WO2013084719A1 - Measurement device, measurement method, program and recording medium - Google Patents

Measurement device, measurement method, program and recording medium Download PDF

Info

Publication number
WO2013084719A1
WO2013084719A1 PCT/JP2012/080200 JP2012080200W WO2013084719A1 WO 2013084719 A1 WO2013084719 A1 WO 2013084719A1 JP 2012080200 W JP2012080200 W JP 2012080200W WO 2013084719 A1 WO2013084719 A1 WO 2013084719A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
living body
unit
vein
light
Prior art date
Application number
PCT/JP2012/080200
Other languages
French (fr)
Japanese (ja)
Inventor
中村 憲一郎
佐藤 英雄
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2013084719A1 publication Critical patent/WO2013084719A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Definitions

  • the present disclosure relates to a measuring device, a measuring method, a program, and a recording medium.
  • a technique for measuring a pulse waveform (arterial pulse waveform) is frequently used.
  • the pulse waveform is used for circulatory system examination (for example, arteriosclerosis measurement, stress measurement) by analyzing the waveform shape, and also for pulse oximeter (arterial blood oxygen saturation measuring device) etc. It's being used.
  • optical volume pulse wave method which is one of techniques for measuring a pulse waveform transcutaneously without blood collection or puncture.
  • Patent Document 1 is one of techniques for measuring a pulse waveform transcutaneously without blood collection or puncture.
  • a human pulse is usually about 50 to 150 times per minute, which corresponds to a signal of about 0.8 Hz to 2.5 Hz in the frequency domain.
  • a frequency filter having a steep cut-off characteristic is used.
  • filter circuits having steep cut-off characteristics tend to be large in scale, and it has been difficult to ensure sufficient performance with a filter circuit of a practical scale. For this reason, there may occur a case where the pulsation component cannot be sufficiently separated under adverse conditions such as a case where sufficient pulsation cannot be obtained due to low perfusion.
  • the present disclosure proposes a measuring device, a measuring method, a program, and a recording medium that can separate arterial pulsation components without using a frequency filter having a steep cutoff characteristic. To do.
  • a measuring unit that irradiates at least a part of a living body with light having a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body, and the measuring unit Using the measurement data obtained by the above, the vein position specifying unit for specifying the position corresponding to the vein existing inside the living body at the measurement site of the living body, the time change of the measurement data by the measuring unit, and the vein position specifying
  • a pulsation component separation unit that separates components derived from pulsations of arteries existing in the living body from time changes of the measurement data based on the position of the vein specified by the unit;
  • An oxygen saturation calculation unit that calculates oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the dynamic component separation unit is provided. It is.
  • At least a part of a living body is irradiated with light of a predetermined wavelength, the living body is imaged by an image sensor, and the degree of absorption of the light by the living body is measured.
  • the position corresponding to the vein existing inside the living body at the measurement site of the living body, the time change of the measurement data, and the position of the specified vein Based on this, the component derived from the pulsation of the artery existing inside the living body among the time changes of the measurement data is separated, and the component derived from the pulsation of the artery of the separated measurement data is used And calculating oxygen saturation in arterial blood.
  • a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
  • a vein position specifying function for specifying a position corresponding to a vein existing in the living body at a measurement site of the living body using measurement data by the measuring section, and a time of measurement data by the measuring section Based on the change and the position of the vein specified by the vein position specifying function, the pulsation that separates components derived from the pulsation of the artery existing inside the living body from the temporal change of the measurement data
  • Oxygen for calculating oxygen saturation in arterial blood using a component separation function and a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function Program for realizing a sum calculation function is provided.
  • a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
  • a vein position specifying function for specifying a position corresponding to a vein existing in the living body at a measurement site of the living body using measurement data by the measuring section, and a time of measurement data by the measuring section Based on the change and the position of the vein specified by the vein position specifying function, the pulsation that separates components derived from the pulsation of the artery existing inside the living body from the temporal change of the measurement data
  • Oxygen for calculating oxygen saturation in arterial blood using a component separation function and a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function Recording medium having a program recorded thereon for realizing a sum calculation function is provided.
  • the measurement unit that irradiates at least a part of a living body with light having a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body; Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body, a time change of the measurement data by the measuring unit, and the vein Based on the position of the vein specified by the position specifying unit, a pulsation component separation unit that separates a component derived from the pulsation of an artery existing inside the living body from the time change of the measurement data, An oxygen saturation calculation unit that calculates oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, and the measurement
  • the light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body, and
  • At least a part of a living body is irradiated with light of a predetermined wavelength, the living body is imaged by an image sensor, and the degree of absorption of the light by the living body is measured.
  • the position corresponding to the vein existing inside the living body at the measurement site of the living body, the time change of the measurement data, and the position of the specified vein Based on this, the component derived from the pulsation of the artery existing inside the living body among the time changes of the measurement data is separated, and the component derived from the pulsation of the artery of the separated measurement data is used And calculating oxygen saturation in arterial blood, and when measuring the degree of light absorption, at least two types of measurement light, red light and infrared light having a predetermined wavelength,
  • To living body Selfish injection multiple sensors by regularly disposed a sensor in a predetermined arrangement, for detecting the measurement light transmitted through the living body, measurement method is provided.
  • At least a part of a living body is irradiated with light of a predetermined wavelength, and the living body is imaged by an image sensor, whereby the degree of absorption of the light by the living body is measured and measured.
  • a position corresponding to a vein existing inside the living body is specified in the measurement site of the living body, and based on the time change of the measurement data and the specified position of the vein, The component derived from the pulsation of the arteries existing inside the living body is separated from the time change of the measurement data, and the component derived from the pulsation of the arteries of the separated measurement data is used to Oxygen saturation is calculated.
  • arterial pulsation components can be separated without using a frequency filter having a steep cutoff characteristic.
  • FIGS. 1 and 2 are explanatory diagrams showing the configuration of a general pulse oximeter.
  • FIG. 3 is an explanatory diagram showing the relationship between the skin tissue of the living body and the absorbance.
  • a pulse oximeter is a device that measures the oxygen saturation of arterial blood percutaneously (referred to as percutaneous oxygen saturation, SpO2). As shown in FIG. 1, the pulse oximeter 700 includes a general pulse wave measuring device 701 as its component.
  • the pulse oximeter 700 measures biological information with an absorbance measurement unit 715 to which a measurement probe 703 is connected.
  • the measurement probe 703 includes a light emitting unit 711 and a light receiving unit 713, and measures a temporal change in light absorption by the living body, as will be described later.
  • the measurement result relating to the light absorption measured by the measurement probe 703 is output to the frequency filter 717, and the frequency component derived from the pulsation of the artery (hereinafter, also simply referred to as “pulsation component”) in the frequency filter 717.
  • the information regarding the separated pulsation component is output to the oxygen saturation calculation unit 719, and the oxygen saturation is calculated based on the amplitude of the pulsation component.
  • the calculated oxygen saturation is output to the oxygen saturation output unit 721, and is output to the user by the oxygen saturation output unit 721.
  • a plurality of light emitting units 711 are arranged on the measurement probe 703 and are used by switching in a time division manner.
  • light having a wavelength belonging to the band from red light to near-infrared light is often used.
  • the measurement probe 703 of the pulse oximeter 700 irradiates incident light from the light emitting unit 711 onto the skin surface of the living body and reflects the emitted light that is reflected or diffused in the living body, Light is received by the light receiving unit 713. At this time, the incident light is partially absorbed by arteries, veins and other body tissues existing in the living body and is observed as outgoing light.
  • the concentration of the substance can be calculated from the intensity ratio of the incident light and the emitted light.
  • hemoglobin (Hb) in blood varies depending on the presence or absence of binding to oxygen, and also varies depending on the wavelength to be observed. Therefore, by measuring the absorbance at a plurality of wavelengths, the ratio of hemoglobin (Hb) not bound to oxygen and hemoglobin bound to oxygen (oxygenated hemoglobin: HbO2) can be obtained.
  • the percentage of oxygenated hemoglobin in the total hemoglobin contained in blood is called blood oxygen saturation.
  • Particularly useful biometric information is arterial oxygen saturation SaO2 (arterial oxygen saturation), and this oxygen saturation SaO2 can be calculated by the following equation (12).
  • the aforementioned SpO2 is obtained by measuring SaO2 transcutaneously. Since SpO2 can be measured non-invasively, it is used in a very wide range, but the problem is how close to the measurement method that can be obtained with a measurement method that performs direct observation.
  • the international standard for pulse oximeters stipulates that the error with SaO2 is within 4% when SpO2 is in the range of 70% to 100%.
  • the emitted light observed by the light receiving unit 713 of the measurement probe 703 in the pulse oximeter 700 is obtained by the incident light being absorbed by the body tissue and blood components in the process of reflection / scattering in the body. It is possible to calculate SpO2 by analyzing the emitted light intensity, but since SpO2 is the oxygen saturation level of arterial blood, it is required to exclude the influence of light absorption other than from arterial blood from the emitted light.
  • the elements that cause light absorption in incident light can be broadly classified into three types: arterial blood, venous blood, and other body tissues.
  • the emitted light receives light absorption as shown in FIG. Equation 13 below is an extension of the Lambert-Beer law shown in Equation 11 above and is called the extended Lambert-Beer rule.
  • the first term on the rightmost side represents light absorption caused by components other than blood
  • the second term on the rightmost side represents light absorption caused by venous blood
  • the third term represents light absorption caused by arterial blood
  • the fourth term on the rightmost side represents light absorption caused by diffusion in the living body.
  • the pulse oximeter uses the fact that only the artery is pulsatile among the above three types of elements, and separates the absorption of arterial blood from other elements. That is, the time differentiation of the above expression 13 eliminates the influence of light absorption by veins and other body tissues that do not have pulsatile properties (in other words, no time change). In the signal processing, this differentiation operation corresponds to the removal of the DC component by the frequency filter, and is nothing but the pulse waveform extraction processing.
  • equation 16 substituting equation 15 into equation 12, the following equation 16 can be obtained.
  • the parameters ⁇ , ⁇ , and ⁇ are as the following equations 17a to 17c.
  • the value of SaO2 is given as a function proportional to the parameter ⁇ .
  • the parameter ⁇ is the ratio of the amplitude of the pulse waveform measured at the wavelength ⁇ 1 and the wavelength ⁇ 2 as in the above equation 17c.
  • the parameters ⁇ and ⁇ can be theoretically calculated from the extinction coefficient of hemoglobin as shown in the equations 17a and 17b. However, in many cases, the conversion tables obtained by experiments in advance are used. It is obtained by performing calibration based on By doing so, it is possible to perform correction including the deviation between the condition in which Lambert-Beer's law is established and the condition in the actual living body.
  • Such a method is the operation principle of the pulse oximeter, and the pulse oximeter calculates the arterial oxygen saturation SpO2 using the measurement results of two wavelengths.
  • a frequency filter is used to separate a signal corresponding to a pulsating component of an artery, but a signal corresponding to a pulsating component of an artery is clearly separated. Therefore, it is required to use a frequency filter having a steep cutoff characteristic.
  • frequency filter circuits having steep cut-off characteristics tend to be large in scale, if a realistic frequency filter circuit is used to reduce the scale, sufficient separation of pulsation components can be achieved. There was a trade-off relationship that there was a possibility that it could not be done.
  • the present inventors have arrived at a measurement apparatus and a measurement method according to an embodiment of the present disclosure as described below, and have a frequency having a steep cutoff characteristic.
  • the arterial pulsation component can be accurately separated without using a filter.
  • FIG. 4 is a block diagram illustrating the configuration of the measurement apparatus according to the present embodiment
  • FIGS. 5 and 6 are explanatory diagrams for describing the measurement unit according to the present embodiment
  • FIG. 7 is a block diagram illustrating the vein position specifying unit according to the present embodiment
  • FIG. 8 is a block diagram illustrating the configuration of the pulsation component separating unit according to the present embodiment
  • FIG. 9 is an explanatory diagram showing the relationship between the skin tissue of the living body and the absorbance in the measuring apparatus according to the present embodiment.
  • the measurement apparatus 10 includes a measurement unit 101, a measurement control unit 103, a measurement data acquisition unit 105, a vein position specifying unit 107, a pulsation component separation unit 109, The oxygen saturation calculation unit 111, the measurement result output unit 113, and the storage unit 115 are mainly provided.
  • the measurement unit 101 functions as a measurement probe that measures at least a part of a living body.
  • the measurement unit 101 according to the present embodiment irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of light absorption by the living body.
  • the measurement unit 101 transmits at least two types of measurement light, that is, red light having a predetermined wavelength (for example, around 660 nm) and near infrared light (for example, around 940 nm) toward the living body. And a plurality of sensors regularly arranged in a predetermined arrangement, and a detection unit (for example, an image) that detects measurement light emitted from the light source unit and transmitted through the living body. Sensor).
  • red light having a predetermined wavelength (for example, around 660 nm) and near infrared light (for example, around 940 nm) toward the living body.
  • a detection unit for example, an image
  • the light source unit of the measurement unit 101 irradiates a part of the living body (measurement site) with each of red light and near infrared light as incident light, and captures a skin image of the measurement site.
  • incident light When incident light is applied to the skin, the incident light is reflected and diffused in the living body, and then is emitted as emitted light from the surface of the living body, and is detected by a detection unit having an image sensor.
  • the incident light is partially absorbed by an artery, vein, or other biological tissue, the amount of emitted light is smaller than the amount of incident light.
  • a detection part measures distribution of the light quantity of emitted light, and makes it measurement data regarding a measurement part.
  • an optical system that can perform imaging while being in close contact with the body surface is desirable in order to avoid the influence of the positional deviation of the image sensor and the change in distance from the living body.
  • An example of such an optical system is a microlens array (MLA) optical system as shown in FIG.
  • MLA microlens array
  • FIG. 6 When the MLA optical system as shown in FIG. 6 is used in combination with incident light having an appropriate wavelength, in-vivo imaging can be performed with the image sensor in close contact with the body surface.
  • the light source 121 is used to measure a measurement site of a living body, and emits measurement light belonging to a predetermined wavelength band toward the surface of the living body.
  • the light source 121 is disposed on a predetermined frame F such that the measurement light exit surface faces the living body surface.
  • the light source 121 is a red light (for example, red light having a wavelength of 660 nm) used for measuring hemoglobin (reduced hemoglobin) or a near-infrared light (for example, used for measuring oxygenated hemoglobin).
  • red light for example, red light having a wavelength of 660 nm
  • near-infrared light for example, used for measuring oxygenated hemoglobin.
  • near-infrared light having a wavelength of 940 nm is emitted.
  • Such light having a plurality of wavelengths is emitted from the light source 121 in a time division manner, for example.
  • the wavelengths of the red light and near infrared light described above are merely examples, and the light emitted from the light source 121 of the measurement apparatus 10 according to the present embodiment is not limited to the above example.
  • a light source 121 for example, a light emitting diode (LED), a small laser, or the like can be used, and one or a plurality of such light emitting devices are provided as the light source 121.
  • LED light emitting diode
  • a small laser or the like
  • one or a plurality of such light emitting devices are provided as the light source 121.
  • the measurement control unit 103 described later controls the emission timing of the measurement light, the intensity of the measurement light emitted, and the like.
  • the shape of the frame F in which the light source 121 is disposed is not particularly limited, but by providing a wall as shown in FIG. 6 between the light source 121 and a detection unit described later, Such a wall portion can be used as a light shielding wall for preventing light emitted from the light source 121 from entering the detection portion.
  • the detection unit included in the measurement apparatus 10 according to the present embodiment includes a plurality of sensors regularly arranged in a predetermined arrangement, and a plurality of measurement lights emitted from the light source 121 and transmitted through the living body. This is detected by the sensor.
  • the detection unit according to the present embodiment is configured by a so-called multi-tap sensor.
  • the detection unit included in the measurement apparatus 10 includes, for example, a transparent substrate 123 that can transmit light in a wavelength band to which measurement light emitted from the light source 121 belongs, and a first light shielding.
  • the body 125, the microlens array 127, the second light shield 131, and the sensor 133 are mainly provided.
  • the transparent substrate 123 is a part where a part of the living body surface is disposed.
  • the transparent substrate 123 is formed using a substrate that can transmit light having a wavelength used in the measurement process.
  • the directivity is controlled by the first light shield 125.
  • the first light shield 125 functions as a directivity control plate that controls the directivity of the measurement light transmitted through the transparent substrate 123, and is provided at the boundary between adjacent microlenses 129 in the microlens array 127 described later. It has been. By providing such a first light shield 125, the directivity of the measurement light incident on each microlens 129 can be controlled, and more accurate measurement can be performed. The measurement light that has passed through the first light shield 125 is guided to the microlens array 127.
  • the microlens array 127 is composed of a plurality of microlenses 129 that are light receiving lenses, and each microlens 129 is a lattice on a predetermined substrate along the x and y directions. Are arranged in a shape. Each microlens 129 guides the measurement light incident on the microlens 129 to a sensor 133 described later. Since the microlens array 127 is a lens array with a small curvature of field and no distortion in the depth direction, good measurement data can be obtained by using such a microlens array 129.
  • each microlens 129 constituting the microlens array 127 includes the skin structure to which attention is paid by the measuring apparatus 10 according to the present embodiment (for example, a depth range of 10 mm from the body surface). Up to focus).
  • the number of microlenses 129 arranged in the microlens array 127 according to the present embodiment is not limited to the example shown in the upper part of FIG.
  • the number of microlenses 129 arranged in the microlens array 127 according to the present embodiment can be freely set according to the size of a living body to be imaged and the size of the sensor 133.
  • the measurement light incident on the microlens array 127 is condensed by the microlens 129 and imaged on a sensor 133 described later.
  • the second light shield 131 is provided at the boundary between the microlenses 129 adjacent to each other.
  • the second light shield 131 can control the directivity of the measurement light transmitted through the microlens array 127 and separates the light incident on each microlens 129 from the light incident on the adjacent microlens 129. be able to. Thereby, in the measuring apparatus 10 according to the present embodiment, it is possible to select measurement light condensed on the sensor 133.
  • the sensor 133 detects the intensity of the measurement light at each position on the xy plane shown in the upper part of FIG.
  • This sensor 133 converts the intensity of measurement light received by a photo detector (PD) or the like into an electrical signal and outputs it to a measurement data acquisition unit 105 described later.
  • a CCD (Charge Coupled Devices) type image sensor As this sensor 133, a CCD (Charge Coupled Devices) type image sensor, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, a sensor using an organic EL as a light receiving element, a TFT (Thin Film Transistor) type image sensor, or the like.
  • An area sensor can be used.
  • the scanning timing of the sensor 133 is controlled by the measurement control unit 103 described later, and for example, the detection intensity at an arbitrary position in the upper part of FIG. 6 can be output to the measurement data acquisition unit 105.
  • each microlens forms a small image in a small area of the light receiving element array immediately below. Since these images have overlapping portions with surrounding images, one complete image without overlapping can be obtained by reconstructing by removing unnecessary portions.
  • the image processing of the MLA optical system has a feature that, when performing this reconstruction, it is possible to generate images focused on different distances by changing the area extracted from the original image. That is, it is possible to focus on a subcutaneous tissue (for example, venous tissue) existing at a depth of several millimeters from the body surface without moving the mechanical optical system while being in close contact with the body surface. Is good. Since the artery is deep in the body and is strongly influenced by light diffusion, an image is not formed and is observed only as a light absorption change over a wide area due to the pulsation of arterial blood.
  • the measurement apparatus 10 can be reduced in size. Further, by using the microlens array optical system, it is possible to image a finer blood vessel (vein), and it is possible to improve processing accuracy in the pulsation component separation unit 109 described later.
  • the measurement unit 101 according to the present embodiment has been described in detail above with reference to FIGS. 5 and 6. Hereinafter, returning to FIG. 4 again, the measurement control unit 103 according to the present embodiment will be described.
  • the measurement control unit 103 is realized by, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication device, and the like.
  • the measurement control unit 103 controls the whole living body measurement process in the measurement unit 101 by performing drive control of the light source unit and the detection unit provided in the measurement unit 101. More specifically, the measurement control unit 103 performs sensor drive control such as scanning timing of the image sensor used in the detection unit and selection of pixels of the image sensor for acquiring information based on a predetermined synchronization signal or the like. Do.
  • the measurement control unit 103 also performs drive control on the emission timing and intensity of the measurement light for the light source unit.
  • the light source unit of the measurement unit 101 can emit measurement light having different wavelengths in a time division manner, and the detection unit of the measurement unit 101 can Measurement data at an arbitrary position on the image sensor can be acquired in a time division manner.
  • Measurement data measured by the measurement unit 101 whose drive is controlled by the measurement control unit 103 is output to a measurement data acquisition unit 105 described later, and measurement data analysis processing is performed.
  • the measurement control unit 103 can refer to various programs, parameters, databases, and the like recorded in the storage unit 115 and the like which will be described later.
  • the measurement data acquisition unit 105 is realized by, for example, a CPU, a ROM, a RAM, a communication device, and the like.
  • the measurement data acquisition unit 105 acquires measurement data measured by the measurement unit 101 (imaging data of a measurement site imaged using light of a predetermined wavelength) from the measurement unit 101, and a later-described vein position specifying unit 107 and Output to the pulsating component separation unit 109.
  • the measurement data acquisition unit 105 sequentially acquires the measurement data output from the measurement unit 101 at every predetermined timing, so that the pulsation component separation unit 109 and the oxygen saturation calculation unit 111 described later change the measurement data over time. Can be grasped.
  • the measurement data acquisition unit 105 may store the acquired measurement data in the storage unit 115 described later as history information in association with time information regarding the date and time when the data was acquired.
  • the vein position specifying unit 107 is realized by, for example, a CPU, a ROM, a RAM, and the like.
  • the vein position specifying unit 107 uses the measurement data measured by the measuring unit 101 to specify the position of the vein existing inside the living body at the measurement site of the living body.
  • the measurement light emitted from the light source unit provided in the measurement unit 101 and entering the inside of the body is scattered inside the body and reaches the detection unit.
  • light absorption by venous blood occurs at a position where a vein in the living body exists.
  • the intensity of light emitted from the living body is reduced. Therefore, in the imaging data measured by the measurement unit 101, the position corresponding to the vein exists as an area having lower luminance than the surroundings.
  • an image showing the shape of the vein represented in the imaging data is referred to as a vein pattern.
  • the vein position specifying unit 107 includes, for example, a function for performing preprocessing of vein pattern extraction on the measurement data output from the measurement data acquisition unit 105 (that is, the captured image of the measurement site), and the vein It has a function of performing pattern extraction and a function of performing post-processing of vein pattern extraction.
  • the pre-processing of the vein pattern extraction described above includes, for example, a process of detecting the contour of a finger from a vein image and identifying where the finger is located in the vein image, and using the detected finger contour. This includes processing for rotating the captured image and correcting the angle of the captured image.
  • the difference filter is a filter that outputs a large value as an output value at a portion where the difference between the pixel of interest and the surrounding pixels is large between the pixel of interest and the surrounding pixels.
  • the difference filter is a filter that emphasizes lines and edges in an image by calculation using a difference between a pixel of interest and a gradation value in the vicinity thereof.
  • a differential filter such as a primary spatial differential filter or a secondary spatial differential filter may be used as the differential filter.
  • the primary spatial differential filter is a filter that calculates a difference between gradation values of adjacent pixels in the horizontal direction and the vertical direction for the pixel of interest
  • the secondary spatial differential filter is the pixel of interest. Is a filter that extracts a portion where the amount of change in the difference in gradation value is large.
  • the following Log (Laplacian of Gaussian) filter can be used.
  • the Log filter (Formula 103) is represented by the second derivative of a Gaussian filter (Formula 102) which is a smoothing filter using a Gaussian function.
  • represents a standard deviation of the Gaussian function and is a variable representing the degree of smoothing of the Gaussian filter.
  • ⁇ in the following equation 103 is a parameter representing the standard deviation of the Gaussian function as in the equation 102, and changing the value of ⁇ can change the output value when the log filter processing is performed. it can.
  • the post-processing of the vein pattern extraction described above includes, for example, threshold processing, binarization processing, thinning processing, and the like performed on the captured image after application of the difference filter. Through such post-processing, it is possible to extract a skeleton of a vein pattern.
  • the vein position specifying unit 107 When the vein pattern is extracted by the method described above, the vein position specifying unit 107 generates information representing the position of the vein existing inside the living body at the measurement site of the living body based on the extracted vein pattern.
  • the information indicating the position of the vein is referred to as a vein mask.
  • vein mask generated by the vein position specifying unit 107 will be briefly described with reference to FIG.
  • FIG. 7A is a captured image captured by the measurement unit 101 according to the present embodiment
  • FIG. 7B illustrates a vein pattern extracted from the captured image illustrated in FIG. It is a schematic diagram. Referring to FIG. 7 (a), it can be seen that the shape of the veins appears dark. This is because incident light is absorbed by venous blood. Therefore, for example, in the captured image as shown in FIG. 7A, it can be determined that the region where the brightness value is darker than the surroundings is the position where the vein exists.
  • the vein position specifying unit 107 When the vein position specifying unit 107 according to the present embodiment extracts the vein pattern as illustrated in FIG. 7B using the captured image as illustrated in FIG. As shown in c), the vein pattern is divided into a plurality of small regions.
  • the number of divisions into small areas is not particularly limited, and may be determined as appropriate according to the number of pixels of the captured image, the required measurement accuracy, and the like.
  • the vein position specifying unit 107 determines whether the average luminance for each small region shown in FIG. 7C is brighter than a predetermined threshold (whether the average luminance is larger than the predetermined threshold), The vein pattern is binarized. That is, the vein position specifying unit 107 treats the pixel value of the small area having the average luminance equal to or higher than the predetermined threshold as 1, and treats the pixel value of the small area having the average luminance less than the predetermined threshold as 0. As shown in FIG. 7D, a binarized image of a vein pattern can be generated. The vein position specifying unit 107 uses such a binarized image of the vein pattern as a vein mask.
  • the vein position specifying unit 107 When the vein position specifying unit 107 generates the vein mask in this manner, the vein position specifying unit 107 outputs the generated vein mask to the pulsation component separating unit 109 described later.
  • vein masks As described above for the first pulse wave measurement. However, two or more vein masks may be generated.
  • the details of the vein pattern extraction processing performed by the vein position specifying unit 107 are not limited to the above processing method, and any known processing method can be used.
  • the pulsating component separation unit 109 is realized by, for example, a CPU, a ROM, a RAM, and the like.
  • the pulsation component separation unit 109 is present in the living body among the time changes of the measurement data based on the time change of the measurement data by the measurement unit 101 and the position of the vein specified by the vein position specifying unit 107. Isolate components derived from arterial pulsations.
  • the pulsation component separation unit 109 includes a spatial filter unit 141 and a frequency filter unit 143 as shown in FIG.
  • the spatial filter unit 141 is realized by, for example, a CPU, a ROM, a RAM, and the like.
  • the spatial filter unit 141 corresponds to the vein position from a plurality of measurement data obtained by continuously imaging the measurement site based on the vein position (ie, vein mask) specified by the vein position specifying unit 107. Exclude data. Thereafter, the spatial filter unit 141 excludes the vein part and calculates the average luminance for each measurement data of the light receiving element at the position where there is no vein. By arranging the average luminance calculated in this manner in time series for each image frame, the spatial filter unit 141 causes body tissues other than venous blood (that is, arterial blood and non-venous blood) for each small region as shown in FIG. Absorbance time change data by other body tissues) can be generated.
  • the light absorption measured at a position without a vein is in a state in which a light absorption component derived from venous blood is excluded from the beginning. Since the light received at the position where the vein does not exist is not absorbed by the venous blood, the ratio of the light absorption component of the arterial blood to be measured is relatively large compared to the light received at the position where the vein exists. Become. Therefore, the signal-to-noise ratio (Signal to Noise Ratio: S / N) can be improved by referring to the vein mask image and using measurement data at a position where no vein exists.
  • the process of performing the separation based on the spatial position recognized as the vein from the captured image is a process corresponding to the information separation by the spatial filter.
  • the spatial filter unit 141 When the spatial filter unit 141 generates the time change data of the absorbance using the vein mask and the measurement data, the spatial filter unit 141 outputs the generated time change data to the frequency filter unit 143 described later.
  • the frequency filter unit 143 is realized by, for example, a CPU, a ROM, a RAM, and the like.
  • the frequency filter unit 143 separates a predetermined frequency component from the measurement data output from the spatial filter unit 141 and excluding data corresponding to the vein position. Thereby, the frequency filter unit 143 excludes a DC component (that is, a component derived from other body tissue in FIG. 9) from the time change data output from the spatial filter unit 141.
  • the data generated in this way is pulse waveform data representing the pulsation of the artery.
  • the frequency filter unit 143 outputs the pulse waveform data representing the pulsation of the artery thus generated to the measurement result output unit 113 described later.
  • the frequency filter unit 143 outputs the generated pulse waveform data to the oxygen saturation calculation unit 111 described later.
  • the pulsation component separation unit 109 separates the spatial position recognized as a vein on the captured image, and processes the separated data by the frequency filter.
  • the cutoff frequency characteristic required for the frequency filter can be relaxed, and the pulsation component of the artery can be accurately separated without using a frequency filter having a steep cutoff characteristic.
  • the frequency filter unit 143 may store the generated pulse waveform data representing the pulsation of the artery in association with time information related to the time when the data is generated, etc., in the storage unit 115 described later as history information. .
  • the oxygen saturation calculation unit 111 is realized by, for example, a CPU, a ROM, a RAM, and the like.
  • the oxygen saturation calculation unit 111 calculates the oxygen saturation in the arterial blood using a component derived from the pulsation of the artery separated by the pulsation component separation unit 109 (that is, pulse waveform data). More specifically, the oxygen saturation calculation unit 111 includes pulse waveform data generated from measurement data measured using red light, and pulse waveform data generated from measurement data measured using infrared light. And the hemoglobin concentration and the oxygenated hemoglobin concentration are calculated. In addition, the oxygen saturation calculation unit 111 calculates the oxygen saturation using the calculated hemoglobin concentration and oxygenated hemoglobin concentration.
  • the method for calculating the oxygen saturation is not particularly limited.
  • the oxygen saturation calculating method based on the equations 16 to 17c described above can be used.
  • the oxygen saturation calculation unit 111 calculates the oxygen saturation SpO2 using the hemoglobin concentration and the oxygenated hemoglobin concentration calculated using the pulse waveform data, information on the calculated oxygen saturation SpO2 is obtained as a measurement result described later. Output to the output unit 113.
  • the oxygen saturation calculation unit 111 may store information on the calculated oxygen saturation in association with time information such as the date and time when the information is generated in the storage unit 115 described later as history information.
  • the measurement result output unit 113 is realized by, for example, a CPU, a ROM, a RAM, an output device, a communication device, and the like.
  • the measurement result output unit 113 is obtained by analyzing the pulsation component of the artery such as the pulse waveform data generated by the pulsation component separation unit 109 and the information regarding the oxygen saturation SpO2 calculated by the oxygen saturation calculation unit 111. Outputs feature data and feature values that can be used.
  • the measurement result output unit 113 may output various types of information derived from the arterial pulsation component to an output device such as a display provided in the measurement device 10, or as a paper medium using a printer or the like. You may output to a user.
  • the measurement result output unit 113 may output various information derived from the obtained arterial pulsation component to a display, various information processing apparatuses, and the like provided outside the measurement apparatus 10.
  • the measurement result output unit 113 outputs various kinds of information derived from the pulsatile component of the artery, so that the user of the measurement apparatus 10 according to the present embodiment can grasp the measurement result.
  • the storage unit 115 is realized by a RAM, a storage device, or the like provided in the measurement apparatus 10 according to the present embodiment.
  • the storage unit 115 stores optical absorption spectrum data used in various processes in the measuring apparatus 10, such as conversion tables related to the constants ⁇ and ⁇ shown in Equation 16 above, various databases, lookup tables, and the like. ing.
  • the storage unit 115 stores measurement data measured by the measurement unit 101 according to the present embodiment, various programs, parameters, data, and the like used for processing performed by the measurement apparatus 10 according to the present embodiment. It may be. In addition to these data, the storage unit 115 can appropriately store various parameters that need to be saved when the measurement apparatus 10 performs some processing, the progress of the processing, and the like. .
  • the storage unit 115 includes each process of the measurement unit 101, the measurement control unit 103, the measurement data acquisition unit 105, the vein position specifying unit 107, the pulsation component separation unit 109, the oxygen saturation calculation unit 111, the measurement result output unit 113, and the like.
  • the section can freely access and write and read data.
  • the measurement control unit 103, the measurement data acquisition unit 105, the vein position specifying unit 107, the pulsation component separation unit 109, the oxygen saturation calculation unit 111, and the measurement result output unit 113 are related to this embodiment. It may be realized as a part of the measuring apparatus 10 or may be realized in an external device such as a computer connected to the measuring apparatus 10. In addition, measurement data generated by the measurement unit 101 is stored in a removable storage medium or the like, and this storage medium is removed from the measurement apparatus 10, and the measurement data acquisition unit 105, vein position specifying unit 107, and pulsation component separation unit 109 are removed. The measurement data may be analyzed by being connected to another device having the oxygen saturation calculation unit 111 and the measurement result output unit 113.
  • each component described above may be configured using a general-purpose member or circuit, or may be configured by hardware specialized for the function of each component.
  • the CPU or the like may perform all functions of each component. Therefore, it is possible to appropriately change the configuration to be used according to the technical level at the time of carrying out the present embodiment.
  • a computer program for realizing each function of the measuring apparatus according to the present embodiment as described above can be produced and mounted on a personal computer or the like.
  • a computer-readable recording medium storing such a computer program can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via a network, for example, without using a recording medium.
  • FIG. 10 is a flowchart showing an example of the overall flow of the measurement method according to the present embodiment.
  • FIG. 11 is a flowchart illustrating an example of a flow of vein mask generation processing according to the present embodiment
  • FIG. 12 is a flowchart illustrating an example of a flow of vein mask application processing according to the present embodiment.
  • the measurement unit 101 of the measurement apparatus 10 measures a measurement site of a living body placed on the measurement unit 101 under the control of the measurement control unit 103 (step S101), and creates a vein mask.
  • An initial image (vein mask image) is acquired (step S103).
  • the measurement unit 101 outputs the obtained vein mask image to the measurement data acquisition unit 105, and the measurement data acquisition unit 105 outputs the output vein mask image to the vein position specifying unit 107.
  • the vein position specifying unit 107 generates a vein mask based on the vein mask image output from the measurement data acquisition unit 105 (step S105). After generating the vein mask, the vein position specifying unit 107 outputs the generated vein mask to the pulsation component separating unit 109.
  • the measurement unit 101 of the measurement apparatus 10 acquires initial measurement data (image data) for pulse wave measurement under the control of the measurement control unit 103 (step S107). Thereafter, the measurement unit 101 outputs the obtained image to the measurement data acquisition unit 105, and the measurement data acquisition unit 105 outputs the output measurement data (image data) to the pulsation component separation unit 109.
  • the spatial filter unit 141 of the pulsation component separation unit 109 applies the vein mask generated by the vein position specifying unit 105 to the image output from the measurement data acquisition unit 107 (step S109), and there is a vein.
  • the measurement data excluding the position to be generated is generated.
  • the spatial filter unit 141 calculates an average luminance value using the obtained data, and outputs the obtained average luminance value data to the frequency filter unit 143.
  • the frequency filter unit 143 applies a frequency filter to the time series of the average luminance value data output from the spatial filter unit 141 (step S111), removes the DC component, and then obtains the obtained data (ie, Pulse waveform data) is output to the oxygen saturation calculator 111.
  • the measurement control unit 103 determines whether or not the measurement has been performed for a desired measurement time (step S113), and when the measurement for the desired measurement time has not been completed, the measurement unit 101 receives the next measurement time.
  • An image is acquired (step S115).
  • the measurement unit 101 acquires the next image
  • the measurement unit 101 outputs the acquired image to the measurement data acquisition unit 105
  • the measurement data acquisition unit 105 outputs the acquired data to the pulsation component separation unit 109. Thereafter, the pulsation component separation unit 109 continues to perform the processing from step S109.
  • the oxygen saturation calculation unit 111 calculates the oxygen saturation based on the time-series transition of the obtained pulse waveform data (step S117). ). Thereafter, the oxygen saturation calculation unit 111 outputs information on the obtained oxygen saturation to the measurement result output unit 113.
  • the measurement apparatus 10 can measure the pulse waveform data at the measurement site and calculate the oxygen saturation.
  • the vein position specifying unit 107 first divides the vein mask image output from the measurement data acquisition unit 105 into a plurality of small regions (step S121). Thereafter, the vein position specifying unit 107 selects the first small area (step S123), and integrates the luminance value of each pixel in the selected small area.
  • the vein position specifying unit 107 compares the luminance value obtained by the integration with a predetermined threshold value set in advance (step S125). When the luminance value obtained by the integration is equal to or greater than a predetermined threshold, the vein position specifying unit 107 is an area where the selected small area receives light absorption by the vein (hereinafter also referred to as a vein area). (Step S129). On the other hand, when the luminance value obtained by integration is less than the predetermined threshold, the vein position specifying unit 107 determines that the selected small region is not affected by the vein (hereinafter also referred to as a non-venous region). .)) (Step S131).
  • the vein position specifying unit 107 determines whether or not processing has been performed on all the small regions (step S133). If the processing has not been performed for all the small regions, the vein position specifying unit 107 selects the next small region (steps S1359 and S125 are performed again. On the other hand, for all the small regions, If the process is executed, it is determined that the vein mask image has been generated, and the process ends.
  • the application process of the vein mask performed by the spatial filter unit 141 is a process of measuring the average luminance for each image using a plurality of measurement data (image data) obtained by continuously photographing the vein mask and the measurement site. is there. Specifically, the spatial filter unit 141 performs the following operation for each image frame obtained by continuous shooting.
  • the spatial filter unit 141 divides the image data output from the measurement data acquisition unit 105 into a plurality of small regions (step S141). Thereafter, the spatial filter unit 141 selects the first small region among the plurality of small regions (step S143).
  • the spatial filter unit 141 refers to the vein mask output from the vein position specifying unit 107 and determines whether or not the selected small region is marked as a vein region (step S145). If the selected small region is not a vein region, the spatial filter unit 141 integrates the luminance value of each pixel in the selected small region (step S147), and then converts the integrated luminance value to the overall luminance value. Integration is performed (step S149). On the other hand, when the selected small region is a vein region, the spatial filter unit 141 performs step S151 described later without performing steps S147 and S149.
  • the spatial filter unit 141 determines whether or not processing has been performed on all the small regions (step S151). If the processing has not been performed for all the small regions, the spatial filter unit 141 selects the next small region (step S153) and performs the above step S145 again. On the other hand, when processing is performed on all the small regions, the spatial filter unit 141 divides the overall luminance value by the total number of pixels used for integration. As a result, normalization is performed on the average luminance value per pixel regardless of the number of vein regions in the vein mask (step S155). The spatial filter unit 141 calculates the average luminance value per pixel of each image frame by performing the above processing.
  • step S155 A configuration in which no division for normalization is performed in step S155 is also conceivable.
  • the outputs of a plurality of light receiving elements are added, and the effect that the light receiving area increases and the sensitivity becomes high can be obtained.
  • FIG. 13 is a block diagram for explaining a hardware configuration of the measurement apparatus 10 according to the embodiment of the present disclosure.
  • the measuring apparatus 10 mainly includes a CPU 901, a ROM 903, and a RAM 905.
  • the measurement apparatus 10 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, a sensor 914, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925. .
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls all or a part of the operation in the measuring device 10 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927.
  • the ROM 903 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus.
  • the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • PCI Peripheral Component Interconnect / Interface
  • the sensor 914 is, for example, detection means for detecting biological information unique to the user or various information used for acquiring such biological information.
  • Examples of the sensor 914 include various image pickup devices such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor).
  • the sensor 914 may further include an optical system such as a lens and a light source used for imaging a living body part.
  • the sensor 914 may be a microphone or the like for acquiring sound or the like.
  • the sensor 914 may include various measuring devices such as a thermometer, an illuminometer, a hygrometer, a speedometer, and an accelerometer in addition to the above-described ones.
  • the input device 915 is an operation means operated by the user such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever. Further, the input device 915 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or an external connection device 929 such as a mobile phone or a PDA corresponding to the operation of the measuring device 10. It may be. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by a user using the above-described operation means and outputs the input signal to the CPU 901, for example. The user of the measuring device 10 can input various data and instruct processing operations to the measuring device 10 by operating the input device 915.
  • the output device 917 is a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices and display devices such as lamps, audio output devices such as speakers and headphones, printer devices, mobile phones, and facsimiles.
  • the output device 917 outputs, for example, results obtained by various processes performed by the measurement device 10. Specifically, the display device displays the results obtained by various processes performed by the measurement device 10 as text or images.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal.
  • the storage device 919 is a data storage device configured as an example of a storage unit of the measurement device 10.
  • the storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device.
  • the storage device 919 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the measuring apparatus 10.
  • the drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905.
  • the drive 921 can write a record on a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray medium, or the like.
  • the removable recording medium 927 may be a compact flash (registered trademark) (CompactFlash: CF), a flash memory, or an SD memory card (Secure Digital memory card). Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
  • CompactFlash CompactFlash: CF
  • flash memory a flash memory
  • SD memory card Secure Digital memory card
  • the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
  • the connection port 923 is a port for directly connecting a device to the measurement apparatus 10.
  • Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like.
  • As another example of the connection port 923 there are an RS-232C port, an optical audio terminal, an HDMI (High-Definition Multimedia Interface) port, and the like.
  • the communication device 925 is a communication interface configured with, for example, a communication device for connecting to the communication network 931.
  • the communication device 925 is, for example, a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various communication.
  • the communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices.
  • the communication network 931 connected to the communication device 925 is configured by a wired or wireless network, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. .
  • each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.
  • a measurement unit that irradiates at least a part of the living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body; Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body; Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying unit, the pulsation of an artery existing inside the living body among the time change of the measurement data is determined.
  • a pulsating component separation unit that separates components derived from; Using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, an oxygen saturation calculation unit for calculating oxygen saturation in arterial blood; A measuring device.
  • the pulsating component separation unit is A spatial filter unit for excluding data corresponding to the position of the vein from the measurement data based on the position of the vein specified by the vein position specifying unit; A frequency filter unit that separates a predetermined frequency component from the measurement data from which data corresponding to the position of the vein is excluded; The measuring device according to (1).
  • the measuring unit is A light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body; A plurality of sensors are regularly arranged in a predetermined arrangement, and a detection unit that detects measurement light emitted from the light source unit and transmitted through the living body with the plurality of sensors, The measuring device according to (1) or (2).
  • the oxygen saturation calculation unit calculates the hemoglobin concentration and the oxygenated hemoglobin concentration using the measurement data measured using the red light and the measurement data measured using the infrared light.
  • a computer capable of communicating with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
  • a vein position specifying function for specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body; Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying function, the pulsation of the artery existing inside the living body among the time change of the measurement data is determined.
  • Pulsation component separation function to separate the derived components
  • An oxygen saturation calculation function for calculating oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function
  • a program to realize (8) A computer capable of communicating with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
  • a vein position specifying function for specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body; Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying function, the pulsation of the artery existing inside the living body among the time change of the measurement data is determined.
  • Pulsation component separation function to separate the derived components,
  • An oxygen saturation calculation function for calculating oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function;
  • a recording medium on which a program for realizing the above is recorded.
  • a measurement unit that irradiates at least a part of the living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body; Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body; Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying unit, the pulsation of an artery existing inside the living body among the time change of the measurement data is determined.
  • a pulsating component separation unit that separates components derived from; Using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, an oxygen saturation calculation unit for calculating oxygen saturation in arterial blood;
  • the measuring unit is A light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body;
  • a plurality of sensors are regularly arranged in a predetermined arrangement, and a detection unit that detects measurement light emitted from the light source unit and transmitted through the living body with the plurality of sensors, A measuring device.

Abstract

[Problem] To provide a measurement device, measurement method, program and recording medium capable of separating the arterial pulse component without using frequency filters with sharp cutoff characteristics. [Solution] The measurement device of this disclosure is provided with: a measuring unit that irradiates light of a prescribed wavelength on at least a portion of a living body, images said living body with an image sensor, and measures the degree of light absorption by the living body; a vein position-specifying unit that specifies the position of a vein present in the interior of the living body at the measurement site of the living body using the measurement data; a pulse component-separating unit that, on the basis of temporal changes of the measurement data and the position of the vein, separates the component, which is derived from the pulsing of an artery present in the interior of the living body, from among the temporal changes of the measurement data; and an oxygen saturation-calculating unit that calculates the oxygen saturation in the arterial blood using the component derived from the arterial pulse in the separated measurement data.

Description

測定装置、測定方法、プログラム及び記録媒体Measuring device, measuring method, program, and recording medium
 本開示は、測定装置、測定方法、プログラム及び記録媒体に関する。 The present disclosure relates to a measuring device, a measuring method, a program, and a recording medium.
 医療分野において、脈波形(動脈の拍動波形)を測定する技術が多用されている。脈波形は、その波形形状を解析することにより、循環器系の検査(例えば、動脈硬化度測定、ストレス測定)等に用いられるほか、パルスオキシメータ(動脈血中酸素飽和濃度測定装置)等にも利用されている。 In the medical field, a technique for measuring a pulse waveform (arterial pulse waveform) is frequently used. The pulse waveform is used for circulatory system examination (for example, arteriosclerosis measurement, stress measurement) by analyzing the waveform shape, and also for pulse oximeter (arterial blood oxygen saturation measuring device) etc. It's being used.
 なかでも、採血や穿刺を伴わない非侵襲で経皮的に脈波形を測定する技術の一つである光学式容積脈波法(Photoplethysmography)と呼ばれる技術(例えば、以下の特許文献1を参照。)は、人体に負担をかけずに簡便に測定が可能であるため、非常に広い範囲で利用されている。 Among them, a technique called optical volume pulse wave method (see, for example, Patent Document 1 below), which is one of techniques for measuring a pulse waveform transcutaneously without blood collection or puncture. ) Is used in a very wide range because it can be easily measured without imposing a burden on the human body.
特開2003-135434号公報JP 2003-135434 A
 上記のような光学式容積脈波法を用いた脈波形の測定においては、動脈血、静脈血、その他の体成分による光吸収が混合された状態から、周波数フィルタを用いて動脈血による光吸収の時間変動のみを分離する技術が、重要な役割を果たす。 In the measurement of the pulse waveform using the optical volume pulse wave method as described above, the time of light absorption by arterial blood using a frequency filter from a state where light absorption by arterial blood, venous blood, and other body components is mixed. Techniques that isolate only fluctuations play an important role.
 ところで、人間の脈拍は、通常1分間に50回~150回程度であり、これは、周波数領域では、0.8Hz~2.5Hz程度の信号に相当する。このような、比較的低い周波数帯域の信号を、直流成分(0Hz)と明確に分離するためには、急峻な遮断特性を有する周波数フィルタが用いられることとなる。 By the way, a human pulse is usually about 50 to 150 times per minute, which corresponds to a signal of about 0.8 Hz to 2.5 Hz in the frequency domain. In order to clearly separate such a signal in a relatively low frequency band from the DC component (0 Hz), a frequency filter having a steep cut-off characteristic is used.
 一般に、急峻な遮断特性を有するフィルタ回路は規模が大きくなる傾向があり、現実的な規模のフィルタ回路では、十分な性能を確保するのが困難であった。そのため、特に低灌流で十分な拍動が得られない場合などの悪条件下では、拍動成分の十分な分離が行えない等といった場合が生じうる。 In general, filter circuits having steep cut-off characteristics tend to be large in scale, and it has been difficult to ensure sufficient performance with a filter circuit of a practical scale. For this reason, there may occur a case where the pulsation component cannot be sufficiently separated under adverse conditions such as a case where sufficient pulsation cannot be obtained due to low perfusion.
 そこで、本開示では、上記事情に鑑みて、急峻な遮断特性を有する周波数フィルタを用いることなく、動脈拍動成分の分離を行うことが可能な、測定装置、測定方法、プログラム及び記録媒体を提案する。 Therefore, in view of the above circumstances, the present disclosure proposes a measuring device, a measuring method, a program, and a recording medium that can separate arterial pulsation components without using a frequency filter having a steep cutoff characteristic. To do.
 本開示によれば、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と、前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定部と、前記測定部による測定データの時間変化と、前記静脈位置特定部により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離部と、前記拍動成分分離部により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出部と、を備える測定装置が提供される。 According to the present disclosure, a measuring unit that irradiates at least a part of a living body with light having a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body, and the measuring unit Using the measurement data obtained by the above, the vein position specifying unit for specifying the position corresponding to the vein existing inside the living body at the measurement site of the living body, the time change of the measurement data by the measuring unit, and the vein position specifying A pulsation component separation unit that separates components derived from pulsations of arteries existing in the living body from time changes of the measurement data based on the position of the vein specified by the unit; An oxygen saturation calculation unit that calculates oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the dynamic component separation unit is provided. It is.
 また、本開示によれば、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定することと、測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定することと、前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離することと、分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出することと、を含む測定方法が提供される。 According to the present disclosure, at least a part of a living body is irradiated with light of a predetermined wavelength, the living body is imaged by an image sensor, and the degree of absorption of the light by the living body is measured. Using the measured data, the position corresponding to the vein existing inside the living body at the measurement site of the living body, the time change of the measurement data, and the position of the specified vein Based on this, the component derived from the pulsation of the artery existing inside the living body among the time changes of the measurement data is separated, and the component derived from the pulsation of the artery of the separated measurement data is used And calculating oxygen saturation in arterial blood.
 また、本開示によれば、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と通信可能なコンピュータに、前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定機能と、前記測定部による測定データの時間変化と、前記静脈位置特定機能により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離機能と、前記拍動成分分離機能により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出機能と、を実現させるためのプログラムが提供される。 According to the present disclosure, it is possible to communicate with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body. And a vein position specifying function for specifying a position corresponding to a vein existing in the living body at a measurement site of the living body using measurement data by the measuring section, and a time of measurement data by the measuring section Based on the change and the position of the vein specified by the vein position specifying function, the pulsation that separates components derived from the pulsation of the artery existing inside the living body from the temporal change of the measurement data Oxygen for calculating oxygen saturation in arterial blood using a component separation function and a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function Program for realizing a sum calculation function is provided.
 また、本開示によれば、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と通信可能なコンピュータに、前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定機能と、前記測定部による測定データの時間変化と、前記静脈位置特定機能により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離機能と、前記拍動成分分離機能により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出機能と、を実現させるためのプログラムが記録された記録媒体が提供される。 According to the present disclosure, it is possible to communicate with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body. And a vein position specifying function for specifying a position corresponding to a vein existing in the living body at a measurement site of the living body using measurement data by the measuring section, and a time of measurement data by the measuring section Based on the change and the position of the vein specified by the vein position specifying function, the pulsation that separates components derived from the pulsation of the artery existing inside the living body from the temporal change of the measurement data Oxygen for calculating oxygen saturation in arterial blood using a component separation function and a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function Recording medium having a program recorded thereon for realizing a sum calculation function is provided.
 また、本開示によれば、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と、前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定部と、前記測定部による測定データの時間変化と、前記静脈位置特定部により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離部と、前記拍動成分分離部により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出部と、を備え、前記測定部は、所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出する光源部と、複数のセンサが所定の配置で規則的に配設されており、前記光源部から射出され前記生体を透過した測定光を当該複数のセンサで検出する検出部と、を有する測定装置が提供される。 According to the present disclosure, the measurement unit that irradiates at least a part of a living body with light having a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body; Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body, a time change of the measurement data by the measuring unit, and the vein Based on the position of the vein specified by the position specifying unit, a pulsation component separation unit that separates a component derived from the pulsation of an artery existing inside the living body from the time change of the measurement data, An oxygen saturation calculation unit that calculates oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, and the measurement The light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body, and a plurality of sensors are regularly arranged in a predetermined arrangement, There is provided a measurement device having a detection unit that detects, with the plurality of sensors, measurement light emitted from a light source unit and transmitted through the living body.
 また、本開示によれば、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定することと、測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定することと、前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離することと、分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出することと、を含み、前記光の吸収度合いを測定する際には、所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出し、複数のセンサが所定の配置で規則的に配設されたセンサによって、前記生体を透過した測定光を検出する、測定方法が提供される。 According to the present disclosure, at least a part of a living body is irradiated with light of a predetermined wavelength, the living body is imaged by an image sensor, and the degree of absorption of the light by the living body is measured. Using the measured data, the position corresponding to the vein existing inside the living body at the measurement site of the living body, the time change of the measurement data, and the position of the specified vein Based on this, the component derived from the pulsation of the artery existing inside the living body among the time changes of the measurement data is separated, and the component derived from the pulsation of the artery of the separated measurement data is used And calculating oxygen saturation in arterial blood, and when measuring the degree of light absorption, at least two types of measurement light, red light and infrared light having a predetermined wavelength, To living body Selfish injection, multiple sensors by regularly disposed a sensor in a predetermined arrangement, for detecting the measurement light transmitted through the living body, measurement method is provided.
 本開示によれば、生体の少なくとも一部に対して所定波長の光が照射され、当該生体がイメージセンサにより撮像されることで、前記生体による前記光の吸収度合いが測定され、測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置が特定され、前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分が分離され、分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度が算出される。 According to the present disclosure, at least a part of a living body is irradiated with light of a predetermined wavelength, and the living body is imaged by an image sensor, whereby the degree of absorption of the light by the living body is measured and measured. Using the data, a position corresponding to a vein existing inside the living body is specified in the measurement site of the living body, and based on the time change of the measurement data and the specified position of the vein, The component derived from the pulsation of the arteries existing inside the living body is separated from the time change of the measurement data, and the component derived from the pulsation of the arteries of the separated measurement data is used to Oxygen saturation is calculated.
 以上説明したように本開示によれば、急峻な遮断特性を有する周波数フィルタを用いることなく、動脈拍動成分の分離を行うことが可能となる。 As described above, according to the present disclosure, arterial pulsation components can be separated without using a frequency filter having a steep cutoff characteristic.
一般的なパルスオキシメータの構成について示した説明図である。It is explanatory drawing shown about the structure of the general pulse oximeter. 一般的なパルスオキシメータの構成について示した説明図である。It is explanatory drawing shown about the structure of the general pulse oximeter. 生体の皮膚組織と吸光度との関係を示した説明図である。It is explanatory drawing which showed the relationship between the skin tissue of a biological body, and a light absorbency. 本開示の第1の実施形態に係る測定装置の構成を示したブロック図である。It is a block diagram showing composition of a measuring device concerning a 1st embodiment of this indication. 同実施形態に係る測定部について説明するための説明図である。It is explanatory drawing for demonstrating the measurement part which concerns on the same embodiment. 同実施形態に係る測定部について説明するための説明図である。It is explanatory drawing for demonstrating the measurement part which concerns on the same embodiment. 同実施形態に係る静脈位置特定部について示したブロック図である。It is the block diagram shown about the vein position specific | specification part which concerns on the embodiment. 同実施形態に係る拍動成分分離部の構成について示したブロック図である。It is the block diagram shown about the structure of the pulsation component separation part which concerns on the same embodiment. 同実施形態に係る測定装置における生体の皮膚組織と吸光度との関係を示した説明図である。It is explanatory drawing which showed the relationship between the skin tissue of a biological body and the light absorbency in the measuring apparatus which concerns on the embodiment. 同実施形態に係る測定方法の全体的な流れの一例を示した流れ図である。It is the flowchart which showed an example of the whole flow of the measuring method concerning the embodiment. 同実施形態に係る静脈マスクの生成処理の流れの一例を示した流れ図である。It is the flowchart which showed an example of the flow of the production | generation process of the vein mask which concerns on the embodiment. 同実施形態に係る静脈マスクの適用処理の流れの一例を示した流れ図である。It is the flowchart which showed an example of the flow of the application process of the vein mask which concerns on the embodiment. 本開示の実施形態に係る測定装置のハードウェア構成を示したブロック図である。It is a block diagram showing hardware constitutions of a measuring device concerning an embodiment of this indication.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は、以下の順序で行うものとする。
(1)パルスオキシメータの原理について
(2)第1の実施形態
 (2-1)測定装置の構成について
 (2-2)測定方法の流れについて
(3)本開示の実施形態に係る測定装置のハードウェア構成について
(4)まとめ
The description will be made in the following order.
(1) Principle of pulse oximeter (2) First embodiment (2-1) Configuration of measurement device (2-2) Flow of measurement method (3) Measurement device according to an embodiment of the present disclosure Hardware configuration (4) Summary
(パルスオキシメータの原理について)
 本開示の実施形態に係る測定装置、測定方法、プログラム及び記録媒体について説明するに先立ち、光学式容積脈波法を用いた一般的なパルスオキシメータの原理について、図1~図3を参照しながら、簡単に説明する。図1及び図2は、一般的なパルスオキシメータの構成について示した説明図である。図3は、生体の皮膚組織と吸光度との関係を示した説明図である。
(Pulse oximeter principle)
Prior to describing the measurement apparatus, measurement method, program, and recording medium according to the embodiments of the present disclosure, the principle of a general pulse oximeter using the optical volume pulse wave method will be described with reference to FIGS. However, I will explain briefly. 1 and 2 are explanatory diagrams showing the configuration of a general pulse oximeter. FIG. 3 is an explanatory diagram showing the relationship between the skin tissue of the living body and the absorbance.
 パルスオキシメータは、経皮的に動脈血の酸素飽和度(percutaneous oxygen saturation,SpO2と呼ばれる。)を測定する機器である。このパルスオキシメータ700は、図1に示したように、その構成要素として、一般的な脈波測定装置701を含む。 A pulse oximeter is a device that measures the oxygen saturation of arterial blood percutaneously (referred to as percutaneous oxygen saturation, SpO2). As shown in FIG. 1, the pulse oximeter 700 includes a general pulse wave measuring device 701 as its component.
 パルスオキシメータ700は、測定プローブ703が接続された吸光度測定部715で、生体情報を測定する。測定プローブ703は、図1に示したように、発光部711と受光部713とで構成されており、後述するように、生体による光吸収の時間変化を測定する。測定プローブ703により測定された光吸収に関する測定結果は、周波数フィルタ717へと出力され、周波数フィルタ717において、動脈の拍動に由来する周波数成分(以下、単に「拍動成分」とも称する。)が分離される。分離された拍動成分に関する情報は、酸素飽和度算出部719へと出力され、拍動成分の振幅に基づいて、酸素飽和度が算出される。算出された酸素飽和度は、酸素飽和度出力部721へと出力され、酸素飽和度出力部721によりユーザへと出力される。 The pulse oximeter 700 measures biological information with an absorbance measurement unit 715 to which a measurement probe 703 is connected. As shown in FIG. 1, the measurement probe 703 includes a light emitting unit 711 and a light receiving unit 713, and measures a temporal change in light absorption by the living body, as will be described later. The measurement result relating to the light absorption measured by the measurement probe 703 is output to the frequency filter 717, and the frequency component derived from the pulsation of the artery (hereinafter, also simply referred to as “pulsation component”) in the frequency filter 717. To be separated. The information regarding the separated pulsation component is output to the oxygen saturation calculation unit 719, and the oxygen saturation is calculated based on the amplitude of the pulsation component. The calculated oxygen saturation is output to the oxygen saturation output unit 721, and is output to the user by the oxygen saturation output unit 721.
 パルスオキシメータでは、生体に向けて照射する光(入射光)に、複数の波長の光を用いることが求められる。そのため、測定プローブ703には複数の発光部711が配置され、時分割で切り替えて用いられる。また、入射光には、生体内に届きやすいという理由から、赤色光から近赤外光の帯域に属する波長の光が用いられることが多い。 In pulse oximeters, it is required to use light of a plurality of wavelengths as light (incident light) irradiated toward a living body. Therefore, a plurality of light emitting units 711 are arranged on the measurement probe 703 and are used by switching in a time division manner. In addition, for the reason that the incident light easily reaches the living body, light having a wavelength belonging to the band from red light to near-infrared light is often used.
 図2に示したように、パルスオキシメータ700の測定プローブ703では、発光部711から入射光を生体の皮膚面に照射し、生体内で反射したり拡散したりして戻った出射光を、受光部713で受光する。このとき、入射光は、生体内に存在する動脈や静脈やその他の体組織によって一部吸収されて、出射光として観測されることとなる。 As shown in FIG. 2, the measurement probe 703 of the pulse oximeter 700 irradiates incident light from the light emitting unit 711 onto the skin surface of the living body and reflects the emitted light that is reflected or diffused in the living body, Light is received by the light receiving unit 713. At this time, the incident light is partially absorbed by arteries, veins and other body tissues existing in the living body and is observed as outgoing light.
 ここで、以下の式11で表されるランベルト・ベール(Lambert-Beer)の法則が成り立つとすると、入射光と出射光の強度比から、物質の濃度を算出することができる。 Here, if the Lambert-Beer law expressed by the following equation 11 holds, the concentration of the substance can be calculated from the intensity ratio of the incident light and the emitted light.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、上記式11において、
  I:入射光強度
  I:出射光強度
  ε:吸光係数
  C:物質の濃度
  l:光路長
である。
Here, in Equation 11 above,
I 0 : incident light intensity I 1 : outgoing light intensity ε: extinction coefficient C: substance concentration l: optical path length
 特に、血液中のヘモグロビン(Hb)は、酸素との結合の有無によって吸光度が変化し、また、観測する波長によっても吸光度が異なる。従って、複数の波長で吸光度を測定することによって、酸素と結合していないヘモグロビン(Hb)と、酸素と結合したヘモグロビン(酸素化ヘモグロビン:HbO2)の比率を求めることができる。 In particular, the absorbance of hemoglobin (Hb) in blood varies depending on the presence or absence of binding to oxygen, and also varies depending on the wavelength to be observed. Therefore, by measuring the absorbance at a plurality of wavelengths, the ratio of hemoglobin (Hb) not bound to oxygen and hemoglobin bound to oxygen (oxygenated hemoglobin: HbO2) can be obtained.
 血液中に含まれる総ヘモグロビンのうち、酸素化ヘモグロビンの割合を、血中酸素飽和度と呼ぶ。生体情報として特に有用なものは動脈血の酸素飽和度SaO2(arterial oxygen saturation)であるが、この酸素飽和度SaO2は、以下の式12で算出することができる。 The percentage of oxygenated hemoglobin in the total hemoglobin contained in blood is called blood oxygen saturation. Particularly useful biometric information is arterial oxygen saturation SaO2 (arterial oxygen saturation), and this oxygen saturation SaO2 can be calculated by the following equation (12).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、上記式12において、
  SaO2:動脈血酸素飽和度
  CHbO2:酸素化ヘモグロビン濃度
  CHb:ヘモグロビン濃度
である。
In the above formula 12,
SaO2: arterial blood oxygen saturation C HbO2 : oxygenated hemoglobin concentration C Hb : hemoglobin concentration.
 ここで、先述のSpO2は、SaO2を経皮的に測定したものである。SpO2は、非侵襲で測定が可能であることから、極めて広範囲で利用される反面、直接観血を行う測定法にどれだけ近い測定値を得ることができるかが課題となる。パルスオキシメータの国際標準規格(ISO 9919 2005)には、SpO2が70%~100%の範囲において、SaO2との誤差が4%以内であることが規定されている。 Here, the aforementioned SpO2 is obtained by measuring SaO2 transcutaneously. Since SpO2 can be measured non-invasively, it is used in a very wide range, but the problem is how close to the measurement method that can be obtained with a measurement method that performs direct observation. The international standard for pulse oximeters (ISO 9919 2005) stipulates that the error with SaO2 is within 4% when SpO2 is in the range of 70% to 100%.
 上述の通り、パルスオキシメータ700における測定プローブ703の受光部713で観測される出射光は、入射光が体内における反射・散乱の過程で、体組織や血液成分による吸収を受けたものである。出射光強度を解析することでSpO2を算出することが可能であるが、SpO2は動脈血の酸素飽和度であるから、出射光から動脈血以外による光吸収の影響を除外することが求められる。 As described above, the emitted light observed by the light receiving unit 713 of the measurement probe 703 in the pulse oximeter 700 is obtained by the incident light being absorbed by the body tissue and blood components in the process of reflection / scattering in the body. It is possible to calculate SpO2 by analyzing the emitted light intensity, but since SpO2 is the oxygen saturation level of arterial blood, it is required to exclude the influence of light absorption other than from arterial blood from the emitted light.
 入射光に光吸収をもたらす要素は、動脈血、静脈血、その他の体組織の3種類に大別することができる。このとき、出射光は、図3及び下記の式13に示すような光吸収を受ける。下記の式13は、上記式11に示したランベルト・ベールの法則を拡張したものであり、拡張ランベルト・ベールの法則と呼ばれる。 The elements that cause light absorption in incident light can be broadly classified into three types: arterial blood, venous blood, and other body tissues. At this time, the emitted light receives light absorption as shown in FIG. Equation 13 below is an extension of the Lambert-Beer law shown in Equation 11 above and is called the extended Lambert-Beer rule.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、上記式13において、
  λ:波長
  ε:吸光係数
  C:濃度
  d:光路長
である。
Here, in the above equation 13,
λ: wavelength ε: extinction coefficient C: concentration d: optical path length
 また、上記式13において、最右辺第1項は、血液以外の成分に起因する光吸収を表しており、最右辺第2項は、静脈血に起因する光吸収を表しており、最右辺第3項は、動脈血に起因する光吸収を表しており、最右辺第4項は、生体内での拡散に起因する光吸収を表している。 In the above equation 13, the first term on the rightmost side represents light absorption caused by components other than blood, and the second term on the rightmost side represents light absorption caused by venous blood. The third term represents light absorption caused by arterial blood, and the fourth term on the rightmost side represents light absorption caused by diffusion in the living body.
 パルスオキシメータは、上記3種類の要素のうち、動脈のみに拍動性があることを利用し、動脈血の吸光をその他の要素から分離する。すなわち、上記式13を時間微分することで、拍動性を持たない(換言すれば、時間変化の無い)静脈及びその他の体組織による光吸収の影響を除去する。この微分操作は、信号処理においては、周波数フィルタによる直流成分の除去に相当するものであり、脈波形の抽出処理に他ならない。 The pulse oximeter uses the fact that only the artery is pulsatile among the above three types of elements, and separates the absorption of arterial blood from other elements. That is, the time differentiation of the above expression 13 eliminates the influence of light absorption by veins and other body tissues that do not have pulsatile properties (in other words, no time change). In the signal processing, this differentiation operation corresponds to the removal of the DC component by the frequency filter, and is nothing but the pulse waveform extraction processing.
 上記式12において、SaO2を算出するための未知数は、ヘモグロビン濃度(CHb)と、酸素化ヘモグロビン濃度(CHbO2)の2種類であるため、2つの未知数を特定するために2つの測定結果を連立させることが求められる。従って、パルスオキシメータでは、少なくとも2つの波長を用いて測定が行われる。 In the above equation 12, there are two types of unknowns for calculating SaO2: hemoglobin concentration (C Hb ) and oxygenated hemoglobin concentration (C HbO2 ). It is required to be coalesced. Therefore, in the pulse oximeter, measurement is performed using at least two wavelengths.
 いま、波長λ1,λ2の2種類の入射光で測定を行い、出射光強度の時間変化であるΔODλ1,ΔODλ2を求める場合を考える。この場合、2つの波長を用いて測定された出射光強度の時間変化は、上記式13から、以下の式14のように表すことができる。従って、未知数であるヘモグロビン濃度(CHb)及び酸素化ヘモグロビン濃度(CHbO2)は、ヘモグロビン及び酸素化ヘモグロビンの吸光係数等と、測定結果とを用いて、以下の式15に示したように算出することが可能となる。 Consider a case in which ΔOD λ1 and ΔOD λ2 are obtained by measuring with two types of incident light of wavelengths λ1 and λ2 and time-dependent changes in emitted light intensity. In this case, the temporal change in the emitted light intensity measured using the two wavelengths can be expressed as the following Expression 14 from Expression 13 above. Therefore, the unknown hemoglobin concentration (C Hb ) and oxygenated hemoglobin concentration (C HbO2 ) are calculated as shown in the following equation 15 using the extinction coefficients of hemoglobin and oxygenated hemoglobin and the measurement results. It becomes possible to do.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 従って、式15を式12に代入すると、以下の式16を得ることができる。ここで、下記式16において、パラメータα、β,Φは、以下の式17a~式17cの通りである。 Therefore, substituting equation 15 into equation 12, the following equation 16 can be obtained. Here, in the following equation 16, the parameters α, β, and Φ are as the following equations 17a to 17c.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記式16の最右辺から明らかなように、SaO2の値は、パラメータΦに比例する関数として与えられることがわかる。パラメータΦは、上記式17cのように、波長λ1と波長λ2で測定した脈波形の振幅の比である。また、パラメータα,βは、式17a及び式17bに示したように、ヘモグロビンの吸光係数から理論的に算出することが可能であるが、多くの場合には、事前に実験で求めた変換表に基づく校正を行うことで求めている。そのようにすることで、ランベルト・ベールの法則の成立する条件と、実際の生体における条件との乖離も含めた補正が可能となるからである。 As can be seen from the rightmost side of Equation 16, the value of SaO2 is given as a function proportional to the parameter Φ. The parameter Φ is the ratio of the amplitude of the pulse waveform measured at the wavelength λ1 and the wavelength λ2 as in the above equation 17c. The parameters α and β can be theoretically calculated from the extinction coefficient of hemoglobin as shown in the equations 17a and 17b. However, in many cases, the conversion tables obtained by experiments in advance are used. It is obtained by performing calibration based on By doing so, it is possible to perform correction including the deviation between the condition in which Lambert-Beer's law is established and the condition in the actual living body.
 このような方法がパルスオキシメータの動作原理であり、パルスオキシメータは、2種類の波長による測定結果を利用して、動脈血の酸素飽和度SpO2を算出する。 Such a method is the operation principle of the pulse oximeter, and the pulse oximeter calculates the arterial oxygen saturation SpO2 using the measurement results of two wavelengths.
 このように、一般的なパルスオキシメータでは、動脈の拍動成分に対応する信号を分離するために周波数フィルタを利用することとなるが、動脈の拍動成分に対応する信号を明確に分離するためには、急峻な遮断特性を有する周波数フィルタを用いることが求められる。しかしながら、急峻な遮断特性を有する周波数フィルタ回路は規模が大きくなる傾向がある一方で、規模の小型化を図るために現実的な規模の周波数フィルタ回路を用いると、拍動成分の十分な分離が行えない可能性があるという、トレードオフの関係が成立していた。 As described above, in a general pulse oximeter, a frequency filter is used to separate a signal corresponding to a pulsating component of an artery, but a signal corresponding to a pulsating component of an artery is clearly separated. Therefore, it is required to use a frequency filter having a steep cutoff characteristic. However, while frequency filter circuits having steep cut-off characteristics tend to be large in scale, if a realistic frequency filter circuit is used to reduce the scale, sufficient separation of pulsation components can be achieved. There was a trade-off relationship that there was a possibility that it could not be done.
 そこで、本発明者らは、上述のような状況について鋭意検討を行った結果、以下で説明するような本開示の実施形態に係る測定装置及び測定方法に想到し、急峻な遮断特性を有する周波数フィルタを用いることなく、動脈拍動成分の分離を精度よく行うことが可能となった。 Therefore, as a result of intensive studies on the situation as described above, the present inventors have arrived at a measurement apparatus and a measurement method according to an embodiment of the present disclosure as described below, and have a frequency having a steep cutoff characteristic. The arterial pulsation component can be accurately separated without using a filter.
(第1の実施形態)
<測定装置の構成について>
 以下では、図4~図9を参照しながら、本開示の第1の実施形態に係る測定装置及び測定方法について、詳細に説明する。図4は、本実施形態に係る測定装置の構成を示したブロック図であり、図5及び図6は、本実施形態に係る測定部について説明するための説明図である。図7は、本実施形態に係る静脈位置特定部について示したブロック図であり、図8は、本実施形態に係る拍動成分分離部の構成について示したブロック図である。図9は、本実施形態に係る測定装置における生体の皮膚組織と吸光度との関係を示した説明図である。
(First embodiment)
<About the configuration of the measuring device>
Hereinafter, the measurement apparatus and the measurement method according to the first embodiment of the present disclosure will be described in detail with reference to FIGS. 4 to 9. FIG. 4 is a block diagram illustrating the configuration of the measurement apparatus according to the present embodiment, and FIGS. 5 and 6 are explanatory diagrams for describing the measurement unit according to the present embodiment. FIG. 7 is a block diagram illustrating the vein position specifying unit according to the present embodiment, and FIG. 8 is a block diagram illustrating the configuration of the pulsation component separating unit according to the present embodiment. FIG. 9 is an explanatory diagram showing the relationship between the skin tissue of the living body and the absorbance in the measuring apparatus according to the present embodiment.
 本実施形態に係る測定装置10は、図4に示したように、測定部101と、測定制御部103と、測定データ取得部105と、静脈位置特定部107と、拍動成分分離部109と、酸素飽和度算出部111と、測定結果出力部113と、記憶部115と、を主に備える。 As shown in FIG. 4, the measurement apparatus 10 according to the present embodiment includes a measurement unit 101, a measurement control unit 103, a measurement data acquisition unit 105, a vein position specifying unit 107, a pulsation component separation unit 109, The oxygen saturation calculation unit 111, the measurement result output unit 113, and the storage unit 115 are mainly provided.
 本実施形態に係る測定部101は、生体の少なくとも一部を測定する測定プローブとして機能するものである。本実施形態に係る測定部101は、生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、生体による光の吸収度合いを測定する。 The measurement unit 101 according to the present embodiment functions as a measurement probe that measures at least a part of a living body. The measurement unit 101 according to the present embodiment irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of light absorption by the living body.
 この測定部101は、例えば図5に示したように、所定波長を有する赤色光(例えば、660nm前後)及び近赤外光(例えば、940nm前後)の少なくとも2種類の測定光を、生体に向かって射出する光源部と、複数のセンサが所定の配置で規則的に配設されており、光源部から射出され前記生体を透過した測定光を当該複数のセンサで検出する検出部(例えば、イメージセンサ)と、を有している。 As shown in FIG. 5, for example, the measurement unit 101 transmits at least two types of measurement light, that is, red light having a predetermined wavelength (for example, around 660 nm) and near infrared light (for example, around 940 nm) toward the living body. And a plurality of sensors regularly arranged in a predetermined arrangement, and a detection unit (for example, an image) that detects measurement light emitted from the light source unit and transmitted through the living body. Sensor).
 測定部101の光源部は、赤色光及び近赤外光のそれぞれを入射光として生体の一部(測定部位)に照射して、測定部位の肌画像を撮像する。入射光が皮膚に照射されると、入射光は生体内で反射・拡散した後に、生体表面から出射光として出射し、イメージセンサを有する検出部により検出される。このとき、入射光は、動脈や、静脈や、その他の生体組織によって一部吸収されるため、出射光の光量は入射光の光量よりも減少している。検出部は、出射光の光量の分布を測定して、測定部位に関する測定データとする。 The light source unit of the measurement unit 101 irradiates a part of the living body (measurement site) with each of red light and near infrared light as incident light, and captures a skin image of the measurement site. When incident light is applied to the skin, the incident light is reflected and diffused in the living body, and then is emitted as emitted light from the surface of the living body, and is detected by a detection unit having an image sensor. At this time, since the incident light is partially absorbed by an artery, vein, or other biological tissue, the amount of emitted light is smaller than the amount of incident light. A detection part measures distribution of the light quantity of emitted light, and makes it measurement data regarding a measurement part.
 測定部位を撮影するための光学系としては、イメージセンサの位置ずれや、生体との距離変化の影響を避けるため、体表面に密着して撮影ができるような光学系が望ましい。このような光学系の一例として、図6に示したようなマイクロレンズアレイ(MLA)光学系を挙げることができる。図6に示したようなMLA光学系を、適切な波長の入射光と組み合わせて用いると、イメージセンサを体表面に密着させた状態で、生体内の撮影が可能となる。 As an optical system for imaging the measurement site, an optical system that can perform imaging while being in close contact with the body surface is desirable in order to avoid the influence of the positional deviation of the image sensor and the change in distance from the living body. An example of such an optical system is a microlens array (MLA) optical system as shown in FIG. When the MLA optical system as shown in FIG. 6 is used in combination with incident light having an appropriate wavelength, in-vivo imaging can be performed with the image sensor in close contact with the body surface.
 以下では、図6を参照しながら、本実施形態に係る測定部101の一例であるマイクロレンズアレイ光学系の構成について、具体的に説明する。 Hereinafter, the configuration of a microlens array optical system which is an example of the measurement unit 101 according to the present embodiment will be specifically described with reference to FIG.
○光源について
 光源121は、生体の測定部位を測定するために用いられ、所定の波長帯域に属する測定光を、生体表面に向かって射出する。この光源121は、測定光の射出面が生体表面と対向するように、所定のフレームFに配設される。
About light source The light source 121 is used to measure a measurement site of a living body, and emits measurement light belonging to a predetermined wavelength band toward the surface of the living body. The light source 121 is disposed on a predetermined frame F such that the measurement light exit surface faces the living body surface.
 先だって説明したように、光源121は、ヘモグロビン(還元ヘモグロビン)を測定するために用いられる赤色光(例えば、波長660nmの赤色光)や、酸素化ヘモグロビンを測定するために用いられる近赤外光(例えば、波長940nmの近赤外光)等を射出する。このような複数の波長の光は、例えば、光源121から時分割で射出される。 As described above, the light source 121 is a red light (for example, red light having a wavelength of 660 nm) used for measuring hemoglobin (reduced hemoglobin) or a near-infrared light (for example, used for measuring oxygenated hemoglobin). For example, near-infrared light having a wavelength of 940 nm is emitted. Such light having a plurality of wavelengths is emitted from the light source 121 in a time division manner, for example.
 なお、前述の赤色光及び近赤外光の波長はあくまでも一例であって、本実施形態に係る測定装置10の光源121が射出する光が、上記の例に限定されるわけではない。 Note that the wavelengths of the red light and near infrared light described above are merely examples, and the light emitted from the light source 121 of the measurement apparatus 10 according to the present embodiment is not limited to the above example.
 このような光源121としては、例えば、発光ダイオード(Light Emitting Diode:LED)や小型のレーザ等を利用可能であり、このような発光デバイスが、光源121として1又は複数個設けられる。 As such a light source 121, for example, a light emitting diode (LED), a small laser, or the like can be used, and one or a plurality of such light emitting devices are provided as the light source 121.
 また、光源121は、後述する測定制御部103により、上記測定光の射出タイミングや射出される測定光の強度等が制御される。 In the light source 121, the measurement control unit 103 described later controls the emission timing of the measurement light, the intensity of the measurement light emitted, and the like.
 なお、光源121の配設されるフレームFの形状は特に限定されるわけではないが、光源121と、後述する検出部との間に図6に示したような壁部を設けることで、このような壁部を、光源121から射出される光が検出部に入射することを防止する遮光壁として用いることが可能となる。 The shape of the frame F in which the light source 121 is disposed is not particularly limited, but by providing a wall as shown in FIG. 6 between the light source 121 and a detection unit described later, Such a wall portion can be used as a light shielding wall for preventing light emitted from the light source 121 from entering the detection portion.
○検出部について
 本実施形態に係る測定装置10が備える検出部は、複数のセンサが所定の配置で規則的に配設されており、光源121から射出され生体内を透過した測定光を、複数のセンサで検出するものである。換言すれば、本実施形態に係る検出部は、いわゆるマルチタップセンサにより構成されている。
Regarding the detection unit The detection unit included in the measurement apparatus 10 according to the present embodiment includes a plurality of sensors regularly arranged in a predetermined arrangement, and a plurality of measurement lights emitted from the light source 121 and transmitted through the living body. This is detected by the sensor. In other words, the detection unit according to the present embodiment is configured by a so-called multi-tap sensor.
 本実施形態に係る測定装置10が備える検出部は、図6に示したように、例えば、光源121から射出された測定光が属する波長帯域の光を透過可能な透明基板123と、第1遮光体125と、マイクロレンズアレイ127と、第2遮光体131と、センサ133と、を主に備える。 As shown in FIG. 6, the detection unit included in the measurement apparatus 10 according to the present embodiment includes, for example, a transparent substrate 123 that can transmit light in a wavelength band to which measurement light emitted from the light source 121 belongs, and a first light shielding. The body 125, the microlens array 127, the second light shield 131, and the sensor 133 are mainly provided.
 透明基板123は、生体表面の一部が配設される部分である。この透明基板123は、測定処理で利用される波長の光を透過可能な基板を用いて形成される。光源121から射出され、生体内部を透過してきた測定光は、透明基板123を透過すると、第1遮光体125によって指向性が制御される。 The transparent substrate 123 is a part where a part of the living body surface is disposed. The transparent substrate 123 is formed using a substrate that can transmit light having a wavelength used in the measurement process. When the measurement light emitted from the light source 121 and transmitted through the living body passes through the transparent substrate 123, the directivity is controlled by the first light shield 125.
 第1遮光体125は、透明基板123を透過した測定光の指向性を制御する指向性制御板として機能するものであり、後述するマイクロレンズアレイ127において互いに隣り合うマイクロレンズ129の境界部に設けられている。このような第1遮光体125を設けることにより、各マイクロレンズ129に入射する測定光の指向性を制御することが可能となり、より高精度な測定を行うことが可能となる。第1遮光体125を通過した測定光は、マイクロレンズアレイ127へと導光される。 The first light shield 125 functions as a directivity control plate that controls the directivity of the measurement light transmitted through the transparent substrate 123, and is provided at the boundary between adjacent microlenses 129 in the microlens array 127 described later. It has been. By providing such a first light shield 125, the directivity of the measurement light incident on each microlens 129 can be controlled, and more accurate measurement can be performed. The measurement light that has passed through the first light shield 125 is guided to the microlens array 127.
 マイクロレンズアレイ127は、図6上段に示したように、受光レンズである複数のマイクロレンズ129から構成されており、各マイクロレンズ129は、所定の基板上にx方向及びy方向に沿って格子状に配列されている。各マイクロレンズ129は、マイクロレンズ129に入射した測定光を、後述するセンサ133へと導光する。マイクロレンズアレイ127は、像面湾曲が少なく深さ方向のひずみがないレンズアレイであるため、このようなマイクロレンズアレイ129を用いることで、良好な測定データを得ることができる。なお、マイクロレンズアレイ127を構成する各マイクロレンズ129の被写界深度は、本実施形態に係る測定装置10で着目する皮膚構造を包括するように(例えば、体表から10mmの深さの範囲までがフォーカスされるように)設定される。 As shown in the upper part of FIG. 6, the microlens array 127 is composed of a plurality of microlenses 129 that are light receiving lenses, and each microlens 129 is a lattice on a predetermined substrate along the x and y directions. Are arranged in a shape. Each microlens 129 guides the measurement light incident on the microlens 129 to a sensor 133 described later. Since the microlens array 127 is a lens array with a small curvature of field and no distortion in the depth direction, good measurement data can be obtained by using such a microlens array 129. Note that the depth of field of each microlens 129 constituting the microlens array 127 includes the skin structure to which attention is paid by the measuring apparatus 10 according to the present embodiment (for example, a depth range of 10 mm from the body surface). Up to focus).
 なお、本実施形態に係るマイクロレンズアレイ127に配設されるマイクロレンズ129の個数は、図6上段に示した例に限定されるわけではない。本実施形態に係るマイクロレンズアレイ127に配設されるマイクロレンズ129の個数は、撮像したい生体の大きさや、センサ133の大きさに応じて、自由に設定することが可能である。 Note that the number of microlenses 129 arranged in the microlens array 127 according to the present embodiment is not limited to the example shown in the upper part of FIG. The number of microlenses 129 arranged in the microlens array 127 according to the present embodiment can be freely set according to the size of a living body to be imaged and the size of the sensor 133.
 マイクロレンズアレイ127に入射した測定光は、マイクロレンズ129により集光されて、後述するセンサ133へと結像されることとなる。 The measurement light incident on the microlens array 127 is condensed by the microlens 129 and imaged on a sensor 133 described later.
 ここで、マイクロレンズアレイ127におけるセンサ133側に位置する面では、互いに隣り合うマイクロレンズ129の境界部に、第2遮光体131が設けられる。この第2遮光体131により、マイクロレンズアレイ127を透過した測定光の指向性を制御することが可能となり、各マイクロレンズ129に入射した光を、隣接するマイクロレンズ129に入射した光と分離することができる。これにより、本実施形態に係る測定装置10では、センサ133に集光される測定光を選択することが可能となる。 Here, on the surface of the microlens array 127 located on the sensor 133 side, the second light shield 131 is provided at the boundary between the microlenses 129 adjacent to each other. The second light shield 131 can control the directivity of the measurement light transmitted through the microlens array 127 and separates the light incident on each microlens 129 from the light incident on the adjacent microlens 129. be able to. Thereby, in the measuring apparatus 10 according to the present embodiment, it is possible to select measurement light condensed on the sensor 133.
 センサ133は、図6上段に示したxy平面の各位置における測定光の強度を検出する。このセンサ133は、光検出器(Photo Detector:PD)等により受光した測定光の強度を電気信号に変換して、後述する測定データ取得部105へと出力する。このセンサ133としては、CCD(Charge Coupled Devices)型画像センサ、CMOS(Complementary Metal Oxide Semiconductor)型画像センサ、有機ELを受光素子としたセンサ、TFT(Thin Film Transistor)型画像センサや等の2次元エリアセンサを利用することができる。 The sensor 133 detects the intensity of the measurement light at each position on the xy plane shown in the upper part of FIG. This sensor 133 converts the intensity of measurement light received by a photo detector (PD) or the like into an electrical signal and outputs it to a measurement data acquisition unit 105 described later. As this sensor 133, a CCD (Charge Coupled Devices) type image sensor, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, a sensor using an organic EL as a light receiving element, a TFT (Thin Film Transistor) type image sensor, or the like. An area sensor can be used.
 このセンサ133は、後述する測定制御部103により走査タイミング等が制御され、例えば図6上段における任意の位置の検出強度を測定データ取得部105に出力することができる。 The scanning timing of the sensor 133 is controlled by the measurement control unit 103 described later, and for example, the detection intensity at an arbitrary position in the upper part of FIG. 6 can be output to the measurement data acquisition unit 105.
 以上、図6を参照しながら、本実施形態に係る測定部101の構成の一例について、詳細に説明した。 The example of the configuration of the measurement unit 101 according to the present embodiment has been described in detail above with reference to FIG.
 以上説明したようなマイクロレンズアレイ光学系では、それぞれのマイクロレンズは、直下にある受光素子アレイの小領域に小さな像を結ぶ。これらの像は周囲の像と重複部分があるため、不要な部分を除いて再構成を行うことにより、重複のない1枚の完全な画像を得ることができる。MLA光学系の画像処理においては、この再構成を行う際に、元画像から取り出す領域を変化させることで、異なる距離に焦点を合わせた画像を生成できるという特徴がある。すなわち、体表面に密着したまま、機械的な光学系の移動を伴わずに、体表面から数ミリメートルの深さに存在する皮下組織(例えば、静脈組織等)に焦点を合わせることができ、都合がよい。なお、動脈は体内の深いところにあって、光拡散の影響を強く受けるため、像を結ぶことはなく、動脈血の拍動による、広い面積の光吸収変化としてのみ観測される。 In the microlens array optical system as described above, each microlens forms a small image in a small area of the light receiving element array immediately below. Since these images have overlapping portions with surrounding images, one complete image without overlapping can be obtained by reconstructing by removing unnecessary portions. The image processing of the MLA optical system has a feature that, when performing this reconstruction, it is possible to generate images focused on different distances by changing the area extracted from the original image. That is, it is possible to focus on a subcutaneous tissue (for example, venous tissue) existing at a depth of several millimeters from the body surface without moving the mechanical optical system while being in close contact with the body surface. Is good. Since the artery is deep in the body and is strongly influenced by light diffusion, an image is not formed and is observed only as a light absorption change over a wide area due to the pulsation of arterial blood.
 測定部101として、以上説明したようなマイクロレンズアレイ光学系を備えたイメージセンサを利用することにより、測定装置10の小型化を図ることが可能となる。また、マイクロレンズアレイ光学系を利用することでより細かな血管(静脈)を撮像することが可能となり、後述する拍動成分分離部109における処理の精度を向上させることができる。 By using an image sensor provided with the microlens array optical system as described above as the measurement unit 101, the measurement apparatus 10 can be reduced in size. Further, by using the microlens array optical system, it is possible to image a finer blood vessel (vein), and it is possible to improve processing accuracy in the pulsation component separation unit 109 described later.
 以上、図5及び図6を参照しながら、本実施形態に係る測定部101について、詳細に説明した。
 以下では、再び図4に戻って、本実施形態に係る測定制御部103について説明する。
The measurement unit 101 according to the present embodiment has been described in detail above with reference to FIGS. 5 and 6.
Hereinafter, returning to FIG. 4 again, the measurement control unit 103 according to the present embodiment will be described.
 測定制御部103は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信装置等により実現される。測定制御部103は、測定部101に設けられた光源部や検出部等の駆動制御を行うことにより、測定部101における生体の測定処理全般を統括する。より詳細には、測定制御部103は、所定の同期信号等に基づいて、検出部に用いられたイメージセンサの走査タイミングや、情報を取得するイメージセンサの画素の選択等といったセンサの駆動制御を行う。また、測定制御部103は、光源部に対しても、測定光の射出タイミングや強度に関する駆動制御を行う。 The measurement control unit 103 is realized by, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication device, and the like. The measurement control unit 103 controls the whole living body measurement process in the measurement unit 101 by performing drive control of the light source unit and the detection unit provided in the measurement unit 101. More specifically, the measurement control unit 103 performs sensor drive control such as scanning timing of the image sensor used in the detection unit and selection of pixels of the image sensor for acquiring information based on a predetermined synchronization signal or the like. Do. The measurement control unit 103 also performs drive control on the emission timing and intensity of the measurement light for the light source unit.
 測定制御部103が以上のような駆動制御を行うことで、測定部101の光源部は、時分割で異なる波長の測定光を射出することが可能となるとともに、測定部101の検出部は、イメージセンサ上の任意の位置の測定データを時分割で取得することが可能となる。 When the measurement control unit 103 performs the drive control as described above, the light source unit of the measurement unit 101 can emit measurement light having different wavelengths in a time division manner, and the detection unit of the measurement unit 101 can Measurement data at an arbitrary position on the image sensor can be acquired in a time division manner.
 測定制御部103により駆動制御された測定部101によって測定された測定データは、後述する測定データ取得部105へと出力されて、測定データの解析処理が実施される。 Measurement data measured by the measurement unit 101 whose drive is controlled by the measurement control unit 103 is output to a measurement data acquisition unit 105 described later, and measurement data analysis processing is performed.
 ここで、測定制御部103は、測定部101の制御を行うにあたり、後述する記憶部115等に記録されている各種のプログラムやパラメータやデータベース等を参照することが可能である。 Here, when controlling the measurement unit 101, the measurement control unit 103 can refer to various programs, parameters, databases, and the like recorded in the storage unit 115 and the like which will be described later.
 測定データ取得部105は、例えば、CPU、ROM、RAM、通信装置等により実現される。測定データ取得部105は、測定部101により測定された測定データ(所定波長の光を用いて撮像された測定部位の撮像データ)を測定部101から取得して、後述する静脈位置特定部107及び拍動成分分離部109に出力する。測定データ取得部105は、所定のタイミング毎に測定部101から出力される測定データを順次取得することで、後述する拍動成分分離部109や酸素飽和度算出部111は、測定データの時間変化を把握することが可能となる。 The measurement data acquisition unit 105 is realized by, for example, a CPU, a ROM, a RAM, a communication device, and the like. The measurement data acquisition unit 105 acquires measurement data measured by the measurement unit 101 (imaging data of a measurement site imaged using light of a predetermined wavelength) from the measurement unit 101, and a later-described vein position specifying unit 107 and Output to the pulsating component separation unit 109. The measurement data acquisition unit 105 sequentially acquires the measurement data output from the measurement unit 101 at every predetermined timing, so that the pulsation component separation unit 109 and the oxygen saturation calculation unit 111 described later change the measurement data over time. Can be grasped.
 なお、測定データ取得部105は、取得した測定データを、当該データを取得した日時等に関する時刻情報と関連付けて、履歴情報として後述する記憶部115に格納してもよい。 Note that the measurement data acquisition unit 105 may store the acquired measurement data in the storage unit 115 described later as history information in association with time information regarding the date and time when the data was acquired.
 静脈位置特定部107は、例えば、CPU、ROM、RAM等により実現される。静脈位置特定部107は、測定部101によって測定された測定データを利用して、生体の測定部位において生体の内部に存在する静脈の位置を特定する。 The vein position specifying unit 107 is realized by, for example, a CPU, a ROM, a RAM, and the like. The vein position specifying unit 107 uses the measurement data measured by the measuring unit 101 to specify the position of the vein existing inside the living body at the measurement site of the living body.
 測定部101に設けられた光源部から射出され体内に入射した測定光は、体内を散乱して検出部へと到達するが、生体内の静脈が存在する位置では、静脈血による光吸収が起こって、生体からの出射光の強度が減少することとなる。従って、測定部101により測定された撮像データでは、静脈に該当する位置は、周囲よりも輝度の低い領域として存在することとなる。以下では、撮像データに表される静脈の形状を示した画像を、静脈パターンと称することとする。 The measurement light emitted from the light source unit provided in the measurement unit 101 and entering the inside of the body is scattered inside the body and reaches the detection unit. However, light absorption by venous blood occurs at a position where a vein in the living body exists. Thus, the intensity of light emitted from the living body is reduced. Therefore, in the imaging data measured by the measurement unit 101, the position corresponding to the vein exists as an area having lower luminance than the surroundings. Hereinafter, an image showing the shape of the vein represented in the imaging data is referred to as a vein pattern.
 本実施形態に係る静脈位置特定部107は、例えば、測定データ取得部105から出力された測定データ(すなわち、測定部位の撮像画像)に対して、静脈パターン抽出の前処理を行なう機能と、静脈パターンの抽出を行なう機能と、静脈パターン抽出の後処理を行なう機能と、を有している。 The vein position specifying unit 107 according to the present embodiment includes, for example, a function for performing preprocessing of vein pattern extraction on the measurement data output from the measurement data acquisition unit 105 (that is, the captured image of the measurement site), and the vein It has a function of performing pattern extraction and a function of performing post-processing of vein pattern extraction.
 ここで、上記の静脈パターン抽出の前処理は、例えば、静脈画像から指の輪郭を検出し、静脈画像のどの位置に指があるかを識別する処理や、検出した指の輪郭を利用して撮像画像を回転させて、撮像画像の角度を補正する処理等を含む。 Here, the pre-processing of the vein pattern extraction described above includes, for example, a process of detecting the contour of a finger from a vein image and identifying where the finger is located in the vein image, and using the detected finger contour. This includes processing for rotating the captured image and correcting the angle of the captured image.
 また、上記の静脈パターンの抽出は、輪郭の検出や角度の補正が終了した撮像画像に対して差分フィルタを適用することで行なわれる。差分フィルタは、注目している画素とその周囲の画素について、注目している画素と周囲の画素との差分が大きな部分で、大きな値を出力値として出力するフィルタである。換言すれば、差分フィルタとは、注目している画素とその近傍の階調値の差分を用いた演算により、画像中の線や縁を強調するフィルタである。 In addition, the above-described vein pattern extraction is performed by applying a differential filter to the captured image for which contour detection and angle correction have been completed. The difference filter is a filter that outputs a large value as an output value at a portion where the difference between the pixel of interest and the surrounding pixels is large between the pixel of interest and the surrounding pixels. In other words, the difference filter is a filter that emphasizes lines and edges in an image by calculation using a difference between a pixel of interest and a gradation value in the vicinity thereof.
 一般的に、2次元平面の格子点(x,y)を変数とする画像データu(x,y)に対してフィルタh(x,y)を用いてフィルタ処理を行なうと、以下の式101に示すように、画像データν(x,y)が生成される。ここで、以下の式101において、‘*’は畳込み積分(コンボリューション)を表す。 In general, when filter processing is performed on image data u (x, y) using a lattice point (x, y) on a two-dimensional plane as a variable using a filter h (x, y), the following equation 101 As shown, image data ν (x, y) is generated. Here, in the following formula 101, “*” represents a convolution (convolution).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本実施形態に係る静脈パターンの抽出では、上記の差分フィルタとして、1次空間微分フィルタや2次空間微分フィルタ等の微分フィルタを用いてもよい。1次空間微分フィルタは、注目している画素について、横方向と縦方向の隣接している画素の階調値の差分を算出するフィルタであり、2次空間微分フィルタは、注目している画素について、階調値の差分の変化量が大きくなっている部分を抽出するフィルタである。 In the extraction of the vein pattern according to the present embodiment, a differential filter such as a primary spatial differential filter or a secondary spatial differential filter may be used as the differential filter. The primary spatial differential filter is a filter that calculates a difference between gradation values of adjacent pixels in the horizontal direction and the vertical direction for the pixel of interest, and the secondary spatial differential filter is the pixel of interest. Is a filter that extracts a portion where the amount of change in the difference in gradation value is large.
 上記の2次空間微分フィルタとして、例えば、以下に示すLog(Laplacian of Gaussian)フィルタを用いることが可能である。Logフィルタ(式103)は、ガウス関数を用いた平滑化フィルタであるガウシアン(Gaussian)フィルタ(式102)の2次微分で表される。ここで、以下の式102において、σはガウス関数の標準偏差を表し、ガウシアンフィルタの平滑化の度合いを表す変数である。また、以下の式103におけるσは、式102と同様にガウス関数の標準偏差を表すパラメータであり、σの値を変化させることで、Logフィルタ処理を行なった場合の出力値を変化させることができる。 As the secondary spatial differential filter, for example, the following Log (Laplacian of Gaussian) filter can be used. The Log filter (Formula 103) is represented by the second derivative of a Gaussian filter (Formula 102) which is a smoothing filter using a Gaussian function. Here, in the following formula 102, σ represents a standard deviation of the Gaussian function and is a variable representing the degree of smoothing of the Gaussian filter. Also, σ in the following equation 103 is a parameter representing the standard deviation of the Gaussian function as in the equation 102, and changing the value of σ can change the output value when the log filter processing is performed. it can.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-I000008
 また、上記の静脈パターン抽出の後処理は、例えば、差分フィルタ適用後の撮像画像に対してなされる閾値処理や、2値化処理や、細線化処理等を含む。かかる後処理を経て、静脈パターンのスケルトンを抽出することが可能となる。 Further, the post-processing of the vein pattern extraction described above includes, for example, threshold processing, binarization processing, thinning processing, and the like performed on the captured image after application of the difference filter. Through such post-processing, it is possible to extract a skeleton of a vein pattern.
 静脈位置特定部107は、以上説明したような方法で静脈パターンを抽出すると、抽出した静脈パターンに基づいて、生体の測定部位において生体の内部に存在する静脈の位置を表す情報を生成する。なお、以下では、この静脈の位置を表す情報を、静脈マスクと称することとする。 When the vein pattern is extracted by the method described above, the vein position specifying unit 107 generates information representing the position of the vein existing inside the living body at the measurement site of the living body based on the extracted vein pattern. In the following, the information indicating the position of the vein is referred to as a vein mask.
 以下、図7を参照しながら、静脈位置特定部107によって生成される静脈マスクについて、簡単に説明する。 Hereinafter, the vein mask generated by the vein position specifying unit 107 will be briefly described with reference to FIG.
 図7(a)は、本実施形態に係る測定部101によって撮像された撮像画像であり、図7(b)は、図7(a)に示した撮像画像から抽出された静脈パターンを示した模式図である。図7(a)を参照すると、静脈の形状が暗く浮かび上がっていることがわかる。これは、静脈血によって入射光の吸収がおこったためである。従って、例えば図7(a)に示したような撮像画像において周囲よりも輝度値が暗い領域は、静脈が存在する位置であると判断することができる。 FIG. 7A is a captured image captured by the measurement unit 101 according to the present embodiment, and FIG. 7B illustrates a vein pattern extracted from the captured image illustrated in FIG. It is a schematic diagram. Referring to FIG. 7 (a), it can be seen that the shape of the veins appears dark. This is because incident light is absorbed by venous blood. Therefore, for example, in the captured image as shown in FIG. 7A, it can be determined that the region where the brightness value is darker than the surroundings is the position where the vein exists.
 本実施形態に係る静脈位置特定部107は、図7(a)に示したような撮像画像を利用して図7(b)に示したような静脈パターンを抽出すると、続いて、図7(c)に示したように、静脈パターンを複数の小領域に分割する。ここで、小領域への分割数は、特に限定されるわけではなく、撮像画像の画素数や求める測定精度等に応じて、適宜決定すればよい。 When the vein position specifying unit 107 according to the present embodiment extracts the vein pattern as illustrated in FIG. 7B using the captured image as illustrated in FIG. As shown in c), the vein pattern is divided into a plurality of small regions. Here, the number of divisions into small areas is not particularly limited, and may be determined as appropriate according to the number of pixels of the captured image, the required measurement accuracy, and the like.
 静脈位置特定部107は、図7(c)に示した小領域毎の平均輝度が、所定の閾値より明るいか否か(平均輝度が所定の閾値よりも大きいか否か)を判定して、静脈パターンを2値化する。すなわち、静脈位置特定部107は、所定の閾値以上の平均輝度を有する小領域の画素値を1として取り扱うとともに、所定の閾値未満の平均輝度を有する小領域の画素値を0として取り扱うことで、図7(d)に示したように、静脈パターンの2値化画像を生成することができる。静脈位置特定部107は、このような静脈パターンの2値化画像を、静脈マスクとして利用する。 The vein position specifying unit 107 determines whether the average luminance for each small region shown in FIG. 7C is brighter than a predetermined threshold (whether the average luminance is larger than the predetermined threshold), The vein pattern is binarized. That is, the vein position specifying unit 107 treats the pixel value of the small area having the average luminance equal to or higher than the predetermined threshold as 1, and treats the pixel value of the small area having the average luminance less than the predetermined threshold as 0. As shown in FIG. 7D, a binarized image of a vein pattern can be generated. The vein position specifying unit 107 uses such a binarized image of the vein pattern as a vein mask.
 静脈位置特定部107は、このようにして静脈マスクを生成すると、生成した静脈マスクを、後述する拍動成分分離部109へと出力する。 When the vein position specifying unit 107 generates the vein mask in this manner, the vein position specifying unit 107 outputs the generated vein mask to the pulsation component separating unit 109 described later.
 なお、以上のような静脈マスクの生成は、1回の脈波測定について最初に1枚作成すれば十分であるが、2枚以上の静脈マスクが生成されてもよい。また、静脈位置特定部107により行われる静脈パターンの抽出処理の詳細は、上記の処理方法に限定されるわけではなく、公知の任意の処理方法を利用することが可能である。 Note that it is sufficient to generate one vein mask as described above for the first pulse wave measurement. However, two or more vein masks may be generated. The details of the vein pattern extraction processing performed by the vein position specifying unit 107 are not limited to the above processing method, and any known processing method can be used.
 再び図4に戻って、本実施形態に係る拍動成分分離部109について説明する。
 本実施形態に係る拍動成分分離部109は、例えば、CPU、ROM、RAM等により実現される。拍動成分分離部109は、測定部101による測定データの時間変化と、静脈位置特定部107により特定された静脈の位置と、に基づいて、測定データの時間変化のうち生体の内部に存在する動脈の拍動に由来する成分を分離する。
Returning to FIG. 4 again, the pulsation component separation unit 109 according to the present embodiment will be described.
The pulsating component separation unit 109 according to the present embodiment is realized by, for example, a CPU, a ROM, a RAM, and the like. The pulsation component separation unit 109 is present in the living body among the time changes of the measurement data based on the time change of the measurement data by the measurement unit 101 and the position of the vein specified by the vein position specifying unit 107. Isolate components derived from arterial pulsations.
 この拍動成分分離部109は、図8に示したように、空間フィルタ部141と、周波数フィルタ部143と、を備える。 The pulsation component separation unit 109 includes a spatial filter unit 141 and a frequency filter unit 143 as shown in FIG.
 空間フィルタ部141は、例えば、CPU、ROM、RAM等により実現される。空間フィルタ部141は、静脈位置特定部107により特定された静脈の位置(すなわち、静脈マスク)に基づいて、測定部位を連続撮像して得られた複数の測定データから、静脈の位置に該当するデータを除外する。その後、空間フィルタ部141は、静脈の部位を除外し、静脈がない位置にある受光素子の測定データ毎に、平均輝度を算出する。このようにして算出した平均輝度を画像フレーム毎に時系列で並べることで、空間フィルタ部141は、図7に示したようなそれぞれの小領域について、静脈血以外の体組織(すなわち、動脈血及びその他の体組織)による吸光度の時間変化データを生成することができる。 The spatial filter unit 141 is realized by, for example, a CPU, a ROM, a RAM, and the like. The spatial filter unit 141 corresponds to the vein position from a plurality of measurement data obtained by continuously imaging the measurement site based on the vein position (ie, vein mask) specified by the vein position specifying unit 107. Exclude data. Thereafter, the spatial filter unit 141 excludes the vein part and calculates the average luminance for each measurement data of the light receiving element at the position where there is no vein. By arranging the average luminance calculated in this manner in time series for each image frame, the spatial filter unit 141 causes body tissues other than venous blood (that is, arterial blood and non-venous blood) for each small region as shown in FIG. Absorbance time change data by other body tissues) can be generated.
 静脈のない位置で測定される光吸収は、図9に示したように、最初から静脈血に由来する光吸収成分を除外した状態にある。静脈の存在しない位置で受光した光は、静脈血による光吸収を受けていないため、静脈の存在する位置で受光した光と比較して、測定したい動脈血の光吸収成分の割合が相対的に大きくなる。従って、静脈マスク画像を参照し、静脈の存在しない位置での測定データを利用することで、信号対雑音比(Signal to Noise Ratio:S/N)を向上させることが可能となる。 As shown in FIG. 9, the light absorption measured at a position without a vein is in a state in which a light absorption component derived from venous blood is excluded from the beginning. Since the light received at the position where the vein does not exist is not absorbed by the venous blood, the ratio of the light absorption component of the arterial blood to be measured is relatively large compared to the light received at the position where the vein exists. Become. Therefore, the signal-to-noise ratio (Signal to Noise Ratio: S / N) can be improved by referring to the vein mask image and using measurement data at a position where no vein exists.
 このように、撮像画像から静脈と認識された空間的な位置に基づく分離を行う処理は、空間フィルタによる情報分離に相当する処理であることがわかる。 Thus, it can be seen that the process of performing the separation based on the spatial position recognized as the vein from the captured image is a process corresponding to the information separation by the spatial filter.
 空間フィルタ部141は、静脈マスク及び測定データを利用して、吸光度の時間変化データを生成すると、生成した時間変化データを、後述する周波数フィルタ部143へと出力する。 When the spatial filter unit 141 generates the time change data of the absorbance using the vein mask and the measurement data, the spatial filter unit 141 outputs the generated time change data to the frequency filter unit 143 described later.
 周波数フィルタ部143は、例えば、CPU、ROM、RAM等により実現される。周波数フィルタ部143は、空間フィルタ部141から出力された、静脈の位置に該当するデータが除外された測定データから、所定の周波数成分を分離する。これにより、周波数フィルタ部143は、空間フィルタ部141から出力された時間変化データから、直流成分(すなわち、図9におけるその他の体組織に由来する成分)を除外する。このようにして生成されたデータが、動脈の拍動を表す脈波形データである。 The frequency filter unit 143 is realized by, for example, a CPU, a ROM, a RAM, and the like. The frequency filter unit 143 separates a predetermined frequency component from the measurement data output from the spatial filter unit 141 and excluding data corresponding to the vein position. Thereby, the frequency filter unit 143 excludes a DC component (that is, a component derived from other body tissue in FIG. 9) from the time change data output from the spatial filter unit 141. The data generated in this way is pulse waveform data representing the pulsation of the artery.
 周波数フィルタ部143は、このようにして生成された動脈の拍動を表す脈波形データを、後述する測定結果出力部113へと出力する。また、本実施形態に係る測定装置10において、酸素飽和度SpO2を算出する場合には、周波数フィルタ部143は、生成した脈波形データを、後述する酸素飽和度算出部111へと出力する。 The frequency filter unit 143 outputs the pulse waveform data representing the pulsation of the artery thus generated to the measurement result output unit 113 described later. In the measurement apparatus 10 according to the present embodiment, when the oxygen saturation SpO2 is calculated, the frequency filter unit 143 outputs the generated pulse waveform data to the oxygen saturation calculation unit 111 described later.
 以上説明したように、本実施形態に係る拍動成分分離部109では、撮像画像上で、静脈と認識された空間的な位置を分離した上で、分離後のデータを周波数フィルタにより処理する。これにより、周波数フィルタに求められる遮断周波数特性を緩和することができ、急峻な遮断特性を有する周波数フィルタを用いることなく、動脈の拍動成分を精度よく分離することが可能となる。 As described above, the pulsation component separation unit 109 according to the present embodiment separates the spatial position recognized as a vein on the captured image, and processes the separated data by the frequency filter. As a result, the cutoff frequency characteristic required for the frequency filter can be relaxed, and the pulsation component of the artery can be accurately separated without using a frequency filter having a steep cutoff characteristic.
 なお、周波数フィルタ部143は、生成した動脈の拍動を表す脈波形データを、当該データを生成した時刻等に関する時刻情報と関連付けて、履歴情報として後述する記憶部115等に格納してもよい。 The frequency filter unit 143 may store the generated pulse waveform data representing the pulsation of the artery in association with time information related to the time when the data is generated, etc., in the storage unit 115 described later as history information. .
 酸素飽和度算出部111は、例えば、CPU、ROM、RAM等により実現される。酸素飽和度算出部111は、拍動成分分離部109により分離された動脈の拍動に由来する成分(すなわち、脈波形データ)を利用して、動脈血中の酸素飽和度を算出する。より詳細には、酸素飽和度算出部111は、赤色光を用いて測定された測定データから生成された脈波形データと、赤外光を用いて測定された測定データから生成された脈波形データと、を利用して、ヘモグロビン濃度及び酸素化ヘモグロビン濃度を算出する。その上で、酸素飽和度算出部111は、算出したヘモグロビン濃度及び酸素化ヘモグロビン濃度を利用して、酸素飽和度を算出する。 The oxygen saturation calculation unit 111 is realized by, for example, a CPU, a ROM, a RAM, and the like. The oxygen saturation calculation unit 111 calculates the oxygen saturation in the arterial blood using a component derived from the pulsation of the artery separated by the pulsation component separation unit 109 (that is, pulse waveform data). More specifically, the oxygen saturation calculation unit 111 includes pulse waveform data generated from measurement data measured using red light, and pulse waveform data generated from measurement data measured using infrared light. And the hemoglobin concentration and the oxygenated hemoglobin concentration are calculated. In addition, the oxygen saturation calculation unit 111 calculates the oxygen saturation using the calculated hemoglobin concentration and oxygenated hemoglobin concentration.
 酸素飽和度の算出方法は、特に限定されるものではないが、例えば、先だって説明したような、式16~式17cに基づく酸素飽和度の算出方法を利用することが可能である。 The method for calculating the oxygen saturation is not particularly limited. For example, the oxygen saturation calculating method based on the equations 16 to 17c described above can be used.
 酸素飽和度算出部111は、脈波形データを利用して算出したヘモグロビン濃度及び酸素化ヘモグロビン濃度を利用して酸素飽和度SpO2を算出すると、算出した酸素飽和度SpO2に関する情報を、後述する測定結果出力部113へと出力する。また、酸素飽和度算出部111は、算出した酸素飽和度に関する情報を、当該情報を生成した日時等の時刻情報と関連付けて、履歴情報として後述する記憶部115に格納してもよい。 When the oxygen saturation calculation unit 111 calculates the oxygen saturation SpO2 using the hemoglobin concentration and the oxygenated hemoglobin concentration calculated using the pulse waveform data, information on the calculated oxygen saturation SpO2 is obtained as a measurement result described later. Output to the output unit 113. The oxygen saturation calculation unit 111 may store information on the calculated oxygen saturation in association with time information such as the date and time when the information is generated in the storage unit 115 described later as history information.
 測定結果出力部113は、例えば、CPU、ROM、RAM、出力装置、通信装置等により実現される。測定結果出力部113は、拍動成分分離部109が生成した脈波形データや、酸素飽和度算出部111が算出した酸素飽和度SpO2に関する情報といった、動脈の拍動成分を解析することにより得ることができる特徴データや特徴量を出力する。測定結果出力部113は、このような動脈の拍動成分に由来する各種の情報を、測定装置10が備えるディスプレイ等の出力装置に出力してもよいし、プリンタ等を利用して紙媒体としてユーザに出力してもよい。また、測定結果出力部113は、得られた動脈の拍動成分に由来する各種の情報を、測定装置10の外部に設けられたディスプレイや各種の情報処理装置等に出力してもよい。 The measurement result output unit 113 is realized by, for example, a CPU, a ROM, a RAM, an output device, a communication device, and the like. The measurement result output unit 113 is obtained by analyzing the pulsation component of the artery such as the pulse waveform data generated by the pulsation component separation unit 109 and the information regarding the oxygen saturation SpO2 calculated by the oxygen saturation calculation unit 111. Outputs feature data and feature values that can be used. The measurement result output unit 113 may output various types of information derived from the arterial pulsation component to an output device such as a display provided in the measurement device 10, or as a paper medium using a printer or the like. You may output to a user. The measurement result output unit 113 may output various information derived from the obtained arterial pulsation component to a display, various information processing apparatuses, and the like provided outside the measurement apparatus 10.
 測定結果出力部113が、動脈の拍動成分に由来する各種の情報を出力することで、本実施形態に係る測定装置10のユーザは、測定結果を把握することが可能となる。 The measurement result output unit 113 outputs various kinds of information derived from the pulsatile component of the artery, so that the user of the measurement apparatus 10 according to the present embodiment can grasp the measurement result.
 記憶部115は、本実施形態に係る測定装置10に設けられたRAMやストレージ装置等により実現される。記憶部115には、上記式16に示した定数α,βに関する変換表等といった、測定装置10における各種の処理で用いられる光吸収スペクトルのデータや、各種のデータベースやルックアップテーブル等が格納されている。また、記憶部115には、本実施形態に係る測定部101により測定された測定データや、本実施形態に係る測定装置10が実施する処理に用いられる各種のプログラムやパラメータやデータ等が記録されていてもよい。また、記憶部115には、これらのデータ以外にも、測定装置10が、何らかの処理を行う際に保存する必要が生じた様々なパラメータや処理の途中経過等を適宜記憶することが可能である。この記憶部115は、測定部101、測定制御部103、測定データ取得部105、静脈位置特定部107、拍動成分分離部109、酸素飽和度算出部111、測定結果出力部113等の各処理部が、自由にアクセスし、データを書き込んだり読み出したりすることができる。 The storage unit 115 is realized by a RAM, a storage device, or the like provided in the measurement apparatus 10 according to the present embodiment. The storage unit 115 stores optical absorption spectrum data used in various processes in the measuring apparatus 10, such as conversion tables related to the constants α and β shown in Equation 16 above, various databases, lookup tables, and the like. ing. The storage unit 115 stores measurement data measured by the measurement unit 101 according to the present embodiment, various programs, parameters, data, and the like used for processing performed by the measurement apparatus 10 according to the present embodiment. It may be. In addition to these data, the storage unit 115 can appropriately store various parameters that need to be saved when the measurement apparatus 10 performs some processing, the progress of the processing, and the like. . The storage unit 115 includes each process of the measurement unit 101, the measurement control unit 103, the measurement data acquisition unit 105, the vein position specifying unit 107, the pulsation component separation unit 109, the oxygen saturation calculation unit 111, the measurement result output unit 113, and the like. The section can freely access and write and read data.
 以上、図4~図9を参照しながら、本実施形態に係る測定装置10の構成について、詳細に説明した。 The configuration of the measurement apparatus 10 according to the present embodiment has been described in detail above with reference to FIGS. 4 to 9.
 なお、本実施形態に係る測定制御部103、測定データ取得部105、静脈位置特定部107、拍動成分分離部109、酸素飽和度算出部111及び測定結果出力部113は、本実施形態に係る測定装置10の一部として実現されていてもよいし、測定装置10に接続されているコンピュータ等の外部機器に実現されていてもよい。また、測定部101によって生成される測定データがリムーバブル記憶媒体等に格納され、この記憶媒体が測定装置10から取り外されて、測定データ取得部105、静脈位置特定部107、拍動成分分離部109、酸素飽和度算出部111及び測定結果出力部113を有する他の装置に接続されることで、測定データが解析されてもよい。 The measurement control unit 103, the measurement data acquisition unit 105, the vein position specifying unit 107, the pulsation component separation unit 109, the oxygen saturation calculation unit 111, and the measurement result output unit 113 according to this embodiment are related to this embodiment. It may be realized as a part of the measuring apparatus 10 or may be realized in an external device such as a computer connected to the measuring apparatus 10. In addition, measurement data generated by the measurement unit 101 is stored in a removable storage medium or the like, and this storage medium is removed from the measurement apparatus 10, and the measurement data acquisition unit 105, vein position specifying unit 107, and pulsation component separation unit 109 are removed. The measurement data may be analyzed by being connected to another device having the oxygen saturation calculation unit 111 and the measurement result output unit 113.
 以上、本実施形態に係る測定装置10の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。 Heretofore, an example of the function of the measuring apparatus 10 according to the present embodiment has been shown. Each component described above may be configured using a general-purpose member or circuit, or may be configured by hardware specialized for the function of each component. In addition, the CPU or the like may perform all functions of each component. Therefore, it is possible to appropriately change the configuration to be used according to the technical level at the time of carrying out the present embodiment.
 なお、上述のような本実施形態に係る測定装置の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。 It should be noted that a computer program for realizing each function of the measuring apparatus according to the present embodiment as described above can be produced and mounted on a personal computer or the like. In addition, a computer-readable recording medium storing such a computer program can be provided. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium.
<測定方法について>
 続いて、図10~図12を参照しながら、本実施形態に係る測定装置10で実施される測定方法の流れについて、詳細に説明する。図10は、本実施形態に係る測定方法の全体的な流れの一例を示した流れ図である。図11は、本実施形態に係る静脈マスクの生成処理の流れの一例を示した流れ図であり、図12は、本実施形態に係る静脈マスクの適用処理の流れの一例を示した流れ図である。
<About measurement method>
Subsequently, the flow of the measurement method performed by the measurement apparatus 10 according to the present embodiment will be described in detail with reference to FIGS. FIG. 10 is a flowchart showing an example of the overall flow of the measurement method according to the present embodiment. FIG. 11 is a flowchart illustrating an example of a flow of vein mask generation processing according to the present embodiment, and FIG. 12 is a flowchart illustrating an example of a flow of vein mask application processing according to the present embodiment.
[測定方法の全体的な流れ]
 まず、図10を参照しながら、本実施形態に係る測定方法の全体的な流れについて説明する。
 まず、本実施形態に係る測定装置10の測定部101は、測定制御部103による制御のもとで、測定部101に載置された生体の測定部位を測定し(ステップS101)、静脈マスク作成のための初期画像(静脈マスク用画像)を取得する(ステップS103)。測定部101は、得られた静脈マスク用画像を測定データ取得部105に出力し、測定データ取得部105は、出力された静脈マスク用画像を、静脈位置特定部107に出力する。
[Overall flow of measurement method]
First, the overall flow of the measurement method according to the present embodiment will be described with reference to FIG.
First, the measurement unit 101 of the measurement apparatus 10 according to the present embodiment measures a measurement site of a living body placed on the measurement unit 101 under the control of the measurement control unit 103 (step S101), and creates a vein mask. An initial image (vein mask image) is acquired (step S103). The measurement unit 101 outputs the obtained vein mask image to the measurement data acquisition unit 105, and the measurement data acquisition unit 105 outputs the output vein mask image to the vein position specifying unit 107.
 静脈位置特定部107は、測定データ取得部105から出力された静脈マスク用画像に基づいて、静脈マスクを生成する(ステップS105)。静脈位置特定部107は、静脈マスクを生成すると、生成した静脈マスクを、拍動成分分離部109へと出力する。 The vein position specifying unit 107 generates a vein mask based on the vein mask image output from the measurement data acquisition unit 105 (step S105). After generating the vein mask, the vein position specifying unit 107 outputs the generated vein mask to the pulsation component separating unit 109.
 その後、本実施形態に係る測定装置10の測定部101は、測定制御部103による制御のもとで、脈波測定のための最初の測定データ(画像データ)を取得する(ステップS107)。その後、測定部101は、得られた画像を測定データ取得部105に出力し、測定データ取得部105は、出力された測定データ(画像データ)を、拍動成分分離部109へと出力する。 Thereafter, the measurement unit 101 of the measurement apparatus 10 according to the present embodiment acquires initial measurement data (image data) for pulse wave measurement under the control of the measurement control unit 103 (step S107). Thereafter, the measurement unit 101 outputs the obtained image to the measurement data acquisition unit 105, and the measurement data acquisition unit 105 outputs the output measurement data (image data) to the pulsation component separation unit 109.
 拍動成分分離部109の空間フィルタ部141は、測定データ取得部107から出力された画像に対して、静脈位置特定部105により生成された静脈マスクを適用して(ステップS109)、静脈が存在する位置を除外した測定データを生成する。その後、空間フィルタ部141は、得られたデータを利用して平均輝度値を算出し、得られた平均輝度値のデータを周波数フィルタ部143に出力する。 The spatial filter unit 141 of the pulsation component separation unit 109 applies the vein mask generated by the vein position specifying unit 105 to the image output from the measurement data acquisition unit 107 (step S109), and there is a vein. The measurement data excluding the position to be generated is generated. Thereafter, the spatial filter unit 141 calculates an average luminance value using the obtained data, and outputs the obtained average luminance value data to the frequency filter unit 143.
 周波数フィルタ部143は、空間フィルタ部141から出力された、平均輝度値のデータの時系列に対して周波数フィルタを適用し(ステップS111)、直流成分を除去した後、得られたデータ(すなわち、脈波形データ)を酸素飽和度算出部111に出力する。 The frequency filter unit 143 applies a frequency filter to the time series of the average luminance value data output from the spatial filter unit 141 (step S111), removes the DC component, and then obtains the obtained data (ie, Pulse waveform data) is output to the oxygen saturation calculator 111.
 ここで、測定制御部103は、所望の測定時間だけ測定をしたか否かを判断し(ステップS113)、所望の測定時間分の測定を完了していない場合には、測定部101に次の画像を取得させる(ステップS115)。測定部101は、次の画像を取得すると、取得した画像を測定データ取得部105に出力し、測定データ取得部105は、取得したデータを拍動成分分離部109に出力する。その後、拍動成分分離部109では、ステップS109以降の処理を継続して実施することとなる。 Here, the measurement control unit 103 determines whether or not the measurement has been performed for a desired measurement time (step S113), and when the measurement for the desired measurement time has not been completed, the measurement unit 101 receives the next measurement time. An image is acquired (step S115). When the measurement unit 101 acquires the next image, the measurement unit 101 outputs the acquired image to the measurement data acquisition unit 105, and the measurement data acquisition unit 105 outputs the acquired data to the pulsation component separation unit 109. Thereafter, the pulsation component separation unit 109 continues to perform the processing from step S109.
 一方、所望の測定時間分の測定が終了している場合には、酸素飽和度算出部111は、得られた脈波形データの時系列の推移に基づいて、酸素飽和度を算出する(ステップS117)。その後、酸素飽和度算出部111は、得られた酸素飽和度に関する情報を、測定結果出力部113に出力する。 On the other hand, when the measurement for the desired measurement time has been completed, the oxygen saturation calculation unit 111 calculates the oxygen saturation based on the time-series transition of the obtained pulse waveform data (step S117). ). Thereafter, the oxygen saturation calculation unit 111 outputs information on the obtained oxygen saturation to the measurement result output unit 113.
 以上のような処理が行われることにより、本実施形態に係る測定装置10では、測定部位の脈波形データを測定して、酸素飽和度を算出することができる。 By performing the processing as described above, the measurement apparatus 10 according to the present embodiment can measure the pulse waveform data at the measurement site and calculate the oxygen saturation.
[静脈マスクの生成処理について]
 次に、図11を参照しながら、静脈位置特定部107により実施される静脈マスク画像の生成処理の流れについて、簡単に説明する。
 静脈位置特定部107は、まず、測定データ取得部105から出力された、静脈マスク用画像を、複数の小領域に分割する(ステップS121)。その後、静脈位置特定部107は、最初の小領域を選択して(ステップS123)、選択した小領域内の各画素の輝度値を積分する。
[Venous mask generation processing]
Next, the flow of the vein mask image generation process performed by the vein position specifying unit 107 will be briefly described with reference to FIG.
The vein position specifying unit 107 first divides the vein mask image output from the measurement data acquisition unit 105 into a plurality of small regions (step S121). Thereafter, the vein position specifying unit 107 selects the first small area (step S123), and integrates the luminance value of each pixel in the selected small area.
 次に、静脈位置特定部107は、積分することで得られた輝度値を、事前に設定した所定の閾値と比較する(ステップS125)。積分することで得られた輝度値が所定の閾値以上である場合には、静脈位置特定部107は、選択した小領域が静脈による光吸収を受けている領域(以下、静脈領域とも称する。)であると特定する(ステップS129)。一方、積分することで得られた輝度値が所定の閾値未満である場合には、静脈位置特定部107は、選択した小領域が静脈による影響を受けていない領域(以下、非静脈領域とも称する。)であると特定する(ステップS131)。 Next, the vein position specifying unit 107 compares the luminance value obtained by the integration with a predetermined threshold value set in advance (step S125). When the luminance value obtained by the integration is equal to or greater than a predetermined threshold, the vein position specifying unit 107 is an area where the selected small area receives light absorption by the vein (hereinafter also referred to as a vein area). (Step S129). On the other hand, when the luminance value obtained by integration is less than the predetermined threshold, the vein position specifying unit 107 determines that the selected small region is not affected by the vein (hereinafter also referred to as a non-venous region). .)) (Step S131).
 その後、静脈位置特定部107は、全ての小領域に対して処理を実施したか否かを判断する(ステップS133)。全ての小領域に対して処理を実施していない場合には、静脈位置特定部107は、次の小領域を選択し(ステップS1359、ステップS125を再び実施する。一方、全ての小領域に対して処理を実施した場合には、静脈マスク画像を生成することができたと判断し、処理を終了する。 Thereafter, the vein position specifying unit 107 determines whether or not processing has been performed on all the small regions (step S133). If the processing has not been performed for all the small regions, the vein position specifying unit 107 selects the next small region (steps S1359 and S125 are performed again. On the other hand, for all the small regions, If the process is executed, it is determined that the vein mask image has been generated, and the process ends.
[静脈マスクの適用処理について]
 次に、図12を参照しながら、空間フィルタ部141により実施される静脈マスク画像の適用処理の流れについて、簡単に説明する。
 空間フィルタ部141で実施される静脈マスクの適用処理は、静脈マスク及び測定部位を連続撮影して得られた複数の測定データ(画像データ)を用いて、画像毎の平均輝度を測定する処理である。具体的には、空間フィルタ部141は、連続撮影で得られた各画像フレームについて、以下の操作を行う。
[Venous mask application processing]
Next, the flow of the vein mask image application processing performed by the spatial filter unit 141 will be briefly described with reference to FIG.
The application process of the vein mask performed by the spatial filter unit 141 is a process of measuring the average luminance for each image using a plurality of measurement data (image data) obtained by continuously photographing the vein mask and the measurement site. is there. Specifically, the spatial filter unit 141 performs the following operation for each image frame obtained by continuous shooting.
 空間フィルタ部141は、まず、測定データ取得部105から出力された画像データを、複数の小領域に分割する(ステップS141)。その後、空間フィルタ部141は、複数の小領域のうち、最初の小領域を選択する(ステップS143)。 First, the spatial filter unit 141 divides the image data output from the measurement data acquisition unit 105 into a plurality of small regions (step S141). Thereafter, the spatial filter unit 141 selects the first small region among the plurality of small regions (step S143).
 続いて、空間フィルタ部141は、静脈位置特定部107から出力された静脈マスクを参照して、選択している小領域が静脈領域としてマークされているか否かを判断する(ステップS145)。選択している小領域が静脈領域ではない場合、空間フィルタ部141は、選択した小領域内の各画素の輝度値を積分し(ステップS147)、続いて、積分した輝度値を全体輝度値に積算する(ステップS149)。一方、選択している小領域が静脈領域である場合、空間フィルタ部141は、上記ステップS147及びステップS149を実施せずに、後述するステップS151を実施する。 Subsequently, the spatial filter unit 141 refers to the vein mask output from the vein position specifying unit 107 and determines whether or not the selected small region is marked as a vein region (step S145). If the selected small region is not a vein region, the spatial filter unit 141 integrates the luminance value of each pixel in the selected small region (step S147), and then converts the integrated luminance value to the overall luminance value. Integration is performed (step S149). On the other hand, when the selected small region is a vein region, the spatial filter unit 141 performs step S151 described later without performing steps S147 and S149.
 次に、空間フィルタ部141は、全ての小領域に対して処理を実施したか否かを判断する(ステップS151)。全ての小領域に対して処理を実施していない場合には、空間フィルタ部141は、次の小領域を選択して(ステップS153)、上記ステップS145を再び実施する。一方、全ての小領域に対して処理を実施した場合には、空間フィルタ部141は、全体輝度値を、積算に用いた画素の総数で除算する。これにより、静脈マスクにおける静脈領域の数によらず、1画素あたりの平均輝度値に正規化が行われることとなる(ステップS155)。空間フィルタ部141は、以上の処理を実施することで、各画像フレームの1画素あたりの平均輝度値を算出する。 Next, the spatial filter unit 141 determines whether or not processing has been performed on all the small regions (step S151). If the processing has not been performed for all the small regions, the spatial filter unit 141 selects the next small region (step S153) and performs the above step S145 again. On the other hand, when processing is performed on all the small regions, the spatial filter unit 141 divides the overall luminance value by the total number of pixels used for integration. As a result, normalization is performed on the average luminance value per pixel regardless of the number of vein regions in the vein mask (step S155). The spatial filter unit 141 calculates the average luminance value per pixel of each image frame by performing the above processing.
 なお、上記ステップS155において、正規化のための除算を行わない構成も考えられる。この場合は、複数の受光素子の出力を加算することになり、受光面積が増えて感度が高くなるという効果を得ることができる。 A configuration in which no division for normalization is performed in step S155 is also conceivable. In this case, the outputs of a plurality of light receiving elements are added, and the effect that the light receiving area increases and the sensitivity becomes high can be obtained.
 以上、図10~図12を参照しながら、本実施形態に係る測定装置10で実施される測定方法の流れについて説明した。 The flow of the measurement method performed by the measurement apparatus 10 according to the present embodiment has been described above with reference to FIGS. 10 to 12.
(ハードウェア構成について)
 次に、図13を参照しながら、本開示の実施形態に係る測定装置10のハードウェア構成について、詳細に説明する。図13は、本開示の実施形態に係る測定装置10のハードウェア構成を説明するためのブロック図である。
(About hardware configuration)
Next, the hardware configuration of the measurement apparatus 10 according to the embodiment of the present disclosure will be described in detail with reference to FIG. FIG. 13 is a block diagram for explaining a hardware configuration of the measurement apparatus 10 according to the embodiment of the present disclosure.
 測定装置10は、主に、CPU901と、ROM903と、RAM905と、を備える。また、測定装置10は、更に、ホストバス907、ブリッジ909、外部バス911、インターフェース913、センサ914、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923および通信装置925を備える。 The measuring apparatus 10 mainly includes a CPU 901, a ROM 903, and a RAM 905. The measurement apparatus 10 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, a sensor 914, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925. .
 CPU901は、演算処理装置および制御装置として機能し、ROM903、RAM905、ストレージ装置919、またはリムーバブル記録媒体927に記録された各種プログラムに従って、測定装置10内の動作全般またはその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。 The CPU 901 functions as an arithmetic processing device and a control device, and controls all or a part of the operation in the measuring device 10 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927. The ROM 903 stores programs used by the CPU 901, calculation parameters, and the like. The RAM 905 primarily stores programs used by the CPU 901, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 907 constituted by an internal bus such as a CPU bus.
 ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。 The host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
 センサ914は、例えば、ユーザに固有の生体情報、または、かかる生体情報を取得するために用いられる各種情報を検出する検出手段である。このセンサ914として、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の各種の撮像素子を挙げることができる。また、センサ914は、生体部位を撮像するために用いられるレンズ等の光学系や光源等を更に有していてもよい。また、センサ914は、音声等を取得するためのマイクロフォン等であってもよい。なお、センサ914は、上述のもの以外にも、温度計、照度計、湿度計、速度計、加速度計などの様々な測定機器を備えていてもよい。 The sensor 914 is, for example, detection means for detecting biological information unique to the user or various information used for acquiring such biological information. Examples of the sensor 914 include various image pickup devices such as a CCD (Charge Coupled Device) and a CMOS (Complementary Metal Oxide Semiconductor). The sensor 914 may further include an optical system such as a lens and a light source used for imaging a living body part. The sensor 914 may be a microphone or the like for acquiring sound or the like. The sensor 914 may include various measuring devices such as a thermometer, an illuminometer, a hygrometer, a speedometer, and an accelerometer in addition to the above-described ones.
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなどユーザが操作する操作手段である。また、入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、測定装置10の操作に対応した携帯電話やPDA等の外部接続機器929であってもよい。さらに、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。測定装置10のユーザは、この入力装置915を操作することにより、測定装置10に対して各種のデータを入力したり処理動作を指示したりすることができる。 The input device 915 is an operation means operated by the user such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever. Further, the input device 915 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or an external connection device 929 such as a mobile phone or a PDA corresponding to the operation of the measuring device 10. It may be. Furthermore, the input device 915 includes an input control circuit that generates an input signal based on information input by a user using the above-described operation means and outputs the input signal to the CPU 901, for example. The user of the measuring device 10 can input various data and instruct processing operations to the measuring device 10 by operating the input device 915.
 出力装置917は、取得した情報をユーザに対して視覚的または聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置およびランプなどの表示装置や、スピーカおよびヘッドホンなどの音声出力装置や、プリンタ装置、携帯電話、ファクシミリなどがある。出力装置917は、例えば、測定装置10が行った各種処理により得られた結果を出力する。具体的には、表示装置は、測定装置10が行った各種処理により得られた結果を、テキストまたはイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。 The output device 917 is a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices and display devices such as lamps, audio output devices such as speakers and headphones, printer devices, mobile phones, and facsimiles. The output device 917 outputs, for example, results obtained by various processes performed by the measurement device 10. Specifically, the display device displays the results obtained by various processes performed by the measurement device 10 as text or images. On the other hand, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal.
 ストレージ装置919は、測定装置10の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイス等により構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ、および外部から取得した各種データなどを格納する。 The storage device 919 is a data storage device configured as an example of a storage unit of the measurement device 10. The storage device 919 includes, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. The storage device 919 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
 ドライブ921は、記録媒体用リーダライタであり、測定装置10に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM905に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD-DVDメディア、Blu-rayメディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、または、SDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)または電子機器等であってもよい。 The drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the measuring apparatus 10. The drive 921 reads information recorded on a removable recording medium 927 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 905. In addition, the drive 921 can write a record on a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. The removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray medium, or the like. The removable recording medium 927 may be a compact flash (registered trademark) (CompactFlash: CF), a flash memory, or an SD memory card (Secure Digital memory card). Further, the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
 接続ポート923は、機器を測定装置10に直接接続するためのポートである。接続ポート923の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート等がある。接続ポート923の別の例として、RS-232Cポート、光オーディオ端子、HDMI(High-Definition Multimedia Interface)ポート等がある。この接続ポート923に外部接続機器929を接続することで、測定装置10は、外部接続機器929から直接各種データを取得したり、外部接続機器929に各種データを提供したりする。 The connection port 923 is a port for directly connecting a device to the measurement apparatus 10. Examples of the connection port 923 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like. As another example of the connection port 923, there are an RS-232C port, an optical audio terminal, an HDMI (High-Definition Multimedia Interface) port, and the like. By connecting the external connection device 929 to the connection port 923, the measurement apparatus 10 acquires various data directly from the external connection device 929 or provides various data to the external connection device 929.
 通信装置925は、例えば、通信網931に接続するための通信デバイス等で構成された通信インターフェースである。通信装置925は、例えば、有線または無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カード等である。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、または、各種通信用のモデム等であってもよい。この通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置925に接続される通信網931は、有線または無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信等であってもよい。 The communication device 925 is a communication interface configured with, for example, a communication device for connecting to the communication network 931. The communication device 925 is, for example, a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB). The communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), or a modem for various communication. The communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or other communication devices. The communication network 931 connected to the communication device 925 is configured by a wired or wireless network, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. .
 以上、本開示の実施形態に係る測定装置10の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。 Heretofore, an example of the hardware configuration capable of realizing the function of the measurement apparatus 10 according to the embodiment of the present disclosure has been shown. Each component described above may be configured using a general-purpose member, or may be configured by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.
(まとめ)
 以上説明したように、本開示の実施形態では、静脈パターン画像を基に、静脈の存在しない位置にある受光素子で取得された情報のみを利用することで、最初から静脈血による光吸収成分が除外された、より信号雑音比が高い状態のデータを、周波数フィルタに入力することができるようになる。すなわち、空間フィルタによって分離可能な情報を事前に分離したデータを、周波数フィルタに入力する方法を採用することにより、周波数フィルタに求められる遮断周波数特性を緩和することができる。その結果、より簡素な構成の周波数フィルタを用いた場合であっても、優れた拍動成分の分離処理(脈波形の分離処理)を実現することが可能となる。
(Summary)
As described above, in the embodiment of the present disclosure, by using only information acquired by a light receiving element at a position where a vein does not exist based on a vein pattern image, a light absorption component due to venous blood from the beginning is obtained. The excluded data having a higher signal-to-noise ratio can be input to the frequency filter. That is, the cut-off frequency characteristic required for the frequency filter can be relaxed by adopting a method in which data obtained by previously separating information separable by the spatial filter is input to the frequency filter. As a result, even when a frequency filter having a simpler configuration is used, excellent pulsation component separation processing (pulse waveform separation processing) can be realized.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と、
 前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定部と、
 前記測定部による測定データの時間変化と、前記静脈位置特定部により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離部と、
 前記拍動成分分離部により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出部と、
を備える、測定装置。
(2)
 前記拍動成分分離部は、
 前記静脈位置特定部により特定された前記静脈の位置に基づいて、前記測定データから前記静脈の位置に該当するデータを除外する空間フィルタ部と、
 前記静脈の位置に該当するデータが除外された前記測定データから、所定の周波数成分を分離する周波数フィルタ部と、
を有する、(1)に記載の測定装置。
(3)
 前記測定部は、
 所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出する光源部と、
 複数のセンサが所定の配置で規則的に配設されており、前記光源部から射出され前記生体を透過した測定光を当該複数のセンサで検出する検出部と、
を備える、(1)又は(2)に記載の測定装置。
(4)
 前記検出部は、複数のレンズが格子状に規則的に配設されたマイクロレンズアレイを利用したセンサにより、前記生体を透過した測定光を検出する、(3)に記載の測定装置。
(5)
 前記酸素飽和度算出部は、前記赤色光を用いて測定された前記測定データと、前記赤外光を用いて測定された前記測定データと、を利用して、ヘモグロビン濃度及び酸素化ヘモグロビン濃度を算出し、算出した前記ヘモグロビン濃度及び酸素化ヘモグロビン濃度を利用して、前記酸素飽和度を算出する、(3)又は(4)に記載の測定装置。
(6)
 生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定することと、
 測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定することと、
 前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離することと、
 分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出することと、
を含む、測定方法。
(7)
 生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と通信可能なコンピュータに、
 前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定機能と、
 前記測定部による測定データの時間変化と、前記静脈位置特定機能により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離機能と、
 前記拍動成分分離機能により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出機能と、
を実現させるためのプログラム。
(8)
 生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と通信可能なコンピュータに、
 前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定機能と、
 前記測定部による測定データの時間変化と、前記静脈位置特定機能により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離機能と、
 前記拍動成分分離機能により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出機能と、
を実現させるためのプログラムが記録された記録媒体。
(9)
 生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と、
 前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定部と、
 前記測定部による測定データの時間変化と、前記静脈位置特定部により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離部と、
 前記拍動成分分離部により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出部と、
を備え、
 前記測定部は、
 所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出する光源部と、
 複数のセンサが所定の配置で規則的に配設されており、前記光源部から射出され前記生体を透過した測定光を当該複数のセンサで検出する検出部と、
を有する、測定装置。
(10)
 生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定することと、
 測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定することと、
 前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離することと、
 分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出することと、
を含み、
 前記光の吸収度合いを測定する際には、
 所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出し、複数のセンサが所定の配置で規則的に配設されたセンサによって、前記生体を透過した測定光を検出する、測定方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A measurement unit that irradiates at least a part of the living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body;
Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body;
Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying unit, the pulsation of an artery existing inside the living body among the time change of the measurement data is determined. A pulsating component separation unit that separates components derived from;
Using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, an oxygen saturation calculation unit for calculating oxygen saturation in arterial blood;
A measuring device.
(2)
The pulsating component separation unit is
A spatial filter unit for excluding data corresponding to the position of the vein from the measurement data based on the position of the vein specified by the vein position specifying unit;
A frequency filter unit that separates a predetermined frequency component from the measurement data from which data corresponding to the position of the vein is excluded;
The measuring device according to (1).
(3)
The measuring unit is
A light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body;
A plurality of sensors are regularly arranged in a predetermined arrangement, and a detection unit that detects measurement light emitted from the light source unit and transmitted through the living body with the plurality of sensors,
The measuring device according to (1) or (2).
(4)
The measurement device according to (3), wherein the detection unit detects measurement light transmitted through the living body by a sensor using a microlens array in which a plurality of lenses are regularly arranged in a lattice shape.
(5)
The oxygen saturation calculation unit calculates the hemoglobin concentration and the oxygenated hemoglobin concentration using the measurement data measured using the red light and the measurement data measured using the infrared light. The measurement apparatus according to (3) or (4), wherein the oxygen saturation is calculated using the calculated hemoglobin concentration and oxygenated hemoglobin concentration.
(6)
Irradiating at least a part of the living body with light of a predetermined wavelength, imaging the living body with an image sensor, and measuring the degree of absorption of the light by the living body;
Using the measured measurement data, specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
Separating a component derived from the pulsation of an artery present inside the living body from the time change of the measurement data based on the time change of the measurement data and the specified position of the vein;
Using a component derived from the arterial pulsation of the separated measurement data to calculate oxygen saturation in arterial blood;
Including a measuring method.
(7)
A computer capable of communicating with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
Utilizing measurement data by the measurement unit, a vein position specifying function for specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying function, the pulsation of the artery existing inside the living body among the time change of the measurement data is determined. Pulsation component separation function to separate the derived components,
An oxygen saturation calculation function for calculating oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function;
A program to realize
(8)
A computer capable of communicating with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
Utilizing measurement data by the measurement unit, a vein position specifying function for specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying function, the pulsation of the artery existing inside the living body among the time change of the measurement data is determined. Pulsation component separation function to separate the derived components,
An oxygen saturation calculation function for calculating oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function;
A recording medium on which a program for realizing the above is recorded.
(9)
A measurement unit that irradiates at least a part of the living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body;
Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body;
Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying unit, the pulsation of an artery existing inside the living body among the time change of the measurement data is determined. A pulsating component separation unit that separates components derived from;
Using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, an oxygen saturation calculation unit for calculating oxygen saturation in arterial blood;
With
The measuring unit is
A light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body;
A plurality of sensors are regularly arranged in a predetermined arrangement, and a detection unit that detects measurement light emitted from the light source unit and transmitted through the living body with the plurality of sensors,
A measuring device.
(10)
Irradiating at least a part of the living body with light of a predetermined wavelength, imaging the living body with an image sensor, and measuring the degree of absorption of the light by the living body;
Using the measured measurement data, specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
Separating a component derived from the pulsation of an artery present inside the living body from the time change of the measurement data based on the time change of the measurement data and the specified position of the vein;
Using a component derived from the arterial pulsation of the separated measurement data to calculate oxygen saturation in arterial blood;
Including
When measuring the degree of light absorption,
At least two kinds of measurement light of red light and infrared light having a predetermined wavelength are emitted toward the living body, and the plurality of sensors are transmitted through the living body by sensors regularly arranged in a predetermined arrangement. A measurement method that detects measurement light.
 10  測定装置
 101  測定部
 103  測定制御部
 105  測定データ取得部
 107  静脈位置特定部
 109  拍動成分分離部
 111  酸素飽和度算出部
 113  測定結果出力部
 115  記憶部
 
 
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 101 Measuring part 103 Measurement control part 105 Measurement data acquisition part 107 Vein position specific | specification part 109 Pulsatile component separation part 111 Oxygen saturation calculation part 113 Measurement result output part 115 Storage part

Claims (10)

  1.  生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と、
     前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定部と、
     前記測定部による測定データの時間変化と、前記静脈位置特定部により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離部と、
     前記拍動成分分離部により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出部と、
    を備える、測定装置。
    A measurement unit that irradiates at least a part of the living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body;
    Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body;
    Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying unit, the pulsation of an artery existing inside the living body among the time change of the measurement data is determined. A pulsating component separation unit that separates components derived from;
    Using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, an oxygen saturation calculation unit for calculating oxygen saturation in arterial blood;
    A measuring device.
  2.  前記拍動成分分離部は、
     前記静脈位置特定部により特定された前記静脈の位置に基づいて、前記測定データから前記静脈の位置に該当するデータを除外する空間フィルタ部と、
     前記静脈の位置に該当するデータが除外された前記測定データから、所定の周波数成分を分離する周波数フィルタ部と、
    を有する、請求項1に記載の測定装置。
    The pulsating component separation unit is
    A spatial filter unit for excluding data corresponding to the position of the vein from the measurement data based on the position of the vein specified by the vein position specifying unit;
    A frequency filter unit that separates a predetermined frequency component from the measurement data from which data corresponding to the position of the vein is excluded;
    The measuring apparatus according to claim 1, comprising:
  3.  前記測定部は、
     所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出する光源部と、
     複数のセンサが所定の配置で規則的に配設されており、前記光源部から射出され前記生体を透過した測定光を当該複数のセンサで検出する検出部と、
    を備える、請求項2に記載の測定装置。
    The measuring unit is
    A light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body;
    A plurality of sensors are regularly arranged in a predetermined arrangement, and a detection unit that detects measurement light emitted from the light source unit and transmitted through the living body with the plurality of sensors,
    The measurement apparatus according to claim 2, comprising:
  4.  前記検出部は、複数のレンズが格子状に規則的に配設されたマイクロレンズアレイを利用したセンサにより、前記生体を透過した測定光を検出する、請求項3に記載の測定装置。 The measurement device according to claim 3, wherein the detection unit detects measurement light transmitted through the living body by a sensor using a microlens array in which a plurality of lenses are regularly arranged in a lattice shape.
  5.  前記酸素飽和度算出部は、前記赤色光を用いて測定された前記測定データと、前記赤外光を用いて測定された前記測定データと、を利用して、ヘモグロビン濃度及び酸素化ヘモグロビン濃度を算出し、算出した前記ヘモグロビン濃度及び酸素化ヘモグロビン濃度を利用して、前記酸素飽和度を算出する、請求項4に記載の測定装置。 The oxygen saturation calculation unit calculates the hemoglobin concentration and the oxygenated hemoglobin concentration using the measurement data measured using the red light and the measurement data measured using the infrared light. The measurement apparatus according to claim 4, wherein the oxygen saturation is calculated using the calculated hemoglobin concentration and oxygenated hemoglobin concentration.
  6.  生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定することと、
     測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定することと、
     前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離することと、
     分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出することと、
    を含む、測定方法。
    Irradiating at least a part of the living body with light of a predetermined wavelength, imaging the living body with an image sensor, and measuring the degree of absorption of the light by the living body;
    Using the measured measurement data, specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
    Separating a component derived from the pulsation of an artery present inside the living body from the time change of the measurement data based on the time change of the measurement data and the specified position of the vein;
    Using a component derived from the arterial pulsation of the separated measurement data to calculate oxygen saturation in arterial blood;
    Including a measuring method.
  7.  生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と通信可能なコンピュータに、
     前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定機能と、
     前記測定部による測定データの時間変化と、前記静脈位置特定機能により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離機能と、
     前記拍動成分分離機能により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出機能と、
    を実現させるためのプログラム。
    A computer capable of communicating with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
    Utilizing measurement data by the measurement unit, a vein position specifying function for specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
    Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying function, the pulsation of the artery existing inside the living body among the time change of the measurement data is determined. Pulsation component separation function to separate the derived components,
    An oxygen saturation calculation function for calculating oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function;
    A program to realize
  8.  生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と通信可能なコンピュータに、
     前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定機能と、
     前記測定部による測定データの時間変化と、前記静脈位置特定機能により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離機能と、
     前記拍動成分分離機能により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出機能と、
    を実現させるためのプログラムが記録された記録媒体。
    A computer capable of communicating with a measurement unit that irradiates at least a part of a living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body.
    Utilizing measurement data by the measurement unit, a vein position specifying function for specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
    Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying function, the pulsation of the artery existing inside the living body among the time change of the measurement data is determined. Pulsation component separation function to separate the derived components,
    An oxygen saturation calculation function for calculating oxygen saturation in arterial blood using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation function;
    A recording medium on which a program for realizing the above is recorded.
  9.  生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定する測定部と、
     前記測定部による測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定する静脈位置特定部と、
     前記測定部による測定データの時間変化と、前記静脈位置特定部により特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離する拍動成分分離部と、
     前記拍動成分分離部により分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出する酸素飽和度算出部と、
    を備え、
     前記測定部は、
     所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出する光源部と、
     複数のセンサが所定の配置で規則的に配設されており、前記光源部から射出され前記生体を透過した測定光を当該複数のセンサで検出する検出部と、
    を有する、測定装置。
    A measurement unit that irradiates at least a part of the living body with light of a predetermined wavelength, images the living body with an image sensor, and measures the degree of absorption of the light by the living body;
    Utilizing measurement data by the measurement unit, a vein position specifying unit that specifies a position corresponding to a vein existing inside the living body at the measurement site of the living body;
    Based on the time change of the measurement data by the measurement unit and the position of the vein specified by the vein position specifying unit, the pulsation of an artery existing inside the living body among the time change of the measurement data is determined. A pulsating component separation unit that separates components derived from;
    Using a component derived from the pulsation of the artery of the measurement data separated by the pulsation component separation unit, an oxygen saturation calculation unit for calculating oxygen saturation in arterial blood;
    With
    The measuring unit is
    A light source unit that emits at least two types of measurement light of red light and infrared light having a predetermined wavelength toward the living body;
    A plurality of sensors are regularly arranged in a predetermined arrangement, and a detection unit that detects measurement light emitted from the light source unit and transmitted through the living body with the plurality of sensors,
    A measuring device.
  10.  生体の少なくとも一部に対して所定波長の光を照射して、当該生体をイメージセンサにより撮像し、前記生体による前記光の吸収度合いを測定することと、
     測定された測定データを利用して、前記生体の測定部位において前記生体の内部に存在する静脈に対応する位置を特定することと、
     前記測定データの時間変化と、特定された前記静脈の位置と、に基づいて、前記測定データの時間変化のうち前記生体の内部に存在する動脈の拍動に由来する成分を分離することと、
     分離された前記測定データの前記動脈の拍動に由来する成分を利用して、動脈血中の酸素飽和度を算出することと、
    を含み、
     前記光の吸収度合いを測定する際には、
     所定波長を有する赤色光及び赤外光の少なくとも2種類の測定光を、前記生体に向かって射出し、複数のセンサが所定の配置で規則的に配設されたセンサによって、前記生体を透過した測定光を検出する、測定方法。
     
    Irradiating at least a part of the living body with light of a predetermined wavelength, imaging the living body with an image sensor, and measuring the degree of absorption of the light by the living body;
    Using the measured measurement data, specifying a position corresponding to a vein existing inside the living body at the measurement site of the living body;
    Separating a component derived from the pulsation of an artery present inside the living body from the time change of the measurement data based on the time change of the measurement data and the specified position of the vein;
    Using a component derived from the arterial pulsation of the separated measurement data to calculate oxygen saturation in arterial blood;
    Including
    When measuring the degree of light absorption,
    At least two kinds of measurement light of red light and infrared light having a predetermined wavelength are emitted toward the living body, and the plurality of sensors are transmitted through the living body by sensors regularly arranged in a predetermined arrangement. A measurement method that detects measurement light.
PCT/JP2012/080200 2011-12-08 2012-11-21 Measurement device, measurement method, program and recording medium WO2013084719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268755 2011-12-08
JP2011268755A JP5948831B2 (en) 2011-12-08 2011-12-08 Measuring device, measuring method, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2013084719A1 true WO2013084719A1 (en) 2013-06-13

Family

ID=48574097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080200 WO2013084719A1 (en) 2011-12-08 2012-11-21 Measurement device, measurement method, program and recording medium

Country Status (2)

Country Link
JP (1) JP5948831B2 (en)
WO (1) WO2013084719A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103876748A (en) * 2014-01-15 2014-06-25 香港应用科技研究院有限公司 Integrated unit for calibrating pulse oximetry
US20180344262A1 (en) * 2017-06-01 2018-12-06 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and non-transitory storage medium
US11602277B2 (en) 2017-01-16 2023-03-14 Hoya Corporation Endoscope system and image display device
CN116649969A (en) * 2023-07-25 2023-08-29 苏州晟智医疗科技有限公司 Blood oxygen saturation measuring device, apparatus and storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506426A (en) * 2013-11-05 2017-03-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Detector array for vein recognition technology
CN106061385B (en) * 2014-03-12 2020-03-20 索尼公司 Measuring device and measuring method
US10792492B2 (en) 2014-10-14 2020-10-06 East Carolina University Methods, systems and computer program products for determining physiologic status parameters using signals derived from multispectral blood flow and perfusion imaging
EP3188651A4 (en) 2014-10-14 2018-07-04 East Carolina University Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques
WO2016162980A1 (en) 2015-04-08 2016-10-13 オリンパス株式会社 Image processing device, imaging device, image processing method, and program
JP2019097771A (en) * 2017-11-30 2019-06-24 フクダ電子株式会社 Pulse oximeter and probe for biological information measurement
JP7009429B2 (en) * 2019-10-07 2022-01-25 嘉満 長尾 Blood oxygen saturation measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334424A (en) * 2004-05-28 2005-12-08 Casio Comput Co Ltd Biological signal detecting device
JP2008253485A (en) * 2007-04-04 2008-10-23 Momaku Joho Shindan Kenkyusho:Kk Detector of arteriosclerosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334424A (en) * 2004-05-28 2005-12-08 Casio Comput Co Ltd Biological signal detecting device
JP2008253485A (en) * 2007-04-04 2008-10-23 Momaku Joho Shindan Kenkyusho:Kk Detector of arteriosclerosis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103876748A (en) * 2014-01-15 2014-06-25 香港应用科技研究院有限公司 Integrated unit for calibrating pulse oximetry
CN103876748B (en) * 2014-01-15 2015-12-30 香港应用科技研究院有限公司 For calibrating the integrated unit of pulse blood oxygen instrument
US11602277B2 (en) 2017-01-16 2023-03-14 Hoya Corporation Endoscope system and image display device
US20180344262A1 (en) * 2017-06-01 2018-12-06 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and non-transitory storage medium
US10945678B2 (en) * 2017-06-01 2021-03-16 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and non-transitory storage medium
CN116649969A (en) * 2023-07-25 2023-08-29 苏州晟智医疗科技有限公司 Blood oxygen saturation measuring device, apparatus and storage medium
CN116649969B (en) * 2023-07-25 2023-10-10 苏州晟智医疗科技有限公司 Blood oxygen saturation measuring device, apparatus and storage medium

Also Published As

Publication number Publication date
JP2013118978A (en) 2013-06-17
JP5948831B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5948831B2 (en) Measuring device, measuring method, program, and recording medium
JP6539877B2 (en) Measuring device, measuring method, program and recording medium
JP6890184B2 (en) Medical image processing equipment and medical image processing program
JP5948836B2 (en) Measuring device, measuring method, program, and recording medium
WO2017187718A1 (en) Imaging apparatus, authentication processing apparatus, imaging method, authentication processing method, and program
JP5935498B2 (en) Information processing apparatus, information processing method, program, and information processing system
CN105473060B (en) System and method for extracting physiologic information from the electromagnetic radiation remotely detected
WO2013073270A1 (en) Measurement device, measurement method, program, and recording medium
JP6539876B2 (en) Measuring device, measuring method, program and recording medium
CN107505268A (en) Blood sugar detecting method and system
KR101494638B1 (en) Vein visualization method using estimated reflectance spectrums, guide apparatus for vascular access using the method thereof and user authentication apparatus using the method thereof
JP6226523B2 (en) Subject information acquisition apparatus, display method, and data processing apparatus
Bousefsaf et al. Peripheral vasomotor activity assessment using a continuous wavelet analysis on webcam photoplethysmographic signals
JP2014230647A (en) Display device, display method, and display program
WO2013094392A1 (en) Measurement device, measurement method, program, and recording medium
JP5970785B2 (en) Biological measuring device, biological measuring method, program, and recording medium
Hasan et al. Noninvasive hemoglobin level prediction in a mobile phone environment: State of the art review and recommendations
Miah et al. Non-invasive bilirubin level quantification and jaundice detection by sclera image processing
EP2106738B1 (en) Signal processing apparatus, signal processing method and computer readable medium
Hasan et al. HeLP ME: Recommendations for non-invasive hemoglobin level prediction in mobile-phone environment
US10477119B2 (en) Imaging device
D’Alessandro et al. Depth-dependent hemoglobin analysis from multispectral transillumination images
CN109791694B (en) Method and device for determining a physiological parameter of a subject and computer program product therefor
Hasan BEst (Biomarker Estimation): health biomarker estimation non-invasively and ubiquitously
JP6490171B2 (en) Data processing apparatus and data processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854637

Country of ref document: EP

Kind code of ref document: A1