WO2013084769A1 - Waste heat utilization device for vehicle - Google Patents

Waste heat utilization device for vehicle Download PDF

Info

Publication number
WO2013084769A1
WO2013084769A1 PCT/JP2012/080743 JP2012080743W WO2013084769A1 WO 2013084769 A1 WO2013084769 A1 WO 2013084769A1 JP 2012080743 W JP2012080743 W JP 2012080743W WO 2013084769 A1 WO2013084769 A1 WO 2013084769A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
piping
vehicle
waste heat
heat utilization
Prior art date
Application number
PCT/JP2012/080743
Other languages
French (fr)
Japanese (ja)
Inventor
榎島 史修
井口 雅夫
英文 森
清 上辻
小田 和孝
裕之 武井
文彦 石黒
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013084769A1 publication Critical patent/WO2013084769A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a vehicle waste heat utilization device.
  • Patent Document 1 discloses a conventional vehicle waste heat utilization device.
  • This vehicle waste heat utilization apparatus is used in a drive system that has an engine and drives a vehicle, and includes a Rankine cycle.
  • the drive system has a turbocharger as a supercharger.
  • the turbocharger sucks outside air that is outside the vehicle and supplies pressurized air to the engine.
  • the Rankine cycle has a pump, a boiler, an expander, a condenser, and piping.
  • the piping circulates the working fluid in the order of a boiler, an expander, a condenser, and a pump. In the boiler, heat exchange is possible between the pressurized air and the working fluid.
  • the working fluid is heated by pressurized air in the boiler. And it is possible to collect
  • the pressurized air can be cooled by heat exchange in the boiler. Therefore, in this vehicle waste heat utilization apparatus, it is possible to increase the density of the pressurized air and supply more pressurized air to the engine. For this reason, in this vehicle waste heat utilization apparatus, it is also possible to improve the output of the engine.
  • An object of the present invention is to provide a vehicle waste heat utilization device that can suppress engine performance degradation at the time of leakage of working fluid in an emergency evacuation manner.
  • a vehicle waste heat utilization device includes a Rankine cycle that is used for a drive system that drives a vehicle and that circulates a working fluid.
  • the Rankine cycle includes a pump, a boiler, an expander, and a condenser, and a pipe that circulates the working fluid in the order of the pump, the boiler, the expander, and the condenser.
  • the drive system includes an engine and at least one of a coolant path, a supercharger, and an exhaust gas recirculation path.
  • a coolant for cooling the engine flows through the coolant passage.
  • the supercharger sucks outside air and supplies pressurized air to the engine.
  • the exhaust gas recirculation path causes a part of the exhaust gas generated in the engine to be recirculated to the engine as recirculated exhaust gas.
  • the boiler is configured to enable heat exchange between any one of the coolant, the pressurized air, and the reflux exhaust and the working fluid.
  • the piping has a replenishing port, and the replenishing port opens the piping so that the inside of the piping communicates with the outside of the piping when the working fluid leaks, and thereby the piping is connected from the outside of the piping. A new working fluid can be refilled inside.
  • the working fluid circulates in the Rankine cycle, so that at least one of the coolant, the pressurized air, and the reflux exhaust and the working fluid are boilers. Perform heat exchange at. At this time, since the coolant, the pressurized air, and the reflux exhaust gas all have high temperatures, in this waste heat utilization device, the working fluid is sufficiently heated by heat exchange in the boiler. For this reason, in this waste heat utilization apparatus, it is possible to increase the pressure energy when the working fluid is expanded and depressurized by the expander. In the Rankine cycle, this pressure energy is recovered.
  • the waste heat utilization apparatus in this state, it is possible to cool at least one of the coolant, the pressurized air, and the reflux exhaust by heat exchange in the boiler.
  • the coolant if the coolant is cooled, heat generation of the engine can be suitably suppressed, and the temperature of the engine can be suitably adjusted.
  • the pressurized air if the pressurized air is cooled, the pressurized air can be supplied to the engine in a state where the density is increased. Thereby, the output of the engine can be improved.
  • the recirculated exhaust cooled, the density of the recirculated exhaust increases, and the recirculated exhaust can be suitably recirculated to the engine. For this reason, it becomes possible to reduce the nitrogen oxide in the exhaust gas finally discharged from the engine to the outside of the vehicle. As described above, according to this waste heat utilization apparatus, the performance of the engine can be improved.
  • a replenishing port is formed in the piping.
  • the waste heat utilization apparatus of the present invention it is possible to suppress the engine performance degradation at the time of leakage of the working fluid in an emergency evacuation manner.
  • various types of engines can be employed in addition to a gasoline engine, a diesel engine, and the like. These engines may be hybrid engines combining motors. Further, when the drive system does not have the cooling liquid passage, these engines can be air-cooled.
  • a turbocharger, a supercharger, or the like can be employed as the supercharger. There may be a plurality of engines and superchargers.
  • the coolant water or the like can be employed in addition to long life coolant (LLC).
  • LLC long life coolant
  • HFC134a or the like can be employed as the working fluid to be replenished from the replenishing port.
  • the working fluid to be replenished from the replenishing port LLC, water, or the like can be adopted in addition to the above HFC 134a. That is, the working fluid that is replenished from the replenishing port may be the same as or different from the working fluid that has leaked from the piping.
  • the pipe has an air discharge portion that discharges air inside the pipe to the outside of the pipe.
  • the air in the pipe is suitably discharged when a new working fluid is replenished from the replenishing port.
  • a new working fluid is preferably replenished to the piping, and the replenished working fluid is preferably circulated through the Rankine cycle.
  • an air release valve can be adopted, and an extraction port opened outside the pipe can be adopted.
  • a replenishing tank is connected to the replenishing port.
  • a new working fluid can be replenished via the replenishment tank, and replenishment work becomes easier.
  • the capacity of the replenishing tank is equal to the amount of working fluid required in the Rankine cycle, it is possible to replenish new working fluid to the Rankine cycle without excess or deficiency.
  • by filling the replenishment working fluid in the replenishment tank in advance it becomes unnecessary to separately prepare the replenishing working fluid when replenishing the working fluid. For this reason, for example, when replenishing the working fluid in a mountain, it is possible to avoid a situation in which a working fluid for refilling cannot be arranged.
  • the replenishing port and the replenishing tank may be directly connected, or may be indirectly connected via other piping.
  • the replenishment tank can be disposed in the engine room or the like when the vehicle is a passenger car.
  • the replenishment tank can be disposed on a vehicle frame behind the cabin, a vehicle frame near the loading platform, or the like.
  • the replenishing port has a sealing portion.
  • the sealing part opens the replenishing port from the closed state in which the replenishing port is closed and the inside of the pipe is sealed against the outside of the pipe to open the inside of the pipe to the outside of the pipe. It is configured to be able to transition to a state.
  • the sealing portion maintains the open state after the new working fluid is replenished from the replenishing port.
  • the pressure of the working fluid heated by heat exchange in the boiler can be kept constant while the sealing member is in a closed state and the working fluid in the pipe is not leaking. It becomes possible to stabilize the amount of pressure energy recovered in the Rankine cycle. Thereby, it becomes possible to improve the performance of the waste heat utilization apparatus.
  • an open / close valve can be employed as the sealing portion.
  • the opening / closing valve by configuring the opening / closing valve so that only the transition from the closed state to the opening state is possible, the opening state of the opening / closing valve can be maintained after replenishing with a new working fluid.
  • an open / close valve that can transition from the open state to the closed state, open the open / close valve when replenishing a new working fluid, and leave the open / close valve in the open state after replenishing the working fluid.
  • the open / close valve may be maintained in an open state.
  • sealing portion for example, a thin plate-like lid member or a film-like sealing material that can shift the replenishment port from the closed state to the open state by being broken or penetrated can be employed.
  • sealing member for example, a threaded lid member attached to the replenishing port, a lid member attached to the replenishing port with an adhesive that cannot be re-adhered, or the like may be employed.
  • the drive system includes the supercharger.
  • the boiler is configured to allow heat exchange between the pressurized air and the working fluid.
  • an engine output will improve because a drive system has a supercharger.
  • the working fluid leaks out and the pressurized air cannot be cooled in the boiler, the engine performance is significantly reduced.
  • this waste heat utilization apparatus it is possible to continue cooling of the pressurized air by the working fluid newly replenished from the replenishing port, so that it is possible to effectively suppress the engine performance degradation.
  • FIG. 2 is a partially enlarged cross-sectional view illustrating a replenishing port, a closed open / close valve, a bleed port, a closed bleed port open / close valve, and a replenishment tank in FIG. 1.
  • FIG. 2 is a partially enlarged cross-sectional view showing a replenishing port, an open / close valve in an open state, a bleed port, an open bleed port open / close valve and a replenishment tank in FIG. 1.
  • the waste heat utilization apparatus of the embodiment is mounted on a truck (hereinafter simply referred to as a vehicle) that is a transport vehicle.
  • the waste heat utilization apparatus includes a Rankine cycle 3 that is used in a drive system 1 that drives a vehicle, a replenishment tank 25, and an opening / closing valve 27.
  • the drive system 1 has an engine 5, a turbocharger 7 as a supercharger, and a radiator (not shown).
  • the engine 5 is a known water-cooled diesel engine.
  • a water jacket (not shown) through which cooling water can flow is formed inside the engine 5.
  • the engine 5 is formed with an outlet and an inlet (both not shown) communicating with the water jacket. Further, the engine 5 is formed with an exhaust port 5a for exhausting exhaust gas and an intake port 5b for sucking in pressurized air described later.
  • the engine 5 and the turbocharger 7 are connected by piping 9-11. Further, a boiler 15 described later is connected to the pipe 10 and the pipe 11.
  • the pipe 9 is capable of circulating exhaust gas and is connected to the exhaust port 5 a of the engine 5 and the turbocharger 7.
  • the piping 10 and the piping 11 are capable of circulating pressurized air.
  • the pipe 10 is connected to the turbocharger 7 and the first inlet 15 a of the boiler 15.
  • the pipe 11 is connected to the first outlet 15 b of the boiler 15 and the intake port 5 b of the engine 5.
  • turbocharger 7 is connected to each of one end portions of the pipes 12 and 13.
  • the other end of the pipe 12 is connected to a muffler (not shown).
  • the other end of the pipe 13 is open to an air intake of a vehicle (not shown).
  • the pipe 12 communicates with the pipe 9 via the turbocharger 7.
  • the pipe 13 communicates with the pipe 10 via the turbocharger 7.
  • Rankine cycle 3 has electric pump P1, boiler 15, expander 17, condenser 19, and pipes 21-24. Further, HFC 134a or water as a working fluid can be circulated through the pipes 21 to 24. In the Rankine cycle 3, the HFC 134a circulates in the pipes 21 to 24 in the initial state.
  • a discharge port 101 and a suction port 102 are formed in the electric pump P1.
  • the electric pump P1 is electrically connected to a controller 31 described later.
  • the boiler 15 is formed with a first inlet 15a and a first outlet 15b, and a second inlet 15c and a second outlet 15d. Further, in the boiler 15, a first passage 15e having both ends communicating with the first inlet 15a and the first outlet 15b, respectively, and both ends communicating with the second inlet 15c and the second outlet 15d, respectively. And a second passage 15f having. In the boiler 15, the working fluid is heated by heat exchange between the pressurized air in the first passage 15e and the working fluid in the second passage 15f, and the pressurized air is cooled.
  • the expander 17 is formed with an inlet 17a through which a working fluid flows and an outlet 17b through which the working fluid flows out.
  • the expander 17 generates a rotational driving force by expanding the working fluid heated through the boiler 15.
  • a known generator (not shown) is connected to the expander 17. The generator generates power by the rotational driving force of the expander 17 and charges a battery (not shown) with electric power.
  • the condenser 19 is formed with an inlet 19a through which the working fluid flows and an outlet 19b through which the working fluid flows out.
  • the condenser 19 exchanges heat between the working fluid that circulates in the interior and air outside the vehicle, and cools and liquefies the working fluid decompressed by the expansion in the expander 17.
  • An electric fan 19 c is provided in the vicinity of the condenser 19. The electric fan 19c is electrically connected to the controller 31.
  • the piping 21 has a replenishing port 21a and a bleed port 21b.
  • the replenishing port 21a communicates with the inside of the pipe 21 and has a tip open to the outside of the vehicle.
  • the replenishing tank 25 is connected to the replenishing port 21a.
  • the opening / closing valve 27 is attached to the replenishing port 21a. This on-off valve 27 corresponds to a sealing portion.
  • the replenishing port 21a is formed in the perpendicular direction upper direction of the piping 21.
  • the bleed port 21b communicates with the inside of the pipe 21 and has a tip open to the outside of the vehicle.
  • a bleed port opening / closing valve 28 is attached to the bleed port 21b.
  • the bleed port opening / closing valve 28 can be interlocked with the opening / closing of the opening / closing valve 27.
  • the bleed port 21b and the bleed port opening / closing valve 28 correspond to an air discharge unit.
  • the replenishment tank 25 is fixed to a vehicle frame (not shown), and is arranged in a cargo bed or an engine room.
  • the replenishment tank 25 is filled with water as a replenishing working fluid. By injecting water to the specified value set in the replenishing tank 25, the amount of working fluid replenished from the replenishing tank 25 can be made the amount of working fluid required in the Rankine cycle 3. ing.
  • the replenishing tank 25 may be filled with, for example, LLC or the like instead of water.
  • a lid member 25 a is attached to the replenishment tank 25, and the water in the replenishment tank 25 is prevented from flowing out of the replenishment tank 25.
  • a vent 250 is formed in the lid member 25a.
  • the open / close valve 27 is provided with an open / close cock 27a.
  • the open / close valve 27 can be in a closed state and an open state (see FIG. 3) by operating the open / close cock 27a.
  • the bleeder opening / closing valve 28 is interlocked with the opening / closing of the closable valve 27.
  • the open / close valve 27 is in the closed state
  • the bleeder opening / closing valve 28 is also closed, and when the open / close valve 27 is in the open state, 28 is also open.
  • the replenishment port 21a and the extraction port 21b are closed, and the inside of the pipe 21 is sealed with respect to the outside of the pipe 21, that is, the outside of the vehicle.
  • the replenishment port 21a and the extraction port 21b are opened, and the inside of the pipe 21 is opened to the outside of the pipe with respect to the outside of the vehicle.
  • the open / close valve 27 and the bleed port open / close valve 28 linked to the open / close valve 27 are kept closed in the initial state (see FIG. 2). Then, when the operator or the like of the vehicle opens the opening / closing cock 27a, the opening / closing valve 27 and the bleed port opening / closing valve 28 shift from the closed state to the opened state (see FIG. 3).
  • the opening / closing valve 27 and the bleed port opening / closing valve 28 the inside of the pipe 21 is not sealed with respect to the outside of the vehicle unless the operator or the like again closes the opening / closing cock 27a.
  • the open / close valve 27 and the bleed port open / close valve 28 are kept open after the opening / closing cock 27a is opened.
  • a pressure sensor 29 is attached to the pipe 22.
  • the pressure sensor 29 employs public goods.
  • the pressure sensor 29 detects the state of the working fluid flowing through the Rankine cycle 3 by detecting the pressure of the working fluid flowing through the pipe 22.
  • the pressure sensor 29 is electrically connected to the controller 31 and transmits a detected value of the pressure of the working fluid to the controller 31.
  • the controller 31 detects the leakage of the working fluid in the Rankine cycle 3 when the detected value of the pressure of the working fluid transmitted from the pressure sensor 29 becomes zero or below a predetermined value.
  • the controller 31 detects the leakage of the working fluid, the controller 31 notifies the operator of the leakage of the working fluid. This notification to the driver is performed by turning on a warning light provided in the passenger compartment. In addition, it can also perform by alert sound etc. as alerting
  • controller 31 controls the operation of the electric pump P1. Furthermore, the controller 31 adjusts the amount of heat that the working fluid radiates to the outside air by controlling the operation of the electric fan 19c.
  • the waste heat utilization apparatus configured as described above operates as follows by driving the vehicle.
  • the engine 5 operates in the drive system 1 by driving the vehicle.
  • the exhaust discharged from the exhaust port 5a is discharged from the muffler to the outside of the vehicle through the pipe 9, the turbocharger 7 and the pipe 12 (see the one-dot chain line arrow in the figure).
  • the turbocharger 7 is operated by the exhaust.
  • the air outside the vehicle is sucked into the turbocharger 7 from the pipe 13 and compressed.
  • This air is sucked as pressurized air into the engine 5 from the intake port 5b of the engine 5 through the pipe 10, the first passage 15e of the boiler 15, and the pipe 11 (see the two-dot chain line arrow in the figure).
  • a cooling water circulates between the engine 5 (outflow port and inflow port) and a radiator, and the engine 5 is also cooled.
  • controller 31 operates the electric pump P1 and the electric fan 19c, respectively.
  • the opening / closing valve 27 is closed as described above, and the interior of the pipes 21 to 24 is sealed by closing the replenishment port 21a as shown in FIG.
  • the working fluid heated by the boiler 15 flows out from the second outlet 15d in a high temperature and high pressure state and flows into the pipe 22.
  • the pressure sensor 29 detects the pressure of the working fluid flowing through the pipe 22 and transmits the detected value to the controller 31.
  • the working fluid that flows through the pipe 22 reaches the inside of the expander 17 from the inlet 17a of the expander 17.
  • the high-temperature and high-pressure working fluid expands in the expander 17 and is depressurized.
  • the generator connected to the expander 17 generates power by the pressure energy at this time. Thereby, in the Rankine cycle 3 in this waste heat utilization apparatus, said pressure energy is collect
  • the working fluid depressurized in the expander 17 flows out from the outlet 17b, and reaches the condenser 19 from the inlet 19a of the condenser 19 through the pipe 23.
  • the working fluid in the condenser 19 dissipates heat to the air around the condenser 19 and is cooled.
  • the controller 31 appropriately changes the operation amount of the electric fan 19c to suitably dissipate the working fluid and liquefy it.
  • the cooled working fluid flows out from the outflow port 19b, is sucked into the suction port 102 of the electric pump P1 through the pipe 24, and is discharged from the discharge port 101 of the electric pump P1 again.
  • the working fluid can be sufficiently heated by heat exchange between the pressurized air and the working fluid in the boiler 15. For this reason, in this waste heat utilization apparatus, the pressure energy at the time of expanding and decompressing a working fluid with the expander 17 can be enlarged. For this reason, in this waste heat utilization apparatus, it is possible to increase the amount of energy that can be recovered in the Rankine cycle 3, that is, the amount of electric power.
  • the pressurized air can be cooled by heat exchange in the boiler 15. For this reason, the pressurized air is sufficiently cooled and sucked into the engine 5 in a state where the density thereof is increased. Thereby, in this waste heat utilization apparatus, it is also possible to improve the output of the engine 5.
  • the open / close valve 27 and the bleed port open / close valve 28 are opened, and the replenishment port 21a and the bleed port 21b are opened, so that the water in the replenishment tank 25 flows into the pipes 21 to 24 through the replenishment port 21a.
  • all the water in the replenishing tank 25 is replenished into the pipe 21.
  • the air in the pipes 21 to 24 is preferably discharged out of the vehicle from the bleed port 21b (see the broken line arrow in the figure).
  • the waste heat utilization apparatus of the embodiment it is possible to suppress the performance degradation of the engine 5 at the time of leakage of the working fluid in an emergency evacuation manner. Further, in this waste heat utilization apparatus, when the water in the replenishment tank 25 is replenished into the pipe 21, the air in the pipes 21 to 24 is preferably discharged out of the vehicle from the bleed port 21b. For this reason, in this waste heat utilization apparatus, water is preferably replenished to the pipes 21 to 24, and the replenished water is preferably circulated through the Rankine cycle 3.
  • this waste heat utilization apparatus it is possible to replenish water through the replenishment tank 25 connected to the replenishment port 21a, and the water replenishment work is facilitated. Furthermore, it is possible to replenish the Rankine cycle 3 without excess or deficiency by injecting water to the specified value of the replenishment tank 25. Moreover, in this waste heat utilization apparatus, since the replenishment tank 25 is filled with replenishment water in advance, it is not necessary to separately arrange replenishment water when replenishing water.
  • an opening / closing valve 27 is provided at the replenishing port 21a.
  • the open / close valve 27 and the bleed port open / close valve 28 linked to the open / close valve 27 are kept closed before water is replenished from the refill port 21a.
  • the working fluid heated by heat exchange in the boiler 15 while the working fluid in the pipes 21 to 24 is not leaking, that is, while the HFC 134a circulates in the Rankine cycle. It is possible to keep the pressure at a constant, and the amount of power recovered in the Rankine cycle 3 can be stabilized.
  • the opening / closing valve 27 and the bleed port opening / closing valve 28 interlocked therewith are kept open, so that the pressure of the replenished water is excessively increased in the pipes 21-24. It is possible to prevent this. Thereby, in this waste heat utilization apparatus, the amount of leakage of the newly replenished working fluid (water) can be reduced, and the time during which the performance degradation of the engine 5 can be prevented can be lengthened.
  • the heat exchange between the cooling water and the working fluid may be performed instead of the heat exchange between the pressurized air and the working fluid.
  • the drive system 1 is provided with an exhaust gas recirculation path for recirculating a part of the exhaust gas generated in the engine 5 to the engine 5 as recirculated exhaust gas.
  • heat of the recirculated exhaust gas and the working fluid flowing through the exhaust gas recirculation path is provided. It is good also as composition which performs exchange.
  • a plurality of boilers 15 may be provided to perform heat exchange between the pressurized air and the working fluid, heat exchange between the cooling water and the working fluid, and heat exchange between the reflux exhaust and the working fluid.
  • the replenishment port 21a and the extraction port 21b may be provided in the pipe 22, the pipe 23, or the pipe 24.
  • the piping in which the replenishing port 21a is formed and the piping in which the extraction port 21b is formed may be the same or different.
  • the present invention is applicable to vehicles such as passenger cars as well as transport vehicles such as trucks and buses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A waste heat utilization device for a vehicle is used in a drive system for driving a vehicle, and is provided with a Rankine cycle for circulating working fluid. The Rankine cycle has a pump, a boiler, an expansion mechanism, and a condenser, and also has piping for circulating the working fluid through these components in the order listed. The drive system has an engine, and also has a cooling liquid channel, a supercharger, and/or an exhaust reflux channel. The boiler enables heat exchange between the working fluid and either cooling liquid, pressurized air, or reflux exhaust. The piping has a refill opening, and the refill opening opens up the piping so that the interior of the piping is communicated with the exterior when the working fluid leaks out, whereby new working fluid can be refilled into the interior of the piping.

Description

車両用廃熱利用装置Waste heat utilization equipment for vehicles
 本発明は車両用廃熱利用装置に関する。 The present invention relates to a vehicle waste heat utilization device.
 特許文献1に従来の車両用廃熱利用装置が開示されている。この車両用廃熱利用装置は、エンジンを有して車両を駆動させる駆動系に用いられており、ランキンサイクルを備えている。駆動系は、過給器としてのターボチャージャを有している。このターボチャージャは、車外の空気である外気を吸入し、エンジンに対して加圧空気を供給する。一方、ランキンサイクルは、ポンプ、ボイラ、膨張機、凝縮器及び配管を有している。配管は、ボイラ、膨張機、凝縮器及びポンプの順で作動流体を循環させている。ボイラでは加圧空気と作動流体とが熱交換可能となっている。 Patent Document 1 discloses a conventional vehicle waste heat utilization device. This vehicle waste heat utilization apparatus is used in a drive system that has an engine and drives a vehicle, and includes a Rankine cycle. The drive system has a turbocharger as a supercharger. The turbocharger sucks outside air that is outside the vehicle and supplies pressurized air to the engine. On the other hand, the Rankine cycle has a pump, a boiler, an expander, a condenser, and piping. The piping circulates the working fluid in the order of a boiler, an expander, a condenser, and a pump. In the boiler, heat exchange is possible between the pressurized air and the working fluid.
 この車両用廃熱利用装置では、ボイラ内において加圧空気によって作動流体が加熱される。そして、作動流体が膨張機で膨張及び減圧される際の圧力エネルギーを回収することが可能となっている。 In this vehicle waste heat utilization device, the working fluid is heated by pressurized air in the boiler. And it is possible to collect | recover the pressure energy at the time of a working fluid being expanded and pressure-reduced with an expander.
 また、この車両用廃熱利用装置では、ボイラにおける熱交換によって加圧空気の冷却が可能である。これにより、この車両用廃熱利用装置では、加圧空気の密度を大きくして、より多くの加圧空気をエンジンに供給することが可能となっている。このため、この車両用廃熱利用装置では、エンジンの出力を向上させることも可能となっている。 Also, in this vehicle waste heat utilization device, the pressurized air can be cooled by heat exchange in the boiler. Thereby, in this vehicle waste heat utilization apparatus, it is possible to increase the density of the pressurized air and supply more pressurized air to the engine. For this reason, in this vehicle waste heat utilization apparatus, it is also possible to improve the output of the engine.
特開2008-8224号公報JP 2008-8224 A
 ところで、上記のような車両用廃熱利用装置を備えた車両では、走行時に何らかの原因により、配管から作動流体が漏れ出てしまう事態を完全には否定できない。
 そして、このように作動流体が漏れ出てしまうことで、上記従来の車両用廃熱利用装置では、ボイラでの熱交換ができなくなる。これにより、この車両用廃熱利用装置では、ランキンサイクルにおいて圧力エネルギーの回収が不可能となるだけでなく、冷却によって加圧空気の容積を減少させることも不可能となる。このため、この車両用廃熱利用装置では、作動流体の漏出により、エンジンに対して加圧空気を好適に供給することができなくなり、エンジンの出力低下が生じる等、場合によっては車両の走行が不可能となる場合も生じ得る。このような問題は、作動流体が漏れ出た際における車両の走行環境や時間的な理由等により、早急に修理工場等で車両の修理を行えない場合に特に顕著となる。
By the way, in the vehicle provided with the waste heat utilization apparatus for vehicles as described above, it is impossible to completely deny a situation in which the working fluid leaks from the piping due to some cause during traveling.
And since a working fluid leaks out in this way, in the said conventional waste heat utilization apparatus for vehicles, it becomes impossible to heat-exchange with a boiler. As a result, this vehicle waste heat utilization device not only makes it impossible to recover pressure energy in the Rankine cycle, but also makes it impossible to reduce the volume of pressurized air by cooling. For this reason, in this waste heat utilization apparatus for vehicles, due to leakage of the working fluid, it becomes impossible to supply pressurized air to the engine suitably, and the output of the engine is reduced. Sometimes it becomes impossible. Such a problem becomes particularly prominent when the vehicle cannot be repaired immediately at a repair shop or the like due to the traveling environment of the vehicle when the working fluid leaks or due to time reasons.
 本発明の目的は、作動流体の漏出時におけるエンジンの性能低下を緊急避難的に抑制可能な車両用廃熱利用装置を提供することにある。 An object of the present invention is to provide a vehicle waste heat utilization device that can suppress engine performance degradation at the time of leakage of working fluid in an emergency evacuation manner.
 上記目的を達成するため、本発明の一態様によれば、車両用廃熱利用装置は、車両を駆動させる駆動系に対して用いられるとともに作動流体を循環させるランキンサイクルを備える。前記ランキンサイクルは、ポンプと、ボイラと、膨張機と、凝縮器とを有するとともに、前記ポンプ、前記ボイラ、前記膨張機及び前記凝縮器の順で前記作動流体を循環させる配管を有する。前記駆動系は、エンジンを有するとともに、冷却液路、過給器及び排気還流路の少なくとも一つを有する。前記冷却液路には前記エンジンの冷却を行う冷却液が流通する。前記過給器は、外気を吸入して前記エンジンに対して加圧空気を供給する。前記排気還流路は、前記エンジンで生じた排気の一部を前記エンジンに還流排気として還流させる。前記ボイラは、前記冷却液、前記加圧空気及び前記還流排気のいずれか一つと前記作動流体との間で熱交換を可能とするように構成される。前記配管は補充口を有し、該補充口は、前記作動流体の漏出時に前記配管の内部を該配管の外部に連通させるように前記配管を開放し、それによって該配管の外部から該配管の内部に新たな作動流体を補充可能にする。 In order to achieve the above object, according to one aspect of the present invention, a vehicle waste heat utilization device includes a Rankine cycle that is used for a drive system that drives a vehicle and that circulates a working fluid. The Rankine cycle includes a pump, a boiler, an expander, and a condenser, and a pipe that circulates the working fluid in the order of the pump, the boiler, the expander, and the condenser. The drive system includes an engine and at least one of a coolant path, a supercharger, and an exhaust gas recirculation path. A coolant for cooling the engine flows through the coolant passage. The supercharger sucks outside air and supplies pressurized air to the engine. The exhaust gas recirculation path causes a part of the exhaust gas generated in the engine to be recirculated to the engine as recirculated exhaust gas. The boiler is configured to enable heat exchange between any one of the coolant, the pressurized air, and the reflux exhaust and the working fluid. The piping has a replenishing port, and the replenishing port opens the piping so that the inside of the piping communicates with the outside of the piping when the working fluid leaks, and thereby the piping is connected from the outside of the piping. A new working fluid can be refilled inside.
 本発明の車両用廃熱利用装置(以下、廃熱利用装置という。)では、ランキンサイクルにおいて作動流体が循環することにより、冷却液、加圧空気及び還流排気の少なくとも一つと作動流体とがボイラで熱交換を行う。この際、冷却液、加圧空気及び還流排気はいずれも高温となることから、この廃熱利用装置では、ボイラにおける熱交換で作動流体が十分に加熱されることとなる。このため、この廃熱利用装置では、膨張機で作動流体を膨張及び減圧させた際の圧力エネルギーを大きくすることが可能である。そして、ランキンサイクルでは、この圧力エネルギーを回収する。 In the vehicle waste heat utilization device (hereinafter referred to as waste heat utilization device) of the present invention, the working fluid circulates in the Rankine cycle, so that at least one of the coolant, the pressurized air, and the reflux exhaust and the working fluid are boilers. Perform heat exchange at. At this time, since the coolant, the pressurized air, and the reflux exhaust gas all have high temperatures, in this waste heat utilization device, the working fluid is sufficiently heated by heat exchange in the boiler. For this reason, in this waste heat utilization apparatus, it is possible to increase the pressure energy when the working fluid is expanded and depressurized by the expander. In the Rankine cycle, this pressure energy is recovered.
 また、この状態の廃熱利用装置では、ボイラにおける熱交換によって、冷却液、加圧空気及び還流排気の少なくとも一つを冷却することが可能である。ここで、冷却液を冷却すれば、エンジンの発熱を好適に抑制可能となり、エンジンの温度を好適に調整可能となる。また、加圧空気を冷却すれば、その密度を大きくさせた状態で加圧空気をエンジンに供給することが可能となる。これにより、エンジンの出力を向上させることが可能である。また、還流排気を冷却すれば、還流排気の密度が大きくなり、還流排気を好適にエンジンに還流させることが可能となる。このため、エンジンから最終的に車外に排出される排気中の窒素酸化物を減少させることが可能となる。これらのように、この廃熱利用装置によれば、エンジンの性能を向上させることも可能となる。 Moreover, in the waste heat utilization apparatus in this state, it is possible to cool at least one of the coolant, the pressurized air, and the reflux exhaust by heat exchange in the boiler. Here, if the coolant is cooled, heat generation of the engine can be suitably suppressed, and the temperature of the engine can be suitably adjusted. Moreover, if the pressurized air is cooled, the pressurized air can be supplied to the engine in a state where the density is increased. Thereby, the output of the engine can be improved. Further, if the recirculated exhaust is cooled, the density of the recirculated exhaust increases, and the recirculated exhaust can be suitably recirculated to the engine. For this reason, it becomes possible to reduce the nitrogen oxide in the exhaust gas finally discharged from the engine to the outside of the vehicle. As described above, according to this waste heat utilization apparatus, the performance of the engine can be improved.
 さらに、この廃熱利用装置では、配管に補充口が形成されている。これにより、この廃熱利用装置では、走行時に何らかの原因により、例えば、配管から作動流体が漏れ出てしまったとしても、補充口から新たに作動流体を補充することが可能となる。このため、この廃熱利用装置では、この新たに補充された作動流体により、引き続き冷却液や加圧空気や還流排気の冷却を行うことが可能となる。 Furthermore, in this waste heat utilization apparatus, a replenishing port is formed in the piping. Thereby, in this waste heat utilization apparatus, even if the working fluid leaks from the piping due to some cause during traveling, for example, it becomes possible to replenish the working fluid from the replenishing port. For this reason, in this waste heat utilization apparatus, it becomes possible to continue cooling the coolant, pressurized air, and reflux exhaust gas with the newly replenished working fluid.
 なお、このように補充口より作動流体を新たに補充した場合であっても、この作動流体は、時間の経過により従前の作動流体と同様、配管から漏出することとなる。このため、新たに補充された作動流体との熱交換による冷却液等の冷却は一時的、応急的な効果となる。しかし、本発明の廃熱利用装置を備える車両では、山中を走行している場合や、当該車両によって配送業務等を行っている場合等、早急に修理工場等で車両の修理が行えない状況で作動流体が漏れ出た場合に、操縦者自身で作動流体の補充を行うことが可能となる。このため、例え、一時的・応急的であっても、エンジンの性能低下を抑制できる本発明の廃熱利用装置の効果は大きい。 Even when the working fluid is newly replenished from the replenishing port as described above, this working fluid leaks from the pipe as with the previous working fluid over time. For this reason, cooling of the coolant or the like by heat exchange with the newly replenished working fluid has a temporary and temporary effect. However, in a vehicle equipped with the waste heat utilization device of the present invention, when the vehicle is traveling in the mountains or when delivery work is performed by the vehicle, the vehicle cannot be repaired immediately at a repair factory or the like. When the working fluid leaks, the operator can replenish the working fluid by himself / herself. For this reason, even if it is temporary and emergency, the effect of the waste heat utilization apparatus of this invention which can suppress a performance fall of an engine is large.
 したがって、本発明の廃熱利用装置では、作動流体の漏出時におけるエンジンの性能低下を緊急避難的に抑制可能である。
 エンジンとしては、ガソリンエンジンやディーゼルエンジン等の他、種々の形式のエンジンを採用することができる。また、これらのエンジンはモータを組み合わせたハイブリッドエンジンでも良い。さらに、駆動系が上記の冷却液路を有さない場合には、これらのエンジンを空冷式とすることもできる。一方、過給器としては、ターボチャージャやスーパーチャージャ等を採用することができる。なお、エンジンや過給機は複数であっても良い。
Therefore, in the waste heat utilization apparatus of the present invention, it is possible to suppress the engine performance degradation at the time of leakage of the working fluid in an emergency evacuation manner.
As an engine, various types of engines can be employed in addition to a gasoline engine, a diesel engine, and the like. These engines may be hybrid engines combining motors. Further, when the drive system does not have the cooling liquid passage, these engines can be air-cooled. On the other hand, a turbocharger, a supercharger, or the like can be employed as the supercharger. There may be a plurality of engines and superchargers.
 また、冷却液としては、ロングライフクーラント(LLC)等の他、水等を採用することができる。作動流体としては、HFC134a等を採用することができる。ここで、補充口より補充される作動流体としては、上記のHFC134aの他、LLCや水等を採用することもできる。すなわち、補充口から補充される作動流体は、配管から漏れ出した作動流体と同一であっても良く、異なっていても良い。 Further, as the coolant, water or the like can be employed in addition to long life coolant (LLC). As the working fluid, HFC134a or the like can be employed. Here, as the working fluid to be replenished from the replenishing port, LLC, water, or the like can be adopted in addition to the above HFC 134a. That is, the working fluid that is replenished from the replenishing port may be the same as or different from the working fluid that has leaked from the piping.
 好ましくは、前記配管は該配管の内部の空気を該配管の外部へ排出する空気排出部を有する。
 上記構成によれば、補充口から新たな作動流体を補充する際に配管内の空気が好適に排出されることとなる。このため、この廃熱利用装置では、配管に対して新たな作動流体が好適に補充されるとともに、補充された作動流体がランキンサイクルを好適に循環する。この空気排出部としては、大気開放弁を採用できる他、配管の外部に開いた抽気口等を採用することができる。
Preferably, the pipe has an air discharge portion that discharges air inside the pipe to the outside of the pipe.
According to the above configuration, the air in the pipe is suitably discharged when a new working fluid is replenished from the replenishing port. For this reason, in this waste heat utilization apparatus, a new working fluid is preferably replenished to the piping, and the replenished working fluid is preferably circulated through the Rankine cycle. As this air discharge part, an air release valve can be adopted, and an extraction port opened outside the pipe can be adopted.
 好ましくは、前記補充口には補充用タンクが接続されている。
 上記構成によれば、補充用タンクを介して新たな作動流体を補充することが可能となり、補充作業がより容易になる。さらに、この補充用タンクの容量がランキンサイクルにおいて必要とされる作動流体の量と同等であれば、ランキンサイクルに対して新たな作動流体を過不足なく補充することが可能となる。また、例えば、補充用タンク内に予め補充用の作動流体を充填しておくことで、作動流体を補充する際に補充用の作動流体を別途手配することが不要となる。このため、例えば、山中で作動流体の補充作業を行う場合に、補充用の作動流体が手配できないという事態を回避できる。
Preferably, a replenishing tank is connected to the replenishing port.
According to the above configuration, a new working fluid can be replenished via the replenishment tank, and replenishment work becomes easier. Further, if the capacity of the replenishing tank is equal to the amount of working fluid required in the Rankine cycle, it is possible to replenish new working fluid to the Rankine cycle without excess or deficiency. Further, for example, by filling the replenishment working fluid in the replenishment tank in advance, it becomes unnecessary to separately prepare the replenishing working fluid when replenishing the working fluid. For this reason, for example, when replenishing the working fluid in a mountain, it is possible to avoid a situation in which a working fluid for refilling cannot be arranged.
 補充口と補充用タンクとは直接接続されていても良く、他の配管等を介して間接的に接続されても良い。また、補充用タンクは、車両が乗用車である場合、エンジンルーム等に配置することができる。一方、車両がトラック等の運送車両である場合、補充用タンクは、キャビン後方の車両フレームや荷台近傍の車両フレーム等に配置することができる。 The replenishing port and the replenishing tank may be directly connected, or may be indirectly connected via other piping. The replenishment tank can be disposed in the engine room or the like when the vehicle is a passenger car. On the other hand, when the vehicle is a transport vehicle such as a truck, the replenishment tank can be disposed on a vehicle frame behind the cabin, a vehicle frame near the loading platform, or the like.
 好ましくは、前記補充口は封止部を有する。該封止部は、前記補充口を閉鎖して前記配管の外部に対して前記配管の内部を密閉する閉状態から前記補充口を開放して前記配管の内部を前記配管の外部に開放する開状態へ移行可能に構成される。前記封止部は、前記補充口から前記新たな作動流体が補充された後は前記開状態を維持する。 Preferably, the replenishing port has a sealing portion. The sealing part opens the replenishing port from the closed state in which the replenishing port is closed and the inside of the pipe is sealed against the outside of the pipe to open the inside of the pipe to the outside of the pipe. It is configured to be able to transition to a state. The sealing portion maintains the open state after the new working fluid is replenished from the replenishing port.
 上記構成によれば、封止部材が閉状態にあり、配管内の作動流体が漏れ出ていない間は、ボイラにおける熱交換によって加熱された作動流体の圧力を一定に維持することが可能となり、ランキンサイクルにおいて回収される圧力エネルギー量を安定させることが可能となる。これにより、廃熱利用装置の性能を向上させることが可能となる。 According to the above configuration, the pressure of the working fluid heated by heat exchange in the boiler can be kept constant while the sealing member is in a closed state and the working fluid in the pipe is not leaking. It becomes possible to stabilize the amount of pressure energy recovered in the Rankine cycle. Thereby, it becomes possible to improve the performance of the waste heat utilization apparatus.
 一方、補充口より新たな作動流体が補充された後は封止部材が開状態を維持することにより、補充された作動流体の圧力が配管内で高まり過ぎることを防止することが可能となる。これにより、この廃熱利用装置では、新たに補充した作動流体の漏出量を減らすことができ、エンジンの性能低下を防止可能な時間を長くすることができる。 On the other hand, it is possible to prevent the pressure of the replenished working fluid from being excessively increased in the pipe by keeping the sealing member open after a new working fluid is replenished from the replenishing port. Thereby, in this waste heat utilization apparatus, the amount of leakage of the newly replenished working fluid can be reduced, and the time during which deterioration of engine performance can be prevented can be extended.
 封止部としては、例えば、開閉バルブを採用することができる。この場合、開閉バルブについて、閉状態から開状態への移行のみ可能に構成することで、新たな作動流体を補充した後に開閉バルブの開状態を維持させることが可能となる。また、開状態から閉状態への移行が可能な開閉バルブにおいて、新たな作動流体を補充する際に開閉バルブの開操作を行い、作動流体を補充した後は開閉バルブを開状態で放置することによって、開閉バルブを開状態で維持させてもよい。 As the sealing portion, for example, an open / close valve can be employed. In this case, by configuring the opening / closing valve so that only the transition from the closed state to the opening state is possible, the opening state of the opening / closing valve can be maintained after replenishing with a new working fluid. In addition, in an open / close valve that can transition from the open state to the closed state, open the open / close valve when replenishing a new working fluid, and leave the open / close valve in the open state after replenishing the working fluid. Thus, the open / close valve may be maintained in an open state.
 さらに、封止部として、例えば、破壊又は貫通等されることで補充口を閉状態から開状態に移行可能な薄板状の蓋部材や膜状のシール材を採用することが可能である。また、封止部材として、例えば、補充口に取り付けられたねじ切り式の蓋部材や再接着が不可能な粘着剤によって補充口に貼着された蓋部材等を採用することもできる。 Furthermore, as the sealing portion, for example, a thin plate-like lid member or a film-like sealing material that can shift the replenishment port from the closed state to the open state by being broken or penetrated can be employed. In addition, as the sealing member, for example, a threaded lid member attached to the replenishing port, a lid member attached to the replenishing port with an adhesive that cannot be re-adhered, or the like may be employed.
 好ましくは、前記駆動系は前記過給器を有する。前記ボイラは前記加圧空気と前記作動流体との間で熱交換を可能とするように構成される。
 上記構成によれば、駆動系が過給器を有することでエンジンの出力が向上することとなる。その一方で、作動流体が漏れ出し、ボイラにおいて加圧空気の冷却が行えない場合には、エンジンの性能低下が顕著となる。この点、この廃熱利用装置では、補充口から新たに補充した作動流体によって、引き続き加圧空気の冷却を行うことが可能となるため、エンジンの性能低下を効果的に抑制可能となる。
Preferably, the drive system includes the supercharger. The boiler is configured to allow heat exchange between the pressurized air and the working fluid.
According to the said structure, an engine output will improve because a drive system has a supercharger. On the other hand, when the working fluid leaks out and the pressurized air cannot be cooled in the boiler, the engine performance is significantly reduced. In this respect, in this waste heat utilization apparatus, it is possible to continue cooling of the pressurized air by the working fluid newly replenished from the replenishing port, so that it is possible to effectively suppress the engine performance degradation.
本発明の実施例に係る廃熱利用装置を示す模式構造図。The schematic structure figure which shows the waste-heat utilization apparatus which concerns on the Example of this invention. 図1の補充口と閉状態の開閉バルブと抽気口と閉状態の抽気口開閉バルブと補充用タンクとを示す部分拡大断面図。FIG. 2 is a partially enlarged cross-sectional view illustrating a replenishing port, a closed open / close valve, a bleed port, a closed bleed port open / close valve, and a replenishment tank in FIG. 1. 図1の補充口と開状態の開閉バルブと抽気口と開状態の抽気口開閉バルブと補充用タンクとを示す部分拡大断面図。FIG. 2 is a partially enlarged cross-sectional view showing a replenishing port, an open / close valve in an open state, a bleed port, an open bleed port open / close valve and a replenishment tank in FIG. 1. 作動中の状態にある図1の廃熱利用装置を示す模式構造図。The schematic structure figure which shows the waste-heat utilization apparatus of FIG. 1 in the state in operation | movement. 水の補充時の状態にある図1の廃熱利用装置を示す模式構造図。The schematic structure figure which shows the waste-heat utilization apparatus of FIG. 1 in the state at the time of the replenishment of water.
 以下、本発明を具体化した実施例を図面を参照しつつ説明する。
 (実施例)
 実施例の廃熱利用装置は、運送車両であるトラック(以下、単に車両という。)に搭載されている。この廃熱利用装置は、図1に示すように、車両を駆動させる駆動系1に用いられるランキンサイクル3と、補充用タンク25と、開閉バルブ27とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.
(Example)
The waste heat utilization apparatus of the embodiment is mounted on a truck (hereinafter simply referred to as a vehicle) that is a transport vehicle. As shown in FIG. 1, the waste heat utilization apparatus includes a Rankine cycle 3 that is used in a drive system 1 that drives a vehicle, a replenishment tank 25, and an opening / closing valve 27.
 駆動系1は、エンジン5と、過給器としてのターボチャージャ7と、図示しないラジエータとを有している。エンジン5は、公知の水冷式ディーゼルエンジンである。エンジン5の内部には冷却水が流通可能なウォータジャケット(図示略)が形成されている。エンジン5には、このウォータジャケットとそれぞれ連通する流出口と流入口と(いずれも図示を省略する。)が形成されている。また、エンジン5には、排気を排出する排気口5aと、後述する加圧空気を吸入する吸気口5bとが形成されている。 The drive system 1 has an engine 5, a turbocharger 7 as a supercharger, and a radiator (not shown). The engine 5 is a known water-cooled diesel engine. A water jacket (not shown) through which cooling water can flow is formed inside the engine 5. The engine 5 is formed with an outlet and an inlet (both not shown) communicating with the water jacket. Further, the engine 5 is formed with an exhaust port 5a for exhausting exhaust gas and an intake port 5b for sucking in pressurized air described later.
 エンジン5とターボチャージャ7とは配管9~11によって接続されている。また、配管10と配管11とには後述するボイラ15が接続されている。配管9は内部を排気が流通可能となっており、エンジン5の排気口5aとターボチャージャ7とに接続されている。一方、配管10及び配管11は内部を加圧空気が流通可能となっている。配管10はターボチャージャ7と、ボイラ15の第1流入口15aとに接続されている。配管11はボイラ15の第1流出口15bと、エンジン5の吸気口5bとに接続されている。 The engine 5 and the turbocharger 7 are connected by piping 9-11. Further, a boiler 15 described later is connected to the pipe 10 and the pipe 11. The pipe 9 is capable of circulating exhaust gas and is connected to the exhaust port 5 a of the engine 5 and the turbocharger 7. On the other hand, the piping 10 and the piping 11 are capable of circulating pressurized air. The pipe 10 is connected to the turbocharger 7 and the first inlet 15 a of the boiler 15. The pipe 11 is connected to the first outlet 15 b of the boiler 15 and the intake port 5 b of the engine 5.
 さらに、ターボチャージャ7には、配管12、13の一端部の各々が接続されている。配管12の他端部は、図示しないマフラと接続されている。配管13の他端側は図示しない車両のエアインテークに開口している。配管12は、ターボチャージャ7を介して配管9と連通している。同様に、配管13は、ターボチャージャ7を介して配管10と連通している。 Furthermore, the turbocharger 7 is connected to each of one end portions of the pipes 12 and 13. The other end of the pipe 12 is connected to a muffler (not shown). The other end of the pipe 13 is open to an air intake of a vehicle (not shown). The pipe 12 communicates with the pipe 9 via the turbocharger 7. Similarly, the pipe 13 communicates with the pipe 10 via the turbocharger 7.
 ランキンサイクル3は、電動ポンプP1と、ボイラ15と、膨張機17と、凝縮器19と、配管21~24とを有している。また、配管21~24には、作動流体としてのHFC134a又は水が流通可能となっている。このランキンサイクル3では、初期状態において、HFC134aが配管21~24内を流通している。 Rankine cycle 3 has electric pump P1, boiler 15, expander 17, condenser 19, and pipes 21-24. Further, HFC 134a or water as a working fluid can be circulated through the pipes 21 to 24. In the Rankine cycle 3, the HFC 134a circulates in the pipes 21 to 24 in the initial state.
 電動ポンプP1には公用品が採用されている。電動ポンプP1には、吐出口101と吸入口102とが形成されている。この電動ポンプP1は後述するコントローラ31に電気的に接続されている。 Public goods are used for the electric pump P1. A discharge port 101 and a suction port 102 are formed in the electric pump P1. The electric pump P1 is electrically connected to a controller 31 described later.
 ボイラ15には、第1流入口15a及び第1流出口15bと、第2流入口15c及び第2流出口15dとが形成されている。また、ボイラ15内には、それぞれ第1流入口15a及び第1流出口15bと連通する両端部を有する第1通路15eと、それぞれ第2流入口15c及び第2流出口15dと連通する両端部を有する第2通路15fとが設けられている。このボイラ15では、第1通路15e内の加圧空気と、第2通路15f内の作動流体との熱交換により作動流体の加熱を行うとともに、加圧空気の冷却を行う。 The boiler 15 is formed with a first inlet 15a and a first outlet 15b, and a second inlet 15c and a second outlet 15d. Further, in the boiler 15, a first passage 15e having both ends communicating with the first inlet 15a and the first outlet 15b, respectively, and both ends communicating with the second inlet 15c and the second outlet 15d, respectively. And a second passage 15f having. In the boiler 15, the working fluid is heated by heat exchange between the pressurized air in the first passage 15e and the working fluid in the second passage 15f, and the pressurized air is cooled.
 膨張機17には、その内部に作動流体を流入させる流入口17aと、作動流体を流出させる流出口17bとが形成されている。膨張機17では、ボイラ15を経て加熱された作動流体を膨張させることにより回転駆動力を発生させる。この膨張機17には図示しない公知の発電機が接続されている。発電機は膨張機17の回転駆動力によって発電を行い、図示しないバッテリに電力を充電する。 The expander 17 is formed with an inlet 17a through which a working fluid flows and an outlet 17b through which the working fluid flows out. The expander 17 generates a rotational driving force by expanding the working fluid heated through the boiler 15. A known generator (not shown) is connected to the expander 17. The generator generates power by the rotational driving force of the expander 17 and charges a battery (not shown) with electric power.
 凝縮器19には、その内部に作動流体を流入させる流入口19aと、作動流体を流出させる流出口19bとが形成されている。凝縮器19は、その内部を流通する作動流体と車外の空気との間で熱交換を行い、膨張機17での膨張によって減圧された作動流体を冷却して液化させる。凝縮器19の近傍には電動ファン19cが設けられている。この電動ファン19cはコントローラ31に電気的に接続されている。 The condenser 19 is formed with an inlet 19a through which the working fluid flows and an outlet 19b through which the working fluid flows out. The condenser 19 exchanges heat between the working fluid that circulates in the interior and air outside the vehicle, and cools and liquefies the working fluid decompressed by the expansion in the expander 17. An electric fan 19 c is provided in the vicinity of the condenser 19. The electric fan 19c is electrically connected to the controller 31.
 これらの電動ポンプP1、ボイラ15、膨張機17及び凝縮器19は、配管21~24によって接続されている。具体的には、電動ポンプP1の吐出口101と、ボイラ15の第2流入口15cとが配管21によって接続されている。ボイラ15の第2流出口15dと、膨張機17の流入口17aとが配管22によって接続されている。また、膨張機17の流出口17bと凝縮器19の流入口19aとが配管23によって接続されている。そして、凝縮器19の流出口19bと電動ポンプP1の吸入口102とが配管24によって接続されている。 These electric pump P1, boiler 15, expander 17 and condenser 19 are connected by pipes 21 to 24. Specifically, the discharge port 101 of the electric pump P1 and the second inlet 15c of the boiler 15 are connected by a pipe 21. A second outlet 15 d of the boiler 15 and an inlet 17 a of the expander 17 are connected by a pipe 22. Further, the outlet 17 b of the expander 17 and the inlet 19 a of the condenser 19 are connected by a pipe 23. The outlet 19b of the condenser 19 and the suction port 102 of the electric pump P1 are connected by a pipe 24.
 このランキンサイクル3では、電動ポンプP1を作動させることにより、作動流体が配管21~24内を循環する(図4及び図5参照)。つまり、作動流体は、電動ポンプP1の吐出口101からボイラ15及び膨張機17を経て、凝縮器19から電動ポンプP1の吸入口102に至ることとなる。 In this Rankine cycle 3, by operating the electric pump P1, the working fluid circulates in the pipes 21 to 24 (see FIGS. 4 and 5). That is, the working fluid reaches from the discharge port 101 of the electric pump P1 through the boiler 15 and the expander 17, and from the condenser 19 to the suction port 102 of the electric pump P1.
 また、配管21には、図2に示すように、補充口21aと抽気口21bとが形成されている。この補充口21aは配管21内に連通しているとともに先端が車両の外部に開いている。そして、この補充口21aには、上記の補充用タンク25が接続されている。また、補充口21aには上記の開閉バルブ27が取り付けられている。この開閉バルブ27が封止部に相当する。なお、同図に示すように、補充口21aは配管21の鉛直方向上方に形成されることが好ましい。 Further, as shown in FIG. 2, the piping 21 has a replenishing port 21a and a bleed port 21b. The replenishing port 21a communicates with the inside of the pipe 21 and has a tip open to the outside of the vehicle. The replenishing tank 25 is connected to the replenishing port 21a. Further, the opening / closing valve 27 is attached to the replenishing port 21a. This on-off valve 27 corresponds to a sealing portion. In addition, as shown to the figure, it is preferable that the replenishing port 21a is formed in the perpendicular direction upper direction of the piping 21. FIG.
 抽気口21bは、配管21内に連通しているとともに先端が車両の外部に開いている。また、抽気口21bには抽気口開閉バルブ28が取り付けられている。この抽気口開閉バルブ28は、上記の開閉バルブ27の開閉と連動可能となっている。抽気口21b及び抽気口開閉バルブ28が空気排出部に相当する。 The bleed port 21b communicates with the inside of the pipe 21 and has a tip open to the outside of the vehicle. A bleed port opening / closing valve 28 is attached to the bleed port 21b. The bleed port opening / closing valve 28 can be interlocked with the opening / closing of the opening / closing valve 27. The bleed port 21b and the bleed port opening / closing valve 28 correspond to an air discharge unit.
 補充用タンク25は図示しない車両のフレームに固定されており、荷台又はエンジンルームに配置されている。この補充用タンク25内には、補充用の作動流体である水が充填されている。補充用タンク25に設定された規定値まで水を注入することにより、補充用タンク25から補充される作動流体の水量をランキンサイクル3において必要とされる作動流体の水量とすることが可能となっている。なお、補充用タンク25内には、水に替えて例えばLLC等を充填しても良い。 The replenishment tank 25 is fixed to a vehicle frame (not shown), and is arranged in a cargo bed or an engine room. The replenishment tank 25 is filled with water as a replenishing working fluid. By injecting water to the specified value set in the replenishing tank 25, the amount of working fluid replenished from the replenishing tank 25 can be made the amount of working fluid required in the Rankine cycle 3. ing. The replenishing tank 25 may be filled with, for example, LLC or the like instead of water.
 また、補充用タンク25には蓋部材25aが取り付けられており、補充用タンク25内の水が補充用タンク25の外に流出することが防止されている。この蓋部材25aには、通気口250が形成されている。 Also, a lid member 25 a is attached to the replenishment tank 25, and the water in the replenishment tank 25 is prevented from flowing out of the replenishment tank 25. A vent 250 is formed in the lid member 25a.
 開閉バルブ27には、開閉用コック27aが取り付けられている。この開閉バルブ27は、開閉用コック27aを操作することにより、閉状態と、開状態(図3参照)とを実現可能となっている。この際、抽気口開閉バルブ28も開閉バルブ27の開閉と連動し、開閉バルブ27が閉状態にあるときには抽気口開閉バルブ28も閉状態となり、開閉バルブ27が開状態にあるときには抽気口開閉バルブ28も開状態となる。これにより、閉状態では、補充口21a及び抽気口21bを閉鎖し、配管21の外部、すなわち、車両の外部に対して配管21の内部を密閉する。また、開状態では、図3に示すように、補充口21a及び抽気口21bを開放し、車両の外部に対して配管21の内部を配管の外部に開放する。 The open / close valve 27 is provided with an open / close cock 27a. The open / close valve 27 can be in a closed state and an open state (see FIG. 3) by operating the open / close cock 27a. At this time, the bleeder opening / closing valve 28 is interlocked with the opening / closing of the closable valve 27. When the open / close valve 27 is in the closed state, the bleeder opening / closing valve 28 is also closed, and when the open / close valve 27 is in the open state, 28 is also open. Thereby, in the closed state, the replenishment port 21a and the extraction port 21b are closed, and the inside of the pipe 21 is sealed with respect to the outside of the pipe 21, that is, the outside of the vehicle. Further, in the open state, as shown in FIG. 3, the replenishment port 21a and the extraction port 21b are opened, and the inside of the pipe 21 is opened to the outside of the pipe with respect to the outside of the vehicle.
 この開閉バルブ27及びこれに連動する抽気口開閉バルブ28は、初期状態において閉状態が維持されている(図2参照)。そして、車両の操縦者等が開閉用コック27aを開操作することにより、開閉バルブ27及び抽気口開閉バルブ28は閉状態から開状態に移行する(図3参照。)。この開閉バルブ27及び抽気口開閉バルブ28では、操縦者等が開閉用コック27aを再び閉操作しない限りは車両の外部に対して配管21の内部は密閉されない状態となる。つまり、この開閉バルブ27及び抽気口開閉バルブ28では、開閉用コック27aの開操作後は開状態が維持される。 The open / close valve 27 and the bleed port open / close valve 28 linked to the open / close valve 27 are kept closed in the initial state (see FIG. 2). Then, when the operator or the like of the vehicle opens the opening / closing cock 27a, the opening / closing valve 27 and the bleed port opening / closing valve 28 shift from the closed state to the opened state (see FIG. 3). In the opening / closing valve 27 and the bleed port opening / closing valve 28, the inside of the pipe 21 is not sealed with respect to the outside of the vehicle unless the operator or the like again closes the opening / closing cock 27a. In other words, the open / close valve 27 and the bleed port open / close valve 28 are kept open after the opening / closing cock 27a is opened.
 また、図1に示すように、配管22には、圧力センサ29が取り付けられている。この圧力センサ29には公用品が採用されている。この圧力センサ29は、配管22を流通する作動流体の圧力を検出することで、ランキンサイクル3を流通する作動流体の状態を検出する。圧力センサ29はコントローラ31と電気的に接続されており、作動流体の圧力の検出値をコントローラ31に向けて発信する。 Further, as shown in FIG. 1, a pressure sensor 29 is attached to the pipe 22. The pressure sensor 29 employs public goods. The pressure sensor 29 detects the state of the working fluid flowing through the Rankine cycle 3 by detecting the pressure of the working fluid flowing through the pipe 22. The pressure sensor 29 is electrically connected to the controller 31 and transmits a detected value of the pressure of the working fluid to the controller 31.
 コントローラ31は、圧力センサ29から発信される上記の作動流体の圧力の検出値がゼロ又は所定値以下となった場合にランキンサイクル3における作動流体の漏出を検知する。コントローラ31は、作動流体の漏出を検知した際、操縦者に対して作動流体の漏出を報知する。この操縦者に対する報知は車室内に設けられた警告灯を点灯させることによって行う。なお、操縦者に対する報知として、例えば、警告音等によって行うこともできる。 The controller 31 detects the leakage of the working fluid in the Rankine cycle 3 when the detected value of the pressure of the working fluid transmitted from the pressure sensor 29 becomes zero or below a predetermined value. When the controller 31 detects the leakage of the working fluid, the controller 31 notifies the operator of the leakage of the working fluid. This notification to the driver is performed by turning on a warning light provided in the passenger compartment. In addition, it can also perform by alert sound etc. as alerting | reporting with respect to a pilot, for example.
 また、コントローラ31は電動ポンプP1の作動制御を行う。さらに、このコントローラ31は電動ファン19cの作動制御を行うことで、作動流体が外気に放熱する熱量の調整を行う。 In addition, the controller 31 controls the operation of the electric pump P1. Furthermore, the controller 31 adjusts the amount of heat that the working fluid radiates to the outside air by controlling the operation of the electric fan 19c.
 このように構成された廃熱利用装置では、車両を駆動させることにより以下のように作動する。
 図4に示すように、車両が駆動されることにより、駆動系1ではエンジン5が作動する。これにより、排気口5aから排出された排気が配管9、ターボチャージャ7及び配管12を経てマフラから車外に排出される(同図の一点鎖線矢印参照)。この際、排気によってターボチャージャ7が作動される。これにより、車外の空気が配管13よりターボチャージャ7に吸引され、圧縮される。この空気は加圧空気として、配管10、ボイラ15の第1通路15e及び配管11を経てエンジン5の吸気口5bよりエンジン5内へ吸入される(同図の二点鎖線矢印参照)。なお、図示を省略しているものの、エンジン5(流出口及び流入口)とラジエータとの間で冷却水が循環し、エンジン5の冷却も行われる。
The waste heat utilization apparatus configured as described above operates as follows by driving the vehicle.
As shown in FIG. 4, the engine 5 operates in the drive system 1 by driving the vehicle. As a result, the exhaust discharged from the exhaust port 5a is discharged from the muffler to the outside of the vehicle through the pipe 9, the turbocharger 7 and the pipe 12 (see the one-dot chain line arrow in the figure). At this time, the turbocharger 7 is operated by the exhaust. Thereby, the air outside the vehicle is sucked into the turbocharger 7 from the pipe 13 and compressed. This air is sucked as pressurized air into the engine 5 from the intake port 5b of the engine 5 through the pipe 10, the first passage 15e of the boiler 15, and the pipe 11 (see the two-dot chain line arrow in the figure). In addition, although illustration is abbreviate | omitted, a cooling water circulates between the engine 5 (outflow port and inflow port) and a radiator, and the engine 5 is also cooled.
 また、コントローラ31は、電動ポンプP1及び電動ファン19cをそれぞれ作動させる。この際、上記のように開閉バルブ27は閉状態であり、図2に示すように補充口21aが閉鎖されることで、配管21~24内が密閉されている。 Further, the controller 31 operates the electric pump P1 and the electric fan 19c, respectively. At this time, the opening / closing valve 27 is closed as described above, and the interior of the pipes 21 to 24 is sealed by closing the replenishment port 21a as shown in FIG.
 これにより、ランキンサイクル3では、図4の実線矢印に示すように、電動ポンプP1の吐出口101から吐出された作動流体が配管21を経て、ボイラ15の第2流入口15cから第2通路15fに至る。そして、作動流体はボイラ15において加圧空気と熱交換される。この際、第1通路15eを流通する加圧空気は約150°C程度の熱を有しているため、第2通路15fを流通する作動流体は、好適に加熱される。一方、第1通路15eを流通する加圧空気は、第2通路15fを流通する作動流体に対して放熱を行うため、加圧空気は冷却された状態で吸気口5bからエンジン5内に至ることとなる。 Thereby, in Rankine cycle 3, as shown by the solid line arrow in FIG. 4, the working fluid discharged from discharge port 101 of electric pump P1 passes through pipe 21, and passes from second inlet 15c of boiler 15 to second passage 15f. To. The working fluid exchanges heat with the pressurized air in the boiler 15. At this time, since the pressurized air flowing through the first passage 15e has a heat of about 150 ° C., the working fluid flowing through the second passage 15f is suitably heated. On the other hand, the pressurized air flowing through the first passage 15e radiates heat to the working fluid flowing through the second passage 15f, so that the compressed air reaches the engine 5 from the intake port 5b in a cooled state. It becomes.
 こうして、ボイラ15によって加熱された作動流体は、高温高圧の状態で第2流出口15dから流出し、配管22へ流入する。この際、圧力センサ29は配管22を流通する作動流体の圧力を検出し、その検出値をコントローラ31に向けて発信する。 Thus, the working fluid heated by the boiler 15 flows out from the second outlet 15d in a high temperature and high pressure state and flows into the pipe 22. At this time, the pressure sensor 29 detects the pressure of the working fluid flowing through the pipe 22 and transmits the detected value to the controller 31.
 配管22を流通する作動流体は膨張機17の流入口17aから膨張機17内へ至る。そして、高温高圧の作動流体は膨張機17内で膨張し、減圧される。この際の圧力エネルギーによって膨張機17に接続された発電機は発電を行う。これにより、この廃熱利用装置におけるランキンサイクル3では、上記の圧力エネルギーを電力として回収する。 The working fluid that flows through the pipe 22 reaches the inside of the expander 17 from the inlet 17a of the expander 17. The high-temperature and high-pressure working fluid expands in the expander 17 and is depressurized. The generator connected to the expander 17 generates power by the pressure energy at this time. Thereby, in the Rankine cycle 3 in this waste heat utilization apparatus, said pressure energy is collect | recovered as electric power.
 膨張機17内で減圧された作動流体は流出口17bから流出し、配管23を経て凝縮器19の流入口19aから凝縮器19内へ至る。凝縮器19内の作動流体は、凝縮器19の周りの空気に放熱を行い、冷却される。この際、コントローラ31は電動ファン19cの作動量を適宜変更して、作動流体を好適に放熱させて液化させる。冷却された作動流体は流出口19bから流出し、配管24を経て電動ポンプP1の吸入口102に吸入され、再び、電動ポンプP1の吐出口101から吐出されることとなる。 The working fluid depressurized in the expander 17 flows out from the outlet 17b, and reaches the condenser 19 from the inlet 19a of the condenser 19 through the pipe 23. The working fluid in the condenser 19 dissipates heat to the air around the condenser 19 and is cooled. At this time, the controller 31 appropriately changes the operation amount of the electric fan 19c to suitably dissipate the working fluid and liquefy it. The cooled working fluid flows out from the outflow port 19b, is sucked into the suction port 102 of the electric pump P1 through the pipe 24, and is discharged from the discharge port 101 of the electric pump P1 again.
 このように、この廃熱利用装置では、ボイラ15における加圧空気と作動流体との熱交換により作動流体を十分に加熱することが可能となる。このため、この廃熱利用装置では、膨張機17で作動流体を膨張及び減圧させた際の圧力エネルギーを大きくすることができる。このため、この廃熱利用装置では、ランキンサイクル3において回収可能なエネルギーの量、すなわち、電力量を大きくすることが可能となっている。 Thus, in this waste heat utilization apparatus, the working fluid can be sufficiently heated by heat exchange between the pressurized air and the working fluid in the boiler 15. For this reason, in this waste heat utilization apparatus, the pressure energy at the time of expanding and decompressing a working fluid with the expander 17 can be enlarged. For this reason, in this waste heat utilization apparatus, it is possible to increase the amount of energy that can be recovered in the Rankine cycle 3, that is, the amount of electric power.
 また、この廃熱利用装置では、ボイラ15における熱交換によって、加圧空気を冷却させることが可能となっている。このため、加圧空気は十分に冷却され、その密度が大きくなった状態でエンジン5に吸入されることとなる。これにより、この廃熱利用装置では、エンジン5の出力を向上させることも可能となっている。 Moreover, in this waste heat utilization apparatus, the pressurized air can be cooled by heat exchange in the boiler 15. For this reason, the pressurized air is sufficiently cooled and sucked into the engine 5 in a state where the density thereof is increased. Thereby, in this waste heat utilization apparatus, it is also possible to improve the output of the engine 5.
 一方、車両の走行中に、例えば配管21~24等に亀裂が生じて配管21~24から作動流体が漏れ出した場合、ランキンサイクル3では、配管21~24を循環する作動流体の流量が次第に低下し、最終的には、配管21~24を循環する作動流体の流量がゼロとなる。この際、作動流体の圧力も次第に低下し、最終的には、圧力センサ29からコントローラ31へ発信される検出値がゼロ又は所定値以下となる。このため、コントローラ31は、警告灯を点灯させ、操縦者に対して配管21~24から作動流体が漏出したことを報知する。 On the other hand, when the working fluid leaks from the pipes 21 to 24, for example, when the pipes 21 to 24 are cracked while the vehicle is running, in the Rankine cycle 3, the flow rate of the working fluid circulating through the pipes 21 to 24 gradually increases. Finally, the flow rate of the working fluid circulating through the pipes 21 to 24 becomes zero. At this time, the pressure of the working fluid gradually decreases, and finally, the detection value transmitted from the pressure sensor 29 to the controller 31 becomes zero or a predetermined value or less. For this reason, the controller 31 turns on the warning lamp and notifies the operator that the working fluid has leaked from the pipes 21 to 24.
 これにより、操縦者は車両を停車させ、図3に示すように、開閉用コック27aの開操作を行う。これにより、開閉バルブ27及び抽気口開閉バルブ28が開状態となり、補充口21a及び抽気口21bが開放されることで、補充用タンク25内の水が補充口21aを介して配管21~24内に補充されることとなる(同図の実線矢印参照。)。ここで、補充用タンク25内の水を全て配管21内に補充する。また、補充用タンク25内の水を配管21内に補充する際、配管21~24内の空気は、抽気口21bから好適に車外に排出される(同図の破線矢印参照。)。 Thereby, the operator stops the vehicle and opens the opening / closing cock 27a as shown in FIG. As a result, the open / close valve 27 and the bleed port open / close valve 28 are opened, and the replenishment port 21a and the bleed port 21b are opened, so that the water in the replenishment tank 25 flows into the pipes 21 to 24 through the replenishment port 21a. (See the solid arrow in the figure.) Here, all the water in the replenishing tank 25 is replenished into the pipe 21. Further, when the water in the replenishing tank 25 is refilled into the pipe 21, the air in the pipes 21 to 24 is preferably discharged out of the vehicle from the bleed port 21b (see the broken line arrow in the figure).
 配管21~24内への水の補充作業が終了すれば、操縦者は再び車両を駆動させて、廃熱利用装置を作動させる。これにより、図5に示すように、ランキンサイクル3では、新たな作動流体、すなわち、補充した水が電動ポンプP1によって、配管21~24内を循環する。このため、ボイラ15では、第1通路15eを流通する加圧空気と、第2通路15fを流通する水(作動流体)との熱交換が行われる。これにより、加圧空気は水に対して放熱を行うことで、引き続き冷却されることとなる。一方、ボイラ15において加圧空気からの放熱によって加熱された水は、凝縮器19において車外の空気と熱交換されることで冷却される。 When the replenishment of water into the pipes 21 to 24 is completed, the operator drives the vehicle again and activates the waste heat utilization device. Thus, as shown in FIG. 5, in the Rankine cycle 3, a new working fluid, that is, replenished water is circulated in the pipes 21 to 24 by the electric pump P1. For this reason, in the boiler 15, heat exchange is performed between the pressurized air flowing through the first passage 15e and the water (working fluid) flowing through the second passage 15f. Thereby, the pressurized air is continuously cooled by dissipating heat to the water. On the other hand, the water heated by the heat radiation from the pressurized air in the boiler 15 is cooled by exchanging heat with air outside the vehicle in the condenser 19.
 このように、この廃熱利用装置では、走行時に何らかの原因により、例え、配管21~24から作動流体が漏れ出てしまったとしても、補充口21aに接続された補充用タンク25から新たに作動流体(水)を補充することが可能となっている。このため、この廃熱利用装置を備えた車両では、山中を走行している場合や、配送業務等を行っている場合等により、早急に修理工場等で車両の修理が行えない状況であったとしても、操縦者自身で水の補充を行うことが可能となっている。このため、この廃熱利用装置では、例え、一時的・応急的であっても、この新たに補充された水によって、引き続き加圧空気の冷却を行うことが可能となり、エンジン5の性能低下を抑制することができる。 As described above, in this waste heat utilization apparatus, even if the working fluid leaks from the pipes 21 to 24 due to some cause during traveling, the waste heat utilization apparatus is newly operated from the replenishment tank 25 connected to the replenishment port 21a. Fluid (water) can be replenished. For this reason, the vehicle equipped with this waste heat utilization device could not be repaired immediately at a repair shop or the like due to traveling in the mountains or carrying out delivery work, etc. However, it is possible to replenish water by the pilot himself. For this reason, in this waste heat utilization apparatus, even if it is temporary or emergency, the newly replenished water can continue to cool the pressurized air, thereby reducing the performance of the engine 5. Can be suppressed.
 したがって、実施例の廃熱利用装置では、作動流体の漏出時におけるエンジン5の性能低下を緊急避難的に抑制可能である。
 また、この廃熱利用装置では、補充用タンク25内の水を配管21内に補充する際に、配管21~24内の空気が抽気口21bから好適に車外に排出される。このため、この廃熱利用装置では、配管21~24に対して水が好適に補充されるとともに、補充された水がランキンサイクル3を好適に循環するようになっている。
Therefore, in the waste heat utilization apparatus of the embodiment, it is possible to suppress the performance degradation of the engine 5 at the time of leakage of the working fluid in an emergency evacuation manner.
Further, in this waste heat utilization apparatus, when the water in the replenishment tank 25 is replenished into the pipe 21, the air in the pipes 21 to 24 is preferably discharged out of the vehicle from the bleed port 21b. For this reason, in this waste heat utilization apparatus, water is preferably replenished to the pipes 21 to 24, and the replenished water is preferably circulated through the Rankine cycle 3.
 さらに、この廃熱利用装置では、補充口21aに接続された補充用タンク25を介して水を補充することが可能となっており、水の補充作業が容易となっている。さらに、この補充用タンク25の規定値まで水を注入することにより、ランキンサイクル3に対して水を過不足なく補充することが可能となっている。また、この廃熱利用装置では、補充用タンク25内に予め補充用の水を充填しているため、水を補充する際に補充用の水を別途手配することが不要となっている。 Furthermore, in this waste heat utilization apparatus, it is possible to replenish water through the replenishment tank 25 connected to the replenishment port 21a, and the water replenishment work is facilitated. Furthermore, it is possible to replenish the Rankine cycle 3 without excess or deficiency by injecting water to the specified value of the replenishment tank 25. Moreover, in this waste heat utilization apparatus, since the replenishment tank 25 is filled with replenishment water in advance, it is not necessary to separately arrange replenishment water when replenishing water.
 また、この廃熱利用装置では、補充口21aに開閉バルブ27が設けられている。そして、この開閉バルブ27及びこれに連動する抽気口開閉バルブ28は、補充口21aより水を補充する前は閉状態を維持する。このため、この廃熱利用装置では、配管21~24内の作動流体が漏れ出ていない間、つまり、ランキンサイクルにおいてHFC134aが循環している間は、ボイラ15における熱交換によって加熱された作動流体の圧力を一定に維持することが可能となっており、ランキンサイクル3において回収される電力量を安定させることが可能となっている。 Further, in this waste heat utilization apparatus, an opening / closing valve 27 is provided at the replenishing port 21a. The open / close valve 27 and the bleed port open / close valve 28 linked to the open / close valve 27 are kept closed before water is replenished from the refill port 21a. For this reason, in this waste heat utilization device, the working fluid heated by heat exchange in the boiler 15 while the working fluid in the pipes 21 to 24 is not leaking, that is, while the HFC 134a circulates in the Rankine cycle. It is possible to keep the pressure at a constant, and the amount of power recovered in the Rankine cycle 3 can be stabilized.
 一方、補充口21aから水が補充された後は開閉バルブ27及びこれに連動する抽気口開閉バルブ28が開状態を維持することにより、補充された水の圧力が配管21~24内で高まり過ぎることを防止することが可能となっている。これにより、この廃熱利用装置では、新たに補充した作動流体(水)の漏出量を減らすことができ、エンジン5の性能低下を防止可能な時間を長くすることができる。 On the other hand, after the water is replenished from the replenishing port 21a, the opening / closing valve 27 and the bleed port opening / closing valve 28 interlocked therewith are kept open, so that the pressure of the replenished water is excessively increased in the pipes 21-24. It is possible to prevent this. Thereby, in this waste heat utilization apparatus, the amount of leakage of the newly replenished working fluid (water) can be reduced, and the time during which the performance degradation of the engine 5 can be prevented can be lengthened.
 以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the spirit thereof.
 例えば、ボイラ15では、加圧空気と作動流体との熱交換に替えて、冷却水と作動流体との熱交換を行っても良い。また、駆動系1において、エンジン5で生じた排気の一部をエンジン5に還流排気として還流させる排気還流路を設け、ボイラ15では、この排気還流路を流通する還流排気と作動流体との熱交換を行う構成としても良い。また、ボイラ15を複数設けて、加圧空気と作動流体との熱交換と、冷却水と作動流体との熱交換と、還流排気と作動流体との熱交換とをそれぞれ行う構成としても良い。 For example, in the boiler 15, the heat exchange between the cooling water and the working fluid may be performed instead of the heat exchange between the pressurized air and the working fluid. Further, the drive system 1 is provided with an exhaust gas recirculation path for recirculating a part of the exhaust gas generated in the engine 5 to the engine 5 as recirculated exhaust gas. In the boiler 15, heat of the recirculated exhaust gas and the working fluid flowing through the exhaust gas recirculation path is provided. It is good also as composition which performs exchange. A plurality of boilers 15 may be provided to perform heat exchange between the pressurized air and the working fluid, heat exchange between the cooling water and the working fluid, and heat exchange between the reflux exhaust and the working fluid.
 また、補充口21a及び抽気口21bは、配管22又は配管23又は配管24に設けられても良い。この際、補充口21aが形成される配管と、抽気口21bが形成される配管とは、同一であっても良く別々であっても良い。 Further, the replenishment port 21a and the extraction port 21b may be provided in the pipe 22, the pipe 23, or the pipe 24. At this time, the piping in which the replenishing port 21a is formed and the piping in which the extraction port 21b is formed may be the same or different.
 本発明はトラックやバス等の運送車両の他、乗用自動車等の車両に利用可能である。 The present invention is applicable to vehicles such as passenger cars as well as transport vehicles such as trucks and buses.

Claims (5)

  1.  車両を駆動させる駆動系に対して用いられるとともに作動流体を循環させるランキンサイクルを備える、車両用廃熱利用装置であって、
     前記ランキンサイクルは、ポンプと、ボイラと、膨張機と、凝縮器とを有するとともに、前記ポンプ、前記ボイラ、前記膨張機及び前記凝縮器の順で前記作動流体を循環させる配管を有し、
     前記駆動系は、エンジンを有するとともに、冷却液路、過給器及び排気還流路の少なくとも一つを有し、
     前記冷却液路には前記エンジンの冷却を行う冷却液が流通し、
     前記過給器は、外気を吸入して前記エンジンに対して加圧空気を供給し、
     前記排気還流路は、前記エンジンで生じた排気の一部を前記エンジンに還流排気として還流させ、
     前記ボイラは、前記冷却液、前記加圧空気及び前記還流排気のいずれか一つと前記作動流体との間で熱交換を可能とするように構成され、
     前記配管は補充口を有し、該補充口は、前記作動流体の漏出時に前記配管の内部を該配管の外部に連通させるように前記配管を開放し、それによって該配管の外部から該配管の内部に新たな作動流体を補充可能にする、
    車両用廃熱利用装置。
    A waste heat utilization device for a vehicle comprising a Rankine cycle used for a drive system for driving a vehicle and circulating a working fluid,
    The Rankine cycle has a pump, a boiler, an expander, and a condenser, and has a pipe for circulating the working fluid in the order of the pump, the boiler, the expander, and the condenser.
    The drive system has an engine and at least one of a coolant path, a supercharger, and an exhaust gas recirculation path.
    Coolant for cooling the engine flows through the coolant path,
    The supercharger sucks outside air and supplies pressurized air to the engine,
    The exhaust gas recirculation path causes a part of the exhaust gas generated in the engine to recirculate to the engine as recirculated exhaust gas,
    The boiler is configured to allow heat exchange between the working fluid and any one of the coolant, the pressurized air, and the reflux exhaust,
    The piping has a replenishing port, and the replenishing port opens the piping so that the inside of the piping communicates with the outside of the piping when the working fluid leaks, and thereby the piping is connected from the outside of the piping. Make it possible to refill a new working fluid inside,
    Waste heat utilization equipment for vehicles.
  2.  前記配管は該配管の内部の空気を該配管の外部へ排出する空気排出部を有する、請求項1記載の車両用廃熱利用装置。 The vehicle waste heat utilization device according to claim 1, wherein the pipe has an air discharge unit for discharging air inside the pipe to the outside of the pipe.
  3.  前記補充口には補充用タンクが接続されている、請求項1又は2記載の車両用廃熱利用装置。 The vehicle waste heat utilization device according to claim 1 or 2, wherein a replenishment tank is connected to the replenishment port.
  4.  前記補充口は封止部を有し、該封止部は、前記補充口を閉鎖して前記配管の外部に対して前記配管の内部を密閉する閉状態から前記補充口を開放して前記配管の内部を前記配管の外部に開放する開状態へ移行可能に構成され、
     前記封止部は、前記補充口から前記新たな作動流体が補充された後は前記開状態を維持する請求項1乃至3のいずれか1項記載の車両用廃熱利用装置。
    The replenishing port has a sealing portion, and the sealing portion closes the replenishing port and opens the replenishing port from a closed state in which the inside of the piping is sealed with respect to the outside of the piping. Configured to be able to shift to an open state in which the inside of the pipe is opened to the outside of the pipe,
    The waste heat utilization apparatus for a vehicle according to any one of claims 1 to 3, wherein the sealing portion maintains the open state after the new working fluid is replenished from the replenishing port.
  5.  前記駆動系は前記過給器を有し、
     前記ボイラは前記加圧空気と前記作動流体との間で熱交換を可能とするように構成される、請求項1乃至4のいずれか1項記載の車両用廃熱利用装置。
    The drive system has the supercharger,
    The vehicle waste heat utilization device according to any one of claims 1 to 4, wherein the boiler is configured to enable heat exchange between the pressurized air and the working fluid.
PCT/JP2012/080743 2011-12-09 2012-11-28 Waste heat utilization device for vehicle WO2013084769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270131 2011-12-09
JP2011270131A JP2013122173A (en) 2011-12-09 2011-12-09 Waste heat utilization device for vehicle

Publications (1)

Publication Number Publication Date
WO2013084769A1 true WO2013084769A1 (en) 2013-06-13

Family

ID=48574139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080743 WO2013084769A1 (en) 2011-12-09 2012-11-28 Waste heat utilization device for vehicle

Country Status (2)

Country Link
JP (1) JP2013122173A (en)
WO (1) WO2013084769A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520713A (en) * 2014-06-26 2017-07-27 ボルボトラックコーポレーション Exhaust system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763835B2 (en) * 2017-05-10 2020-09-30 株式会社神戸製鋼所 Thermal energy recovery system and detection unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106039A (en) * 2003-10-02 2005-04-21 Honda Motor Co Ltd Liquid level position control device for condenser in rankine cycle device
JP2005120992A (en) * 2003-10-20 2005-05-12 Honda Motor Co Ltd Non-condensable gas exhaust device for condenser
JP2005146990A (en) * 2003-11-14 2005-06-09 Honda Motor Co Ltd Rankine cycle device
JP2007255278A (en) * 2006-03-23 2007-10-04 Hino Motors Ltd Rankine cycle system of engine
JP2007332853A (en) * 2006-06-14 2007-12-27 Denso Corp Waste heat utilization apparatus
JP2008008224A (en) * 2006-06-29 2008-01-17 Denso Corp Waste heat utilization device
JP2010242516A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Gas-liquid separator and gas-liquid separation system
JP2011140879A (en) * 2010-01-05 2011-07-21 Yanmar Co Ltd Waste heat recovery system of supercharged engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106039A (en) * 2003-10-02 2005-04-21 Honda Motor Co Ltd Liquid level position control device for condenser in rankine cycle device
JP2005120992A (en) * 2003-10-20 2005-05-12 Honda Motor Co Ltd Non-condensable gas exhaust device for condenser
JP2005146990A (en) * 2003-11-14 2005-06-09 Honda Motor Co Ltd Rankine cycle device
JP2007255278A (en) * 2006-03-23 2007-10-04 Hino Motors Ltd Rankine cycle system of engine
JP2007332853A (en) * 2006-06-14 2007-12-27 Denso Corp Waste heat utilization apparatus
JP2008008224A (en) * 2006-06-29 2008-01-17 Denso Corp Waste heat utilization device
JP2010242516A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Gas-liquid separator and gas-liquid separation system
JP2011140879A (en) * 2010-01-05 2011-07-21 Yanmar Co Ltd Waste heat recovery system of supercharged engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520713A (en) * 2014-06-26 2017-07-27 ボルボトラックコーポレーション Exhaust system

Also Published As

Publication number Publication date
JP2013122173A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP6530596B2 (en) Car cooling system
US8689741B2 (en) Thermal management system, vehicles embodying same and methods related thereto
US9758013B2 (en) Transport refrigeration system with engine shaft horsepower augmentation
US9827824B2 (en) Thermal management system for vehicle
US20050279113A1 (en) Heat exchange apparatus and hybrid vehicle including heat exchange apparatus
US8191662B2 (en) Device and method for heating a crankcase ventilation system in a hybrid vehicle
WO2013001824A1 (en) Hydrogen station
WO2013024535A1 (en) Vehicle equipment temperature adjusting system
WO2006035764A1 (en) Hydrogen station, hydrogen filling method, and vehicle
US10759259B2 (en) Combined cooling and extinguishing system
JP5895739B2 (en) Thermal management system for vehicles
US9970347B2 (en) Cooling system having pulsed fan control
WO2013084769A1 (en) Waste heat utilization device for vehicle
JP7278647B2 (en) In-vehicle power generator and refrigeration vehicle equipped with the same
JP2021054316A (en) Vehicle control apparatus
JP5929697B2 (en) Thermal management system for vehicles
JP6180185B2 (en) Vehicle battery heating device
CN110821635B (en) Cooling device for vehicle drive system
JP6413509B2 (en) Aircraft electric drive unit cooling system
JP6258791B2 (en) Construction machinery
JP2016180523A (en) Refrigeration device for land transportation
US20230011420A1 (en) Cooling system
US20230102528A1 (en) Vehicle energy management system, vehicle comprising such vehicle energy management system, and method of controlling vehicle energy management system
JP2013117201A (en) Waste heat utilizing device
JP6077293B2 (en) In-vehicle purge system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855462

Country of ref document: EP

Kind code of ref document: A1