等の表示特性の向上のために全方位に高い指向性が要求される。その場合、一軸性の指向性を持つ光源と、光源の指向性と直交する方向に一軸性の指向性を持つ導光板と、を組み合わせ、面光源装置全体として二軸性の指向性を得る方法が考えられる。 A surface light source device used for a backlight of a liquid crystal display or the like is required to have high directivity in all directions in order to improve display characteristics such as color shift and contrast ratio. In that case, a method of obtaining biaxial directivity as a whole surface light source device by combining a light source having uniaxial directivity and a light guide plate having uniaxial directivity in a direction orthogonal to the directivity of the light source Can be considered.
 しかしながら、この種の面光源装置に上記特許文献1の光学要素を適用したとしても、良好な一軸指向性は得られない。その理由は、この光学要素は光を透過させる透過型の凸面レンズを用いており、屈折現象を利用する透過型レンズでは、一軸方向にのみ高い指向性を持たせることは難しいからである。 However, even if the optical element of Patent Document 1 is applied to this type of surface light source device, good uniaxial directivity cannot be obtained. The reason is that this optical element uses a transmissive convex lens that transmits light, and it is difficult for a transmissive lens that utilizes a refraction phenomenon to have high directivity only in one axial direction.
 また、上記の面光源装置に特許文献2の導光板を適用した場合、光源から入射した光は、導光板の入光部で指向性を持っていたとしても、導光板の前面と後面とに設けられたディフューザ表面構造の作用により光の多重散乱が生じ、指向性が乱れてしまう。 In addition, when the light guide plate of Patent Document 2 is applied to the above surface light source device, the light incident from the light source is directed to the front and rear surfaces of the light guide plate even if the light incident portion of the light guide plate has directivity. Multiple scattering of light occurs due to the action of the provided diffuser surface structure, and the directivity is disturbed.
 本発明は、上記の課題を解決するためになされたものであり、一軸指向性に優れた光源装置を提供することを目的とする。また、二軸指向性に優れた面光源装置を提供することを目的とする。また、この種の光源装置もしくは面光源装置を備え、特性に優れた表示装置および照明装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a light source device having excellent uniaxial directivity. Moreover, it aims at providing the surface light source device excellent in biaxial directivity. It is another object of the present invention to provide a display device and an illumination device that are equipped with this type of light source device or surface light source device and have excellent characteristics.
 上記の目的を達成するために、本発明の光源装置は、互いに直交する2つの軸方向で指向性が異なる光を射出する光源部と、互いに直交する2つの軸方向で互いに異なる散乱性を有し、前記光源部から入射した光を散乱光として射出させる異方性散乱部と、を備え、前記光源部から射出される光の指向性が低い軸方向と、前記異方性散乱部の散乱性が高い軸方向と、を概ね一致させたことを特徴とする。 In order to achieve the above object, the light source device of the present invention has a light source unit that emits light having different directivities in two axial directions orthogonal to each other and a scattering property different from each other in two axial directions orthogonal to each other. And an anisotropic scattering unit that emits light incident from the light source unit as scattered light, and an axial direction in which directivity of light emitted from the light source unit is low, and scattering of the anisotropic scattering unit It is characterized in that the axial direction with high properties is generally matched.
 本発明の光源装置は、前記異方性散乱部が、複数の凹凸形状が非周期的に形成された異方性散乱シートからなることを特徴とする。 The light source device of the present invention is characterized in that the anisotropic scattering portion is composed of an anisotropic scattering sheet in which a plurality of irregular shapes are formed aperiodically.
 本発明の光源装置は、前記異方性散乱シートが、凹凸構造を一軸方向に延伸して形成されることを特徴とする。 The light source device of the present invention is characterized in that the anisotropic scattering sheet is formed by extending a concavo-convex structure in a uniaxial direction.
 本発明の光源装置は、前記異方性散乱部が、複数の柱状レンズが配列されたレンチキュラーレンズからなることを特徴とする。 The light source device of the present invention is characterized in that the anisotropic scattering portion is composed of a lenticular lens in which a plurality of columnar lenses are arranged.
 本発明の光源装置は、前記異方性散乱部の散乱性が高い軸方向に、前記異方性散乱部から射出される光を反射する反射部材が設けられたことを特徴とする。 The light source device of the present invention is characterized in that a reflecting member that reflects light emitted from the anisotropic scattering portion is provided in an axial direction in which the anisotropic scattering portion has a high scattering property.
 本発明の光源装置は、前記異方性散乱部の光射出側に、前記異方性散乱部から射出される光の散乱性が低い軸方向への広がりを規制する規制部材が設けられたことを特徴とする。 In the light source device of the present invention, a regulating member that regulates the spread of light emitted from the anisotropic scattering portion in the axial direction with low scattering property is provided on the light emission side of the anisotropic scattering portion. It is characterized by.
 本発明の光源装置は、前記光源部が、発光素子と、前記発光素子から射出された光を反射する凹面ミラーと、前記凹面ミラーの窪みに配置された凸レンズと、を備え、前記凹面ミラーを所定の平面で切断したときの断面形状が、焦点を有する曲線形状を少なくとも一部に有するとともに、前記焦点が前記発光素子の発光面上に位置し、前記凸レンズが、前記所定の平面に平行な一対の平行平面を有し、前記発光素子からの光が、前記凸レンズを通った後に前記凹面ミラーで反射し、前記凸レンズを通って前記凸レンズの光射出面から射出されることを特徴とする。 In the light source device of the present invention, the light source unit includes a light emitting element, a concave mirror that reflects light emitted from the light emitting element, and a convex lens that is disposed in a recess of the concave mirror, and the concave mirror is provided. The cross-sectional shape when cut along a predetermined plane has at least a part of a curved shape having a focal point, the focal point is located on the light emitting surface of the light emitting element, and the convex lens is parallel to the predetermined plane. It has a pair of parallel planes, and light from the light emitting element is reflected by the concave mirror after passing through the convex lens, and is emitted from the light exit surface of the convex lens through the convex lens.
 本発明の光源装置は、前記異方性散乱部が、前記凸レンズの前記光射出面に形成された凹凸構造体からなることを特徴とする。 The light source device of the present invention is characterized in that the anisotropic scattering portion is formed of a concavo-convex structure formed on the light exit surface of the convex lens.
 本発明の光源装置は、前記発光素子が発光ダイオードであることを特徴とする。 The light source device of the present invention is characterized in that the light emitting element is a light emitting diode.
 本発明の光源装置は、前記曲線形状が概ね放物線であることを特徴とする。 The light source device of the present invention is characterized in that the curved shape is substantially a parabola.
 本発明の光源装置は、前記凹面ミラーが金属膜もしくは誘電体多層膜からなることを特徴とする。 The light source device of the present invention is characterized in that the concave mirror is made of a metal film or a dielectric multilayer film.
 本発明の面光源装置は、上記本発明の光源装置と、前記光源装置から射出された光を端面から入射させ、内部で伝播させる間に主面から射出させる導光体と、を備えたことを特徴とする。 The surface light source device of the present invention includes the above-described light source device of the present invention and a light guide that allows light emitted from the light source device to be incident from an end surface and to be emitted from the main surface while propagating inside. It is characterized by.
 本発明の面光源装置は、前記異方性散乱部が、前記導光体の前記端面に形成された凹凸構造体からなることを特徴とする。 The surface light source device of the present invention is characterized in that the anisotropic scattering portion is formed of a concavo-convex structure formed on the end face of the light guide.
 本発明の面光源装置は、前記導光体が、光の伝播方向において前記主面に対して所定の傾斜角をなす反射面を有することを特徴とする。 The surface light source device of the present invention is characterized in that the light guide has a reflecting surface having a predetermined inclination angle with respect to the main surface in the light propagation direction.
 本発明の面光源装置は、前記導光体が、前記端面に近い側から遠い側に向けて厚みが薄くなる楔形状であり、前記主面と対向する面全体が前記反射面であることを特徴とする。 In the surface light source device of the present invention, the light guide has a wedge shape in which the thickness decreases toward the side farther from the side closer to the end surface, and the entire surface facing the main surface is the reflective surface. Features.
 本発明の面光源装置は、前記導光体が、前記主面と対向する面に複数のプリズム構造体を有し、前記プリズム構造体の一つの傾斜面が前記反射面であることを特徴とする。 In the surface light source device of the present invention, the light guide has a plurality of prism structures on a surface facing the main surface, and one inclined surface of the prism structure is the reflection surface. To do.
 本発明の面光源装置は、前記導光体の主面から射出された光の進行方向を、前記主面の法線により近い方向に変更する方向変更用部材が備えられたことを特徴とする。 The surface light source device of the present invention is provided with a direction changing member that changes the traveling direction of light emitted from the main surface of the light guide to a direction closer to the normal line of the main surface. .
 本発明の表示装置は、上記本発明の面光源装置と、前記面光源装置から射出される光により表示を行う表示素子と、を備えたことを特徴とする。 A display device according to the present invention includes the above surface light source device according to the present invention and a display element that performs display using light emitted from the surface light source device.
 本発明の照明装置は、上記本発明の光源装置を備えたことを特徴とする。 The illumination device of the present invention includes the light source device of the present invention.
 本発明の照明装置は、上記本発明の面光源装置を備えたことを特徴とする。 The illumination device according to the present invention includes the surface light source device according to the present invention.
 本発明によれば、一軸指向性に優れた光源装置を提供することができる。また、二軸指向性に優れた面光源装置を提供することができる。また、この種の光源装置もしくは面光源装置を備え、特性に優れた表示装置および照明装置を提供することができる。 According to the present invention, a light source device having excellent uniaxial directivity can be provided. Moreover, the surface light source device excellent in biaxial directivity can be provided. In addition, it is possible to provide a display device and an illumination device that are provided with this type of light source device or surface light source device and have excellent characteristics.
本発明の第1実施形態の光源装置を示す斜視図である。It is a perspective view which shows the light source device of 1st Embodiment of this invention. 本実施形態の光源装置の平面図である。It is a top view of the light source device of this embodiment. 本実施形態の光源装置の断面図であり、図1のA-A’線に沿う断面図である。FIG. 2 is a cross-sectional view of the light source device of the present embodiment, and is a cross-sectional view taken along the line A-A ′ of FIG. 1. 本実施形態の光源装置に用いる異方性散乱シートの表面構造を示す図である。It is a figure which shows the surface structure of the anisotropic scattering sheet used for the light source device of this embodiment. 本実施形態の光源装置における光の経路を示す図である。It is a figure which shows the path | route of the light in the light source device of this embodiment. 本実施形態の光源装置における光の経路を示す図である。It is a figure which shows the path | route of the light in the light source device of this embodiment. 比較例の光源装置における光の経路を示す図である。It is a figure which shows the path | route of the light in the light source device of a comparative example. 比較例の光源装置における光の経路を示す図である。It is a figure which shows the path | route of the light in the light source device of a comparative example. 本実施形態の光源装置における輝度分布を示す図である。It is a figure which shows the luminance distribution in the light source device of this embodiment. 比較例の光源装置における輝度分布を示す図である。It is a figure which shows the luminance distribution in the light source device of a comparative example. 本実施形態の光源装置の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the light source device of this embodiment. 本実施形態の光源装置の第2変形例を示す断面図、である。It is sectional drawing which shows the 2nd modification of the light source device of this embodiment. 本発明の第2実施形態の面光源装置を示す分解斜視図である。It is a disassembled perspective view which shows the surface light source device of 2nd Embodiment of this invention. 本実施形態の面光源装置の断面図であり、図9のA-A’線に沿う断面図である。FIG. 10 is a cross-sectional view of the surface light source device of the present embodiment, and is a cross-sectional view taken along the line A-A ′ of FIG. 9. 本実施形態の面光源装置における導光体内部での光の経路を示す図である。It is a figure which shows the path | route of the light inside the light guide in the surface light source device of this embodiment. 比較例の面光源装置における照度分布を示す図である。It is a figure which shows the illumination intensity distribution in the surface light source device of a comparative example. 本実施形態の面光源装置における照度分布を示す図である。It is a figure which shows the illumination intensity distribution in the surface light source device of this embodiment. 本実施形態の面光源装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the surface light source device of this embodiment. 本発明の第3実施形態の面光源装置を示す分解斜視図である。It is a disassembled perspective view which shows the surface light source device of 3rd Embodiment of this invention. 本実施形態の面光源装置の断面図であり、図14のA-A’線に沿う断面図である。It is sectional drawing of the surface light source device of this embodiment, and is sectional drawing which follows the A-A 'line | wire of FIG. 本実施形態の面光源装置の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the surface light source device of this embodiment. 本実施形態の面光源装置の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the surface light source device of this embodiment. 本発明の第4実施形態の表示装置を示す断面図である。It is sectional drawing which shows the display apparatus of 4th Embodiment of this invention. 本発明の第5実施形態の表示装置を示す断面図である。It is sectional drawing which shows the display apparatus of 5th Embodiment of this invention. 上記実施形態の表示装置を示す正面図である。It is a front view which shows the display apparatus of the said embodiment. 本発明の第6実施形態の照明装置を示す断面図である。It is sectional drawing which shows the illuminating device of 6th Embodiment of this invention. 本発明の第7実施形態の照明装置を示す断面図である。It is sectional drawing which shows the illuminating device of 7th Embodiment of this invention.
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図7Bを用いて説明する。
 本実施形態では、例えば液晶表示装置のバックライトとして用いて好適な光源装置の一例を示す。
 図1は、本実施形態の光源装置を示す斜視図である。図2は、本実施形態の光源装置の平面図である。図3は、本実施形態の光源装置の断面図であり、図1のA-A’線に沿う断面図である。図4は、本実施形態の光源装置に用いる異方性散乱シートの表面構造を示す図である。
 なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 7B.
In the present embodiment, an example of a light source device suitable for use as, for example, a backlight of a liquid crystal display device is shown.
FIG. 1 is a perspective view showing the light source device of the present embodiment. FIG. 2 is a plan view of the light source device of the present embodiment. FIG. 3 is a cross-sectional view of the light source device of the present embodiment, and is a cross-sectional view taken along the line AA ′ of FIG. FIG. 4 is a view showing the surface structure of the anisotropic scattering sheet used in the light source device of the present embodiment.
In the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 本実施形態の光源装置1は、図1~図3に示すように、光源部2と、異方性散乱シート3(異方性散乱部)と、を備えている。光源部2は、LED4(発光素子)と、シリンドリカルレンズ5(凸レンズ)と、凹面ミラー6と、を備えている。シリンドリカルレンズ5は、例えばアクリル樹脂等の樹脂で構成されている。シリンドリカルレンズ5は、一方が凸面、他方が平坦面となったレンズ、いわゆる平凸レンズである。光Lは平坦面5aから射出されるため、以降、この平坦面5aを光射出面と称する。一方、凸面は、なだらかに湾曲した湾曲面5bと、湾曲面5bの両端に連続する2つの平坦な側面5cと、を有している。 The light source device 1 of the present embodiment includes a light source unit 2 and an anisotropic scattering sheet 3 (anisotropic scattering unit) as shown in FIGS. The light source unit 2 includes an LED 4 (light emitting element), a cylindrical lens 5 (convex lens), and a concave mirror 6. The cylindrical lens 5 is made of a resin such as an acrylic resin. The cylindrical lens 5 is a so-called plano-convex lens in which one is a convex surface and the other is a flat surface. Since the light L is emitted from the flat surface 5a, the flat surface 5a is hereinafter referred to as a light emission surface. On the other hand, the convex surface has a curved surface 5b that is gently curved and two flat side surfaces 5c that are continuous to both ends of the curved surface 5b.
 シリンドリカルレンズ5をxz平面で切断した断面形状を見ると、図2に示すように、凸面のうち、湾曲面5bは焦点Pを有する曲線形状を有している。本実施形態の場合、具体的には、湾曲面5bの断面形状は放物線状である。一方、シリンドリカルレンズ5をyz平面で切断した断面形状を見ると、図3に示すように、湾曲面5bは直線形状である。
 すなわち、シリンドリカルレンズ5の湾曲面5bは、xz平面内において湾曲し、yz平面内においては湾曲していない放物面である。シリンドリカルレンズ5の上面5dおよび下面5eは、図3に示すように、xz平面に平行な一対の平行平面である。
Looking at the cross-sectional shape of the cylindrical lens 5 cut along the xz plane, the curved surface 5b of the convex surface has a curved shape having a focal point P as shown in FIG. In the case of this embodiment, specifically, the cross-sectional shape of the curved surface 5b is parabolic. On the other hand, when the cross-sectional shape obtained by cutting the cylindrical lens 5 along the yz plane is viewed, the curved surface 5b has a linear shape as shown in FIG.
That is, the curved surface 5b of the cylindrical lens 5 is a paraboloid that is curved in the xz plane and not curved in the yz plane. As shown in FIG. 3, the upper surface 5d and the lower surface 5e of the cylindrical lens 5 are a pair of parallel planes parallel to the xz plane.
 シリンドリカルレンズ5の湾曲面5bに沿って凹面ミラー6が設けられている。凹面ミラー6は、シリンドリカルレンズ5の湾曲面5bに直接形成されたアルミニウム等の光反射率の高い金属膜、もしくは誘電体多層膜で構成されている。言い換えると、シリンドリカルレンズ5は、凹面ミラー6の内側の窪みに配置されている。このように、シリンドリカルレンズ5の湾曲面5bと凹面ミラー6とが密着しているため、凹面ミラー6の形状は湾曲面5bの形状が反映された放物面となる。したがって、凹面ミラー6の焦点の位置はシリンドリカルレンズ5の焦点の位置と一致する。焦点の位置を図2の点Pで示す。なお、シリンドリカルレンズ5の湾曲面5bに凹面ミラー6を直接形成する構成に代えて、シリンドリカルレンズとは別体に作製した凹面ミラーを貼り合わせた構成としても良い。 A concave mirror 6 is provided along the curved surface 5 b of the cylindrical lens 5. The concave mirror 6 is made of a metal film having a high light reflectivity such as aluminum or a dielectric multilayer film directly formed on the curved surface 5b of the cylindrical lens 5. In other words, the cylindrical lens 5 is disposed in a recess inside the concave mirror 6. Thus, since the curved surface 5b of the cylindrical lens 5 and the concave mirror 6 are in close contact, the shape of the concave mirror 6 is a paraboloid reflecting the shape of the curved surface 5b. Therefore, the focal position of the concave mirror 6 coincides with the focal position of the cylindrical lens 5. The position of the focal point is indicated by a point P in FIG. Instead of directly forming the concave mirror 6 on the curved surface 5b of the cylindrical lens 5, a configuration may be adopted in which a concave mirror manufactured separately from the cylindrical lens is bonded.
 図3に示すように、シリンドリカルレンズ5の光射出面5aには、LED4を内部に挿入できるだけの深さを有する貫通孔7が設けられている。シリンドリカルレンズ5をxz平面で切断したときの貫通孔7の凹面ミラー6側の断面形状は円弧状に丸められている。
 貫通孔7の内部には、LED4が配置されている。LED4は、発光面4aを凹面ミラー6に向けた姿勢で配置され、発光面4aと反対側の背面が接着剤等により固定されている。
As shown in FIG. 3, the light exit surface 5 a of the cylindrical lens 5 is provided with a through hole 7 having a depth that allows the LED 4 to be inserted therein. The cross-sectional shape of the through-hole 7 on the concave mirror 6 side when the cylindrical lens 5 is cut along the xz plane is rounded into an arc shape.
An LED 4 is disposed inside the through hole 7. The LED 4 is arranged with the light emitting surface 4a facing the concave mirror 6, and the back surface opposite to the light emitting surface 4a is fixed with an adhesive or the like.
 LED4の高さY1(y軸方向の寸法)は、シリンドリカルレンズ5の厚みY2(y軸方向の寸法)よりも小さく、例えばシリンドリカルレンズ5の厚みの1/3程度である。
LED4と凹面ミラー6およびシリンドリカルレンズ5とは、凹面ミラー6およびシリンドリカルレンズ5の焦点PがLED4の発光面4a上に位置するように、互いの位置関係や寸法、形状等が設定されている。
The height Y1 (dimension in the y-axis direction) of the LED 4 is smaller than the thickness Y2 (dimension in the y-axis direction) of the cylindrical lens 5, and is about 1/3 of the thickness of the cylindrical lens 5, for example.
The LED 4, the concave mirror 6, and the cylindrical lens 5 are set to have a positional relationship, dimensions, shape, and the like such that the focal point P of the concave mirror 6 and the cylindrical lens 5 is positioned on the light emitting surface 4 a of the LED 4.
 LED4の発光面4aが凹面ミラー6を向いていることにより、LED4の発光面4aから射出された光の略全てがシリンドリカルレンズ5を通って凹面ミラー6に向かい、凹面ミラー6で反射する。凹面ミラー6で反射した光は、シリンドリカルレンズ5を再度通ってシリンドリカルレンズ5の光射出面5aから射出される。したがって、LED4の発光面4aから射出された光のうち、凹面ミラー6で反射することなく、直接射出される光はほとんど存在しない。LED4は、特に指向性を有するものではなく、所定の拡散角で光を射出する一般的なLEDを用いることができる。シリンドリカルレンズ5の凸面のうち、最大の拡散角でLED4から射出された光が到達する位置までは少なくとも放物面となっており、凹面ミラー6が存在している。よって、LED4からの光が到達しない部分は平坦な側面5cとなっており、凹面ミラー6が存在しない。 Since the light emitting surface 4 a of the LED 4 faces the concave mirror 6, almost all of the light emitted from the light emitting surface 4 a of the LED 4 passes through the cylindrical lens 5 toward the concave mirror 6 and is reflected by the concave mirror 6. The light reflected by the concave mirror 6 passes through the cylindrical lens 5 again and is emitted from the light exit surface 5 a of the cylindrical lens 5. Therefore, among the light emitted from the light emitting surface 4 a of the LED 4, there is almost no light emitted directly without being reflected by the concave mirror 6. The LED 4 is not particularly directional, and a general LED that emits light at a predetermined diffusion angle can be used. Of the convex surface of the cylindrical lens 5, at least a paraboloid is provided up to the position where the light emitted from the LED 4 reaches at the maximum diffusion angle, and the concave mirror 6 exists. Therefore, the portion where the light from the LED 4 does not reach is a flat side surface 5c, and the concave mirror 6 does not exist.
 ここで、上記構成の光源部2から射出される光の指向性について説明する。
 LED4の発光面4aは有限の大きさを有しているため、発光面4a上の全ての点が凹面ミラー6およびシリンドリカルレンズ5の焦点Pの位置に必ずしも一致するわけではない。ただし、以下では説明を簡単にするため、発光面4aの面積が十分に小さく、発光面4aが焦点Pと一致しているものとして説明する。
Here, the directivity of light emitted from the light source unit 2 having the above configuration will be described.
Since the light emitting surface 4a of the LED 4 has a finite size, not all points on the light emitting surface 4a necessarily coincide with the positions of the focal point P of the concave mirror 6 and the cylindrical lens 5. However, for the sake of simplicity, the following description will be made assuming that the area of the light emitting surface 4a is sufficiently small and the light emitting surface 4a coincides with the focus P.
 LED4の発光面4aから発せられた光Lは、所定の拡散角をもって凹面ミラー6に向かい、凹面ミラー6で反射する。ここで、シリンドリカルレンズ5の上面5dおよび下面5eに平行な平面(xz平面)内での光の振る舞いを考える。
 図2に示すように、発光面4aの位置が焦点Pと一致しているため、LED4から発せられた光Lは、凹面ミラー6に対してどのような角度で入射したとしても、凹面ミラー6で反射した後は凹面ミラー6の光軸に平行な方向に進行する。したがって、LED4の発光面4aから発せられた拡散光は、凹面ミラー6で反射することで平行化された光、すなわち高い指向性を持つ光に変換され、シリンドリカルレンズ5の光射出面5aから射出される。
The light L emitted from the light emitting surface 4 a of the LED 4 is directed to the concave mirror 6 with a predetermined diffusion angle and reflected by the concave mirror 6. Here, the behavior of light in a plane (xz plane) parallel to the upper surface 5d and the lower surface 5e of the cylindrical lens 5 will be considered.
As shown in FIG. 2, since the position of the light emitting surface 4 a coincides with the focal point P, the light L emitted from the LED 4 is incident on the concave mirror 6 at any angle. Then, the light travels in a direction parallel to the optical axis of the concave mirror 6. Therefore, the diffused light emitted from the light emitting surface 4a of the LED 4 is converted into parallel light by being reflected by the concave mirror 6, that is, light having high directivity, and emitted from the light emitting surface 5a of the cylindrical lens 5. Is done.
 次に、シリンドリカルレンズ5の上面5dおよび下面5eに垂直な平面(yz平面)内での光の振る舞いを考える。
 図3に示すように、yz平面内で見る限りにおいては、凹面ミラー6は曲率を有していないため、凹面ミラー6は平面ミラーのように機能する。すなわち、光Lは、凹面ミラー6において入射角に等しい反射角で反射する。よって、光Lは、LED4の発光面4aから発せられた直後の拡散角を維持したまま、シリンドリカルレンズ5の光射出面5aから射出される。
Next, the behavior of light in a plane (yz plane) perpendicular to the upper surface 5d and the lower surface 5e of the cylindrical lens 5 will be considered.
As shown in FIG. 3, as far as viewing in the yz plane, since the concave mirror 6 has no curvature, the concave mirror 6 functions like a plane mirror. That is, the light L is reflected by the concave mirror 6 at a reflection angle equal to the incident angle. Therefore, the light L is emitted from the light emitting surface 5a of the cylindrical lens 5 while maintaining the diffusion angle immediately after being emitted from the light emitting surface 4a of the LED 4.
 以上をまとめると、シリンドリカルレンズ5(光源部2)の光射出面5aから射出された時点において、光Lは、シリンドリカルレンズ5の上面5dおよび下面5eに平行な平面(xz平面)内でx軸方向に高い指向性を持ち、シリンドリカルレンズ5の上面5dおよび下面5eに垂直な平面(yz平面)内でy軸方向に低い指向性を持つ。このように、互いに直交する2つの軸方向で指向性が異なる光Lが、光源部2から異方性拡散シート3に入射される。 In summary, when the light is emitted from the light exit surface 5a of the cylindrical lens 5 (light source unit 2), the light L is in the x-axis in a plane (xz plane) parallel to the upper surface 5d and the lower surface 5e of the cylindrical lens 5. High directivity in the direction, and low directivity in the y-axis direction in a plane (yz plane) perpendicular to the upper surface 5d and the lower surface 5e of the cylindrical lens 5. In this way, light L having different directivities in two axial directions orthogonal to each other is incident on the anisotropic diffusion sheet 3 from the light source unit 2.
 光源部2の光射出面、すなわち、シリンドリカルレンズ5の光射出面5aに、異方性散乱シート3が設置されている。異方性散乱シート3は、図4に示すように、表面に複数の凹凸構造が非周期的に形成されたものである。個々の凹凸は、一つの軸方向に延伸しており、面内で互いに直交する2つの軸方向での凹凸の平均ピッチが異なるように形成されている。異方性散乱シート3は、このような構成により、互いに直交する2つの軸方向における散乱光の半値全幅が例えば30°と1°というように、互いに直交する2つの軸方向で異なる散乱性を有するものとなる。異方性散乱シート3の一例として、図4に示すように、ポリカーボネートやアクリル等の樹脂シートからなり、シート表面の凹凸を一方向に細長く延伸させたものがあり、凹凸の延伸方向と直交する方向が散乱性の高い方向となる。 The anisotropic scattering sheet 3 is installed on the light exit surface of the light source unit 2, that is, the light exit surface 5a of the cylindrical lens 5. As shown in FIG. 4, the anisotropic scattering sheet 3 has a plurality of uneven structures formed on the surface thereof aperiodically. Each unevenness extends in one axial direction, and is formed such that the average pitch of the unevenness in two axial directions orthogonal to each other in the plane is different. With such a configuration, the anisotropic scattering sheet 3 has different scattering properties in the two orthogonal directions such that the full width at half maximum of the scattered light in the two orthogonal directions is 30 ° and 1 °, for example. It will have. As an example of the anisotropic scattering sheet 3, as shown in FIG. 4, there is a sheet made of a resin sheet such as polycarbonate or acrylic, and the sheet surface unevenness is elongated in one direction, and is orthogonal to the unevenness extending direction. The direction is a highly scattering direction.
 異方性散乱シート3としては、例えばルミニット社製の光拡散制御フィルム(商品名:LSD)等を用いることができる。互いに直交する2つの軸方向における散乱光の半値全幅が高散乱側で40°かつ低散乱側で0.2°、もしくは高散乱側で60°かつ低散乱側で1°等の光拡散制御フィルムが市販されている。もしくは、表面に凹凸形状を有するものに代えて、アスペクト比が5~500程度の粒子を連続層中に分散させた光散乱フィルムを用いることができる。 As the anisotropic scattering sheet 3, for example, a light diffusion control film (trade name: LSD) manufactured by Luminit, Inc. can be used. Light diffusion control film in which the full width at half maximum of scattered light in two axial directions orthogonal to each other is 40 ° on the high scattering side and 0.2 ° on the low scattering side, or 60 ° on the high scattering side and 1 ° on the low scattering side Is commercially available. Alternatively, a light scattering film in which particles having an aspect ratio of about 5 to 500 are dispersed in a continuous layer can be used instead of the surface having an uneven shape.
 本実施形態において、異方性散乱シート3は、散乱性が高い軸方向がシリンドリカルレンズ5の厚み方向(y軸方向)に略一致するように配置されている。すなわち、光源部2から射出される光の指向性が低い軸方向と、異方性散乱シート3の散乱性が高い軸方向と、が概ね一致している。
 異方性散乱シート3は、シリンドリカルレンズ5との間に空気層を介して配置されていてもよい。すなわち、異方性散乱シート3は、シリンドリカルレンズ5から離れて配置されていてもよい。もしくは、異方性散乱シート3は、シリンドリカルレンズ5に密着して配置されていてもよい。さらに、異方性散乱シート3がシリンドリカルレンズ5に密着している場合、異方性散乱シート3は、光学接着剤によりシリンドリカルレンズ5に光学接着されていてもよい。さらに、後述する面光源装置に用いる場合、異方性散乱シート3は、光学接着剤により導光体に光学接着されていてもよいし、シリンドリカルレンズ5と導光体との間に挟持されて固定されていてもよい。
In the present embodiment, the anisotropic scattering sheet 3 is arranged so that the axial direction with high scattering properties substantially coincides with the thickness direction (y-axis direction) of the cylindrical lens 5. That is, the axial direction in which the directivity of light emitted from the light source unit 2 is low and the axial direction in which the anisotropic scattering sheet 3 has high scattering properties substantially coincide with each other.
The anisotropic scattering sheet 3 may be disposed between the cylindrical lens 5 and an air layer. That is, the anisotropic scattering sheet 3 may be arranged away from the cylindrical lens 5. Alternatively, the anisotropic scattering sheet 3 may be disposed in close contact with the cylindrical lens 5. Further, when the anisotropic scattering sheet 3 is in close contact with the cylindrical lens 5, the anisotropic scattering sheet 3 may be optically bonded to the cylindrical lens 5 with an optical adhesive. Further, when used in a surface light source device to be described later, the anisotropic scattering sheet 3 may be optically bonded to the light guide with an optical adhesive, or may be sandwiched between the cylindrical lens 5 and the light guide. It may be fixed.
 以下、本実施形態の光源装置1の作用について説明する。
 最初に、図6A及び図6Bに示すように、異方性散乱シートを持たない比較例の光源装置を考える。
 LEDの高さ(y軸方向の寸法)がシリンドリカルレンズ8の厚み(y軸方向の寸法)よりも小さい場合、シリンドリカルレンズの光射出面上の1点に入射する光に着目すると、xz平面に平行な反射面(シリンドリカルレンズの上面および下面)での反射回数によって光の射出角度が一義的に決まってしまう。
Hereinafter, the operation of the light source device 1 of the present embodiment will be described.
First, as shown in FIGS. 6A and 6B, consider a comparative light source device that does not have an anisotropic scattering sheet.
When the height of the LED (dimension in the y-axis direction) is smaller than the thickness of the cylindrical lens 8 (dimension in the y-axis direction), focusing on the light incident on one point on the light exit surface of the cylindrical lens, the xz plane The light emission angle is uniquely determined by the number of reflections on the parallel reflecting surfaces (the upper surface and the lower surface of the cylindrical lens).
 例えば図6Aにおいて、シリンドリカルレンズ101の光射出面101a上の点Q1に着目すると、LED102から射出された光のうち、破線の矢印L0は、反射回数が0回の光の軌跡を示す。2点鎖線の矢印L1は、反射回数がシリンドリカルレンズ101の上面101dおよび下面101eで1回ずつの光の軌跡を示す。1点鎖線の矢印L2は、反射回数が上面101dおよび下面101eで2回ずつの光の軌跡を示している。このように、光射出面上の点Q1から射出される光の射出角度は、反射回数に応じてy軸方向に離散的な値を取る。 For example, in FIG. 6A, when attention is paid to a point Q1 on the light exit surface 101a of the cylindrical lens 101, a dashed arrow L0 among the light emitted from the LED 102 indicates a trajectory of light having zero reflections. A two-dot chain line arrow L1 indicates the trajectory of light whose number of reflections is once on the upper surface 101d and the lower surface 101e of the cylindrical lens 101. A one-dot chain line arrow L2 indicates the locus of light whose number of reflections is twice on the upper surface 101d and the lower surface 101e. Thus, the emission angle of light emitted from the point Q1 on the light emission surface takes a discrete value in the y-axis direction according to the number of reflections.
 次に、図6Bに示すように、光が射出する位置を点Q1から点Q2に移動させると、反射回数が0回の光L1の軌跡が変わり、反射回数が同じであっても、光射出面101a上の点Q2から射出される光の射出角度は、点Q1から射出される光の射出角度と異なる。 Next, as shown in FIG. 6B, when the position where the light is emitted is moved from the point Q1 to the point Q2, the locus of the light L1 where the number of reflections is zero changes, and even if the number of reflections is the same, the light emission The emission angle of light emitted from the point Q2 on the surface 101a is different from the emission angle of light emitted from the point Q1.
 つまり、光の射出角度は、y軸方向に離散的な分布を示し、かつ、光の射出位置ごとに空間的なばらつきを生じる。このような光源部からの射出光を例えば光射出面からz軸方向に所定の距離離れた位置から見ると、射出光の照度分布が離散的になる。その結果、照度が高い地点と照度が低い地点とがy軸方向に沿って交互に現れ、照度の不均一性がより顕著になる。 That is, the light emission angle shows a discrete distribution in the y-axis direction, and causes spatial variation for each light emission position. When the emitted light from such a light source unit is viewed from a position that is a predetermined distance away from the light exit surface in the z-axis direction, for example, the illuminance distribution of the emitted light becomes discrete. As a result, points with high illuminance and points with low illuminance appear alternately along the y-axis direction, and illuminance non-uniformity becomes more prominent.
 これに対して、本実施形態の光源装置1は、図5A及び図5Bに示すように、y軸方向に高い散乱性を有する異方性散乱シート3を備えているため、離散的であった照度分布のうちの照度が低い部分が光の散乱により補間される結果、y軸方向の照度分布が均一化される。一方、異方性散乱シート3のx軸方向の散乱性は低いため、光源部2から射出された光のx軸方向の高い指向性は維持される。 In contrast, the light source device 1 of the present embodiment is discrete because it includes the anisotropic scattering sheet 3 having high scattering properties in the y-axis direction, as shown in FIGS. 5A and 5B. As a result of interpolating the low illuminance portion of the illuminance distribution by light scattering, the illuminance distribution in the y-axis direction is made uniform. On the other hand, since the scattering property in the x-axis direction of the anisotropic scattering sheet 3 is low, the high directivity in the x-axis direction of the light emitted from the light source unit 2 is maintained.
 本発明者らは、本実施形態の光源装置の効果を実証するため、光学シミュレーションを用いて、異方性散乱シートを備えた本実施形態の光源装置と、異方性散乱シートを備えていない比較例の光源装置と、で射出光の光度分布を比較した。その結果を図7A及び図7Bに示す。
 図7A及び図7Bに示す曲線は等光度曲線である。図7A及び図7Bの横軸は光射出面の法線方向を0°としたときのx軸方向の極角(°)を示している。図7A及び図7Bの縦軸は光射出面の法線方向を0°としたときのy軸方向の極角(°)を示している。
In order to demonstrate the effect of the light source device of the present embodiment, the present inventors do not include the light source device of the present embodiment including the anisotropic scattering sheet and the anisotropic scattering sheet using optical simulation. The light intensity distribution of the emitted light was compared with the light source device of the comparative example. The results are shown in FIGS. 7A and 7B.
The curves shown in FIGS. 7A and 7B are isoluminous curves. The horizontal axis of FIGS. 7A and 7B indicates the polar angle (°) in the x-axis direction when the normal direction of the light exit surface is 0 °. The vertical axis in FIGS. 7A and 7B represents the polar angle (°) in the y-axis direction when the normal direction of the light exit surface is 0 °.
 シミュレーション条件として、LEDの幅X1(x軸方向の寸法、図2参照)を1.4mm、LEDの高さY1(y軸方向の寸法、図3参照)を1mm、LEDの奥行きZ1(z軸方向の寸法、図3参照)を0.5mm、シリンドリカルレンズの幅X2(x軸方向の寸法、図2参照)を40mm、シリンドリカルレンズの高さY2(y軸方向の寸法、図3参照)を3mm、LEDの発光面からシリンドリカルレンズの光射出面までの距離Z2(z軸方向の寸法、図2参照)を3mm、シリンドリカルレンズの焦点距離Z3(z軸方向の寸法、図2参照)を10mm、とした。異方性散乱シートの散乱性は、y軸方向における散乱光の半値全幅を30°、x軸方向における散乱光の半値全幅を1°とした。 As simulation conditions, LED width X1 (dimension in the x-axis direction, see FIG. 2) is 1.4 mm, LED height Y1 (dimension in the y-axis direction, see FIG. 3) is 1 mm, and LED depth Z1 (z-axis). 3 mm), the cylindrical lens width X2 (x-axis dimension, see FIG. 2) is 40 mm, and the cylindrical lens height Y2 (y-axis dimension, see FIG. 3). 3 mm, the distance Z2 from the light emitting surface of the LED to the light exit surface of the cylindrical lens (dimension in the z-axis direction, see FIG. 2) is 3 mm, and the focal length Z3 of the cylindrical lens (dimension in the z-axis direction, see FIG. 2) is 10 mm. , And. As for the scattering property of the anisotropic scattering sheet, the full width at half maximum of scattered light in the y-axis direction was 30 °, and the full width at half maximum of scattered light in the x-axis direction was 1 °.
 光学シミュレーションを行った結果、比較例の光源装置では、図7Bに示すように、y軸方向における射出光の光度分布が離散的であることが判った。これに対し、本実施形態の光源装置では、図7Aに示すように、y軸方向における射出光の光度分布が連続的になり、光度分布がより均一化されることが判った。また、x軸方向における射出光の光度分布は略変わらないことから、x軸方向の高い指向性は維持されることが判った。 As a result of optical simulation, it was found that in the light source device of the comparative example, the luminous intensity distribution of the emitted light in the y-axis direction was discrete as shown in FIG. 7B. On the other hand, in the light source device of this embodiment, as shown in FIG. 7A, it has been found that the luminous intensity distribution of the emitted light in the y-axis direction becomes continuous and the luminous intensity distribution becomes more uniform. Further, since the luminous intensity distribution of the emitted light in the x-axis direction is not substantially changed, it has been found that high directivity in the x-axis direction is maintained.
[第1変形例]
 本実施形態では、異方性散乱機能を付与する手段として異方性散乱シートを用いたが、この構成に代えて、図8Aに示す光源装置を用いてもよい。
 本変形例の光源装置10は、図8Aに示すように、シリンドリカルレンズ11の光射出面11aに、異方性散乱を生じさせるための凹凸構造12が付与されている。すなわち、シリンドリカルレンズ11の光射出面11a自体に、図4に示したような凹凸構造が作り込まれている。このような構成は、例えばシリンドリカルレンズ11を作製する際に用いる金型に、凹凸構造12を反転させた形状を予め付与しておき、この金型を用いて射出成形を行うことにより実現が可能である。この構成によれば、異方性散乱シートが不要になる。
[First Modification]
In the present embodiment, an anisotropic scattering sheet is used as means for imparting an anisotropic scattering function, but a light source device shown in FIG. 8A may be used instead of this configuration.
As shown in FIG. 8A, the light source device 10 of the present modification is provided with a concavo-convex structure 12 for causing anisotropic scattering on the light exit surface 11 a of the cylindrical lens 11. That is, the concavo-convex structure as shown in FIG. 4 is formed on the light exit surface 11a of the cylindrical lens 11 itself. Such a configuration can be realized, for example, by giving a shape obtained by inverting the concavo-convex structure 12 to a mold used when manufacturing the cylindrical lens 11 in advance and performing injection molding using the mold. It is. According to this structure, an anisotropic scattering sheet becomes unnecessary.
[第2変形例]
 本実施形態の光源装置に代えて、図8Bに示す光源装置を用いてもよい。
 本変形例の光源装置15は、図8Bに示すように、異方性散乱シート3の光射出側に、ルーバー16(規制部材)が備えられている。ルーバー16は、y軸方向に延在するスリット(開口部、図示せず)を有している。ルーバー16は、異方性散乱シート3から射出される光の散乱性が低い軸方向(x軸方向)への広がりを規制する規制部材として機能する。なお、散乱性が低い軸方向(x軸方向)への光の広がりを規制する部材は、ルーバー16に限ることなく、一方向に光を絞る機能を有する他の光学部材を用いてもよい。
[Second Modification]
Instead of the light source device of the present embodiment, the light source device shown in FIG. 8B may be used.
As illustrated in FIG. 8B, the light source device 15 of the present modification includes a louver 16 (a regulating member) on the light emission side of the anisotropic scattering sheet 3. The louver 16 has a slit (opening, not shown) extending in the y-axis direction. The louver 16 functions as a regulating member that regulates the spread in the axial direction (x-axis direction) where the scattering property of light emitted from the anisotropic scattering sheet 3 is low. Note that the member that restricts the spread of light in the axial direction (x-axis direction) with low scattering is not limited to the louver 16, and other optical members having a function of focusing light in one direction may be used.
 異方性散乱シート3から射出される光は、散乱性が高い軸方向(y軸方向)のみならず、散乱性が低い軸方向(x軸方向)にも若干散乱される。その結果、x軸方向への散乱光成分がx軸方向の指向性を若干低下させる。ところが、本変形例の光源装置15においては、異方性散乱シート3の光射出側に上記のルーバー16が備えられているため、x軸方向の高い指向性が確実に維持される。 The light emitted from the anisotropic scattering sheet 3 is slightly scattered not only in the axial direction (y-axis direction) with high scattering properties but also in the axial direction (x-axis direction) with low scattering properties. As a result, the scattered light component in the x-axis direction slightly reduces the directivity in the x-axis direction. However, in the light source device 15 of the present modification, since the louver 16 is provided on the light emitting side of the anisotropic scattering sheet 3, high directivity in the x-axis direction is reliably maintained.
[第2実施形態]
 以下、本発明の第2実施形態について、図9~図12Bを用いて説明する。
 本実施形態は、第1実施形態の光源装置と導光体とを組み合わせた面光源装置の一実施形態である。
 図9は、本実施形態の面光源装置を示す分解斜視図である。図10は、本実施形態の面光源装置の断面図であり、図9のA-A’線に沿う断面図である。
 図9、図10において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 9 to 12B.
The present embodiment is an embodiment of a surface light source device that combines the light source device of the first embodiment and a light guide.
FIG. 9 is an exploded perspective view showing the surface light source device of this embodiment. FIG. 10 is a cross-sectional view of the surface light source device of this embodiment, and is a cross-sectional view taken along the line AA ′ of FIG.
In FIG. 9 and FIG. 10, the same code | symbol is attached | subjected to the same component as drawing used in 1st Embodiment, and description is abbreviate | omitted.
 本実施形態の面光源装置19は、図9、図10に示すように、光源装置1と、導光体20と、反射ミラー21と、プリズムシート22(方向変更用部材)と、を備えている。導光体20は、光源装置1から射出された光を端面から入射させ、内部で伝播させる間に主面から射出させる機能を有する。反射ミラー21は、導光体20の内部を伝播する光を反射させる機能を有する。プリズムシート22は、導光体20の主面から射出された光の進行方向を、主面の法線により近い方向に変更する機能を有する。光源装置1は、第1実施形態の光源装置であるため、説明を省略する。 The surface light source device 19 of this embodiment is provided with the light source device 1, the light guide 20, the reflective mirror 21, and the prism sheet 22 (direction changing member) as shown in FIG. 9, FIG. Yes. The light guide 20 has a function of causing light emitted from the light source device 1 to enter from the end face and to be emitted from the main surface while propagating inside. The reflection mirror 21 has a function of reflecting light propagating inside the light guide 20. The prism sheet 22 has a function of changing the traveling direction of the light emitted from the main surface of the light guide 20 to a direction closer to the normal line of the main surface. Since the light source device 1 is the light source device of the first embodiment, the description thereof is omitted.
 導光体20は、例えばアクリル樹脂等の光透過性を有する樹脂からなる板体である。導光体20は、光源装置1が設けられた端面3aに近い側から遠い側に向けて厚みが徐々に薄くなる楔形の形状を有している。すなわち、図10に示すように、後述する第1主面20bに垂直な面(yz平面)で切断したときの導光体20の断面形状は直角三角形である。導光体20の端面20aは、光源装置1から射出された光を入射させる光入射面である。したがって、導光体20の端面20aには、光源装置1のシリンドリカルレンズ5の光射出面5aが対向している。導光体20の第1主面20b(図10における上側の面)は、内部に入射した光を射出させる光射出面である。 The light guide 20 is a plate made of a resin having optical transparency such as acrylic resin. The light guide 20 has a wedge shape in which the thickness gradually decreases from the side closer to the end surface 3 a where the light source device 1 is provided to the side farther from the side. That is, as shown in FIG. 10, the cross-sectional shape of the light guide 20 when cut along a plane (yz plane) perpendicular to the first main surface 20b described later is a right triangle. The end surface 20 a of the light guide 20 is a light incident surface on which light emitted from the light source device 1 is incident. Therefore, the light emission surface 5 a of the cylindrical lens 5 of the light source device 1 faces the end surface 20 a of the light guide 20. The first main surface 20b (upper surface in FIG. 10) of the light guide 20 is a light emission surface that emits light incident on the inside.
 なお、本実施形態においては、導光体20の第1主面20bの面内における光の伝播方向をz軸方向、光の伝播方向と直交する方向をx軸方向、第1主面20bと直交する方向(導光体20の厚み方向)をy軸方向、と定義する。したがって、本実施形態における「光の伝播方向」とは、図11に示すように、導光体20のyz断面内で光(矢印Lで示す)が反射しつつ伝播する方向を意味するのではなく、導光体20の第1主面20bの法線方向から見て光が伝播する方向(図10、図11に実線の矢印Zで示す)を意味する。 In the present embodiment, the light propagation direction within the first main surface 20b of the light guide 20 is the z-axis direction, the direction orthogonal to the light propagation direction is the x-axis direction, and the first main surface 20b. An orthogonal direction (thickness direction of the light guide 20) is defined as a y-axis direction. Therefore, the “light propagation direction” in the present embodiment means a direction in which light (indicated by an arrow L) propagates while reflecting in the yz section of the light guide 20 as shown in FIG. Rather, it means the direction in which light propagates when viewed from the normal direction of the first main surface 20b of the light guide 20 (shown by the solid arrow Z in FIGS. 10 and 11).
 導光体20の第1主面20bに対向する第2主面20c(図10における下側の面)は、光の伝播方向において第1主面20bに対して一定の傾斜角をもって傾斜した面である。第1主面20bに対する第2主面20cの傾斜角α(第1主面20bと第2主面20cとのなす角度、導光体20の頂角と呼ぶ場合もある)は、例えば1°~2°程度に設定される。第2主面20cには、例えばアルミニウム等の光反射率の高い金属膜からなる反射ミラー21が設けられている。反射ミラー21が設けられたことで、第2主面20cの全体が導光体20の内部を伝播する光を反射させる反射面として機能する。なお、反射ミラー21は、導光体20の第2主面20cに直接形成された金属膜で構成しても良いし、導光体20とは別体に作製した反射板を貼り合わせた構成としても良い。 The second main surface 20c (the lower surface in FIG. 10) facing the first main surface 20b of the light guide 20 is a surface inclined at a constant inclination angle with respect to the first main surface 20b in the light propagation direction. It is. The inclination angle α of the second main surface 20c with respect to the first main surface 20b (the angle between the first main surface 20b and the second main surface 20c, sometimes called the apex angle of the light guide 20) is, for example, 1 °. It is set to about 2 °. The second main surface 20c is provided with a reflecting mirror 21 made of a metal film having a high light reflectance such as aluminum. By providing the reflection mirror 21, the entire second main surface 20 c functions as a reflection surface that reflects light propagating through the light guide 20. The reflection mirror 21 may be formed of a metal film directly formed on the second main surface 20c of the light guide 20, or a structure in which a reflection plate manufactured separately from the light guide 20 is bonded. It is also good.
 プリズムシート22は、導光体20の光射出面20bに対向する位置(図10における導光体20の上方)に設けられている。プリズムシート22は、複数のプリズム構造体23が導光体20の光射出面20bに対向する面に設けられたものである。各プリズム構造体23は、光の伝播方向Zと直交する方向に延在している。プリズムシート22は、プリズム構造体23が設けられた面が導光体20の光射出面20bに対向するように配置されている。図10に示すように、yz平面で切断した断面におけるプリズム構造体23の断面形状は直角三角形状である。プリズム構造体23は、導光体20の光射出面20bに対して直交する第1面23aと、第1面23aに対して所定の先端角をなす第2面23bと、を有している。 The prism sheet 22 is provided at a position facing the light exit surface 20b of the light guide 20 (above the light guide 20 in FIG. 10). In the prism sheet 22, a plurality of prism structures 23 are provided on a surface facing the light exit surface 20 b of the light guide 20. Each prism structure 23 extends in a direction orthogonal to the light propagation direction Z. The prism sheet 22 is disposed so that the surface on which the prism structure 23 is provided faces the light exit surface 20 b of the light guide 20. As shown in FIG. 10, the cross-sectional shape of the prism structure 23 in the cross section cut along the yz plane is a right triangle. The prism structure 23 includes a first surface 23a that is orthogonal to the light exit surface 20b of the light guide 20, and a second surface 23b that forms a predetermined tip angle with respect to the first surface 23a. .
 以下、上記構成の面光源装置19の作用について説明する。
 図11に示すように、導光体20の端面20a上の任意の入射位置y0から入射角θ0で入射する光I0(y0,θ0)に着目すると、この入射光I0(y0,θ0)は、導光体20の内部で反射を繰り返すことにより臨界角条件を破り、導光体20の第1主面20bと空気との界面から外部に射出される。
Hereinafter, the operation of the surface light source device 19 configured as described above will be described.
As shown in FIG. 11, when attention is focused on light I0 (y0, θ0) incident at an incident angle θ0 from an arbitrary incident position y0 on the end face 20a of the light guide 20, the incident light I0 (y0, θ0) is By repeating reflection inside the light guide 20, the critical angle condition is broken, and the light is emitted from the interface between the first main surface 20 b of the light guide 20 and air to the outside.
 すなわち、導光体20に入射した光Lは、図11に示すように、第1主面20b(光射出面)と第2主面20c(反射面)との間で反射を繰り返しつつ、導光体20の内部を光の伝播方向Z(図11の右側)に向けて進行する。仮に第1主面と第2主面とが平行であったとすると、光が反射を繰り返しても、第1主面および第2主面への光の入射角は変化しない。ところが、本実施形態の場合、導光体20は光入射面20a側から離れるにつれて厚みが徐々に薄くなる楔形であり、第1主面20bに対して第2主面20cが所定の傾斜角を有している。そのため、光Lは、第1主面20bおよび第2主面20cで1回反射する毎に第1主面20bおよび第2主面20cへの入射角が小さくなる。 That is, the light L incident on the light guide 20 is guided while being repeatedly reflected between the first main surface 20b (light emission surface) and the second main surface 20c (reflection surface), as shown in FIG. The light 20 travels in the light propagation direction Z (right side in FIG. 11). Assuming that the first main surface and the second main surface are parallel, the incident angle of the light to the first main surface and the second main surface does not change even if light is repeatedly reflected. However, in the case of the present embodiment, the light guide 20 has a wedge shape in which the thickness gradually decreases with increasing distance from the light incident surface 20a side, and the second main surface 20c has a predetermined inclination angle with respect to the first main surface 20b. Have. Therefore, each time the light L is reflected once by the first main surface 20b and the second main surface 20c, the incident angle on the first main surface 20b and the second main surface 20c becomes small.
 具体的には、例えば導光体20を構成するアクリル樹脂の屈折率が1.5、空気の屈折率を1.0とすると、導光体20の第1主面20b(光射出面)における臨界角、すなわち導光体20を構成するアクリル樹脂と空気との界面における臨界角は、Snellの法則から42°程度となる。導光体20に入射した直後の光が第1主面20bに入射したとき、第1主面20bへの光Lの入射角が臨界角である42°よりも大きい間は臨界角条件を満たすため、光Lは第1主面20bで全反射する。その後、光Lが第1主面20bと第2主面20cとの間で反射を繰り返し、第1主面20bへの光Lの入射角が臨界角である42°よりも小さくなった時点で臨界角条件を破り、光Lは外部空間に射出される。なお、第2主面20cに到達した光は、入射角が臨界角より小さくなったとしても、反射ミラー21により反射される。 Specifically, for example, when the refractive index of the acrylic resin constituting the light guide 20 is 1.5 and the refractive index of air is 1.0, the first main surface 20b (light emission surface) of the light guide 20 The critical angle, that is, the critical angle at the interface between the acrylic resin constituting the light guide 20 and the air is about 42 ° from Snell's law. When the light immediately after entering the light guide 20 is incident on the first main surface 20b, the critical angle condition is satisfied as long as the incident angle of the light L on the first main surface 20b is larger than the critical angle of 42 °. Therefore, the light L is totally reflected by the first main surface 20b. Thereafter, when the light L is repeatedly reflected between the first main surface 20b and the second main surface 20c, the incident angle of the light L on the first main surface 20b becomes smaller than 42 ° which is a critical angle. The critical angle condition is broken and the light L is emitted to the external space. The light that has reached the second major surface 20c is reflected by the reflecting mirror 21 even if the incident angle becomes smaller than the critical angle.
 すなわち、光Lは、第1主面20bへの入射角が臨界角よりも大きい間は導光体20の内部に閉じ込められ、第1主面20bへの入射角が臨界角よりも小さくなった直後から順次射出される。そのため、第1主面20bから射出される光の射出角は略一定に揃う。光Lは第1主面20bから射出する際に屈折するため、第1主面20bへの入射角が42°程度の光は、射出角が概ね水平に近い光となって射出される。このように、光の伝播方向Zに平行、かつ導光体20の光射出面20bに垂直な平面(yz平面)内で見たとき、光Lは、導光体20に入射した時点ではx軸方向には高い指向性を持つものの、y軸方向には指向性を持っていない。ところが、光Lは、光路(進行方向)が折り曲げられて、導光体20の第1主面20bから射出するときには、z軸方向に高い指向性を持つ。 That is, the light L is confined inside the light guide 20 while the incident angle on the first main surface 20b is larger than the critical angle, and the incident angle on the first main surface 20b becomes smaller than the critical angle. It is sequentially injected immediately after. Therefore, the emission angles of light emitted from the first main surface 20b are substantially constant. Since the light L is refracted when exiting from the first main surface 20b, the light having an incident angle of about 42 ° to the first main surface 20b is emitted as light having an exit angle that is substantially horizontal. Thus, when viewed in a plane (yz plane) parallel to the light propagation direction Z and perpendicular to the light exit surface 20 b of the light guide 20, the light L becomes x when it enters the light guide 20. Although it has high directivity in the axial direction, it has no directivity in the y-axis direction. However, the light L has a high directivity in the z-axis direction when the light path (traveling direction) is bent and emitted from the first main surface 20b of the light guide 20.
 上述の例で言えば、光Lは概ね水平に近い方向に射出される。したがって、プリズムシート22を用いて、導光体20から射出された光Lを導光体20の第1主面20bの法線方向に近い方向に立ち上げる。具体的には、先端角が40°程度のプリズム構造体23を有するプリズムシート22を用い、光Lを、プリズム構造体23の第1面23aから入射させ、第2面23bで反射させることで、導光体20の第1主面20bに対して略垂直な方向に立ち上げることができる。 In the above example, the light L is emitted in a direction substantially horizontal. Therefore, using the prism sheet 22, the light L emitted from the light guide 20 is raised in a direction close to the normal direction of the first main surface 20 b of the light guide 20. Specifically, by using the prism sheet 22 having the prism structure 23 with a tip angle of about 40 °, the light L is incident from the first surface 23a of the prism structure 23 and reflected by the second surface 23b. The light guide 20 can be raised in a direction substantially perpendicular to the first main surface 20b.
 図11において、導光体20の第1主面20bのうち、z軸方向における光Lの射出位置z1は、入射位置y0と入射角θ0と導光体20の頂角αとによって決定される。したがって、導光体20の頂角αを決めれば、光の射出位置z1は、z1=g(y0,θ0)と表すことができる。このとき、光I1(z1,θ1)が射出位置z1から射出される。
なお、θ1は射出角である。したがって、導光体20の第1主面20b(光射出面)上において輝度を均一化させようとすると、入射位置y0によらず、入射角度特性が均一である必要がある。言い換えると、入射位置y0と入射角θ0との間に相関がないことが必要となる。
In FIG. 11, the emission position z1 of the light L in the z-axis direction on the first main surface 20b of the light guide 20 is determined by the incident position y0, the incident angle θ0, and the apex angle α of the light guide 20. . Therefore, if the vertex angle α of the light guide 20 is determined, the light emission position z1 can be expressed as z1 = g (y0, θ0). At this time, the light I1 (z1, θ1) is emitted from the emission position z1.
Note that θ1 is an emission angle. Therefore, if the luminance is to be made uniform on the first main surface 20b (light exit surface) of the light guide 20, the incident angle characteristic needs to be uniform regardless of the incident position y0. In other words, it is necessary that there is no correlation between the incident position y0 and the incident angle θ0.
 しかしながら、第1実施形態で述べた通り、シリンドリカルレンズのような平行平板を有する一軸指向性の光源装置から射出された光の射出位置と射出角度との間には、一般的に相関がある。その結果、導光体から射出される光の照度分布をz軸方向に沿って見ると、光源装置の持つ照度分布が反映され、照度の高い領域と照度の低い領域とが交互に現れる。 However, as described in the first embodiment, there is generally a correlation between the emission position and the emission angle of light emitted from a uniaxial directivity light source device having a parallel plate such as a cylindrical lens. As a result, when the illuminance distribution of light emitted from the light guide is viewed along the z-axis direction, the illuminance distribution of the light source device is reflected, and regions with high illuminance and regions with low illuminance appear alternately.
 これに対して、本実施形態の面光源装置19は、第1実施形態の光源装置1、すなわちy軸方向の散乱性が強い異方性散乱シート3を備えた光源装置1を備えている。そのため、光源装置1からの射出光のy軸方向の照度分布が均一化され、その照度分布を反映して、導光体20からの射出光のz軸方向の照度分布は、異方性散乱シートが無い場合と比べて均一化される。一方、導光体20にx軸方向の指向性を乱す要素は存在しないため、光源装置1からの射出光のx軸方向の高い指向性は維持される。このようにして、本実施形態によれば、二軸指向性に優れた面光源装置を実現することができる。 On the other hand, the surface light source device 19 of the present embodiment includes the light source device 1 of the first embodiment, that is, the light source device 1 including the anisotropic scattering sheet 3 having a strong scattering property in the y-axis direction. Therefore, the illuminance distribution in the y-axis direction of the light emitted from the light source device 1 is made uniform, and the illuminance distribution in the z-axis direction of the light emitted from the light guide 20 is anisotropically scattered, reflecting the illuminance distribution. It is made uniform compared to the case where there is no sheet. On the other hand, since there is no element that disturbs the directivity in the x-axis direction in the light guide 20, the high directivity in the x-axis direction of the light emitted from the light source device 1 is maintained. Thus, according to this embodiment, a surface light source device having excellent biaxial directivity can be realized.
 本発明者らは、本実施形態の面光源装置の効果を実証するため、光学シミュレーションを用いて、本実施形態の面光源装置と比較例の面光源装置とで射出光の照度分布を比較した。その結果を図12A及び図12Bに示す。
 図12A及び図12Bにおいて、導光体の光射出面の色が白色に近い領域ほど、照度が高く、黒色に近い領域ほど、照度が低いことを示している。
 シミュレーション条件として、光源装置については、第1実施形態と同じシミュレーション条件を用いた。その他、導光体については、導光体の頂角αを1.4°、導光体の長さ(z軸方向の寸法)を120mm、導光体の端面側の厚みをシリンドリカルレンズの厚みに合わせて3mm、とした。
In order to demonstrate the effect of the surface light source device of this embodiment, the inventors compared the illuminance distribution of the emitted light between the surface light source device of this embodiment and the surface light source device of the comparative example using optical simulation. . The results are shown in FIGS. 12A and 12B.
12A and 12B, it is shown that the illuminance is higher as the color of the light exit surface of the light guide is closer to white, and the illuminance is lower as the color is closer to black.
As the simulation conditions, the same simulation conditions as in the first embodiment were used for the light source device. In addition, for the light guide, the apex angle α of the light guide is 1.4 °, the length of the light guide (dimension in the z-axis direction) is 120 mm, and the thickness of the end face side of the light guide is the thickness of the cylindrical lens. To 3 mm.
 光学シミュレーションを行った結果、比較例の光源装置では、図12Aに示すように、導光体104の光射出面104bにおいて、照度の高い領域と照度の低い領域とが交互に現れていることが判った。これに対し、本実施形態の光源装置では、図12Bに示すように、導光体20の光射出面20bにおいて、z軸方向における射出光の照度がより均一化されることが判った。また、x軸方向における射出光の照度分布は略変わらないことから、x軸方向の高い指向性は維持されることが判った。 As a result of performing the optical simulation, in the light source device of the comparative example, as shown in FIG. 12A, regions with high illuminance and regions with low illuminance appear alternately on the light exit surface 104 b of the light guide 104. understood. On the other hand, in the light source device of this embodiment, as shown to FIG. 12B, it turned out that the illumination intensity of the emitted light in the z-axis direction is made more uniform in the light emission surface 20b of the light guide 20. Further, since the illuminance distribution of the emitted light in the x-axis direction is not substantially changed, it has been found that high directivity in the x-axis direction is maintained.
[第1変形例]
 上記実施形態では、異方性散乱シートを備えた第1実施形態の光源装置を用いた例を挙げたが、この構成に代えて、図13に示す光源装置を用いてもよい。
 本変形例の光源装置26は、図13に示すように、導光体27の端面27aに、y軸方向に強い散乱性を示す異方性散乱を生じさせるための凹凸構造が付与されている。すなわち、導光体27の端面27a自体に、図4に示したような凹凸構造が作り込まれている。
 このような構成は、例えば導光体27を作製する際に用いる金型に、凹凸構造を反転させた形状を予め付与しておき、この金型を用いて射出成形を行うことにより実現が可能である。この構成によれば、異方性散乱シートを備えた光源装置を用いる必要がない。
[First Modification]
Although the example using the light source device of the first embodiment provided with the anisotropic scattering sheet has been described in the above embodiment, the light source device shown in FIG. 13 may be used instead of this configuration.
As shown in FIG. 13, the light source device 26 of the present modification is provided with an uneven structure for generating anisotropic scattering exhibiting strong scattering in the y-axis direction on the end surface 27 a of the light guide 27. . That is, the concavo-convex structure as shown in FIG. 4 is formed in the end surface 27 a itself of the light guide 27.
Such a configuration can be realized, for example, by previously imparting a shape in which the concavo-convex structure is inverted to a mold used when producing the light guide 27 and performing injection molding using this mold. It is. According to this configuration, there is no need to use a light source device provided with an anisotropic scattering sheet.
[第3実施形態]
 以下、本発明の第3実施形態について、図14、図15を用いて説明する。
 本実施形態の面光源装置の基本構成は第2実施形態と同様であり、異方性散乱部の構成のみが第2実施形態と異なる。
 図14は、本実施形態の面光源装置を示す分解斜視図である。図15は、本実施形態の面光源装置の断面図であり、図14のA-A’線に沿う断面図である。
 図14、図15において、第2実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 14 and 15.
The basic configuration of the surface light source device of this embodiment is the same as that of the second embodiment, and only the configuration of the anisotropic scattering portion is different from that of the second embodiment.
FIG. 14 is an exploded perspective view showing the surface light source device of the present embodiment. FIG. 15 is a cross-sectional view of the surface light source device of this embodiment, and is a cross-sectional view taken along the line AA ′ of FIG.
In FIG. 14 and FIG. 15, the same reference numerals are given to the same components as those used in the second embodiment, and the description will be omitted.
 本実施形態の面光源装置30においては、図14、図15に示すように、光源部2と導光体20との間に、異方性散乱部としてのレンチキュラーレンズ31が設けられている。
 レンチキュラーレンズ31は、短手方向に曲率を持ち、それと直交する長手方向には曲率を持たない柱状レンズ32を複数、短手方向に配列したものである。レンチキュラーレンズ31は、複数の柱状レンズ32が配列された方向がシリンドリカルレンズ5の厚み方向(y軸方向)となるように配置されている。すなわち、柱状レンズ32が曲率を持つ方向がシリンドリカルレンズ5の厚み方向(y軸方向)に一致する。ここでは、シリンドリカルレンズ5とレンチキュラーレンズ31との間、およびレンチキュラーレンズ31と導光体20との間に間隙を設けたが、シリンドリカルレンズ5、レンチキュラーレンズ31、および導光体20の全てが接触していても良い。
In the surface light source device 30 of the present embodiment, a lenticular lens 31 as an anisotropic scattering part is provided between the light source part 2 and the light guide 20 as shown in FIGS.
The lenticular lens 31 is formed by arranging a plurality of columnar lenses 32 having a curvature in the short direction and not having a curvature in the longitudinal direction perpendicular thereto. The lenticular lens 31 is arranged such that the direction in which the plurality of columnar lenses 32 are arranged is the thickness direction (y-axis direction) of the cylindrical lens 5. That is, the direction in which the columnar lens 32 has a curvature coincides with the thickness direction (y-axis direction) of the cylindrical lens 5. Here, gaps are provided between the cylindrical lens 5 and the lenticular lens 31 and between the lenticular lens 31 and the light guide 20, but all of the cylindrical lens 5, the lenticular lens 31, and the light guide 20 are in contact with each other. You may do it.
 反射板33が、レンチキュラーレンズ31の上方および下方に設けられている。反射板33は、光反射性の高い金属で構成されていても良いし、誘電体多層膜で構成されていても良い。すなわち、本実施形態の光源装置34は、光源部2と、レンチキュラーレンズ31と、反射板33と、を備えている。 Reflecting plates 33 are provided above and below the lenticular lens 31. The reflection plate 33 may be made of a metal having high light reflectivity, or may be made of a dielectric multilayer film. That is, the light source device 34 of the present embodiment includes the light source unit 2, the lenticular lens 31, and the reflection plate 33.
 本実施形態の面光源装置30においては、柱状レンズ32が曲率を持つ方向がシリンドリカルレンズ5の厚み方向(y軸方向)に一致している。そのため、レンチキュラーレンズ31による光の散乱性は、シリンドリカルレンズ5の厚み方向(y軸方向)で高く、シリンドリカルレンズ5の幅方向(x軸方向)で低い。したがって、レンチキュラーレンズ31は、第1、第2実施形態の異方性散乱シート3と同様の作用を奏する。すなわち、レンチキュラーレンズ31により光源部2から射出された光の離散的な照度分布が改善され、照度の均一化を図ることができる。これにより、二軸指向性に優れた面光源装置を実現できる、といった第1実施形態と同様の効果が得られる。 In the surface light source device 30 of the present embodiment, the direction in which the columnar lens 32 has a curvature coincides with the thickness direction (y-axis direction) of the cylindrical lens 5. Therefore, the light scattering property of the lenticular lens 31 is high in the thickness direction (y-axis direction) of the cylindrical lens 5 and low in the width direction (x-axis direction) of the cylindrical lens 5. Therefore, the lenticular lens 31 has the same action as the anisotropic scattering sheet 3 of the first and second embodiments. That is, the discrete illuminance distribution of the light emitted from the light source unit 2 by the lenticular lens 31 is improved, and the illuminance can be made uniform. Thereby, the effect similar to 1st Embodiment that the surface light source device excellent in biaxial directivity is realizable is acquired.
 本実施形態の場合、特にレンチキュラーレンズ31と導光体20とが離れているため、レンチキュラーレンズ31から散乱性の高い方向(y軸方向)、特に導光体20の外側に向けて散乱された光の一部は、導光体20に入射しない虞がある。これに対して、レンチキュラーレンズ31の上方および下方に反射板33が備えられているため、レンチキュラーレンズ31で散乱された光を反射板33で反射させ、導光体20に入射させることができる。その結果、光源装置34から射出された光の利用効率を高めることができる。この種の反射板33は、レンチキュラーレンズ31を備えた本実施形態に限らず、異方性散乱シート3を備えた第2実施形態等にも有効である。 In the case of the present embodiment, since the lenticular lens 31 and the light guide 20 are separated from each other, the light is scattered from the lenticular lens 31 in a highly scattering direction (y-axis direction), particularly toward the outside of the light guide 20. Some of the light may not enter the light guide 20. On the other hand, since the reflecting plate 33 is provided above and below the lenticular lens 31, the light scattered by the lenticular lens 31 can be reflected by the reflecting plate 33 and incident on the light guide 20. As a result, the utilization efficiency of the light emitted from the light source device 34 can be increased. This type of reflector 33 is effective not only in the present embodiment including the lenticular lens 31 but also in the second embodiment including the anisotropic scattering sheet 3.
[第1変形例]
 第1、第2実施形態では、楔状の導光体を備えた光源装置の例を挙げたが、この構成に代えて、図16に示す光源装置を用いてもよい。
 本変形例の面光源装置37の導光体38は、図16に示すように、第1主面38b(光射出面)と対向する第2主面38cに複数のプリズム構造体39が形成されている。各プリズム構造体39は、光の伝播方向Zと直交する方向(x軸方向)に延在している。yz平面で切断した断面におけるプリズム構造体39の断面形状は直角三角形状である。プリズム構造体39は、導光体38の第1主面38bに対して直交する第1面39aと、第1面39aに対して所定の先端角をなす第2面39bと、を有している。第2面39bは、導光体18の内部を伝播する光を反射させる反射面として機能する。
[First Modification]
In the first and second embodiments, the example of the light source device provided with the wedge-shaped light guide has been described, but the light source device shown in FIG. 16 may be used instead of this configuration.
As shown in FIG. 16, the light guide 38 of the surface light source device 37 of the present modification has a plurality of prism structures 39 formed on the second main surface 38 c facing the first main surface 38 b (light emission surface). ing. Each prism structure 39 extends in a direction (x-axis direction) orthogonal to the light propagation direction Z. The cross-sectional shape of the prism structure 39 in the cross section cut along the yz plane is a right triangle. The prism structure 39 includes a first surface 39a that is orthogonal to the first main surface 38b of the light guide 38, and a second surface 39b that forms a predetermined tip angle with respect to the first surface 39a. Yes. The second surface 39b functions as a reflecting surface that reflects light propagating through the light guide 18.
 すなわち、上記実施形態の楔状の導光体20が連続した一つの反射面を有するのに対して、本変形例の導光体38は分割された複数の反射面を有する。したがって、本変形例の導光体38も、楔状の導光体と同様の作用が得られる。これにより、導光体38は、射出光にz軸方向の高い指向性を与えることができる。 That is, while the wedge-shaped light guide 20 of the above embodiment has one continuous reflection surface, the light guide 38 of the present modification has a plurality of divided reflection surfaces. Therefore, the light guide 38 of the present modification can also obtain the same operation as the wedge-shaped light guide. Thereby, the light guide 38 can give high directivity in the z-axis direction to the emitted light.
[第2変形例]
 第1、第2実施形態では、楔状の導光体を備えた光源装置の例を挙げたが、この構成に代えて、図17に示す光源装置を用いてもよい。
 本変形例の面光源装置41は、図17に示すように、光源装置1と、導光体42と、反射ミラー21と、を備えている。導光体42は、導光層43と、低屈折率層44と、プリズム層45の3層が積層された構成を有している。導光層43の上面には、複数のプリズム構造体46が形成されている。プリズム構造体46は、導光層43の下面に対して直交する第1面46aと、第1面46aに対して所定の先端角をなす第2面46bと、を有している。第2面46bは、楔状導光体の傾斜面と同様、導光層43の内部を伝播する光を反射させて入射角を変化させる反射面として機能する。
[Second Modification]
In the first and second embodiments, an example of a light source device including a wedge-shaped light guide has been described. However, instead of this configuration, a light source device shown in FIG. 17 may be used.
As shown in FIG. 17, the surface light source device 41 of the present modification includes the light source device 1, a light guide 42, and a reflection mirror 21. The light guide 42 has a configuration in which three layers of a light guide layer 43, a low refractive index layer 44, and a prism layer 45 are laminated. A plurality of prism structures 46 are formed on the upper surface of the light guide layer 43. The prism structure 46 includes a first surface 46a that is orthogonal to the lower surface of the light guide layer 43, and a second surface 46b that forms a predetermined tip angle with respect to the first surface 46a. Similar to the inclined surface of the wedge-shaped light guide, the second surface 46b functions as a reflective surface that reflects light propagating through the light guide layer 43 and changes the incident angle.
 低屈折率層44は、導光層43の屈折率よりも低い屈折率を有する材料からなる層である。プリズム層45の下面には、複数のプリズム構造体47が形成されている。プリズム構造体47は、プリズム層45の上面に対して直交する第1面47aと、第1面47aに対して所定の先端角をなす第2面47bと、を有している。本変形例の面光源装置41では、これら低屈折率層44とプリズム層45との作用により、プリズムシートを用いることなく、射出光を導光体42の光射出面に垂直な方向に立ち上げることができる。 The low refractive index layer 44 is a layer made of a material having a refractive index lower than that of the light guide layer 43. A plurality of prism structures 47 are formed on the lower surface of the prism layer 45. The prism structure 47 includes a first surface 47a that is orthogonal to the upper surface of the prism layer 45, and a second surface 47b that forms a predetermined tip angle with respect to the first surface 47a. In the surface light source device 41 of the present modification, the light emitted from the low refractive index layer 44 and the prism layer 45 rises in a direction perpendicular to the light exit surface of the light guide 42 without using a prism sheet. be able to.
[第4実施形態]
 以下、本発明の第4実施形態について、図18を用いて説明する。
 第4、第5実施形態では、上記実施形態の面光源装置を備えた表示装置の一例を示す。
本実施形態は、第2実施形態の面光源装置をバックライトとして備えた液晶表示装置の一例である。
 図18は、本実施形態の液晶表示装置を示す断面図である。
 図18において、第2実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.
In 4th, 5th embodiment, an example of the display apparatus provided with the surface light source device of the said embodiment is shown.
The present embodiment is an example of a liquid crystal display device that includes the surface light source device of the second embodiment as a backlight.
FIG. 18 is a cross-sectional view showing the liquid crystal display device of the present embodiment.
18, the same code | symbol is attached | subjected to the same component as drawing used in 2nd Embodiment, and description is abbreviate | omitted.
 本実施形態の液晶表示装置68は、図18に示すように、第2実施形態の面光源装置19からなるバックライト69(面光源装置)と、第1偏光板70と、液晶パネル71と、第2偏光板72と、視野角拡大フィルム73と、を備えている。なお、図18では、液晶パネル71を模式的に1枚の板状に図示している。観察者は、視野角拡大フィルム73が配置された図18における液晶表示装置68の上側から表示を見ることになる。よって、以下の説明では、視野角拡大フィルム73が配置された側を視認側と称し、バックライト69が配置された側を背面側と称する。 As shown in FIG. 18, the liquid crystal display device 68 of the present embodiment includes a backlight 69 (surface light source device) including the surface light source device 19 of the second embodiment, a first polarizing plate 70, a liquid crystal panel 71, A second polarizing plate 72 and a viewing angle widening film 73 are provided. In FIG. 18, the liquid crystal panel 71 is schematically illustrated as a single plate. The observer views the display from the upper side of the liquid crystal display device 68 in FIG. 18 in which the viewing angle widening film 73 is arranged. Therefore, in the following description, the side on which the viewing angle widening film 73 is disposed is referred to as a viewing side, and the side on which the backlight 69 is disposed is referred to as a back side.
 本実施形態の液晶表示装置68においては、バックライト69から射出された光を液晶パネル71で変調し、変調した光によって所定の画像や文字等を表示する。また、液晶パネル71から射出された光が視野角拡大フィルム73を透過すると、射出光の角度分布が視野角拡大フィルム73に入射する前よりも広がった状態となって光が視野角拡大フィルム73から射出される。これにより、観察者は広い視野角を持って表示を視認できる。 In the liquid crystal display device 68 of the present embodiment, the light emitted from the backlight 69 is modulated by the liquid crystal panel 71, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 71 passes through the viewing angle widening film 73, the angle distribution of the emitted light becomes wider than before entering the viewing angle widening film 73 and the light is widened. Is injected from. Thereby, the observer can visually recognize the display with a wide viewing angle.
 液晶パネル71としては、例えばアクティブマトリクス方式の透過型液晶パネルを用いることができる。ただし、アクティブマトリクス方式の透過型液晶パネルに限らず、例えば半透過型(透過・反射兼用型)液晶パネル、各画素がスイッチング用薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を備えていない単純マトリクス方式の液晶パネルであっても良い。液晶パネル71には周知の一般的な液晶パネルを用いることができるため、詳細な構成の説明は省略する。 As the liquid crystal panel 71, for example, an active matrix transmissive liquid crystal panel can be used. However, the liquid crystal panel is not limited to the active matrix transmissive liquid crystal panel. For example, each pixel does not include a switching thin film transistor (Thin Film Transistor, hereinafter abbreviated as TFT). A simple matrix type liquid crystal panel may be used. Since a well-known general liquid crystal panel can be used as the liquid crystal panel 71, a detailed description of the configuration is omitted.
 液晶表示装置68の視認側には、視野角拡大フィルム73が配置されている。視野角拡大フィルム73は、基材74と、基材74の一面(視認側と反対側の面)に形成された複数の光拡散部75と、基材74の一面に形成された黒色層76(光吸収層)と、から構成されている。視野角拡大フィルム73は、光拡散部75が設けられた側を第2偏光板72に向け、基材74の側を視認側に向けた姿勢で第2偏光板72上に配置されている。 A viewing angle widening film 73 is disposed on the viewing side of the liquid crystal display device 68. The viewing angle widening film 73 includes a base material 74, a plurality of light diffusion portions 75 formed on one surface of the base material 74 (a surface opposite to the viewing side), and a black layer 76 formed on one surface of the base material 74. (Light absorption layer). The viewing angle widening film 73 is disposed on the second polarizing plate 72 in such a posture that the side where the light diffusing portion 75 is provided faces the second polarizing plate 72 and the base 74 side faces the viewing side.
 基材74には、例えばトリアセチルセルロース(TAC)フィルム等の透明樹脂製の基材が好ましく用いられる。光拡散部75は、例えばアクリル樹脂やエポキシ樹脂等の光透過性および感光性を有する有機材料で構成されている。光拡散部75は、水平断面(xz断面)の形状が円形であり、光射出端面となる基材74側の面の面積が小さく、光入射端面となる基材74と反対側の面の面積が大きく、基材74側から基材74と反対側に向けて水平断面の面積が徐々に大きくなっている。すなわち、光拡散部75は、基材74側から見たとき、いわゆる逆テーパ状の円錐台状の形状を有している。光拡散部75は、視野角拡大フィルム73において光の透過に寄与する部分である。すなわち、光拡散部75に入射した光は、光拡散部75のテーパ状の側面で全反射しつつ、光拡散部75の内部に略閉じこめられた状態で導光し、全方位に拡散した状態で射出される。 For the base material 74, a base material made of a transparent resin such as a triacetyl cellulose (TAC) film is preferably used. The light diffusing portion 75 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. The light diffusing unit 75 has a horizontal cross section (xz cross section) having a circular shape, and has a small surface area on the base material 74 side serving as a light emission end face, and an area of a face opposite to the base material 74 serving as a light incident end face. The area of the horizontal cross section gradually increases from the base material 74 side to the side opposite to the base material 74. That is, the light diffusing unit 75 has a so-called reverse tapered frustoconical shape when viewed from the base material 74 side. The light diffusion part 75 is a part that contributes to the transmission of light in the viewing angle widening film 73. That is, the light incident on the light diffusing portion 75 is totally reflected by the tapered side surface of the light diffusing portion 75, guided in a state of being substantially confined inside the light diffusing portion 75, and diffused in all directions. It is injected at.
 黒色層76は、基材74の光拡散部75が形成された側の面のうち、複数の光拡散部75の形成領域以外の領域に形成されている。黒色層76は、一例として、ブラックレジスト等の光吸収性および感光性を有する有機材料で構成されている。 The black layer 76 is formed in a region other than the formation region of the plurality of light diffusion portions 75 in the surface of the base 74 on the side where the light diffusion portions 75 are formed. For example, the black layer 76 is made of an organic material having light absorption and photosensitivity such as a black resist.
 例えば画面の正面方向、すなわち液晶パネルを垂直に透過する光を基準として、液晶表示装置の画質の調整を行った場合、指向性を持たない従来のバックライトを用いた液晶表示装置では、画面を正面方向から見たときと斜め方向から見たときとで色ずれが生じてしまう。これに対して、本実施形態の液晶表示装置68では、二軸方向、すなわちx軸方向とz軸方向との双方に高い指向性を有する第2実施形態の面光源装置19からなるバックライト69を用いている。これにより、液晶パネル71において色変化が少ない角度範囲のみを光が透過する。その後、視野角拡大フィルム73で光が全ての方位に拡散するため、観察者は、どの方向から見ても色ずれの少ない高画質の映像を見ることができる。 For example, when the image quality of a liquid crystal display device is adjusted with reference to the front direction of the screen, that is, the light transmitted vertically through the liquid crystal panel, the screen is not displayed in a liquid crystal display device using a conventional backlight having no directivity. Color misregistration occurs when viewed from the front direction and when viewed from the oblique direction. On the other hand, in the liquid crystal display device 68 of the present embodiment, the backlight 69 composed of the surface light source device 19 of the second embodiment having high directivity in both the biaxial directions, that is, the x-axis direction and the z-axis direction. Is used. As a result, light is transmitted through only the angle range where the color change is small in the liquid crystal panel 71. Thereafter, since the light is diffused in all directions by the viewing angle widening film 73, the observer can see a high-quality image with little color shift when viewed from any direction.
[第5実施形態]
 以下、本発明の第5実施形態について、図19を用いて説明する。
 本実施形態は、第2実施形態の面光源装置をバックライトとして備えた蛍光励起型の液晶表示装置の一例である。
[Fifth Embodiment]
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG.
The present embodiment is an example of a fluorescence excitation type liquid crystal display device including the surface light source device of the second embodiment as a backlight.
 本実施形態の液晶表示装置78は、図19に示すように、第2実施形態の面光源装置19からなるバックライト69(面光源装置)と、液晶素子79、発光素子80と、を備えている。本実施形態の液晶表示装置78は、赤色光による表示を行う赤色用サブピクセル81R、緑色光による表示を行う緑色用サブピクセル81G、青色光による表示を行う青色用サブピクセル81Bが隣接して配置されており、これら3つのサブピクセル81R,81G,81Bにより表示を構成する最小単位である1つのピクセルが構成されている。 As shown in FIG. 19, the liquid crystal display device 78 of the present embodiment includes a backlight 69 (surface light source device) including the surface light source device 19 of the second embodiment, a liquid crystal element 79, and a light emitting element 80. Yes. In the liquid crystal display device 78 of the present embodiment, a red subpixel 81R for displaying with red light, a green subpixel 81G for displaying with green light, and a blue subpixel 81B for displaying with blue light are arranged adjacent to each other. These three sub-pixels 81R, 81G, and 81B constitute one pixel that is a minimum unit that constitutes a display.
 バックライト69は、発光素子80の蛍光体層82R,82G,82Bを励起させる励起光L1を射出する。本実施形態のバックライト69は、励起光L1として紫外光や青色光を射出する。液晶素子79は、バックライト69から射出された励起光L1の透過率を上記のサブピクセル81R,81G,81B毎に変調する。発光素子80には、液晶素子79により変調された励起光L1が入射され、蛍光体層82R,82G,82Bが励起されて発光した光が外部に射出される。したがって、本実施形態では、図19に示す液晶表示装置78の上方側が、観察者が表示を見る視認側となる。 The backlight 69 emits excitation light L1 that excites the phosphor layers 82R, 82G, and 82B of the light emitting element 80. The backlight 69 of the present embodiment emits ultraviolet light or blue light as the excitation light L1. The liquid crystal element 79 modulates the transmittance of the excitation light L1 emitted from the backlight 69 for each of the subpixels 81R, 81G, and 81B. Excitation light L1 modulated by the liquid crystal element 79 is incident on the light emitting element 80, and the phosphor layers 82R, 82G, and 82B are excited and emitted light is emitted to the outside. Accordingly, in the present embodiment, the upper side of the liquid crystal display device 78 shown in FIG. 19 is the viewing side on which the observer views the display.
 液晶素子79は、第1透明基板83と第2透明基板84との間に液晶層85が挟持された構成となっている。本実施形態の場合、観察者から見て前面側に位置する第2透明基板84は、発光素子80の基板を兼ねている。第1透明基板83の内面(液晶層85側の面)には、サブピクセル毎に第1透明電極86が形成され、第1透明電極86を覆うように配向膜(図示略)が形成されている。第1透明基板83の外面(液晶層85側と反対側の面)には第1偏光板87が設けられている。第1透明基板83には、例えばガラス、石英、プラスチック等からなる励起光を透過し得る基板を用いることができる。第1透明電極86には、例えばインジウム錫酸化物(Indium Tin Oxide, 以下、ITOと略記する)等の透明導電性材料が用いられる。第1偏光板87には、従来一般の外付けの偏光板を用いることができる。 The liquid crystal element 79 has a configuration in which a liquid crystal layer 85 is sandwiched between a first transparent substrate 83 and a second transparent substrate 84. In the case of the present embodiment, the second transparent substrate 84 positioned on the front side as viewed from the observer also serves as the substrate of the light emitting element 80. A first transparent electrode 86 is formed for each subpixel on the inner surface (the surface on the liquid crystal layer 85 side) of the first transparent substrate 83, and an alignment film (not shown) is formed so as to cover the first transparent electrode 86. Yes. A first polarizing plate 87 is provided on the outer surface of the first transparent substrate 83 (the surface opposite to the liquid crystal layer 85 side). As the first transparent substrate 83, for example, a substrate that can transmit excitation light made of glass, quartz, plastic, or the like can be used. For the first transparent electrode 86, for example, a transparent conductive material such as indium tin oxide (Indium Tin Oxide, hereinafter abbreviated as ITO) is used. As the first polarizing plate 87, a conventional general external polarizing plate can be used.
 一方、第2透明基板84の内面(液晶層85側の面)には、蛍光体層82、第1光吸収層88が基板側からこの順に積層されている。蛍光体層82を構成する蛍光体材料は、サブピクセル毎に発光波長帯域が異なっている。バックライト69からの励起光が紫外光である場合、赤色用サブピクセル81Rには紫外光を吸収して赤色光を発光する蛍光体材料からなる蛍光体層82Rが設けられる。同様に、緑色用サブピクセル81Gには紫外光を吸収して緑色光を発光する蛍光体材料からなる蛍光体層82Gが設けられる。青色用サブピクセル81Bには紫外光を吸収して青色光を発光する蛍光体材料からなる蛍光体層82Bが設けられる。 On the other hand, the phosphor layer 82 and the first light absorption layer 88 are laminated in this order from the substrate side on the inner surface (surface on the liquid crystal layer 85 side) of the second transparent substrate 84. The phosphor material constituting the phosphor layer 82 has a different emission wavelength band for each subpixel. When the excitation light from the backlight 69 is ultraviolet light, the red subpixel 81R is provided with a phosphor layer 82R made of a phosphor material that absorbs ultraviolet light and emits red light. Similarly, the green subpixel 81G is provided with a phosphor layer 82G made of a phosphor material that absorbs ultraviolet light and emits green light. The blue subpixel 81B is provided with a phosphor layer 82B made of a phosphor material that absorbs ultraviolet light and emits blue light.
 もしくは、バックライト69からの励起光が青色光である場合には、赤色用サブピクセル81R、緑色用サブピクセル81Gには青色光を吸収して赤色光、緑色光をそれぞれ発光する蛍光体材料からなる蛍光体層82R,82Gが設けられる。青色用サブピクセル81Bには、蛍光体層に代えて、励起光である青色光を波長変換することなく拡散させて外部に射出させる光拡散層が設けられる。さらに、第2透明基板84の内面には、第1光吸収層88を覆うように第2偏光板89が形成され、第2偏光板89の表面に第2透明電極90、配向膜(図示略)が積層されている。第2偏光板89は、液晶素子79の製造過程で塗布技術等を用いて作り込まれる偏光板であり、いわゆるイン・セル偏光板である。第2透明電極90には、第1透明電極86と同様、ITO等の透明導電性材料が用いられる。 Alternatively, when the excitation light from the backlight 69 is blue light, the red subpixel 81R and the green subpixel 81G are made of phosphor materials that absorb blue light and emit red light and green light, respectively. The phosphor layers 82R and 82G are provided. Instead of the phosphor layer, the blue subpixel 81B is provided with a light diffusion layer that diffuses the blue light that is the excitation light without converting the wavelength and emits the light to the outside. Further, a second polarizing plate 89 is formed on the inner surface of the second transparent substrate 84 so as to cover the first light absorption layer 88, and the second transparent electrode 90 and an alignment film (not shown) are formed on the surface of the second polarizing plate 89. ) Are stacked. The second polarizing plate 89 is a polarizing plate made by using a coating technique or the like in the manufacturing process of the liquid crystal element 79, and is a so-called in-cell polarizing plate. As with the first transparent electrode 86, a transparent conductive material such as ITO is used for the second transparent electrode 90.
 第2透明基板84の外面側には第2光吸収層91が形成されている。第2透明基板84の内面に設けられた第1光吸収層88は、バックライト69からの励起光L1の漏れによるコントラスト低下を抑制するためのものである。第2透明基板84の外面に設けられた第2光吸収層91は、外光によるコントラスト低下を抑制するためのものである。 A second light absorption layer 91 is formed on the outer surface side of the second transparent substrate 84. The first light absorption layer 88 provided on the inner surface of the second transparent substrate 84 is for suppressing a decrease in contrast due to leakage of the excitation light L <b> 1 from the backlight 69. The 2nd light absorption layer 91 provided in the outer surface of the 2nd transparent substrate 84 is for suppressing the contrast fall by external light.
 第4実施形態で述べた通り、通常の液晶表示装置は、斜め方向から見たときに色ずれが生じる。これに対して、本実施形態の蛍光励起型の液晶表示装置78は、二軸方向に高い指向性を有する、紫外光もしくは青色光を射出する面光源装置をバックライト69として用い、紫外光もしくは青色光を蛍光体層82で色変換する。このとき、各色の光が蛍光体層82から等方的に射出されるため、観察者は、どの方向から見ても色ずれの少ない高画質の映像を見ることができる。 As described in the fourth embodiment, an ordinary liquid crystal display device has a color shift when viewed from an oblique direction. On the other hand, the fluorescence excitation type liquid crystal display device 78 of the present embodiment uses a surface light source device that emits ultraviolet light or blue light having high directivity in two axial directions as the backlight 69, and the ultraviolet light or Blue light is color-converted by the phosphor layer 82. At this time, since the light of each color is emitted isotropically from the phosphor layer 82, the observer can see a high-quality image with little color shift when viewed from any direction.
[表示装置の構成例]
 以下、表示装置の一構成例について、図20を用いて説明する。
 図20は、表示装置の一構成例である液晶表示装置の概略構成を示す正面図である。
[Configuration example of display device]
Hereinafter, one configuration example of the display device will be described with reference to FIG.
FIG. 20 is a front view illustrating a schematic configuration of a liquid crystal display device which is a configuration example of the display device.
 本構成例の液晶テレビジョン93は、図20に示すように、表示画面として上記第4実施形態の液晶表示装置68、もしくは第5実施形態の液晶表示装置78を備えている。観察者側(図20の手前側)には液晶パネルが配置され、観察者と反対側(図20の奥側)にはバックライト(面光源装置)が配置されている。
 本構成例の液晶テレビジョン93は、上記実施形態の液晶表示装置68,78を備えているため、高画質の表示が可能な液晶テレビジョンとなる。
As shown in FIG. 20, the liquid crystal television 93 of this configuration example includes the liquid crystal display device 68 of the fourth embodiment or the liquid crystal display device 78 of the fifth embodiment as a display screen. A liquid crystal panel is disposed on the viewer side (front side in FIG. 20), and a backlight (surface light source device) is disposed on the side opposite to the viewer (back side in FIG. 20).
Since the liquid crystal television 93 of this configuration example includes the liquid crystal display devices 68 and 78 of the above embodiment, the liquid crystal television 93 is capable of high-quality display.
[第6実施形態]
 以下、本発明の第6実施形態について、図21を用いて説明する。
 第6実施形態では、第1実施形態の光源装置を備えた照明装置の一例を示す。
 図21は、本実施形態の照明装置を示す斜視図である。
 図21において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Sixth Embodiment]
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG.
In 6th Embodiment, an example of the illuminating device provided with the light source device of 1st Embodiment is shown.
FIG. 21 is a perspective view showing the lighting device of the present embodiment.
In FIG. 21, the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本実施形態の照明装置51は、図21に示すように、第1実施形態の光源装置1からなる光源部52が3列並んだ構成を有している。なお、光源部52の列数は3列に限ることはなく、また、1列であっても良い。 As shown in FIG. 21, the illumination device 51 of the present embodiment has a configuration in which three rows of light source units 52 including the light source device 1 of the first embodiment are arranged. Note that the number of columns of the light source units 52 is not limited to three, and may be one.
 本実施形態の照明装置51は、異方性散乱シート3を有する第1実施形態の光源装置1からなる光源部52を備えているため、光源装置が並んだ方向(x軸方向)に高い指向性を有する一方、それと直交する方向(y軸方向)には指向性を持たず、かつ、照度が均一化される。その結果、本実施形態の照明装置によれば、光源装置が並んだ方向(x軸方向)に狭く、それと直交する方向(y軸方向)に広い領域を均一に照明することができる。 Since the illuminating device 51 of this embodiment is provided with the light source part 52 which consists of the light source device 1 of 1st Embodiment which has the anisotropic scattering sheet 3, it has high directivity in the direction (x-axis direction) where the light source device was located in a line. On the other hand, it has no directivity in the direction orthogonal to it (y-axis direction), and the illuminance is made uniform. As a result, according to the illumination device of the present embodiment, it is possible to uniformly illuminate a wide area in the direction (x-axis direction) that is narrow in the direction in which the light source devices are arranged (x-axis direction).
[第7実施形態]
 以下、本発明の第7実施形態について、図22を用いて説明する。
 第7実施形態では、第2実施形態の面光源装置を備えた照明装置の一例を示す。
 図22は、本実施形態の照明装置を示す断面図である。
 図22において、第2実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
[Seventh Embodiment]
The seventh embodiment of the present invention will be described below with reference to FIG.
In 7th Embodiment, an example of the illuminating device provided with the surface light source device of 2nd Embodiment is shown.
FIG. 22 is a cross-sectional view showing the lighting device of the present embodiment.
22, the same code | symbol is attached | subjected to the same component as drawing used in 2nd Embodiment, and description is abbreviate | omitted.
 本実施形態の照明装置55は、図22に示すように、第2実施形態の面光源装置19を備えている。よって、本実施形態の照明装置55は、二軸指向性を有し、かつ、照度が均一化される。その結果、本実施形態の照明装置55によれば、照明光を狭い領域に集光させ、その領域を均一に照明することができる。本実施形態の照明装置55を例えばホールの天井付近に設置すれば、プリズムシート22の使用により照明装置55から下方に向けて指向性の高い光が照射されるため、例えばダウンライト照明やスポットライトとして好適に用いることができる。 The illumination device 55 according to the present embodiment includes the surface light source device 19 according to the second embodiment, as shown in FIG. Therefore, the illuminating device 55 of this embodiment has biaxial directivity, and illuminance is made uniform. As a result, according to the illuminating device 55 of the present embodiment, the illumination light can be condensed in a narrow area, and the area can be illuminated uniformly. If the lighting device 55 of the present embodiment is installed near the ceiling of the hall, for example, light with high directivity is emitted downward from the lighting device 55 due to the use of the prism sheet 22. Can be suitably used.
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態においては、凹面ミラーの形状は放物面であると述べた。これに対し、上記実施形態で用いることが可能な凹面ミラーの形状は、必ずしも放物面に限ることなく、放物面を含む概念として円錐曲面であれば良い。円錐曲面の頂点を通る断面の形状を示す曲線は二次曲線と呼ばれる。二次曲線は、円錐を任意の平面で切り取った断面から得られる曲線である。凹面ミラーの径方向の座標をρ、凹面ミラーの中心軸方向の座標をz、コーニック係数をkとすると、二次曲線を下記の(1)式、(2)式で表すことができる。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, it has been described that the shape of the concave mirror is a paraboloid. On the other hand, the shape of the concave mirror that can be used in the above embodiment is not necessarily limited to a paraboloid, and may be a conical curved surface as a concept including a paraboloid. A curve indicating the shape of a cross section passing through the apex of the conical curved surface is called a quadratic curve. A quadratic curve is a curve obtained from a cross section obtained by cutting a cone at an arbitrary plane. When the coordinate in the radial direction of the concave mirror is ρ, the coordinate in the central axis direction of the concave mirror is z, and the conic coefficient is k, the quadratic curve can be expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
                  

Figure JPOXMLDOC01-appb-M000002
                  
Figure JPOXMLDOC01-appb-M000001
                  

Figure JPOXMLDOC01-appb-M000002
                  
 (1)式、(2)式におけるコーニック係数kの値によって二次曲線の形状は変化する。二次曲線は、例えばk=0のときに円となり、k=-0.25のときに楕円曲線となり、k=-1のときに放物線となり、k=-2のときに双曲線となる。上記の実施形態では、これらの二次曲線をxy平面における断面形状とする凹面ミラーを用いることができる。なお、第1実施形態でも述べたように、LEDからの光が到達する領域が少なくとも円錐曲面であれば良いので、LEDからの光が到達しない領域は例えば平坦な面であっても良い。 The shape of the quadratic curve changes depending on the value of the conic coefficient k in the equations (1) and (2). The quadratic curve is, for example, a circle when k = 0, an elliptic curve when k = −0.25, a parabola when k = −1, and a hyperbola when k = −2. In the above embodiment, it is possible to use a concave mirror having these quadratic curves as cross-sectional shapes in the xy plane. As described in the first embodiment, the region where the light from the LED reaches may be at least a conical curved surface, and the region where the light from the LED does not reach may be, for example, a flat surface.
 その他、上記実施形態で例示した光源装置、および面光源装置を構成する各部材の形状、数、配置、材質等に関しては、上記実施形態に限ることなく、適宜変更が可能である。 In addition, the shape, number, arrangement, material, and the like of each member constituting the light source device and the surface light source device exemplified in the above embodiment can be appropriately changed without being limited to the above embodiment.
 本発明は、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマディスプレイなどの各種表示装置、もしくはこれらの表示装置に用いられる光源装置および面光源装置、もしくは各種照明装置に利用可能である。 The present invention can be used for various display devices such as a liquid crystal display device, an organic electroluminescence display device, and a plasma display, or a light source device and a surface light source device used in these display devices, or various illumination devices.
 1,10,15,34…光源装置、2…光源部、3…異方性散乱シート(異方性散乱部)、4…LED(発光素子)、5,11…シリンドリカルレンズ(凸レンズ)、6…凹面ミラー、12…凹凸構造、16…ルーバー(規制部材)、19,26,30,37,41…面光源装置、20,27,38,42…導光体、22…プリズムシート(方向変更用部材)、31…レンチキュラーレンズ(異方性散乱部)、39…プリズム構造体、51,55…照明装置、68,78…液晶表示装置(表示装置)、69…バックライト(面光源装置)。 DESCRIPTION OF SYMBOLS 1,10,15,34 ... Light source device, 2 ... Light source part, 3 ... Anisotropic scattering sheet (anisotropic scattering part), 4 ... LED (light emitting element), 5,11 ... Cylindrical lens (convex lens), 6 DESCRIPTION OF SYMBOLS ... Concave mirror, 12 ... Uneven structure, 16 ... Louver (regulation member), 19, 26, 30, 37, 41 ... Surface light source device, 20, 27, 38, 42 ... Light guide, 22 ... Prism sheet (direction change) Member), 31 ... lenticular lens (anisotropic scattering part), 39 ... prism structure, 51, 55 ... illumination device, 68, 78 ... liquid crystal display device (display device), 69 ... backlight (surface light source device) .

Claims (20)

  1.  互いに直交する2つの軸方向で指向性が異なる光を射出する光源部と、
     互いに直交する2つの軸方向で互いに異なる散乱性を有し、前記光源部から入射した光を散乱光として射出させる異方性散乱部と、を備え、
     前記光源部から射出される光の指向性が低い軸方向と、前記異方性散乱部の散乱性が高い軸方向と、を概ね一致させたことを特徴とする光源装置。
    A light source unit that emits light having different directivities in two axial directions orthogonal to each other;
    An anisotropic scattering part having different scattering properties in two axial directions perpendicular to each other, and emitting light incident from the light source part as scattered light,
    A light source device characterized in that an axial direction in which directivity of light emitted from the light source unit is low and an axial direction in which the anisotropic scattering unit has high scattering property are substantially matched.
  2.  前記異方性散乱部が、複数の凹凸形状が非周期的に形成された異方性散乱シートからなることを特徴とする請求項1に記載の光源装置。 The light source device according to claim 1, wherein the anisotropic scattering portion is formed of an anisotropic scattering sheet in which a plurality of uneven shapes are formed aperiodically.
  3.  前記異方性散乱シートが、凹凸構造を一軸方向に延伸して形成されることを特徴とする請求項2に記載の光源装置。 3. The light source device according to claim 2, wherein the anisotropic scattering sheet is formed by extending a concavo-convex structure in a uniaxial direction.
  4.  前記異方性散乱部が、複数の柱状レンズが配列されたレンチキュラーレンズからなることを特徴とする請求項1に記載の光源装置。 The light source device according to claim 1, wherein the anisotropic scattering unit includes a lenticular lens in which a plurality of columnar lenses are arranged.
  5.  前記異方性散乱部の散乱性が高い軸方向に、前記異方性散乱部から射出される光を反射する反射部材が設けられたことを特徴とする請求項1ないし4のいずれか一項に記載の光源装置。 The reflective member which reflects the light inject | emitted from the said anisotropic scattering part was provided in the axial direction with the high scattering property of the said anisotropic scattering part, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. The light source device according to 1.
  6.  前記異方性散乱部の光射出側に、前記異方性散乱部から射出される光の散乱性が低い軸方向への広がりを規制する規制部材が設けられたことを特徴とする請求項1ないし5のいずれか一項に記載の光源装置。 2. A restricting member for restricting the spread of light emitted from the anisotropic scattering portion in the axial direction having a low scattering property is provided on the light emission side of the anisotropic scattering portion. The light source device according to any one of Items 5 to 5.
  7.  前記光源部が、発光素子と、前記発光素子から射出された光を反射する凹面ミラーと、前記凹面ミラーの窪みに配置された凸レンズと、を備え、
     前記凹面ミラーを所定の平面で切断したときの断面形状が、焦点を有する曲線形状を少なくとも一部に有するとともに、前記焦点が前記発光素子の発光面上に位置し、
     前記凸レンズが、前記所定の平面に平行な一対の平行平面を有し、
     前記発光素子からの光が、前記凸レンズを通った後に前記凹面ミラーで反射し、前記凸レンズを通って前記凸レンズの光射出面から射出されることを特徴とする請求項1ないし6のいずれか一項に記載の光源装置。
    The light source unit includes a light emitting element, a concave mirror that reflects light emitted from the light emitting element, and a convex lens disposed in a recess of the concave mirror,
    The cross-sectional shape when the concave mirror is cut along a predetermined plane has a curved shape having a focal point at least in part, and the focal point is located on the light emitting surface of the light emitting element,
    The convex lens has a pair of parallel planes parallel to the predetermined plane;
    7. The light from the light emitting element is reflected by the concave mirror after passing through the convex lens, and is emitted from the light exit surface of the convex lens through the convex lens. The light source device according to item.
  8.  前記異方性散乱部が、前記凸レンズの前記光射出面に形成された凹凸構造体からなることを特徴とする請求項7に記載の光源装置。 The light source device according to claim 7, wherein the anisotropic scattering portion is composed of a concavo-convex structure formed on the light exit surface of the convex lens.
  9.  前記発光素子が発光ダイオードであることを特徴とする請求項7または8に記載の光源装置。 The light source device according to claim 7 or 8, wherein the light emitting element is a light emitting diode.
  10.  前記曲線形状が概ね放物線であることを特徴とする請求項7ないし9のいずれか一項に記載の光源装置。 The light source device according to any one of claims 7 to 9, wherein the curved shape is substantially a parabola.
  11.  前記凹面ミラーが金属膜もしくは誘電体多層膜からなることを特徴とする請求項7ないし10のいずれか一項に記載の光源装置。 11. The light source device according to claim 7, wherein the concave mirror is made of a metal film or a dielectric multilayer film.
  12.  請求項1ないし11のいずれか一項に記載の光源装置と、
     前記光源装置から射出された光を端面から入射させ、内部で伝播させる間に主面から射出させる導光体と、を備えたことを特徴とする面光源装置。
    The light source device according to any one of claims 1 to 11,
    A surface light source device, comprising: a light guide that makes light emitted from the light source device enter from an end surface and emit light from a main surface while propagating the light inside.
  13.  前記異方性散乱部が、前記導光体の前記端面に形成された凹凸構造体からなることを特徴とする請求項12に記載の面光源装置。 The surface light source device according to claim 12, wherein the anisotropic scattering portion is formed of a concavo-convex structure formed on the end face of the light guide.
  14.  前記導光体が、光の伝播方向において前記主面に対して所定の傾斜角をなす反射面を有することを特徴とする請求項12または13に記載の面光源装置。 The surface light source device according to claim 12 or 13, wherein the light guide has a reflection surface that forms a predetermined inclination angle with respect to the main surface in a light propagation direction.
  15.  前記導光体が、前記端面に近い側から遠い側に向けて厚みが薄くなる楔形状であり、前記主面と対向する面全体が前記反射面であることを特徴とする請求項14に記載の面光源装置。 The said light guide is a wedge shape from which the thickness becomes thin toward the side far from the side close | similar to the said end surface, The whole surface facing the said main surface is the said reflective surface, It is characterized by the above-mentioned. Surface light source device.
  16.  前記導光体が、前記主面と対向する面に複数のプリズム構造体を有し、前記プリズム構造体の一つの傾斜面が前記反射面であることを特徴とする請求項14に記載の面光源装置。 15. The surface according to claim 14, wherein the light guide has a plurality of prism structures on a surface facing the main surface, and one inclined surface of the prism structure is the reflection surface. Light source device.
  17.  前記導光体の主面から射出された光の進行方向を、前記主面の法線により近い方向に変更する方向変更用部材が備えられたことを特徴とする請求項12ないし16のいずれか一項に記載の面光源装置。 The direction change member which changes the advancing direction of the light inject | emitted from the main surface of the said light guide to the direction close | similar to the normal line of the said main surface was provided. The surface light source device according to one item.
  18.  請求項12ないし17のいずれか一項に記載の面光源装置と、前記面光源装置から射出される光により表示を行う表示素子と、を備えたことを特徴とする表示装置。 A display device comprising: the surface light source device according to any one of claims 12 to 17; and a display element that performs display using light emitted from the surface light source device.
  19.  請求項1ないし11のいずれか一項に記載の光源装置を備えたことを特徴とする照明装置。 An illumination device comprising the light source device according to any one of claims 1 to 11.
  20.  請求項12ないし17のいずれか一項に記載の面光源装置を備えたことを特徴とする照明装置。 An illumination device comprising the surface light source device according to any one of claims 12 to 17.
PCT/JP2012/080877 2011-11-30 2012-11-29 Light source device, surface light source device, display device and lighting device WO2013081038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011262890A JP2015035252A (en) 2011-11-30 2011-11-30 Light source device, surface light source device, display device, and lighting device
JP2011-262890 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013081038A1 true WO2013081038A1 (en) 2013-06-06

Family

ID=48535488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080877 WO2013081038A1 (en) 2011-11-30 2012-11-29 Light source device, surface light source device, display device and lighting device

Country Status (2)

Country Link
JP (1) JP2015035252A (en)
WO (1) WO2013081038A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3296616A4 (en) * 2015-05-15 2018-05-30 Panasonic Intellectual Property Management Co., Ltd. Surface-light-source illumination device
JP2018200468A (en) * 2013-09-01 2018-12-20 ベンカテサン, ヴァルン アクールVENKATESAN, Varun Akur Optical system for light collection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276705A1 (en) * 2021-06-29 2023-01-05 日東電工株式会社 Optical laminate and illumination device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289023A (en) * 2001-03-27 2002-10-04 Casio Comput Co Ltd Lighting device
JP2005038822A (en) * 2003-06-26 2005-02-10 Sharp Corp Lighting device for flat panel display and light-emitting lamp
JP2005310594A (en) * 2004-04-22 2005-11-04 Seiko Instruments Inc Lighting system
JP2007073469A (en) * 2005-09-09 2007-03-22 Minebea Co Ltd Planar illuminator and light source unit using same
JP2009157404A (en) * 1998-08-25 2009-07-16 Luminit Llc Optical element having integral surface diffuser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157404A (en) * 1998-08-25 2009-07-16 Luminit Llc Optical element having integral surface diffuser
JP2002289023A (en) * 2001-03-27 2002-10-04 Casio Comput Co Ltd Lighting device
JP2005038822A (en) * 2003-06-26 2005-02-10 Sharp Corp Lighting device for flat panel display and light-emitting lamp
JP2005310594A (en) * 2004-04-22 2005-11-04 Seiko Instruments Inc Lighting system
JP2007073469A (en) * 2005-09-09 2007-03-22 Minebea Co Ltd Planar illuminator and light source unit using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200468A (en) * 2013-09-01 2018-12-20 ベンカテサン, ヴァルン アクールVENKATESAN, Varun Akur Optical system for light collection
EP3296616A4 (en) * 2015-05-15 2018-05-30 Panasonic Intellectual Property Management Co., Ltd. Surface-light-source illumination device
US10073209B2 (en) 2015-05-15 2018-09-11 Panasonic Intellectual Property Management Co., Ltd. Surface-light source lighting device

Also Published As

Publication number Publication date
JP2015035252A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
TWI659250B (en) Mode-switchable backlight, privacy display, and method
US7255456B2 (en) Direct backlight module
TWI761599B (en) Grating-coupled light guide, display system, and method employing optical concentration
TW201932940A (en) Mode-switchable backlight, display, and method
KR20190051991A (en) Mode-selectable backlight, method, and display employing directional scattering features
JP2011059680A (en) Brightness enhancement film and backlight module
JP2009031792A (en) Collimating light guide plate, diffusion unit, and display device using it
WO2018194114A1 (en) Optical structure and display device
JP2014235896A (en) Surface light source device, display unit, and luminaire
JP2018205414A (en) Optical structure and display device
JP6447654B2 (en) Optical structure and display device
US20150146132A1 (en) Surface light source device, display device, and lighting device
JP2019184790A (en) Optical structure and display device
TW201314314A (en) Light guide plate, surface light source device, and transmissive image display device
JP2014135120A (en) Surface light source device, display device, and illuminating device
WO2013081038A1 (en) Light source device, surface light source device, display device and lighting device
JP2013218826A (en) Light source device, planar light source device, display device, and lighting device
WO2013035660A1 (en) Surface light source device, display device, and lighting device
WO2013089172A1 (en) Light source device, planar light source device, display device, and illumination device
JP5293177B2 (en) Optical sheet, surface light source device and display device
WO2012147646A1 (en) Light source device, surface light source device, display device, and illumination device
JP2006202559A (en) Surface light source apparatus
JP2014154332A (en) Surface light source device
JP2014085404A (en) Prism sheet, surface light source device, and display device
JP2017059365A (en) Light guide plate, surface light source device, video source unit, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP