WO2013084612A1 - Optical head device, optical disk device and method for adjusting position of diffractive optical element - Google Patents

Optical head device, optical disk device and method for adjusting position of diffractive optical element Download PDF

Info

Publication number
WO2013084612A1
WO2013084612A1 PCT/JP2012/077457 JP2012077457W WO2013084612A1 WO 2013084612 A1 WO2013084612 A1 WO 2013084612A1 JP 2012077457 W JP2012077457 W JP 2012077457W WO 2013084612 A1 WO2013084612 A1 WO 2013084612A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
sub
receiving unit
head device
Prior art date
Application number
PCT/JP2012/077457
Other languages
French (fr)
Japanese (ja)
Inventor
篠田 昌久
正幸 大牧
中井 賢也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013548145A priority Critical patent/JP5769819B2/en
Priority to CN201280056054.9A priority patent/CN103946921B/en
Publication of WO2013084612A1 publication Critical patent/WO2013084612A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/133Shape of individual detector elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation

Definitions

  • the present invention relates to an optical head device, an optical disk device having the same, and a method for adjusting the position of a diffractive optical element included in the optical head device.
  • a system in which a plurality of information recording layers are stacked in one optical disk is known.
  • the amount of information recording can be increased by approximately a multiple of the number of information recording layers as compared to an optical disc having a single information recording layer.
  • DVD Digital Versatile Disc: registered trademark
  • BD Blu-ray Disc: registered trademark
  • a tracking error occurs when an objective lens shift occurs (a phenomenon in which the position of the objective lens deviates from the position of the photodetector when the objective lens is driven by an actuator and shifted in the radial direction of the optical disc).
  • a differential push-pull method which is a method in which a DC offset component is not superimposed on a signal, is generally employed.
  • a light beam emitted from a laser light source is divided into three light beams consisting of one main beam and two sub beams by a diffraction grating, and three light spots are formed on an information recording layer of an optical disc.
  • Information recording or reproduction on the information recording layer is performed using a light spot of a main beam formed in the center.
  • the light spots of the two sub beams formed on both sides of the light spot of the main beam are used for generating a tracking error signal.
  • the diffraction grating is designed so that the light intensity of the sub beam is sufficiently lower than the light intensity of the main beam.
  • Patent Document 1 As a conventional optical head device capable of reducing the above stray light, for example, an optical pickup device disclosed in International Publication No. 96/020473 (Patent Document 1) is known.
  • the optical pickup device of Patent Document 1 includes a main beam detector that receives a main beam corresponding to a main beam and a side beam detector that receives a side beam corresponding to a sub beam.
  • the stray light of the main beam reflected by the information recording layer that is not the target of reading the information signal is disposed at a position where it is not incident. As a result, it is possible to suppress deterioration in the quality of the tracking error signal.
  • the diffraction grating is disposed on the optical path between the laser light source and the objective lens, the light intensity of the laser light beam that is transmitted through the objective lens and irradiated onto the optical disk is determined by the diffraction grating. Attenuate (loss) at.
  • the conventional optical head device generates a tracking error signal only from the sub beam generated by dividing the main beam by the diffraction grating. Since the light intensity of the sub beam is inherently weak, the signal level of the tracking error signal itself is weak. For this reason, stray light may fluctuate due to variations in the distance between the desired information recording layer to be recorded or reproduced and another information recording layer, dust attached to the optical disk, scratches on the optical disk surface, etc. When abnormal stray light is generated due to the disturbance of the affected light beam, the quality of the tracking error signal having a weak signal level is impaired, and the quality of the reproduction information signal is also deteriorated.
  • an object of the present invention is to reduce a loss of light intensity of a light beam to be irradiated on an optical disc, and to generate a tracking error signal from which a DC offset component due to an objective lens shift is removed.
  • An optical head device having a configuration and capable of improving the quality of a tracking error signal, an optical disk device having the optical head device, and a method for adjusting the position of a diffractive optical element included in the optical head device.
  • An optical head device includes a laser light source, an objective lens that collects a light beam emitted from the laser light source and irradiates the optical disc, and return light that is reflected by the optical disc and transmitted through the objective lens.
  • a diffractive optical element that transmits and diffracts the beam to emit a transmitted diffracted light beam; and a photodetector that receives the transmitted diffracted light beam, and the return light beam is a reflected diffracted light beam diffracted by the optical disc.
  • the diffractive optical element is disposed at a position where a part of the 0th-order light component of the reflected diffracted light beam and all or a part of the ⁇ 1st-order light components of the reflected diffracted light beam are incident.
  • the first direction is the direction of the line formed by the main diffraction region having the action and the ⁇ 1st order diffraction action
  • the 0th order light component of the reflected diffracted light beam, and the ⁇ 1st order light component of the reflected diffracted light beam in front
  • the remainder of the 0th-order light component of the reflected diffracted light beam and the remainder of the ⁇ 1st-order light component of the reflected diffracted light beam are incident outside the main diffraction region
  • the transmitted diffracted light beam transmitted through both the main diffraction region and the sub-diffraction region, the sub-diffraction region having a zero-order diffraction action and a ⁇ first-order diffraction action.
  • a primary light receiving unit that receives the zeroth-order light component, and one of the + 1st-order light component and the ⁇ 1st-order light component of the transmitted diffracted light beam generated by the ⁇ 1st-order diffraction action of the sub-diffraction region
  • the first sub light receiving unit includes a plurality of light receiving surfaces arranged along a first arrangement direction corresponding to the first direction.
  • An optical disc apparatus includes the optical head device, a disc drive unit that rotationally drives the optical disc, and a signal processing unit that generates a push-pull signal based on a signal detected by the main light receiving unit.
  • the signal processing unit generates an offset component caused by relative displacement of the objective lens with respect to the photodetector based on the signal detected by the first sub light receiving unit.
  • a tracking error signal is generated based on the push-pull signal and the offset component.
  • the photodetector may further include a second auxiliary light receiving unit that receives the other of the + 1st order light component and the ⁇ 1st order light component of the transmitted diffracted light beam.
  • each of the first sub-light-receiving unit and the second sub-light-receiving unit has four light receiving elements arranged along the first arrangement direction and a second arrangement direction corresponding to the second direction. It is preferable to have a surface.
  • the first sum is obtained by adding the signal detected on the light receiving surface and the signal detected on the second light receiving surface arranged on the one end side among the four light receiving surfaces of the second sub light receiving unit.
  • the moving the optical element and a step of positioning the diffractive optical element are used to generate a second sum signal.
  • the first sub-light receiving unit and the second sub-light receiving unit have a light receiving surface pattern that enables generation of a tracking error signal from which a DC offset component due to the objective lens shift is removed. is doing. Since the optical head device includes a diffractive optical element that generates transmission diffraction light of 0th order and ⁇ 1st order for generating a tracking error signal, the optical head device is provided between a laser light source and an objective lens for generating a tracking error. There is no need to dispose a diffraction grating on the optical path. Therefore, the attenuation (loss) of the light intensity of the light beam to be irradiated on the optical disk can be suppressed.
  • the position of the diffractive optical element is optimally determined using the signals detected on the light receiving surfaces of the first sub light receiving unit and the second sub light receiving unit. Can be adjusted to the position. Thereby, the quality of the tracking error signal can be improved as compared with the conventional optical head device.
  • FIG. 1 is a schematic diagram showing a configuration of an optical disc device according to a first embodiment of the present invention.
  • 1 is a perspective view schematically showing a main configuration of an optical head device according to Embodiment 1.
  • FIG. FIG. 3 is a plan view schematically showing a configuration of a light incident surface of the hologram optical element in the first embodiment.
  • (A), (B) is a perspective view of the hologram optical element and photodetector of Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating a connection relationship between the photodetector of the first embodiment and an output terminal group of the optical head device. It is a figure which shows the structure table
  • FIG. 1 A) to (D) are plan views schematically showing the stray light distribution on the photodetector when the information recording layer L1 is the target layer.
  • FIG. 1 A) to (C) are schematic views showing the relationship between the objective lens shift and the position of the irradiation light spot in the photodetector.
  • (A) to (C) are characteristic diagrams schematically showing the relationship between the objective lens shift and the signal component of the tracking error signal.
  • FIG. 1 A) to (D) are plan views schematically showing the stray light distribution when the information recording layer L2 is the target layer.
  • FIG. 10 is a plan view showing a layout of a photodetector that is a modification of the photodetector of the first embodiment.
  • FIG. 10 is a plan view showing a layout of a photodetector that is still another modification of the photodetector of the first embodiment.
  • FIGS. 4A to 4H are plan views schematically showing a positional relationship between the hologram optical element and the light spot according to the first embodiment.
  • 6 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element according to the first embodiment.
  • 3 is a flowchart illustrating a procedure of a position adjustment method for a hologram optical element according to the first embodiment.
  • FIG. 10 is a perspective view which shows roughly the main structures of the optical head apparatus of Embodiment 2 which concerns on this invention. It is a figure which shows the connection relation between the photodetector of Embodiment 2, and the output terminal of an optical head apparatus.
  • (A) to (F) are plan views schematically showing the positional relationship between the hologram optical element of the third embodiment and the light spot Sp. 10 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element according to the third embodiment. It is a figure which shows the connection relation between the photodetector of Embodiment 4 which concerns on this invention, and the output terminal group of an optical head apparatus.
  • FIG. 22 is a plan view of a modification example of the hologram optical element according to the sixth embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of an optical disc apparatus 1 according to Embodiment 1 of the present invention.
  • the optical disc apparatus 1 includes a spindle motor 2, an optical head device 3, a thread mechanism 4, a matrix circuit 5, a signal reproduction circuit 6, a laser control circuit 7, a servo circuit 8, and an aberration correction mechanism control circuit 9.
  • the controller 12 includes a signal reproduction circuit 6, a laser control circuit 7, a servo circuit 8, an aberration correction mechanism control circuit 9, a thread control circuit 10, and a spindle control circuit 11. Control the behavior.
  • the optical disc OD is detachably mounted on a turntable (not shown) fixed to the drive shaft (spindle) of the spindle motor 2.
  • the spindle motor 2 rotates the optical disc OD during information recording or information reproduction under the control of the spindle control circuit 11.
  • the spindle control circuit 11 functions to execute spindle rotation control so that the actual rotational speed matches the target rotational speed based on a pulse signal representing the actual rotational speed supplied from the spindle motor 2 in accordance with a command from the controller 12.
  • the optical disc OD is a single-layer optical disc having a single information recording layer or a multilayer optical disc having a plurality of information recording layers, such as a CD (Compact Disc: registered trademark), a DVD (Digital Versatile Disc: registered trademark), and the like. It may be a current generation optical disc such as a BD (Blu-ray Disc: registered trademark) or a next generation optical disc.
  • a CD Compact Disc: registered trademark
  • DVD Digital Versatile Disc: registered trademark
  • It may be a current generation optical disc such as a BD (Blu-ray Disc: registered trademark) or a next generation optical disc.
  • the optical head device 3 has a function of irradiating the optical disc OD with laser light to record information on the information recording layer of the optical disc OD or read information from the information recording layer of the optical disc OD.
  • the sled mechanism 4 operates under the control of the sled control circuit 10, moves the optical head device 3 in the radial direction of the optical disc OD (radial direction of the optical disc OD), and laser light emitted from the optical head device 3 is emitted.
  • the position of the optical head device 3 is controlled so that a light spot can be formed on a desired information track of the optical disk OD.
  • FIG. 2 is a perspective view schematically showing a main configuration of the optical head device 3 according to the present embodiment.
  • the optical head device 3 includes a semiconductor laser 13 that is a laser light source, a beam splitter 14, a collimator lens 15, an objective lens 18, an actuator 17, a cylindrical lens 26, and a diffractive optical element.
  • a hologram optical element 21 and a photodetector 22 are provided.
  • the semiconductor laser 13 operates under the control of the laser control circuit 7 shown in FIG. 1, and the laser control circuit 7 controls the light intensity of the laser light emitted from the semiconductor laser 13 based on a command from the controller 12. be able to.
  • Laser light emitted from the semiconductor laser 13 is reflected by the beam splitter 14 and enters the objective lens 18 via the collimator lens 15.
  • the beam splitter 14 for example, a cube-type half mirror can be used.
  • the objective lens 18 is arranged so as to scan on the radial line of the optical disc OD, and condenses the light beam incident from the beam splitter 14 on the information recording layer of the optical disc OD to form a light spot on the information recording layer.
  • the return light beam reflected by the optical disk OD passes through the objective lens 18, the collimator lens 15, the beam splitter 14, and the cylindrical lens 26 in order and enters the hologram optical element 21.
  • the cylindrical lens 26 is an optical component that gives astigmatism to the return light beam in order to perform focus error detection by a known astigmatism method.
  • the cylindrical lens 26 is arranged such that the generatrix direction D2 of the cylindrical surface of the cylindrical lens 26 is substantially 45 degrees with respect to the X1 axis direction corresponding to the radial direction of the optical disc OD (X axis direction in FIG. 2). ing.
  • a concave lens type can be used as the cylindrical lens 26.
  • the X-axis direction which is the radial direction of the optical disc OD, and the X1-axis direction corresponding to the radial direction are shown to be substantially orthogonal to each other. This is because astigmatism is given to the return light beam by the cylindrical lens 26.
  • the cylindrical lens 26 is a convex lens type, but is not limited to this.
  • the beam splitter 14 may be a parallel plate beam splitter instead of a cube-type half mirror.
  • the parallel plate-shaped beam splitter can give astigmatism to the return light beam transmitted through the parallel plate of the beam splitter.
  • the hologram optical element 21, which is a transmission type diffractive optical element, transmits and diffracts incident light to divide the incident light into three transmitted diffracted light beams. Each has a function of emitting light toward one light receiving portion.
  • the photodetector 22 has a light receiving surface substantially parallel to the light incident surface or the light emitting surface of the hologram optical element 21, and the X1 axis direction and the Y1 axis direction shown in FIG. , Parallel to the light receiving surface of the photodetector 22.
  • the photodetector 22 includes a main light receiving unit 23, a first sub light receiving unit 24, and a second sub light receiving unit 25 arranged along the light receiving surface.
  • the first sub light receiving unit 24 and the second sub light receiving unit 25 form a predetermined angle with respect to the X1 axis direction (diagonal direction of the rectangular light detector 22).
  • the 1st sub light-receiving part 24 and the 2nd sub light-receiving part 25 are arrange
  • Each of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 has four light receiving surfaces arranged in a matrix along the X1 axis direction and the Y1 axis direction.
  • the two light receiving surfaces photoelectrically convert the transmitted diffracted light beam incident from the hologram optical element 21 to generate an electric signal group.
  • the optical head device 3 has three output terminal groups 230, 231 and 232, and the electric signal group DS 0 detected on the light receiving surface of the main light receiving unit 23 is sent to the matrix circuit 5 via the output terminal group 230.
  • the electric signal group DS1 output and detected on the light receiving surface of the first sub light receiving unit 24 is output to the matrix circuit 5 through the output terminal group 231 and is detected on the light receiving surface of the second sub light receiving unit 25.
  • the signal group DS2 is output to the matrix circuit 5 via the output terminal group 232.
  • the matrix circuit 5 performs matrix calculation processing on the electrical signal groups DS0, DS1, DS2 supplied from the optical head device 3 to perform various signals necessary for information recording or reproduction, such as an optical disc OD.
  • a signal for servo control such as a reproduction RF signal indicating the detection result of the recorded information in FIG.
  • the reproduction RF signal is output to the signal reproduction circuit 6.
  • the signal reproduction circuit 6 binarizes the reproduction RF signal to generate a modulation signal, extracts a reproduction clock from the modulation signal, and performs demodulation processing, error correction, and decoding processing on the modulation signal to reproduce reproduction information.
  • a signal can be generated.
  • the reproduction information signal is transferred by the controller 12 to a host device (not shown) such as an audiovisual device or a personal computer.
  • the servo circuit 8 operates based on a command from the controller 12, and generates a drive signal SD for focus correction and tracking correction based on the focus error signal and tracking error signal supplied from the matrix circuit 5.
  • These drive signals SD are supplied to the actuator 17 (FIG. 2) in the optical head device 3.
  • the actuator 17 includes magnetic circuits 20A and 20B and a movable portion 19 disposed between the magnetic circuits 20A and 20B.
  • the movable part 19 has a lens holder (not shown) for fixing the objective lens 18 and a focus coil and a tracking coil (both not shown) wound around the lens holder.
  • the focus coil is wound around the central axis of the objective lens 18, and the tracking coil is wound around an axis orthogonal to the optical axis OA and the X-axis direction of the optical disc OD.
  • drive current drive signal
  • the objective lens 18 can be driven in the focus direction (direction along the optical axis OA), and by supplying drive current (drive signal) to the tracking coil.
  • the objective lens 18 can be driven in the X-axis direction.
  • the focus servo loop and the tracking servo loop are formed by the laser control circuit 7, the optical head device 3, the matrix circuit 5, and the servo circuit 8, and the laser light emitted from the semiconductor laser 13 is converted into information on the optical disk OD. You can follow the track.
  • the aberration correction mechanism control circuit 9 controls the operation of the aberration correction mechanism 16A provided in the optical head device 3 shown in FIG. 2 according to the quality of the reproduction information signal input to the controller 12.
  • an index value of the quality of the reproduction information signal for example, a bit error rate or a signal amplitude can be used.
  • the collimator lens 15 is an optical component that corrects optical aberrations such as spherical aberration generated in a light spot collected on the information recording layer of the optical disc OD.
  • the aberration correction mechanism control circuit 9 can correct the optical aberration appropriately and with high accuracy by displacing the lens holder 16B holding the collimator lens 15 in the direction D1 along the optical axis OA.
  • the correction of the spherical aberration of the light spot is not limited to the method based on the displacement of the collimator lens 15 as described above.
  • a method may be employed in which the phase of the transmitted light beam of the liquid crystal element is controlled so as to cancel the optical aberration of the light spot using the liquid crystal element.
  • FIG. 3 is a plan view schematically showing the configuration of the light incident surface of the hologram optical element 21.
  • the hologram optical element 21 has three types of diffraction regions, a main diffraction region 210 and a pair of sub-diffraction regions 211A and 211B.
  • the hologram optical element 21 uses, for example, a plate-like translucent substrate made of a resin material or a glass material, and a large number of diffraction grating grooves on one or both of the light incident surface and the light exit surface of the translucent substrate. Can be produced.
  • Diffraction patterns for the main diffraction region 210 and the pair of sub-diffraction regions 211A and 211B can be individually formed by individually setting the shape and direction of the diffraction grating groove and the diffraction grating groove interval for each diffraction region.
  • the sub-diffraction areas 211A and 211B are arranged outside the main diffraction area 210 in the Y2 axis direction corresponding to the tangential direction (Y-axis direction in FIG. 2) of the optical disc OD. Further, the sub-diffraction areas 211A and 211B have shapes that are line-symmetric with respect to the center line 21c in the X2 axis direction (direction corresponding to the X axis direction that is the radial direction of the optical disc OD) orthogonal to the Y2 axis direction. .
  • the main diffraction region 210 and the sub-diffraction region 211A are separated from each other by a boundary line 21da parallel to the X2 axis direction, and the main diffraction region 210 and the sub-diffraction region 211B are boundary lines parallel to the X2 axis direction. They are separated from each other by 21 db.
  • the return light beam from the optical disc OD is a diffracted light beam (hereinafter referred to as a “reflected diffracted light beam”) due to the structure in the radial direction, that is, the X-axis direction (mainly the structure of the information track) of the information recording layer of the optical disc OD. including.
  • a light spot Sp of the return light beam is formed on the light incident surface of the hologram optical element 21. As shown in FIG.
  • the light spot Sp includes a light component ORp formed by overlapping a circular zero-order diffracted light component R0 indicated by a solid line and a circular + first-order diffracted light component RP1 indicated by a broken line, There is no overlap between the 0th-order diffracted light component R0 and the circular -1st-order light component RN1 indicated by the broken line and the ⁇ 1st-order diffracted light components RP1 and RN1 of the 0th-order light component R0. It consists of the optical component ORa of the region.
  • the direction of the row in which the 0th-order diffracted light component R0, the + 1st-order diffracted light component RP1, and the ⁇ 1st-order diffracted light component RN1 are arranged is This coincides with the X2 axis direction corresponding to the radial direction.
  • the main diffraction region 210 may be formed at a position where a part of the zero-order diffracted light component R0 (the central part of the light spot Sp) and all or the central part of the light components ORp and ORn are incident. In the present embodiment, as shown in FIG. 3, the main diffraction region 210 is formed at a position where all of the light components ORp and ORn are incident.
  • the sub-diffraction regions 211A and 211B may be formed at positions where at least the remaining part of the 0th-order diffracted light component R0 is incident and all or the central part of the light components ORp and ORn are not incident. In the present embodiment, the sub-diffraction regions 211A and 211B are formed at positions where all of the light components ORp and ORn do not enter.
  • the width of the main diffraction region 210 in the Y2 axis direction is narrower than the light spot diameter D in the Y2 axis direction of the 0th-order diffracted light component R0, and the width of the light components ORp and ORn in the Y2 axis direction.
  • the boundary lines 21da and 21db are provided in the vicinity of a position in contact with the outer edge portion in the Y2-axis direction of the light components ORp and ORn.
  • the boundary lines 21ea and 21eb are set so that a part of the light components ORp and ORn are further incident on the sub-diffraction regions 211A and 211B. May be moved toward the main diffraction region 210 in the Y2 axis direction to enlarge the areas of the sub-diffraction regions 211A and 211B.
  • the hologram optical element 21 is arranged so that the light spot Sp is formed just at the center of the hologram optical element 21.
  • the hologram optical element 21 is formed with the main diffraction region 210 and the sub-diffraction regions 211A and 211B of the hologram optical element 21 as described above. If the light spot Sp does not protrude from the center, no problem in arrangement occurs.
  • an optical component ORp formed by overlapping the 0th order diffracted light component R0 and the + 1st order diffracted light component RP1 of the light spot Sp, and 0
  • An optical component ORn formed by overlapping the first-order diffracted light component R0 and the ⁇ 1st-order diffracted light component RN1, and an optical component ORa that does not overlap with ⁇ 1st-order diffracted light components RP1 and RN1 of the 0th-order diffracted light component R0, respectively. It is desirable that the arrangement is adjusted so as to be incident on the two sub-diffraction areas 211A and 211B in a balanced manner.
  • W is the width of the hologram optical element 21 in the Y2 axis direction.
  • FIG. 4A and 4B are perspective views of the hologram optical element 21 and the photodetector 22 arranged along the optical axis OA.
  • 4A is a perspective view of the hologram optical element 21, and
  • FIG. 4B is a schematic perspective view of the photodetector 22.
  • 4A and 4B the X2 axis direction and the X1 axis direction corresponding to the radial direction of the optical disc OD are shown to be substantially orthogonal to each other.
  • the reason why the X1 axis direction and the corresponding X2 axis direction are substantially orthogonal is that the cylindrical lens 26 adds astigmatism to the return light beam.
  • the photodetector 22 includes a main light receiving unit 23, a first sub light receiving unit 24, and a second sub light receiving unit 25 in a plane orthogonal to the optical axis OA.
  • the first sub light receiving unit 24 and the second sub light receiving unit 25 are arranged on both sides in the oblique direction with respect to the X1 axis direction with the main light receiving unit 23 interposed therebetween.
  • Each of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 has four light receiving surfaces arranged in a matrix substantially along the X1 axis direction and the Y1 axis direction. .
  • the main light receiving unit 23 has light receiving surfaces 23A, 23B, 23C, and 23D
  • the first sub light receiving unit 24 has light receiving surfaces 24E1, 24F1, 24F2, and 24E2
  • the second sub light receiving unit 25 has a light receiving surface 25G1. , 25H1, 25H2, and 25G2.
  • the set of the light receiving surfaces 23A and 23B and the set of the light receiving surfaces 23C and 23D are arranged substantially along the X1 axis direction, and the set of the light receiving surfaces 23A and 23D and the light receiving surface 23B and 23C sets are arranged substantially along the Y1-axis direction.
  • the set of the light receiving surfaces 24E1, 24E2 and the set of the light receiving surfaces 24F1, 24F2 are arranged substantially along the Y1 axis direction, and the set of the light receiving surfaces 24E1, 24F1 and the light receiving surface 24E2 are arranged.
  • 24F2 are arranged substantially along the X1 axis direction.
  • the set of the light receiving surfaces 25G1 and 25G2 and the set of the light receiving surfaces 25H1 and 25H2 are arranged substantially along the Y1 axis direction.
  • the set of the surfaces 25G2 and 25H2 is arranged substantially along the X1 axis direction.
  • each of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 has four rectangular light receiving surfaces formed by being divided into two vertically and horizontally. The direction to be performed does not have to be strictly along the X1 axis direction and the Y1 axis direction.
  • the main diffraction region 210 has mainly diffraction efficiency of 0th order and ⁇ 1st order with respect to the return light beam, and the sub-diffraction regions 211A and 211B also have mainly 0th order and ⁇ 1st order with respect to the return light beam. Has diffraction efficiency.
  • the zero-order light component DR0 is as shown in FIG.
  • the light receiving surfaces 23A to 23D of the main light receiving unit 23 are irradiated to form light spots.
  • This light spot includes the 0th order light component and the ⁇ 1st order light component of the reflected diffracted light beam caused by the structure in the radial direction of the optical disc OD.
  • the + 1st order light component DRp and the ⁇ 1st order light component DRn of the transmitted diffracted light beam emitted from the main diffraction region 210 are irradiated to the region outside the main light receiving unit 23 in the Y1 axis direction. Therefore, these ⁇ first-order light components DRp and DRn are not detected by the photodetector 22.
  • the + 1st order light components DRpa and DRpb of the transmitted diffracted light beams emitted from the sub-diffraction regions 211A and 211B are applied to the light receiving surfaces 24E1, 24E2, 24F1, and 24F2 of the first sub light receiving unit 24.
  • the ⁇ 1st order light components DRna and DRnb of the transmitted diffracted light beams emitted from the sub-diffraction regions 211A and 211B are irradiated to the light receiving surfaces 25G1, 25G2, 25H1, and 25H2 of the second sub light receiving unit 25.
  • FIG. 5 is a diagram showing a connection relationship between the photodetector 22 of the first embodiment and the output terminal groups 230 to 232 of the optical head device 3.
  • the output terminal group 230 includes four output terminals TA, TB, TC, and TD respectively corresponding to the light receiving surfaces 23A, 23B, 23C, and 23D of the main light receiving unit 23.
  • the output terminal group 231 includes the first sub light receiving unit 24.
  • the light receiving surfaces 24E1, 24E2, 24F1, and 24F2 correspond to four output terminals TE1, TE2, TF1, and TF2, respectively. Are composed of four output terminals TG1, TG2, TH1, and TH2.
  • a total of twelve light receiving surfaces 23A to 23D, 24E1, 24E2, 24F1, 24F2, 25G1, 25G2, 25H1, and 25H2 in the photodetector 22 have a known differential push-pull method for generating a tracking error signal. It is similar to the light receiving surface pattern used. As shown in FIG. 5, the light receiving surfaces 23A, 23B, 23C, and 23D of the main light receiving unit 23 photoelectrically convert the zero-order light component DR0 of FIG. SA, SB, SC, SD are output.
  • the output terminals TA, TB, TC, Td can output the detection signals SA, SB, SC, SD to the external matrix circuit 5, respectively.
  • the light receiving surfaces 24E1 and 24E2 photoelectrically convert the + 1st order light component DRpa in FIG. 4B and output detection signals SE1 and SE2, respectively.
  • the light receiving surfaces 24F1 and 24F2 FIG. 4B photoelectrically converts the + 1st order light component DRpb and outputs detection signals SF1 and SF2, respectively.
  • the output terminals TE1, TE2, TF1, and TF2 can output the detection signals SE1, SE2, SF1, and SF2 to the external matrix circuit 5, respectively.
  • the light receiving surfaces 25G1 and 25G2 photoelectrically convert the ⁇ 1st order light component DRna of FIG.
  • the output terminals TG1, TG2, TH1, and TH2 can output the detection signals SG1, SG2, SH1, and SH2 to the external matrix circuit 5, respectively.
  • the matrix circuit 5 generates a focus error signal FES having a signal level obtained by the following equation (1) according to the astigmatism method.
  • FES (SA + SC) ⁇ (SB + SD) (1)
  • the matrix circuit 5 generates a reproduction RF signal having a signal level obtained by the following equation (2).
  • RF SA + SB + SC + SD (2)
  • the matrix circuit 5 can generate a tracking error signal TES having a signal level obtained by the following equation (3).
  • TES MPP-k ⁇ SPP (3)
  • k is a gain coefficient
  • MPP represents a main push-pull signal
  • SPP represents a sub push-pull signal.
  • the main push-pull signal MPP and the sub push-pull signal SPP are given by the following equations (3a) and (3b), respectively.
  • MPP (SA + SB)-(SC + SD)
  • SPP (SE1 + SF1-SE2-SF2) + (SG1 + SH1-SG2-SH2) (3b)
  • the main push-pull signal MPP and the sub push-pull signal SPP have the same phase with respect to the objective lens shift, and the DC offset component resulting from the objective lens shift is included in the sub push-pull signal SPP. Therefore, the tracking error signal TES in which the offset component due to the objective lens shift is canceled can be generated by appropriately adjusting the gain coefficient k and amplifying the sub push-pull signal SPP. It should be noted that the method of detecting the tracking error signal TES using the calculations according to the above equations (3), (3a), and (3b) is different from a general differential push-pull method.
  • the conventional optical head device is configured to pass through the diffraction grating in the optical path until the light beam emitted from the semiconductor laser enters the objective lens. Therefore, the light beam emitted from the semiconductor laser is divided into three light beams by the diffraction grating before entering the objective lens. These three light beams form one main light spot on the information recording surface of the optical disc and a pair of sub light spots on both sides of the main light spot with the main light spot in between. The three return light beams reflected by the information recording surface of the optical disc are respectively incident on and detected by the three light receiving portions of the photodetector.
  • the optical head device 3 of the present embodiment since there is no diffraction grating in the optical path between the semiconductor laser 13 and the objective lens 18, the light is emitted from the semiconductor laser 13.
  • the divided light beam is incident on the objective lens 18 as one light beam without being divided, and forms one light spot on the information recording surface of the optical disc OD.
  • the return light beam reflected by the information recording surface of the optical disk OD is diffracted when passing through the hologram optical element 21 to be divided into three transmitted diffracted light beams. These three transmitted diffracted light beams are incident on the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25, respectively.
  • the pull method is referred to as a one-beam differential push-pull method.
  • the conventional differential push-pull method is referred to as a three-beam differential push-pull method.
  • FIG. 6 is a diagram showing a configuration table of information recording layers L0, L1, L2, and L3 of a four-layer optical disc defined by the BD standard as an example of a multilayer optical disc including a plurality of information recording layers.
  • the layer intervals of the information recording layers L0, L1, L2, and L3 are unequal intervals as shown in FIG.
  • the influence of light (hereinafter referred to as “stray light”) reflected by an information recording layer other than the information recording layer (hereinafter referred to as “target layer”) selected as a layer on which information is recorded or reproduced is the layer.
  • the smaller the interval the larger. For this reason, the influence of the stray light from the information recording layer adjacent to the target layer is the largest.
  • the layer spacing is unequal, in the BD standard optical disc, when the information recording layer L2 is the target layer, the influence of the stray light from the information recording layer L3 is the largest, and the information recording layer L3 is the target layer. In this case, the influence of stray light from the information recording layer L2 is the largest.
  • FIGS. 7A to 7 (D) are plan views schematically showing stray light distribution on the photodetector 22 when the information recording layer L1 of the four-layer optical disk is the target layer.
  • 7A shows the distribution of the stray light SL0 generated in the information recording layer L0
  • FIG. 7B shows the light spot of the 0th-order light component DR0 of the return light beam reflected by the target layer L1.
  • C) shows the distribution of stray light SL2 generated in the information recording layer L2
  • FIG. 7D shows the distribution of stray light SL3 generated in the information recording layer L3.
  • the light shown in FIGS. 7A to 7D is simultaneously irradiated onto the photodetector 22. As shown in FIG. 7A, FIG.
  • the stray light SL0, SL2, and SL3 on the photodetector 22 are received on the light receiving surface of the main light receiving unit 23 in a defocused state. Is distributed in a sufficiently large range, and is distributed in an elliptical shape in an oblique direction. These distributions are caused by the astigmatism imparting function of the cylindrical lens 26, and the direction in which the cylindrical lens 26 is inclined depends on the generatrix direction D2 of the cylindrical lens 26. Further, the degree of defocusing depends on the optical design specifications of the optical head device 3, the layer spacing of the information recording layers of the multilayer optical disk, and the like.
  • the respective stray lights SL0 and SL2 generated in the information recording layers L0 and L2 adjacent to the target layer L1 are compared with the stray light SL3 generated in the information recording layer L3.
  • the first sub light receiving unit 24 and the second sub light receiving unit 25 are prevented from entering the first sub light receiving unit 24 and the second sub light receiving unit 25 from the respective stray lights SL0 and SL2 generated from the information recording layers L0 and L2.
  • the distance from the central main light receiving portion 23 is determined.
  • a part of the stray light SL3 generated in the information recording layer L3 that is not adjacent to the target layer L1 is incident on the first sub light receiving unit 24 and the second sub light receiving unit 25.
  • the stray light SL3 is sufficiently large and out of focus. Therefore, the light intensity of the stray light SL3 incident on the first sub light receiving unit 24 and the second sub light receiving unit 25 is weak and hardly affects the quality of the track error signal.
  • FIGS. 8A to 8C show the relationship between the objective lens shift (the radial displacement of the objective lens 18 relative to the photodetector 22) and the position of the irradiation light spot on the photodetector 22.
  • FIG. FIG. 8B shows the irradiation position (reference position) of the light beam irradiated on the light receiving surface of the photodetector 22 when the central axis of the objective lens 18 coincides with the optical axis OA.
  • the light spot of the zero-order light component DR0 is at the center position in the X1 axis direction and the Y1 axis direction of the main light receiving unit 23, and the + 1st order light components DRpa and DRpb are in the X1 axis direction of the first sub light receiving unit 24.
  • the ⁇ 1st order light components DRna and DRnb are at the center position of the second sub light receiving unit 25 in the X1 axis direction.
  • FIG. 8A is a diagram showing the irradiation position of the light beam irradiated on the light receiving surface of the photodetector 22 when the objective lens 18 is displaced to the inner peripheral side of the optical disc OD.
  • the light spot of the 0th-order light component DR0 is displaced toward the light receiving surfaces 23C and 23D
  • the + 1st order light components DRpa and DRpb are displaced toward the light receiving surfaces 24E2 and 24F2.
  • the ⁇ 1st order light components DRna and DRnb are displaced toward the light receiving surfaces 25G2 and 25H2.
  • FIG. 8C is a diagram showing the irradiation position of the light beam irradiated on the light receiving surface of the photodetector 22 when the objective lens 18 is displaced to the outer peripheral side of the optical disc OD.
  • the light spot of the 0th-order light component DR0 is displaced toward the light receiving surfaces 23A and 23B
  • the + first-order light components DRpa and DRpb are displaced toward the light receiving surfaces 24E1 and 24F1.
  • the ⁇ 1st order light components DRna and DRnb are displaced toward the light receiving surfaces 25G1 and 25H1.
  • FIGS. 9A to 9C are characteristic diagrams schematically showing the relationship between the objective lens shift and the signal components MPP and SPP of the tracking error signal TES.
  • the horizontal axis represents time t
  • the vertical axis represents the signal strength of the main push-pull signal component MPP or the sub push-pull signal component SPP.
  • 9A to 9C show the signal intensity waveforms of the main push-pull signal MPP and the sub push-pull signal SPP detected when the optical head device 3 moves at a constant speed in the radial direction of the optical disc OD. It is a waveform.
  • the main push-pull signal MPP and the sub push-pull signal SPP are signals detected when the focus control of the optical disc apparatus 3 is performed but the tracking control is not performed.
  • FIGS. 9A, 9B, and 9C are waveform diagrams corresponding to the states of FIGS. 8A, 8B, and 8C, respectively.
  • the DC component of the main push-pull signal MPP. (DC component) coincides with the GND level
  • the DC component of the sub push-pull signal SPP substantially coincides with the GND level.
  • the waveform of the sub push-pull signal SPP is almost a direct current waveform.
  • the DC component of the main push-pull signal MPP has a waveform offset to the negative side, and the sub push-pull signal SPP.
  • the substantially DC waveform is also a waveform offset to the negative side.
  • the DC component of the main push-pull signal MPP has a waveform offset to the positive side, and the sub push-pull signal
  • the substantially direct current waveform of the SPP is also a waveform offset to the positive side.
  • the main push-pull signal MPP and the sub push-pull signal SPP have the same phase with respect to the objective lens shift, and the offset amount of the sub push-pull signal SPP has a value corresponding to the displacement amount of the objective lens 18.
  • the value obtained by multiplying the value of the sub push-pull signal SPP by k is subtracted from the value of the main push-pull signal MPP, thereby offset caused by the objective lens shift.
  • a tracking error signal TES with canceled components can be generated.
  • the aberration correction mechanism 16A provided in the optical head device 3 can appropriately correct the spherical aberration of the light spot for each information recording layer by displacing the collimator lens 15 along the optical axis OA. Thereby, stable information recording or information reproduction can be performed on each information recording layer.
  • the first sub light receiving unit 24 and the second sub light receiving unit 24 and the second sub light receiving unit 25 are prevented from entering stray light generated in the layer adjacent to the target layer.
  • the photodetector 22 is configured by separating the sub light receiving unit 25 from the main light receiving unit 23.
  • the light intensity of the stray light depends on the optical design specifications of the optical head device 3, the layer interval of the information recording layers of the multilayer optical disk, and the like. In an actual BD standard optical disc as shown in FIG. 6, the layer spacing is not equal.
  • the information recording layer layers L1 and L3 are layers adjacent to the target layer, and the layer interval between the information recording layer L3 and the target layer is greater than that of the information recording layer L1. Since it is narrower than the layer distance to the target layer, special consideration must be given to stray light generated in the information recording layer L3.
  • 10 (A) to 10 (D) are plan views schematically showing stray light distribution on the photodetector 22 when the information recording layer L2 of the four-layer optical disc is the target layer.
  • 10A shows the distribution of stray light SL0 generated in the information recording layer L0
  • FIG. 10B shows the distribution of stray light SL1 generated in the information recording layer L1
  • FIG. 10C shows the target layer L2.
  • FIG. 10D shows the distribution of the stray light SL3 generated in the information recording layer L3.
  • the light shown in FIGS. 10A to 10D is simultaneously irradiated onto the photodetector 22. As shown in FIGS.
  • the stray lights SL0, SL1, and SL3 on the photodetector 22 are light receiving surfaces of the main light receiving unit 23 in a defocused state. Is distributed in a sufficiently large range, and further in an elliptical shape in an oblique direction. These distributions are caused by the astigmatism imparting function of the cylindrical lens 26, and the direction in which the cylindrical lens 26 is inclined depends on the generatrix direction D2 of the cylindrical lens 26.
  • the information recording layer L2 is the target layer
  • the respective stray lights SL1 and SL3 generated in the information recording layers L1 and L3 adjacent to the target layer are higher than the stray light SL0 generated in the information recording layer L0. Has convergence.
  • the central main light receiving unit is arranged so that all of the stray light SL3 generated from the information recording layer L3 adjacent to the target layer L2 does not enter the first sub light receiving unit 24 and the second sub light receiving unit 25. A distance from the first sub light receiving unit 24 to the second sub light receiving unit 25 is determined.
  • a part of the stray light SL1 generated in the information recording layer L1 adjacent to the target layer L2 is the first sub-light-receiving.
  • the degree of convergence of the stray light SL1 is not high because the layer spacing between the information recording layers L1 and L2 is wide. Therefore, the light intensity of the stray light SL1 incident on the first sub light receiving unit 24 and the second sub light receiving unit 25 is weak, and hardly affects the track error signal quality.
  • FIG. 10A the same applies to the stray light SL0 generated in the information recording layer L0. Therefore, the light intensity of the stray light SL0 becomes extremely weak due to the further decrease in the convergence. Little impact on quality.
  • FIGS. 11A to 11D are plan views schematically showing the stray light distribution on the photodetector 22 when the information recording layer L3 of the four-layer optical disc is the target layer.
  • 11A shows the distribution of stray light SL0 generated in the information recording layer L0
  • FIG. 11B shows the distribution of stray light SL1 generated in the information recording layer L1
  • FIG. 11C shows the information recording layer.
  • FIG. 11D shows the light spot of the 0th-order light component DR0 of the return light beam reflected by the target layer L3.
  • the light shown in FIGS. 11A to 11D is simultaneously irradiated onto the photodetector 22. As shown in FIGS.
  • the convergence of stray light decreases in the order of SL2, SL1, and SL0 in accordance with the layer spacing shown in FIG. Since the distance between the information recording layer L2 and the information recording layer L3 is the narrowest, all the stray light SL2 generated from the information recording layer L2 is the same as in the case of FIG. It does not enter the portion 25. As shown in FIG. 11B, a part of the stray light SL1 generated in the information recording layer L1 is incident on the first sub light receiving unit 24 and the second sub light receiving unit 25, but the information recording layers L1, L3 And the convergence of stray light SL1 is not high.
  • the light intensity of the stray light SL1 incident on the first sub light receiving unit 24 and the second sub light receiving unit 25 is weak, and hardly affects the track error signal quality. Further, since the same applies to the stray light SL0 generated in the information recording layer L0, the light intensity of the stray light SL0 becomes extremely weak due to a further decrease in the degree of convergence, so that the track error signal quality is hardly affected.
  • the reason why the tracking error signal TES is disturbed by stray light from the information recording layer other than the target layer in the multilayer optical disc is that the reflected light from the information recording layer other than the target layer and the reflected light from the target layer are detected by the photodetector 22. It is to interfere with each other on the surface.
  • the magnitude of the interference depends on the light intensities of the light components that interfere with each other, and the degree of interference when the light intensity of the stray light is approximately the same as the light intensity of the reflected light component from the target layer on the photodetector 22. Is the maximum. Conversely, the greater the difference in the light intensity of the light components that interfere with each other, the smaller the degree of interference. Therefore, it is desirable that the reflected light (stray light) from the information recording layer other than the target layer and the light intensity of the reflected light from the target layer do not become the same so that interference is reduced.
  • the influence of interference can be reduced by increasing or decreasing the light intensity of the reflected light from the target layer.
  • the + 1st order light components DRpa and DRpb irradiated to the first sub light receiving unit 24 and the ⁇ 1st order light components DRna and DRnb applied to the second sub light receiving unit 25 are a pair of sub diffraction regions 211A of the hologram optical element 21. , 211B are diffracted and transmitted light beams.
  • the sub-diffraction regions 211A and 211B are formed at positions where part of the light components ORp and ORn are incident or all of the light components ORp and ORn are not incident.
  • the positions of the boundary lines 21da and 21db of the hologram optical element 21 are set in the Y2-axis direction so that the light components ORp and ORn are further incident. It is desirable to enlarge the area of the sub-diffraction areas 211A and 211B by moving the main diffraction area 210 to the main diffraction area 210 side.
  • the boundary lines 21da and 21db are arranged so that the light components ORp and ORn do not enter all of the sub-diffraction regions 211A and 211B.
  • the sub push-pull signal SPP does not have an AC component as shown in FIGS. 9A to 9C and includes only a complete DC component.
  • the optimum positions of the sub-diffraction areas 211A and 211B are set by optical design specifications of the optical head device 3, the light receiving areas of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25, and Since it depends on the layer interval of the information recording layer of the multilayer optical disc, the positions of the sub-diffraction regions 211A and 211B may be set to the optimum positions in consideration of the optical design use, the light receiving area and the layer interval.
  • FIG. 12 is a plan view showing a layout of a photodetector 22 ⁇ / b> B that is a modification of the photodetector 22.
  • the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 are arranged in the Y1 axis direction corresponding to the tangential direction (Y axis direction). Along a straight line.
  • FIG. 12 is a plan view showing a layout of a photodetector 22 ⁇ / b> B that is a modification of the photodetector 22.
  • the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 are arranged in the Y1 axis direction corresponding to the tangential direction (Y axis direction). Along a straight line.
  • FIG. 12 is a plan view showing a layout of a photodetector 22 ⁇ / b> B that is a modification of the photodetector 22.
  • FIG. 13 is a plan view showing a layout of a photodetector 22 ⁇ / b> C that is still another modification of the photodetector 22.
  • the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 are along the X1 axis direction corresponding to the radial direction (X axis direction). Are arranged on a straight line.
  • the pair of sub diffraction regions of the hologram optical element 21 is changed according to the change of the arrangement.
  • the main radiation direction of the diffracted light can be changed. Accordingly, the + 1st order light components DRpa and DRpb and the ⁇ 1st order light components DRna and DRnb can be made incident on the first sub light receiving unit 24 and the second sub light receiving unit 25, respectively.
  • the position of the hologram optical element 21 can be adjusted to the optimum position in the Y2 axis direction corresponding to the tangential direction (Y axis direction) of the optical disc OD.
  • the zero-order diffracted light component R0 and the light components ORp, ORn, ORa are arranged and adjusted so as to be incident on the two sub-diffraction regions 211A, 211B in a balanced manner (equally). Is desirable.
  • FIGS. 14A to 14H are plan views schematically showing the positional relationship between the hologram optical element 21 and the light spot Sp.
  • FIG. 15 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element 21.
  • the width of the hologram optical element 21 in the Y2 axis direction is W
  • the width of the main diffraction region 210 is W1.
  • the widths of the two sub-diffraction regions 211A and 211B are set to be equal to W2, and the diameter of the light spot Sp in the Y2 axis direction is set to D.
  • the width W2 of the sub-diffraction regions 211A and 211B is larger than the diameter D of the light spot Sp.
  • FIG. 14A shows a state in which the hologram optical element 21 is ideally arranged and adjusted in the Y2-axis direction with respect to the light spot Sp, that is, each of the zero-order light component R0 and the light components ORp, ORn, ORa is well balanced.
  • the figure shows an ideal state where the light enters the two sub-diffraction areas 211A and 211B (evenly).
  • 14 (B) to 14 (H) show the light spot Sp when the hologram optical element 21 is gradually displaced along the positive direction of the Y2 axis with respect to the ideal state of FIG. 14 (A). The positional relationship with the hologram optical element 21 is shown.
  • FIG. 15 is a graph showing the relationship between the displacement of the hologram optical element 21 in the Y2 axis direction and the signal intensity of various signals.
  • the horizontal axis indicates the displacement of the hologram optical element 21, and the vertical axis indicates the signal intensity (unit: arbitrary unit) of various signals.
  • the displacement value of the hologram optical element 21 indicates an amount normalized by the diameter of the light spot Sp.
  • two are characteristic curves indicating the signal intensities of the main push-pull signal MPP and the sub push-pull signal SPP in the equations (3a) and (3b).
  • the other two graph lines use the signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25, and the following equation (5a) and It is a characteristic curve showing the signal strength of the sum signals S1 and S2 given by (5b).
  • S1 SE1 + SE2 + SG1 + SG2
  • S2 SF1 + SF2 + SH1 + SH2 (5b)
  • the detection signals SE1 and SE2 are signals detected by a set of the light receiving surfaces 24E1 and 24E2 arranged on one end side in the Y1-axis direction among the light receiving surfaces of the first sub light receiving unit 24, and the detection signals SF1 and SF2 are detected. Is a signal detected by a set of light receiving surfaces 24F1 and 24F2 arranged on the other end side in the Y1-axis direction of the light receiving surface of the first sub light receiving unit 24.
  • the detection signals SG1 and SG2 are signals detected by a set of the light receiving surfaces 25G1 and 25G2 arranged on one end side in the Y1-axis direction among the light receiving surfaces of the second sub light receiving unit 25, and the detection signals SH1 and SH2 are These are signals detected by a set of light receiving surfaces 25H1 and 25H2 arranged on the other end side in the Y1-axis direction of the light receiving surface of the second sub light receiving unit 25. Therefore, the sum signal S1 is generated by adding the signals detected by the light receiving surfaces 24E1, 24E2, 25G1, and 25G2 arranged on one end side in the Y1 axis direction, and the sum signal S2 is generated on the other end side in the Y1 axis direction. It is generated by adding the signals detected by the arranged light receiving surfaces 24F1, 24F2, 25H1, and 25H2.
  • the displacement of the hologram optical element 21 indicates a value when it is along the positive direction of the Y2 axis.
  • the displacement of the hologram optical element 21 on the negative direction side is symmetrical with the behavior when the displacement is positive, with the displacement being zero. Further, it is assumed that a region outside the outer peripheral edge of the hologram optical element 21 is shielded from light.
  • FIG. 14B is a diagram showing a positional relationship corresponding to a range Pb in which the displacement of the hologram optical element 21 is from 0 to 0.25D. In this range, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211A decreases, and conversely, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211B increases.
  • FIG. 14C is a diagram showing the positional relationship when the hologram optical element 21 is displaced by 0.25D (in the case of the point Pc in FIG. 15), and the light spot Sp is no longer irradiated onto the sub-diffraction region 211A. .
  • the signal strength of the sum signal S1 becomes zero, and the signal strength of the sum signal S2 reaches a constant value.
  • FIG. 14D is a diagram showing a positional relationship corresponding to a range Pd where the displacement of the hologram optical element 21 is from 0.25D to 0.75D.
  • the signal strength of the sum signal S1 changes from zero to increase, and the signal strength of the sum signal S2 maintains a constant value.
  • FIG. 14E is a diagram showing a positional relationship corresponding to the case where the hologram optical element 21 is displaced by 0.75D (in the case of the point Pe in FIG. 15), and the light spot Sp is exactly in the sub-diffraction region 211B.
  • the case where irradiation is started is shown.
  • FIG. 14G is a diagram showing a positional relationship corresponding to the case where the hologram optical element 21 is displaced by 1.0D, and shows a case where the light spot Sp just contacts the outer edge of the sub-diffraction region 211B.
  • FIG. 14H is a diagram showing a positional relationship corresponding to the case where the hologram optical element 21 is displaced beyond 1.0 D, and the light spot Sp protrudes from the sub-diffraction region 211B.
  • the signal strengths of the sum signals S1 and S2 tend to decrease according to the amount of displacement.
  • the signal intensity of the main push-pull signal MPP that has maintained a constant signal intensity also decreases in synchronization with the optical components ORp and ORn protruding from the sub-diffraction region 211B.
  • the sum signals S1 and S2 given by the above equations (5a) and (5b) exhibit a characteristic behavior with respect to the displacement of the hologram optical element 21.
  • the specific adjustment procedure is as follows, for example.
  • the test device (adjuster) first operates the optical head device 3 from the output terminal groups 231 and 232 in FIGS. 2 and 5 as shown in the flowchart of FIG.
  • the detection signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, and SH2 are extracted (step S1).
  • the test equipment generates sum signals S1, S2 based on the detection signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 (steps S2, S3).
  • the order of step S2 for generating the sum signal S1 and step S3 for generating the sum signal S2 may be switched.
  • the hologram optical element 21 is movably disposed in a direction D3 parallel to the Y2 axis direction by the position adjusting mechanism 220 as shown in FIG.
  • the test device can move the position of the hologram optical element 21 to the optimum position by controlling the position adjusting mechanism 220 in the direction in which the signal levels of the sum signals S1 and S2 are equal to each other using the actuator (step S4).
  • the position of the hologram optical element 21 is fixed in the optical head device 3 using a resin material or a fixing member (step S5). It is possible to adjust the position of the hologram optical element 21 by manually operating the actuator in accordance with the signal level change of the sum signals S1 and S2.
  • the range from the point Pe to the point Pg in FIG. 15 is such that the entire light spot Sp is the first sub light receiving unit 24 and the second sub light receiving unit as shown in FIGS. 14 (E) to 14 (G).
  • the signal intensity of the sub push-pull signal SPP and the signal intensity of the sum signals S1 and S2 in the true optimum arrangement of the hologram optical element 21 are in the range from the point Pe to the point Pg in FIG. Is significantly different from the signal intensity at the false optimum position indicated by. Therefore, it is desirable to adjust the position of the hologram optical element 21 so that the signal intensity of the sum signals S1 and S2 does not exceed a predetermined range (a range between a predetermined upper limit and a lower limit). For example, the signal strength of the sum signal S1 does not fall below the threshold level set within the range of 0 to 0.5, and the signal strength of the sum signal S2 is set within the range of 0.1 to 0.15.
  • a predetermined range a range between a predetermined upper limit and a lower limit
  • the position of the hologram optical element 21 may be adjusted so that the signal strength of the sub push-pull signal SPP does not exceed a predetermined threshold level. Thereby, it is possible to prevent the position of the hologram optical element 21 from being adjusted to the false optimum position.
  • the hologram optical element 21 of the optical head device 3 is not disposed in the optical path of the laser light propagating from the semiconductor laser 13 to the optical disk OD as shown in FIG. .
  • the hologram optical element 21 includes a main diffraction region 210 in which a part of the zero-order diffracted light component ORa of the reflected diffracted light beam and the ⁇ first-order diffracted light components ORp and ORn are incident, and the reflected diffracted light.
  • the photodetector 22 transmits the 0th-order light component DR0 of the transmitted diffracted light beam transmitted through the main diffraction region 210 and the sub-diffraction regions 211A and 211B and the sub-diffraction regions 211A and 211B, respectively.
  • the first sub light receiving unit 24 receives the + 1st order light components DRpa and DRpb of the transmitted diffracted light beam
  • the second sub light receiving unit 25 receives the ⁇ 1st order light components DRna and DRnb. Therefore, it is possible to generate the tracking error signal TES in which the offset due to the objective lens shift is canceled while sufficiently securing the signal intensity detected by the photodetector 22.
  • the optical head device 3 externally receives signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25.
  • Output terminal groups 231 and 232 are provided. Therefore, the sum signals S1, S2 depending on the arrangement of the hologram optical element 21 can be generated from these detection signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2, and the sum signals S1, S2 can be generated. By using this, the position of the hologram optical element 21 can be adjusted to the optimum position.
  • the first sub light receiving unit 24 and the second sub light receiving unit 25 are As illustrated in FIGS. 7A and 7C, the stray light from the information recording layer adjacent to the target layer is disposed at a position where it does not enter. Further, as illustrated in FIG. 10D, the first sub light receiving unit 24 and the second sub light receiving unit 25 are arranged at positions where stray light from the information recording layer having the narrowest layer interval is not incident on the target layer. ing. Therefore, since a signal due to an unnecessary stray light component is not detected, the quality of the tracking error signal TES can be improved.
  • the optical head device 3 reduces the loss of the light intensity of the light beam to be irradiated onto the optical disc OD, and the tracking error signal TES from which the DC offset component due to the objective lens shift is removed.
  • the quality of the tracking error signal TES can be improved.
  • a sum signal depending on the arrangement of the hologram optical element 21 is obtained. S1 and S2 can be generated, and the optimal position adjustment of the hologram optical element 21 can be performed using these sum signals S1 and S2.
  • the detection of the sum signals S1 and S2 can be performed using the photodetector 22 having a light receiving surface pattern with a relatively simple configuration.
  • FIG. 17 is a perspective view schematically showing the main configuration of the optical head device 3M according to the second embodiment of the present invention.
  • the configuration of the optical disk device of the present embodiment is the same as the configuration of the optical disk device 1 of the first embodiment except for the configuration of the optical head device 3M.
  • the optical head device 3M includes an adder circuit 28 and output terminals 233 and 234.
  • the configuration of the optical head device 3M is the same as the configuration of the optical head device 3 according to the first embodiment except that the addition circuit 28 and the output terminals 233 and 234 are provided.
  • FIG. 18 is a diagram showing a connection relationship between the photodetector 22 of the second embodiment and the output terminals 231 to 234 of the optical head device 3M.
  • the adder 283 can generate the sum signal S1 by adding the output of the adder 281 and the output of the adder 282.
  • the adder 286 can generate the sum signal S2 by adding the output of the adder 284 and the output of the adder 285. These sum signals S1 and S2 are output from output terminals 233 and 234 to the outside.
  • the test device extracts the sum signals S1 and S2 from the output terminals 233 and 234 of the optical head device 3M, and then uses the actuator to position the sum signals S1 and S2 in the direction in which the signal levels are equal to each other.
  • the position of the hologram optical element 21 can be moved to the optimum position by controlling the adjustment mechanism 220. After the hologram optical element 21 is positioned at the optimum position, the position of the hologram optical element 21 is fixed in the optical head device 3M using a resin material or a fixing member. It is possible to adjust the position of the hologram optical element 21 by manually operating the actuator in accordance with the signal level change of the sum signals S1 and S2.
  • the optical head device 3M has the circuit configuration for generating the sum signals S1 and S2, and the output terminals 233 and 234 for extracting the sum signals S1 and S2. . Therefore, the position of the hologram optical element 21 can be adjusted to the optimum position using the sum signals S1 and S2 taken out from the output terminals 233 and 234.
  • FIG. 19A is a plan view schematically showing the configuration of the hologram optical element 21M of the third embodiment.
  • the configuration of the optical head device of the present embodiment is the same as that of the optical head device 3 of the first embodiment, except that the dimension of the hologram optical element 21M is different from the dimension of the hologram optical element 21 of the first embodiment. It is.
  • the configuration of the optical disk apparatus according to the present embodiment is the same as that of the optical disk apparatus 1 according to the first embodiment except that the hologram optical element 21M is provided instead of the hologram optical element 21.
  • the width W2 in the Y2 axis direction of the sub-diffraction regions 211A and 211B of the hologram optical element 21M is smaller than the light spot diameter (diameter) D in the Y2 axis direction of the light spot Sp.
  • Other dimensions of the hologram optical element 21M are the same as the dimensions of the hologram optical element 21 of the first embodiment.
  • FIGS. 19A to 19F are plan views schematically showing the positional relationship between the hologram optical element 21M and the light spot Sp.
  • FIG. 20 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element 21M.
  • FIG. 19A shows a state in which the hologram optical element 21M is ideally arranged and adjusted in the Y2-axis direction with respect to the light spot Sp, that is, each of the 0th-order diffracted light component R0 and the light components ORp, ORn, ORa is well balanced.
  • a state where the light is incident on the two sub-diffraction regions 211A and 211B is shown (equally).
  • FIGS. 19B to 19F show the light spot Sp when the hologram optical element 21M is gradually displaced along the positive direction of the Y2 axis with respect to the ideal state of FIG. 19A. The positional relationship with the hologram optical element 21M is shown.
  • FIG. 20 is a graph showing the relationship between the displacement of the hologram optical element 21M in the Y2 axis direction and the signal intensity of various signals.
  • the horizontal axis indicates the displacement of the hologram optical element 21M
  • the vertical axis indicates the signal intensity (unit: arbitrary unit) of various signals.
  • the displacement value of the hologram optical element 21M indicates an amount normalized by the diameter of the light spot Sp.
  • two are characteristic curves indicating the signal strengths of the main push-pull signal MPP and the sub push-pull signal SPP in the above equations (3a) and (3b).
  • the other two graph lines use the signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25, and the above equation (5a) and It is a characteristic curve showing the signal strength of the sum signals S1 and S2 given by (5b).
  • the displacement of the hologram optical element 21M indicates a value when it is along the positive direction of the Y2 axis.
  • the displacement of the hologram optical element 21M on the negative direction side is symmetrical with the behavior when the displacement is positive, with the displacement being zero. Further, it is assumed that a region outside the outer peripheral edge of the hologram optical element 21M is shielded from light.
  • FIG. 19B is a diagram showing a positional relationship corresponding to a range Pb in which the displacement of the hologram optical element 21M is 0 to 0.25D. In this range Pb, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211A decreases, and conversely, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211B increases.
  • the sum signals S1 and S2 correspond to signals corresponding to this change in light intensity, and as shown in the range Pb of FIG. 20, the signal intensity of the signal S1 decreases, and conversely, the signal intensity of the signal S2 increases.
  • FIG. 19C shows a positional relationship corresponding to the case where the hologram optical element 21M is displaced by 0.25D (in the case of the point Pc in FIG. 20), and the light spot Sp is not irradiated to the sub-diffraction region 211A.
  • the signal strength of the sum signal S1 becomes zero, and the signal strength of the signal S2 reaches a constant value.
  • the behavior described so far is the same as the behavior shown in FIGS. 14A to 14C and FIG. 15 according to the first embodiment.
  • FIG. 19D shows a positional relationship corresponding to a range Pd in which the displacement of the hologram optical element 21M is from 0.25D to 0.5D.
  • the sum signal S1 Of the sum signal S2 maintains a constant value.
  • FIG. 19E shows a positional relationship corresponding to the case where the hologram optical element 21M is displaced by 0.5D (in the case of the point Pe in FIG. 20), and the light spot Sp is exactly the Y2 axis direction of the sub-diffraction region 211B. The case where it touches an outer edge is shown. In this case, as indicated by a point Pe in FIG.
  • FIG. 19F shows a positional relationship corresponding to the case where the hologram optical element 21M is displaced beyond 0.5D, and shows a case where the light spot Sp just protrudes from the sub-diffraction region 211B.
  • the sum signal S1 increases, maintains a constant value, and then decreases according to the displacement of the hologram optical element 21M.
  • the sum signal S2 continues monotonously decreasing.
  • the signal strength of the main push-pull signal SPP that has maintained a constant signal strength also starts to decrease.
  • the position in this state is not the optimum adjustment position of the hologram optical element 21M.
  • the optimum position of the hologram optical element 21M is the position indicated by the point Pa in FIG. 19 (A) and FIG.
  • these sum signals S1 and S2 are detected, and the position of the hologram optical element 21M is driven so as to be equal to each other, thereby arranging the hologram optical element 21M. Adjustment to be optimized can be realized.
  • the signal intensity of the sum signals S1 and S2 falls within a predetermined range (a range between a predetermined upper limit and a lower limit). It is desirable to adjust the position of the hologram optical element 21M so as not to exceed.
  • the signal strength of the sum signal S1 is not lower than the threshold level set within the range of 0 to 0.5, and the signal strength of the sum signal S2 is set within the range of 0.1 to 0.15. It is possible to adjust the position of the hologram optical element 21M so as not to exceed the threshold level. Alternatively, the position of the hologram optical element 21M may be adjusted so that the signal strength of the sub push-pull signal SPP does not exceed a predetermined threshold level.
  • the hologram optical element 21M of the present embodiment has the sub-diffraction regions 211A and 211B with respect to the diameter D of the light spot Sp in the Y2 axis direction as defined by the above equation (8b).
  • the width W2 is configured to be small. Even in such a case, the optimal position adjustment of the hologram optical element 21M can be performed using the sum signals S1 and S2 depending on the arrangement of the hologram optical element 21M. For example, the position of the hologram optical element 21M can be adjusted by the same procedure as that shown in FIG.
  • the position of the signal intensity of the sum signals S1 and S2 indicating the optimum position of the hologram optical element 21M can be limited to one place Pa in a range where the light spot Sp does not protrude from the hologram optical element 21M, the hologram optical There is an advantage that the position of the element 21M can be easily adjusted.
  • FIG. 21 is a diagram schematically showing a configuration of the photodetector 22D according to the fourth embodiment and output terminal groups 230, 232D, and 231D electrically connected to the photodetector 22D.
  • the configuration of the optical head device according to the present embodiment is not limited to the photodetector 22 and the output terminal groups 230, 231, and 232 shown in FIG. 5, but the photodetector 22D and the output terminal groups 230 and 231D shown in FIG. , 232D is the same as the configuration of the optical head device 3 of the first embodiment.
  • the optical disk apparatus according to the present embodiment has the same configuration as the optical disk apparatus 1 according to the first embodiment except for the optical head apparatus.
  • the photodetector 22D includes a main light receiving unit 23 having the same configuration as the main light receiving unit 23 of the first embodiment, and further includes a first sub light receiving unit 34 and a second sub light receiving unit. 35.
  • the main light receiving unit 23 is electrically connected to the output terminal group 230 in the same manner as the main light receiving unit 23 of the first embodiment.
  • Each of the first sub light receiving unit 24 and the second sub light receiving unit 25 of the first embodiment has a four-divided light receiving surface, whereas the first sub light receiving unit 34 and the second sub light receiving unit of the present embodiment.
  • Each of 35 has a two-divided light receiving surface.
  • the first sub light receiving unit 34 and the second sub light receiving unit 35 are along a direction (diagonal direction of the rectangular photo detector 22D) forming a predetermined angle with respect to the X1 axis direction within the light receiving surface of the photo detector 22D. They are arranged so as to be separated from the main light receiving portion 23 by an equal distance in opposite directions.
  • the first sub light receiving unit 34 has integrated light receiving surfaces 34J1 and 34J2. These light receiving surfaces 34J1 and 34J2 are arranged along the X1 axis direction, photoelectrically convert the transmitted diffracted light beam incident from the hologram optical element 21, and generate an electric signal group Ds1 composed of the detection signals SJ1 and SJ2, The electrical signal group Ds1 is output to the output terminal group 232D.
  • the output terminal group 232D includes output terminals TJ1 and TJ2 corresponding to the light receiving surfaces 34J1 and 34J2 of the first sub light receiving unit 34, respectively.
  • the light receiving surfaces 34J1 and 34J2 photoelectrically convert the + 1st order light components DRpa and DRpb and output detection signals SJ1 and SJ2, respectively.
  • the output terminals TJ1 and TJ2 can output the detection signals SJ1 and SJ2 to the external matrix circuit 5.
  • the second sub light receiving unit 35 has integrated light receiving surfaces 35K1 and 35K2. These light receiving surfaces 35K1 and 35K2 are arranged along the X1 axis direction, photoelectrically convert the transmitted diffracted light beam incident from the hologram optical element 21, and generate an electric signal group Ds2 composed of the detection signals SK1 and SK2.
  • the electrical signal group Ds2 is output to the output terminal group 231D.
  • the output terminal group 231D includes output terminals TK1 and TK2 corresponding to the light receiving surfaces 35K1 and 35K2 of the second sub light receiving unit 35, respectively.
  • the light receiving surfaces 35K1 and 35K2 photoelectrically convert the ⁇ 1st order light components DRna and DRnb and output detection signals SK1 and SK2, respectively.
  • the output terminals TK1 and TK2 can output the detection signals SK1 and SK2 to the external matrix circuit 5.
  • the matrix circuit 5 has a function of generating the sub push-pull signal SPP3 according to the following equation (9a).
  • SPP3 (SJ1-SJ2) + (SK1-SK2) (9a)
  • the matrix circuit 5 can generate a tracking error signal TES3 having a signal level obtained by the following equation (9b).
  • TES3 MPP-k3 ⁇ SPP3 (9b)
  • Equation (9b) k3 is a gain coefficient, and MPP is a main push-pull signal represented by equation (3a) used in the first embodiment.
  • FIG. 22 is a diagram schematically showing a configuration of a photodetector 22Dm that is a modification of the photodetector 22D of the present embodiment.
  • the photodetector 22Dm includes a main light receiving unit 23, a first sub light receiving unit 34m, and a second sub light receiving unit 35m. The outer shape of the first sub light receiving unit 34 and the second sub light receiving unit 35 shown in FIG.
  • the outer shape of the first sub light receiving unit 34m in FIG. 22 has two sides in the direction inclined from the X1 axis direction, and the outer shape of the second sub light receiving unit 35m is also 2 in the direction inclined from the X1 axis direction. Has sides.
  • the outer shapes of the first sub light receiving unit 34m and the second sub light receiving unit 35m have inclined sides, the elliptical stray light SL2 propagated from the information recording layer other than the target layer is generated by the first sub light receiving unit 24m and It can avoid entering into the 2nd sub light-receiving part 25m.
  • each of the first sub light receiving unit 34 and the second sub light receiving unit 35 has a two-divided light receiving surface.
  • the matrix circuit 5 can generate the tracking error signal TES3 in which the offset component caused by the objective lens shift is canceled based on the detection signals SJ1, SJ2, SK1, and SK2 generated on the two-divided light receiving surfaces.
  • the configuration of the photodetectors 22D and 22Dm can be simplified.
  • the first sub light receiving unit 34m and the second sub light receiving unit 35m of FIG. 22 are employed, it is possible to avoid the influence of stray light from the information recording layer other than the target layer, so that the signal quality can be improved. effective.
  • FIG. 23 is a diagram schematically showing a configuration of the photodetector 22F according to the fifth embodiment and output terminal groups 230 and 232D electrically connected to the photodetector 22F.
  • the photodetector 22F of the present embodiment is a modification of the photodetector 22Dm shown in FIG.
  • the photodetector 22F includes a main light receiving unit 23 and a first sub light receiving unit 34m, similar to the photodetector 22Dm in FIG.
  • the configuration of FIG. 23 is a configuration in which the second sub light receiving unit 35m and the output terminal group 231D are deleted from the configuration of FIG.
  • the matrix circuit 5 has a function of generating the sub push-pull signal SPP4 according to the following equation (10a).
  • SPP4 SJ1-SJ2 (10a)
  • the matrix circuit 5 can generate a tracking error signal TES4 having a signal level obtained by the following equation (10b).
  • TES4 MPP-k4 ⁇ SPP4 (10b)
  • Equation (10b) k4 is a gain coefficient
  • MPP is a main push-pull signal represented by equation (3a) used in the first embodiment.
  • the matrix circuit 5 has an offset component caused by the objective lens shift based on the detection signals SJ1 and SJ2 generated on the two-divided light receiving surface of the first sub light receiving unit 34m.
  • the canceled tracking error signal TES4 can be generated. Therefore, the configuration of the photodetector 22F can be simplified as compared with the fourth embodiment.
  • the configuration in FIG. 23 is a configuration in which the second sub light receiving unit 35m and the output terminal group 231D are deleted from the configuration in FIG. 22, but instead, the configuration in FIG. A configuration in which the first sub light receiving unit 34m and the output terminal group 232D are deleted may be employed.
  • the detection signals SJ1 and SK1 are signals that exhibit the same behavior, and the detection signals SJ2 and SK2 are also signals that exhibit the same behavior. Therefore, the matrix circuit 5 is represented by the following equations (11a) and (11b). Accordingly, the sub push-pull signal SPP5 and the tracking error signal TES5 can be generated.
  • SPP5 SK1-SK2 (11a)
  • TES5 MPP-k4 ⁇ SPP5 (11b)
  • FIG. 24 is a diagram schematically showing a configuration of the hologram optical element 31 according to the sixth embodiment.
  • the configurations of the optical head device and the optical disk device according to the present embodiment are the same as those in the first to fifth embodiments except that the hologram optical element 31 in FIG. 24 is provided instead of the hologram optical element 21 or 21M.
  • the configuration is the same as that of the head device and the optical disk device.
  • the hologram optical element 31 of the present embodiment is in contact with the outer peripheral edge portion of the main diffraction region 210 and the sub-diffraction regions 211A and 211B of the hologram optical element 21 (or 21M) and the peripheral edge portion.
  • the peripheral region 310 has a diffraction structure that diffracts incident light in a direction other than the direction of the photodetector 22, or a light shielding structure (mask member) that completely blocks incident light.
  • the peripheral region 310 has a light shielding structure
  • the peripheral region 310 is made of a metal or a resin material, and is made of a completely opaque member with respect to the wavelength of the laser beam.
  • the structure of the peripheral region 310 may be a structure formed integrally with the main diffraction region 210 and the sub-diffraction regions 211A and 211B, or the main diffraction region 210 and the sub-diffraction regions 211A and 211B. You may form with another member.
  • peripheral region 310 By providing such a peripheral region 310, it is possible to block or diffract laser light incident on regions other than the main diffraction region 210 and the sub-diffraction regions 211A and 211B. It can prevent that the quality of the signal which does not inject and is detected by the photodetector 22 is impaired.
  • FIG. 25 is a plan view of a hologram optical element 41 which is a modification of the hologram optical element 31.
  • the hologram optical element 41 has a peripheral region 410 having four arcs at the inner peripheral ends facing the main diffraction region 210 and the sub-diffraction regions 211A and 211B.
  • the peripheral region 410 is provided in contact with the outer edge portions of the main diffraction region 210 and the sub-diffraction regions 211A and 211B.
  • the width W2 along the Y2 axis direction of the sub-diffraction areas 211A and 211B is secured as a predetermined value.
  • the shape of the inner peripheral end of the peripheral region 410 may be a circular shape, an elliptical shape, or other shapes.
  • the hologram optical elements 31 and 41 of the present embodiment are formed so that the peripheral regions 310 and 410 surround the outer peripheral edge portions of the main diffraction region 210 and the sub-diffraction regions 211A and 211B. Unnecessary laser light can be prevented from entering the photodetector 22.
  • optical head device Accordingly, various embodiments of the optical head device according to the present invention have been described above with reference to the drawings, these are exemplifications of the present invention, and various forms other than the above can be adopted.
  • the optical head device according to the present invention or an optical disk device equipped with the optical head device can be incorporated into various electronic devices (for example, a television receiver, a game device, and an in-vehicle navigation device) for business use, home use, and in-vehicle use.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

An optical head device is provided with a diffractive optical element (21) for emitting a transmitted and diffracted light beam by transmitting and diffracting an optical feedback beam from an optical disk (OD) and an optical detector (22). The diffractive optical element (21) includes a main diffraction region (210) having functions for zero-order diffraction and plus/minus first-order diffraction, and sub diffraction regions (211A, 211B) having functions for zero-order diffraction and plus/minus first-order diffraction. An optical detector (22) includes a main light receiving unit (23) for receiving the zero-order optical component of the transmitted diffracted light beam and a first sub light receiving unit (24) for receiving either plus first-order optical component or minus first-order optical component of the transmitted diffracted light beam. The first sub light receiving unit (24) has a plurality of light-receiving surfaces arranged in a prescribed direction.

Description

光ヘッド装置、光ディスク装置及び回折光学素子の位置調整方法Optical head device, optical disk device and diffractive optical element position adjusting method
 本発明は、光ヘッド装置及びこれを有する光ディスク装置、並びに光ヘッド装置に含まれる回折光学素子の位置調整方法に関するものである。 The present invention relates to an optical head device, an optical disk device having the same, and a method for adjusting the position of a diffractive optical element included in the optical head device.
 1枚の光ディスクに記録できる情報量を拡大する1つの手段として、1枚の光ディスクの中に複数の情報記録層を積層させる方式(多層光ディスク方式)が知られている。多層光ディスク方式では、単一の情報記録層を有する光ディスクと比べて、おおよそ情報記録層の数の倍数分だけ情報記録量を増大させることが可能である。たとえば、商用化されているDVD(Digital Versatile Disc:登録商標)及びBD(Blu-ray Disc:登録商標)の規格においては、2つの情報記録層を有する2層ディスクがすでに実用化されている。 As a means for expanding the amount of information that can be recorded on one optical disk, a system (multilayer optical disk system) in which a plurality of information recording layers are stacked in one optical disk is known. In the multi-layer optical disc system, the amount of information recording can be increased by approximately a multiple of the number of information recording layers as compared to an optical disc having a single information recording layer. For example, in a commercially available DVD (Digital Versatile Disc: registered trademark) and BD (Blu-ray Disc: registered trademark) standard, a dual-layer disc having two information recording layers has already been put into practical use.
 このような多層光ディスクに対する記録または再生を行う光ディスク装置では、情報の再生あるいは記録の対象となる層として選択された所望の情報記録層からの反射光以外に、他の情報記録層からの反射光が所謂迷光として光検出器で検出される。このため、所望の情報記録層に対して高速かつ正確に情報の記録または再生を行うためには、この迷光を極力排除して情報の記録または再生への迷光の影響を軽減する工夫が必要となる。たとえば、トラッキングエラー検出方式として、対物レンズシフト(対物レンズがアクチュエータによって駆動されて光ディスクのラジアル方向にシフトすると、対物レンズの位置と光検出器の位置とが互いにずれる現象)が生じた時にトラッキングエラー信号に直流オフセット成分が重畳されない方式である差動プッシュプル方式が一般に採用されている。 In such an optical disc apparatus that performs recording or reproduction on a multilayer optical disc, reflected light from other information recording layers in addition to reflected light from a desired information recording layer selected as a layer to be reproduced or recorded. Is detected by a photodetector as so-called stray light. For this reason, in order to record or reproduce information on a desired information recording layer at high speed and accurately, it is necessary to devise a technique for reducing the influence of stray light on information recording or reproduction by eliminating this stray light as much as possible. Become. For example, as a tracking error detection method, a tracking error occurs when an objective lens shift occurs (a phenomenon in which the position of the objective lens deviates from the position of the photodetector when the objective lens is driven by an actuator and shifted in the radial direction of the optical disc). A differential push-pull method, which is a method in which a DC offset component is not superimposed on a signal, is generally employed.
 差動プッシュプル方式では、レーザ光源から出射された光ビームは、回折格子で1つの主ビームと2つの副ビームとからなる3つの光ビームに分割され、光ディスクの情報記録層に3つの光スポットを形成する。当該情報記録層への情報の記録または再生は、中央に形成される主ビームの光スポットを用いて実行される。また、主ビームの光スポットの両側に形成される2つの副ビームの光スポットは、トラッキングエラー信号生成のために使用される。通常、回折格子は、副ビームの光強度が主ビームの光強度に比べて充分低くなるように設計されている。 In the differential push-pull method, a light beam emitted from a laser light source is divided into three light beams consisting of one main beam and two sub beams by a diffraction grating, and three light spots are formed on an information recording layer of an optical disc. Form. Information recording or reproduction on the information recording layer is performed using a light spot of a main beam formed in the center. Further, the light spots of the two sub beams formed on both sides of the light spot of the main beam are used for generating a tracking error signal. Usually, the diffraction grating is designed so that the light intensity of the sub beam is sufficiently lower than the light intensity of the main beam.
 ところで、多層光ディスクにおいて記録容量をさらに拡大するためには、情報記録層の数を増やす方法が容易に考えられる。その場合、互いに隣接する情報記録層間の間隔を狭くすることも必要となるが、所望の情報記録層以外の他の情報記録層からの迷光の光強度が増加する傾向となる。たとえば、2層の情報記録層を有する光ディスクの場合には、迷光が生じる当該他の情報記録層は1つの層だけであるのに対して、N層の情報記録層を有する光ディスクでは、(N-1)層で迷光が発生するため、光検出器における迷光の光強度がますます増加する傾向となる。 By the way, in order to further expand the recording capacity in a multilayer optical disc, a method of increasing the number of information recording layers can be easily considered. In this case, it is necessary to narrow the interval between adjacent information recording layers, but the light intensity of stray light from other information recording layers other than the desired information recording layer tends to increase. For example, in the case of an optical disc having two information recording layers, the other information recording layer in which stray light is generated is only one layer, whereas in an optical disc having N information recording layers, (N -1) Since stray light is generated in the layer, the light intensity of stray light in the photodetector tends to increase more and more.
 上記した迷光を軽減し得る従来の光ヘッド装置としては、たとえば、国際公開第96/020473号パンフレット(特許文献1)に開示されている光ピックアップ装置が公知である。特許文献1の光ピックアップ装置は、主ビームに相当するメインビームを受光するメインビーム用ディテクタと、副ビームに相当するサイドビームを受光するサイドビーム用ディテクタとを有し、サイドビーム用ディテクタは、情報信号の読み出しの対象ではない情報記録層で反射されるメインビームの迷光が入射されない位置に配置される。これにより、トラッキングエラー信号の品質低下を抑制することができる。 As a conventional optical head device capable of reducing the above stray light, for example, an optical pickup device disclosed in International Publication No. 96/020473 (Patent Document 1) is known. The optical pickup device of Patent Document 1 includes a main beam detector that receives a main beam corresponding to a main beam and a side beam detector that receives a side beam corresponding to a sub beam. The stray light of the main beam reflected by the information recording layer that is not the target of reading the information signal is disposed at a position where it is not incident. As a result, it is possible to suppress deterioration in the quality of the tracking error signal.
国際公開第96/020473号パンフレット(第12頁、図3及び図5(A)及び図5(B)など)International Publication No. 96/020473 Pamphlet (Page 12, FIG. 3, FIG. 5 (A), FIG. 5 (B), etc.)
 しかしながら、従来の光ヘッド装置では、レーザ光源と対物レンズとの間の光路上に回折格子が配置されているため、対物レンズを透過して光ディスクに照射されるレーザ光ビームの光強度が回折格子で減衰(損失)する。 However, in the conventional optical head device, since the diffraction grating is disposed on the optical path between the laser light source and the objective lens, the light intensity of the laser light beam that is transmitted through the objective lens and irradiated onto the optical disk is determined by the diffraction grating. Attenuate (loss) at.
 また、従来の光ヘッド装置は、回折格子によって主ビームを分割することで生成された副ビームのみからトラッキングエラー信号を生成している。副ビームの光強度は本来微弱であるので、トラッキングエラー信号の信号レベル自体が微弱となる。このため、情報の記録または再生の対象となる所望の情報記録層と他の情報記録層との間隔のばらつきに起因して迷光が変動したり、光ディスクに付着した塵や光ディスク表面の傷などの影響を受けた光ビームの乱れにより異常な迷光が発生したりすると、微弱な信号レベルを有するトラッキングエラー信号の品質が損なわれ、再生情報信号の品質も劣化するという問題がある。 Further, the conventional optical head device generates a tracking error signal only from the sub beam generated by dividing the main beam by the diffraction grating. Since the light intensity of the sub beam is inherently weak, the signal level of the tracking error signal itself is weak. For this reason, stray light may fluctuate due to variations in the distance between the desired information recording layer to be recorded or reproduced and another information recording layer, dust attached to the optical disk, scratches on the optical disk surface, etc. When abnormal stray light is generated due to the disturbance of the affected light beam, the quality of the tracking error signal having a weak signal level is impaired, and the quality of the reproduction information signal is also deteriorated.
 さらに、従来の光ヘッド装置において対物レンズシフトが生じた場合には、対物レンズのシフト量に依存する直流オフセット成分がトラッキングエラー信号に重畳され、トラッキングエラー信号の品質を劣化させるという問題もある。 Furthermore, when an objective lens shift occurs in the conventional optical head device, there is a problem that a DC offset component depending on the shift amount of the objective lens is superimposed on the tracking error signal, thereby degrading the quality of the tracking error signal.
 上記に鑑みて本発明の目的は、光ディスクに照射されるべき光ビームの光強度の損失を小さくして、対物レンズシフトに起因する直流オフセット成分が除去されたトラッキングエラー信号を生成することができる構成を有し、トラッキングエラー信号の品質を向上することができる光ヘッド装置及びこれを有する光ディスク装置、並びに光ヘッド装置に含まれる回折光学素子の位置調整方法を提供することである。 In view of the above, an object of the present invention is to reduce a loss of light intensity of a light beam to be irradiated on an optical disc, and to generate a tracking error signal from which a DC offset component due to an objective lens shift is removed. An optical head device having a configuration and capable of improving the quality of a tracking error signal, an optical disk device having the optical head device, and a method for adjusting the position of a diffractive optical element included in the optical head device.
 本発明の一態様による光ヘッド装置は、レーザ光源と、前記レーザ光源から出射される光ビームを集光して光ディスクに照射する対物レンズと、前記光ディスクで反射し前記対物レンズを透過した戻り光ビームを透過回折させて透過回折光ビームを出射する回折光学素子と、前記透過回折光ビームを受光する光検出器とを備え、前記戻り光ビームは、前記光ディスクで回折された反射回折光ビームを含み、前記回折光学素子は、前記反射回折光ビームの0次光成分の一部と前記反射回折光ビームの±1次光成分の全部もしくは一部とが入射する位置に配置され、0次回折作用及び±1次回折作用を有する主回折領域と、前記反射回折光ビームの0次光成分と前記反射回折光ビームの±1次光成分とがなす列の方向を第1の方向とするとき、前記第1の方向と直交する第2の方向において前記主回折領域の外側に、且つ前記反射回折光ビームの0次光成分の残部と前記反射回折光ビームの±1次光成分の残部とが入射する位置に配置され、0次回折作用及び±1次回折作用を有する副回折領域とを含み、前記光検出器は、前記主回折領域及び前記副回折領域の双方を透過した前記透過回折光ビームの0次光成分を受光する主受光部と、前記副回折領域の当該±1次回折作用により生成された前記透過回折光ビームの+1次光成分及び-1次光成分のうちの一方を受光する第1副受光部とを含み、前記第1副受光部は、前記第1の方向に対応する第1の配列方向に沿って配列された複数の受光面を有することを特徴とする。 An optical head device according to an aspect of the present invention includes a laser light source, an objective lens that collects a light beam emitted from the laser light source and irradiates the optical disc, and return light that is reflected by the optical disc and transmitted through the objective lens. A diffractive optical element that transmits and diffracts the beam to emit a transmitted diffracted light beam; and a photodetector that receives the transmitted diffracted light beam, and the return light beam is a reflected diffracted light beam diffracted by the optical disc. And the diffractive optical element is disposed at a position where a part of the 0th-order light component of the reflected diffracted light beam and all or a part of the ± 1st-order light components of the reflected diffracted light beam are incident. When the first direction is the direction of the line formed by the main diffraction region having the action and the ± 1st order diffraction action, the 0th order light component of the reflected diffracted light beam, and the ± 1st order light component of the reflected diffracted light beam ,in front In the second direction orthogonal to the first direction, the remainder of the 0th-order light component of the reflected diffracted light beam and the remainder of the ± 1st-order light component of the reflected diffracted light beam are incident outside the main diffraction region The transmitted diffracted light beam transmitted through both the main diffraction region and the sub-diffraction region, the sub-diffraction region having a zero-order diffraction action and a ± first-order diffraction action. A primary light receiving unit that receives the zeroth-order light component, and one of the + 1st-order light component and the −1st-order light component of the transmitted diffracted light beam generated by the ± 1st-order diffraction action of the sub-diffraction region The first sub light receiving unit includes a plurality of light receiving surfaces arranged along a first arrangement direction corresponding to the first direction.
 本発明の他の一態様による光ディスク装置は、上記光ヘッド装置と、前記光ディスクを回転駆動させるディスク駆動部と、前記主受光部により検出された信号に基づいてプッシュプル信号を生成する信号処理部とを備え、前記信号処理部は、前記信号処理部は、前記第1副受光部により検出された信号に基づいて、前記光検出器に対する前記対物レンズの相対変位に起因するオフセット成分を生成し、前記プッシュプル信号及び前記オフセット成分に基づいてトラッキングエラー信号を生成することを特徴とする。 An optical disc apparatus according to another aspect of the present invention includes the optical head device, a disc drive unit that rotationally drives the optical disc, and a signal processing unit that generates a push-pull signal based on a signal detected by the main light receiving unit. The signal processing unit generates an offset component caused by relative displacement of the objective lens with respect to the photodetector based on the signal detected by the first sub light receiving unit. A tracking error signal is generated based on the push-pull signal and the offset component.
 前記光検出器は、前記透過回折光ビームの当該+1次光成分及び当該-1次光成分のうちの他方を受光する第2副受光部をさらに含むことができる。この場合、前記第1副受光部及び前記第2副受光部の各々は、前記第1の配列方向と前記第2の方向に対応する第2の配列方向とに沿って配列された4つの受光面を有することが好ましい。本発明のさらに他の一態様による回折光学素子の位置調整方法は、前記第1副受光部の当該4つの受光面のうち前記第2の配列方向の一端側に配置された第1の組の受光面で検出された信号と前記第2副受光部の当該4つの受光面のうち前記一端側に配置された第2の組の受光面で検出された信号とを加算して第1の和信号を生成するステップと、前記第1副受光部の当該4つの受光面のうち前記第2の配列方向の他端側に配置された第3の組の受光面で検出された信号と前記第2副受光部の当該4つの受光面のうち前記他端側に配置された第4の組の受光面で検出された信号とを加算して第2の和信号を生成するステップと、前記第1の和信号の信号強度と前記第2の和信号の信号強度とが互いに等しくなるように前記第2の方向に前記回折光学素子を移動させて前記回折光学素子を位置決めするステップとを備えることを特徴とする。 The photodetector may further include a second auxiliary light receiving unit that receives the other of the + 1st order light component and the −1st order light component of the transmitted diffracted light beam. In this case, each of the first sub-light-receiving unit and the second sub-light-receiving unit has four light receiving elements arranged along the first arrangement direction and a second arrangement direction corresponding to the second direction. It is preferable to have a surface. According to still another aspect of the present invention, there is provided a method for adjusting a position of a diffractive optical element according to a first set of four light receiving surfaces of the first sub light receiving unit disposed on one end side in the second arrangement direction. The first sum is obtained by adding the signal detected on the light receiving surface and the signal detected on the second light receiving surface arranged on the one end side among the four light receiving surfaces of the second sub light receiving unit. A step of generating a signal, a signal detected by a third set of light receiving surfaces arranged on the other end side in the second arrangement direction among the four light receiving surfaces of the first sub light receiving unit, and the first Adding a signal detected by a fourth set of light receiving surfaces arranged on the other end side of the four light receiving surfaces of the two sub light receiving units to generate a second sum signal; In the second direction, the signal strength of the sum signal of 1 and the signal strength of the second sum signal are equal to each other. Wherein the moving the optical element and a step of positioning the diffractive optical element.
 本発明の一態様による光ディスク装置では、第1副受光部及び第2副受光部は、対物レンズシフトに起因する直流オフセット成分が除去されたトラッキングエラー信号の生成を可能とする受光面パターンを有している。光ヘッド装置は、トラッキングエラー信号の生成のために0次及び±1次の透過回折光を生成する回折光学素子を備えているので、トラッキングエラーの生成のためにレーザ光源と対物レンズとの間の光路上に回折格子を配置する必要がない。よって、光ディスクに照射されるべき光ビームの光強度の減衰(損失)を抑制することができる。さらに、本発明の一態様による回折光学素子の位置調整方法を使用すれば、第1副受光部及び第2副受光部の受光面で検出された信号を用いて回折光学素子の位置を最適な位置に調整することができる。これにより、従来の光ヘッド装置と比べてトラッキングエラー信号の品質を向上させることができる。 In the optical disc device according to one aspect of the present invention, the first sub-light receiving unit and the second sub-light receiving unit have a light receiving surface pattern that enables generation of a tracking error signal from which a DC offset component due to the objective lens shift is removed. is doing. Since the optical head device includes a diffractive optical element that generates transmission diffraction light of 0th order and ± 1st order for generating a tracking error signal, the optical head device is provided between a laser light source and an objective lens for generating a tracking error. There is no need to dispose a diffraction grating on the optical path. Therefore, the attenuation (loss) of the light intensity of the light beam to be irradiated on the optical disk can be suppressed. Furthermore, if the method for adjusting the position of the diffractive optical element according to one aspect of the present invention is used, the position of the diffractive optical element is optimally determined using the signals detected on the light receiving surfaces of the first sub light receiving unit and the second sub light receiving unit. Can be adjusted to the position. Thereby, the quality of the tracking error signal can be improved as compared with the conventional optical head device.
本発明に係る実施の形態1の光ディスク装置の構成を示す概略図である。1 is a schematic diagram showing a configuration of an optical disc device according to a first embodiment of the present invention. 実施の形態1の光ヘッド装置の主な構成を概略的に示す斜視図である。1 is a perspective view schematically showing a main configuration of an optical head device according to Embodiment 1. FIG. 実施の形態1のホログラム光学素子の光入射面の構成を概略的に示す平面図である。FIG. 3 is a plan view schematically showing a configuration of a light incident surface of the hologram optical element in the first embodiment. (A),(B)は、実施の形態1のホログラム光学素子及び光検出器の斜視図である。(A), (B) is a perspective view of the hologram optical element and photodetector of Embodiment 1. FIG. 実施の形態1の光検出器と光ヘッド装置の出力端子群との間の接続関係を示す図である。FIG. 3 is a diagram illustrating a connection relationship between the photodetector of the first embodiment and an output terminal group of the optical head device. BD規格で規定されている4層光ディスクの情報記録層の構成表を示す図である。It is a figure which shows the structure table | surface of the information recording layer of the 4 layer optical disk prescribed | regulated by BD specification. (A)~(D)は、情報記録層L1を対象層とした場合の光検出器上の迷光分布を概略的に示す平面図である。(A) to (D) are plan views schematically showing the stray light distribution on the photodetector when the information recording layer L1 is the target layer. (A)~(C)は、対物レンズシフトと光検出器における照射光スポットの位置との関係を示す概略図である。(A) to (C) are schematic views showing the relationship between the objective lens shift and the position of the irradiation light spot in the photodetector. (A)~(C)は、対物レンズシフトとトラッキングエラー信号の信号成分との関係を概略的に示す特性図である。(A) to (C) are characteristic diagrams schematically showing the relationship between the objective lens shift and the signal component of the tracking error signal. (A)~(D)は、情報記録層L2を対象層とした場合の迷光分布を概略的に示す平面図である。(A) to (D) are plan views schematically showing the stray light distribution when the information recording layer L2 is the target layer. (A)~(D)は、情報記録層L3を対象層とした場合の迷光分布を概略的に示す平面図である。(A) to (D) are plan views schematically showing the stray light distribution when the information recording layer L3 is the target layer. 実施の形態1の光検出器の変形例である光検出器のレイアウトを示す平面図である。FIG. 10 is a plan view showing a layout of a photodetector that is a modification of the photodetector of the first embodiment. 実施の形態1の光検出器のさらに他の変形例である光検出器のレイアウトを示す平面図である。FIG. 10 is a plan view showing a layout of a photodetector that is still another modification of the photodetector of the first embodiment. (A)~(H)は、実施の形態1のホログラム光学素子と光スポットとの位置関係を概略的に示す平面図である。FIGS. 4A to 4H are plan views schematically showing a positional relationship between the hologram optical element and the light spot according to the first embodiment. 実施の形態1のホログラム光学素子の配置に対する各種検出信号の変化を示すグラフである。6 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element according to the first embodiment. 実施の形態1のホログラム光学素子の位置調整方法の手順を示すフローチャートである。3 is a flowchart illustrating a procedure of a position adjustment method for a hologram optical element according to the first embodiment. 本発明に係る実施の形態2の光ヘッド装置の主な構成を概略的に示す斜視図である。It is a perspective view which shows roughly the main structures of the optical head apparatus of Embodiment 2 which concerns on this invention. 実施の形態2の光検出器と光ヘッド装置の出力端子との間の接続関係を示す図である。It is a figure which shows the connection relation between the photodetector of Embodiment 2, and the output terminal of an optical head apparatus. (A)~(F)は、実施の形態3のホログラム光学素子と光スポットSpとの位置関係を概略的に示す平面図である。(A) to (F) are plan views schematically showing the positional relationship between the hologram optical element of the third embodiment and the light spot Sp. 実施の形態3のホログラム光学素子の配置に対する各種検出信号の変化を示すグラフである。10 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element according to the third embodiment. 本発明に係る実施の形態4の光検出器と光ヘッド装置の出力端子群との間の接続関係を示す図である。It is a figure which shows the connection relation between the photodetector of Embodiment 4 which concerns on this invention, and the output terminal group of an optical head apparatus. 実施の形態4の光検出器の変形例と光ヘッド装置の出力端子群との間の接続関係を示す図である。It is a figure which shows the connection relation between the modification of the photodetector of Embodiment 4, and the output terminal group of an optical head apparatus. 本発明に係る実施の形態5の光検出器と光ヘッド装置の出力端子群との間の接続関係を示す図である。It is a figure which shows the connection relation between the photodetector of Embodiment 5 which concerns on this invention, and the output terminal group of an optical head apparatus. 本発明に係る実施の形態6のホログラム光学素子の構成を概略的に示す図である。It is a figure which shows schematically the structure of the hologram optical element of Embodiment 6 which concerns on this invention. 実施の形態6のホログラム光学素子の変形例の平面図である。FIG. 22 is a plan view of a modification example of the hologram optical element according to the sixth embodiment.
 以下、本発明に係る種々の実施の形態について図面を参照しつつ説明する。 Hereinafter, various embodiments according to the present invention will be described with reference to the drawings.
実施の形態1.
 図1は、本発明に係る実施の形態1の光ディスク装置1の構成を示す概略図である。図1に示されるように、光ディスク装置1は、スピンドルモータ2、光ヘッド装置3、スレッド機構4、マトリクス回路5、信号再生回路6、レーザ制御回路7、サーボ回路8、収差補正機構制御回路9、スレッド制御回路10、スピンドル制御回路11及びコントローラ12を備えている。コントローラ12は、ホスト機器(図示せず)からのコマンドに応じて、信号再生回路6、レーザ制御回路7、サーボ回路8、収差補正機構制御回路9、スレッド制御回路10及びスピンドル制御回路11の各動作を制御する。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing the configuration of an optical disc apparatus 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the optical disc apparatus 1 includes a spindle motor 2, an optical head device 3, a thread mechanism 4, a matrix circuit 5, a signal reproduction circuit 6, a laser control circuit 7, a servo circuit 8, and an aberration correction mechanism control circuit 9. A thread control circuit 10, a spindle control circuit 11 and a controller 12. In response to a command from a host device (not shown), the controller 12 includes a signal reproduction circuit 6, a laser control circuit 7, a servo circuit 8, an aberration correction mechanism control circuit 9, a thread control circuit 10, and a spindle control circuit 11. Control the behavior.
 光ディスクODは、スピンドルモータ2の駆動軸(スピンドル)に固定されたターンテーブル(図示せず)に着脱自在に装着されている。スピンドルモータ2は、スピンドル制御回路11の制御を受けて情報記録時または情報再生時に光ディスクODを回転させる。スピンドル制御回路11は、コントローラ12からの指令に従い、スピンドルモータ2から供給された実回転数を表すパルス信号に基づいて実回転数を目標回転数に一致させるようにスピンドルの回転制御を実行する機能を有する。光ディスクODは、単一の情報記録層を有する単層光ディスク、あるいは複数の情報記録層を有する多層光ディスクであり、たとえば、CD(Compact Disc:登録商標)、DVD(Digital Versatile Disc:登録商標)及びBD(Blu-ray Disc:登録商標)といった現世代の光ディスク、あるいは次世代の光ディスクであればよい。 The optical disc OD is detachably mounted on a turntable (not shown) fixed to the drive shaft (spindle) of the spindle motor 2. The spindle motor 2 rotates the optical disc OD during information recording or information reproduction under the control of the spindle control circuit 11. The spindle control circuit 11 functions to execute spindle rotation control so that the actual rotational speed matches the target rotational speed based on a pulse signal representing the actual rotational speed supplied from the spindle motor 2 in accordance with a command from the controller 12. Have The optical disc OD is a single-layer optical disc having a single information recording layer or a multilayer optical disc having a plurality of information recording layers, such as a CD (Compact Disc: registered trademark), a DVD (Digital Versatile Disc: registered trademark), and the like. It may be a current generation optical disc such as a BD (Blu-ray Disc: registered trademark) or a next generation optical disc.
 光ヘッド装置3は、光ディスクODにレーザ光を照射して、光ディスクODの情報記録層への情報の記録、あるいは、光ディスクODの情報記録層からの情報の読み出しを行う機能を有する。スレッド機構4は、スレッド制御回路10による制御を受けて動作し、光ヘッド装置3を光ディスクODのラジアル方向(光ディスクODの半径方向)に移動させて、光ヘッド装置3から出射されるレーザ光が光ディスクODの所望の情報トラックに光スポットを形成できるように光ヘッド装置3の位置を制御する。 The optical head device 3 has a function of irradiating the optical disc OD with laser light to record information on the information recording layer of the optical disc OD or read information from the information recording layer of the optical disc OD. The sled mechanism 4 operates under the control of the sled control circuit 10, moves the optical head device 3 in the radial direction of the optical disc OD (radial direction of the optical disc OD), and laser light emitted from the optical head device 3 is emitted. The position of the optical head device 3 is controlled so that a light spot can be formed on a desired information track of the optical disk OD.
 図2は、本実施の形態の光ヘッド装置3の主な構成を概略的に示す斜視図である。図2に示されるように光ヘッド装置3は、レーザ光源である半導体レーザ13と、ビームスプリッタ14と、コリメータレンズ15と、対物レンズ18と、アクチュエータ17と、シリンドリカルレンズ26と、回折光学素子であるホログラム光学素子21と光検出器22とを備えている。 FIG. 2 is a perspective view schematically showing a main configuration of the optical head device 3 according to the present embodiment. As shown in FIG. 2, the optical head device 3 includes a semiconductor laser 13 that is a laser light source, a beam splitter 14, a collimator lens 15, an objective lens 18, an actuator 17, a cylindrical lens 26, and a diffractive optical element. A hologram optical element 21 and a photodetector 22 are provided.
 半導体レーザ13は、図1に示すレーザ制御回路7による制御を受けて動作し、レーザ制御回路7は、コントローラ12からの指令に基づいて半導体レーザ13から出射されるレーザ光の光強度を制御することができる。半導体レーザ13から出射されたレーザ光は、ビームスプリッタ14で反射されてコリメータレンズ15を介して対物レンズ18に入射される。ビームスプリッタ14としては、たとえば、キューブタイプのハーフミラーを用いることができる。対物レンズ18は、光ディスクODの半径線上を走査するように配置され、ビームスプリッタ14から入射した光ビームを光ディスクODの情報記録層に集光してこの情報記録層に光スポットを形成する。 The semiconductor laser 13 operates under the control of the laser control circuit 7 shown in FIG. 1, and the laser control circuit 7 controls the light intensity of the laser light emitted from the semiconductor laser 13 based on a command from the controller 12. be able to. Laser light emitted from the semiconductor laser 13 is reflected by the beam splitter 14 and enters the objective lens 18 via the collimator lens 15. As the beam splitter 14, for example, a cube-type half mirror can be used. The objective lens 18 is arranged so as to scan on the radial line of the optical disc OD, and condenses the light beam incident from the beam splitter 14 on the information recording layer of the optical disc OD to form a light spot on the information recording layer.
 光ディスクODで反射された戻り光ビームは、対物レンズ18、コリメータレンズ15、ビームスプリッタ14及びシリンドリカルレンズ26を順に通過してホログラム光学素子21に入射される。シリンドリカルレンズ26は、フォーカスエラー検出を周知の非点収差法で行うために戻り光ビームに非点収差を付与する光学部品である。シリンドリカルレンズ26は、当該シリンドリカルレンズ26のシリンドリカル面の母線方向D2が、光ディスクODのラジアル方向(図2のX軸方向)に対応するX1軸方向に対して略斜め45度をなすように配置されている。本実施の形態では、シリンドリカルレンズ26として、たとえば凹レンズ型のものを用いることができる。ここで、図2では、光ディスクODのラジアル方向であるX軸方向と、このラジアル方向に対応するX1軸方向とが互いにほぼ直交するように示されている。これは、シリンドリカルレンズ26によって戻り光ビームに非点収差が付与されるためである。 The return light beam reflected by the optical disk OD passes through the objective lens 18, the collimator lens 15, the beam splitter 14, and the cylindrical lens 26 in order and enters the hologram optical element 21. The cylindrical lens 26 is an optical component that gives astigmatism to the return light beam in order to perform focus error detection by a known astigmatism method. The cylindrical lens 26 is arranged such that the generatrix direction D2 of the cylindrical surface of the cylindrical lens 26 is substantially 45 degrees with respect to the X1 axis direction corresponding to the radial direction of the optical disc OD (X axis direction in FIG. 2). ing. In the present embodiment, for example, a concave lens type can be used as the cylindrical lens 26. Here, in FIG. 2, the X-axis direction, which is the radial direction of the optical disc OD, and the X1-axis direction corresponding to the radial direction are shown to be substantially orthogonal to each other. This is because astigmatism is given to the return light beam by the cylindrical lens 26.
 なお、本実施の形態では、シリンドリカルレンズ26は凸レンズ型のものであるが、これに限定されるものではない。ビームスプリッタ14は、キューブタイプのハーフミラーの代わりに、平行平板形状のビームスプリッタを用いて構わない。平行平板形状のビームスプリッタは、当該ビームスプリッタの平行平板を透過する戻り光ビームに非点収差を付与することができる。 In this embodiment, the cylindrical lens 26 is a convex lens type, but is not limited to this. The beam splitter 14 may be a parallel plate beam splitter instead of a cube-type half mirror. The parallel plate-shaped beam splitter can give astigmatism to the return light beam transmitted through the parallel plate of the beam splitter.
 透過型回折光学素子であるホログラム光学素子21は、入射光を透過回折させて当該入射光を3本の透過回折光ビームに分割し、これら3本の透過回折光ビームを光検出器22の3つの受光部に向けてそれぞれ出射する機能を有する。図2に示されるように光検出器22は、ホログラム光学素子21の光入射面または光出射面とほぼ平行な受光面を有しており、図2に示されるX1軸方向及びY1軸方向は、光検出器22の受光面と平行である。光検出器22は、この受光面に沿って配列された主受光部23、第1副受光部24及び第2副受光部25を有する。光検出器22の受光面の面内において、第1副受光部24及び第2副受光部25は、X1軸方向に対して所定角度をなす方向(矩形状の光検出器22の対角線方向)に沿って主受光部23から互いに逆方向にそれぞれ等しい距離だけ離間するように配列されている。よって、第1副受光部24及び第2副受光部25は、図2に示されるように主受光部23を挟み込む位置に配置されている。主受光部23、第1副受光部24及び第2副受光部25の各々は、X1軸方向及びY1軸方向に沿ってマトリクス状に配列された4つの受光面を有しており、これら4つの受光面は、ホログラム光学素子21から入射した透過回折光ビームを光電変換して電気信号群を生成する。 The hologram optical element 21, which is a transmission type diffractive optical element, transmits and diffracts incident light to divide the incident light into three transmitted diffracted light beams. Each has a function of emitting light toward one light receiving portion. As shown in FIG. 2, the photodetector 22 has a light receiving surface substantially parallel to the light incident surface or the light emitting surface of the hologram optical element 21, and the X1 axis direction and the Y1 axis direction shown in FIG. , Parallel to the light receiving surface of the photodetector 22. The photodetector 22 includes a main light receiving unit 23, a first sub light receiving unit 24, and a second sub light receiving unit 25 arranged along the light receiving surface. In the plane of the light receiving surface of the light detector 22, the first sub light receiving unit 24 and the second sub light receiving unit 25 form a predetermined angle with respect to the X1 axis direction (diagonal direction of the rectangular light detector 22). Are arranged so as to be separated from the main light receiving part 23 by equal distances in the opposite directions. Therefore, the 1st sub light-receiving part 24 and the 2nd sub light-receiving part 25 are arrange | positioned in the position which pinches | interposes the main light-receiving part 23, as FIG. 2 shows. Each of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 has four light receiving surfaces arranged in a matrix along the X1 axis direction and the Y1 axis direction. The two light receiving surfaces photoelectrically convert the transmitted diffracted light beam incident from the hologram optical element 21 to generate an electric signal group.
 光ヘッド装置3は、3つの出力端子群230,231,232を有しており、主受光部23の受光面で検出された電気信号群DS0は、出力端子群230を介してマトリクス回路5に出力され、第1副受光部24の受光面で検出された電気信号群DS1は、出力端子群231を介してマトリクス回路5に出力され、第2副受光部25の受光面で検出された電気信号群DS2は、出力端子群232を介してマトリクス回路5に出力される。 The optical head device 3 has three output terminal groups 230, 231 and 232, and the electric signal group DS 0 detected on the light receiving surface of the main light receiving unit 23 is sent to the matrix circuit 5 via the output terminal group 230. The electric signal group DS1 output and detected on the light receiving surface of the first sub light receiving unit 24 is output to the matrix circuit 5 through the output terminal group 231 and is detected on the light receiving surface of the second sub light receiving unit 25. The signal group DS2 is output to the matrix circuit 5 via the output terminal group 232.
 図1を参照すると、マトリクス回路5は、光ヘッド装置3から供給された電気信号群DS0,DS1,DS2にマトリクス演算処理を施して、情報の記録または再生に必要な各種信号、たとえば、光ディスクODにおける記録情報の検出結果を示す再生RF信号や、フォーカスエラー信号及びトラッキングエラー信号などのサーボ制御用の信号を生成する。再生RF信号は、信号再生回路6に出力される。信号再生回路6は、再生RF信号に2値化処理を施して変調信号を生成し、この変調信号から再生クロックを抽出するとともに、変調信号に復調処理や誤り訂正やデコード処理を施して再生情報信号を生成することができる。再生情報信号は、コントローラ12によって、映像音響機器やパーソナルコンピュータなどのホスト機器(図示せず)に転送される。 Referring to FIG. 1, the matrix circuit 5 performs matrix calculation processing on the electrical signal groups DS0, DS1, DS2 supplied from the optical head device 3 to perform various signals necessary for information recording or reproduction, such as an optical disc OD. A signal for servo control such as a reproduction RF signal indicating the detection result of the recorded information in FIG. The reproduction RF signal is output to the signal reproduction circuit 6. The signal reproduction circuit 6 binarizes the reproduction RF signal to generate a modulation signal, extracts a reproduction clock from the modulation signal, and performs demodulation processing, error correction, and decoding processing on the modulation signal to reproduce reproduction information. A signal can be generated. The reproduction information signal is transferred by the controller 12 to a host device (not shown) such as an audiovisual device or a personal computer.
 サーボ回路8は、コントローラ12からの指令に基づいて動作し、マトリクス回路5から供給されたフォーカスエラー信号及びトラッキングエラー信号に基づいてフォーカス補正用及びトラッキング補正用の駆動信号SDを生成する。これら駆動信号SDは、光ヘッド装置3内のアクチュエータ17(図2)に供給される。アクチュエータ17は、図2に概略的に示されるように、磁気回路20A,20B、及びこれら磁気回路20Aと20Bとの間に配置される可動部19を有する。可動部19は、対物レンズ18を固定するレンズホルダ(図示せず)と、このレンズホルダに巻回されたフォーカスコイル及びトラッキングコイル(共に図示せず)とを有する。フォーカスコイルは、対物レンズ18の中心軸周りに巻回されており、トラッキングコイルは、光軸OAと光ディスクODのX軸方向とに直交する軸の周りに巻回されている。フォーカスコイルに駆動電流(駆動信号)を供給することにより対物レンズ18をフォーカス方向(光軸OAに沿った方向)に駆動することができ、トラッキングコイルに駆動電流(駆動信号)を供給することにより対物レンズ18をX軸方向に駆動することができる。以上に説明したように、レーザ制御回路7、光ヘッド装置3、マトリクス回路5及びサーボ回路8によりフォーカスサーボループ及びトラッキングサーボループが形成され、半導体レーザ13から出射されるレーザ光を光ディスクODの情報トラックに追従させることができる。 The servo circuit 8 operates based on a command from the controller 12, and generates a drive signal SD for focus correction and tracking correction based on the focus error signal and tracking error signal supplied from the matrix circuit 5. These drive signals SD are supplied to the actuator 17 (FIG. 2) in the optical head device 3. As schematically shown in FIG. 2, the actuator 17 includes magnetic circuits 20A and 20B and a movable portion 19 disposed between the magnetic circuits 20A and 20B. The movable part 19 has a lens holder (not shown) for fixing the objective lens 18 and a focus coil and a tracking coil (both not shown) wound around the lens holder. The focus coil is wound around the central axis of the objective lens 18, and the tracking coil is wound around an axis orthogonal to the optical axis OA and the X-axis direction of the optical disc OD. By supplying drive current (drive signal) to the focus coil, the objective lens 18 can be driven in the focus direction (direction along the optical axis OA), and by supplying drive current (drive signal) to the tracking coil. The objective lens 18 can be driven in the X-axis direction. As described above, the focus servo loop and the tracking servo loop are formed by the laser control circuit 7, the optical head device 3, the matrix circuit 5, and the servo circuit 8, and the laser light emitted from the semiconductor laser 13 is converted into information on the optical disk OD. You can follow the track.
 収差補正機構制御回路9は、コントローラ12に入力された再生情報信号の品質に応じて、図2に示す光ヘッド装置3内に設けられた収差補正機構16Aの動作を制御する。再生情報信号の品質の指標値として、たとえば、ビットエラーレートや信号振幅を利用することができる。コリメータレンズ15は、光ディスクODの情報記録層に集光される光スポットに発生する球面収差などの光学収差を補正する光学部品である。収差補正機構制御回路9は、このコリメータレンズ15を保持するレンズホルダ16Bを光軸OAに沿った方向D1に変位させることで光学収差を適正且つ高精度に補正することができる。なお、光スポットの球面収差の補正は、上述のようなコリメータレンズ15の変位による方式に限定されるものではない。たとえば、液晶素子を用いて、光スポットの光学収差を打ち消すように液晶素子の透過光束の位相制御を行うような方法を採用してもよい。 The aberration correction mechanism control circuit 9 controls the operation of the aberration correction mechanism 16A provided in the optical head device 3 shown in FIG. 2 according to the quality of the reproduction information signal input to the controller 12. As an index value of the quality of the reproduction information signal, for example, a bit error rate or a signal amplitude can be used. The collimator lens 15 is an optical component that corrects optical aberrations such as spherical aberration generated in a light spot collected on the information recording layer of the optical disc OD. The aberration correction mechanism control circuit 9 can correct the optical aberration appropriately and with high accuracy by displacing the lens holder 16B holding the collimator lens 15 in the direction D1 along the optical axis OA. The correction of the spherical aberration of the light spot is not limited to the method based on the displacement of the collimator lens 15 as described above. For example, a method may be employed in which the phase of the transmitted light beam of the liquid crystal element is controlled so as to cancel the optical aberration of the light spot using the liquid crystal element.
 次に、ホログラム光学素子21の構成について説明する。図3は、ホログラム光学素子21の光入射面の構成を概略的に示す平面図である。 Next, the configuration of the hologram optical element 21 will be described. FIG. 3 is a plan view schematically showing the configuration of the light incident surface of the hologram optical element 21.
 図3に示されるように、ホログラム光学素子21は、主回折領域210と、一対の副回折領域211A,211Bという3種類の回折領域を有している。ホログラム光学素子21は、たとえば、樹脂材料またはガラス材料からなる板状の透光性基材を用い、この透光性基材の光入射面及び光出射面の一方または双方に多数の回折格子溝を形成することで作製することができる。当該回折領域ごとに回折格子溝の形状及び方向、並びに回折格子溝間隔を個別に設定することで主回折領域210及び一対の副回折領域211A,211Bとの回折パターンを個別に形成することが可能である。副回折領域211A,211Bは、光ディスクODのタンジェンシャル方向(図2のY軸方向)に対応するY2軸方向において主回折領域210の外側に配置されている。さらに、副回折領域211A,211Bは、Y2軸方向に直交するX2軸方向(光ディスクODのラジアル方向であるX軸方向に対応する方向)の中心線21cに関して互いに線対称な形状を有している。また、主回折領域210と副回折領域211Aとは、X2軸方向に平行な境界線21daで互いに分離されており、主回折領域210と副回折領域211Bとは、X2軸方向に平行な境界線21dbで互いに分離されている。 As shown in FIG. 3, the hologram optical element 21 has three types of diffraction regions, a main diffraction region 210 and a pair of sub-diffraction regions 211A and 211B. The hologram optical element 21 uses, for example, a plate-like translucent substrate made of a resin material or a glass material, and a large number of diffraction grating grooves on one or both of the light incident surface and the light exit surface of the translucent substrate. Can be produced. Diffraction patterns for the main diffraction region 210 and the pair of sub-diffraction regions 211A and 211B can be individually formed by individually setting the shape and direction of the diffraction grating groove and the diffraction grating groove interval for each diffraction region. It is. The sub-diffraction areas 211A and 211B are arranged outside the main diffraction area 210 in the Y2 axis direction corresponding to the tangential direction (Y-axis direction in FIG. 2) of the optical disc OD. Further, the sub-diffraction areas 211A and 211B have shapes that are line-symmetric with respect to the center line 21c in the X2 axis direction (direction corresponding to the X axis direction that is the radial direction of the optical disc OD) orthogonal to the Y2 axis direction. . The main diffraction region 210 and the sub-diffraction region 211A are separated from each other by a boundary line 21da parallel to the X2 axis direction, and the main diffraction region 210 and the sub-diffraction region 211B are boundary lines parallel to the X2 axis direction. They are separated from each other by 21 db.
 光ディスクODからの戻り光ビームは、光ディスクODの情報記録層のラジアル方向すなわちX軸方向の構造(主に情報トラックの構造)に起因する回折光ビーム(以下「反射回折光ビーム」と呼ぶ。)を含む。ホログラム光学素子21の光入射面には戻り光ビームの光スポットSpが形成される。図3に示されるように、この光スポットSpは、実線で示される円形の0次回折光成分R0と、破線で示される円形の+1次回折光成分RP1とが重なり合って形成される光成分ORpと、0次回折光成分R0と破線で示される円形の-1次光成分RN1とが重なり合って形成される光成分ORnと、0次光成分R0のうち±1次回折光成分RP1,RN1との重なりが無い領域の光成分ORaとからなる。対物レンズ18は、光ディスクODの半径線上を走査するように配置されているので、0次回折光成分R0と+1次回折光成分RP1及び-1次回折光成分RN1とが並ぶ列の方向は、光ディスクODのラジアル方向に対応するX2軸方向と一致する。 The return light beam from the optical disc OD is a diffracted light beam (hereinafter referred to as a “reflected diffracted light beam”) due to the structure in the radial direction, that is, the X-axis direction (mainly the structure of the information track) of the information recording layer of the optical disc OD. including. A light spot Sp of the return light beam is formed on the light incident surface of the hologram optical element 21. As shown in FIG. 3, the light spot Sp includes a light component ORp formed by overlapping a circular zero-order diffracted light component R0 indicated by a solid line and a circular + first-order diffracted light component RP1 indicated by a broken line, There is no overlap between the 0th-order diffracted light component R0 and the circular -1st-order light component RN1 indicated by the broken line and the ± 1st-order diffracted light components RP1 and RN1 of the 0th-order light component R0. It consists of the optical component ORa of the region. Since the objective lens 18 is arranged so as to scan on the radial line of the optical disc OD, the direction of the row in which the 0th-order diffracted light component R0, the + 1st-order diffracted light component RP1, and the −1st-order diffracted light component RN1 are arranged is This coincides with the X2 axis direction corresponding to the radial direction.
 主回折領域210は、0次回折光成分R0の一部(光スポットSpの中央部分)と、光成分ORp,ORnの全部もしくは中央部分が入射する位置に形成されていればよい。本実施の形態では、図3に示されるように、主回折領域210は、光成分ORp,ORnの全部が入射する位置に形成されている。これに対し、副回折領域211A,211Bは、少なくとも0次回折光成分R0の残部が入射し且つ光成分ORp,ORnの全部もしくは中央部分が入射しない位置に形成されていればよい。本実施の形態では、副回折領域211A,211Bは、光成分ORp,ORnの全部が入射しない位置に形成されている。 The main diffraction region 210 may be formed at a position where a part of the zero-order diffracted light component R0 (the central part of the light spot Sp) and all or the central part of the light components ORp and ORn are incident. In the present embodiment, as shown in FIG. 3, the main diffraction region 210 is formed at a position where all of the light components ORp and ORn are incident. On the other hand, the sub-diffraction regions 211A and 211B may be formed at positions where at least the remaining part of the 0th-order diffracted light component R0 is incident and all or the central part of the light components ORp and ORn are not incident. In the present embodiment, the sub-diffraction regions 211A and 211B are formed at positions where all of the light components ORp and ORn do not enter.
 図3に示されるように、主回折領域210のY2軸方向の幅は、0次回折光成分R0のY2軸方向における光スポット径Dよりも狭く、且つ光成分ORp,ORnのY2軸方向における幅以下となるように設計されている。本実施の形態においては、境界線21da,21dbは、光成分ORp,ORnのY2軸方向外縁部と接する位置の近傍に設けられている。なお、副回折領域211A,211Bで回折される光成分の光強度を高める観点からは、光成分ORp,ORnの一部をさらに副回折領域211A,211Bに入射させるように、境界線21ea及び21ebを、Y2軸方向の主回折領域210側に移動させて、副回折領域211A,211Bの面積を拡大してもよい。 As shown in FIG. 3, the width of the main diffraction region 210 in the Y2 axis direction is narrower than the light spot diameter D in the Y2 axis direction of the 0th-order diffracted light component R0, and the width of the light components ORp and ORn in the Y2 axis direction. Designed to be: In the present embodiment, the boundary lines 21da and 21db are provided in the vicinity of a position in contact with the outer edge portion in the Y2-axis direction of the light components ORp and ORn. From the viewpoint of increasing the light intensity of the light component diffracted by the sub-diffraction regions 211A and 211B, the boundary lines 21ea and 21eb are set so that a part of the light components ORp and ORn are further incident on the sub-diffraction regions 211A and 211B. May be moved toward the main diffraction region 210 in the Y2 axis direction to enlarge the areas of the sub-diffraction regions 211A and 211B.
 ホログラム光学素子21は、光スポットSpが丁度ホログラム光学素子21の中央部に形成されるように配置されることが動作的に理想である。光ディスクODのラジアル方向(X軸方向)に対応するX2軸方向については、ホログラム光学素子21の主回折領域210及び副回折領域211A,211Bが上述したように形成されているので、ホログラム光学素子21から光スポットSpがはみ出さなければ配置上の問題は生じない。一方、光ディスクODのタンジェンシャル方向(Y軸方向)に対応するY2軸方向については、光スポットSpの0次回折光成分R0と+1次回折光成分RP1とが重なり合って形成される光成分ORpと、0次回折光成分R0と-1次回折光成分RN1とが重なり合って形成される光成分ORnと、0次回折光成分R0のうち±1次回折光成分RP1,RN1との重なりが無い光成分ORaとが、それぞれバランス良く2つの副回折領域211A,211Bに入射するように配置調整されることが望ましい。ここで、ホログラム光学素子21のY2軸方向の幅をWとする。 It is ideal in terms of operation that the hologram optical element 21 is arranged so that the light spot Sp is formed just at the center of the hologram optical element 21. In the X2 axis direction corresponding to the radial direction (X axis direction) of the optical disc OD, the hologram optical element 21 is formed with the main diffraction region 210 and the sub-diffraction regions 211A and 211B of the hologram optical element 21 as described above. If the light spot Sp does not protrude from the center, no problem in arrangement occurs. On the other hand, with respect to the Y2 axis direction corresponding to the tangential direction (Y axis direction) of the optical disc OD, an optical component ORp formed by overlapping the 0th order diffracted light component R0 and the + 1st order diffracted light component RP1 of the light spot Sp, and 0 An optical component ORn formed by overlapping the first-order diffracted light component R0 and the −1st-order diffracted light component RN1, and an optical component ORa that does not overlap with ± 1st-order diffracted light components RP1 and RN1 of the 0th-order diffracted light component R0, respectively. It is desirable that the arrangement is adjusted so as to be incident on the two sub-diffraction areas 211A and 211B in a balanced manner. Here, W is the width of the hologram optical element 21 in the Y2 axis direction.
 図4(A),(B)は、光軸OAに沿って配列されたホログラム光学素子21及び光検出器22の斜視図である。図4(A)は、ホログラム光学素子21の斜視図であり、図4(B)は、光検出器22の模式的な斜視図である。図4(A)及び図4(B)では、光ディスクODのラジアル方向に対応するX2軸方向とX1軸方向とが互いにほぼ直交するように示されている。X1軸方向とこれに対応するX2軸方向とがほぼ直交する理由は、シリンドリカルレンズ26によって戻り光ビームに非点収差が付与されるためである。 4A and 4B are perspective views of the hologram optical element 21 and the photodetector 22 arranged along the optical axis OA. 4A is a perspective view of the hologram optical element 21, and FIG. 4B is a schematic perspective view of the photodetector 22. 4A and 4B, the X2 axis direction and the X1 axis direction corresponding to the radial direction of the optical disc OD are shown to be substantially orthogonal to each other. The reason why the X1 axis direction and the corresponding X2 axis direction are substantially orthogonal is that the cylindrical lens 26 adds astigmatism to the return light beam.
 図4(B)に示されるように、光検出器22は、光軸OAに直交する平面内で、主受光部23、第1副受光部24及び第2副受光部25を有する。第1副受光部24及び第2副受光部25は、主受光部23を挟んでX1軸方向に対して斜め方向両側に配置されている。これら主受光部23、第1副受光部24及び第2副受光部25の各々は、X1軸方向とY1軸方向とにほぼ沿ってマトリクス状に配列された4つの受光面を有している。すなわち、主受光部23は受光面23A,23B,23C,23Dを有し、第1副受光部24は受光面24E1,24F1,24F2,24E2を有し、第2副受光部25は受光面25G1,25H1,25H2,25G2を有する。 As shown in FIG. 4B, the photodetector 22 includes a main light receiving unit 23, a first sub light receiving unit 24, and a second sub light receiving unit 25 in a plane orthogonal to the optical axis OA. The first sub light receiving unit 24 and the second sub light receiving unit 25 are arranged on both sides in the oblique direction with respect to the X1 axis direction with the main light receiving unit 23 interposed therebetween. Each of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 has four light receiving surfaces arranged in a matrix substantially along the X1 axis direction and the Y1 axis direction. . That is, the main light receiving unit 23 has light receiving surfaces 23A, 23B, 23C, and 23D, the first sub light receiving unit 24 has light receiving surfaces 24E1, 24F1, 24F2, and 24E2, and the second sub light receiving unit 25 has a light receiving surface 25G1. , 25H1, 25H2, and 25G2.
 主受光部23では、受光面23A,23Bの組と受光面23C,23Dの組とは、X1軸方向にほぼ沿って配列されており、また、受光面23A,23Dの組と受光面23B及び23Cの組とがY1軸方向にほぼ沿って配列されている。第1副受光部24では、受光面24E1,24E2の組と受光面24F1,24F2の組とはY1軸方向にほぼ沿って配列されており、また、受光面24E1,24F1の組と受光面24E2,24F2の組とはX1軸方向にほぼ沿って配列されている。一方、第2副受光部25では、受光面25G1,25G2の組と受光面25H1,25H2の組とはY1軸方向にほぼ沿って配列されており、また、受光面25G1,25H1の組と受光面25G2,25H2の組とはX1軸方向にほぼ沿って配列されている。このように、主受光部23、第1副受光部24及び第2副受光部25の各々は、縦横にそれぞれ2分割されることにより形成された4つの矩形形状の受光面を有するが、分割される方向は、厳密にX1軸方向及びY1軸方向に沿っていなくてもよい。 In the main light receiving unit 23, the set of the light receiving surfaces 23A and 23B and the set of the light receiving surfaces 23C and 23D are arranged substantially along the X1 axis direction, and the set of the light receiving surfaces 23A and 23D and the light receiving surface 23B and 23C sets are arranged substantially along the Y1-axis direction. In the first sub light receiving unit 24, the set of the light receiving surfaces 24E1, 24E2 and the set of the light receiving surfaces 24F1, 24F2 are arranged substantially along the Y1 axis direction, and the set of the light receiving surfaces 24E1, 24F1 and the light receiving surface 24E2 are arranged. , 24F2 are arranged substantially along the X1 axis direction. On the other hand, in the second sub light receiving unit 25, the set of the light receiving surfaces 25G1 and 25G2 and the set of the light receiving surfaces 25H1 and 25H2 are arranged substantially along the Y1 axis direction. The set of the surfaces 25G2 and 25H2 is arranged substantially along the X1 axis direction. As described above, each of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 has four rectangular light receiving surfaces formed by being divided into two vertically and horizontally. The direction to be performed does not have to be strictly along the X1 axis direction and the Y1 axis direction.
 主回折領域210は、戻り光ビームに対して主に0次及び±1次の回折効率を有し、副回折領域211A,211Bも、戻り光ビームに対して主に0次及び±1次の回折効率を有する。主回折領域210と副回折領域211A,211Bとから出射された光ビーム(以下「透過回折光ビーム」と呼ぶ。)のうち0次光成分DR0は、図4(B)に示されるように、主受光部23の受光面23A~23Dに照射されて光スポットを形成する。この光スポットは、光ディスクODのラジアル方向の構造に起因する反射回折光ビームの0次光成分及び±1次光成分を含むものである。一方、主回折領域210から出射された透過回折光ビームの+1次光成分DRpと-1次光成分DRnとは、主受光部23よりもY1軸方向外側の領域に照射される。したがって、これら±1次光成分DRp,DRnは、光検出器22では検出されない。また、副回折領域211A,211Bから出射された透過回折光ビームの+1次光成分DRpa,DRpbは、第1副受光部24の受光面24E1,24E2,24F1,24F2に照射される。一方、副回折領域211A,211Bから出射された透過回折光ビームの-1次光成分DRna,DRnbは、第2副受光部25の受光面25G1,25G2,25H1,25H2に照射される。 The main diffraction region 210 has mainly diffraction efficiency of 0th order and ± 1st order with respect to the return light beam, and the sub-diffraction regions 211A and 211B also have mainly 0th order and ± 1st order with respect to the return light beam. Has diffraction efficiency. Of the light beams emitted from the main diffraction region 210 and the sub-diffraction regions 211A and 211B (hereinafter referred to as “transmission diffracted light beams”), the zero-order light component DR0 is as shown in FIG. The light receiving surfaces 23A to 23D of the main light receiving unit 23 are irradiated to form light spots. This light spot includes the 0th order light component and the ± 1st order light component of the reflected diffracted light beam caused by the structure in the radial direction of the optical disc OD. On the other hand, the + 1st order light component DRp and the −1st order light component DRn of the transmitted diffracted light beam emitted from the main diffraction region 210 are irradiated to the region outside the main light receiving unit 23 in the Y1 axis direction. Therefore, these ± first-order light components DRp and DRn are not detected by the photodetector 22. Further, the + 1st order light components DRpa and DRpb of the transmitted diffracted light beams emitted from the sub-diffraction regions 211A and 211B are applied to the light receiving surfaces 24E1, 24E2, 24F1, and 24F2 of the first sub light receiving unit 24. On the other hand, the −1st order light components DRna and DRnb of the transmitted diffracted light beams emitted from the sub-diffraction regions 211A and 211B are irradiated to the light receiving surfaces 25G1, 25G2, 25H1, and 25H2 of the second sub light receiving unit 25.
 図5は、実施の形態1の光検出器22と光ヘッド装置3の出力端子群230~232との間の接続関係を示す図である。出力端子群230は、主受光部23の受光面23A,23B,23C,23Dにそれぞれ対応する4つの出力端子TA,TB,TC,TDからなり、出力端子群231は、第1副受光部24の受光面24E1,24E2,24F1,24F2にそれぞれ対応する4つの出力端子TE1,TE2,TF1,TF2からなり、出力端子群232は、第2副受光部25の受光面25G1,25G2,25H1,25H2にそれぞれ対応する4つの出力端子TG1,TG2,TH1,TH2からなる。 FIG. 5 is a diagram showing a connection relationship between the photodetector 22 of the first embodiment and the output terminal groups 230 to 232 of the optical head device 3. The output terminal group 230 includes four output terminals TA, TB, TC, and TD respectively corresponding to the light receiving surfaces 23A, 23B, 23C, and 23D of the main light receiving unit 23. The output terminal group 231 includes the first sub light receiving unit 24. The light receiving surfaces 24E1, 24E2, 24F1, and 24F2 correspond to four output terminals TE1, TE2, TF1, and TF2, respectively. Are composed of four output terminals TG1, TG2, TH1, and TH2.
 光検出器22における計12個の受光面23A~23D,24E1,24E2,24F1,24F2,25G1,25G2,25H1,25H2のパターンは、トラッキングエラー信号を生成する方式として周知の差動プッシュプル方式に使用される受光面パターンに類似したものである。図5に示されるように、主受光部23の受光面23A,23B,23C,23Dは、図4(B)の0次光成分DR0を光電変換(光電流-電圧変換)してそれぞれ検出信号SA,SB,SC,SDを出力する。出力端子TA,TB,TC,Tdは、これら検出信号SA,SB,SC,SDをそれぞれ外部のマトリクス回路5に出力することができる。また、第1副受光部24においては、受光面24E1,24E2は、図4(B)の+1次光成分DRpaを光電変換してそれぞれ検出信号SE1,SE2を出力し、受光面24F1,24F2は、図4(B)の+1次光成分DRpbを光電変換してそれぞれ検出信号SF1,SF2を出力する。出力端子TE1,TE2,TF1,TF2は、これら検出信号SE1,SE2,SF1,SF2をそれぞれ外部のマトリクス回路5に出力することができる。さらに、第2副受光部25においては、受光面25G1,25G2は、図4(B)の-1次光成分DRnaを光電変換してそれぞれ検出信号SG1,SG2を出力し、受光面25H1,25H2は、図4(B)の-1次光成分DRnbを光電変換してそれぞれ検出信号SH1,SH2を出力する。出力端子TG1,TG2,TH1,TH2は、これら検出信号SG1,SG2,SH1,SH2をそれぞれ外部のマトリクス回路5に出力することができる。 A total of twelve light receiving surfaces 23A to 23D, 24E1, 24E2, 24F1, 24F2, 25G1, 25G2, 25H1, and 25H2 in the photodetector 22 have a known differential push-pull method for generating a tracking error signal. It is similar to the light receiving surface pattern used. As shown in FIG. 5, the light receiving surfaces 23A, 23B, 23C, and 23D of the main light receiving unit 23 photoelectrically convert the zero-order light component DR0 of FIG. SA, SB, SC, SD are output. The output terminals TA, TB, TC, Td can output the detection signals SA, SB, SC, SD to the external matrix circuit 5, respectively. In the first sub light receiving unit 24, the light receiving surfaces 24E1 and 24E2 photoelectrically convert the + 1st order light component DRpa in FIG. 4B and output detection signals SE1 and SE2, respectively. The light receiving surfaces 24F1 and 24F2 FIG. 4B photoelectrically converts the + 1st order light component DRpb and outputs detection signals SF1 and SF2, respectively. The output terminals TE1, TE2, TF1, and TF2 can output the detection signals SE1, SE2, SF1, and SF2 to the external matrix circuit 5, respectively. Further, in the second sub light receiving unit 25, the light receiving surfaces 25G1 and 25G2 photoelectrically convert the −1st order light component DRna of FIG. 4 photoelectrically converts the −1st order light component DRnb of FIG. 4B and outputs detection signals SH1 and SH2, respectively. The output terminals TG1, TG2, TH1, and TH2 can output the detection signals SG1, SG2, SH1, and SH2 to the external matrix circuit 5, respectively.
 マトリクス回路5は、非点収差法に従って、次式(1)により得られる信号レベルをもつフォーカスエラー信号FESを生成する。
  FES=(SA+SC)-(SB+SD)  ・・・(1)
The matrix circuit 5 generates a focus error signal FES having a signal level obtained by the following equation (1) according to the astigmatism method.
FES = (SA + SC) − (SB + SD) (1)
 また、マトリクス回路5は、次式(2)により得られる信号レベルをもつ再生RF信号を生成する。
  RF=SA+SB+SC+SD       ・・・(2)
The matrix circuit 5 generates a reproduction RF signal having a signal level obtained by the following equation (2).
RF = SA + SB + SC + SD (2)
 また、マトリクス回路5は、次の次式(3)により得られる信号レベルをもつトラッキングエラー信号TESを生成することができる。
  TES=MPP-k×SPP        ・・・(3)
The matrix circuit 5 can generate a tracking error signal TES having a signal level obtained by the following equation (3).
TES = MPP-k × SPP (3)
 式(3)において、kは、ゲイン係数であり、MPPは、主プッシュプル信号を表し、SPPは、副プッシュプル信号を表している。主プッシュプル信号MPP及び副プッシュプル信号SPPは、それぞれ次式(3a)及び(3b)により与えられる。
 MPP=(SA+SB)-(SC+SD)    ・・・(3a)
 SPP=(SE1+SF1-SE2-SF2)
     +(SG1+SH1-SG2-SH2) ・・・(3b)
In Expression (3), k is a gain coefficient, MPP represents a main push-pull signal, and SPP represents a sub push-pull signal. The main push-pull signal MPP and the sub push-pull signal SPP are given by the following equations (3a) and (3b), respectively.
MPP = (SA + SB)-(SC + SD) (3a)
SPP = (SE1 + SF1-SE2-SF2)
+ (SG1 + SH1-SG2-SH2) (3b)
 主プッシュプル信号MPPと副プッシュプル信号SPPとは、対物レンズシフトに関して互いに同じ位相を有しており、対物レンズシフトに起因する直流オフセット成分は、副プッシュプル信号SPPに含まれる。このため、ゲイン係数kを適宜調整して副プッシュプル信号SPPを増幅することで、対物レンズシフトに起因するオフセット成分がキャンセルされたトラッキングエラー信号TESを生成することができる。なお、上式(3),(3a),(3b)による演算を用いてトラッキングエラー信号TESを検出する方法は、一般的な差動プッシュプル方式とは異なることに留意すべきである。 The main push-pull signal MPP and the sub push-pull signal SPP have the same phase with respect to the objective lens shift, and the DC offset component resulting from the objective lens shift is included in the sub push-pull signal SPP. Therefore, the tracking error signal TES in which the offset component due to the objective lens shift is canceled can be generated by appropriately adjusting the gain coefficient k and amplifying the sub push-pull signal SPP. It should be noted that the method of detecting the tracking error signal TES using the calculations according to the above equations (3), (3a), and (3b) is different from a general differential push-pull method.
 ここで、一般的な差動プッシュプル方式について説明する。上述したように、従来の光ヘッド装置は、半導体レーザから出射された光ビームが対物レンズに入射するまでの光路中において回折格子を通過するように構成されている。そのため、半導体レーザから出射された光ビームは、対物レンズに入射するまでに回折格子によって3つの光ビームに分割される。これら3つの光ビームは、光ディスクの情報記録面上に1つの主光スポットと、この主光スポットを挟んで当該主光スポットの両側に一対の副光スポットとを形成する。光ディスクの情報記録面で反射した3つの戻り光ビームは、光検出器における3つの受光部にそれぞれ入射され検出される。 Here, a general differential push-pull method will be described. As described above, the conventional optical head device is configured to pass through the diffraction grating in the optical path until the light beam emitted from the semiconductor laser enters the objective lens. Therefore, the light beam emitted from the semiconductor laser is divided into three light beams by the diffraction grating before entering the objective lens. These three light beams form one main light spot on the information recording surface of the optical disc and a pair of sub light spots on both sides of the main light spot with the main light spot in between. The three return light beams reflected by the information recording surface of the optical disc are respectively incident on and detected by the three light receiving portions of the photodetector.
 これに対し、本実施の形態の光ヘッド装置3においては、図2に示されるように、半導体レーザ13と対物レンズ18との間の光路中に回折格子が存在しないため、半導体レーザ13から出射された光ビームは、分割されることなく一本の光ビームとして対物レンズ18に入射され、光ディスクODの情報記録面上で1つの光スポットを形成する。光ディスクODの情報記録面で反射した戻り光ビームは、ホログラム光学素子21を透過する際に回折されることにより3本の透過回折光ビームに分割される。これら3本の透過回折光ビームは、主受光部23、第1副受光部24及び第2副受光部25にそれぞれ入射する。 On the other hand, in the optical head device 3 of the present embodiment, as shown in FIG. 2, since there is no diffraction grating in the optical path between the semiconductor laser 13 and the objective lens 18, the light is emitted from the semiconductor laser 13. The divided light beam is incident on the objective lens 18 as one light beam without being divided, and forms one light spot on the information recording surface of the optical disc OD. The return light beam reflected by the information recording surface of the optical disk OD is diffracted when passing through the hologram optical element 21 to be divided into three transmitted diffracted light beams. These three transmitted diffracted light beams are incident on the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25, respectively.
 このように、本実施の形態では、光ディスクODの情報記録面に形成される光スポットは1つなので、一般的な差動プッシュプル方式と区別するために、本実施の形態で用いる差動プッシュプル方式を、1ビーム差動プッシュプル方式と呼ぶこととする。また、従来の差動プッシュプル方式を3ビーム差動プッシュプル方式と呼ぶ。 As described above, in the present embodiment, there is one light spot formed on the information recording surface of the optical disc OD. The pull method is referred to as a one-beam differential push-pull method. The conventional differential push-pull method is referred to as a three-beam differential push-pull method.
 図6は、複数の情報記録層を含む多層光ディスクの例として、BD規格で規定されている4層光ディスクの情報記録層L0,L1,L2,L3の構成表を示す図である。情報記録層L0,L1,L2,L3の層間隔は、図6に示されるように不等間隔となっている。情報の記録または再生の対象となる層として選択された情報記録層(以下「対象層」と呼ぶ。)以外の情報記録層で反射した光(以下「迷光」と呼ぶ。)の影響は、層間隔が小さいほど大きい。このため、対象層に隣接する情報記録層からの迷光の影響が最も大きい。また、層間隔が不等間隔であるため、BD規格の光ディスクでは、情報記録層L2を対象層としたときは情報記録層L3からの迷光の影響が最も大きく、情報記録層L3を対象層としたときには情報記録層L2からの迷光の影響が最も大きい。 FIG. 6 is a diagram showing a configuration table of information recording layers L0, L1, L2, and L3 of a four-layer optical disc defined by the BD standard as an example of a multilayer optical disc including a plurality of information recording layers. The layer intervals of the information recording layers L0, L1, L2, and L3 are unequal intervals as shown in FIG. The influence of light (hereinafter referred to as “stray light”) reflected by an information recording layer other than the information recording layer (hereinafter referred to as “target layer”) selected as a layer on which information is recorded or reproduced is the layer. The smaller the interval, the larger. For this reason, the influence of the stray light from the information recording layer adjacent to the target layer is the largest. Further, since the layer spacing is unequal, in the BD standard optical disc, when the information recording layer L2 is the target layer, the influence of the stray light from the information recording layer L3 is the largest, and the information recording layer L3 is the target layer. In this case, the influence of stray light from the information recording layer L2 is the largest.
 図7(A)~図7(D)は、上記4層光ディスクの情報記録層L1を対象層とした場合の光検出器22上の迷光分布を概略的に示す平面図である。図7(A)は、情報記録層L0で生じた迷光SL0の分布を、図7(B)は、対象層L1で反射した戻り光ビームの0次光成分DR0の光スポットを、図7(C)は、情報記録層L2で生じた迷光SL2の分布を、図7(D)は、情報記録層L3で生じた迷光SL3の分布をそれぞれ示している。実際には、図7(A)~図7(D)に示した光が光検出器22に同時に照射される。図7(A),図7(C)及び図7(D)で示されるように、光検出器22上の迷光SL0,SL2,SL3は、焦点がずれた状態で主受光部23の受光面に対して充分大きい範囲に分布し、さらに斜め方向に楕円状に分布している。これらの分布は、シリンドリカルレンズ26の非点収差付与機能に起因し、楕円状に傾斜する方向はシリンドリカルレンズ26の母線の方向D2に依存する。また、焦点がずれた状態の程度は、光ヘッド装置3の光学的設計仕様や多層光ディスクの情報記録層の層間隔などに依存する。ここでは、情報記録層L1を対象層としているので、対象層L1に隣接する情報記録層L0,L2で生じたそれぞれの迷光SL0,SL2は、情報記録層L3で生じた迷光SL3と比較して高い収束度を有する。したがって、情報記録層L0,L2から生じたそれぞれの迷光SL0,SL2が第1副受光部24及び第2副受光部25に入射しないように、第1副受光部24及び第2副受光部25の中央の主受光部23からの離間距離がそれぞれ定められている。 7 (A) to 7 (D) are plan views schematically showing stray light distribution on the photodetector 22 when the information recording layer L1 of the four-layer optical disk is the target layer. 7A shows the distribution of the stray light SL0 generated in the information recording layer L0, and FIG. 7B shows the light spot of the 0th-order light component DR0 of the return light beam reflected by the target layer L1. C) shows the distribution of stray light SL2 generated in the information recording layer L2, and FIG. 7D shows the distribution of stray light SL3 generated in the information recording layer L3. Actually, the light shown in FIGS. 7A to 7D is simultaneously irradiated onto the photodetector 22. As shown in FIG. 7A, FIG. 7C, and FIG. 7D, the stray light SL0, SL2, and SL3 on the photodetector 22 are received on the light receiving surface of the main light receiving unit 23 in a defocused state. Is distributed in a sufficiently large range, and is distributed in an elliptical shape in an oblique direction. These distributions are caused by the astigmatism imparting function of the cylindrical lens 26, and the direction in which the cylindrical lens 26 is inclined depends on the generatrix direction D2 of the cylindrical lens 26. Further, the degree of defocusing depends on the optical design specifications of the optical head device 3, the layer spacing of the information recording layers of the multilayer optical disk, and the like. Here, since the information recording layer L1 is the target layer, the respective stray lights SL0 and SL2 generated in the information recording layers L0 and L2 adjacent to the target layer L1 are compared with the stray light SL3 generated in the information recording layer L3. Has a high degree of convergence. Accordingly, the first sub light receiving unit 24 and the second sub light receiving unit 25 are prevented from entering the first sub light receiving unit 24 and the second sub light receiving unit 25 from the respective stray lights SL0 and SL2 generated from the information recording layers L0 and L2. The distance from the central main light receiving portion 23 is determined.
 一方、図7(D)に示されるように、対象層L1に隣接しない情報記録層L3で生じた迷光SL3の一部が第1副受光部24及び第2副受光部25に入射しているが、対象層L1と情報記録層L3の層間隔は比較的広いために、迷光SL3は充分大きく焦点がずれた状態となっている。それ故、第1副受光部24及び第2副受光部25に入射する迷光SL3の光強度は微弱となり、トラックエラー信号の品質にほとんど影響を与えない。 On the other hand, as shown in FIG. 7D, a part of the stray light SL3 generated in the information recording layer L3 that is not adjacent to the target layer L1 is incident on the first sub light receiving unit 24 and the second sub light receiving unit 25. However, since the layer interval between the target layer L1 and the information recording layer L3 is relatively wide, the stray light SL3 is sufficiently large and out of focus. Therefore, the light intensity of the stray light SL3 incident on the first sub light receiving unit 24 and the second sub light receiving unit 25 is weak and hardly affects the quality of the track error signal.
 次に、図8(A)~図8(C)は、対物レンズシフト(光検出器22に対する対物レンズ18のラジアル方向の変位)と光検出器22における照射光スポットの位置との関係を示す概略図である。図8(B)は、対物レンズ18の中心軸が光軸OAと一致する場合の、光検出器22の受光面に照射される光ビームの照射位置(基準位置)を示している。この場合、0次光成分DR0の光スポットは、主受光部23のX1軸方向及びY1軸方向における中心位置にあり、+1次光成分DRpa,DRpbは、第1副受光部24のX1軸方向における中心位置にある。同様に-1次光成分DRna及びDRnbは、第2副受光部25のX1軸方向における中心位置にある。次に、図8(A)は、対物レンズ18が光ディスクODの内周側に変位した場合の、光検出器22の受光面に照射される光ビームの照射位置を示す図である。この場合、0次光成分DR0の光スポットは、受光面23C,23Dの側に変位し、+1次光成分DRpa,DRpbは、受光面24E2,24F2の側に変位している。同様に-1次光成分DRna,DRnbは、受光面25G2,25H2の側に変位している。次に、図8(C)は、対物レンズ18が光ディスクODの外周側に変位した場合の、光検出器22の受光面に照射される光ビームの照射位置を示す図である。この場合、0次光成分DR0の光スポットは、受光面23A,23Bの側に変位し、+1次光成分DRpa,DRpbは、受光面24E1,24F1の側に変位している。同様に-1次光成分DRna,DRnbは、受光面25G1及び25H1の側に変位する。 Next, FIGS. 8A to 8C show the relationship between the objective lens shift (the radial displacement of the objective lens 18 relative to the photodetector 22) and the position of the irradiation light spot on the photodetector 22. FIG. FIG. FIG. 8B shows the irradiation position (reference position) of the light beam irradiated on the light receiving surface of the photodetector 22 when the central axis of the objective lens 18 coincides with the optical axis OA. In this case, the light spot of the zero-order light component DR0 is at the center position in the X1 axis direction and the Y1 axis direction of the main light receiving unit 23, and the + 1st order light components DRpa and DRpb are in the X1 axis direction of the first sub light receiving unit 24. At the center position. Similarly, the −1st order light components DRna and DRnb are at the center position of the second sub light receiving unit 25 in the X1 axis direction. Next, FIG. 8A is a diagram showing the irradiation position of the light beam irradiated on the light receiving surface of the photodetector 22 when the objective lens 18 is displaced to the inner peripheral side of the optical disc OD. In this case, the light spot of the 0th-order light component DR0 is displaced toward the light receiving surfaces 23C and 23D, and the + 1st order light components DRpa and DRpb are displaced toward the light receiving surfaces 24E2 and 24F2. Similarly, the −1st order light components DRna and DRnb are displaced toward the light receiving surfaces 25G2 and 25H2. Next, FIG. 8C is a diagram showing the irradiation position of the light beam irradiated on the light receiving surface of the photodetector 22 when the objective lens 18 is displaced to the outer peripheral side of the optical disc OD. In this case, the light spot of the 0th-order light component DR0 is displaced toward the light receiving surfaces 23A and 23B, and the + first-order light components DRpa and DRpb are displaced toward the light receiving surfaces 24E1 and 24F1. Similarly, the −1st order light components DRna and DRnb are displaced toward the light receiving surfaces 25G1 and 25H1.
 図9(A)~図9(C)は、上記対物レンズシフトとトラッキングエラー信号TESの信号成分MPP,SPPとの関係を概略的に示す特性図である。図9(A)~図9(C)に示されるグラフにおいては、横軸は時間tを、縦軸は、主プッシュプル信号成分MPPまたは副プッシュプル信号成分SPPの信号強度を表している。図9(A)~図9(C)の信号強度波形は、光ヘッド装置3が光ディスクODのラジアル方向に一定速度で移動したときに検出される主プッシュプル信号MPP及び副プッシュプル信号SPPの波形である。これら主プッシュプル信号MPPと副プッシュプル信号SPPとは、光ディスク装置3のフォーカス制御が実行されているが、トラッキング制御が行われていない状態で検出された信号である。 FIGS. 9A to 9C are characteristic diagrams schematically showing the relationship between the objective lens shift and the signal components MPP and SPP of the tracking error signal TES. In the graphs shown in FIGS. 9A to 9C, the horizontal axis represents time t, and the vertical axis represents the signal strength of the main push-pull signal component MPP or the sub push-pull signal component SPP. 9A to 9C show the signal intensity waveforms of the main push-pull signal MPP and the sub push-pull signal SPP detected when the optical head device 3 moves at a constant speed in the radial direction of the optical disc OD. It is a waveform. The main push-pull signal MPP and the sub push-pull signal SPP are signals detected when the focus control of the optical disc apparatus 3 is performed but the tracking control is not performed.
 図9(A)、図9(B)及び図9(C)は、図8(A)、図8(B)及び図8(C)の状態にそれぞれ対応する波形図である。対物レンズ18の中心軸が光軸OAと一致した状態にあり対物レンズ18がラジアル方向に変位していない場合には、図9(B)に示されるように、主プッシュプル信号MPPのDC成分(直流成分)はGNDレベルに一致し、副プッシュプル信号SPPのDC成分もGNDレベルにほぼ一致する。また、副プッシュプル信号SPPの波形はほぼ直流的な波形となる。その理由は、副プッシュプル信号SPPに寄与する透過回折光ビームの+1次光成分DRpa,DRpbと-1次光成分DRna,DRnbとが、図3の光成分ORp,ORn(光ディスクODからの反射回折光ビームの0次光R0と±1次光RP1、RN1とが重なり合って形成された光成分)を一部のみ含むか、あるいは含まないためである。対物レンズ18が光ディスクODの内周方向に変位した場合には、図9(A)に示されるように、主プッシュプル信号MPPのDC成分は負側にオフセットした波形となり、副プッシュプル信号SPPの略直流的波形も負側にオフセットした波形となる。一方、対物レンズ18が光ディスクODの外周方向に変位した場合には、図9(C)に示されるように、主プッシュプル信号MPPのDC成分は正側にオフセットした波形となり、副プッシュプル信号SPPの略直流的波形も正側にオフセットした波形となる。したがって、主プッシュプル信号MPPと副プッシュプル信号SPPとは、対物レンズシフトに関して互いに同じ位相を有しており、副プッシュプル信号SPPのオフセット量は、対物レンズ18の変位量に対応する値を有することが分かる。このため、上式(3)に示したように、副プッシュプル信号SPPの値をk倍して得られる値を、主プッシュプル信号MPPの値から差し引くことによって、対物レンズシフトに起因したオフセット成分がキャンセルされたトラッキングエラー信号TESを生成することができる。 9A, 9B, and 9C are waveform diagrams corresponding to the states of FIGS. 8A, 8B, and 8C, respectively. When the central axis of the objective lens 18 coincides with the optical axis OA and the objective lens 18 is not displaced in the radial direction, as shown in FIG. 9B, the DC component of the main push-pull signal MPP. (DC component) coincides with the GND level, and the DC component of the sub push-pull signal SPP substantially coincides with the GND level. Further, the waveform of the sub push-pull signal SPP is almost a direct current waveform. The reason is that the + 1st order light components DRpa and DRpb and the −1st order light components DRna and DRnb of the transmitted diffracted light beam contributing to the sub push-pull signal SPP are reflected by the light components ORp and ORn (reflection from the optical disc OD in FIG. This is because the optical component formed by overlapping the zero-order light R0 and the ± first-order light RP1 and RN1 of the diffracted light beam is partially included or not included. When the objective lens 18 is displaced in the inner peripheral direction of the optical disc OD, as shown in FIG. 9A, the DC component of the main push-pull signal MPP has a waveform offset to the negative side, and the sub push-pull signal SPP. The substantially DC waveform is also a waveform offset to the negative side. On the other hand, when the objective lens 18 is displaced in the outer peripheral direction of the optical disc OD, as shown in FIG. 9C, the DC component of the main push-pull signal MPP has a waveform offset to the positive side, and the sub push-pull signal The substantially direct current waveform of the SPP is also a waveform offset to the positive side. Therefore, the main push-pull signal MPP and the sub push-pull signal SPP have the same phase with respect to the objective lens shift, and the offset amount of the sub push-pull signal SPP has a value corresponding to the displacement amount of the objective lens 18. You can see that For this reason, as shown in the above formula (3), the value obtained by multiplying the value of the sub push-pull signal SPP by k is subtracted from the value of the main push-pull signal MPP, thereby offset caused by the objective lens shift. A tracking error signal TES with canceled components can be generated.
 ところで、多層光ディスクでは、情報記録層L0~L3について個別に光スポットの球面収差が発生する。そこで、光ヘッド装置3に設けられた収差補正機構16Aは、光軸OAに沿ってコリメータレンズ15を変位させることで情報記録層毎に光スポットの球面収差を適正に補正することができる。これにより、各情報記録層に対して安定した情報記録もしくは情報再生を行うことができる。 By the way, in the multilayer optical disc, spherical aberration of the light spot occurs individually for the information recording layers L0 to L3. Therefore, the aberration correction mechanism 16A provided in the optical head device 3 can appropriately correct the spherical aberration of the light spot for each information recording layer by displacing the collimator lens 15 along the optical axis OA. Thereby, stable information recording or information reproduction can be performed on each information recording layer.
 なお、上記したように、多層光ディスクにおいては、対象層と隣接する層で生じる迷光が第1副受光部24及び第2副受光部25で入射されないように、第1副受光部24及び第2副受光部25を主受光部23から離間させて光検出器22を構成していた。上述したように、迷光の光強度は、光ヘッド装置3の光学的設計仕様や多層光ディスクの情報記録層の層間隔などに依存する。図6に示すような実際のBD規格の光ディスクにおいては、層間隔が等間隔ではない。したがって、情報記録層L2を対象層とするときは情報記録層層L1,L3が対象層に隣接する層となるところ、情報記録層L3と対象層との層間隔の方が情報記録層L1と対象層との層間隔よりも狭いために、情報記録層L3で生じる迷光に対して特に配慮する必要がある。 Note that, as described above, in the multilayer optical disc, the first sub light receiving unit 24 and the second sub light receiving unit 24 and the second sub light receiving unit 25 are prevented from entering stray light generated in the layer adjacent to the target layer. The photodetector 22 is configured by separating the sub light receiving unit 25 from the main light receiving unit 23. As described above, the light intensity of the stray light depends on the optical design specifications of the optical head device 3, the layer interval of the information recording layers of the multilayer optical disk, and the like. In an actual BD standard optical disc as shown in FIG. 6, the layer spacing is not equal. Therefore, when the information recording layer L2 is the target layer, the information recording layer layers L1 and L3 are layers adjacent to the target layer, and the layer interval between the information recording layer L3 and the target layer is greater than that of the information recording layer L1. Since it is narrower than the layer distance to the target layer, special consideration must be given to stray light generated in the information recording layer L3.
 図10(A)~図10(D)は、上記4層光ディスクの情報記録層L2を対象層とした場合の光検出器22上の迷光分布を概略的に示す平面図である。図10(A)は、情報記録層L0で生じた迷光SL0の分布を、図10(B)は、情報記録層L1で生じた迷光SL1の分布を、図10(C)は、対象層L2で反射した戻り光ビームの0次光成分DR0の光スポットを、図10(D)は、情報記録層L3で生じた迷光SL3の分布をそれぞれ示している。実際には、図10(A)~図10(D)に示した光が光検出器22に同時に照射される。図10(A),図10(B)及び図10(D)に示されるように、光検出器22上の迷光SL0,SL1,SL3は、焦点がずれた状態で主受光部23の受光面に対して充分大きい範囲に分布し、さらに斜め方向に楕円状に分布する。これらの分布は、シリンドリカルレンズ26の非点収差付与機能に起因し、楕円状に傾斜する方向はシリンドリカルレンズ26の母線の方向D2に依存する。ここでは、情報記録層L2を対象層としているので、対象層に隣接する情報記録層L1,L3で生じたそれぞれの迷光SL1,SL3は、情報記録層L0で生じた迷光SL0と比較して高い収束度を有する。さらに、図6で示したように、BD規格の光ディスクにおいては、情報記録層L2,L3の間隔が最も狭いため、情報記録層L3で生じた迷光SL3の収束度は、情報記録層L1で生じた迷光SL1の収束度よりも高い。したがって、本実施の形態では、対象層L2に隣接する情報記録層L3から生じた迷光SL3の全てが第1副受光部24及び第2副受光部25に入射しないように、中央の主受光部23から第1副受光部24及び第2副受光部25の離間する距離が定められている。 10 (A) to 10 (D) are plan views schematically showing stray light distribution on the photodetector 22 when the information recording layer L2 of the four-layer optical disc is the target layer. 10A shows the distribution of stray light SL0 generated in the information recording layer L0, FIG. 10B shows the distribution of stray light SL1 generated in the information recording layer L1, and FIG. 10C shows the target layer L2. FIG. 10D shows the distribution of the stray light SL3 generated in the information recording layer L3. Actually, the light shown in FIGS. 10A to 10D is simultaneously irradiated onto the photodetector 22. As shown in FIGS. 10A, 10B, and 10D, the stray lights SL0, SL1, and SL3 on the photodetector 22 are light receiving surfaces of the main light receiving unit 23 in a defocused state. Is distributed in a sufficiently large range, and further in an elliptical shape in an oblique direction. These distributions are caused by the astigmatism imparting function of the cylindrical lens 26, and the direction in which the cylindrical lens 26 is inclined depends on the generatrix direction D2 of the cylindrical lens 26. Here, since the information recording layer L2 is the target layer, the respective stray lights SL1 and SL3 generated in the information recording layers L1 and L3 adjacent to the target layer are higher than the stray light SL0 generated in the information recording layer L0. Has convergence. Furthermore, as shown in FIG. 6, in the BD standard optical disc, the distance between the information recording layers L2 and L3 is the narrowest, so the convergence of the stray light SL3 generated in the information recording layer L3 is generated in the information recording layer L1. The degree of convergence of the stray light SL1 is higher. Therefore, in the present embodiment, the central main light receiving unit is arranged so that all of the stray light SL3 generated from the information recording layer L3 adjacent to the target layer L2 does not enter the first sub light receiving unit 24 and the second sub light receiving unit 25. A distance from the first sub light receiving unit 24 to the second sub light receiving unit 25 is determined.
 上記のように光検出器22が構成された場合には、図10(B)に示されるように、対象層L2に隣接する情報記録層L1で生じた迷光SL1の一部が第1副受光部24及び第2副受光部25に入射しているが、情報記録層L1,L2の層間隔が広いために迷光SL1の収束度が高くない。それ故、第1副受光部24及び第2副受光部25に入射する迷光SL1の光強度は微弱となり、トラックエラー信号品質にほとんど影響を与えない。さらに、図10(A)に示されるように情報記録層L0で生じた迷光SL0についても同様であるため、収束度のさらなる低下により迷光SL0の光強度は極めて微弱となるため、やはりトラックエラー信号品質に影響をほとんど与えない。 When the photodetector 22 is configured as described above, as shown in FIG. 10B, a part of the stray light SL1 generated in the information recording layer L1 adjacent to the target layer L2 is the first sub-light-receiving. However, the degree of convergence of the stray light SL1 is not high because the layer spacing between the information recording layers L1 and L2 is wide. Therefore, the light intensity of the stray light SL1 incident on the first sub light receiving unit 24 and the second sub light receiving unit 25 is weak, and hardly affects the track error signal quality. Further, as shown in FIG. 10A, the same applies to the stray light SL0 generated in the information recording layer L0. Therefore, the light intensity of the stray light SL0 becomes extremely weak due to the further decrease in the convergence. Little impact on quality.
 次に、図11(A)~図11(D)は、上記4層光ディスクの情報記録層L3を対象層とした場合の光検出器22上の迷光分布を概略的に示す平面図である。図11(A)は、情報記録層L0で生じた迷光SL0の分布を、図11(B)は、情報記録層L1で生じた迷光SL1の分布を、図11(C)は、情報記録層L2で生じた迷光SL2の分布を、図11(D)は、対象層L3で反射した戻り光ビームの0次光成分DR0の光スポットをそれぞれ示している。実際には、図11(A)~図11(D)に示した光が光検出器22に同時に照射される。図11(A)~図11(C)に示されるように、図6で示した層間隔に応じて、迷光は、SL2,SL1,SL0の順で収束度が低くなる。情報記録層L2と情報記録層L3との間隔が最も狭いため、図10(D)の場合と同様に、情報記録層L2から生じた迷光SL2は全て第1副受光部24及び第2副受光部25に入射することがない。図11(B)に示されるように情報記録層L1で生じた迷光SL1の一部は、第1副受光部24及び第2副受光部25に入射しているが、情報記録層L1,L3の層間隔が広く、迷光SL1の収束度が高くない。それ故、第1副受光部24及び第2副受光部25に入射する迷光SL1の光強度は微弱となり、トラックエラー信号品質にほとんど影響を与えない。さらに、情報記録層L0で生じた迷光SL0についても同様であるので、さらなる収束度の低下により迷光SL0の光強度は極めて微弱となるため、やはりトラックエラー信号品質にほとんど影響を与えない。 Next, FIGS. 11A to 11D are plan views schematically showing the stray light distribution on the photodetector 22 when the information recording layer L3 of the four-layer optical disc is the target layer. 11A shows the distribution of stray light SL0 generated in the information recording layer L0, FIG. 11B shows the distribution of stray light SL1 generated in the information recording layer L1, and FIG. 11C shows the information recording layer. FIG. 11D shows the light spot of the 0th-order light component DR0 of the return light beam reflected by the target layer L3. Actually, the light shown in FIGS. 11A to 11D is simultaneously irradiated onto the photodetector 22. As shown in FIGS. 11A to 11C, the convergence of stray light decreases in the order of SL2, SL1, and SL0 in accordance with the layer spacing shown in FIG. Since the distance between the information recording layer L2 and the information recording layer L3 is the narrowest, all the stray light SL2 generated from the information recording layer L2 is the same as in the case of FIG. It does not enter the portion 25. As shown in FIG. 11B, a part of the stray light SL1 generated in the information recording layer L1 is incident on the first sub light receiving unit 24 and the second sub light receiving unit 25, but the information recording layers L1, L3 And the convergence of stray light SL1 is not high. Therefore, the light intensity of the stray light SL1 incident on the first sub light receiving unit 24 and the second sub light receiving unit 25 is weak, and hardly affects the track error signal quality. Further, since the same applies to the stray light SL0 generated in the information recording layer L0, the light intensity of the stray light SL0 becomes extremely weak due to a further decrease in the degree of convergence, so that the track error signal quality is hardly affected.
 多層光ディスクについて対象層以外の情報記録層からの迷光でトラッキングエラー信号TESが乱される原因は、対象層以外の情報記録層からの反射光と対象層からの反射光とが、光検出器22の面上で互いに干渉し合うことにある。干渉の大きさは、互いに干渉しあう光成分の光強度に依存し、光検出器22上で迷光の光強度が対象層からの反射光成分の光強度とほぼ同程度となるときに干渉度が最大となる。反対に、干渉しあう光成分の光強度の差が大きくなるほど干渉度は小さくなる。したがって、干渉が軽減されるように、対象層以外の情報記録層からの反射光(迷光)と、対象層からの反射光の光強度とが同程度とならないようにすることが望ましい。 The reason why the tracking error signal TES is disturbed by stray light from the information recording layer other than the target layer in the multilayer optical disc is that the reflected light from the information recording layer other than the target layer and the reflected light from the target layer are detected by the photodetector 22. It is to interfere with each other on the surface. The magnitude of the interference depends on the light intensities of the light components that interfere with each other, and the degree of interference when the light intensity of the stray light is approximately the same as the light intensity of the reflected light component from the target layer on the photodetector 22. Is the maximum. Conversely, the greater the difference in the light intensity of the light components that interfere with each other, the smaller the degree of interference. Therefore, it is desirable that the reflected light (stray light) from the information recording layer other than the target layer and the light intensity of the reflected light from the target layer do not become the same so that interference is reduced.
 上記観点から、本実施の形態では、対象層からの反射光の光強度を増減させることにより干渉の影響を軽減することができる。第1副受光部24に照射される+1次光成分DRpa,DRpbと第2副受光部25に照射される-1次光成分DRna,DRnbとは、ホログラム光学素子21の一対の副回折領域211A,211Bで回折透過された光ビームである。副回折領域211A,211Bは、光成分ORp,ORnの一部が入射する、もしくは光成分ORp,ORnの全てが入射しない位置に形成されている。これらの±1次光成分の光強度を積極的に高くさせたい場合には、光成分ORp,ORnがさらに入射するように、ホログラム光学素子21の境界線21da,21dbの位置を、Y2軸方向の主回折領域210側に移動させて、副回折領域211A,211Bの面積を拡大することが望ましい。 From the above viewpoint, in this embodiment, the influence of interference can be reduced by increasing or decreasing the light intensity of the reflected light from the target layer. The + 1st order light components DRpa and DRpb irradiated to the first sub light receiving unit 24 and the −1st order light components DRna and DRnb applied to the second sub light receiving unit 25 are a pair of sub diffraction regions 211A of the hologram optical element 21. , 211B are diffracted and transmitted light beams. The sub-diffraction regions 211A and 211B are formed at positions where part of the light components ORp and ORn are incident or all of the light components ORp and ORn are not incident. When it is desired to positively increase the light intensity of these ± first-order light components, the positions of the boundary lines 21da and 21db of the hologram optical element 21 are set in the Y2-axis direction so that the light components ORp and ORn are further incident. It is desirable to enlarge the area of the sub-diffraction areas 211A and 211B by moving the main diffraction area 210 to the main diffraction area 210 side.
 一方、これらの±1次光成分の光強度を積極的に大きくさせる必要がない場合には、光成分ORp,ORnが副回折領域211A,211Bに全て入射しないように、境界線21da,21dbの位置を、Y2軸方向の主回折領域210から遠ざかる方向に移動させて、副回折領域211A,211Bの面積を縮小することができる。この場合には、副プッシュプル信号SPPは、図9(A)~図9(C)に示されるような交流成分を持たず、完全なDC成分のみを含む。このような副回折領域211A,211Bの最適位置の設定は、光ヘッド装置3の光学的設計仕様、主受光部23,第1副受光部24及び第2副受光部25の受光面積、並びに、多層光ディスクの情報記録層の層間隔に依存するため、これら光学的設計使用、受光面積及び層間隔を考慮して副回折領域211A,211Bの位置を最適位置に設定すればよい。 On the other hand, when it is not necessary to positively increase the light intensities of these ± first-order light components, the boundary lines 21da and 21db are arranged so that the light components ORp and ORn do not enter all of the sub-diffraction regions 211A and 211B. By moving the position away from the main diffraction region 210 in the Y2 axis direction, the areas of the sub-diffraction regions 211A and 211B can be reduced. In this case, the sub push-pull signal SPP does not have an AC component as shown in FIGS. 9A to 9C and includes only a complete DC component. The optimum positions of the sub-diffraction areas 211A and 211B are set by optical design specifications of the optical head device 3, the light receiving areas of the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25, and Since it depends on the layer interval of the information recording layer of the multilayer optical disc, the positions of the sub-diffraction regions 211A and 211B may be set to the optimum positions in consideration of the optical design use, the light receiving area and the layer interval.
 なお、本実施の形態においては、第1副受光部24及び第2副受光部25は、主受光部23を挟んでX1軸方向に対して斜め方向の両側に配置されているが、この配置に限定されるものではない。図12は、光検出器22の変形例である光検出器22Bのレイアウトを示す平面図である。図12に示されるように、この光検出器22Bでは、主受光部23、第1副受光部24及び第2副受光部25は、タンジェンシャル方向(Y軸方向)に対応するY1軸方向に沿って直線上に配列されている。また、図13は、光検出器22のさらに他の変形例である光検出器22Cのレイアウトを示す平面図である。図13に示されるように、この光検出器22Cでは、主受光部23、第1副受光部24及び第2副受光部25は、ラジアル方向(X軸方向)に対応するX1軸方向に沿って直線上に配列されている。 In the present embodiment, the first sub light receiving unit 24 and the second sub light receiving unit 25 are arranged on both sides of the X1 axis direction with the main light receiving unit 23 interposed therebetween. It is not limited to. FIG. 12 is a plan view showing a layout of a photodetector 22 </ b> B that is a modification of the photodetector 22. As shown in FIG. 12, in this photodetector 22B, the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 are arranged in the Y1 axis direction corresponding to the tangential direction (Y axis direction). Along a straight line. FIG. 13 is a plan view showing a layout of a photodetector 22 </ b> C that is still another modification of the photodetector 22. As shown in FIG. 13, in the photodetector 22C, the main light receiving unit 23, the first sub light receiving unit 24, and the second sub light receiving unit 25 are along the X1 axis direction corresponding to the radial direction (X axis direction). Are arranged on a straight line.
 図12及び図13に示したように、第1副受光部24及び第2副受光部25の配置が変更された場合でも、その配置の変更に応じてホログラム光学素子21の一対の副回折領域211A,211Bの回折格子溝の方向を変えることで回折光の主射方向を変えることができる。これにより、+1次光成分DRpa,DRpb及び-1次光成分DRna,DRnbをそれぞれ第1副受光部24及び第2副受光部25に入射させることができる。 As shown in FIGS. 12 and 13, even when the arrangement of the first sub light receiving unit 24 and the second sub light receiving unit 25 is changed, the pair of sub diffraction regions of the hologram optical element 21 is changed according to the change of the arrangement. By changing the direction of the diffraction grating grooves 211A and 211B, the main radiation direction of the diffracted light can be changed. Accordingly, the + 1st order light components DRpa and DRpb and the −1st order light components DRna and DRnb can be made incident on the first sub light receiving unit 24 and the second sub light receiving unit 25, respectively.
 次に、ホログラム光学素子21の位置調整方法について説明する。以下に説明する位置調整方法では、ホログラム光学素子21の位置を光ディスクODのタンジェンシャル方向(Y軸方向)に対応するY2軸方向における最適位置に調整することができる。上記したように、Y2軸方向において、0次回折光成分R0及び光成分ORp,ORn,ORaのそれぞれがバランス良く(均等に)2つの副回折領域211A,211Bに入射するように配置調整されることが望ましい。 Next, a method for adjusting the position of the hologram optical element 21 will be described. In the position adjustment method described below, the position of the hologram optical element 21 can be adjusted to the optimum position in the Y2 axis direction corresponding to the tangential direction (Y axis direction) of the optical disc OD. As described above, in the Y2 axis direction, the zero-order diffracted light component R0 and the light components ORp, ORn, ORa are arranged and adjusted so as to be incident on the two sub-diffraction regions 211A, 211B in a balanced manner (equally). Is desirable.
 図14(A)~図14(H)は、ホログラム光学素子21と光スポットSpとの位置関係を概略的に示す平面図である。さらに図15は、ホログラム光学素子21の配置に対する各種検出信号の変化を示すグラフである。ここで、ホログラム光学素子21のY2軸方向の幅をWとし、主回折領域210の幅をW1とする。また、2つの副回折領域211A,211Bの幅は、互いに等しいW2とし、光スポットSpのY2軸方向の直径をDとする。さらに、本実施の形態では、副回折領域211A,211Bの幅W2は、光スポットSpの直径Dよりも大きい。さらにまた、ホログラム光学素子21の配置調整に寄与しないX2軸方向の高さHは、光スポットSpの直径Dよりも大きいとする。したがって、上述した寸法関係を数式で表現すると、次式(4a)及び(4b)が与えられる。
  W=W1+2×W2  ・・・(4a)
  W2>D      ・・・(4b)
FIGS. 14A to 14H are plan views schematically showing the positional relationship between the hologram optical element 21 and the light spot Sp. Further, FIG. 15 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element 21. Here, the width of the hologram optical element 21 in the Y2 axis direction is W, and the width of the main diffraction region 210 is W1. The widths of the two sub-diffraction regions 211A and 211B are set to be equal to W2, and the diameter of the light spot Sp in the Y2 axis direction is set to D. Furthermore, in the present embodiment, the width W2 of the sub-diffraction regions 211A and 211B is larger than the diameter D of the light spot Sp. Furthermore, it is assumed that the height H in the X2 axis direction that does not contribute to the arrangement adjustment of the hologram optical element 21 is larger than the diameter D of the light spot Sp. Therefore, when the dimensional relationship described above is expressed by a mathematical expression, the following expressions (4a) and (4b) are given.
W = W1 + 2 × W2 (4a)
W2> D (4b)
 図14(A)は、ホログラム光学素子21が光スポットSpに対してY2軸方向に理想的に配置調整された状態、すなわち0次光成分R0及び光成分ORp,ORn,ORaのそれぞれがバランス良く(均等に)2つの副回折領域211A,211Bに入射する理想状態を示している。また、図14(B)~図14(H)は、図14(A)の理想状態に対して、ホログラム光学素子21がY2軸の正方向に沿って徐々に変位した場合の光スポットSpとホログラム光学素子21との間の位置関係を示している。 FIG. 14A shows a state in which the hologram optical element 21 is ideally arranged and adjusted in the Y2-axis direction with respect to the light spot Sp, that is, each of the zero-order light component R0 and the light components ORp, ORn, ORa is well balanced. The figure shows an ideal state where the light enters the two sub-diffraction areas 211A and 211B (evenly). 14 (B) to 14 (H) show the light spot Sp when the hologram optical element 21 is gradually displaced along the positive direction of the Y2 axis with respect to the ideal state of FIG. 14 (A). The positional relationship with the hologram optical element 21 is shown.
 図15は、ホログラム光学素子21のY2軸方向における変位と各種信号の信号強度との関係を示すグラフである。図15において、横軸は、ホログラム光学素子21の変位を示し、縦軸は、各種信号の信号強度(単位:任意単位)を示している。ホログラム光学素子21の変位の値は、光スポットSpの直径で正規化した量を示している。また、4つのグラフ線のうち、2つは式(3a)及び(3b)の主プッシュプル信号MPP及び副プッシュプル信号SPPの信号強度を示す特性曲線である。他の2つのグラフ線は、第1副受光部24及び第2副受光部25で検出された信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2を用いて次式(5a)及び(5b)により与えられる和信号S1,S2の信号強度を表す特性曲線である。
 S1=SE1+SE2+SG1+SG2  ・・・(5a)
 S2=SF1+SF2+SH1+SH2  ・・・(5b)
FIG. 15 is a graph showing the relationship between the displacement of the hologram optical element 21 in the Y2 axis direction and the signal intensity of various signals. In FIG. 15, the horizontal axis indicates the displacement of the hologram optical element 21, and the vertical axis indicates the signal intensity (unit: arbitrary unit) of various signals. The displacement value of the hologram optical element 21 indicates an amount normalized by the diameter of the light spot Sp. Of the four graph lines, two are characteristic curves indicating the signal intensities of the main push-pull signal MPP and the sub push-pull signal SPP in the equations (3a) and (3b). The other two graph lines use the signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25, and the following equation (5a) and It is a characteristic curve showing the signal strength of the sum signals S1 and S2 given by (5b).
S1 = SE1 + SE2 + SG1 + SG2 (5a)
S2 = SF1 + SF2 + SH1 + SH2 (5b)
 ここで、検出信号SE1,SE2は、第1副受光部24の受光面のうちY1軸方向一端側に配置された受光面24E1,24E2の組で検出された信号であり、検出信号SF1,SF2は、第1副受光部24の受光面のうちY1軸方向他端側に配置された受光面24F1,24F2の組で検出された信号である。一方、検出信号SG1,SG2は、第2副受光部25の受光面のうちY1軸方向一端側に配置された受光面25G1,25G2の組で検出された信号であり、検出信号SH1,SH2は、第2副受光部25の受光面のうちY1軸方向他端側に配置された受光面25H1,25H2の組で検出された信号である。よって、和信号S1は、Y1軸方向一端側に配置された受光面24E1,24E2,25G1,25G2で検出された信号を加算することで生成され、和信号S2は、Y1軸方向他端側に配置された受光面24F1,24F2,25H1,25H2で検出された信号を加算することで生成される。 Here, the detection signals SE1 and SE2 are signals detected by a set of the light receiving surfaces 24E1 and 24E2 arranged on one end side in the Y1-axis direction among the light receiving surfaces of the first sub light receiving unit 24, and the detection signals SF1 and SF2 are detected. Is a signal detected by a set of light receiving surfaces 24F1 and 24F2 arranged on the other end side in the Y1-axis direction of the light receiving surface of the first sub light receiving unit 24. On the other hand, the detection signals SG1 and SG2 are signals detected by a set of the light receiving surfaces 25G1 and 25G2 arranged on one end side in the Y1-axis direction among the light receiving surfaces of the second sub light receiving unit 25, and the detection signals SH1 and SH2 are These are signals detected by a set of light receiving surfaces 25H1 and 25H2 arranged on the other end side in the Y1-axis direction of the light receiving surface of the second sub light receiving unit 25. Therefore, the sum signal S1 is generated by adding the signals detected by the light receiving surfaces 24E1, 24E2, 25G1, and 25G2 arranged on one end side in the Y1 axis direction, and the sum signal S2 is generated on the other end side in the Y1 axis direction. It is generated by adding the signals detected by the arranged light receiving surfaces 24F1, 24F2, 25H1, and 25H2.
 なお、図15のグラフは、シミュレーション計算により求めたものであり、その計算条件として次式(6a)~(6c)に示す条件が使用された。
   W1=0.5D       ・・・(6a)
   W2=1.25D      ・・・(6b)
   W=W1+2×W2=3D  ・・・(6c)
The graph of FIG. 15 was obtained by simulation calculation, and the conditions shown in the following equations (6a) to (6c) were used as the calculation conditions.
W1 = 0.5D (6a)
W2 = 1.25D (6b)
W = W1 + 2 × W2 = 3D (6c)
 また、ホログラム光学素子21の変位は、Y2軸の正方向に沿った場合の値を示している。ホログラム光学素子21の負方向側の変位については、変位がゼロの場合を中心に変位が正方向の場合の挙動と対称的な挙動となる。また、ホログラム光学素子21の外周縁分より外側の領域は、遮光されているものとする。 Further, the displacement of the hologram optical element 21 indicates a value when it is along the positive direction of the Y2 axis. The displacement of the hologram optical element 21 on the negative direction side is symmetrical with the behavior when the displacement is positive, with the displacement being zero. Further, it is assumed that a region outside the outer peripheral edge of the hologram optical element 21 is shielded from light.
 図14(A)に示したように、ホログラム光学素子21の変位が無い場合(図15の点Paの場合)には、図15から読み取れるように、S1=S2の関係、すなわち、和信号S1,S2の信号強度が互いに等しい関係が成立する。図14(B)は、ホログラム光学素子21の変位が0から0.25Dまでの範囲Pbに対応する位置関係を示す図である。この範囲では、光スポットSpのうち副回折領域211Aに照射される部分の光強度が減少し、逆に、光スポットSpのうち副回折領域211Bに照射される部分の光強度が増加する。和信号S1,S2はこの光強度変化に対応した信号に相当し、図15の範囲Pbで示されるように、和信号S1の信号強度は減少し、逆に和信号S2の信号強度は増加する。図14(C)は、ホログラム光学素子21が0.25Dだけ変位した場合(図15の点Pcの場合)の位置関係を示す図であり、丁度光スポットSpが副回折領域211Aに照射されなくなる。この場合に、図15の点Pcで示されるように、和信号S1の信号強度はゼロとなり、和信号S2の信号強度は一定値に到達する。図14(D)は、ホログラム光学素子21の変位が0.25Dから0.75Dまでの範囲Pdに対応する位置関係を示す図である。図15の範囲Pdに示されるように、和信号S1の信号強度はゼロから増加に転じ、和信号S2の信号強度は、一定値を維持している。図14(E)は、ホログラム光学素子21が0.75Dだけ変位した場合(図15の点Peの場合)に対応する位置関係を示す図であり、丁度光スポットSpが全て副回折領域211Bに照射され始める場合を示している。この場合に、図15の点Peで示されるように、和信号S1の信号強度は一定値に到達し、かつS1=S2の関係、すなわち和信号S1,S2の信号強度が互いに等しい関係が成立する。 As shown in FIG. 14A, when there is no displacement of the hologram optical element 21 (in the case of the point Pa in FIG. 15), as can be read from FIG. 15, the relationship of S1 = S2, that is, the sum signal S1 , S2 are equal to each other. FIG. 14B is a diagram showing a positional relationship corresponding to a range Pb in which the displacement of the hologram optical element 21 is from 0 to 0.25D. In this range, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211A decreases, and conversely, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211B increases. The sum signals S1 and S2 correspond to signals corresponding to this change in light intensity, and as indicated by a range Pb in FIG. 15, the signal strength of the sum signal S1 decreases, and conversely, the signal strength of the sum signal S2 increases. . FIG. 14C is a diagram showing the positional relationship when the hologram optical element 21 is displaced by 0.25D (in the case of the point Pc in FIG. 15), and the light spot Sp is no longer irradiated onto the sub-diffraction region 211A. . In this case, as indicated by a point Pc in FIG. 15, the signal strength of the sum signal S1 becomes zero, and the signal strength of the sum signal S2 reaches a constant value. FIG. 14D is a diagram showing a positional relationship corresponding to a range Pd where the displacement of the hologram optical element 21 is from 0.25D to 0.75D. As shown in the range Pd of FIG. 15, the signal strength of the sum signal S1 changes from zero to increase, and the signal strength of the sum signal S2 maintains a constant value. FIG. 14E is a diagram showing a positional relationship corresponding to the case where the hologram optical element 21 is displaced by 0.75D (in the case of the point Pe in FIG. 15), and the light spot Sp is exactly in the sub-diffraction region 211B. The case where irradiation is started is shown. In this case, as indicated by the point Pe in FIG. 15, the signal strength of the sum signal S1 reaches a constant value, and the relationship of S1 = S2, that is, the signal strengths of the sum signals S1 and S2 are equal to each other. To do.
 次に、図14(F)は、ホログラム光学素子21の変位が0.75Dから1.0Dまでの範囲Pfに対応する位置関係を示す図である。副回折領域211Bの幅W2が光スポットの直径Dより0.25Dだけ大きいため、ホログラム光学素子21がこの範囲Pfで変位しても、図15の範囲Pfで示されるように、和信号S1,S2の信号強度は不変であり、かつS1=S2の関係は維持されている。図14(G)は、ホログラム光学素子21が1.0Dだけ変位した場合に対応する位置関係を示す図であり、丁度光スポットSpが副回折領域211Bの外縁部に接する場合を示している。この場合に、図15の点Pgで示されるように、和信号S1,S2は、S1=S2の関係を維持している。図14(H)は、ホログラム光学素子21が1.0Dを越えて変位した場合に対応する位置関係を示す図であり、光スポットSpは副回折領域211Bからはみ出ている。この場合に、図15の範囲Phで示されるように、和信号S1,S2の信号強度は、当該変位量に応じて減少に向かう。また、一定値の信号強度を維持していた主プッシュプル信号MPPも、光成分ORp,ORnが副回折領域211Bからはみ出すのと同期してその信号強度が減少していく。 Next, FIG. 14 (F) is a diagram showing a positional relationship corresponding to a range Pf in which the displacement of the hologram optical element 21 is from 0.75D to 1.0D. Since the width W2 of the sub-diffraction region 211B is larger by 0.25D than the diameter D of the light spot, even if the hologram optical element 21 is displaced in this range Pf, as shown by the range Pf in FIG. The signal strength of S2 is unchanged and the relationship of S1 = S2 is maintained. FIG. 14G is a diagram showing a positional relationship corresponding to the case where the hologram optical element 21 is displaced by 1.0D, and shows a case where the light spot Sp just contacts the outer edge of the sub-diffraction region 211B. In this case, as indicated by the point Pg in FIG. 15, the sum signals S1 and S2 maintain the relationship of S1 = S2. FIG. 14H is a diagram showing a positional relationship corresponding to the case where the hologram optical element 21 is displaced beyond 1.0 D, and the light spot Sp protrudes from the sub-diffraction region 211B. In this case, as indicated by a range Ph in FIG. 15, the signal strengths of the sum signals S1 and S2 tend to decrease according to the amount of displacement. The signal intensity of the main push-pull signal MPP that has maintained a constant signal intensity also decreases in synchronization with the optical components ORp and ORn protruding from the sub-diffraction region 211B.
 以上のように、上式(5a)及び(5b)で与えられる和信号S1,S2は、ホログラム光学素子21の変位に対して特徴的な挙動を示すことが明らかである。そしてホログラム光学素子21が最適に配置調整されるべき位置は、図14(A)及び図15の点Paで示す位置である。この最適位置においては、和信号S1,S2が、S1=S2という特徴的な関係となる。このため、これらの和信号S1,S2を検出し、和信号S1,S2の信号強度が互いに等しくなるようにホログラム光学素子21の位置を調整することで、ホログラム光学素子21の配置を最適とする調整を実現することができる。 As described above, it is clear that the sum signals S1 and S2 given by the above equations (5a) and (5b) exhibit a characteristic behavior with respect to the displacement of the hologram optical element 21. The position where the hologram optical element 21 should be optimally arranged and adjusted is the position indicated by a point Pa in FIGS. At this optimum position, the sum signals S1 and S2 have a characteristic relationship of S1 = S2. Therefore, these sum signals S1 and S2 are detected, and the position of the hologram optical element 21 is adjusted so that the signal intensities of the sum signals S1 and S2 are equal to each other, thereby optimizing the arrangement of the hologram optical element 21. Adjustment can be realized.
 具体的な調整手順は、たとえば、以下の通りである。光ヘッド装置3の検査工程において、テスト機器(調整機)は、図16のフローチャートに示されるように、まず、光ヘッド装置3を動作させ、図2及び図5の出力端子群231,232から検出信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2を取り出す(ステップS1)。次に、テスト機器は、検出信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2に基づいて和信号S1,S2を生成する(ステップS2,S3)。ここで、和信号S1を生成するステップS2と、和信号S2を生成するステップS3との順番が入れ替わってもよい。検査工程の段階では、ホログラム光学素子21は、図2に示されるように位置調整機構220によりY2軸方向と平行な方向D3に移動自在に配置されている。テスト機器は、アクチュエータを用いて、和信号S1,S2の信号レベルが互いに等しくなる方向へ位置調整機構220を制御してホログラム光学素子21の位置を最適位置に移動させることができる(ステップS4)。ホログラム光学素子21が最適位置に配置された後は、ホログラム光学素子21の位置は、樹脂材料または固定部材を用いて光ヘッド装置3内で固定される(ステップS5)。なお、和信号S1,S2の信号レベル変化に応じてアクチュエータを手動操作することでホログラム光学素子21の位置調整を行うことも可能である。 The specific adjustment procedure is as follows, for example. In the inspection process of the optical head device 3, the test device (adjuster) first operates the optical head device 3 from the output terminal groups 231 and 232 in FIGS. 2 and 5 as shown in the flowchart of FIG. The detection signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, and SH2 are extracted (step S1). Next, the test equipment generates sum signals S1, S2 based on the detection signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 (steps S2, S3). Here, the order of step S2 for generating the sum signal S1 and step S3 for generating the sum signal S2 may be switched. At the stage of the inspection process, the hologram optical element 21 is movably disposed in a direction D3 parallel to the Y2 axis direction by the position adjusting mechanism 220 as shown in FIG. The test device can move the position of the hologram optical element 21 to the optimum position by controlling the position adjusting mechanism 220 in the direction in which the signal levels of the sum signals S1 and S2 are equal to each other using the actuator (step S4). . After the hologram optical element 21 is arranged at the optimum position, the position of the hologram optical element 21 is fixed in the optical head device 3 using a resin material or a fixing member (step S5). It is possible to adjust the position of the hologram optical element 21 by manually operating the actuator in accordance with the signal level change of the sum signals S1 and S2.
 ところで、S1=S2の関係は、ホログラム光学素子21が最適位置に配置される場合以外に、図15の点Peから点Pgまでの範囲でも発生する。さらに、Y2軸の負方向にホログラム光学素子21が変位した場合にもS1=S2の関係が発生するため、S1=S2の関係を満たすホログラム光学素子21の配置が合計3箇所存在することになる。しかしながら、図15の点Peから点Pgまでの範囲は、図14(E)~図14(G)で示したように、光スポットSpの全体が第1副受光部24及び第2副受光部25のうちの一方のみに照射される場合に成立し、この範囲では、ホログラム光学素子21の最適な配置が実現されない。このことは、S1=S2の関係だけに着目した調整を行うと、真の最適位置以外に、図14(E)~図14(G)で示す配置を最適位置として誤って調整される可能性があることを示している。 Incidentally, the relationship of S1 = S2 also occurs in the range from the point Pe to the point Pg in FIG. 15 other than the case where the hologram optical element 21 is arranged at the optimum position. Further, even when the hologram optical element 21 is displaced in the negative direction of the Y2 axis, the relationship of S1 = S2 occurs, so that there are a total of three arrangements of the hologram optical elements 21 that satisfy the relationship of S1 = S2. . However, the range from the point Pe to the point Pg in FIG. 15 is such that the entire light spot Sp is the first sub light receiving unit 24 and the second sub light receiving unit as shown in FIGS. 14 (E) to 14 (G). It is established when only one of the 25 is irradiated, and in this range, the optimal arrangement of the hologram optical element 21 is not realized. This is because there is a possibility that the arrangement shown in FIGS. 14 (E) to 14 (G) may be erroneously adjusted as the optimum position in addition to the true optimum position when the adjustment is performed only focusing on the relationship of S1 = S2. It shows that there is.
 図15に示されるように、ホログラム光学素子21の真の最適な配置での副プッシュプル信号SPPの信号強度及び和信号S1,S2の信号強度は、図15の点Peから点Pgまでの範囲にて示される偽の最適位置での信号強度とは大きく異なっている。そこで、和信号S1,S2の信号強度が所定の範囲(所定の上限と下限との間の範囲)を超えないようにホログラム光学素子21の位置調整を行うことが望ましい。たとえば、和信号S1の信号強度が0~0.5の範囲内に設定された閾値レベルを下回らず、かつ、和信号S2の信号強度が0.1~0.15の範囲内に設定された閾値レベルを超えないようにホログラム光学素子21の位置調整を行うことが可能である。あるいは、副プッシュプル信号SPPの信号強度が所定の閾値レベルを超えないようにホログラム光学素子21の位置調整を行ってもよい。これにより、ホログラム光学素子21の位置が偽の最適位置に調整されることを防止することができる。 As shown in FIG. 15, the signal intensity of the sub push-pull signal SPP and the signal intensity of the sum signals S1 and S2 in the true optimum arrangement of the hologram optical element 21 are in the range from the point Pe to the point Pg in FIG. Is significantly different from the signal intensity at the false optimum position indicated by. Therefore, it is desirable to adjust the position of the hologram optical element 21 so that the signal intensity of the sum signals S1 and S2 does not exceed a predetermined range (a range between a predetermined upper limit and a lower limit). For example, the signal strength of the sum signal S1 does not fall below the threshold level set within the range of 0 to 0.5, and the signal strength of the sum signal S2 is set within the range of 0.1 to 0.15. It is possible to adjust the position of the hologram optical element 21 so as not to exceed the threshold level. Alternatively, the position of the hologram optical element 21 may be adjusted so that the signal strength of the sub push-pull signal SPP does not exceed a predetermined threshold level. Thereby, it is possible to prevent the position of the hologram optical element 21 from being adjusted to the false optimum position.
 以上に説明したように、本実施の形態の光ヘッド装置3のホログラム光学素子21は、図2に示されるように、半導体レーザ13から光ディスクODに伝播するレーザ光の光路中に配置されていない。このホログラム光学素子21は、図3に示したように反射回折光ビームの0次回折光成分ORaの一部とその±1次回折光成分ORp,ORnとが入射する主回折領域210と、反射回折光ビームの±1次光成分ORp,ORnが入射しないかもしくはその一部が入射するとともに、0次光成分ORaの残部が入射する副回折領域211A,211Bとを有している。光検出器22は、主回折領域210と副回折領域211A,211Bとを透過した透過回折光ビームの0次光成分DR0を受光する主受光部23と、副回折領域211A,211Bでそれぞれ透過した透過回折光ビームの+1次光成分DRpa,DRpbを受光する第1副受光部24と、その-1次光成分DRna,DRnbを受光する第2副受光部25とを有している。したがって、光検出器22で検出される信号強度を充分に確保しつつ、対物レンズシフトに起因するオフセットがキャンセルされたトラッキングエラー信号TESを生成することができる。 As described above, the hologram optical element 21 of the optical head device 3 according to the present embodiment is not disposed in the optical path of the laser light propagating from the semiconductor laser 13 to the optical disk OD as shown in FIG. . As shown in FIG. 3, the hologram optical element 21 includes a main diffraction region 210 in which a part of the zero-order diffracted light component ORa of the reflected diffracted light beam and the ± first-order diffracted light components ORp and ORn are incident, and the reflected diffracted light. There are sub-diffraction regions 211A and 211B in which the ± first-order light components ORp and ORn of the beam are not incident or a part thereof are incident, and the remainder of the zero-order light component ORa is incident. The photodetector 22 transmits the 0th-order light component DR0 of the transmitted diffracted light beam transmitted through the main diffraction region 210 and the sub-diffraction regions 211A and 211B and the sub-diffraction regions 211A and 211B, respectively. The first sub light receiving unit 24 receives the + 1st order light components DRpa and DRpb of the transmitted diffracted light beam, and the second sub light receiving unit 25 receives the −1st order light components DRna and DRnb. Therefore, it is possible to generate the tracking error signal TES in which the offset due to the objective lens shift is canceled while sufficiently securing the signal intensity detected by the photodetector 22.
 また、本実施の形態の光ヘッド装置3は、第1副受光部24と第2副受光部25とで検出された信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2を外部に出力する出力端子群231,232を有している。このため、これら検出信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2から、ホログラム光学素子21の配置に依存した和信号S1,S2を生成することができ、和信号S1,S2を用いてホログラム光学素子21の位置を最適位置に調整することができる。 Further, the optical head device 3 according to the present embodiment externally receives signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25. Output terminal groups 231 and 232 are provided. Therefore, the sum signals S1, S2 depending on the arrangement of the hologram optical element 21 can be generated from these detection signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2, and the sum signals S1, S2 can be generated. By using this, the position of the hologram optical element 21 can be adjusted to the optimum position.
 さらに、光ディスクODが多層光ディスクの場合には、光ディスク装置1が多層光ディスクの対象層に対して情報の記録または再生を実行する場合でも、第1副受光部24及び第2副受光部25は、図7(A)及び図7(C)に例示したように対象層と隣接する情報記録層からの迷光が入射しない位置に配置されている。また、第1副受光部24及び第2副受光部25は、図10(D)に例示したように対象層に対して最も層間隔が狭い情報記録層からの迷光が入射しない位置に配置されている。したがって、不要な迷光成分による信号が検出されないので、トラッキングエラー信号TESの品質を高めることができる。 Further, when the optical disc OD is a multilayer optical disc, even when the optical disc apparatus 1 performs recording or reproduction of information on the target layer of the multilayer optical disc, the first sub light receiving unit 24 and the second sub light receiving unit 25 are As illustrated in FIGS. 7A and 7C, the stray light from the information recording layer adjacent to the target layer is disposed at a position where it does not enter. Further, as illustrated in FIG. 10D, the first sub light receiving unit 24 and the second sub light receiving unit 25 are arranged at positions where stray light from the information recording layer having the narrowest layer interval is not incident on the target layer. ing. Therefore, since a signal due to an unnecessary stray light component is not detected, the quality of the tracking error signal TES can be improved.
 以上により、本実施の形態の光ヘッド装置3は、光ディスクODに照射されるべき光ビームの光強度の損失を小さくして、対物レンズシフトに起因する直流オフセット成分が除去されたトラッキングエラー信号TESを生成することができる構成を有し、トラッキングエラー信号TESの品質を向上することができる。また、第1副受光部24及び第2副受光部25で検出された信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2に基づいて、ホログラム光学素子21の配置に依存した和信号S1,S2を生成することができ、これら和信号S1,S2を用いて、ホログラム光学素子21の最適位置調整を行うことができる。しかも、これら和信号S1,S2の検出は、比較的簡単な構成の受光面パターンをもつ光検出器22を用いて行うことができる。 As described above, the optical head device 3 according to the present embodiment reduces the loss of the light intensity of the light beam to be irradiated onto the optical disc OD, and the tracking error signal TES from which the DC offset component due to the objective lens shift is removed. The quality of the tracking error signal TES can be improved. Further, based on the signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, and SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25, a sum signal depending on the arrangement of the hologram optical element 21 is obtained. S1 and S2 can be generated, and the optimal position adjustment of the hologram optical element 21 can be performed using these sum signals S1 and S2. In addition, the detection of the sum signals S1 and S2 can be performed using the photodetector 22 having a light receiving surface pattern with a relatively simple configuration.
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。図17は、本発明に係る実施の形態2の光ヘッド装置3Mの主な構成を概略的に示す斜視図である。本実施の形態の光ディスク装置の構成は、光ヘッド装置3Mの構成以外は、実施の形態1の光ディスク装置1の構成と同じである。
Embodiment 2. FIG.
Next, a second embodiment according to the present invention will be described. FIG. 17 is a perspective view schematically showing the main configuration of the optical head device 3M according to the second embodiment of the present invention. The configuration of the optical disk device of the present embodiment is the same as the configuration of the optical disk device 1 of the first embodiment except for the configuration of the optical head device 3M.
 また、図17に示されるように、本実施の形態の光ヘッド装置3Mは、加算回路28と出力端子233,234とを備えている。光ヘッド装置3Mの構成は、これら加算回路28と出力端子233,234とを有する点以外は、実施の形態1の光ヘッド装置3の構成と同じである。 Further, as shown in FIG. 17, the optical head device 3M according to the present embodiment includes an adder circuit 28 and output terminals 233 and 234. The configuration of the optical head device 3M is the same as the configuration of the optical head device 3 according to the first embodiment except that the addition circuit 28 and the output terminals 233 and 234 are provided.
 図18は、実施の形態2の光検出器22と光ヘッド装置3Mの出力端子231~234との間の接続関係を示す図である。図18に示されるように、加算回路28は、上記和信号S1,S2を生成するための加算器281~286を含む。すなわち、加算器281は、第1副受光部24の受光面24E1,24E2の組で検出された信号SE1,SE2を加算して加算信号(=SE1+SE2)を生成し、加算器284は、第1副受光部24の受光面24F1,24F2の組で検出された信号SF1,SF2を加算して加算信号(=SF1+SF2)を生成する。また、加算器282は、第2副受光部25の受光面25G1,25G2の組で検出された信号SG1,SG2を加算して加算信号(=SG1+SG2)を生成し、加算器285は、第2副受光部25の受光面25H1,25H2の組で検出された信号SH1,SH2を加算して加算信号(=SH1+SH2)を生成する。加算器283は、加算器281の出力と加算器282の出力とを加算することで和信号S1を生成することができる。一方、加算器286は、加算器284の出力と加算器285の出力とを加算することで和信号S2を生成することができる。これら和信号S1,S2は、出力端子233,234から外部に出力される。 FIG. 18 is a diagram showing a connection relationship between the photodetector 22 of the second embodiment and the output terminals 231 to 234 of the optical head device 3M. As shown in FIG. 18, the adder circuit 28 includes adders 281 to 286 for generating the sum signals S1 and S2. That is, the adder 281 adds the signals SE1 and SE2 detected by the set of the light receiving surfaces 24E1 and 24E2 of the first sub light receiving unit 24 to generate an addition signal (= SE1 + SE2), and the adder 284 The signals SF1 and SF2 detected by the set of the light receiving surfaces 24F1 and 24F2 of the sub light receiving unit 24 are added to generate an addition signal (= SF1 + SF2). The adder 282 adds the signals SG1 and SG2 detected by the set of the light receiving surfaces 25G1 and 25G2 of the second sub light receiving unit 25 to generate an addition signal (= SG1 + SG2), and the adder 285 The signals SH1 and SH2 detected by the set of the light receiving surfaces 25H1 and 25H2 of the sub light receiving unit 25 are added to generate an addition signal (= SH1 + SH2). The adder 283 can generate the sum signal S1 by adding the output of the adder 281 and the output of the adder 282. On the other hand, the adder 286 can generate the sum signal S2 by adding the output of the adder 284 and the output of the adder 285. These sum signals S1 and S2 are output from output terminals 233 and 234 to the outside.
 テスト機器(調整機)は、光ヘッド装置3Mの出力端子233,234から和信号S1,S2を取り出し、次に、アクチュエータを用いて、和信号S1,S2の信号レベルが互いに等しくなる方向へ位置調整機構220を制御してホログラム光学素子21の位置を最適位置に移動させることができる。ホログラム光学素子21が最適位置に位置決めされた後は、ホログラム光学素子21の位置は、樹脂材料または固定部材を用いて光ヘッド装置3M内で固定される。なお、和信号S1,S2の信号レベル変化に応じてアクチュエータを手動操作することでホログラム光学素子21の位置調整を行うことも可能である。 The test device (adjuster) extracts the sum signals S1 and S2 from the output terminals 233 and 234 of the optical head device 3M, and then uses the actuator to position the sum signals S1 and S2 in the direction in which the signal levels are equal to each other. The position of the hologram optical element 21 can be moved to the optimum position by controlling the adjustment mechanism 220. After the hologram optical element 21 is positioned at the optimum position, the position of the hologram optical element 21 is fixed in the optical head device 3M using a resin material or a fixing member. It is possible to adjust the position of the hologram optical element 21 by manually operating the actuator in accordance with the signal level change of the sum signals S1 and S2.
 以上に説明したように実施の形態2の光ヘッド装置3Mは、和信号S1,S2を生成する回路構成と、これら和信号S1,S2を取り出すために出力端子233,234とを有している。よって、出力端子233,234から取り出された和信号S1,S2を用いてホログラム光学素子21の位置を最適位置に調整することができる。 As described above, the optical head device 3M according to the second embodiment has the circuit configuration for generating the sum signals S1 and S2, and the output terminals 233 and 234 for extracting the sum signals S1 and S2. . Therefore, the position of the hologram optical element 21 can be adjusted to the optimum position using the sum signals S1 and S2 taken out from the output terminals 233 and 234.
実施の形態3.
 次に、本発明に係る実施の形態3について説明する。図19(A)は、実施の形態3のホログラム光学素子21Mの構成を概略的に示す平面図である。本実施の形態の光ヘッド装置の構成は、ホログラム光学素子21Mの寸法が実施の形態1のホログラム光学素子21の寸法と異なる点以外は、上記実施の形態1の光ヘッド装置3の構成と同じである。また、本実施の形態の光ディスク装置の構成は、上記ホログラム光学素子21に代えてホログラム光学素子21Mを有する点以外は、上記実施の形態1の光ディスク装置1の構成と同じである。
Embodiment 3 FIG.
Next, a third embodiment according to the present invention will be described. FIG. 19A is a plan view schematically showing the configuration of the hologram optical element 21M of the third embodiment. The configuration of the optical head device of the present embodiment is the same as that of the optical head device 3 of the first embodiment, except that the dimension of the hologram optical element 21M is different from the dimension of the hologram optical element 21 of the first embodiment. It is. The configuration of the optical disk apparatus according to the present embodiment is the same as that of the optical disk apparatus 1 according to the first embodiment except that the hologram optical element 21M is provided instead of the hologram optical element 21.
 本実施の形態では、ホログラム光学素子21Mの副回折領域211A,211BのY2軸方向の幅W2が光スポットSpのY2軸方向の光スポット径(直径)Dよりも小さい。その他のホログラム光学素子21Mの寸法は、実施の形態1のホログラム光学素子21の寸法と同じである。このような寸法関係を数式で表現すると、(7a)及び(7b)が与えられる。
   W=W1+2×W2  ・・・(7a)
   W2<D      ・・・(7b)
In the present embodiment, the width W2 in the Y2 axis direction of the sub-diffraction regions 211A and 211B of the hologram optical element 21M is smaller than the light spot diameter (diameter) D in the Y2 axis direction of the light spot Sp. Other dimensions of the hologram optical element 21M are the same as the dimensions of the hologram optical element 21 of the first embodiment. When such a dimensional relationship is expressed by a mathematical expression, (7a) and (7b) are given.
W = W1 + 2 × W2 (7a)
W2 <D (7b)
 図19(A)~図19(F)は、ホログラム光学素子21Mと光スポットSpとの位置関係を概略的に示す平面図である。さらに図20は、ホログラム光学素子21Mの配置に対する各種検出信号の変化を示すグラフである。 FIGS. 19A to 19F are plan views schematically showing the positional relationship between the hologram optical element 21M and the light spot Sp. FIG. 20 is a graph showing changes in various detection signals with respect to the arrangement of the hologram optical element 21M.
 図19(A)は、ホログラム光学素子21Mが光スポットSpに対してY2軸方向に理想的に配置調整された状態、すなわち0次回折光成分R0及び光成分ORp,ORn,ORaのそれぞれがバランス良く(均等に)2つの副回折領域211A,211Bに入射する状態を示している。さらに、図19(B)~図19(F)は、図19(A)の理想状態に対して、ホログラム光学素子21MがY2軸の正方向に沿って徐々に変位した場合の光スポットSpとホログラム光学素子21Mとの間の位置関係を示している。 FIG. 19A shows a state in which the hologram optical element 21M is ideally arranged and adjusted in the Y2-axis direction with respect to the light spot Sp, that is, each of the 0th-order diffracted light component R0 and the light components ORp, ORn, ORa is well balanced. A state where the light is incident on the two sub-diffraction regions 211A and 211B is shown (equally). Further, FIGS. 19B to 19F show the light spot Sp when the hologram optical element 21M is gradually displaced along the positive direction of the Y2 axis with respect to the ideal state of FIG. 19A. The positional relationship with the hologram optical element 21M is shown.
 図20は、ホログラム光学素子21MのY2軸方向における変位と各種信号の信号強度との関係を示すグラフである。図20において、横軸は、ホログラム光学素子21Mの変位を示し、縦軸は、各種信号の信号強度(単位:任意単位)を示している。ホログラム光学素子21Mの変位の値は、光スポットSpの直径で正規化した量を示している。また、4つのグラフ線のうち、2つは上式(3a)及び(3b)の主プッシュプル信号MPP及び副プッシュプル信号SPPの信号強度を示す特性曲線である。他の2つのグラフ線は、第1副受光部24及び第2副受光部25で検出された信号SE1,SE2,SG1,SG2,SF1,SF2,SH1,SH2を用いて上式(5a)及び(5b)により与えられる和信号S1,S2の信号強度を表す特性曲線である。 FIG. 20 is a graph showing the relationship between the displacement of the hologram optical element 21M in the Y2 axis direction and the signal intensity of various signals. In FIG. 20, the horizontal axis indicates the displacement of the hologram optical element 21M, and the vertical axis indicates the signal intensity (unit: arbitrary unit) of various signals. The displacement value of the hologram optical element 21M indicates an amount normalized by the diameter of the light spot Sp. Of the four graph lines, two are characteristic curves indicating the signal strengths of the main push-pull signal MPP and the sub push-pull signal SPP in the above equations (3a) and (3b). The other two graph lines use the signals SE1, SE2, SG1, SG2, SF1, SF2, SH1, SH2 detected by the first sub light receiving unit 24 and the second sub light receiving unit 25, and the above equation (5a) and It is a characteristic curve showing the signal strength of the sum signals S1 and S2 given by (5b).
 なお、図20のグラフは、シミュレーション計算により求めたものであり、その計算条件として次式(8a)~(8c)に示す条件が使用された。
   W1=0.5D       ・・・(8a)
   W2=0.75D      ・・・(8b)
   W=W1+2×W2=2D  ・・・(8c)
The graph of FIG. 20 was obtained by simulation calculation, and the conditions shown in the following equations (8a) to (8c) were used as the calculation conditions.
W1 = 0.5D (8a)
W2 = 0.75D (8b)
W = W1 + 2 × W2 = 2D (8c)
 また、ホログラム光学素子21Mの変位は、Y2軸の正方向に沿った場合の値を示している。ホログラム光学素子21Mの負方向側の変位については、変位がゼロの場合を中心に変位が正方向の場合の挙動と対称的な挙動となる。また、ホログラム光学素子21Mの外周縁分より外側の領域は、遮光されているものとする。 Further, the displacement of the hologram optical element 21M indicates a value when it is along the positive direction of the Y2 axis. The displacement of the hologram optical element 21M on the negative direction side is symmetrical with the behavior when the displacement is positive, with the displacement being zero. Further, it is assumed that a region outside the outer peripheral edge of the hologram optical element 21M is shielded from light.
 図19(A)に示したように、ホログラム光学素子21Mの変位が無い場合(図20の点Paの場合)には、図20から読み取れるように、S1=S2の関係、すなわち、和信号S1,S2の信号強度が互いに等しい関係が成立する。図19(B)は、ホログラム光学素子21Mの変位が0から0.25Dまでの範囲Pbに対応する位置関係を示す図である。この範囲Pbでは、光スポットSpのうち副回折領域211Aに照射される部分の光強度が減少し、逆に、光スポットSpのうち副回折領域211Bに照射される部分の光強度が増加する。和信号S1,S2はこの光強度変化に対応した信号に相当し、図20の範囲Pbに示されるように、信号S1の信号強度は減少し、逆に信号S2の信号強度は増加する。図19(C)は、ホログラム光学素子21Mが0.25Dだけ変位した場合(図20の点Pcの場合)に対応する位置関係を示し、丁度光スポットSpが副回折領域211Aに照射されなくなる。この場合に、図20の点Pcで示されるように、和信号S1の信号強度はゼロとなり、信号S2の信号強度は一定値に到達する。ここまで説明した挙動は、実施の形態1に係る図14(A)~図14(C)及び図15に示した挙動と同じである。 As shown in FIG. 19A, when there is no displacement of the hologram optical element 21M (in the case of the point Pa in FIG. 20), as can be read from FIG. 20, the relationship of S1 = S2, that is, the sum signal S1 , S2 are equal to each other. FIG. 19B is a diagram showing a positional relationship corresponding to a range Pb in which the displacement of the hologram optical element 21M is 0 to 0.25D. In this range Pb, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211A decreases, and conversely, the light intensity of the portion of the light spot Sp irradiated to the sub-diffraction region 211B increases. The sum signals S1 and S2 correspond to signals corresponding to this change in light intensity, and as shown in the range Pb of FIG. 20, the signal intensity of the signal S1 decreases, and conversely, the signal intensity of the signal S2 increases. FIG. 19C shows a positional relationship corresponding to the case where the hologram optical element 21M is displaced by 0.25D (in the case of the point Pc in FIG. 20), and the light spot Sp is not irradiated to the sub-diffraction region 211A. In this case, as indicated by a point Pc in FIG. 20, the signal strength of the sum signal S1 becomes zero, and the signal strength of the signal S2 reaches a constant value. The behavior described so far is the same as the behavior shown in FIGS. 14A to 14C and FIG. 15 according to the first embodiment.
 次に、図19(D)は、ホログラム光学素子21Mの変位が0.25Dから0.5Dまでの範囲Pdに対応する位置関係を示し、図20の範囲Pdで示されるように、和信号S1の信号強度はゼロから増加に転じ、和信号S2の信号強度は一定値を維持している。図19(E)は、ホログラム光学素子21Mが0.5Dだけ変位した場合(図20の点Peの場合)に対応する位置関係を示し、丁度光スポットSpが副回折領域211BのY2軸方向の外縁に接する場合を示している。この場合に、図20の点Peで示されるように、和信号S1の信号強度は増加の途中にあり、和信号S2の信号強度は、一定値から減少に転じる境界にある。次に、図19(F)は、ホログラム光学素子21Mが0.5Dを越えて変位した場合に対応する位置関係を示し、丁度光スポットSpは副回折領域211Bからはみ出た場合を示している。この場合に、図20の範囲Pfで示されるように、ホログラム光学素子21Mの変位に応じて、和信号S1は増加した後、一定値を維持し、その後減少する。一方、和信号S2は単調減少を続ける。また、一定値の信号強度を維持していた主プッシュプル信号SPPの信号強度も減少し始める。ホログラム光学素子21Mの変位が0.5Dを越えた途中において、S1=S2の関係が成立する変位箇所が一点存在する。このような点は、ホログラム光学素子21MがY2軸の負方向に変位した場合にも生じるので、合計で3点のS1=S2の関係が成立する変位箇所が存在することになる。しかしながら、図20の範囲Pfでは、光スポットSpがすでにホログラム光学素子21Mからはみ出ている状態なので、かかる状態の位置は、ホログラム光学素子21Mの最適調整位置でないことは明らかである。 Next, FIG. 19D shows a positional relationship corresponding to a range Pd in which the displacement of the hologram optical element 21M is from 0.25D to 0.5D. As indicated by the range Pd in FIG. 20, the sum signal S1 Of the sum signal S2 maintains a constant value. FIG. 19E shows a positional relationship corresponding to the case where the hologram optical element 21M is displaced by 0.5D (in the case of the point Pe in FIG. 20), and the light spot Sp is exactly the Y2 axis direction of the sub-diffraction region 211B. The case where it touches an outer edge is shown. In this case, as indicated by a point Pe in FIG. 20, the signal intensity of the sum signal S1 is in the middle of increase, and the signal intensity of the sum signal S2 is at a boundary where the signal intensity changes from a constant value to a decrease. Next, FIG. 19F shows a positional relationship corresponding to the case where the hologram optical element 21M is displaced beyond 0.5D, and shows a case where the light spot Sp just protrudes from the sub-diffraction region 211B. In this case, as indicated by a range Pf in FIG. 20, the sum signal S1 increases, maintains a constant value, and then decreases according to the displacement of the hologram optical element 21M. On the other hand, the sum signal S2 continues monotonously decreasing. Further, the signal strength of the main push-pull signal SPP that has maintained a constant signal strength also starts to decrease. In the middle of the displacement of the hologram optical element 21M exceeding 0.5D, there is one displacement point where the relationship of S1 = S2 is established. Such a point also occurs when the hologram optical element 21M is displaced in the negative direction of the Y2 axis, so that there are a total of three displacement points where the relationship of S1 = S2 is established. However, in the range Pf of FIG. 20, since the light spot Sp has already protruded from the hologram optical element 21M, it is obvious that the position in this state is not the optimum adjustment position of the hologram optical element 21M.
 したがって、実施の形態1と同様に、ホログラム光学素子21Mの最適位置は、図19(A)及び図20の点Paで示される位置である。この最適位置においては、和信号S1,S2が、S1=S2という特徴的な関係となる。このため、実施の形態1の場合と同様の調整手順で、これらの和信号S1,S2を検出し、互いに等しくなるようにホログラム光学素子21Mの位置を追い込むことで、ホログラム光学素子21Mの配置を最適とする調整を実現することができる。 Therefore, as in the first embodiment, the optimum position of the hologram optical element 21M is the position indicated by the point Pa in FIG. 19 (A) and FIG. At this optimum position, the sum signals S1 and S2 have a characteristic relationship of S1 = S2. For this reason, in the same adjustment procedure as in the first embodiment, these sum signals S1 and S2 are detected, and the position of the hologram optical element 21M is driven so as to be equal to each other, thereby arranging the hologram optical element 21M. Adjustment to be optimized can be realized.
 また、実施の形態1の場合と同様に、偽の最適位置に調整されることを防ぐために、和信号S1,S2の信号強度が所定の範囲(所定の上限と下限との間の範囲)を超えないようにホログラム光学素子21Mの位置調整を行うことが望ましい。たとえば、和信号S1の信号強度が0~0.5の範囲内に設定された閾値レベルを下回らず、かつ、和信号S2の信号強度が0.1~0.15の範囲内に設定された閾値レベルを超えないようにホログラム光学素子21Mの位置調整を行うことが可能である。あるいは、副プッシュプル信号SPPの信号強度が所定の閾値レベルを超えないようにホログラム光学素子21Mの位置調整を行ってもよい。 Similarly to the case of the first embodiment, in order to prevent the false optimum position from being adjusted, the signal intensity of the sum signals S1 and S2 falls within a predetermined range (a range between a predetermined upper limit and a lower limit). It is desirable to adjust the position of the hologram optical element 21M so as not to exceed. For example, the signal strength of the sum signal S1 is not lower than the threshold level set within the range of 0 to 0.5, and the signal strength of the sum signal S2 is set within the range of 0.1 to 0.15. It is possible to adjust the position of the hologram optical element 21M so as not to exceed the threshold level. Alternatively, the position of the hologram optical element 21M may be adjusted so that the signal strength of the sub push-pull signal SPP does not exceed a predetermined threshold level.
 以上に説明したように、本実施の形態のホログラム光学素子21Mは、上式(8b)で規定されるように、光スポットSpのY2軸方向の直径Dに対して、副回折領域211A,211Bの幅W2が小さくなるように構成されている。このような場合でも、ホログラム光学素子21Mの配置に依存した和信号S1,S2を用いて、ホログラム光学素子21Mの最適位置調整を行うことができる。たとえば、図16に示した手順と同様の手順で、ホログラム光学素子21Mの位置調整を行うことが可能である。また、光スポットSpがホログラム光学素子21Mからはみ出さない範囲において、ホログラム光学素子21Mの最適位置を示す和信号S1,S2の信号強度の位置を一箇所Paに限定することができるので、ホログラム光学素子21Mの位置を容易に調整することができるという利点がある。 As described above, the hologram optical element 21M of the present embodiment has the sub-diffraction regions 211A and 211B with respect to the diameter D of the light spot Sp in the Y2 axis direction as defined by the above equation (8b). The width W2 is configured to be small. Even in such a case, the optimal position adjustment of the hologram optical element 21M can be performed using the sum signals S1 and S2 depending on the arrangement of the hologram optical element 21M. For example, the position of the hologram optical element 21M can be adjusted by the same procedure as that shown in FIG. Further, since the position of the signal intensity of the sum signals S1 and S2 indicating the optimum position of the hologram optical element 21M can be limited to one place Pa in a range where the light spot Sp does not protrude from the hologram optical element 21M, the hologram optical There is an advantage that the position of the element 21M can be easily adjusted.
実施の形態4.
 次に、本発明に係る実施の形態4について説明する。図21は、実施の形態4の光検出器22Dの構成と、この光検出器22Dに電気的に接続された出力端子群230,232D,231Dとを概略的に示す図である。本実施の形態の光ヘッド装置の構成は、図5に示した光検出器22及び出力端子群230,231,232に代えて、図21に示した光検出器22D及び出力端子群230,231D,232Dを有する点以外は、上記実施の形態1の光ヘッド装置3の構成と同じである。また、本実施の形態の光ディスク装置は、光ヘッド装置以外は、上記実施の形態1の光ディスク装置1と同様の構成を有するものとする。
Embodiment 4 FIG.
Next, a fourth embodiment according to the present invention will be described. FIG. 21 is a diagram schematically showing a configuration of the photodetector 22D according to the fourth embodiment and output terminal groups 230, 232D, and 231D electrically connected to the photodetector 22D. The configuration of the optical head device according to the present embodiment is not limited to the photodetector 22 and the output terminal groups 230, 231, and 232 shown in FIG. 5, but the photodetector 22D and the output terminal groups 230 and 231D shown in FIG. , 232D is the same as the configuration of the optical head device 3 of the first embodiment. The optical disk apparatus according to the present embodiment has the same configuration as the optical disk apparatus 1 according to the first embodiment except for the optical head apparatus.
 光検出器22Dは、図21に示されるように、上記実施の形態1の主受光部23と同一構成の主受光部23を有し、さらに、第1副受光部34及び第2副受光部35を有する。また、主受光部23は、上記実施の形態1の主受光部23と同様に出力端子群230と電気的に接続されている。上記実施の形態1の第1副受光部24及び第2副受光部25の各々は、4分割受光面を有するのに対し、本実施の形態の第1副受光部34及び第2副受光部35の各々は、2分割受光面を有している。 As shown in FIG. 21, the photodetector 22D includes a main light receiving unit 23 having the same configuration as the main light receiving unit 23 of the first embodiment, and further includes a first sub light receiving unit 34 and a second sub light receiving unit. 35. The main light receiving unit 23 is electrically connected to the output terminal group 230 in the same manner as the main light receiving unit 23 of the first embodiment. Each of the first sub light receiving unit 24 and the second sub light receiving unit 25 of the first embodiment has a four-divided light receiving surface, whereas the first sub light receiving unit 34 and the second sub light receiving unit of the present embodiment. Each of 35 has a two-divided light receiving surface.
 第1副受光部34及び第2副受光部35は、光検出器22Dの受光面内で、X1軸方向に対し所定角度をなす方向(矩形状の光検出器22Dの対角線方向)に沿って主受光部23から互いに逆方向に等しい距離だけ離間するように配列されている。第1副受光部34は、一体化された受光面34J1,34J2を有する。これら受光面34J1,34J2は、X1軸方向に沿って配列されており、ホログラム光学素子21から入射した透過回折光ビームを光電変換して検出信号SJ1,SJ2からなる電気信号群Ds1を生成し、この電気信号群Ds1を出力端子群232Dに出力する。出力端子群232Dは、第1副受光部34の受光面34J1,34J2にそれぞれ対応する出力端子TJ1,TJ2からなる。受光面34J1,34J2は、+1次光成分DRpa,DRpbを光電変換してそれぞれ検出信号SJ1,SJ2を出力する。出力端子TJ1,TJ2は、検出信号SJ1,SJ2を外部のマトリクス回路5に出力することができる。 The first sub light receiving unit 34 and the second sub light receiving unit 35 are along a direction (diagonal direction of the rectangular photo detector 22D) forming a predetermined angle with respect to the X1 axis direction within the light receiving surface of the photo detector 22D. They are arranged so as to be separated from the main light receiving portion 23 by an equal distance in opposite directions. The first sub light receiving unit 34 has integrated light receiving surfaces 34J1 and 34J2. These light receiving surfaces 34J1 and 34J2 are arranged along the X1 axis direction, photoelectrically convert the transmitted diffracted light beam incident from the hologram optical element 21, and generate an electric signal group Ds1 composed of the detection signals SJ1 and SJ2, The electrical signal group Ds1 is output to the output terminal group 232D. The output terminal group 232D includes output terminals TJ1 and TJ2 corresponding to the light receiving surfaces 34J1 and 34J2 of the first sub light receiving unit 34, respectively. The light receiving surfaces 34J1 and 34J2 photoelectrically convert the + 1st order light components DRpa and DRpb and output detection signals SJ1 and SJ2, respectively. The output terminals TJ1 and TJ2 can output the detection signals SJ1 and SJ2 to the external matrix circuit 5.
 一方、第2副受光部35は、一体化された受光面35K1,35K2を有する。これら受光面35K1,35K2は、X1軸方向に沿って配列されており、ホログラム光学素子21から入射した透過回折光ビームを光電変換して検出信号SK1,SK2からなる電気信号群Ds2を生成し、この電気信号群Ds2を出力端子群231Dに出力する。出力端子群231Dは、第2副受光部35の受光面35K1,35K2にそれぞれ対応する出力端子TK1,TK2からなる。受光面35K1,35K2は、-1次光成分DRna,DRnbを光電変換してそれぞれ検出信号SK1,SK2を出力する。出力端子TK1,TK2は、検出信号SK1,SK2を外部のマトリクス回路5に出力することができる。 On the other hand, the second sub light receiving unit 35 has integrated light receiving surfaces 35K1 and 35K2. These light receiving surfaces 35K1 and 35K2 are arranged along the X1 axis direction, photoelectrically convert the transmitted diffracted light beam incident from the hologram optical element 21, and generate an electric signal group Ds2 composed of the detection signals SK1 and SK2. The electrical signal group Ds2 is output to the output terminal group 231D. The output terminal group 231D includes output terminals TK1 and TK2 corresponding to the light receiving surfaces 35K1 and 35K2 of the second sub light receiving unit 35, respectively. The light receiving surfaces 35K1 and 35K2 photoelectrically convert the −1st order light components DRna and DRnb and output detection signals SK1 and SK2, respectively. The output terminals TK1 and TK2 can output the detection signals SK1 and SK2 to the external matrix circuit 5.
 マトリクス回路5は、次式(9a)に従って副プッシュプル信号SPP3を生成する機能を有する。
 SPP3=(SJ1-SJ2)+(SK1-SK2) ・・・(9a)
The matrix circuit 5 has a function of generating the sub push-pull signal SPP3 according to the following equation (9a).
SPP3 = (SJ1-SJ2) + (SK1-SK2) (9a)
 また、マトリクス回路5は、次式(9b)により得られる信号レベルをもつトラッキングエラー信号TES3を生成することができる。
 TES3=MPP-k3×SPP3         ・・・(9b)
The matrix circuit 5 can generate a tracking error signal TES3 having a signal level obtained by the following equation (9b).
TES3 = MPP-k3 × SPP3 (9b)
 式(9b)において、k3は、ゲイン係数であり、MPPは、実施の形態1で使用された式(3a)で表される主プッシュプル信号である。 In equation (9b), k3 is a gain coefficient, and MPP is a main push-pull signal represented by equation (3a) used in the first embodiment.
 ところで、上述したように、上記実施の形態1では、第1副受光部24及び第2副受光部25の各々の4分割受光面の分割される方向が、厳密にX1軸方向及びY1軸方向に沿っていなくてもよい。これは、本実施の形態でも同様である。図22は、本実施の形態の光検出器22Dの変形例である光検出器22Dmの構成を概略的に示す図である。この光検出器22Dmは、主受光部23、第1副受光部34m及び第2副受光部35mを有する。図21に示した第1副受光部34及び第2副受光部35の外形は、X1軸方向に沿った2辺を有している。これに対し、図22の第1副受光部34mの外形は、X1軸方向から傾斜した方向の2辺を有し、第2副受光部35mの外形も、X1軸方向から傾斜した方向の2辺を有する。このように第1副受光部34m及び第2副受光部35mの外形は、傾斜する辺を有するので、対象層以外の情報記録層から伝播した楕円形状の迷光SL2が第1副受光部24m及び第2副受光部25mに入射することを避けることができる。なお、第1副受光部34m及び第2副受光部35mの外形を、Y1軸方向から傾斜した方向の辺を有するように変形してもよい。 By the way, as described above, in the first embodiment, the directions in which the four divided light receiving surfaces of the first sub light receiving unit 24 and the second sub light receiving unit 25 are divided are strictly the X1 axis direction and the Y1 axis direction. It does not have to be along. The same applies to the present embodiment. FIG. 22 is a diagram schematically showing a configuration of a photodetector 22Dm that is a modification of the photodetector 22D of the present embodiment. The photodetector 22Dm includes a main light receiving unit 23, a first sub light receiving unit 34m, and a second sub light receiving unit 35m. The outer shape of the first sub light receiving unit 34 and the second sub light receiving unit 35 shown in FIG. 21 has two sides along the X1 axis direction. On the other hand, the outer shape of the first sub light receiving unit 34m in FIG. 22 has two sides in the direction inclined from the X1 axis direction, and the outer shape of the second sub light receiving unit 35m is also 2 in the direction inclined from the X1 axis direction. Has sides. As described above, since the outer shapes of the first sub light receiving unit 34m and the second sub light receiving unit 35m have inclined sides, the elliptical stray light SL2 propagated from the information recording layer other than the target layer is generated by the first sub light receiving unit 24m and It can avoid entering into the 2nd sub light-receiving part 25m. In addition, you may deform | transform the external shape of the 1st sub light-receiving part 34m and the 2nd sub light-receiving part 35m so that it may have the edge | side of the direction inclined from the Y1 axis direction.
 以上に説明したように、本実施の形態では、第1副受光部34及び第2副受光部35の各々が2分割受光面を有する。マトリクス回路5は、その2分割受光面で生成された検出信号SJ1,SJ2,SK1,SK2に基づいて、対物レンズシフトに起因するオフセット成分がキャンセルされたトラッキングエラー信号TES3を生成することができる。 As described above, in the present embodiment, each of the first sub light receiving unit 34 and the second sub light receiving unit 35 has a two-divided light receiving surface. The matrix circuit 5 can generate the tracking error signal TES3 in which the offset component caused by the objective lens shift is canceled based on the detection signals SJ1, SJ2, SK1, and SK2 generated on the two-divided light receiving surfaces.
 また、上記実施の形態1の光検出器22(図5)と比べて、光検出器22D,22Dmの構成の簡素化を図ることができる。しかも、図22の第1副受光部34m及び第2副受光部35mを採用する場合には、対象層以外の情報記録層からの迷光の影響を避けることができるため、信号品質を高くできるという効果がある。 Further, as compared with the photodetector 22 of the first embodiment (FIG. 5), the configuration of the photodetectors 22D and 22Dm can be simplified. In addition, when the first sub light receiving unit 34m and the second sub light receiving unit 35m of FIG. 22 are employed, it is possible to avoid the influence of stray light from the information recording layer other than the target layer, so that the signal quality can be improved. effective.
実施の形態5.
 次に、本発明に係る実施の形態5について説明する。図23は、実施の形態5の光検出器22Fの構成と、この光検出器22Fに電気的に接続された出力端子群230,232Dとを概略的に示す図である。
Embodiment 5. FIG.
Next, a fifth embodiment according to the present invention will be described. FIG. 23 is a diagram schematically showing a configuration of the photodetector 22F according to the fifth embodiment and output terminal groups 230 and 232D electrically connected to the photodetector 22F.
 本実施の形態の光検出器22Fは、図22に示した光検出器22Dmの変形例である。光検出器22Fは、図23に示されるように、図22の光検出器22Dmと同様に主受光部23及び第1副受光部34mを有する。図23の構成は、図22の構成から第2副受光部35mと出力端子群231Dとを削除した構成である。 The photodetector 22F of the present embodiment is a modification of the photodetector 22Dm shown in FIG. As shown in FIG. 23, the photodetector 22F includes a main light receiving unit 23 and a first sub light receiving unit 34m, similar to the photodetector 22Dm in FIG. The configuration of FIG. 23 is a configuration in which the second sub light receiving unit 35m and the output terminal group 231D are deleted from the configuration of FIG.
 マトリクス回路5は、次式(10a)に従って副プッシュプル信号SPP4を生成する機能を有する。
  SPP4=SJ1-SJ2          ・・・(10a)
The matrix circuit 5 has a function of generating the sub push-pull signal SPP4 according to the following equation (10a).
SPP4 = SJ1-SJ2 (10a)
 また、マトリクス回路5は、次式(10b)により得られる信号レベルをもつトラッキングエラー信号TES4を生成することができる。
  TES4=MPP-k4×SPP4      ・・・(10b)
The matrix circuit 5 can generate a tracking error signal TES4 having a signal level obtained by the following equation (10b).
TES4 = MPP-k4 × SPP4 (10b)
 式(10b)において、k4はゲイン係数であり、MPPは、実施の形態1で使用された式(3a)で表される主プッシュプル信号である。 In equation (10b), k4 is a gain coefficient, and MPP is a main push-pull signal represented by equation (3a) used in the first embodiment.
 以上に説明したように本実施の形態では、マトリクス回路5は、第1副受光部34mの2分割受光面で生成された検出信号SJ1,SJ2に基づいて、対物レンズシフトに起因するオフセット成分がキャンセルされたトラッキングエラー信号TES4を生成することができる。よって、実施の形態4と比べて、光検出器22Fの構成の簡素化を図ることができる。 As described above, in the present embodiment, the matrix circuit 5 has an offset component caused by the objective lens shift based on the detection signals SJ1 and SJ2 generated on the two-divided light receiving surface of the first sub light receiving unit 34m. The canceled tracking error signal TES4 can be generated. Therefore, the configuration of the photodetector 22F can be simplified as compared with the fourth embodiment.
 なお、本実施の形態では、図23の構成は、図22の構成から第2副受光部35mと出力端子群231Dとを削除した構成であるが、これに代えて、図22の構成から第1副受光部34mと出力端子群232Dとを削除した構成を採用してもよい。この場合でも、検出信号SJ1,SK1は互いに同じ挙動を示す信号であり、検出信号SJ2,SK2も互いに同じ挙動を示す信号であることから、マトリクス回路5は、次式(11a),(11b)に従って副プッシュプル信号SPP5とトラッキングエラー信号TES5とを生成することができる。
  SPP5=SK1-SK2          ・・・(11a)
  TES5=MPP-k4×SPP5      ・・・(11b)
In the present embodiment, the configuration in FIG. 23 is a configuration in which the second sub light receiving unit 35m and the output terminal group 231D are deleted from the configuration in FIG. 22, but instead, the configuration in FIG. A configuration in which the first sub light receiving unit 34m and the output terminal group 232D are deleted may be employed. Even in this case, the detection signals SJ1 and SK1 are signals that exhibit the same behavior, and the detection signals SJ2 and SK2 are also signals that exhibit the same behavior. Therefore, the matrix circuit 5 is represented by the following equations (11a) and (11b). Accordingly, the sub push-pull signal SPP5 and the tracking error signal TES5 can be generated.
SPP5 = SK1-SK2 (11a)
TES5 = MPP-k4 × SPP5 (11b)
実施の形態6.
 次に、本発明に係る実施の形態6について説明する。図24は、実施の形態6のホログラム光学素子31の構成を概略的に示す図である。本実施の形態の光ヘッド装置及び光ディスク装置の構成は、上記ホログラム光学素子21または21Mに代えて図24のホログラム光学素子31を有する点以外は、上記実施の形態1乃至5のいずれかの光ヘッド装置及び光ディスク装置の構成と同じである。
Embodiment 6 FIG.
Next, a sixth embodiment according to the present invention will be described. FIG. 24 is a diagram schematically showing a configuration of the hologram optical element 31 according to the sixth embodiment. The configurations of the optical head device and the optical disk device according to the present embodiment are the same as those in the first to fifth embodiments except that the hologram optical element 31 in FIG. 24 is provided instead of the hologram optical element 21 or 21M. The configuration is the same as that of the head device and the optical disk device.
 図24に示されるように、本実施の形態のホログラム光学素子31は、上記ホログラム光学素子21(または21M)の主回折領域210及び副回折領域211A,211Bの外周縁部に接し且つ該周縁部を取り囲む周辺領域310をさらに含む。この周辺領域310は、入射光を光検出器22の方向以外の方向に回折させる回折構造、あるいは、入射光を完全遮光する遮光構造(マスク部材)を有する。周辺領域310が遮光構造を有する場合は、周辺領域310は、金属または樹脂材で構成され、かつレーザ光の波長に対して、完全に不透明な部材で構成される。 As shown in FIG. 24, the hologram optical element 31 of the present embodiment is in contact with the outer peripheral edge portion of the main diffraction region 210 and the sub-diffraction regions 211A and 211B of the hologram optical element 21 (or 21M) and the peripheral edge portion. And a peripheral region 310 surrounding the. The peripheral region 310 has a diffraction structure that diffracts incident light in a direction other than the direction of the photodetector 22, or a light shielding structure (mask member) that completely blocks incident light. When the peripheral region 310 has a light shielding structure, the peripheral region 310 is made of a metal or a resin material, and is made of a completely opaque member with respect to the wavelength of the laser beam.
 なお、周辺領域310の構造は、主回折領域210及び副回折領域211A,211Bと一体的に形成された構造であってもよいし、あるいは、主回折領域210及び副回折領域211A,211Bとは別の部材で形成されてもよい。 The structure of the peripheral region 310 may be a structure formed integrally with the main diffraction region 210 and the sub-diffraction regions 211A and 211B, or the main diffraction region 210 and the sub-diffraction regions 211A and 211B. You may form with another member.
 このような周辺領域310を設けることで、主回折領域210と副回折領域211A,211B以外の領域に入射するレーザ光を遮光あるいは回折することができるため、光検出器22に不要なレーザ光が入射せず、光検出器22で検出される信号の品質が損なわれることを防止することができる。 By providing such a peripheral region 310, it is possible to block or diffract laser light incident on regions other than the main diffraction region 210 and the sub-diffraction regions 211A and 211B. It can prevent that the quality of the signal which does not inject and is detected by the photodetector 22 is impaired.
 なお、図24で示した周辺領域310の内周端部は、主回折領域210及び副回折領域211A,211Bの外縁部に接するので、矩形状を有するが、矩形状以外の別の形状を有していても構わない。図25は、ホログラム光学素子31の変形例であるホログラム光学素子41の平面図である。ホログラム光学素子41は、主回折領域210及び副回折領域211A,211Bに面する内周端部の四隅が円弧状の周辺領域410を有している。周辺領域410は、主回折領域210と副回折領域211A,211Bの外縁部に接するように設けられている。ただし、副回折領域211A,211BのY2軸方向に沿った幅W2は、所定値として確保されている。なお、周辺領域410の内周端部の形状は、円形状や楕円形状、あるいはその他の形状とされてもよい。 The inner peripheral edge of the peripheral region 310 shown in FIG. 24 has a rectangular shape because it is in contact with the outer edges of the main diffraction region 210 and the sub-diffraction regions 211A and 211B, but has another shape other than the rectangular shape. It does not matter. FIG. 25 is a plan view of a hologram optical element 41 which is a modification of the hologram optical element 31. The hologram optical element 41 has a peripheral region 410 having four arcs at the inner peripheral ends facing the main diffraction region 210 and the sub-diffraction regions 211A and 211B. The peripheral region 410 is provided in contact with the outer edge portions of the main diffraction region 210 and the sub-diffraction regions 211A and 211B. However, the width W2 along the Y2 axis direction of the sub-diffraction areas 211A and 211B is secured as a predetermined value. Note that the shape of the inner peripheral end of the peripheral region 410 may be a circular shape, an elliptical shape, or other shapes.
 以上に説明したように、本実施の形態のホログラム光学素子31,41は、周辺領域310,410が主回折領域210及び副回折領域211A,211Bの外周縁部を取り囲むように形成されているので、不要なレーザ光が光検出器22に入射することを防止することができる。 As described above, the hologram optical elements 31 and 41 of the present embodiment are formed so that the peripheral regions 310 and 410 surround the outer peripheral edge portions of the main diffraction region 210 and the sub-diffraction regions 211A and 211B. Unnecessary laser light can be prevented from entering the photodetector 22.
実施の形態1~6の変形例.
 以上、図面を参照して本発明に係る光ヘッド装置の種々の実施の形態について述べたが、これらは本発明の例示であり、上記以外の様々な形態を採用することもできる。本発明による光ヘッド装置またはこれを搭載した光ディスク装置は、業務用途、家庭用途、及び車載用途などの種々の電子機器(たとえば、テレビ受像機やゲーム機器や車載ナビゲーション装置)に組み込むことができる。
Modified examples of the first to sixth embodiments.
Although various embodiments of the optical head device according to the present invention have been described above with reference to the drawings, these are exemplifications of the present invention, and various forms other than the above can be adopted. The optical head device according to the present invention or an optical disk device equipped with the optical head device can be incorporated into various electronic devices (for example, a television receiver, a game device, and an in-vehicle navigation device) for business use, home use, and in-vehicle use.
 1 光ディスク装置、 2 スピンドルモータ、 3,3M 光ヘッド装置、 4 スレッド機構、 5 マトリクス回路、 6 信号再生回路、 7 レーザ制御回路、 8 サーボ回路、 9 収差補正機構制御回路、 10 スレッド制御回路、 11 スピンドル制御回路、 12 コントローラ、 13 半導体レーザ、 14 ビームスプリッタ、 15 コリメータレンズ、 16A 収差補正機構、 16B レンズホルダ、 17 アクチュエータ、 18 対物レンズ、 19 可動部、 20A,20B 磁気回路、 21,21M ホログラム光学素子、 210 主回折領域、 211A,211B 副回折領域、 22,22B,22C,22D,22Dm,22F 光検出器、 23 主受光部、 230~232,231D,232D 出力端子群、 233,234 出力端子、 24,34,34m 第1副受光部、 25,35,35m 第2副受光部、 26 シリンドリカルレンズ、 28 加算回路、 31,41 ホログラム光学素子、 310,410 周辺領域。 1 optical disk device, 2 spindle motor, 3,3M optical head device, 4 thread mechanism, 5 matrix circuit, 6 signal reproduction circuit, 7 laser control circuit, 8 servo circuit, 9 aberration correction mechanism control circuit, 10 thread control circuit, 11 Spindle control circuit, 12 controller, 13 semiconductor laser, 14 beam splitter, 15 collimator lens, 16A aberration correction mechanism, 16B lens holder, 17 actuator, 18 objective lens, 19 movable part, 20A, 20B magnetic circuit, 21, 21M hologram optics Element, 210 main diffraction region, 211A, 211B sub-diffraction region, 22, 22B, 22C, 22D, 22Dm, 22F photodetector, 23 main light receiving unit, 230 232, 231D, 232D output terminal group, 233, 234 output terminal, 24, 34, 34m first auxiliary light receiving part, 25, 35, 35m second auxiliary light receiving part, 26 cylindrical lens, 28 addition circuit, 31, 41 hologram optics Element, 310, 410 peripheral area.

Claims (21)

  1.  レーザ光源と、
     前記レーザ光源から出射される光ビームを集光して光ディスクに照射する対物レンズと、
     前記光ディスクで反射し前記対物レンズを透過した戻り光ビームを透過回折させて透過回折光ビームを出射する回折光学素子と、
     前記透過回折光ビームを受光する光検出器と
    を備え、
     前記戻り光ビームは、前記光ディスクで回折された反射回折光ビームを含み、
     前記回折光学素子は、
     前記反射回折光ビームの0次光成分の一部と前記反射回折光ビームの±1次光成分の全部もしくは一部とが入射する位置に配置され、0次回折作用及び±1次回折作用を有する主回折領域と、
     前記反射回折光ビームの0次光成分と前記反射回折光ビームの±1次光成分とがなす列の方向を第1の方向とするとき、前記第1の方向と直交する第2の方向において前記主回折領域の外側に、且つ前記反射回折光ビームの0次光成分の残部と前記反射回折光ビームの±1次光成分の残部とが入射する位置に配置され、0次回折作用及び±1次回折作用を有する副回折領域とを含み、
     前記光検出器は、
     前記主回折領域及び前記副回折領域の双方を透過した前記透過回折光ビームの0次光成分を受光する主受光部と、
     前記副回折領域の当該±1次回折作用により生成された前記透過回折光ビームの+1次光成分及び-1次光成分のうちの一方を受光する第1副受光部とを含み、
     前記第1副受光部は、前記第1の方向に対応する第1の配列方向に沿って配列された複数の受光面を有する
    ことを特徴とする光ヘッド装置。
    A laser light source;
    An objective lens that collects a light beam emitted from the laser light source and irradiates the optical disk;
    A diffractive optical element that transmits and diffracts a return light beam reflected by the optical disc and transmitted through the objective lens to emit a transmitted diffracted light beam;
    A photodetector for receiving the transmitted diffracted light beam;
    The return light beam includes a reflected diffracted light beam diffracted by the optical disc,
    The diffractive optical element is
    A part of the 0th order light component of the reflected diffracted light beam and the whole or a part of the ± 1st order light component of the reflected diffracted light beam are arranged so as to have the 0th order diffracting action and the ± 1st order diffracting action. A main diffraction region having;
    In a second direction orthogonal to the first direction, where the direction of the row formed by the zero-order light component of the reflected diffracted light beam and the ± first-order light component of the reflected diffracted light beam is the first direction, Arranged outside the main diffraction region and at a position where the remainder of the 0th-order light component of the reflected diffracted light beam and the remainder of the ± 1st-order light component of the reflected diffracted light beam are incident, A sub-diffraction region having a first-order diffraction action,
    The photodetector is
    A main light-receiving unit that receives a zero-order light component of the transmitted diffracted light beam that has passed through both the main diffraction region and the sub-diffraction region;
    A first sub-light-receiving unit that receives one of the + 1st-order light component and the -1st-order light component of the transmitted diffracted light beam generated by the ± 1st-order diffraction action of the sub-diffraction region;
    The optical head device, wherein the first sub-light-receiving unit has a plurality of light-receiving surfaces arranged along a first arrangement direction corresponding to the first direction.
  2.  請求項1に記載の光ヘッド装置であって、前記光検出器は、前記透過回折光ビームの当該+1次光成分及び当該-1次光成分のうちの他方を受光する第2副受光部をさらに含み、
     前記第1副受光部の当該複数の受光面は、前記第1の配列方向と前記第2の方向に対応する第2の配列方向とに沿って配列された4つの受光面を含み、
     前記第2副受光部は、前記第1の配列方向と前記第2の配列方向とに沿って配列された4つの受光面を有する
    ことを特徴とする光ヘッド装置。
    2. The optical head device according to claim 1, wherein the photodetector includes a second sub-light-receiving unit that receives the other of the + 1st order light component and the −1st order light component of the transmitted diffraction light beam. In addition,
    The plurality of light receiving surfaces of the first sub light receiving unit includes four light receiving surfaces arranged along the first arrangement direction and a second arrangement direction corresponding to the second direction,
    2. The optical head device according to claim 1, wherein the second sub light receiving unit has four light receiving surfaces arranged along the first arrangement direction and the second arrangement direction.
  3.  請求項2に記載の光ヘッド装置であって、
     前記第1副受光部の当該4つの受光面で検出された信号を個別に外部に出力する第1の出力端子群と、
     前記第2副受光部の当該4つの受光面で検出された信号を個別に外部に出力する第2の出力端子群と
    をさらに備えることを特徴とする光ヘッド装置。
    The optical head device according to claim 2,
    A first output terminal group for individually outputting signals detected on the four light receiving surfaces of the first sub light receiving unit to the outside;
    An optical head device further comprising: a second output terminal group for individually outputting signals detected on the four light receiving surfaces of the second sub light receiving unit to the outside.
  4.  請求項2に記載の光ヘッド装置であって、
     前記第1副受光部の当該4つの受光面のうち前記第2の配列方向の一端側に配置された第1の組の受光面で検出された信号と前記第2副受光部の当該4つの受光面のうち前記一端側に配置された第2の組の受光面で検出された信号とを加算して第1の和信号を生成する第1の加算器と、
     前記第1副受光部の当該4つの受光面のうち前記第2の配列方向の他端側に配置された第3の組の受光面で検出された信号と前記第2副受光部の当該4つの受光面のうち前記他端側に配置された第4の組の受光面で検出された信号とを加算して第2の和信号を生成する第2の加算器と、
     前記第1の和信号を外部に出力する第1の出力端子と、
     前記第2の和信号を外部に出力する第2の出力端子と
    をさらに備えることを特徴とする光ヘッド装置。
    The optical head device according to claim 2,
    Of the four light receiving surfaces of the first sub light receiving unit, signals detected by the first set of light receiving surfaces arranged on one end side in the second arrangement direction and the four light receiving surfaces of the second sub light receiving unit. A first adder that generates a first sum signal by adding the signals detected by the second set of light receiving surfaces arranged on the one end side of the light receiving surfaces;
    Of the four light receiving surfaces of the first sub light receiving unit, signals detected on a third set of light receiving surfaces arranged on the other end side in the second arrangement direction and the four of the second sub light receiving unit. A second adder for adding a signal detected by a fourth set of light receiving surfaces arranged on the other end side of the two light receiving surfaces to generate a second sum signal;
    A first output terminal for outputting the first sum signal to the outside;
    An optical head device further comprising a second output terminal for outputting the second sum signal to the outside.
  5.  請求項3または4に記載の光ヘッド装置であって、前記回折光学素子を前記第2の方向に位置付けするための位置調整機構をさらに備えることを特徴とする光ヘッド装置。 5. The optical head device according to claim 3, further comprising a position adjusting mechanism for positioning the diffractive optical element in the second direction.
  6.  請求項1から5のうちのいずれか1項に記載の光ヘッド装置であって、前記副回折領域の前記第2の方向における幅は、前記反射回折光ビームの0次光成分の前記第2の方向における直径よりも大きいことを特徴とする光ヘッド装置。 6. The optical head device according to claim 1, wherein a width of the sub-diffraction region in the second direction is the second order light component of the reflected diffracted light beam. An optical head device having a diameter larger than the diameter of the optical head device.
  7.  請求項1から5のうちのいずれか1項に記載の光ヘッド装置であって、前記副回折領域の前記第2の方向における幅は、前記反射回折光ビームの0次光成分の前記第2の方向における直径未満であることを特徴とする光ヘッド装置。 6. The optical head device according to claim 1, wherein a width of the sub-diffraction region in the second direction is the second order light component of the reflected diffracted light beam. An optical head device having a diameter less than that of the optical head device.
  8.  請求項1から7のうちのいずれか1項に記載の光ヘッド装置であって、
     前記回折光学素子は、前記副回折領域の外周縁部に接し該外周縁部を取り囲む周辺領域をさらに含み、
     前記周辺領域は、前記戻り光ビームのうち当該周辺領域に入射した光を前記光検出器の方向以外の方向に回折させる回折構造を有する
    ことを特徴とする光ヘッド装置。
    The optical head device according to any one of claims 1 to 7,
    The diffractive optical element further includes a peripheral region in contact with and surrounding the outer peripheral edge of the sub-diffraction region,
    The optical head device according to claim 1, wherein the peripheral region has a diffraction structure that diffracts light incident on the peripheral region of the return light beam in a direction other than the direction of the photodetector.
  9.  請求項1から7のうちのいずれか1項に記載の光ヘッド装置であって、
     前記回折光学素子は、前記副回折領域の外周縁部に接し該外周縁部を取り囲む周辺領域をさらに含み、
     前記周辺領域は、前記戻り光ビームのうち当該周辺領域に入射した光を遮光する構造を有する
    ことを特徴とする光ヘッド装置。
    The optical head device according to any one of claims 1 to 7,
    The diffractive optical element further includes a peripheral region in contact with and surrounding the outer peripheral edge of the sub-diffraction region,
    2. The optical head device according to claim 1, wherein the peripheral region has a structure that blocks light incident on the peripheral region of the return light beam.
  10.  請求項1から9のうちのいずれか1項に記載の光ヘッド装置であって、前記主回折領域は、前記反射回折光ビームの0次光成分の前記第2の方向における直径よりも狭く、且つ、前記反射回折光ビームのうちの±1次光成分と0次光成分とが重なり合う領域の前記第2の方向における幅以下の幅を有することを特徴とする請求項1に記載の光ヘッド装置。 10. The optical head device according to claim 1, wherein the main diffraction region is narrower than a diameter of the zero-order light component of the reflected diffracted light beam in the second direction, 2. The optical head according to claim 1, wherein the optical head has a width equal to or smaller than a width in the second direction of a region where the ± first-order light component and the zero-order light component of the reflected diffracted light beam overlap. apparatus.
  11.  請求項1から10のうちのいずれか1項に記載の光ヘッド装置であって、前記光ディスクは、複数の情報記録層が積層された多層光ディスクであることを特徴とする光ヘッド装置。 11. The optical head device according to claim 1, wherein the optical disc is a multilayer optical disc in which a plurality of information recording layers are laminated.
  12.  請求項11に記載の光ヘッド装置であって、前記第1副受光部及び前記第2副受光部の各々は、前記複数の情報記録層のうち、情報の記録または再生の対象となる情報記録層と隣り合う情報記録層からの反射光が入射しない位置に配置されていることを特徴とする光ヘッド装置。 12. The optical head device according to claim 11, wherein each of the first sub light receiving unit and the second sub light receiving unit is an information recording target of information recording or reproduction among the plurality of information recording layers. An optical head device characterized in that the optical head device is disposed at a position where reflected light from an information recording layer adjacent to the layer does not enter.
  13.  請求項11に記載の光ヘッド装置であって、前記第1副受光部及び前記第2副受光部の各々は、前記複数の情報記録層のうち、情報の記録または再生の対象となる情報記録層との間隔が最も狭く且つ情報の記録もしくは再生の対象とならない情報記録層からの反射光が入射しない位置に配置されていることを特徴とする光ヘッド装置。 12. The optical head device according to claim 11, wherein each of the first sub light receiving unit and the second sub light receiving unit is an information recording target of information recording or reproduction among the plurality of information recording layers. An optical head device characterized in that the optical head device is disposed at a position where the reflected light from the information recording layer that is the smallest in distance to the layer and is not an object of recording or reproducing information is not incident.
  14.  請求項1から13のうちのいずれか1項に記載の光ヘッド装置であって、前記第1の方向は、前記光ディスクのラジアル方向に対応する方向であることを特徴とする光ヘッド装置。 14. The optical head device according to claim 1, wherein the first direction is a direction corresponding to a radial direction of the optical disc.
  15.  請求項2から5のうちのいずれか1項に記載の光ヘッド装置と、
     前記光ディスクを回転駆動させるディスク駆動部と、
     前記主受光部により検出された信号に基づいてプッシュプル信号を生成する信号処理部と
    を備え、
     前記信号処理部は、前記第1副受光部及び前記第2副受光部によりそれぞれ検出された信号に基づいて、前記光検出器に対する前記対物レンズの相対変位に起因するオフセット成分を生成し、前記プッシュプル信号及び前記オフセット成分に基づいてトラッキングエラー信号を生成する
    ことを特徴とする光ディスク装置。
    An optical head device according to any one of claims 2 to 5,
    A disk drive section for rotating the optical disk;
    A signal processing unit that generates a push-pull signal based on a signal detected by the main light receiving unit,
    The signal processing unit generates an offset component caused by relative displacement of the objective lens with respect to the photodetector based on signals detected by the first sub light receiving unit and the second sub light receiving unit, respectively. An optical disc apparatus that generates a tracking error signal based on a push-pull signal and the offset component.
  16.  請求項1から14に記載の光ヘッド装置と、
     前記光ディスクを回転駆動させるディスク駆動部と、
     前記主受光部により検出された信号に基づいてプッシュプル信号を生成する信号処理部と
    を備え、
     前記信号処理部は、前記第1副受光部により検出された信号に基づいて、前記光検出器に対する前記対物レンズの相対変位に起因するオフセット成分を生成し、前記プッシュプル信号及び前記オフセット成分に基づいてトラッキングエラー信号を生成する
    ことを特徴とする光ディスク装置。
    The optical head device according to claim 1,
    A disk drive section for rotating the optical disk;
    A signal processing unit that generates a push-pull signal based on a signal detected by the main light receiving unit,
    The signal processing unit generates an offset component due to a relative displacement of the objective lens with respect to the photodetector based on the signal detected by the first sub light receiving unit, and generates the push-pull signal and the offset component. An optical disc apparatus characterized in that a tracking error signal is generated on the basis thereof.
  17.  請求項2または3に記載の光ヘッド装置に含まれる回折光学素子の位置調整方法であって、
     前記第1副受光部の当該4つの受光面のうち前記第2の配列方向の一端側に配置された第1の組の受光面で検出された信号と前記第2副受光部の当該4つの受光面のうち前記一端側に配置された第2の組の受光面で検出された信号とを加算して第1の和信号を生成するステップと、
     前記第1副受光部の当該4つの受光面のうち前記第2の配列方向の他端側に配置された第3の組の受光面で検出された信号と前記第2副受光部の当該4つの受光面のうち前記他端側に配置された第4の組の受光面で検出された信号とを加算して第2の和信号を生成するステップと、
     前記第1の和信号の信号強度と前記第2の和信号の信号強度とが互いに等しくなるように前記第2の方向に前記回折光学素子を移動させて前記回折光学素子を位置決めするステップと
    を備えることを特徴とする回折光学素子の位置調整方法。
    A method for adjusting the position of a diffractive optical element included in the optical head device according to claim 2,
    Of the four light receiving surfaces of the first sub light receiving unit, signals detected by the first set of light receiving surfaces arranged on one end side in the second arrangement direction and the four light receiving surfaces of the second sub light receiving unit. Adding a signal detected by a second set of light receiving surfaces arranged on the one end side of the light receiving surface to generate a first sum signal;
    Of the four light receiving surfaces of the first sub light receiving unit, signals detected on a third set of light receiving surfaces arranged on the other end side in the second arrangement direction and the four of the second sub light receiving unit. Adding a signal detected by a fourth set of light receiving surfaces disposed on the other end of the two light receiving surfaces to generate a second sum signal;
    Positioning the diffractive optical element by moving the diffractive optical element in the second direction so that the signal intensity of the first sum signal and the signal intensity of the second sum signal are equal to each other. A method for adjusting the position of a diffractive optical element, comprising:
  18.  請求項4に記載の光ヘッド装置に含まれる回折光学素子の位置調整方法であって、
     前記第1の出力端子から前記第1の和信号を取り出すステップと、
     前記第2の出力端子から前記第2の和信号を取り出すステップと、
     前記第1の和信号の信号強度と前記第2の和信号の信号強度とが互いに等しくなるように前記第2の方向に前記回折光学素子を移動させて前記回折光学素子を位置決めするステップと
    を備えることを特徴とする回折光学素子の位置調整方法。
    A method for adjusting the position of a diffractive optical element included in an optical head device according to claim 4,
    Extracting the first sum signal from the first output terminal;
    Extracting the second sum signal from the second output terminal;
    Positioning the diffractive optical element by moving the diffractive optical element in the second direction so that the signal intensity of the first sum signal and the signal intensity of the second sum signal are equal to each other. A method for adjusting the position of a diffractive optical element, comprising:
  19.  請求項17または18に記載の回折光学素子の位置調整方法であって、前記第1の和信号及び前記第2の和信号の信号強度が所定の範囲を超えないように前記第2の方向に前記回折光学素子を位置決めするステップをさらに備えることを特徴とする回折光学素子の位置調整方法。 The diffractive optical element position adjustment method according to claim 17 or 18, wherein the signal intensity of the first sum signal and the second sum signal does not exceed a predetermined range in the second direction. A method for adjusting the position of the diffractive optical element, further comprising the step of positioning the diffractive optical element.
  20.  請求項17から19のうちのいずれか1項に記載の回折光学素子の位置調整方法であって、前記副回折領域の前記第2の方向における幅は、前記反射回折光ビームの0次光成分の前記第2の方向における直径よりも大きいことを特徴とする回折光学素子の位置調整方法。 20. The position adjustment method for a diffractive optical element according to claim 17, wherein the width of the sub-diffraction region in the second direction is the 0th-order light component of the reflected diffracted light beam. The method of adjusting the position of a diffractive optical element, wherein the diameter is larger than the diameter in the second direction.
  21.  請求項17から19のうちのいずれか1項に記載の回折光学素子の位置調整方法であって、前記副回折領域の前記第2の方向における幅は、前記反射回折光ビームの0次光成分の前記第2の方向における直径未満であることを特徴とする回折光学素子の位置調整方法。 20. The position adjustment method for a diffractive optical element according to claim 17, wherein the width of the sub-diffraction region in the second direction is the 0th-order light component of the reflected diffracted light beam. The method of adjusting the position of the diffractive optical element, wherein the diameter is less than the diameter in the second direction.
PCT/JP2012/077457 2011-12-07 2012-10-24 Optical head device, optical disk device and method for adjusting position of diffractive optical element WO2013084612A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013548145A JP5769819B2 (en) 2011-12-07 2012-10-24 Optical head device
CN201280056054.9A CN103946921B (en) 2011-12-07 2012-10-24 Optic probe device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011268018 2011-12-07
JP2011-268018 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084612A1 true WO2013084612A1 (en) 2013-06-13

Family

ID=48573995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077457 WO2013084612A1 (en) 2011-12-07 2012-10-24 Optical head device, optical disk device and method for adjusting position of diffractive optical element

Country Status (3)

Country Link
JP (1) JP5769819B2 (en)
CN (1) CN103946921B (en)
WO (1) WO2013084612A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883655B (en) * 2019-01-31 2020-09-15 中国科学院上海光学精密机械研究所 Measuring device and measuring method for DOE diffraction angle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192251A (en) * 2007-02-06 2008-08-21 Sharp Corp Optical pickup device and position adjusting method
JP2008226293A (en) * 2007-03-09 2008-09-25 Hitachi Media Electoronics Co Ltd Optical pickup and optical disk drive
WO2011086951A1 (en) * 2010-01-18 2011-07-21 三菱電機株式会社 Optical head device and optical disc device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512608B2 (en) * 1999-12-16 2003-01-28 Victor Company Of Japan, Limited Optical device
JP4791335B2 (en) * 2006-12-15 2011-10-12 株式会社日立製作所 Tracking error detection method and optical disk reproducing apparatus using the same
JP4805292B2 (en) * 2008-02-08 2011-11-02 シャープ株式会社 Optical pickup device, reproducing device, recording device, and tracking error signal generation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192251A (en) * 2007-02-06 2008-08-21 Sharp Corp Optical pickup device and position adjusting method
JP2008226293A (en) * 2007-03-09 2008-09-25 Hitachi Media Electoronics Co Ltd Optical pickup and optical disk drive
WO2011086951A1 (en) * 2010-01-18 2011-07-21 三菱電機株式会社 Optical head device and optical disc device

Also Published As

Publication number Publication date
CN103946921A (en) 2014-07-23
JP5769819B2 (en) 2015-08-26
CN103946921B (en) 2016-09-28
JPWO2013084612A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5506849B2 (en) Optical head device and optical disk device
WO2008053548A1 (en) Pickup device
JP5173953B2 (en) Optical pickup device and optical disk device
US7697401B2 (en) Optical head device and optical disk apparatus
JP4722190B2 (en) Optical pickup device and optical disk device
US8483022B2 (en) Optical head device and optical disc apparatus
JP5769819B2 (en) Optical head device
JP6388214B2 (en) Optical information apparatus and information processing apparatus
JP4729418B2 (en) Diffraction grating, optical pickup device, optical disk device
JP4722205B2 (en) Optical pickup device and optical disk device
JP2009129483A (en) Optical pickup device
US20060221797A1 (en) Optical pickup, optical recording and/or reproducing apparatus using the same, and method for detecting tracking error signal
US8675465B2 (en) Method of controlling light, and optical pickup device and optical disk drive adopting the method
US20120127841A1 (en) Pickup device and optical disc drive adopting the same
US20140313874A1 (en) Optical head device and optical disc device
KR101416323B1 (en) optical pickup device and optical disc drive adopting the pickup
US8565056B2 (en) Method of generating tracking error signal, optical pickup device, and optical disc drive device adopting the method
JPWO2008143006A1 (en) Optical head device and optical information recording / reproducing device
JP4862139B2 (en) Optical pickup device
JP5173868B2 (en) Optical pickup device and optical disk device
JP2014175030A (en) Optical integrated element, optical head device, and optical disk device
JP2013033582A (en) Optical pickup device and position adjustment method for spectroscopic element
JPWO2008044403A1 (en) Optical head device, optical information recording / reproducing device, and error signal generation method
WO2012114583A1 (en) Light pick-up device
JP2014044780A (en) Optical pickup and disk device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855970

Country of ref document: EP

Kind code of ref document: A1