WO2013084556A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2013084556A1
WO2013084556A1 PCT/JP2012/073220 JP2012073220W WO2013084556A1 WO 2013084556 A1 WO2013084556 A1 WO 2013084556A1 JP 2012073220 W JP2012073220 W JP 2012073220W WO 2013084556 A1 WO2013084556 A1 WO 2013084556A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
group
electric motor
phase
Prior art date
Application number
PCT/JP2012/073220
Other languages
French (fr)
Japanese (ja)
Inventor
敦誉 小柴
貞一郎 千葉
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2013084556A1 publication Critical patent/WO2013084556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to an electric motor having a plurality of rotors.
  • Patent Document 1 There is an electric motor having two rotors sharing a stator (for example, Patent Document 1).
  • Patent Document 1 cannot control each rotor independently.
  • An object of the present invention is to independently control each rotor in an electric motor having two rotors sharing a stator.
  • the present invention is an annular structure that is disposed between a first rotor and a second rotor that rotate about a rotation axis, and is disposed between the first rotor and the second rotor and that surrounds the periphery of the rotation axis.
  • Two even numbers selected from the (j + 1) -th group and the (2 ⁇ i ⁇ j) -th group in the 2 ⁇ i group obtained in the above are respectively the first rotor and the first rotor.
  • i, m, n, and k are integers of 1 or more, j is an integer of 0 to i ⁇ 1, and the maximum value of m is 3 ⁇ n ⁇ 1.
  • a current obtained by superimposing a current for driving the first rotor and a current for driving the second rotor is applied to the winding of the stator.
  • the current for driving the first rotor and the current for driving the second rotor are currents having different frequencies and amplitudes.
  • the winding is preferably a toroidal coil wound in the circumferential direction of the stator.
  • the first rotor has a portion that engages with a magnet for making the magnetic pole of the first rotor radially outward
  • the second rotor has a magnetic pole of the second rotor radially outward. It is preferable to have a portion that engages with the magnet for making the.
  • the first rotor and the second rotor are arranged in parallel to each other from the front of the rotating shaft to the back with the stator interposed therebetween.
  • the length of the outer peripheral arc of the slot portion is the same as the length of the inner peripheral arc between the radially outer side and the radially inner side of the stator.
  • the present invention includes a first rotor and a second rotor that rotate about a rotation axis and that have a magnet that forms a magnetic pole and a portion that engages with the magnet on a radially outer side, the first rotor, and the second rotor. And a stator having 3 ⁇ n slots, and arranged in each of the slots and toward the circumferential direction of the stator. A plurality of windings that are wound toroidal coils, and the first rotor and the second rotor are arranged in parallel to each other from the front of the rotating shaft to the back with the stator interposed therebetween.
  • the electric motor characterized in that two even numbers each selected from the first group are the numbers of magnetic poles of the first rotor and the second rotor, respectively.
  • i, m, n, and k are integers of 1 or more
  • j is an integer of 0 to i ⁇ 1
  • the maximum value of m is 3 ⁇ n ⁇ 1.
  • each rotor in an electric motor having two rotors sharing a stator, each rotor can be controlled independently.
  • FIG. 1 is a cross-sectional view of the electric motor according to the present embodiment, taken along a plane that passes through the rotation axis and includes the rotation axis.
  • FIG. 2 is a perspective view of the internal structure of the electric motor according to the present embodiment.
  • FIG. 3 is a plan view of the first rotor included in the electric motor according to the present embodiment.
  • FIG. 4 is a plan view of a second rotor included in the electric motor according to the present embodiment.
  • FIG. 5 is a plan view of a stator included in the electric motor according to the present embodiment.
  • FIG. 6 is a cross-sectional view of an electric motor according to a modification of the present embodiment, cut along a plane that passes through the rotation axis and includes the rotation axis.
  • FIG. 1 is a cross-sectional view of the electric motor according to the present embodiment, taken along a plane that passes through the rotation axis and includes the rotation axis.
  • FIG. 2 is a perspective view of the internal structure of
  • FIG. 7 is a partial cross-sectional view of the electric motor according to the present embodiment cut along a plane orthogonal to the rotation axis.
  • FIG. 8 is a schematic diagram showing the relationship between the electrical angle and phase of the three-phase motor.
  • FIG. 9 is a schematic diagram showing the phase order of the comparative example.
  • FIG. 10 is a schematic diagram showing the phase sequence of the present embodiment.
  • FIG. 11 is a perspective view showing a modification of the stator.
  • FIG. 12 is a partial plan view showing a modification of the stator.
  • FIG. 1 is a cross-sectional view of the electric motor according to the present embodiment, taken along a plane that passes through the rotation axis and includes the rotation axis.
  • FIG. 2 is a perspective view of the internal structure of the electric motor according to the present embodiment.
  • FIG. 3 is a plan view of the first rotor included in the electric motor according to the present embodiment.
  • FIG. 4 is a plan view of a second rotor included in the electric motor according to the present embodiment.
  • FIG. 5 is a plan view of a stator included in the electric motor according to the present embodiment.
  • 1 and 6 show different cross sections of the electric motors 1 and 1a on the upper side and the lower side of the respective drawings based on the rotation axis Zr.
  • the electric motor 1 includes a first rotor 10, a second rotor 20, and a stator 30.
  • the electric motor 1 is a three-phase electric motor, and the first rotor 10 and the second rotor 20 are driven by a common stator 30.
  • the first rotor 10, the second rotor 20, and the stator 30 are stored in the housing 2.
  • the housing 2 is a cylindrical structure, and the power transmission shafts 12 and 22 protrude from the through holes 5 and 6 at both ends, respectively.
  • the rotation center of the first rotor 10 and the second rotor 20 and the rotation axis Zr are the same. Further, the radial direction of the first rotor 10 and the second rotor 20 and the rotation axis Zr are orthogonal to each other. The first rotor 10 and the second rotor 20 rotate about the rotation axis Zr. Thus, the first rotor 10 and the second rotor 20 rotate around the common rotation axis Zr.
  • the stator 30 is disposed between the first rotor 10 and the second rotor 20. Therefore, the first rotor 10 and the second rotor 20 are located at different positions in the direction in which the rotation axis Zr extends, and are disposed with the stator 30 interposed therebetween. Thus, the first rotor 10 and the second rotor 20 are arranged in parallel to each other from the front (one side) to the back (the other side) of the rotation axis Zr with the stator 30 interposed therebetween.
  • the type of the electric motor 1 is an axial gap type in which a gap between the first rotor 10 and the second rotor 20 and the stator 30 exists in a direction parallel to the rotation axis Zr.
  • Each of the first rotor 10 and the second rotor 20 includes rotor main bodies (yokes) 11 and 21 as disk-shaped structures, power transmission shafts 12 and 22 attached to the rotor main bodies 11 and 21, and the rotor main body 11. , 21 and a plurality of magnets (permanent magnets) 13, 23.
  • the power transmission shafts 12 and 22 extend from both end faces of the rotor main bodies 11 and 21 in the direction of the rotation axis Zr.
  • the central axes of the power transmission shafts 12 and 22 are the same as the central axes of the rotor bodies 11 and 21. These are also common to the rotation axis Zr of the electric motor 1.
  • the first rotor 10 has a portion (first magnet engaging portion) 10T that engages with the magnet 13 for creating the magnetic pole of the first rotor 10 on the radially outer side, and the second rotor 20 on the radially outer side.
  • a portion (second magnet engaging portion) 20T that engages with the magnet 23 for forming the magnetic pole of the second rotor 20 is provided.
  • the first magnet engaging portion 10T protrudes from the outer edge portion on the radially outer side of the rotor body 11 in a direction parallel to the rotation axis Zr.
  • the second magnet engaging portion 20T protrudes from the outer edge portion on the radially outer side of the rotor body 21 in a direction parallel to the rotation axis Zr.
  • the magnet 13 of the first rotor 10 is engaged with the first magnet engaging portion 10T. Further, the magnet 23 of the second rotor 20 is engaged with the first magnet engaging portion 20T.
  • the 1st magnet engaging part 10T and the 2nd magnet engaging part 20T receive the centrifugal force which acts on the magnets 13 and 23 when the 1st rotor 10 and the 2nd rotor 20 rotate.
  • safety is improved.
  • the stator 30 is an annular structure.
  • the stator 30 is disposed inside the housing 2.
  • the stator 30 includes a stator core 31, teeth 32 provided on the stator core 31, and windings (coils) 33 wound around the stator core 31.
  • the winding 33 is a conductor and is a copper wire in this embodiment.
  • the winding 33 is not limited to a copper wire, and may be an aluminum wire, for example.
  • the outer peripheral portion 31 ⁇ / b> S of the stator core 31 is fixed to the inner peripheral portion 2 ⁇ / b> I of the housing 2.
  • the stator core 31 has a through hole 31H at the center. The structure of the stator 30 will be described later.
  • the power transmission shaft 12 of the first rotor 10 is supported by the bearings 3A and 3B. More specifically, in the power transmission shaft 12, one end face side (the side where the magnet 13 is disposed) of the rotor body 11 is the bearing 3A, and the other end face side (the side opposite to the magnet 13) is the bearing 3B. It is supported by.
  • the power transmission shaft 22 of the second rotor 20 is supported by the bearings 3C and 3D. More specifically, in the power transmission shaft 22, one end surface side (the side where the magnet 23 is disposed) of the rotor body 21 is the bearing 3C, and the other end surface side (the side opposite to the magnet 23) is the bearing 3D. It is supported by.
  • Bearings 3A and 3C are attached to the through holes 31H of the stator core 31. For this reason, the bearings 3 ⁇ / b> A and 3 ⁇ / b> C are supported by the housing 2 via the stator core 31.
  • the bearing 3 ⁇ / b> B is attached to the through hole 5 of the housing 2
  • the bearing 3 ⁇ / b> D is attached to the through hole 6 of the housing 2.
  • the first rotor 10 is supported by the housing 2 via the bearings 3A and 3B and the power transmission shaft 12
  • the second rotor 20 is housed via the bearings 3C and 3D and the power transmission shaft 22. Supported by the body 2.
  • the first rotor 10 and the second rotor 20 can rotate independently of the housing 2.
  • the plurality of magnets 13 included in the first rotor 10 are N on one end face of the rotor body 11 and around the power transmission shaft 12 in the circumferential direction of the rotor body 11.
  • the poles and S poles are alternately arranged.
  • the plurality of magnets 23 included in the second rotor 20 are also arranged on one end face of the rotor body 21 and around the power transmission shaft 22 in the circumferential direction of the rotor body 21.
  • the poles and S poles are alternately arranged.
  • the magnets 13N and 23N represent the N pole
  • the magnets 13S and 23S represent the S pole. Magnets 13 and 23 create magnetic poles.
  • the magnets 13 and 23 may be structured to be attached to the surfaces of the rotor bodies 11 and 21 (SPM: Surface Permanent Magnet) or embedded in the rotor bodies 11 and 21 (IPM: Interior Permanent Magnet). Also good. The same applies to the following examples.
  • the magnets 13 and 23 may be either ring magnets or segment magnets.
  • the number of magnets 13 included in the first rotor 10 and the number of magnets 23 included in the second rotor 20 are both even numbers.
  • the number of magnets 13 included in the first rotor 10 and the number of magnets 23 included in the second rotor 20 are the number of magnetic poles of the first rotor 10 and the number of magnetic poles of the second rotor 20, respectively.
  • the number of magnetic poles is called the number of poles.
  • the number of magnets 13 included in the first rotor 10 is different from the number of magnets 23 included in the second rotor 20. As shown in FIGS. 1 and 2, in the first rotor 10 and the second rotor 20, the magnets 13 and 23 are opposed to the teeth 32 of the stator 30.
  • the stator core 31 of the stator 30 includes an annular yoke 34 and a plurality of teeth 32 that are respectively attached to both end surfaces of the yoke 34.
  • the stator core 31 may be formed, for example, by laminating electromagnetic steel plates or by pressing magnetic powder. In the latter case, there is an advantage that even the stator core 31 having a complicated shape can be manufactured relatively easily.
  • the teeth 32 are arranged at the same position with respect to the circumferential direction of the yoke 34 on one end face side and the other end face side of the yoke 34.
  • the teeth 32 have a flat plate portion 32P facing the magnet 13 of the first rotor 10 and the magnet 23 of the second rotor 20, and a shaft portion 32S connecting the flat plate portion 32P and the yoke 34.
  • a plurality of teeth 32 are arranged on both end faces of the yoke 34, and the teeth 32 on the end face sides face the first rotor 10 and the second rotor 20.
  • a slot 35 is formed between adjacent teeth 32 in the circumferential direction of the yoke 34.
  • the slots 35 are also formed on one end face side and the other end face side.
  • the number of slots 35 is counted as two slots 35 formed on both end face sides of the yoke 34.
  • the number of slots 35 is equal to the number of teeth 32 provided on one end face side or the other end face side.
  • the number of slots 35 included in the stator 30 is 3 ⁇ n.
  • a winding 33 is disposed in each slot 35.
  • the winding 33u indicates the U phase
  • the winding 33v indicates the V phase
  • the winding 33w indicates the W phase.
  • the winding 33 is wound around the yoke 34 in the slot 35 portion in the circumferential direction of the yoke 34.
  • the winding 33 is wound around the yoke 34 in a toroidal shape to form a toroidal coil.
  • the stator core 31 can be manufactured, for example, by putting magnetic powder into a mold and then compression-molding, but the manufacturing method of the stator core 31 is not limited to this.
  • a stator core 31 in which the winding 33 is wound around the yoke 34 may be molded with resin. By doing in this way, since the stator core 31 and the coil
  • FIG. 6 is a cross-sectional view of an electric motor according to a modification of the present embodiment cut along a plane that passes through the rotation axis and includes the rotation axis.
  • FIG. 7 is a partial cross-sectional view of the electric motor according to the present embodiment cut along a plane orthogonal to the rotation axis.
  • the electric motor 1a is common to the above-described electric motor 1 (see FIG. 1 and the like) in that the first rotor 10a and the second rotor 20a are driven by a common stator 30a.
  • the type of the electric motor 1 described above is an axial gap type
  • the type of the electric motor 1a is a gap between the first rotor 10 and the second rotor 20 and the stator 30 in the direction orthogonal to the rotation axis Zr, that is, in the radial direction.
  • the difference is that it is a radial gap type. That is, in the electric motor 1a, the stator 30a is disposed on the radially outer side of the first rotor 10, and the second rotor 20a is disposed on the radially outer side of the stator 30a.
  • the electric motor 1a includes a first rotor 10a, a second rotor 20a, and a stator 30a.
  • the electric motor 1 is a three-phase electric motor, and the first rotor 10 and the second rotor 20 are driven by a common stator 30.
  • the end 31T of the stator core 31a of the stator 30a in the direction of the rotation axis Zr is fixed to the attachment target 4.
  • the first rotor 10a and the second rotor 20a rotate around a common rotation axis Zr.
  • the second rotor 20a is disposed on the radially outer side of the first rotor 10a and on the radially outer side of the stator 30a.
  • the stator 30a is disposed between the first rotor 10a and the second rotor 20a. Therefore, the first rotor 10a, the stator 30a, and the second rotor 20a are arranged on three concentric circles having different diameters around the rotation axis Zr.
  • the first rotor 10a includes a rotor body (yoke) 11a as a cylindrical structure, a power transmission shaft 12a attached to the rotor body 11a, and a plurality of magnets (permanent magnets) 13a attached to the rotor body 11a.
  • the second rotor 20a includes a rotor body (yoke) 21a as a cylindrical structure, a power transmission shaft 22a attached to the rotor body 21a, and a plurality of magnets (permanent magnets) 23a attached to the rotor body 21a.
  • the power transmission shafts 12a and 22a respectively extend from one end face of the rotor main bodies 11a and 21a in the direction of the rotation axis Zr.
  • the extending directions of the power transmission shaft 12a of the first rotor 10a and the power transmission shaft 22a of the second rotor 20a are opposite to each other.
  • the central axes of the power transmission shafts 12a and 22a are the same as the central axes of the rotor bodies 11a and 21a. These are also common to the rotation axis Zr of the electric motor 1a.
  • the stator 30a is an annular structure.
  • the stator 30a includes a stator core 31a, teeth 32ao and 32ai provided on the stator core 31a, and windings (coils) 33a wound around the stator core 31a.
  • the winding 33a is a conductor and is the same as the electric motor 1 described above.
  • the dotted line in FIG. 7 shows how to wind the winding wire 33a.
  • the stator core 31a has through holes 31HA and 31HB in the center.
  • the stator core 31a of the stator 30a has an annular yoke 34a and a plurality of teeth 32ao and 32ai provided on the outer peripheral surface and the inner peripheral surface of the yoke 34a, respectively.
  • the material of the stator core 31a is the same as that of the stator core 31 described above.
  • the teeth 32ao and 32ai are arranged at the same position with respect to the circumferential direction of the yoke 34a.
  • the teeth (second teeth) 32ao arranged on the outer peripheral surface of the yoke 34a face the second rotor 20a, more specifically, the magnet 23a provided on the inner peripheral surface of the second rotor 20a.
  • the teeth (first teeth) 32ai disposed on the inner peripheral surface of the yoke 34a face the first rotor 10a, more specifically, the magnet 13a provided on the outer peripheral surface of the first rotor 10a.
  • the slot 35a is between the teeth 32ao and 32io adjacent in the circumferential direction of the yoke 34a.
  • the slot 35a is also formed on the inner peripheral surface side and the outer peripheral surface side.
  • the number of slots 35a is counted as two slots 35a formed on the inner and outer peripheral surfaces of the yoke 34a.
  • the number of slots 35a is equal to the number of teeth 32ai and 32ao provided on the inner and outer peripheral surfaces of the yoke 34a, respectively.
  • the number of slots 35a included in the stator 30a is 3 ⁇ n.
  • a winding 33a is disposed in each slot 35a.
  • the winding 33 au indicates the U phase
  • the winding 33 av indicates the V phase
  • the winding 33 aw indicates the W phase.
  • the winding 33a is wound around the yoke 34a at the slot 35a in the circumferential direction of the yoke 34a.
  • the winding wire 33a is wound around the yoke 34a in a toroidal shape to form a toroidal coil.
  • the power transmission shaft 12a of the first rotor 10a is supported by bearings 3Aa and 3Ba.
  • bearing 3Ca, 3Da is attached to the internal peripheral surface of the both ends in the rotating shaft Zr direction.
  • the bearings 3Aa and 3Ba that support the first rotor 10a are attached to the two through holes 31HA and 31HB of the stator core 31a of the stator 30a.
  • the bearings 3Ca and 3Da that support the second rotor 20a are attached to the outer peripheral portions of both end portions of the stator 30a in the rotation axis Zr direction.
  • the first rotor 10a and the second rotor 20a are rotatably supported by the stator 30a via the bearings 3Aa, 3Ba, 3Ca, 3Da. Further, the first rotor 10a and the second rotor 20a can rotate independently of the stator 30a.
  • the power transmission shaft 12a of the first rotor 10a is taken out of the electric motor 1a from the two through holes 31HB of the stator core 31a.
  • the power transmission shaft 22a of the second rotor 20a is attached to the end surface of the second rotor 20a on the side opposite to the power transmission shaft 12a of the first rotor 10a. Since the stator 30a is attached to the attachment object 4, it is stationary. In the electric motor 1a, the first rotor 10a rotates independently of the inner side of the stator 30a and the second rotor 20a rotates independently of the outer side of the stator 30a by a rotating magnetic field generated by the stator 30a.
  • the plurality of magnets 13a included in the first rotor 10a are provided on the outer peripheral surface of the rotor main body 11a or embedded on the outer peripheral surface side of the rotor main body 11a.
  • north and south poles are alternately arranged in the circumferential direction of the rotor body 11a.
  • the plurality of magnets 23a included in the second rotor 20 are provided on the inner peripheral surface of the rotor main body 21a or embedded on the inner peripheral surface side of the rotor main body 21a.
  • north and south poles are alternately arranged in the circumferential direction of the rotor body 21a.
  • the magnets 13Na and 23Na represent the N pole, and the magnets 13Sa and 23Sa represent the S pole. Magnets 13a and 23a create magnetic poles.
  • the number of magnets 13 a and 23 a is the same as that of the electric motor 1.
  • FIG. 8 is a schematic diagram showing the relationship between the electrical angle and phase of the three-phase motor.
  • FIG. 9 is a schematic diagram showing the phase order of the comparative example.
  • FIG. 10 is a schematic diagram showing the phase sequence of the present embodiment.
  • the axial type electric motor 1 shown in FIG. 1 and the like is taken as an example, but the same applies to the radial type electric motor 1a shown in FIG. 6 and the like.
  • the winding 33 of the electric motor 1 has a U phase, a V phase, and a W phase. Voltages having different phases are applied to the U-phase winding 33u, the V-phase winding 33v, and the W-phase winding 33w, respectively. Accordingly, currents having different phases flow through the respective windings 33u, 33v, and 33w. As shown in FIG. 8, when the electrical angle ⁇ e is 0 ° or more and less than 60 °, the + U phase, and when the electrical angle ⁇ e is 60 ° or more and less than 120 °, the ⁇ W phase and the electrical angle ⁇ e is 120 ° or more and 180 °.
  • the phase is ⁇ V.
  • “+” And “ ⁇ ” attached to symbols indicating the respective phases indicate the directions of currents flowing through the U phase, the V phase, and the W phase.
  • the electrical angle ⁇ e of the first rotor 10 changes 120 ° between the adjacent slots 35A and 35B
  • the electrical angle ⁇ e of the second rotor 20 changes 150 ° between the adjacent slots 35A and 35B.
  • the phases of the windings 33 are both + U phases. It is the same phase.
  • the electrical angle ⁇ e of the first rotor 10 is 120 degrees and the + V phase
  • the electrical angle ⁇ e of the second rotor 20 is 150 °. Therefore, the phases of the windings 33 are both the + V phase and the same phase.
  • the phase of the winding 33 is + W phase
  • the electrical angle ⁇ e of the second rotor 20 is 300 °
  • the phase of the winding 33 is ⁇ V phase and different phase.
  • the slots 35D to 35L the phase of the winding 33 in the first rotor 10 and the phase of the winding 33 in the second rotor 20 are different. For this reason, the first rotor 10 and the second rotor 20 cannot be independently driven and controlled by the relationship between the number of poles P and the number of slots S as in the comparative example.
  • the electrical angle ⁇ e of the first rotor 10 changes by 120 ° between the adjacent slots 35A and 35B.
  • the electrical angle ⁇ e changes by 240 ° between the adjacent slots 35A and 35B.
  • the winding 33 is formed by the first rotor 10 and the second rotor 20 in the slot 35 ⁇ / b> A.
  • the phase order is reversed.
  • the first rotor 10 and the second rotor 20 are rotated in opposite directions.
  • the phase of the current for driving the second rotor 20 is advanced by 180 °, and the V phase and the W phase of the second rotor 20 (or the first rotor 10) are switched.
  • the phase sequence of the windings 33 can be made the same in the first rotor 10 and the second rotor 20 in the slot 35A, so that the first rotor 10 and the second rotor 20 rotate in the same direction. Can be made.
  • the first rotor 10 and the second rotor 20 can be driven and controlled independently.
  • m and n in the formula 2 ⁇ m + 6 ⁇ n ⁇ (k ⁇ 1) are fixed, and a group of even numbers obtained by changing k, and 3 ⁇ n / 2.
  • a group including multiple and the smallest even number and the smallest even multiple is excluded, and m is changed from a small value to a large value, and the (j + 1) th group and (2 ⁇ ij)
  • Two even numbers each selected from the first group are the numbers of magnetic poles of the first rotor 10 and the second rotor 20, respectively.
  • two even numbers selected as the number of magnetic poles of the first rotor 10 and the second rotor 20 are a plurality of numbers included in the (j + 1) th group from the smaller m in the 2 ⁇ i group described above. And even one of a plurality of even numbers included in the (2 ⁇ ij) -th group from the smaller m.
  • i, m, n, and k are integers of 1 or more
  • j is an integer of 0 to i ⁇ 1
  • the maximum value of m is 3 ⁇ n ⁇ 1.
  • the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 are respectively an even number, one each from the first group and the eighth group, respectively from the second group and the seventh group.
  • the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 are respectively an even number, one each from the first group and the eighth group, respectively from the second group and the seventh group.
  • control of the electric motor 1 according to the present embodiment will be described.
  • the number of slots S may be 12, the number of poles P of the first rotor 10 may be 10, and the number of poles P of the second rotor 20 may be 14. That is, the control of the electric motor 1 according to the present embodiment can be applied to the electric motor 1 having the number of slots, the number of poles of the first rotor 10 and the number of poles of the second rotor 20 determined as described above.
  • the number of magnetic poles of the first rotor 10 and the second rotor 20 can be expressed as follows. That is, a group consisting of an even number obtained by fixing m and n in Formula 2 ⁇ m + 6 ⁇ n ⁇ (k ⁇ 1) and changing k, which is a multiple of 3 ⁇ n / 2 and the smallest even number and Two even numbers, each selected from the group of m and the group of 3 ⁇ n ⁇ m, excluding the group including the smallest even multiple, are respectively the magnetic poles of the first rotor 10 and the second rotor 20. It is a number.
  • two even numbers selected as the number of magnetic poles of the first rotor 10 and the second rotor 20 are included in one of a plurality of even numbers included in the m group and in a 3 ⁇ n ⁇ m group.
  • m, n, and k are integers of 1 or more, and the maximum value of m is 3 ⁇ n ⁇ 1.
  • the reason why the group including a multiple of 3 ⁇ n / 2, the smallest even number, and the smallest even multiple is excluded is to exclude combinations in which the winding phase order is not three phases.
  • the rotational speed of the first rotor 10 is ⁇ 1 / ⁇ ⁇ 30 rpm
  • the current amplitude for driving the first rotor 10 is I1 (ampere)
  • the rotational speed of the second rotor 20 is ⁇ 2 / ⁇ ⁇ 30 rpm
  • the second rotor 20 Suppose that the amplitude of the current for driving is I2 (ampere), and the currents of the U phase, V phase, and W phase are changed by sin waves.
  • the driving currents of the U phase, the V phase, and the W phase are values obtained by adding the currents of the respective phases of the first rotor 10 and the currents of the respective phases of the second rotor 20. That is, the U-phase drive current U, that is, the drive current of the winding 33u is expressed by Equation (8), the V-phase drive current V, that is, the drive current of the winding 33v is expressed by Equation (9), and the W-phase drive current W That is, the drive current of the winding 33w is as shown in Expression (10).
  • the control device for the electric motor 1 generates drive currents U, V, and W expressed by the equations (8) to (10) and supplies them to the windings 33u, 33v, and 33w of the stator 30 that the electric motor 1 has.
  • One first rotor 10 and second rotor 20 can be driven independently.
  • the rotational speed of the first rotor 10 and the line speed of the second rotor 20 can be made different by making the angular frequencies ⁇ 1 and ⁇ 2 different.
  • the current amplitude I1 for driving the first rotor 10 or the current amplitude I2 for driving the second rotor 20 different, the output of the first rotor 10 and the output of the second rotor 20 are obtained.
  • U U1 + U2 (8)
  • V V1 + V2 (9)
  • W W1 + W2 (10)
  • the U-phase, V-phase, and W-phase drive currents U1, V1, and W1 of the first rotor 10 are expressed by the equations (2) to ( 4), and the U-phase, V-phase, and W-phase drive currents U2, V2, and W2 of the second rotor 10 are expressed by equations (11) to (13).
  • the U phase of the second rotor 20 is obtained by adding 180 °, that is, ⁇ to the equation (5).
  • the V phase of the second rotor 20 advances the phase of Equation (5) by (2 ⁇ ⁇ / 3 + ⁇ ), and the W phase of the second rotor 20 advances the phase of Equation (5) by ( ⁇ 2 ⁇ ⁇ / 3 + ⁇ ). It has been advanced.
  • U1, V1, W1 of the equations (2) to (3) and U2, V2, W2 of the equations (11) to (13) to the equations (8) to (10)
  • the first rotor 10 And U-phase, V-phase, and W-phase drive currents U, V, and W when the second rotor 20 and the second rotor 20 are rotated in the same direction.
  • U2 I2 ⁇ sin ( ⁇ 2 ⁇ t + ⁇ ) (11)
  • the electric motor 1 (same for the electric motor 1a) has the number of poles P and the number of slots S so that the electrical angle ⁇ e between adjacent slots is the same in both the first rotor 10 and the second rotor 20. Set. Then, a combined current obtained by superimposing the current for driving the first rotor 10 and the current for driving the second rotor 20 is applied to the winding 33 of the stator 30. By doing in this way, the electric motor 1 can control the 1st rotor 10 and the 2nd rotor 20 independently. Specifically, the electric motor 1 can independently control the rotation direction, the rotation speed, and the torque of the first rotor 10 and the second rotor 20. Therefore, the first rotor 10 and the second rotor 20 can rotate in the same direction or in opposite directions.
  • the current for driving the first rotor 10 and the current for driving the second rotor 20 have a frequency corresponding to the rotational speed and an amplitude corresponding to the torque.
  • the electric motor 1 can drive and control the first rotor 10 and the second rotor 20 independently by setting the number of poles P and the number of slots S to the relationship described above. For this reason, the current for driving the first rotor 10 and the current for driving the second rotor 20 have different frequencies and amplitudes, thereby rotating the first rotor 10 and the second rotor 20.
  • the speed and torque can be controlled to different magnitudes.
  • the electric motor 1 since the first rotor 10 and the second rotor 20 can be controlled independently, it is possible to individually set and control a transitional time from starting up to a constant rotational speed. . That is, the electric motor 1 can be set differently between the first rotor 10 and the second rotor 20 from the time it is activated until it reaches a certain rotational speed.
  • FIG. 11 is a perspective view showing a modification of the stator.
  • FIG. 12 is a partial plan view showing a modification of the stator.
  • the electric motor 1 is an axial gap type
  • the first rotor 10 and the second rotor 20 are arranged in a direction parallel to the rotation axis Zr.
  • the electric motor 1 is an axial gap type, as shown in FIG. 12, in the stator, more specifically, the stator core 31D, the slot 35 may have the same shape between the radially outer side and the radially inner side. preferable.
  • the stator core 31D includes the length of the arc portion (outer arc) on the radially outer side of the slot 35, that is, the length Lout of the outer arc between the shaft portions 32DS of the adjacent teeth 32D, and the slot
  • the length of the arc portion (inner circumference arc) on the radially inner side of the portion 35 that is, the length Lin of the inner circumference arc between the shaft portions 32DS of the adjacent teeth 32D, is preferably the same size, preferably the same. It has become.
  • the length tout of the arc portion on the radially outer side of the shaft portion 32DS of the tooth 32 is larger than the length tin of the arc portion on the radially inner side of the shaft portion 32DS of the tooth 32.
  • the slot 35 formed between the shaft parts 32DS of the adjacent teeth 32 can make the dimension of the stator core 31D in the circumferential direction substantially constant toward the radial direction of the stator core 31D. .
  • more windings 33 can be wound around the slots 35, and the winding 33 can be easily wound around the stator core 31D.

Abstract

This electric motor (1) includes a first rotor (10), a second rotor (20), and a stator (30) having 3×n slots provided with windings (33). With the exclusion of a group of even numbers that are obtained by keeping m and n of the numerical expression 2×m+6×n×(k-1) constant and changing k and that include multiples of 3×n/2 as well as the smallest even number and multiples of the smallest even number, 2×i groups are obtained by changing m, and two even numbers are selected, one from the (j+1)th group and one from the (2×i-j)th group respectively, as the number of magnetic poles for the first rotor (10) and the second rotor (20), with i, m, n, and k being integers of 1 or greater, j being an integer between 0 and i-1, and the maximum value of m being 3×n-1.

Description

電動機Electric motor
 本発明は、複数のローターを有する電動機に関する。 The present invention relates to an electric motor having a plurality of rotors.
 ステーターを共用する2個のローターを有する電動機がある(例えば、特許文献1)。 There is an electric motor having two rotors sharing a stator (for example, Patent Document 1).
特開2006-320187号公報JP 2006-320187 A
 特許文献1に記載された発明は、それぞれのローターを独立して制御することはできない。本発明は、ステーターを共用する2個のローターを有する電動機において、それぞれのローターを独立して制御することを目的とする。 The invention described in Patent Document 1 cannot control each rotor independently. An object of the present invention is to independently control each rotor in an electric motor having two rotors sharing a stator.
 本発明は、回転軸を中心として回転する第1ローター及び第2ローターと、前記第1ローターと前記第2ローターとの間に配置されるとともに前記回転軸の周囲を取り囲む環状の構造体であり、3×n個のスロットを有するステーターと、それぞれの前記スロットに配置される複数の巻線と、を含み、数式2×m+6×n×(k-1)のm及びnを固定し、kを変更することにより得られる偶数からなる群であって、3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外し、さらにmを小さい値から大きい値に変更して得られる2×i個の群における(j+1)番目の群及び(2×i-j)番目の群からそれぞれ1個ずつ選択された2個の偶数が、それぞれ前記第1ローター及び前記第2ローターの磁極の数となることを特徴とする電動機である。ここで、i、m、n、kは1以上の整数、jは0以上i-1以下の整数、mの最大値は3×n-1である。 The present invention is an annular structure that is disposed between a first rotor and a second rotor that rotate about a rotation axis, and is disposed between the first rotor and the second rotor and that surrounds the periphery of the rotation axis. A stator having 3 × n slots and a plurality of windings arranged in each of the slots, and fixing m and n in the formula 2 × m + 6 × n × (k−1), k Is a group consisting of an even number obtained by changing x, excluding a group containing a multiple of 3 × n / 2, the smallest even number, and the smallest even number multiple, and further changing m from a small value to a large value Two even numbers selected from the (j + 1) -th group and the (2 × i−j) -th group in the 2 × i group obtained in the above are respectively the first rotor and the first rotor. 2 The number of magnetic poles of the rotor It is an electric motor for the butterflies. Here, i, m, n, and k are integers of 1 or more, j is an integer of 0 to i−1, and the maximum value of m is 3 × n−1.
 本発明において、前記ステーターの巻線には、前記第1ローターを駆動するための電流と、前記第2ローターを駆動するための電流とを重畳して合成した電流が与えられることが好ましい。 In the present invention, it is preferable that a current obtained by superimposing a current for driving the first rotor and a current for driving the second rotor is applied to the winding of the stator.
 本発明において、前記第1ローターを駆動するための電流と、前記第2ローターを駆動するための電流とは、互いに異なる周波数及び振幅をもった電流であることを特徴とすることが好ましい。 In the present invention, it is preferable that the current for driving the first rotor and the current for driving the second rotor are currents having different frequencies and amplitudes.
 本発明において、前記巻線は、前記ステーターの周方向に向かって巻き回されているトロイダルコイルであることが好ましい。 In the present invention, the winding is preferably a toroidal coil wound in the circumferential direction of the stator.
 本発明において、前記第1ローターは、径方向外側に前記第1ローターの磁極を作るための磁石と係合する部分を有し、前記第2ローターは、径方向外側に前記第2ローターの磁極を作るための磁石と係合する部分を有することが好ましい。 In the present invention, the first rotor has a portion that engages with a magnet for making the magnetic pole of the first rotor radially outward, and the second rotor has a magnetic pole of the second rotor radially outward. It is preferable to have a portion that engages with the magnet for making the.
 本発明において、前記第1ローターと前記第2ローターとは、前記ステーターを挟んで前記回転軸の手前から奥に向かって互いに平行に配列されていることが好ましい。 In the present invention, it is preferable that the first rotor and the second rotor are arranged in parallel to each other from the front of the rotating shaft to the back with the stator interposed therebetween.
 本発明において、前記ステーターは、径方向外側と径方向内側との間で前記スロットの部分の外周円弧の長さと内周円弧の長さとが同一であることが好ましい。 In the present invention, it is preferable that the length of the outer peripheral arc of the slot portion is the same as the length of the inner peripheral arc between the radially outer side and the radially inner side of the stator.
 本発明は、回転軸を中心として回転するとともに、磁極を作る磁石及び前記磁石と係合する部分を径方向外側に有する第1ローター及び第2ローターと、前記第1ローターと前記第2ローターとの間に配置されるとともに前記回転軸の周囲を取り囲む環状の構造体であり、3×n個のスロットを有するステーターと、それぞれの前記スロットに配置されるとともに、前記ステーターの周方向に向かって巻き回されているトロイダルコイルとなる複数の巻線と、を含み、前記第1ローターと前記第2ローターとは、前記ステーターを挟んで前記回転軸の手前から奥に向かって互いに平行に配列され、さらに、数式2×m+6×n×(k-1)のm及びnを固定し、kを変更することにより得られる偶数からなる群であって、3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外し、さらにmを小さい値から大きい値に変更して得られる2×i個の群における(j+1)番目の群及び(2×i-j)番目の群からそれぞれ1個ずつ選択された2個の偶数が、それぞれ前記第1ローター及び前記第2ローターの磁極の数となることを特徴とする電動機である。ここで、i、m、n、kは1以上の整数、jは0以上i-1以下の整数、mの最大値は3×n-1である。 The present invention includes a first rotor and a second rotor that rotate about a rotation axis and that have a magnet that forms a magnetic pole and a portion that engages with the magnet on a radially outer side, the first rotor, and the second rotor. And a stator having 3 × n slots, and arranged in each of the slots and toward the circumferential direction of the stator. A plurality of windings that are wound toroidal coils, and the first rotor and the second rotor are arranged in parallel to each other from the front of the rotating shaft to the back with the stator interposed therebetween. Furthermore, a group consisting of an even number obtained by fixing m and n in the formula 2 × m + 6 × n × (k−1) and changing k, which is a multiple of 3 × n / 2 and The group including the smallest even number and a multiple of the smallest even number is excluded, and the (j + 1) th group and (2 × i−) in the 2 × i groups obtained by changing m from a small value to a large value j) The electric motor characterized in that two even numbers each selected from the first group are the numbers of magnetic poles of the first rotor and the second rotor, respectively. Here, i, m, n, and k are integers of 1 or more, j is an integer of 0 to i−1, and the maximum value of m is 3 × n−1.
 本発明は、ステーターを共用する2個のローターを有する電動機において、それぞれのローターを独立して制御することができる。 In the present invention, in an electric motor having two rotors sharing a stator, each rotor can be controlled independently.
図1は、本実施形態に係る電動機を、その回転軸を通りかつ回転軸を含む平面で切った断面図である。FIG. 1 is a cross-sectional view of the electric motor according to the present embodiment, taken along a plane that passes through the rotation axis and includes the rotation axis. 図2は、本実施形態に係る電動機の内部構造の斜視図である。FIG. 2 is a perspective view of the internal structure of the electric motor according to the present embodiment. 図3は、本実施形態に係る電動機が有する第1ローターの平面図である。FIG. 3 is a plan view of the first rotor included in the electric motor according to the present embodiment. 図4は、本実施形態に係る電動機が有する第2ローターの平面図である。FIG. 4 is a plan view of a second rotor included in the electric motor according to the present embodiment. 図5は、本実施形態に係る電動機が有するステーターの平面図である。FIG. 5 is a plan view of a stator included in the electric motor according to the present embodiment. 図6は、本実施形態の変形例に係る電動機を、その回転軸を通りかつ回転軸を含む平面で切った断面図である。FIG. 6 is a cross-sectional view of an electric motor according to a modification of the present embodiment, cut along a plane that passes through the rotation axis and includes the rotation axis. 図7は、本実施形態に係る電動機を、その回転軸と直交する平面で切った一部断面図である。FIG. 7 is a partial cross-sectional view of the electric motor according to the present embodiment cut along a plane orthogonal to the rotation axis. 図8は、三相電動機の電気角と相との関係を示す模式図である。FIG. 8 is a schematic diagram showing the relationship between the electrical angle and phase of the three-phase motor. 図9は、比較例の相順を示す模式図である。FIG. 9 is a schematic diagram showing the phase order of the comparative example. 図10は、本実施形態の相順を示す模式図である。FIG. 10 is a schematic diagram showing the phase sequence of the present embodiment. 図11は、ステーターの変形例を示す斜視図である。FIG. 11 is a perspective view showing a modification of the stator. 図12は、ステーターの変形例を示す一部平面図である。FIG. 12 is a partial plan view showing a modification of the stator.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of components can be made without departing from the scope of the present invention.
<電動機の構造>
 図1は、本実施形態に係る電動機を、その回転軸を通りかつ回転軸を含む平面で切った断面図である。図2は、本実施形態に係る電動機の内部構造の斜視図である。図3は、本実施形態に係る電動機が有する第1ローターの平面図である。図4は、本実施形態に係る電動機が有する第2ローターの平面図である。図5は、本実施形態に係る電動機が有するステーターの平面図である。図1、図6は、回転軸Zrを基準としたそれぞれの図の上側と下側とで電動機1、1aの異なる断面を示している。
<Structure of electric motor>
FIG. 1 is a cross-sectional view of the electric motor according to the present embodiment, taken along a plane that passes through the rotation axis and includes the rotation axis. FIG. 2 is a perspective view of the internal structure of the electric motor according to the present embodiment. FIG. 3 is a plan view of the first rotor included in the electric motor according to the present embodiment. FIG. 4 is a plan view of a second rotor included in the electric motor according to the present embodiment. FIG. 5 is a plan view of a stator included in the electric motor according to the present embodiment. 1 and 6 show different cross sections of the electric motors 1 and 1a on the upper side and the lower side of the respective drawings based on the rotation axis Zr.
 電動機1は、第1ローター10と、第2ローター20と、ステーター30とを含んでいる。電動機1は、三相電動機であり、共通のステーター30によって、第1ローター10と第2ローター20とが駆動されるものである。第1ローター10と、第2ローター20と、ステーター30とは、筐体2内に格納される。筐体2は、筒状の構造体であり、両端部の貫通孔5、6からそれぞれ動力伝達シャフト12、22が突出している。 The electric motor 1 includes a first rotor 10, a second rotor 20, and a stator 30. The electric motor 1 is a three-phase electric motor, and the first rotor 10 and the second rotor 20 are driven by a common stator 30. The first rotor 10, the second rotor 20, and the stator 30 are stored in the housing 2. The housing 2 is a cylindrical structure, and the power transmission shafts 12 and 22 protrude from the through holes 5 and 6 at both ends, respectively.
 第1ローター10及び第2ローター20の回転中心と回転軸Zrとは同一である。また、第1ローター10及び第2ローター20の径方向と回転軸Zrとは直交する。第1ローター10及び第2ローター20は、回転軸Zrを中心として回転する。このように、第1ローター10及び第2ローター20は、共通の回転軸Zrの周りを回転する。ステーター30は、第1ローター10と第2ローター20との間に配置される。したがって、第1ローター10と第2ローター20とは、回転軸Zrが伸びる方向に向かって異なる位置であって、間にステーター30を挟んで配置されている。このように、第1ローター10と第2ローター20とは、ステーター30を挟んで回転軸Zrの手前(一方側)から奥(他方側)に向かって互いに平行に配列されている。 The rotation center of the first rotor 10 and the second rotor 20 and the rotation axis Zr are the same. Further, the radial direction of the first rotor 10 and the second rotor 20 and the rotation axis Zr are orthogonal to each other. The first rotor 10 and the second rotor 20 rotate about the rotation axis Zr. Thus, the first rotor 10 and the second rotor 20 rotate around the common rotation axis Zr. The stator 30 is disposed between the first rotor 10 and the second rotor 20. Therefore, the first rotor 10 and the second rotor 20 are located at different positions in the direction in which the rotation axis Zr extends, and are disposed with the stator 30 interposed therebetween. Thus, the first rotor 10 and the second rotor 20 are arranged in parallel to each other from the front (one side) to the back (the other side) of the rotation axis Zr with the stator 30 interposed therebetween.
 第1ローター10は、回転軸Zrと直交する2個の端面のうち一方が、回転軸Zrと直交するステーター30の一方の端面と対向する。第2ローター20は、回転軸Zrと直交する2個の端面のうち一方が、回転軸Zrと直交するステーター30の他方の端面と対向する。電動機1の形式は、回転軸Zrと平行な方向に第1ローター10及び第2ローター20とステーター30とのギャップが存在するアキシャルギャップ型である。 In the first rotor 10, one of the two end surfaces orthogonal to the rotation axis Zr faces one end surface of the stator 30 orthogonal to the rotation axis Zr. In the second rotor 20, one of the two end surfaces orthogonal to the rotation axis Zr faces the other end surface of the stator 30 orthogonal to the rotation axis Zr. The type of the electric motor 1 is an axial gap type in which a gap between the first rotor 10 and the second rotor 20 and the stator 30 exists in a direction parallel to the rotation axis Zr.
 第1ローター10及び第2ローター20は、いずれも円板形状の構造体としてのローター本体(ヨーク)11、21と、ローター本体11、21に取り付けられる動力伝達シャフト12、22と、ローター本体11、21に取り付けられる複数の磁石(永久磁石)13、23と、を有している。動力伝達シャフト12、22は、ローター本体11、21の両方の端面から回転軸Zrの方向に向かってそれぞれ延在している。動力伝達シャフト12、22の中心軸は、ローター本体11、21の中心軸と共通する。これらは、電動機1の回転軸Zrとも共通する。 Each of the first rotor 10 and the second rotor 20 includes rotor main bodies (yokes) 11 and 21 as disk-shaped structures, power transmission shafts 12 and 22 attached to the rotor main bodies 11 and 21, and the rotor main body 11. , 21 and a plurality of magnets (permanent magnets) 13, 23. The power transmission shafts 12 and 22 extend from both end faces of the rotor main bodies 11 and 21 in the direction of the rotation axis Zr. The central axes of the power transmission shafts 12 and 22 are the same as the central axes of the rotor bodies 11 and 21. These are also common to the rotation axis Zr of the electric motor 1.
 第1ローター10は、径方向外側に第1ローター10の磁極を作るための磁石13と係合する部分(第1磁石係合部)10Tを有し、第2ローター20は、径方向外側に第2ローター20の磁極を作るための磁石23と係合する部分(第2磁石係合部)20Tを有する。第1磁石係合部10Tは、ローター本体11の径方向外側における外縁部から回転軸Zrと平行な方向に向かって突出している。同様に、第2磁石係合部20Tは、ローター本体21の径方向外側における外縁部から回転軸Zrと平行な方向に向かって突出している。 The first rotor 10 has a portion (first magnet engaging portion) 10T that engages with the magnet 13 for creating the magnetic pole of the first rotor 10 on the radially outer side, and the second rotor 20 on the radially outer side. A portion (second magnet engaging portion) 20T that engages with the magnet 23 for forming the magnetic pole of the second rotor 20 is provided. The first magnet engaging portion 10T protrudes from the outer edge portion on the radially outer side of the rotor body 11 in a direction parallel to the rotation axis Zr. Similarly, the second magnet engaging portion 20T protrudes from the outer edge portion on the radially outer side of the rotor body 21 in a direction parallel to the rotation axis Zr.
 第1ローター10の磁石13は、第1磁石係合部10Tと係り合う。また、第2ローター20の磁石23は、第1磁石係合部20Tと係り合う。このようにすることで、第1磁石係合部10T及び第2磁石係合部20Tは、第1ローター10及び第2ローター20が回転することによって磁石13、23に作用する遠心力を受ける。その結果、第1ローター10及び第2ローター20の回転中に磁石13、23が外れるおそれを低減できるので、安全性が向上する。 The magnet 13 of the first rotor 10 is engaged with the first magnet engaging portion 10T. Further, the magnet 23 of the second rotor 20 is engaged with the first magnet engaging portion 20T. By doing in this way, the 1st magnet engaging part 10T and the 2nd magnet engaging part 20T receive the centrifugal force which acts on the magnets 13 and 23 when the 1st rotor 10 and the 2nd rotor 20 rotate. As a result, since the possibility that the magnets 13 and 23 come off during the rotation of the first rotor 10 and the second rotor 20 can be reduced, safety is improved.
 ステーター30は、環状の構造体である。ステーター30は、筐体2の内部に配置されている。ステーター30は、ステーターコア31と、ステーターコア31に設けられているティース32と、ステーターコア31に巻き回されている巻線(コイル)33とを有している。巻線33は、導体であり、本実施形態では銅線である。巻線33は銅線に限られず、例えば、アルミニウム線であってもよい。ステーター30は、ステーターコア31の外周部31Sが筐体2の内周部2Iに固定されている。ステーターコア31は、中心部に貫通孔31Hを有している。ステーター30の構造については、後述する。 The stator 30 is an annular structure. The stator 30 is disposed inside the housing 2. The stator 30 includes a stator core 31, teeth 32 provided on the stator core 31, and windings (coils) 33 wound around the stator core 31. The winding 33 is a conductor and is a copper wire in this embodiment. The winding 33 is not limited to a copper wire, and may be an aluminum wire, for example. In the stator 30, the outer peripheral portion 31 </ b> S of the stator core 31 is fixed to the inner peripheral portion 2 </ b> I of the housing 2. The stator core 31 has a through hole 31H at the center. The structure of the stator 30 will be described later.
 第1ローター10の動力伝達シャフト12は、軸受3A、3Bに支持されている。より具体的には、動力伝達シャフト12は、ローター本体11の一方の端面側(磁石13が配置されている側)が軸受3Aに、他方の端面側(磁石13とは反対側)が軸受3Bに支持されている。第2ローター20の動力伝達シャフト22は、軸受3C、3Dに支持されている。より具体的には、動力伝達シャフト22は、ローター本体21の一方の端面側(磁石23が配置されている側)が軸受3Cに、他方の端面側(磁石23とは反対側)が軸受3Dに支持されている。 The power transmission shaft 12 of the first rotor 10 is supported by the bearings 3A and 3B. More specifically, in the power transmission shaft 12, one end face side (the side where the magnet 13 is disposed) of the rotor body 11 is the bearing 3A, and the other end face side (the side opposite to the magnet 13) is the bearing 3B. It is supported by. The power transmission shaft 22 of the second rotor 20 is supported by the bearings 3C and 3D. More specifically, in the power transmission shaft 22, one end surface side (the side where the magnet 23 is disposed) of the rotor body 21 is the bearing 3C, and the other end surface side (the side opposite to the magnet 23) is the bearing 3D. It is supported by.
 軸受3A、3Cは、ステーターコア31の貫通孔31Hに取り付けられている。このため、軸受3A、3Cは、ステーターコア31を介して筐体2に支持されている。軸受3Bは筐体2の貫通孔5に取り付けられ、軸受3Dは筐体2の貫通孔6に取り付けられる。このような構造により、第1ローター10は、軸受3A、3B及び動力伝達シャフト12を介して筐体2に支持され、第2ローター20は、軸受3C、3D及び動力伝達シャフト22を介して筐体2に支持される。第1ローター10と第2ローター20とは、筐体2に対してそれぞれ独立に回転できるようになっている。 Bearings 3A and 3C are attached to the through holes 31H of the stator core 31. For this reason, the bearings 3 </ b> A and 3 </ b> C are supported by the housing 2 via the stator core 31. The bearing 3 </ b> B is attached to the through hole 5 of the housing 2, and the bearing 3 </ b> D is attached to the through hole 6 of the housing 2. With such a structure, the first rotor 10 is supported by the housing 2 via the bearings 3A and 3B and the power transmission shaft 12, and the second rotor 20 is housed via the bearings 3C and 3D and the power transmission shaft 22. Supported by the body 2. The first rotor 10 and the second rotor 20 can rotate independently of the housing 2.
 図2、図3に示すように、第1ローター10が有する複数の磁石13は、ローター本体11の一方の端面であって動力伝達シャフト12の周囲に、ローター本体11の周方向に向かってN極、S極が交互に配列される。図2、図4に示すように、第2ローター20が有する複数の磁石23も、ローター本体21の一方の端面であって動力伝達シャフト22の周囲に、ローター本体21の周方向に向かってN極、S極が交互に配列される。本実施形態では、磁石13N、23NがN極を表し、磁石13S、23SがS極を表す。磁石13、23は、磁極を作る。 As shown in FIG. 2 and FIG. 3, the plurality of magnets 13 included in the first rotor 10 are N on one end face of the rotor body 11 and around the power transmission shaft 12 in the circumferential direction of the rotor body 11. The poles and S poles are alternately arranged. As shown in FIGS. 2 and 4, the plurality of magnets 23 included in the second rotor 20 are also arranged on one end face of the rotor body 21 and around the power transmission shaft 22 in the circumferential direction of the rotor body 21. The poles and S poles are alternately arranged. In the present embodiment, the magnets 13N and 23N represent the N pole, and the magnets 13S and 23S represent the S pole. Magnets 13 and 23 create magnetic poles.
 磁石13、23は、ローター本体11、21の表面に取り付けられる構造(SPM:Surface Permanent Magnet)であってもよいし、ローター本体11、21に埋め込まれる構造(IPM:Interior Permanent Magnet)であってもよい。以下の例においても同様である。また、磁石13、23は、リング磁石又はセグメント磁石いずれであってもよい。 The magnets 13 and 23 may be structured to be attached to the surfaces of the rotor bodies 11 and 21 (SPM: Surface Permanent Magnet) or embedded in the rotor bodies 11 and 21 (IPM: Interior Permanent Magnet). Also good. The same applies to the following examples. The magnets 13 and 23 may be either ring magnets or segment magnets.
 第1ローター10が有する磁石13の数及び第2ローター20が有する磁石23の数は、いずれも偶数である。第1ローター10が有する磁石13の数及び第2ローター20が有する磁石23の数が、それぞれ第1ローター10の磁極の数及び第2ローター20の磁極の数になる。磁極の数を極数という。本実施形態において、第1ローター10が有する磁石13の数と、第2ローター20が有する磁石23の数とは異なっている。図1、図2に示すように、第1ローター10及び第2ローター20は、磁石13、23がステーター30のティース32と対向している。 The number of magnets 13 included in the first rotor 10 and the number of magnets 23 included in the second rotor 20 are both even numbers. The number of magnets 13 included in the first rotor 10 and the number of magnets 23 included in the second rotor 20 are the number of magnetic poles of the first rotor 10 and the number of magnetic poles of the second rotor 20, respectively. The number of magnetic poles is called the number of poles. In the present embodiment, the number of magnets 13 included in the first rotor 10 is different from the number of magnets 23 included in the second rotor 20. As shown in FIGS. 1 and 2, in the first rotor 10 and the second rotor 20, the magnets 13 and 23 are opposed to the teeth 32 of the stator 30.
 図2、図5に示すように、ステーター30が有するステーターコア31は、環状のヨーク34と、ヨーク34の両方の端面にそれぞれが取り付けられる複数のティース32とを有している。ステーターコア31は、例えば、電磁鋼板を積層してもよいし、磁性体の粉末を加圧して成形してもよい。後者のようにすると、複雑な形状のステーターコア31であっても比較的容易に製造できるという利点がある。 2 and 5, the stator core 31 of the stator 30 includes an annular yoke 34 and a plurality of teeth 32 that are respectively attached to both end surfaces of the yoke 34. The stator core 31 may be formed, for example, by laminating electromagnetic steel plates or by pressing magnetic powder. In the latter case, there is an advantage that even the stator core 31 having a complicated shape can be manufactured relatively easily.
 ヨーク34の一方の端面側と他方の端面側とにおいて、ティース32は、ヨーク34の周方向に対して同じ位置に配置されている。ティース32は、第1ローター10の磁石13及び第2ローター20の磁石23と対向する平板部32Pと、平板部32Pとヨーク34とを連結する軸部32Sとを有している。ヨーク34の両方の端面に複数のティース32が配置されて、それぞれの端面側のティース32が第1ローター10及び第2ローター20と対向している。 The teeth 32 are arranged at the same position with respect to the circumferential direction of the yoke 34 on one end face side and the other end face side of the yoke 34. The teeth 32 have a flat plate portion 32P facing the magnet 13 of the first rotor 10 and the magnet 23 of the second rotor 20, and a shaft portion 32S connecting the flat plate portion 32P and the yoke 34. A plurality of teeth 32 are arranged on both end faces of the yoke 34, and the teeth 32 on the end face sides face the first rotor 10 and the second rotor 20.
 ヨーク34の周方向に向かって隣接するティース32の間がスロット35である。本実施形態では、ヨーク34の両方の端面に複数のティース32が配置されているため、スロット35も、一方の端面側と他方の端面側とに形成される。本実施形態において、スロット35の数は、ヨーク34の両方の端面側に形成される2個のスロット35を1個として数える。スロット35の数は、一方の端面側又は他方の端面側に設けられているティース32の数に等しい。本実施形態において、ステーター30が有するスロット35の数を3×n個とする。 A slot 35 is formed between adjacent teeth 32 in the circumferential direction of the yoke 34. In the present embodiment, since the plurality of teeth 32 are arranged on both end faces of the yoke 34, the slots 35 are also formed on one end face side and the other end face side. In the present embodiment, the number of slots 35 is counted as two slots 35 formed on both end face sides of the yoke 34. The number of slots 35 is equal to the number of teeth 32 provided on one end face side or the other end face side. In the present embodiment, the number of slots 35 included in the stator 30 is 3 × n.
 それぞれのスロット35には、巻線33が配置されている。巻線33uはU相、巻線33vはV相、巻線33wはW相を示す。巻線33は、スロット35の部分のヨーク34に、ヨーク34の周方向に向かって巻き回されている。このように、本実施形態では、巻線33がヨーク34にトロイダル状に巻き回されて、トロイダルコイルとなっている。このようにすることで、第1ローター10側と第2ローター20側とにそれぞれ独立して磁気回路を形成することができる。その結果、第1ローター10と第2ローター20とを独立して駆動できるとともに、出力低下を抑制することができる。 A winding 33 is disposed in each slot 35. The winding 33u indicates the U phase, the winding 33v indicates the V phase, and the winding 33w indicates the W phase. The winding 33 is wound around the yoke 34 in the slot 35 portion in the circumferential direction of the yoke 34. Thus, in the present embodiment, the winding 33 is wound around the yoke 34 in a toroidal shape to form a toroidal coil. By doing in this way, a magnetic circuit can be independently formed in the 1st rotor 10 side and the 2nd rotor 20 side, respectively. As a result, the first rotor 10 and the second rotor 20 can be driven independently, and a decrease in output can be suppressed.
 ステーターコア31は、例えば、磁性体の粉末を型に入れた後、圧縮成形することによって製造することができるが、ステーターコア31の製造方法はこれに限定されるものではない。ステーター30は、巻線33をヨーク34に巻回したステーターコア31を、樹脂でモールドしてもよい。このようにすることで、ステーターコア31と巻線33とを一体にすることができるので、ステーター30の取り扱いが容易になる。 The stator core 31 can be manufactured, for example, by putting magnetic powder into a mold and then compression-molding, but the manufacturing method of the stator core 31 is not limited to this. In the stator 30, a stator core 31 in which the winding 33 is wound around the yoke 34 may be molded with resin. By doing in this way, since the stator core 31 and the coil | winding 33 can be united, the handling of the stator 30 becomes easy.
<電動機の変形例>
 図6は、本実施形態の変形例に係る電動機を、その回転軸を通りかつ回転軸を含む平面で切った断面図である。図7は、本実施形態に係る電動機を、その回転軸と直交する平面で切った一部断面図である。電動機1aは、共通のステーター30aによって、第1ローター10aと第2ローター20aとが駆動される点では上述した電動機1(図1等参照)と共通する。上述した電動機1の形式がアキシャルギャップ型であるのに対し、電動機1aの形式は、回転軸Zrと直交する方向、すなわち、径方向に第1ローター10及び第2ローター20とステーター30とのギャップが存在するラジアルギャップ型である点が異なる。すなわち、電動機1aは、第1ローター10の径方向外側にステーター30aが配置され、ステーター30aの径方向外側に第2ローター20aが配置される。
<Modified example of electric motor>
FIG. 6 is a cross-sectional view of an electric motor according to a modification of the present embodiment cut along a plane that passes through the rotation axis and includes the rotation axis. FIG. 7 is a partial cross-sectional view of the electric motor according to the present embodiment cut along a plane orthogonal to the rotation axis. The electric motor 1a is common to the above-described electric motor 1 (see FIG. 1 and the like) in that the first rotor 10a and the second rotor 20a are driven by a common stator 30a. The type of the electric motor 1 described above is an axial gap type, whereas the type of the electric motor 1a is a gap between the first rotor 10 and the second rotor 20 and the stator 30 in the direction orthogonal to the rotation axis Zr, that is, in the radial direction. The difference is that it is a radial gap type. That is, in the electric motor 1a, the stator 30a is disposed on the radially outer side of the first rotor 10, and the second rotor 20a is disposed on the radially outer side of the stator 30a.
 電動機1aは、第1ローター10aと、第2ローター20aと、ステーター30aとを含んでいる。電動機1は、三相電動機であり、共通のステーター30によって、第1ローター10と第2ローター20とが駆動されるものである。電動機1aは、ステーター30aが有するステーターコア31aの、回転軸Zr方向における端部31Tが取付対象4に固定される。第1ローター10a及び第2ローター20aは、共通の回転軸Zrを中心として回転する。第2ローター20aは、第1ローター10aの径方向外側かつステーター30aの径方向外側に配置されている。このような構造により、ステーター30aは、第1ローター10aと第2ローター20aとの間に配置される。したがって、第1ローター10aとステーター30aと第2ローター20aとは、回転軸Zrを中心として直径が異なる3個の同心円上に配置される。 The electric motor 1a includes a first rotor 10a, a second rotor 20a, and a stator 30a. The electric motor 1 is a three-phase electric motor, and the first rotor 10 and the second rotor 20 are driven by a common stator 30. In the electric motor 1a, the end 31T of the stator core 31a of the stator 30a in the direction of the rotation axis Zr is fixed to the attachment target 4. The first rotor 10a and the second rotor 20a rotate around a common rotation axis Zr. The second rotor 20a is disposed on the radially outer side of the first rotor 10a and on the radially outer side of the stator 30a. With such a structure, the stator 30a is disposed between the first rotor 10a and the second rotor 20a. Therefore, the first rotor 10a, the stator 30a, and the second rotor 20a are arranged on three concentric circles having different diameters around the rotation axis Zr.
 第1ローター10aは、円柱形状の構造体としてのローター本体(ヨーク)11aと、ローター本体11aに取り付けられる動力伝達シャフト12aと、ローター本体11aに取り付けられる複数の磁石(永久磁石)13aと、を有している。第2ローター20aは、円筒形状の構造体としてのローター本体(ヨーク)21aと、ローター本体21aに取り付けられる動力伝達シャフト22aと、ローター本体21aに取り付けられる複数の磁石(永久磁石)23aと、を有している。動力伝達シャフト12a、22aは、ローター本体11a、21aの一方の端面から回転軸Zrの方向に向かってそれぞれ延出している。第1ローター10aの動力伝達シャフト12aと第2ローター20aの動力伝達シャフト22aとは、延出する方向がそれぞれ反対方向である。動力伝達シャフト12a、22aの中心軸は、ローター本体11a、21aの中心軸と共通する。これらは、電動機1aの回転軸Zrとも共通する。 The first rotor 10a includes a rotor body (yoke) 11a as a cylindrical structure, a power transmission shaft 12a attached to the rotor body 11a, and a plurality of magnets (permanent magnets) 13a attached to the rotor body 11a. Have. The second rotor 20a includes a rotor body (yoke) 21a as a cylindrical structure, a power transmission shaft 22a attached to the rotor body 21a, and a plurality of magnets (permanent magnets) 23a attached to the rotor body 21a. Have. The power transmission shafts 12a and 22a respectively extend from one end face of the rotor main bodies 11a and 21a in the direction of the rotation axis Zr. The extending directions of the power transmission shaft 12a of the first rotor 10a and the power transmission shaft 22a of the second rotor 20a are opposite to each other. The central axes of the power transmission shafts 12a and 22a are the same as the central axes of the rotor bodies 11a and 21a. These are also common to the rotation axis Zr of the electric motor 1a.
 ステーター30aは、環状の構造体である。ステーター30aは、ステーターコア31aと、ステーターコア31aに設けられているティース32ao、32aiと、ステーターコア31aに巻き回されている巻線(コイル)33aとを有している。巻線33aは、導体であり、上述した電動機1と同様である。図7中の点線が、巻線33aの巻き方を示している。ステーターコア31aは、中心部に貫通孔31HA、31HBを有している。 The stator 30a is an annular structure. The stator 30a includes a stator core 31a, teeth 32ao and 32ai provided on the stator core 31a, and windings (coils) 33a wound around the stator core 31a. The winding 33a is a conductor and is the same as the electric motor 1 described above. The dotted line in FIG. 7 shows how to wind the winding wire 33a. The stator core 31a has through holes 31HA and 31HB in the center.
 図7に示すように、ステーター30aが有するステーターコア31aは、環状のヨーク34aと、ヨーク34aの外周面と内周面とにそれぞれが設けられる複数のティース32ao、32aiとを有している。ステーターコア31aの材料は、上述したステーターコア31と同様である。ヨーク34aの外周面と内周面とにおいて、ティース32ao、32aiは、ヨーク34aの周方向に対して同じ位置に配置されている。ヨーク34aの外周面に配置されたティース(第2ティース)32aoは、第2ローター20a、より具体的には第2ローター20aの内周面に設けられた磁石23aと対向している。ヨーク34aの内周面に配置されたティース(第1ティース)32aiは、第1ローター10a、より具体的には第1ローター10aの外周面に設けられた磁石13aと対向している。 7, the stator core 31a of the stator 30a has an annular yoke 34a and a plurality of teeth 32ao and 32ai provided on the outer peripheral surface and the inner peripheral surface of the yoke 34a, respectively. The material of the stator core 31a is the same as that of the stator core 31 described above. On the outer peripheral surface and inner peripheral surface of the yoke 34a, the teeth 32ao and 32ai are arranged at the same position with respect to the circumferential direction of the yoke 34a. The teeth (second teeth) 32ao arranged on the outer peripheral surface of the yoke 34a face the second rotor 20a, more specifically, the magnet 23a provided on the inner peripheral surface of the second rotor 20a. The teeth (first teeth) 32ai disposed on the inner peripheral surface of the yoke 34a face the first rotor 10a, more specifically, the magnet 13a provided on the outer peripheral surface of the first rotor 10a.
 ヨーク34aの周方向に向かって隣接するティース32ao、32ioの間がスロット35aである。本実施形態では、ヨーク34aの内周面と外周面とに複数のティース32ai、32aoが配置されているため、スロット35aも、内周面側と外周面側とに形成される。本変形例において、スロット35aの数は、ヨーク34aの内周面及び外周面に形成される2個のスロット35aを1個として数える。スロット35aの数は、ヨーク34aの内周面及び外周面にそれぞれが設けられているティース32ai、32aoの数に等しい。本変形例においても、ステーター30aが有するスロット35aの数を3×n個とする。それぞれのスロット35aには、巻線33aが配置されている。巻線33auはU相、巻線33avはV相、巻線33awはW相を示す。巻線33aは、スロット35aの部分のヨーク34aに、ヨーク34aの周方向に向かって巻き回されている。このように、本変形例でも、巻線33aがヨーク34aにトロイダル状に巻き回されて、トロイダルコイルとなっている。 The slot 35a is between the teeth 32ao and 32io adjacent in the circumferential direction of the yoke 34a. In the present embodiment, since the plurality of teeth 32ai and 32ao are arranged on the inner peripheral surface and the outer peripheral surface of the yoke 34a, the slot 35a is also formed on the inner peripheral surface side and the outer peripheral surface side. In this modification, the number of slots 35a is counted as two slots 35a formed on the inner and outer peripheral surfaces of the yoke 34a. The number of slots 35a is equal to the number of teeth 32ai and 32ao provided on the inner and outer peripheral surfaces of the yoke 34a, respectively. Also in this modification, the number of slots 35a included in the stator 30a is 3 × n. A winding 33a is disposed in each slot 35a. The winding 33 au indicates the U phase, the winding 33 av indicates the V phase, and the winding 33 aw indicates the W phase. The winding 33a is wound around the yoke 34a at the slot 35a in the circumferential direction of the yoke 34a. Thus, also in this modification, the winding wire 33a is wound around the yoke 34a in a toroidal shape to form a toroidal coil.
 第1ローター10aの動力伝達シャフト12aは、軸受3Aa、3Baに支持されている。第2ローター20aは、回転軸Zr方向における両端部の内周面に、軸受3Ca、3Daが取り付けられている。第1ローター10aを支持する軸受3Aa、3Baは、ステーター30aが有するステーターコア31aの2つの貫通孔31HA、31HBに取り付けられている。また、第2ローター20aを支持する軸受3Ca、3Daは、回転軸Zr方向におけるステーター30aの両端部の外周部に取り付けられている。このような構造により、第1ローター10aと第2ローター20aとは、軸受3Aa、3Ba、3Ca、3Daを介して、ステーター30aによって回転可能に支持されている。また、第1ローター10aと第2ローター20aとは、ステーター30aに対してそれぞれ独立に回転できるようになっている。 The power transmission shaft 12a of the first rotor 10a is supported by bearings 3Aa and 3Ba. As for the 2nd rotor 20a, bearing 3Ca, 3Da is attached to the internal peripheral surface of the both ends in the rotating shaft Zr direction. The bearings 3Aa and 3Ba that support the first rotor 10a are attached to the two through holes 31HA and 31HB of the stator core 31a of the stator 30a. The bearings 3Ca and 3Da that support the second rotor 20a are attached to the outer peripheral portions of both end portions of the stator 30a in the rotation axis Zr direction. With such a structure, the first rotor 10a and the second rotor 20a are rotatably supported by the stator 30a via the bearings 3Aa, 3Ba, 3Ca, 3Da. Further, the first rotor 10a and the second rotor 20a can rotate independently of the stator 30a.
 第1ローター10aの動力伝達シャフト12aは、ステーターコア31aの2つの貫通孔31HBから電動機1aの外部に取り出される。第2ローター20aの動力伝達シャフト22aは、第1ローター10aの動力伝達シャフト12aとは反対側における第2ローター20aの端面に取り付けられる。ステーター30aは、取付対象4に取り付けられているので静止している。電動機1aは、ステーター30aが生成する回転磁界によって、第1ローター10aがステーター30aの内側を、第2ローター20aがステーター30aの外側をそれぞれ独立に回転する。 The power transmission shaft 12a of the first rotor 10a is taken out of the electric motor 1a from the two through holes 31HB of the stator core 31a. The power transmission shaft 22a of the second rotor 20a is attached to the end surface of the second rotor 20a on the side opposite to the power transmission shaft 12a of the first rotor 10a. Since the stator 30a is attached to the attachment object 4, it is stationary. In the electric motor 1a, the first rotor 10a rotates independently of the inner side of the stator 30a and the second rotor 20a rotates independently of the outer side of the stator 30a by a rotating magnetic field generated by the stator 30a.
 図6、図7に示すように、第1ローター10aが有する複数の磁石13aは、ローター本体11aの外周面に設けられるか、ローター本体11aの外周面側に埋め込まれる。複数の磁石13aは、ローター本体11aの周方向に向かってN極、S極が交互に配列される。第2ローター20が有する複数の磁石23aは、ローター本体21aの内周面に設けられるか、ローター本体21aの内周面側に埋め込まれる。複数の磁石23aは、ローター本体21aの周方向に向かってN極、S極が交互に配列される。本実施形態では、磁石13Na、23NaがN極を表し、磁石13Sa、23SaがS極を表す。磁石13a、23aは、磁極を作る。磁石13a、23aの数については、電動機1と同様である。 6 and 7, the plurality of magnets 13a included in the first rotor 10a are provided on the outer peripheral surface of the rotor main body 11a or embedded on the outer peripheral surface side of the rotor main body 11a. In the plurality of magnets 13a, north and south poles are alternately arranged in the circumferential direction of the rotor body 11a. The plurality of magnets 23a included in the second rotor 20 are provided on the inner peripheral surface of the rotor main body 21a or embedded on the inner peripheral surface side of the rotor main body 21a. In the plurality of magnets 23a, north and south poles are alternately arranged in the circumferential direction of the rotor body 21a. In the present embodiment, the magnets 13Na and 23Na represent the N pole, and the magnets 13Sa and 23Sa represent the S pole. Magnets 13a and 23a create magnetic poles. The number of magnets 13 a and 23 a is the same as that of the electric motor 1.
<極数の設定>
 図8は、三相電動機の電気角と相との関係を示す模式図である。図9は、比較例の相順を示す模式図である。図10は、本実施形態の相順を示す模式図である。次においては、図1等に示すアキシャル型の電動機1を例とするが、図6等に示すラジアル型の電動機1aであっても同様である。三相電動機である電動機1において、電気角θe(°)は、磁極の数(極数)をP、スロットの数(スロット数)をSとすると、式(1)で表される。
 θe=180×P/S・・・(1)
<Setting the number of poles>
FIG. 8 is a schematic diagram showing the relationship between the electrical angle and phase of the three-phase motor. FIG. 9 is a schematic diagram showing the phase order of the comparative example. FIG. 10 is a schematic diagram showing the phase sequence of the present embodiment. In the following, the axial type electric motor 1 shown in FIG. 1 and the like is taken as an example, but the same applies to the radial type electric motor 1a shown in FIG. 6 and the like. In the electric motor 1 which is a three-phase electric motor, the electrical angle θe (°) is expressed by the equation (1), where P is the number of magnetic poles (number of poles) and S is the number of slots (number of slots).
θe = 180 × P / S (1)
 電動機1が有する巻線33は、U相、V相、W相がある。U相の巻線33u、V相の巻線33v及びW相の巻線33wは、それぞれ位相が異なる電圧が印加される。それに応じて位相が異なる電流がそれぞれの巻線33u、33v、33wに流れる。図8に示すように、電気角θeが0°以上60°未満である場合は+U相、電気角θeが60°以上120°未満である場合は-W相、電気角θeが120°以上180°未満である場合は+V相、電気角θeが180°以上240°未満である場合は-U相、電気角θeが240°以上300°未満である場合は+W相、電気角θeが300°以上360°未満である場合は-V相となる。それぞれの相を示す符号に付く+、-は、U相、V相、W相を流れる電流の向きを示す。上記相順に3相交流を与えることによって、電動機1の回転に必要な回転磁界が得られる。 The winding 33 of the electric motor 1 has a U phase, a V phase, and a W phase. Voltages having different phases are applied to the U-phase winding 33u, the V-phase winding 33v, and the W-phase winding 33w, respectively. Accordingly, currents having different phases flow through the respective windings 33u, 33v, and 33w. As shown in FIG. 8, when the electrical angle θe is 0 ° or more and less than 60 °, the + U phase, and when the electrical angle θe is 60 ° or more and less than 120 °, the −W phase and the electrical angle θe is 120 ° or more and 180 °. When the angle is less than °, the + V phase, when the electrical angle θe is 180 ° or more and less than 240 °, the −U phase, when the electrical angle θe is 240 ° or more and less than 300 °, the + W phase, and the electrical angle θe is 300 ° When the angle is less than 360 °, the phase is −V. “+” And “−” attached to symbols indicating the respective phases indicate the directions of currents flowing through the U phase, the V phase, and the W phase. By giving a three-phase alternating current in the order of the phases, a rotating magnetic field necessary for the rotation of the electric motor 1 can be obtained.
 比較例として、電動機1のステーター30が12個のスロット35A~35Lを有し(スロット数S=12)、第1ローター10がN極の磁石13NとS極の磁石13Sとをそれぞれ4個ずつ有し(極数P=8)、第2ローター20がN極の磁石23NとS極の磁石23Sとをそれぞれ5個ずつ有する(極数P=10)場合を考える。この場合、第1ローター10は、隣接するスロット35A、35B間等において電気角θeは120°変化し、第2ローター20は、隣接するスロット35A、35B間等において電気角θeは150°変化する。 As a comparative example, the stator 30 of the electric motor 1 has twelve slots 35A to 35L (the number of slots S = 12), and the first rotor 10 has four N-pole magnets 13N and four S-pole magnets 13S. It is assumed that the second rotor 20 has five N-pole magnets 23N and five S-pole magnets 23S (pole number P = 10). In this case, the electrical angle θe of the first rotor 10 changes 120 ° between the adjacent slots 35A and 35B, and the electrical angle θe of the second rotor 20 changes 150 ° between the adjacent slots 35A and 35B. .
 図9に示すように、比較例は、スロット35Aにおいて第1ローター10の電気角θe及び第2ローター20の電気角θeはいずれも0°なので、巻線33の相はいずれも+U相であり同一の相である。スロット35Bにおいて第1ローター10の電気角θeは120度で+V相、第2ローター20の電気角θeは150°なので、巻線33の相はいずれも+V相であり同一の相である。しかし、スロット35Cにおいて第1ローター10の電気角θeは240°なので巻線33の相は+W相であるのに対し、第2ローター20の電気角θeは300°なので巻線33の相は-V相となり、異なる相になる。スロット35D~スロット35Lについても第1ローター10における巻線33の相と第2ローター20における巻線33の相とは異なる。このため、比較例のような極数P及びスロット数Sの関係では、第1ローター10と第2ローター20とを独立して駆動し、制御することはできない。 As shown in FIG. 9, in the comparative example, since the electrical angle θe of the first rotor 10 and the electrical angle θe of the second rotor 20 are both 0 ° in the slot 35A, the phases of the windings 33 are both + U phases. It is the same phase. In the slot 35B, the electrical angle θe of the first rotor 10 is 120 degrees and the + V phase, and the electrical angle θe of the second rotor 20 is 150 °. Therefore, the phases of the windings 33 are both the + V phase and the same phase. However, since the electrical angle θe of the first rotor 10 is 240 ° in the slot 35C, the phase of the winding 33 is + W phase, whereas the electrical angle θe of the second rotor 20 is 300 °, so the phase of the winding 33 is − V phase and different phase. Regarding the slots 35D to 35L, the phase of the winding 33 in the first rotor 10 and the phase of the winding 33 in the second rotor 20 are different. For this reason, the first rotor 10 and the second rotor 20 cannot be independently driven and controlled by the relationship between the number of poles P and the number of slots S as in the comparative example.
 本実施形態として、電動機1のステーター30が12個のスロット35A~35Lを有し(スロット数S=12)、第1ローター10がN極の磁石13NとS極の磁石13Sとをそれぞれ4個ずつ有し(極数P=8)、第2ローター20がN極の磁石23NとS極の磁石23Sとをそれぞれ8個ずつ有する(極数P=16)場合を考える。この場合、第1ローター10は、隣接するスロット35A、35B間等において電気角θeは120°変化する。第2ローター20は、隣接するスロット35A、35B間等において電気角θeは240°変化する。 In the present embodiment, the stator 30 of the electric motor 1 has twelve slots 35A to 35L (the number of slots S = 12), and the first rotor 10 has four N-pole magnets 13N and four S-pole magnets 13S. Consider the case where the number of poles is P (number of poles P = 8), and the second rotor 20 has eight magnets 23N and 23S of poles N (number of poles P = 16). In this case, the electrical angle θe of the first rotor 10 changes by 120 ° between the adjacent slots 35A and 35B. In the second rotor 20, the electrical angle θe changes by 240 ° between the adjacent slots 35A and 35B.
 図10に示すように、本実施形態は、第1ローター10と第2ローター20とを共通のステーター30で駆動するにあたり、スロット35Aにおいて第1ローター10と第2ローター20とで巻線33の相順が反対になる。この状態で、スロット35Aの巻線33に、第1ローター10と第2ローター20とが同相となる電流を与えると、第1ローター10と第2ローター20とを互いに反対方向へ回転する。また、第2ローター20(又は第1ローター10)を駆動するための電流の位相を180°進ませ、かつ第2ローター20(又は第1ローター10)のV相とW相とを入れ替える。このようにすると、スロット35Aにおいて第1ローター10と第2ローター20とで巻線33の相順を同一にすることができるので、第1ローター10と第2ローター20とを互いに同方向へ回転させることができる。本実施形態のような極数P及びスロット数Sの関係とすることにより、第1ローター10と第2ローター20とを独立して駆動し、制御することができる。 As shown in FIG. 10, in the present embodiment, when the first rotor 10 and the second rotor 20 are driven by a common stator 30, the winding 33 is formed by the first rotor 10 and the second rotor 20 in the slot 35 </ b> A. The phase order is reversed. In this state, when a current in phase between the first rotor 10 and the second rotor 20 is applied to the winding 33 of the slot 35A, the first rotor 10 and the second rotor 20 are rotated in opposite directions. Further, the phase of the current for driving the second rotor 20 (or the first rotor 10) is advanced by 180 °, and the V phase and the W phase of the second rotor 20 (or the first rotor 10) are switched. In this way, the phase sequence of the windings 33 can be made the same in the first rotor 10 and the second rotor 20 in the slot 35A, so that the first rotor 10 and the second rotor 20 rotate in the same direction. Can be made. With the relationship between the number of poles P and the number of slots S as in this embodiment, the first rotor 10 and the second rotor 20 can be driven and controlled independently.
 このため、本実施形態では、数式2×m+6×n×(k-1)のm及びnを固定し、kを変更することにより得られる偶数からなる群であって、3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外し、さらにmを小さい値から大きい値に変更して得られる2×i個の群において(j+1)番目の群及び(2×i-j)番目の群からそれぞれ1個ずつ選択された2個の偶数を、それぞれ第1ローター10及び第2ローター20の磁極の数とする。すなわち、第1ローター10及び第2ローター20の磁極の数として選択される2個の偶数は、前述した2×i個の群において、mが小さい方から(j+1)番目の群に含まれる複数の偶数のうちの1個及びmが小さい方から(2×i-j)番目の群に含まれる複数の偶数のうちの1個となる。ここで、i、m、n、kは1以上の整数、jは0以上i-1以下の整数、mの最大値は3×n-1である。 For this reason, in the present embodiment, m and n in the formula 2 × m + 6 × n × (k−1) are fixed, and a group of even numbers obtained by changing k, and 3 × n / 2. A group including multiple and the smallest even number and the smallest even multiple is excluded, and m is changed from a small value to a large value, and the (j + 1) th group and (2 × ij) Two even numbers each selected from the first group are the numbers of magnetic poles of the first rotor 10 and the second rotor 20, respectively. That is, two even numbers selected as the number of magnetic poles of the first rotor 10 and the second rotor 20 are a plurality of numbers included in the (j + 1) th group from the smaller m in the 2 × i group described above. And even one of a plurality of even numbers included in the (2 × ij) -th group from the smaller m. Here, i, m, n, and k are integers of 1 or more, j is an integer of 0 to i−1, and the maximum value of m is 3 × n−1.
 例えば、nを固定し、mを小さい値から大きい値に変更したときに、8個の群が得られたとする。2×i=8なので、iは4になる。j=0の場合、mが小さい方から1番目の群と8番目の群、すなわち、mが最も小さい群と最も大きい群とからそれぞれ1個ずつの偶数が選択される。j=1の場合、mが小さい方から2番目の群と7番目の群、すなわち、mが2番目に小さい群と2番目に大きい群とからそれぞれ1個ずつの偶数が選択される。このように極数Pとスロット数S(=3×n)とを設定することで、スロット35Aにおいて第1ローター10と第2ローター20とで巻線33の相順を反対にすることができる。このため、上述の通り、3相電流の位相を制御することで、第1ローター10と第2ローター20とを独立して駆動し、制御できるようになる。 Suppose, for example, that 8 groups are obtained when n is fixed and m is changed from a small value to a large value. Since 2 × i = 8, i becomes 4. When j = 0, one even number is selected from each of the first group and the eighth group from the smallest m, that is, the smallest group and the largest group. When j = 1, one even number is selected from the second group and the seventh group from the smaller m, that is, one from the second smallest group and the second largest group. By setting the number of poles P and the number of slots S (= 3 × n) in this way, the phase order of the windings 33 can be reversed between the first rotor 10 and the second rotor 20 in the slot 35A. . Therefore, as described above, the first rotor 10 and the second rotor 20 can be independently driven and controlled by controlling the phase of the three-phase current.
 n=1の場合、スロット数S=3×n=3になる。2×m+6×n×(k-1)から求められる偶数からなる群は、下記のようになる。それぞれの群の末尾に付した数字は群の番号である(以下同様)。mの最大値は、3×n-1=2となる。3×n/2の倍数かつ最小の偶数は6であるが、n=1の場合、mが3以上の群は存在しないので、6以上の偶数から始まる群は存在しない。
 m=1:(2、8、14、20・・・):1
 m=2:(4、10、16、22・・・):2
When n = 1, the number of slots S = 3 × n = 3. The group consisting of even numbers obtained from 2 × m + 6 × n × (k−1) is as follows. The number attached to the end of each group is the group number (the same applies hereinafter). The maximum value of m is 3 × n−1 = 2. A multiple of 3 × n / 2 and the smallest even number is 6, but when n = 1, there is no group in which m is 3 or more, so there is no group that starts with an even number of 6 or more.
m = 1: (2, 8, 14, 20...): 1
m = 2: (4, 10, 16, 22 ...): 2
 mを変更することにより得られる群の数2×iは2個なので、i=1になり、jの最大値は0になる。この場合、第1ローター10の極数P1及び第2ローター20の極数P2として、1番目の群及び2番目の群からそれぞれ1個ずつの偶数が選択される。したがって、第1ローター10の極数P1及び第2ローター20の極数P2として選択可能な組み合わせは、2及び4、8及び10、14及び16等がある。 Since the number 2 × i of groups obtained by changing m is 2, i = 1 and the maximum value of j is 0. In this case, one even number is selected from each of the first group and the second group as the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20. Therefore, combinations that can be selected as the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 include 2 and 4, 8, and 10, 14 and 16, and the like.
 n=2の場合、スロット数S=3×n=6になる。2×m+6×n×(k-1)から求められる数の群は、下記のようになる。mの最大値は、3×n-1=5となる。3×n/2の倍数かつ最小の偶数は6である。m=3のときの群は、(6、18、30、42・・・)となり、最小の数に6を含んでいる。このため、m=3の群は極数P1、P2の選択から除外される。n=2の場合、m=3とすると、巻線33の相がU相、V相及びW相の少なくとも一つを欠く偶数を含む群を作るからである。このため、n=2の場合、m=3は除かれる。
 m=1:(2、14、26、38・・・):1
 m=2:(4、16、28、40・・・):2
 m=4:(8、20、32、44・・・):3
 m=5:(10、22、34、46・・・):4
When n = 2, the number of slots S = 3 × n = 6. A group of numbers obtained from 2 × m + 6 × n × (k−1) is as follows. The maximum value of m is 3 × n−1 = 5. A multiple of 3 × n / 2 and the smallest even number is 6. The group when m = 3 is (6, 18, 30, 42...), and 6 is included in the minimum number. For this reason, the group of m = 3 is excluded from selection of the pole numbers P1 and P2. This is because in the case of n = 2, if m = 3, the phase of the winding 33 forms a group including an even number lacking at least one of the U phase, the V phase, and the W phase. For this reason, when n = 2, m = 3 is excluded.
m = 1: (2, 14, 26, 38...): 1
m = 2: (4, 16, 28, 40 ...): 2
m = 4: (8, 20, 32, 44...): 3
m = 5: (10, 22, 34, 46...): 4
 mを変更することにより得られる群の数2×iは4個なので、i=2になり、jの最大値は1になる。この場合、第1ローター10の極数P1及び第2ローター20の極数P2として、1番目の群及び4番目の群からそれぞれ1個ずつの偶数又は2番目の群及び3番目の群からそれぞれ1個ずつの偶数が選択される。したがって、第1ローター10の極数P1及び第2ローター20の極数P2として選択可能な組み合わせは、j=0の場合2及び10、14及び22等があり、j=1の場合4及び8、16及び20等がある。 Since the number of groups 2 × i obtained by changing m is 4, i = 2, and the maximum value of j is 1. In this case, the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 are one each from the first group and the fourth group, respectively from the even number or the second group and the third group. One even number is selected. Therefore, combinations that can be selected as the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 include 2 and 10, 14 and 22 when j = 0, and 4 and 8 when j = 1. 16 and 20 etc.
 n=3の場合、スロット数S=3×n=9になる。2×m+6×n×(k-1)から求められる数の群は、下記のようになる。mの最大値は、3×n-1=8となる。3×n/2の倍数かつ最小の偶数は18であるが、n=3の場合、mが9以上の群は存在しないので、18以上の偶数から始まる群は存在しない。
 m=1:(2、20、38、56、74・・・):1
 m=2:(4、22、40、58、76・・・):2
 m=3:(6、24、42、60、78・・・):3
 m=4:(8、26、44、62、80・・・):4
 m=5:(10、28、46、64、82・・・):5
 m=6:(12、30、48、66、84・・・):6
 m=7:(14、32、50、68、86・・・):7
 m=8:(16、34、52、70、88・・・):8
When n = 3, the number of slots S = 3 × n = 9. A group of numbers obtained from 2 × m + 6 × n × (k−1) is as follows. The maximum value of m is 3 × n−1 = 8. A multiple of 3 × n / 2 and the smallest even number is 18, but when n = 3, there is no group starting with an even number greater than or equal to 18 because there is no group with m equal to or greater than 9.
m = 1: (2, 20, 38, 56, 74...): 1
m = 2: (4, 22, 40, 58, 76 ...): 2
m = 3: (6, 24, 42, 60, 78 ...): 3
m = 4: (8, 26, 44, 62, 80 ...): 4
m = 5: (10, 28, 46, 64, 82...): 5
m = 6: (12, 30, 48, 66, 84...): 6
m = 7: (14, 32, 50, 68, 86...): 7
m = 8: (16, 34, 52, 70, 88 ...): 8
 mを変更することにより得られる群の数2×iは8個なので、i=4になり、jの最大値は3になる。この場合、第1ローター10の極数P1及び第2ローター20の極数P2として、1番目の群及び8番目の群からそれぞれ1個ずつの偶数、2番目の群及び7番目の群からそれぞれ1個ずつの偶数、3番目の群及び6番目の群からそれぞれ1個ずつの偶数又は4番目の群及び5番目の群からそれぞれ1個ずつの偶数が選択される。したがって、第1ローター10の極数P1及び第2ローター20の極数P2として選択可能な組み合わせは、j=0の場合2及び16、20及び34等があり、j=1の場合4及び14、20及び32等があり、j=2の場合6及び12、24及び30等があり、j=3の場合8及び10、26及び28等がある。 Since the number of groups 2 × i obtained by changing m is 8, i = 4 and the maximum value of j is 3. In this case, the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 are respectively an even number, one each from the first group and the eighth group, respectively from the second group and the seventh group. One even number is selected from each of the third group, and the sixth group, and one even number is selected from each of the fourth group and the fifth group. Therefore, combinations that can be selected as the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 include 2 and 16, 20 and 34 when j = 0, and 4 and 14 when j = 1. , 20 and 32, etc., and when j = 2, there are 6 and 12, 24 and 30, etc., and when j = 3, there are 8 and 10, 26 and 28 etc.
 n=4の場合、スロット数S=3×n=12になる。2×m+6×n×(k-1)から求められる数の群は、下記のようになる。mの最大値は、3×n-1=11となる。3×n/2の倍数かつ最小の偶数は6であり、その倍数は、12、18である。m=3のときの群は、(6、30、54、78、102・・・)となり、最小の数に6を含んでいる。m=6のときの群は、(12、36、60、84、108・・・)となり、最小の数に12を含んでいる。m=9のときの群は、(18、42、66、90、114・・・)となり、最小の数に18を含んでいる。このため、m=3、6、9の群は極数P1、P2の選択から除外される。n=4の場合、m=3、6、9とすると、巻線33の相がU相、V相及びW相の少なくとも一つを欠く偶数を含む群を作るからである。
 m=1:(2、26、50、74、98・・・):1
 m=2:(4、28、52、76、100・・・):2
 m=4:(8、32、56、80、104・・・):3
 m=5:(10、34、58、82、106・・・):4
 m=7:(14、38、62、86、110・・・):5
 m=8:(16、40、64、88、112・・・):6
 m=10:(20、44、68、92、116・・・):7
 m=11:(22、46、70、94、118・・・):8
 mを変更することにより得られる群の数2×iはn=3の場合と同様に8個なので、i=4になり、jは3になる。この場合、第1ローター10の極数P1及び第2ローター20の極数P2として、1番目の群及び8番目の群からそれぞれ1個ずつの偶数、2番目の群及び7番目の群からそれぞれ1個ずつの偶数、3番目の群及び6番目の群からそれぞれ1個ずつの偶数又は4番目の群及び5番目の群からそれぞれ1個ずつの偶数が選択される。したがって、第1ローター10の極数P1及び第2ローター20の極数P2として選択可能な組み合わせは、j=0の場合2及び22、26及び46等があり、j=1の場合4及び20、28及び44等があり、j=2の場合8及び16、32及び40等があり、j=3の場合10及び14、34及び38等がある。次に、本実施形態に係る電動機1の制御を説明する。この制御は、図10に示した例、すなわち、スロット数S=12、第1ローター10の極数P=8、第2ローター20の極数P=16である場合であってもよいし、スロット数S=12、第1ローター10の極数P=10、第2ローター20の極数P=14である場合であってもよい。すなわち、本実施形態に係る電動機1の制御は、上述したように決定されたスロット数、第1ローター10の極数及び第2ローター20の極数の電動機1に対して適用することができる。
When n = 4, the number of slots S = 3 × n = 12. A group of numbers obtained from 2 × m + 6 × n × (k−1) is as follows. The maximum value of m is 3 × n−1 = 11. The multiple of 3 × n / 2 and the smallest even number is 6, and the multiples are 12, 18. The group when m = 3 is (6, 30, 54, 78, 102...), and 6 is included in the minimum number. The group when m = 6 is (12, 36, 60, 84, 108...), and 12 is included in the minimum number. The group when m = 9 is (18, 42, 66, 90, 114...), and 18 is included in the minimum number. For this reason, the group of m = 3, 6, and 9 is excluded from selection of the pole numbers P1 and P2. This is because when n = 4 and m = 3, 6, and 9, a group including an even number in which the phase of the winding 33 lacks at least one of the U phase, the V phase, and the W phase is formed.
m = 1: (2, 26, 50, 74, 98...): 1
m = 2: (4, 28, 52, 76, 100 ...): 2
m = 4: (8, 32, 56, 80, 104 ...): 3
m = 5: (10, 34, 58, 82, 106...): 4
m = 7: (14, 38, 62, 86, 110 ...): 5
m = 8: (16, 40, 64, 88, 112 ...): 6
m = 10: (20, 44, 68, 92, 116 ...): 7
m = 11: (22, 46, 70, 94, 118 ...): 8
Since the number of groups 2 × i obtained by changing m is 8 as in the case of n = 3, i = 4 and j becomes 3. In this case, the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 are respectively an even number, one each from the first group and the eighth group, respectively from the second group and the seventh group. One even number is selected from each of the third group, and the sixth group, and one even number is selected from each of the fourth group and the fifth group. Therefore, combinations that can be selected as the number of poles P1 of the first rotor 10 and the number of poles P2 of the second rotor 20 include 2 and 22, 26, and 46 when j = 0, and 4 and 20 when j = 1. , 28 and 44, etc., and when j = 2, there are 8 and 16, 32 and 40, etc., and when j = 3, there are 10 and 14, 34 and 38 etc. Next, control of the electric motor 1 according to the present embodiment will be described. This control may be the example shown in FIG. 10, that is, the number of slots S = 12, the number of poles P of the first rotor 10 is 8, and the number of poles P of the second rotor 20 is P = 16. The number of slots S may be 12, the number of poles P of the first rotor 10 may be 10, and the number of poles P of the second rotor 20 may be 14. That is, the control of the electric motor 1 according to the present embodiment can be applied to the electric motor 1 having the number of slots, the number of poles of the first rotor 10 and the number of poles of the second rotor 20 determined as described above.
 なお、第1ローター10及び第2ローター20の磁極の数は、次のようにも表現できる。すなわち、数式2×m+6×n×(k-1)のm及びnを固定し、kを変更することにより得られる偶数からなる群であって、3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外したmの群及び3×n-mの群からそれぞれ1個ずつ選択された2個の偶数を、それぞれ第1ローター10及び第2ローター20の磁極の数とする。すなわち、第1ローター10及び第2ローター20の磁極の数として選択される2個の偶数は、mの群に含まれる複数の偶数のうちの1個及び3×n-mの群に含まれる複数の偶数のうちの1個となる。ここで、m、n、kは1以上の整数、mの最大値は3×n-1である。3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外するのは、巻線相順が3相とならない組合せを除くためである。 The number of magnetic poles of the first rotor 10 and the second rotor 20 can be expressed as follows. That is, a group consisting of an even number obtained by fixing m and n in Formula 2 × m + 6 × n × (k−1) and changing k, which is a multiple of 3 × n / 2 and the smallest even number and Two even numbers, each selected from the group of m and the group of 3 × n−m, excluding the group including the smallest even multiple, are respectively the magnetic poles of the first rotor 10 and the second rotor 20. It is a number. That is, two even numbers selected as the number of magnetic poles of the first rotor 10 and the second rotor 20 are included in one of a plurality of even numbers included in the m group and in a 3 × n−m group. One of a plurality of even numbers. Here, m, n, and k are integers of 1 or more, and the maximum value of m is 3 × n−1. The reason why the group including a multiple of 3 × n / 2, the smallest even number, and the smallest even multiple is excluded is to exclude combinations in which the winding phase order is not three phases.
 例えば、n=4の場合、mは1、2、4、5、7、8、10、11となる。この場合、第1ローター10及び第2ローター20の磁極の数は、m=1の群及びm=3×4-1=11の群からそれぞれ1個ずつ選択された2個の偶数となる。m=2の場合はm=2の群及びm=3×4-2=10の群からそれぞれ1個ずつ選択された2個の偶数が、m=4の場合はm=4の群及びm=3×4-4=8の群からそれぞれ1個ずつ選択された2個の偶数が、m=5の場合はm=5の群及びm=3×4-5=7の群からそれぞれ1個ずつ選択された2個の偶数が、第1ローター10及び第2ローター20の磁極の数となる。 For example, when n = 4, m is 1, 2, 4, 5, 7, 8, 10, 11. In this case, the number of magnetic poles of the first rotor 10 and the second rotor 20 is two even numbers each selected from the group of m = 1 and the group of m = 3 × 4-1 = 11. When m = 2, two even numbers each selected from the group of m = 2 and the group of m = 3 × 4-2 = 10 are respectively selected. When m = 4, the group of m = 4 and m = 2 × 4−4 = 8, each of which is an even number selected from the group of m = 5, and when m = 5, each of m = 5 and m = 3 × 4−5 = 7 Two even numbers selected one by one are the number of magnetic poles of the first rotor 10 and the second rotor 20.
<電動機の制御>
 上記のような極数Pとスロット数Sとの組み合せとすると、第1ローター10と第2ローター20とが互いに反対方向に回転する巻線相順となる。このため、まず、第1ローター10と第2ローター20とを互いに反対方向に回転させる場合を説明する。電動機1は、第1ローター10と第2ローター20とが共通のステーター30で駆動される。このため、ステーター30の巻線33u、33v、33wに与える電流(駆動電流)は、第1ローター10を駆動するための電流(又は電圧、以下同様)と、第2ローター20を駆動するための電流とを重畳して(重ね合わせて)合成した電流(合成電流)となる。第1ローター10の回転速度をω1/π×30rpm、第1ローター10を駆動するための電流の振幅をI1(アンペア)、第2ローター20の回転速度をω2/π×30rpm、第2ローター20を駆動するための電流の振幅をI2(アンペア)とし、それぞれのU相、V相、W相の電流をsin波で変化させるとする。第1ローター10と第2ローター20とを同方向に回転させる場合、第1ローター10のU相、V相、W相の駆動電流U1、V1、W1は、式(2)~式(4)のようになり、第2ローター10のU相、V相、W相の駆動電流U2、V2、W2は、式(5)~式(7)のようになる。ω1、ω2は、それぞれ第1ローター10、第2ローター20の角周波数、tは時間である。
<Control of electric motor>
When the combination of the number of poles P and the number of slots S is as described above, the first rotor 10 and the second rotor 20 are in a winding phase sequence that rotates in opposite directions. For this reason, first, the case where the 1st rotor 10 and the 2nd rotor 20 are rotated in the mutually opposite direction is demonstrated. In the electric motor 1, the first rotor 10 and the second rotor 20 are driven by a common stator 30. Therefore, the current (drive current) applied to the windings 33u, 33v, 33w of the stator 30 is the current (or voltage, the same applies hereinafter) for driving the first rotor 10, and the current for driving the second rotor 20. It becomes a current (composite current) obtained by superimposing (superimposing) the current. The rotational speed of the first rotor 10 is ω1 / π × 30 rpm, the current amplitude for driving the first rotor 10 is I1 (ampere), the rotational speed of the second rotor 20 is ω2 / π × 30 rpm, and the second rotor 20 Suppose that the amplitude of the current for driving is I2 (ampere), and the currents of the U phase, V phase, and W phase are changed by sin waves. When the first rotor 10 and the second rotor 20 are rotated in the same direction, the U-phase, V-phase, and W-phase drive currents U1, V1, and W1 of the first rotor 10 are expressed by equations (2) to (4). Thus, the drive currents U2, V2, and W2 of the second rotor 10 for the U-phase, V-phase, and W-phase are expressed by equations (5) to (7). ω1 and ω2 are angular frequencies of the first rotor 10 and the second rotor 20, respectively, and t is time.
 U1=I1×sin(ω1×t)・・・(2)
 V1=I1×sin(ω1×t-2×π/3)・・・(3)
 W1=I1×sin(ω1×t+2×π/3)・・・(4)
 U2=I2×sin(ω2×t)・・・(5)
 V2=I2×sin(ω2×t-2×π/3)・・・(6)
 W2=I2×sin(ω2×t+2×π/3)・・・(7)
U1 = I1 × sin (ω1 × t) (2)
V1 = I1 × sin (ω1 × t−2 × π / 3) (3)
W1 = I1 × sin (ω1 × t + 2 × π / 3) (4)
U2 = I2 × sin (ω2 × t) (5)
V2 = I2 × sin (ω2 × t−2 × π / 3) (6)
W2 = I2 × sin (ω2 × t + 2 × π / 3) (7)
 U相、V相及びW相の駆動電流は、第1ローター10の各相の電流と第2ローター20の各相の電流とを、それぞれ加算した値になる。すなわち、U相の駆動電流U、すなわち、巻線33uの駆動電流は式(8)、V相の駆動電流V、すなわち、巻線33vの駆動電流は式(9)、W相の駆動電流W、すなわち、巻線33wの駆動電流は式(10)のようになる。電動機1の制御装置は、式(8)~(10)で表される駆動電流U、V、Wを生成し、電動機1が有するステーター30の巻線33u、33v、33wに与えることにより、電動機1の第1ローター10と第2ローター20とを独立して駆動することができる。例えば、角周波数ω1、ω2を異ならせることにより、第1ローター10の回転速度と第2ローター20の回線速度とを異ならせることができる。また、第1ローター10を駆動するための電流の振幅I1又は第2ローター20を駆動するための電流の振幅I2を異ならせることにより、第1ローター10の出力と第2ローター20の出力とを異ならせることができる。
 U=U1+U2・・・(8)
 V=V1+V2・・・(9)
 W=W1+W2・・・(10)
The driving currents of the U phase, the V phase, and the W phase are values obtained by adding the currents of the respective phases of the first rotor 10 and the currents of the respective phases of the second rotor 20. That is, the U-phase drive current U, that is, the drive current of the winding 33u is expressed by Equation (8), the V-phase drive current V, that is, the drive current of the winding 33v is expressed by Equation (9), and the W-phase drive current W That is, the drive current of the winding 33w is as shown in Expression (10). The control device for the electric motor 1 generates drive currents U, V, and W expressed by the equations (8) to (10) and supplies them to the windings 33u, 33v, and 33w of the stator 30 that the electric motor 1 has. One first rotor 10 and second rotor 20 can be driven independently. For example, the rotational speed of the first rotor 10 and the line speed of the second rotor 20 can be made different by making the angular frequencies ω1 and ω2 different. Also, by making the current amplitude I1 for driving the first rotor 10 or the current amplitude I2 for driving the second rotor 20 different, the output of the first rotor 10 and the output of the second rotor 20 are obtained. Can be different.
U = U1 + U2 (8)
V = V1 + V2 (9)
W = W1 + W2 (10)
 次に、第1ローター10と第2ローター20とを同方向に回転させる場合を説明する。この場合、両者を逆方向に回転させる場合に対して、第1ローター10又は第2ローター20のいずれか一方のV相とW相とを入れ替えるとともに、各相に流す電流の位相を180°進ませる。 Next, a case where the first rotor 10 and the second rotor 20 are rotated in the same direction will be described. In this case, the V phase and the W phase of either the first rotor 10 or the second rotor 20 are exchanged and the phase of the current flowing through each phase is advanced by 180 ° with respect to the case where both are rotated in the opposite direction. Make it.
 第1ローター10と第2ローター20とを同方向に回転させる場合、第1ローター10のU相、V相、W相の駆動電流U1、V1、W1は、上述した式(2)~式(4)のようになり、第2ローター10のU相、V相、W相の駆動電流U2、V2、W2は、式(11)~式(13)のようになる。第2ローター20のU相は、式(5)に180°、すなわちπを加算したものである。第2ローター20のV相は、式(5)の位相を(2×π/3+π)進ませ、第2ローター20のW相は、式(5)の位相を(-2×π/3+π)進ませたものである。式(2)~式(3)のU1、V1、W1及び式(11)~式(13)のU2、V2、W2を式(8)~式(10)に与えることにより、第1ローター10と第2ローター20とを同方向に回転させる場合のU相、V相及びW相の駆動電流U、V、Wを求めることができる。
 U2=I2×sin(ω2×t+π)・・・(11)
 V2=I2×sin(ω2×t+2×π/3+π)=I1×sin(ω2×t+5×π/3)・・・(12)
 W2=I2×sin(ω2×t-2×π/3+π)=I1×sin(ω2×t+π/3)・・・(13)
When the first rotor 10 and the second rotor 20 are rotated in the same direction, the U-phase, V-phase, and W-phase drive currents U1, V1, and W1 of the first rotor 10 are expressed by the equations (2) to ( 4), and the U-phase, V-phase, and W-phase drive currents U2, V2, and W2 of the second rotor 10 are expressed by equations (11) to (13). The U phase of the second rotor 20 is obtained by adding 180 °, that is, π to the equation (5). The V phase of the second rotor 20 advances the phase of Equation (5) by (2 × π / 3 + π), and the W phase of the second rotor 20 advances the phase of Equation (5) by (−2 × π / 3 + π). It has been advanced. By giving U1, V1, W1 of the equations (2) to (3) and U2, V2, W2 of the equations (11) to (13) to the equations (8) to (10), the first rotor 10 And U-phase, V-phase, and W-phase drive currents U, V, and W when the second rotor 20 and the second rotor 20 are rotated in the same direction.
U2 = I2 × sin (ω2 × t + π) (11)
V2 = I2 × sin (ω2 × t + 2 × π / 3 + π) = I1 × sin (ω2 × t + 5 × π / 3) (12)
W2 = I2 × sin (ω2 × t−2 × π / 3 + π) = I1 × sin (ω2 × t + π / 3) (13)
 このように、電動機1(電動機1aも同様)は、隣接するスロット間における電気角θeが、第1ローター10と第2ローター20との両方で同じ大きさとなるように極数P及びスロット数Sを設定する。その上で、第1ローター10を駆動するための電流と第2ローター20を駆動するための電流とを重畳して合成した合成電流をステーター30の巻線33に与える。このようにすることで、電動機1は、第1ローター10と第2ローター20とが独立に制御できるようになる。具体的には、電動機1は、第1ローター10及び第2ローター20の回転方向、回転速度及びトルクをそれぞれ独立に制御することが可能になる。このため、第1ローター10と第2ローター20とは、互いに同方向又は反対方向に回転できる。 Thus, the electric motor 1 (same for the electric motor 1a) has the number of poles P and the number of slots S so that the electrical angle θe between adjacent slots is the same in both the first rotor 10 and the second rotor 20. Set. Then, a combined current obtained by superimposing the current for driving the first rotor 10 and the current for driving the second rotor 20 is applied to the winding 33 of the stator 30. By doing in this way, the electric motor 1 can control the 1st rotor 10 and the 2nd rotor 20 independently. Specifically, the electric motor 1 can independently control the rotation direction, the rotation speed, and the torque of the first rotor 10 and the second rotor 20. Therefore, the first rotor 10 and the second rotor 20 can rotate in the same direction or in opposite directions.
 第1ローター10を駆動するための電流及び第2ローター20を駆動するための電流は、周波数が回転速度に、振幅がトルクに対応する。電動機1は、極数P及びスロット数Sを上述した関係に設定することにより、第1ローター10と第2ローター20とを独立して駆動し、制御することができる。このため、第1ローター10を駆動するための電流と、前記第2ローター20を駆動するための電流とを、互いに異なる周波数及び振幅とすることにより、第1ローター10及び第2ローター20の回転速度とトルクとを、それぞれが異なる大きさに制御することができる。 The current for driving the first rotor 10 and the current for driving the second rotor 20 have a frequency corresponding to the rotational speed and an amplitude corresponding to the torque. The electric motor 1 can drive and control the first rotor 10 and the second rotor 20 independently by setting the number of poles P and the number of slots S to the relationship described above. For this reason, the current for driving the first rotor 10 and the current for driving the second rotor 20 have different frequencies and amplitudes, thereby rotating the first rotor 10 and the second rotor 20. The speed and torque can be controlled to different magnitudes.
 電動機1は、第1ローター10と第2ローター20とが独立に制御できるので、起動してから一定の回転速度になるまでの過渡的な時間も個別に設定し、制御することが可能になる。すなわち、電動機1は、起動してから一定の回転速度に到達するまでの時間も、第1ローター10と第2ローター20との間で任意に設定して互いに異ならせることができる。 In the electric motor 1, since the first rotor 10 and the second rotor 20 can be controlled independently, it is possible to individually set and control a transitional time from starting up to a constant rotational speed. . That is, the electric motor 1 can be set differently between the first rotor 10 and the second rotor 20 from the time it is activated until it reaches a certain rotational speed.
<ステーターの変形例>
 図11は、ステーターの変形例を示す斜視図である。図12は、ステーターの変形例を示す一部平面図である。電動機1がアキシャルギャップ型である場合、第1ローター10と第2ローター20とは、回転軸Zrと平行な方向に向かって配列されている。電動機1がアキシャルギャップ型である場合、図12に示すように、ステーター、より具体的にはステーターコア31Dは、径方向外側と径方向内側との間でスロット35が同様の形状となることが好ましい。
<Modification of stator>
FIG. 11 is a perspective view showing a modification of the stator. FIG. 12 is a partial plan view showing a modification of the stator. When the electric motor 1 is an axial gap type, the first rotor 10 and the second rotor 20 are arranged in a direction parallel to the rotation axis Zr. When the electric motor 1 is an axial gap type, as shown in FIG. 12, in the stator, more specifically, the stator core 31D, the slot 35 may have the same shape between the radially outer side and the radially inner side. preferable.
 本変形例では、ステーターコア31Dは、スロット35の部分の径方向外側における円弧部分(外周円弧)の長さ、すなわち、隣接するティース32Dの軸部32DS間における外周円弧の長さLoutと、スロット35の部分の径方向内側における円弧部分(内周円弧)の長さ、すなわち、隣接するティース32Dの軸部32DS間における内周円弧の長さLinとが同程度の大きさ、好ましくは同一になっている。このようにするために、ティース32の軸部32DSの径方向外側における円弧部分の長さtoutは、ティース32の軸部32DSの径方向内側における円弧部分の長さtinよりも大きくなっている。 In the present modification, the stator core 31D includes the length of the arc portion (outer arc) on the radially outer side of the slot 35, that is, the length Lout of the outer arc between the shaft portions 32DS of the adjacent teeth 32D, and the slot The length of the arc portion (inner circumference arc) on the radially inner side of the portion 35, that is, the length Lin of the inner circumference arc between the shaft portions 32DS of the adjacent teeth 32D, is preferably the same size, preferably the same. It has become. For this purpose, the length tout of the arc portion on the radially outer side of the shaft portion 32DS of the tooth 32 is larger than the length tin of the arc portion on the radially inner side of the shaft portion 32DS of the tooth 32.
 このようにすることで、隣接するティース32の軸部32DS間に形成されるスロット35は、ステーターコア31Dの周方向における寸法を、ステーターコア31Dの径方向に向かって略一定とすることができる。その結果、より多くの巻線33をスロット35に巻き回すことができるとともに、巻線33をステーターコア31Dに巻き回す作業も容易になる。 By doing in this way, the slot 35 formed between the shaft parts 32DS of the adjacent teeth 32 can make the dimension of the stator core 31D in the circumferential direction substantially constant toward the radial direction of the stator core 31D. . As a result, more windings 33 can be wound around the slots 35, and the winding 33 can be easily wound around the stator core 31D.
1、1a 電動機
2 筐体
2I 内周部
3A、3B、3C、3D、3Aa、3Ba、3Ca、3Da 軸受
4 取付対象
5、6 貫通孔
10、10a、10I 第1ローター
10T 第1磁石係合部
11、11a、11b、11c、11I、21、21a、21b、21c、21I ローター本体
12、12a、22、22a 動力伝達シャフト
13、13a、13I、23、23a、23I 磁石
20、20a、20I 第2ローター
20T 第2磁石係合部
30、30a ステーター
31、31a、31A、31B、31C、31D、31E、31F ステーターコア
31H、31HA、31HB 貫通孔
31T 端部
32、32ao、32ai、32C、32D、32E、32F、32G、32H ティース
32S、32DS 軸部
32P、32EP、32Pg 平板部
33、33u、33v、33w、33a、33au、33av、33aw 巻線
34、34a、34C ヨーク
35、35a、35A~35L スロット
DESCRIPTION OF SYMBOLS 1, 1a Electric motor 2 Housing | casing 2I Inner peripheral part 3A, 3B, 3C, 3D, 3Aa, 3Ba, 3Ca, 3Da Bearing 4 Attachment object 5, 6 Through- hole 10, 10a, 10I 1st rotor 10T 1st magnet engaging part 11, 11a, 11b, 11c, 11I, 21, 21a, 21b, 21c, 21I Rotor body 12, 12a, 22, 22a Power transmission shaft 13, 13a, 13I, 23, 23a, 23I Magnet 20, 20a, 20I Second Rotor 20T 2nd magnet engaging part 30, 30a Stator 31, 31a, 31A, 31B, 31C, 31D, 31E, 31F Stator core 31H, 31HA, 31HB Through-hole 31T End part 32, 32ao, 32ai, 32C, 32D, 32E , 32F, 32G, 32H Teeth 32S, 32DS Shaft 32P, 32EP, 32Pg Plate portion 33,33u, 33v, 33w, 33a, 33au, 33av, 33aw windings 34, 34a, 34C yoke 35, 35a, 35A ~ 35L slot

Claims (8)

  1.  回転軸を中心として回転する第1ローター及び第2ローターと、
     前記第1ローターと前記第2ローターとの間に配置されるとともに前記回転軸の周囲を取り囲む環状の構造体であり、3×n個のスロットを有するステーターと、
     それぞれの前記スロットに配置される複数の巻線と、を含み、
     数式2×m+6×n×(k-1)のm及びnを固定し、kを変更することにより得られる偶数からなる群であって、3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外し、さらにmを小さい値から大きい値に変更して得られる2×i個の群における(j+1)番目の群及び(2×i-j)番目の群からそれぞれ1個ずつ選択された2個の偶数が、それぞれ前記第1ローター及び前記第2ローターの磁極の数となることを特徴とする電動機。
     ここで、i、m、n、kは1以上の整数、jは0以上i-1以下の整数、mの最大値は3×n-1。
    A first rotor and a second rotor rotating about a rotation axis;
    A ring-shaped structure that is disposed between the first rotor and the second rotor and surrounds the periphery of the rotation shaft, and a stator having 3 × n slots;
    A plurality of windings disposed in each of the slots,
    A group consisting of an even number obtained by fixing m and n in the formula 2 × m + 6 × n × (k−1) and changing k, which is a multiple of 3 × n / 2, the smallest even number, and the minimum From the (j + 1) th group and the (2 × i−j) th group in the 2 × i groups obtained by changing m from a small value to a large value. Two even numbers each selected one by one are the number of magnetic poles of the first rotor and the second rotor, respectively.
    Here, i, m, n, and k are integers of 1 or more, j is an integer of 0 to i−1, and the maximum value of m is 3 × n−1.
  2.  前記ステーターの巻線には、前記第1ローターを駆動するための電流と、前記第2ローターを駆動するための電流とを重畳して合成した電流が与えられる請求項1に記載の電動機。 The electric motor according to claim 1, wherein a current obtained by superimposing a current for driving the first rotor and a current for driving the second rotor is applied to the winding of the stator.
  3.  前記第1ローターを駆動するための電流と、前記第2ローターを駆動するための電流とは、互いに異なる周波数及び振幅をもった電流であることを特徴とする請求項2に記載の電動機。 3. The electric motor according to claim 2, wherein the current for driving the first rotor and the current for driving the second rotor are currents having different frequencies and amplitudes.
  4.  前記巻線は、前記ステーターの周方向に向かって巻き回されているトロイダルコイルである請求項1から3のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 3, wherein the winding is a toroidal coil wound in a circumferential direction of the stator.
  5.  前記第1ローターは、径方向外側に前記第1ローターの磁極を作るための磁石と係合する部分を有し、前記第2ローターは、径方向外側に前記第2ローターの磁極を作るための磁石と係合する部分を有する請求項1から4のいずれか1項に記載の電動機。 The first rotor has a portion that engages with a magnet for making the magnetic pole of the first rotor radially outward, and the second rotor is for making the magnetic pole of the second rotor radially outward. The electric motor of any one of Claim 1 to 4 which has a part engaged with a magnet.
  6.  前記第1ローターと前記第2ローターとは、前記ステーターを挟んで前記回転軸の手前から奥に向かって互いに平行に配列されている請求項1から5のいずれか1項に記載の電動機。 The electric motor according to any one of claims 1 to 5, wherein the first rotor and the second rotor are arranged in parallel to each other from the front of the rotating shaft to the back with the stator interposed therebetween.
  7.  前記ステーターは、径方向外側と径方向内側との間で前記スロットの部分の外周円弧の長さと内周円弧の長さとが同一である請求項6に記載の電動機。 The electric motor according to claim 6, wherein the stator has the same outer circumferential arc length and inner circumferential arc length in the slot portion between the radially outer side and the radially inner side.
  8.  回転軸を中心として回転するとともに、磁極を作る磁石及び前記磁石と係合する部分を径方向外側に有する第1ローター及び第2ローターと、
     前記第1ローターと前記第2ローターとの間に配置されるとともに前記回転軸の周囲を取り囲む環状の構造体であり、3×n個のスロットを有するステーターと、
     それぞれの前記スロットに配置されるとともに、前記ステーターの周方向に向かって巻き回されているトロイダルコイルとなる複数の巻線と、を含み、
     前記第1ローターと前記第2ローターとは、前記ステーターを挟んで前記回転軸の手前から奥に向かって互いに平行に配列され、
     さらに、数式2×m+6×n×(k-1)のm及びnを固定し、kを変更することにより得られる偶数からなる群であって、3×n/2の倍数かつ最小の偶数及び前記最小の偶数の倍数を含む群を除外し、さらにmを小さい値から大きい値に変更して得られる2×i個の群における(j+1)番目の群及び(2×i-j)番目の群からそれぞれ1個ずつ選択された2個の偶数が、それぞれ前記第1ローター及び前記第2ローターの磁極の数となることを特徴とする電動機。
     ここで、i、m、n、kは1以上の整数、jは0以上i-1以下の整数、mの最大値は3×n-1。
    A first rotor and a second rotor that rotate about a rotation axis and that have a magnet that forms a magnetic pole and a portion that engages with the magnet on a radially outer side;
    A ring-shaped structure that is disposed between the first rotor and the second rotor and surrounds the periphery of the rotation shaft, and a stator having 3 × n slots;
    A plurality of windings that are disposed in each of the slots and become toroidal coils wound in the circumferential direction of the stator,
    The first rotor and the second rotor are arranged in parallel to each other from the front of the rotating shaft to the back with the stator interposed therebetween,
    Furthermore, a group consisting of an even number obtained by fixing m and n in Formula 2 × m + 6 × n × (k−1) and changing k, which is a multiple of 3 × n / 2 and the smallest even number and The group including the smallest even multiple is excluded, and the (j + 1) -th group and the (2 × ij) -th group in 2 × i groups obtained by changing m from a small value to a large value Two even numbers selected one by one from the group respectively become the number of magnetic poles of the first rotor and the second rotor, respectively.
    Here, i, m, n, and k are integers of 1 or more, j is an integer of 0 to i−1, and the maximum value of m is 3 × n−1.
PCT/JP2012/073220 2011-12-06 2012-09-11 Electric motor WO2013084556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-267279 2011-12-06
JP2011267279A JP2013121215A (en) 2011-12-06 2011-12-06 Electric motor

Publications (1)

Publication Number Publication Date
WO2013084556A1 true WO2013084556A1 (en) 2013-06-13

Family

ID=48573940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073220 WO2013084556A1 (en) 2011-12-06 2012-09-11 Electric motor

Country Status (2)

Country Link
JP (1) JP2013121215A (en)
WO (1) WO2013084556A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951036A (en) * 2019-02-21 2019-06-28 郑州大学 A kind of constant two-rotor axial magnetic flux Circular Winding magneto of rotating ratio
EP3512082A4 (en) * 2016-06-23 2020-05-27 Trofymchuk, Oleksiy Magnetic device suitable for use as a power generator or drive motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082846A (en) * 2013-10-21 2015-04-27 鴻宇能源科技股▲分▼有限公司 Differential motor
KR101772271B1 (en) * 2015-06-03 2017-08-29 박태혁 Generator for decreasing counter electromotive
GB201900478D0 (en) 2019-01-14 2019-02-27 Rolls Royce Plc Turbomachine
WO2023144859A1 (en) * 2022-01-25 2023-08-03 須山弘次 Magnet reversal motor and power generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320187A (en) * 2005-04-14 2006-11-24 Mitsubishi Electric Corp Toroidal wound motor
JP2010206861A (en) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd Rotating electrical machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320187A (en) * 2005-04-14 2006-11-24 Mitsubishi Electric Corp Toroidal wound motor
JP2010206861A (en) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd Rotating electrical machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512082A4 (en) * 2016-06-23 2020-05-27 Trofymchuk, Oleksiy Magnetic device suitable for use as a power generator or drive motor
CN109951036A (en) * 2019-02-21 2019-06-28 郑州大学 A kind of constant two-rotor axial magnetic flux Circular Winding magneto of rotating ratio

Also Published As

Publication number Publication date
JP2013121215A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
WO2013073274A1 (en) Electric motor
US10432049B2 (en) Rotor for a rotary electric machine
KR100677280B1 (en) Unequal slot type stator and hybrid induction motor having the same
WO2013084556A1 (en) Electric motor
US10714992B2 (en) Motor including plurality of rotor parts
JP2013074743A (en) Rotary electric machine
CN101222154B (en) Rotation structure of permanent magnet motor
JP5431886B2 (en) motor
JP2003134788A (en) Permanent magnet rotary electric machine
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2015089240A (en) Electric motor
JP6332094B2 (en) Rotor, electric motor
WO2014030246A1 (en) Rotating electrical machine and wind generator system
JP2006109611A (en) Composite three-phase hybrid dynamo-electric machine
US20160268859A1 (en) Multi-pole, three-phase rotary electric machine
JP2013207857A (en) Brushless motor
JP2011087382A (en) Motor
JP5668181B1 (en) Magnet generator
JP2018102090A (en) Stator and motor
JP6658707B2 (en) Rotating electric machine
JP6481545B2 (en) motor
JP5611094B2 (en) Rotating electric machine
WO2021235376A1 (en) Rotary electric machine
JP7365956B2 (en) Brushless motor and brushless motor control method
JP2012016127A (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856097

Country of ref document: EP

Kind code of ref document: A1