WO2013083046A1 - 一种气体测量方法、设备及干扰气体补偿装置 - Google Patents

一种气体测量方法、设备及干扰气体补偿装置 Download PDF

Info

Publication number
WO2013083046A1
WO2013083046A1 PCT/CN2012/085975 CN2012085975W WO2013083046A1 WO 2013083046 A1 WO2013083046 A1 WO 2013083046A1 CN 2012085975 W CN2012085975 W CN 2012085975W WO 2013083046 A1 WO2013083046 A1 WO 2013083046A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
measurement
measurement result
measured
compensation
Prior art date
Application number
PCT/CN2012/085975
Other languages
English (en)
French (fr)
Inventor
岑建
刘中华
涂有强
周赛新
左鹏飞
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2013083046A1 publication Critical patent/WO2013083046A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the invention relates to gas measurement and analysis, in particular to a gas measuring method, device and interference gas compensation device for treating interference gas.
  • Non-Dispersive Infrared's gas measurement technology requires a reference point for measurement to eliminate system drift errors.
  • the gas contains the same type of gas concentration as the measured gas as the reference point for the measurement of the measured gas. Make corrections or compensation.
  • the gas components contained in the atmosphere may be affected by environmental influences, for example, the concentration of a certain gas contained therein increases, and when the gas of the same component of the measured gas existing in the atmosphere increases, the deviation of the reference point of the calibration is caused, thereby The deviation of the measurement result causes interference with the measurement result, and therefore the gas of the same component of the measured gas existing in the atmosphere is also referred to as an interference gas.
  • the influence of factors such as the number of people around the measuring device in the atmosphere and the ventilation effect of the measuring environment is not a constant value, but fluctuates with time. Its effect on the measurement results also varies with fluctuations.
  • the method has the following problems: 1. Different gases need different adsorbents. When multi-gas is measured, multiple adsorbents need to be externally connected, and the operability is not strong; 2. The adsorbent has a certain service life. It needs to be replaced regularly, and the maintenance cost is high. 3. When the large flow rate is applied, the adsorbent cannot completely absorb the interference gas in the atmosphere.
  • the invention provides a gas measuring method, a device and an interference gas compensating device.
  • the interference gas in the measuring environment is compensated without using the adsorbent method, so as to reduce the influence of the interference gas on the measured result of the measured gas.
  • a gas measuring method for measuring a gas to be measured based on infrared spectrum analysis comprising:
  • the compensation value of the measurement period is determined according to the zero-measurement result of the history that meets the set condition;
  • the measured gas is extracted for measurement, and a preliminary measurement result of the measured gas in the measurement period is obtained;
  • the compensation value of the measured period is used to compensate the measured preliminary measurement result of the measured gas, and the compensated measurement result of the measured gas is obtained.
  • determining the compensation value of the measurement period according to the zero-measurement result of the history that meets the set condition includes: finding the data representing the lowest concentration of the interference gas in the zero-calibration result of the history that meets the set condition, and The data is used as the compensation value of the measurement period; or the compensation value of the measurement period is predicted according to the zero-calibration result of the history that meets the set condition.
  • an interference gas compensation apparatus for compensating for an influence of an interference gas of a gas to be measured based on infrared spectrum analysis, the apparatus comprising: a zero calibration operation unit for following a predetermined rule The control performs the zero calibration operation, and records the zero calibration result after the zero calibration operation; the compensation value determining unit is configured to determine the compensation value of the measurement period according to the historical zero calibration result meeting the set condition; the measurement result compensation The calculation unit is configured to perform compensation calculation on the preliminary measurement result of the measured gas measured in the measurement period by using the compensation value of the measurement period, and obtain the compensated measurement result of the measured gas.
  • a measurement result smoothing unit is further included, wherein the measurement result smoothing unit is configured to compensate the preliminary measurement result of the measured gas measured between the two compensation values by using two recently obtained compensation values respectively.
  • the calculation obtains the jump of the two calculation results, and smoothes the compensated measurement result of the measured gas measured by the current measurement period according to the jump.
  • the invention also provides a gas measuring device for measuring a gas to be measured based on infrared spectrum analysis, the device comprising:
  • a reference channel for outputting an electrical signal through air or a gas to be measured
  • a measuring channel for outputting an electrical signal by air or a gas to be measured
  • a gas measuring module for receiving an electrical signal outputted by the reference channel and the measuring channel to obtain a zero measurement result or a preliminary measurement result of the measured gas
  • the interference gas compensation device is configured to control the reference channel and the measurement channel to perform a zero calibration operation according to a predetermined rule, and record the calibration result of each calibration, obtain a compensation value according to the history record, and adopt a compensation value.
  • the preliminary measurement results of the measured gas are compensated.
  • the invention compensates the interference gas by obtaining the lowest point of the interference gas in the environment, and compensates the interference gas by using the point to compensate the concentration calculation, thereby achieving the purpose of the environmental concentration compensation, and reducing the influence of the interference gas on the measurement result of the measured gas.
  • the method of the present invention needs to replace the adsorbent, so that the method of using the adsorbent in the prior art is simpler and lower in maintenance, and the structure of the device is simplified because the adsorbent is omitted.
  • the compensation scheme of the invention has nothing to do with the flow rate of the gas to be tested, and solves the problem that the adsorbent cannot completely absorb the interference gas in the atmosphere when the flow rate is applied.
  • FIG. 1 is a block diagram showing a gas measuring device in an embodiment of the present invention
  • FIG. 2 is a block diagram showing a gas measuring device in another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a gas measuring device according to still another embodiment of the present invention.
  • Figure 5 is a flow chart showing the smoothing of gas measurement results in an embodiment of the present invention.
  • the gas measuring device tracks the change of the interference gas in the recording environment and its influence on the measurement result, and judges the error caused by the environment on the measurement result according to the recorded historical data, and compensates, thereby improving the measurement result.
  • the purpose of accuracy is the reason for accuracy.
  • the gas measuring device performs the zeroing operation according to a predetermined rule, that is, the control device extracts the air from the measurement environment at intervals, performs zero calibration, records the zero measurement result, and forms the records.
  • the historical data is then selected from the recorded historical data as the compensation value, which represents the lowest concentration of the interference gas, according to a certain algorithm.
  • the lowest concentration of interfering gas indicates that the atmosphere is least affected by the environment at this time, which is equivalent to fully filtering the interfering gas. Therefore, using the data representing the lowest concentration of the interfering gas as the compensation value can effectively compensate the influence of the interfering gas on the measured gas.
  • each time a zero calibration operation is performed a compensation value is determined, and then the compensation value is used for compensation in the measurement of the measured gas until the next zero calibration operation, so
  • the starting time from the zero calibration operation to the next zero calibration operation is called a measurement cycle
  • the compensation value obtained by the zero calibration operation is called the compensation value of the measurement cycle, and is used to compensate the measurement cycle.
  • the measured measurement result of the measured gas, and the compensation value obtained by the next zero calibration operation is called the compensation value of the lower measurement cycle, and is used to compensate the measurement result of the measured gas measured in the next measurement cycle.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the gas measuring device 100 includes a reference channel 110 , a measurement channel 120 , a gas measurement module 130 , and an interference gas compensation device 140 .
  • the reference channel 110 is for outputting an electrical signal by air or a gas to be measured. Since the reference channel is selected to be independent of the specific wavelength outside the absorption wavelength of all gases, there is no absorption of the measured gas, and the electrical signal output is constant, not changing with the type and type of gas being measured; the measuring channel 120 is used for passing air or The measured gas outputs an electrical signal.
  • the measurement channel is selected to be a wavelength absorbed by a specific gas, for example, a filter of a specific wavelength is passed through a wavelength that can be absorbed by the gas to be measured, the light of the wavelength is absorbed only by a specific measurement gas, and the electrical signal outputted by the filter is
  • the change of the specific gas concentration changes; after the gas to be measured is introduced into the measurement channel 120, the light having the specific wavelength of the gas to be measured is absorbed, so that the light flux passing through the optical path of the measurement channel 120 is reduced, and the luminous flux is passed through the photoelectric sensor.
  • the change is converted into a change in electrical energy, such as a voltage signal or a current signal.
  • the gas measurement module 130 is configured to receive the electrical signals output by the reference channel and the measurement channel to obtain a zero calibration result or a preliminary measurement result of the measured gas;
  • the interference gas compensation device 140 is configured to control the reference channel and the measurement channel according to a predetermined rule. Zero operation is performed, and the zero measurement result is recorded every time.
  • the compensation value is obtained according to the historical record, and the preliminary measurement result of the measured gas is compensated by the compensation value.
  • the interference gas compensation device 140 includes a zero correction operation unit 141, a compensation value determination unit 142, and a measurement result compensation calculation unit 143.
  • the zeroing operation unit 141 is coupled to the reference channel 110, the measurement channel 120, and the gas measurement module 130, respectively, the compensation value determination unit 142 is coupled to the zero calibration operation unit 141, and the measurement result compensation calculation unit 143 is coupled to the compensation value determination unit 142 and Gas measurement module 130.
  • the zero operation unit 141 controls the reference channel 110 and the measurement channel 120 to perform a zero calibration operation according to a predetermined rule, that is, the control reference channel 110 and the measurement channel 120 extract the air in the measurement environment to perform zero calibration, and the gas measurement module 130 is in the reference. After the zero calibration is performed on the channel 110 and the measurement channel 120, the zero calibration result is calculated and output to the zero calibration operation unit 141, and the zero calibration operation unit 141 records the zero calibration result after each zero calibration operation to form a history record. .
  • the zeroing operation unit 141 triggers the zeroing operation according to the time interval and the temperature change, and thus the structure of the zeroing operation unit 141 is as shown in FIG. 2, including the recording subunit 1411, the timing subunit 1412, and the temperature change.
  • the calculation subunit 1413 is configured to record the zero calibration result, and the timing subunit 1412 is configured to detect the time interval of the current time from the last zero calibration operation, and output the execution zero calibration operation when the time interval reaches the set time.
  • the control signal is sent to the reference channel 110 and the measurement channel 120.
  • the temperature change calculation sub-unit 1413 is configured to detect the temperature change of the current temperature relative to the temperature of the most recent zero-zero operation, and output when the temperature change exceeds the set degree.
  • a control signal for performing a zero operation is applied to the reference channel 110 and the measurement channel 120.
  • the control signal for performing the zero calibration operation is output to the reference channel 110 and the measurement channel 120, and the reference channel 110 and the measurement channel 120 are extracted according to the control signal. Air is introduced into the reference channel 110 and the measurement channel 120 for zero calibration.
  • the zero calibration operation unit 141 can trigger the zero calibration operation only according to the time interval or temperature change, that is, there is no interference gas compensation device 140.
  • the compensation value determining unit 142 is configured to find the data representing the lowest concentration of the interference gas in the zero-calibration result of the history that meets the set condition, and use the data as the compensation value of the next measurement period.
  • the ratio of the electrical parameters obtained by passing the air through the reference channel and the measuring channel respectively is used as the environmental concentration characteristic value
  • the zeroing operation unit 141 uses the obtained environmental concentration characteristic value as the calibration result and records the result.
  • the compensation value determining unit 142 finds the maximum value among the environmental density characteristic values as the compensation value in the recording.
  • the measurement result compensation calculation unit 143 is configured to perform compensation calculation on the preliminary measurement result of the measured gas measured in the measurement period by using the compensation value of the measurement period, and obtain the compensated measurement result of the measured gas and output the result.
  • FIG. 3 a method for measuring a gas to be measured based on infrared spectrum analysis is as shown in FIG. 3, and includes the following steps:
  • the gas measuring device performs a zeroing operation according to a predetermined rule.
  • the gas measuring device can control the zeroing operation according to the time interval or the temperature change, that is, the zero calibration operation is performed every certain time, or the zero calibration operation is performed after the temperature changes exceed the set value.
  • the gas measuring device will extract air according to a certain rule (for example, four degrees of temperature change and time zero every two hours) according to changes in external temperature and time, and use this as a reference point.
  • a certain rule for example, four degrees of temperature change and time zero every two hours
  • step S12 the zero calibration result is recorded.
  • the characteristic value that can reflect the change of the environmental concentration is selected in advance, and the characteristic value can reflect the fluctuation of the environmental concentration and the influence of temperature and time change.
  • the voltage amplitude ratio of the reference channel and the measured gas measurement channel of the zero calibration time is selected as the environmental concentration characteristic value, and the environmental concentration characteristic value is used as the zero calibration measurement result after the zero calibration measurement, and each zero calibration is performed.
  • the post-measured environmental concentration characteristic values form a historical record. Considering that the environmental concentration characteristic value is affected by time and temperature, the temperature and time of the zero calibration time are simultaneously recorded when the environmental concentration characteristic value is recorded, and the change of the environmental concentration is measured.
  • the environmental concentration characteristic value may also be a voltage amplitude ratio of the measured gas measurement channel and the reference channel.
  • the reference channel and the measured gas measurement channel output a current value
  • the environmental concentration characteristic value may also be a current amplitude ratio of the reference channel and the measured gas measurement channel.
  • step S13 the compensation value is determined.
  • the compensation coefficient is determined by taking the stored historical environment concentration characteristic value Q as an input. Considering that the concentration of the interfering gas in the environment is fluctuating, the data representing the lowest concentration of the interfering gas is found from the historical data, and the data is used as the compensation value of the measurement period to eliminate the influence of the gas in the environment on the measurement result.
  • the environmental concentration characteristic value is equal to the voltage amplitude value obtained by the air passing through the reference channel divided by the voltage amplitude value obtained after the air passes through the measurement channel, the data representing the lowest carbon dioxide concentration in the air is historical data.
  • the maximum environmental concentration characteristic value the larger the environmental concentration characteristic value Q, indicates that the concentration of carbon dioxide in the environment is lower.
  • the environmental concentration characteristic value is affected by the temperature change and the time change, if the temperature at the zero time of the calibration is different from the current temperature, or the time interval from the current zero is too long, the zero-record is recorded after the zero calibration.
  • the environmental concentration characteristic value has little meaning for the current measurement reference.
  • the search range can be narrowed, so the search condition is set, and only the historical data meeting the search condition is searched.
  • the search condition may be temperature.
  • the search condition may also be a time condition, for example, taking the current time as a reference, measuring the environmental concentration characteristic value of the first two months, searching in the environmental concentration characteristic value of the first two months, and finding the maximum value thereof as Compensation value.
  • the search condition can also be a combination of temperature conditions and time conditions, and of course, it is also possible to search through all historical data.
  • step S14 after performing a zero calibration operation, the measured gas measurement in the current measurement period is started.
  • the gas measuring device extracts the gas to be measured, and introduces the gas to be measured into the reference channel and the measuring channel for measurement, and obtains a preliminary measurement result of the gas to be measured in the measurement period.
  • the measurement period only one measurement of the gas to be measured may be performed, and the preliminary measurement result may have one; or the measurement of the gas to be measured may be performed multiple times, and there are a plurality of preliminary measurement results.
  • the measurement method can adopt the prior art or other technologies, and details are not described herein again.
  • step S15 the compensation result of the measurement period is used to compensate the preliminary measurement result of the measured gas measured in the measurement period, and the compensated measurement result of the measured gas is obtained.
  • the compensation algorithm may use prior art or other technologies, and details are not described herein again.
  • the compensation value is selected in this embodiment, the more the stored environmental concentration characteristic value changes with the passage of time and the ambient temperature, the more detailed the description of the environmental concentration fluctuation is, and the lowest the interference gas concentration can be obtained by searching.
  • the environmental concentration characteristic value is used as the compensation value, and the compensation value is used to compensate the preliminary measurement result of the measured gas to minimize the influence on the measurement result of the measured gas, so the embodiment can better compensate the measurement result. .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the optimal environmental concentration characteristic value may be refreshed, that is, the compensation value is changed. There may be a large gap between the new compensation value and the original compensation value, and the preliminary measurement result of the subsequent measured gas is adopted. There may be a jump after the compensation calculation of the new compensation value, so that the curve of the measured gas also exhibits an abnormal jump.
  • This embodiment eliminates the abnormal jump by adding the measurement result smoothing unit 144.
  • the gas measuring device 200 includes a reference channel 210, a measurement channel 220, a gas measurement module 230, and an interference gas compensation device 240.
  • the interference gas compensation device 240 includes a zero correction operation unit 241, a compensation value determination unit 242, a measurement result compensation calculation unit 243, and a measurement result smoothing unit 244.
  • the reference channel 210, the measurement channel 220, the gas measurement module 230, the zero calibration operation unit 241, the compensation value determination unit 242, and the measurement result compensation calculation unit 243 may be the same as or different from the first embodiment, and the measurement result smoothing unit 244 is coupled to the compensation.
  • the value determination unit 242 and the measurement result compensation calculation unit 243 may be the same as or different from the first embodiment, and the measurement result smoothing unit 244 is coupled to the compensation.
  • the value determination unit 242 and the measurement result compensation calculation unit 243 may be the same as or different from the first embodiment, and the measurement result smoothing unit 244 is coupled to the compensation.
  • the measurement result smoothing unit 244 is configured to perform compensation calculation on the preliminary measurement result of the measured gas measured between the two compensation values by using two recently obtained compensation values, and obtain a jump of the two calculation results, according to the The hopping smoothes the compensated measurement result of the measured gas measured in the current measurement period.
  • the jump of the two calculation results may be the difference or ratio after the same preliminary measurement result is compensated by using two compensation values, or may be the maximum value and the adoption of the compensation calculation using the first compensation value.
  • the difference or ratio of the maximum value in the compensation calculation performed by the two compensation values may also be the minimum value in the compensation calculation using the first compensation value and the minimum value in the compensation calculation using the second compensation value. The difference or ratio.
  • the measurement result smoothing unit 14 obtains the compensation of the measured gas obtained in the previous measurement period from the measurement result compensation calculation unit 243.
  • the measurement result is obtained, and the first maximum value is found out therefrom, and the preliminary measurement result of the measured gas obtained in the previous measurement period is re-compensated according to the compensation value of the measurement period, and a new compensated measurement result is obtained, which is new.
  • Find a second maximum value in the compensated measurement result calculate an absolute value or a ratio of the difference between the first maximum value and the second maximum value, and use the absolute value or the ratio of the difference as a jump of the two calculation results. And determining whether the jump exceeds a set threshold, and if yes, subtracting the function of the measured deviation of the measured gas from the compensated measurement of the measured gas as a final output of the measured gas and outputting the result.
  • the method for smoothing the compensation result of the gas to be measured by the gas measuring device is as shown in FIG. 5, and includes the following steps:
  • step S21 a new zero calibration operation is started, that is, a new measurement cycle is started.
  • step S22 the compensation value of the measurement period is determined.
  • Step S23 after obtaining the compensation value of the measurement period, reading the compensated measurement result of the measured gas obtained in the previous measurement period, and finding the first measurement result in the compensated measurement result of the previous measurement period.
  • the compensated measurement result of the measured gas obtained in the previous measurement period is obtained by using the compensation value A of the previous measurement period.
  • the first measurement result is the compensated measurement result of the previous measurement period.
  • the first maximum value Amax is the compensated measurement result of the previous measurement period.
  • step S24 the preliminary measurement result of the measured gas obtained in the previous measurement period is further compensated and calculated according to the compensation value B of the measurement period, and a new compensated measurement result is obtained.
  • step S25 the second measurement result is found in the new compensated measurement result.
  • the second measurement is the first maximum value Bmax of the new compensated measurement.
  • step S27 it is determined whether the jump ⁇ exceeds a set threshold, and if so, step S28 is performed, otherwise step S29 is performed.
  • Step S28 the post-compensation measurement result of the measured gas in the measurement period is subtracted from the function of the hopping decay over time as a final output result of the measured gas.
  • the compensation value B is used to compensate the preliminary measurement result to obtain the compensated measurement result, in order to reduce the output result and the jump of the previous data.
  • the compensated measurement result is subtracted from the function of hopping decay with time, and then output.
  • the calculation method is:
  • V L V M -f( ⁇ ,t) ,
  • V L is the final output result
  • V M is the compensated measurement result after the measured gas is compensated by the compensation value B of the measurement period
  • f( ⁇ , t) is the attenuation function of
  • the decay constant, the initial value of f( ⁇ ,n) is
  • Step S29 if the jump does not exceed the set threshold, the compensation value B of the measurement period is used to compensate the preliminary measurement result of the measured gas to obtain the compensated measurement result, and the compensated measurement result is used as the final test gas. Output the result.
  • the environmental change is predicted based on historically zero calibration measurements that meet the set conditions, thereby predicting the compensation value for the current measurement period.
  • the variation of one or several gases can be combined, and the compensation value can be selected to improve the accuracy of the compensation value.
  • This application uses software methods to compensate for environmental interference gases, without maintenance, which greatly reduces the maintenance cost of the equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种气体测量方法包括:在对被测气体进行测量的过程中,按照预定规则抽取空气进行校零测量,并记录校零测量结果,根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值,抽取被测气体进行测量,得到本测量周期内的被测气体的初步测量结果,采用本测量周期的补偿值对测得的被测气体的初步测量结果进行补偿计算,得到被测气体的补偿后测量结果。该方法不是采用吸附剂方式,而是通过获得环境中干扰气体影响最低点,并采用该点对浓度计算进行补偿的方式对干扰气体进行补偿,以减少环境干扰气体对被测气体测量结果的影响。

Description

一种气体测量方法、设备及干扰气体补偿装置
【技术领域】
本发明涉及气体测量及分析,尤其涉及对干扰气体进行处理的一种气体测量方法、设备及干扰气体补偿装置。
【背景技术】
基于非色散红外光谱分析(NDIR, Non-Dispersive Infrared)的气体测量技术在测量时需要一个参考点,用以消除系统漂移误差,通常以大气中含有与该被测气体同类型的气体浓度为校零参考点,以对被测气体的测量结果进行校正或补偿。但大气中含有的气体成分可能受环境影响而变化,例如含有的某种气体浓度增加,当大气中存在的该被测气体相同成分的气体增加时,则会造成校零参考点的偏差,从而导致测量结果的偏差,形成对测量结果的干扰,因此大气中存在的该被测气体相同成分的气体也称为干扰气体。以二氧化碳测量为例,大气中二氧化碳浓度的受测量设备周围人数、测量环境通风效果等因素的影响,不是恒定的值,而随时间存在波动, 其对测量结果的影响也随波动而效果不同。为了解决该问题,通用的做法是在测量设备的校零端口增加一个吸附剂,用来吸收环境当中增加的干扰气体。但该方法存在以下几点问题:1,不同的气体需要对应的吸附剂不同,当多气体测量时,需要外接多个吸附剂,可操作性不强;2,吸附剂都有一定的使用寿命,需要定期更换,维护成本较高;3,大流量应用时,吸附剂不能够完全吸收大气中的干扰气体。
【发明内容】
本发明提供一种气体测量方法、设备及干扰气体补偿装置,在测量气体时,不通过吸附剂方式而对测量环境中的干扰气体进行补偿,以减少干扰气体对被测气体测量结果的影响。
根据本发明的第一方面,提供一种气体测量方法,用于基于红外光谱分析对被测气体进行测量,所述方法包括:
按照预定规则抽取空气进行校零测量,并记录校零测量结果;
根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值;
抽取被测气体进行测量,得到本测量周期内的被测气体的初步测量结果;
采用本测量周期的补偿值对测得的被测气体的初步测量结果进行补偿计算,得到被测气体的补偿后测量结果。
其中,根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值包括:在历史记录的符合设定条件的校零测量结果中查找出代表干扰气体浓度最低的数据,并将该数据作为本测量周期的补偿值;或根据历史记录的符合设定条件的校零测量结果预测出本测量周期的补偿值。
根据本发明的第二方面,提供一种干扰气体补偿装置,用于基于红外光谱分析对被测气体的干扰气体造成的影响进行补偿,所述装置包括:校零操作单元,用于按照预定规则控制执行校零操作,并记录校零操作后的校零测量结果;补偿值确定单元,用于根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值;测量结果补偿计算单元,用于采用本测量周期的补偿值对本测量周期内测得的被测气体的初步测量结果进行补偿计算并得到被测气体的补偿后测量结果。
在一实施例中,还包括测量结果平滑单元,所述测量结果平滑单元用于采用最近得到的两个补偿值分别对在该两补偿值之间测得的被测气体的初步测量结果进行补偿计算,得到两次计算结果的跳变,根据所述跳变对当前测量周期测得的被测气体的补偿后测量结果进行平滑处理。
本发明还提供一种气体测量设备,用于基于红外光谱分析对被测气体进行测量,所述设备包括:
参比通道,用于通过空气或被测气体,输出电信号;
测量通道,用于通过空气或被测气体,输出电信号;
气体测量模块,用于接收参比通道和测量通道输出的电信号,得到校零测量结果或被测气体的初步测量结果;以及
上述的干扰气体补偿装置,所述干扰气体补偿装置用于按照预定规则控制参比通道和测量通道执行校零操作,并记录每次的校零测量结果,根据历史记录得到补偿值,采用补偿值对被测气体的初步测量结果进行补偿。
本发明通过获得环境中干扰气体影响最低点,并采用该点对浓度计算进行补偿的方式对干扰气体进行补偿,从而达到环境浓度补偿的目的,减少干扰气体对被测气体测量结果的影响。本发明这种方式部需要更换吸附剂,所以在维护方面比已有技术中采用吸附剂的方式更简便和低成本,而且由于省去了吸附剂,从而使设备结构上得到了精简,并且本发明的补偿方案与被测气体的流量无关,解决了大流量应用时,吸附剂不能够完全吸收大气中的干扰气体的问题。
【附图说明】
图1为本发明一种实施例中气体测量设备的方框示意图;
图2为本发明另一种实施例中气体测量设备的方框示意图;
图3为本发明一种实施例中气体测量流程图;
图4为本发明又一种实施例中气体测量设备的方框示意图;
图5为本发明一种实施例中气体测量结果平滑流程图。
【具体实施方式】
下面通过具体实施方式结合附图对本发明作进一步详细说明。
在本申请实施例中,气体测量设备跟踪记录环境中干扰气体的变化,以及其对测量结果的影响,并根据记录的历史数据判断环境对测量结果造成的误差并进行补偿,从而达到提高测量结果准确性的目的。
在本申请实施例中,气体测量设备按照预定规则进行校零操作,即控制设备每隔一段时间就从测量环境中抽取一次空气,进行校零测量,并记录校零测量结果,将这些记录形成历史数据,然后按照一定的算法从记录的历史数据中选择代表干扰气体浓度最低的数据作为补偿值。干扰气体浓度最低说明此时大气受环境影响最少,也相当于对干扰气体进行了充分过滤,因此采用代表干扰气体浓度最低的数据作为补偿值可有效补偿干扰气体对被测气体的影响。
在本申请实施例中,每进行一次校零操作,即确定出一个补偿值,接下来在对被测气体进行的测量中都采用该补偿值进行补偿,直到下次校零操作,因此在本申请实施例中,从本次校零操作开始到下次校零操作开始称为一个测量周期,本次校零操作得到的补偿值称为本测量周期的补偿值,用于补偿本测量周期内测得的被测气体的测量结果,而下次校零操作得到的补偿值称为下测量周期的补偿值,用于补偿下个测量周期内测得的被测气体的测量结果。
实施例一:
请参考图1,在一种实施例中,气体测量设备100包括参比通道110、测量通道120、气体测量模块130和干扰气体补偿装置140。参比通道110用于通过空气或被测气体,输出电信号。由于参比通道选择为独立于所有气体吸收波长外的特定波长,对测量气体无吸收,其输出的电信号为恒定值,不随被测气体种类和类型而变化;测量通道120用于通过空气或被测气体,输出电信号。由于测量通道选择为特定气体吸收的波长,例如采用特定波长的滤光片通过可被被测气体吸收的波长,该波长的光仅对特定的测量气体有吸收,其输出的电信号随某种特定气体浓度的变化而变化;在测量通道120中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量通道120这一光路的光通量减少,通过光电传感器将光通量的变化转换为电的变化,例如电压信号或电流信号。气体测量模块130用于接收参比通道和测量通道输出的电信号,得到校零测量结果或被测气体的初步测量结果;干扰气体补偿装置140用于按照预定规则控制参比通道和测量通道执行校零操作,并记录每次的校零测量结果,根据历史记录得到补偿值,采用补偿值对被测气体的初步测量结果进行补偿。
在一种实施例中,如图1所示,干扰气体补偿装置140包括校零操作单元141、补偿值确定单元142和测量结果补偿计算单元143。校零操作单元141分别耦合到参比通道110、测量通道120和气体测量模块130,补偿值确定单元142耦合到校零操作单元141,测量结果补偿计算单元143分别耦合到补偿值确定单元142和气体测量模块130。
校零操作单元141按照预定规则控制参比通道110和测量通道120执行校零操作,即控制参比通道110和测量通道120抽取测量环境中的空气,进行校零测量,气体测量模块130在参比通道110和测量通道120进行校零测量后,计算出校零测量结果,并输出给校零操作单元141,校零操作单元141记录每次校零操作后的校零测量结果,形成历史记录。
在一种具体实例中,校零操作单元141根据时间间隔和温度变化触发校零操作,因此校零操作单元141的结构如图2所示,包括记录子单元1411、计时子单元1412和温度变化计算子单元1413,记录子单元1411用于记录校零测量结果,计时子单元1412用于检测当前时刻距离最近一次校零操作的时间间隔,并在时间间隔达到设定时间时输出执行校零操作的控制信号给参比通道110和测量通道120,所述温度变化计算子单元1413用于检测当前温度相对于最近一次校零操作时温度的温度变化量,当温度变化量超过设定度数后输出执行校零操作的控制信号给参比通道110和测量通道120。当计时子单元1412和温度变化计算子单元1413中有一个满足条件时即可输出执行校零操作的控制信号给参比通道110和测量通道120,参比通道110和测量通道120根据控制信号抽取空气,将空气导入参比通道110和测量通道120,进行校零测量。
当然,根据本申请公开的内容,本领域技术人员应当理解,在另外的实施例中,校零操作单元141可以只根据时间间隔或温度变化来触发校零操作,即干扰气体补偿装置140中没有计时子单元1412或温度变化计算单元1413。
补偿值确定单元142用于在历史记录的符合设定条件的校零测量结果中查找出代表干扰气体浓度最低的数据,并将该数据作为接下来本测量周期的补偿值。在一种具体实例中,将空气分别通过参比通道和测量通道后得到的电参数比值作为环境浓度特征值,则校零操作单元141将得到的环境浓度特征值作为校零测量结果并记录,补偿值确定单元142在记录中查找出环境浓度特征值中的最大值作为补偿值。
测量结果补偿计算单元143用于采用本测量周期的补偿值对本测量周期内测得的被测气体的初步测量结果进行补偿计算,得到被测气体的补偿后测量结果并输出。
基于上述气体测量设备,基于红外光谱分析对被测气体进行测量的方法如图3所示,包括以下步骤:
步骤S11,气体测量设备按照预定规则进行校零操作。气体测量设备可以根据时间间隔或温度变化来控制进行校零操作,即每隔一定时间进行一次校零操作,或温度变化超过设定值后即进行一次校零操作。以二氧化碳测量为例,气体测量设备根据外界温度和时间的变化,会按一定规则(例如以温度变化四度,时间每隔两小时触发一次校零)抽取空气,并以此为参考点,进行校零操作。一次校零操作包括抽取空气和将空气导入参比通道110和测量通道120进行校零测量。
步骤S12,记录校零测量结果。预先选取能够反应环境浓度变化的特征值,该特征值可以反映环境浓度波动,以及受温度、时间变化的影响。本实施例中选取校零时刻参比通道与被测气体测量通道的电压幅度比值作为环境浓度特征值,在校零测量后将该环境浓度特征值作为校零测量结果并记录,各次校零后测得的环境浓度特征值形成历史记录。考虑到该环境浓度特征值受时间和温度的影响,所以在记录环境浓度特征值时同时记录校零时刻的温度和时间,用来衡量环境浓度的变化。本领域技术人员应该理解,环境浓度特征值还可以是被测气体测量通道和参比通道的电压幅度比值。另外,如果参比通道与被测气体测量通道输出的是电流值,环境浓度特征值还可以是参比通道与被测气体测量通道的电流幅度比值。
步骤S13,确定补偿值。以存储的历史环境浓度特征值Q为输入,决定补偿系数。考虑到环境中干扰气体浓度的是波动的,从历史数据中查找出代表干扰气体浓度最低的数据,并将该数据作为本测量周期的补偿值,消除环境中气体对测量结果的影响。以二氧化碳测量为例,如果环境浓度特征值等于空气通过参比通道后得到的电压幅度值除以空气通过测量通道后得到的电压幅度值,则代表空气中二氧化碳浓度最低的数据为历史数据中的最大环境浓度特征值,环境浓度特征值Q越大,说明环境中的二氧化碳浓度越低。由于,环境浓度特征值受温度变化和时间变化的影响,如果某次校零时刻的温度和当前温度相差较大,或者某次校零时刻距离当前时间间隔太长,则该校零后记录的环境浓度特征值对当前的测量参考意义不大,为了加快搜索补偿值的速度,可缩小搜索范围,所以设定搜索条件,只在符合搜索条件的历史数据中进行搜索,例如搜索条件可以是温度条件,例如以当前的温度点为中心,选取±2℃范围内存储的历史环境浓度特征值(Q)数列中进行搜索,查找出其中的最大值作为补偿值参与后续的浓度计算,从而实现对二氧化碳浓度计算结果进行环境补偿的目的。搜索条件还可以是时间条件,例如以当前的时间为参照,测量时间为前两个月的环境浓度特征值,在前两个月的环境浓度特征值中进行搜索,查找出其中的最大值作为补偿值。搜索条件也可以是温度条件和时间条件的结合,当然,也可以在全部历史数据中进行搜索。
步骤S14,在进行一次校零操作后,即开始本测量周期的被测气体测量。气体测量设备抽取被测气体,将被测气体导入参比通道和测量通道进行测量,得到本测量周期内的被测气体的初步测量结果。本测量周期内可以只对被测气体进行一次测量,初步测量结果可以有一个;也可以对被测气体进行多次测量,有多个初步测量结果。其测量方法可采用现有技术或其它技术,此处不再赘述。
步骤S15,采用本测量周期的补偿值对本测量周期内测得的被测气体的初步测量结果进行补偿计算,得到被测气体的补偿后测量结果。补偿算法可采用现有技术或其它技术,此处不再赘述。
采用本实施例选择补偿值时,随着时间的推移和环境温度的变化,存储的环境浓度特征值越多,对环境浓度波动的描述就越详细,通过搜索可获得干扰气体浓度最低时测得的环境浓度特征值作为补偿值,采用该补偿值对被测气体的初步测量结果进行补偿,尽量减小对被测气体的测量结果的影响,因此本实施例能够更好的对测量结果进行补偿。
实施例二:
当发生校零操作时,可能会刷新最优的环境浓度特征值,即改变补偿值,新的补偿值和原补偿值之间可能存在较大的差距,后续的被测气体的初步测量结果采用新的补偿值进行补偿计算后可能存在一个跳变,使被测气体的曲线也出现异常跳变,本实施例通过增加测量结果平滑单元144来消除该异常跳变。
如图4所示,气体测量设备200包括参比通道210、测量通道220、气体测量模块230和干扰气体补偿装置240。干扰气体补偿装置240包括校零操作单元241、补偿值确定单元242、测量结果补偿计算单元243和测量结果平滑单元244。参比通道210、测量通道220、气体测量模块230、校零操作单元241、补偿值确定单元242和测量结果补偿计算单元243可以和实施例一中相同或不同,测量结果平滑单元244耦合到补偿值确定单元242和测量结果补偿计算单元243。测量结果平滑单元244用于采用最近得到的两个补偿值分别对在该两补偿值之间测得的被测气体的初步测量结果进行补偿计算,得到两次计算结果的跳变,根据所述跳变对当前测量周期测得的被测气体的补偿后测量结果进行平滑处理。两次计算结果的跳变可以是同一个初步测量结果分别采用两个补偿值进行补偿计算后的差值或比值,也可以是采用第一个补偿值进行的补偿计算中的最大值与采用第二个补偿值进行的补偿计算中的最大值的差值或比值,还可以是采用第一个补偿值进行的补偿计算中的最小值与采用第二个补偿值进行的补偿计算中的最小值的差值或比值。
在一种具体实例中,测量结果平滑单元14在从补偿值确定单元242得到本测量周期的补偿值后,从测量结果补偿计算单元243中获得前一测量周期内得到的被测气体的补偿后测量结果,并从中查找出第一最大值,将前一测量周期内得到的被测气体的初步测量结果再按照本测量周期的补偿值重新进行补偿计算,得到新的补偿后测量结果,在新的补偿后测量结果中查找出第二最大值,计算第一最大值和第二最大值之间的差值的绝对值或比值,将差值的绝对值或比值作为两次计算结果的跳变,判断所述跳变是否超过设定阈值,如果是,则将被测气体的补偿后测量结果减去所述跳变随时间衰减的函数后作为被测气体的最终输出结果并输出。
基于上述测量结果平滑单元,气体测量设备对被测气体的补偿结果进行平滑的方法如图5所示,包括以下步骤:
步骤S21,开始新的一次校零操作,即开始新的一个测量周期。
步骤S22,确定本测量周期的补偿值。
步骤S23,在得到本测量周期的补偿值后,读取前一测量周期内得到的被测气体的补偿后测量结果,并在前一测量周期的补偿后测量结果中查找出第一测量结果。前一测量周期内得到的被测气体的补偿后测量结果是采用前一测量周期的补偿值A得到的,在一种具体实例中,第一测量结果为前一测量周期的补偿后测量结果中的第一最大值Amax。
步骤S24,将前一测量周期内得到的被测气体的初步测量结果再按照本测量周期的补偿值B重新进行补偿计算,得到新的补偿后测量结果。
步骤S25,在新的补偿后测量结果中查找出第二测量结果。在一种具体实例中,第二测量结果为新的补偿后测量结果中的第一最大值Bmax。
步骤S26,计算第一测量结果和第二测量结果之间的差值的绝对值或比值,将差值的绝对值或比值作为两次计算结果的跳变。例如,计算Δ=| Bmax-Amax |,Amax与Bmax之差代表由于校零造成测量结果的跳变。保存(Bmax-Amax)值,并将其补偿到后续的计算中。
步骤S27,判断所述跳变Δ是否超过设定阈值,如果是,则执行步骤S28,否则执行步骤S29。
步骤S28,将本测量周期内的被测气体的补偿后测量结果减去所述跳变随时间衰减的函数后作为被测气体的最终输出结果。在本测量周期内,确定本测量周期的补偿值B后,对被测气体进行测量,然后采用补偿值B对初步测量结果进行补偿获得补偿后测量结果,为减少输出结果和前一数据的跳变,再将补偿后测量结果减去跳变随时间衰减的函数后再输出,计算方法为:
VL=VM-f(Δ,t) ,
其中,VL为最终输出结果,VM为被测气体采用本测量周期的补偿值B进行补偿计算后的补偿后测量结果,f(Δ,t)为|Bmax-Amax|随时间的衰减函数,在一种具体实例中,f(Δ,t)随时间以指数方式衰减或直线衰减,例如:f(Δ,n)= coff* f(Δ,n-1),其中,coff为小于1的衰减常数,f(Δ,n)的初始值为|Bmax-Amax|,每迭代一次,f(Δ,t)减小一次,从而保证校零前后同一浓度气体测量值保持不变,当一定时间后(如10s),被测气体测量结果逐渐过渡到真实的测量结果。
步骤S29,如果跳变没有超过设定阈值,则采用本测量周期的补偿值B对被测气体的初步测量结果进行补偿计算后得到补偿后测量结果,将补偿后测量结果作为被测气体的最终输出结果。
在另外的实施例中,根据历史记录的符合设定条件的校零测量结果预测出环境变化,从而预测出本测量周期的补偿值。
当多种气体同时测量时,可综合一种或几种气体的变化情况,选择补偿值,从提高补偿值的准确性。
本申请采用软件方法对环境干扰气体进行补偿,无需维护,大大降低了设备的维护成本。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (15)

  1. 一种气体测量方法,用于基于红外光谱分析对被测气体进行测量,其特征在于所述方法包括:
    按照预定规则抽取空气进行校零测量,并记录校零测量结果;
    根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值;
    抽取被测气体进行测量,得到本测量周期内的被测气体的初步测量结果;
    采用本测量周期的补偿值对测得的被测气体的初步测量结果进行补偿计算,得到被测气体的补偿后测量结果。
  2. 如权利要求1所述的方法,其特征在于,根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值包括:在历史记录的符合设定条件的校零测量结果中查找出代表干扰气体浓度最低的数据,并将该数据作为本测量周期的补偿值;或根据历史记录的符合设定条件的校零测量结果预测出本测量周期的补偿值。
  3. 如权利要求1或2所述的方法,其特征在于,所述按照预定规则抽取空气进行校零测量包括:
    每隔设定时间或温度变化设定度数后气体测量设备对测量环境的空气抽取一次;
    将抽取的空气分别通过参比通道和测量通道后得到的电参数值进行比值运算,得到环境浓度特征值,将环境浓度特征值作为校零测量结果并记录。
  4. 如权利要求3所述的方法,其特征在于,所述环境浓度特征值等于空气通过参比通道后得到的电压幅度值除以空气通过测量通道后得到的电压幅度值,所述代表干扰气体浓度最低的数据为历史数据中的最大环境浓度特征值。
  5. 如权利要求1所述的方法,其特征在于,在记录校零测量结果时同时记录测量当时的温度和/或时间,所述符合设定条件的校零测量结果为历史记录中温度和/或时间符合设定温度和/或设定时间的校零测量结果。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,还包括测量结果平滑步骤,所述测量结果平滑步骤包括:
    采用最近得到的两个补偿值分别对在该两补偿值之间测得的被测气体的初步测量结果进行补偿计算,得到两次计算结果的跳变;
    根据所述跳变对当前测量周期测得的被测气体的补偿后测量结果进行平滑处理。
  7. 如权利要求6所述的方法,其特征在于,根据所述跳变对当前测量周期测得的被测气体的补偿后测量结果进行平滑处理的步骤包括:
    判断所述跳变是否超过设定阈值;
    如果是,则将被测气体的补偿后测量结果减去所述跳变随时间衰减的函数后作为被测气体的最终输出结果。
  8. 如权利要求7所述的方法,其特征在于,采用最近得到的两个补偿值分别对在该两补偿值之间测得的被测气体的初步测量结果进行补偿计算,得到两次计算的跳变的步骤包括:
    在得到本测量周期的补偿值后,在前一测量周期内得到的被测气体的补偿后测量结果中查找出第一最大值;
    将前一测量周期内得到的被测气体的初步测量结果再按照本测量周期的补偿值重新进行补偿计算,得到新的补偿后测量结果;
    在新的补偿后测量结果中查找出第二最大值;
    计算第一最大值和第二最大值之间的差值的绝对值或比值,将差值的绝对值或比值作为两次计算结果的跳变。
  9. 一种干扰气体补偿装置,用于基于红外光谱分析对被测气体的干扰气体造成的影响进行补偿,其特征在于所述装置包括:
    校零操作单元,用于按照预定规则控制执行校零操作,并记录校零操作后的校零测量结果;
    补偿值确定单元,用于根据历史记录的符合设定条件的校零测量结果确定出本测量周期的补偿值;
    测量结果补偿计算单元,用于采用本测量周期的补偿值对本测量周期内测得的被测气体的初步测量结果进行补偿计算并得到被测气体的补偿后测量结果。
  10. 如权利要求9所述的装置,其特征在于,所述校零操作单元包括用于记录校零测量结果的记录子单元,所述校零操作单元还包括计时子单元和/或温度变化计算子单元,所述计时子单元用于检测当前时刻距离最近一次校零操作的时间间隔,并在时间间隔达到设定时间时输出执行校零操作的控制信号,所述温度变化计算子单元用于检测当前温度相对于最近一次校零操作时的温度的温度变化量,当温度变化量超过设定度数后输出执行校零操作的控制信号。
  11. 如权利要求10所述的装置,其特征在于,所述记录子单元将空气分别通过参比通道和测量通道后得到的环境浓度特征值作为校零测量结果并记录,补偿值确定单元在符合设定条件的环境浓度特征值中查找出代表干扰气体浓度最低的值作为补偿值,所述环境浓度特征值为参比通道和测量通道输出的电参数比值。
  12. 如权利要求11所述的装置,其特征在于,所述记录子单元在记录校零测量结果时同时记录测量当时的温度和/或时间,所述补偿值确定单元在历史记录中查找出温度和/或时间符合设定温度和/或设定时间的校零测量结果作为符合设定条件的校零测量结果,并在符合设定条件的校零测量结果中查找出最大环境浓度特征值作为补偿值。
  13. 如权利要求9-12中任一项所述的装置,其特征在于,还包括测量结果平滑单元,所述测量结果平滑单元用于采用最近得到的两个补偿值分别对在该两补偿值之间测得的被测气体的初步测量结果进行补偿计算,得到两次计算结果的跳变,根据所述跳变对当前测量周期测得的被测气体的补偿后测量结果进行平滑处理。
  14. 如权利要求13所述的装置,其特征在于,所述测量结果平滑单元用于在得到本测量周期的补偿值后,在前一测量周期内得到的被测气体的补偿后测量结果中查找出第一最大值,将前一测量周期内得到的被测气体的初步测量结果再按照本测量周期的补偿值重新进行补偿计算,得到新的补偿后测量结果,在新的补偿后测量结果中查找出第二最大值,计算第一最大值和第二最大值之间的差值的绝对值或比值,将差值的绝对值或比值作为两次计算结果的跳变,判断所述跳变是否超过设定阈值,如果是,则将被测气体的补偿后测量结果减去所述跳变随时间衰减的函数后作为被测气体的最终输出结果。
  15. 一种气体测量设备,用于基于红外光谱分析对被测气体进行测量,其特征在于所述设备包括:
    参比通道,用于通过空气或被测气体,输出电信号;
    测量通道,用于通过空气或被测气体,输出电信号;
    气体测量模块,用于接收参比通道和测量通道输出的电信号,得到校零测量结果或被测气体的初步测量结果;
    如权利要求9-14中任一项所述的干扰气体补偿装置,所述干扰气体补偿装置用于按照预定规则控制参比通道和测量通道执行校零操作,并记录每次的校零测量结果,根据历史记录得到补偿值,采用补偿值对被测气体的初步测量结果进行补偿。
PCT/CN2012/085975 2011-12-09 2012-12-05 一种气体测量方法、设备及干扰气体补偿装置 WO2013083046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110408156.XA CN103163102B (zh) 2011-12-09 2011-12-09 一种气体测量方法、设备及干扰气体补偿装置
CN201110408156.X 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013083046A1 true WO2013083046A1 (zh) 2013-06-13

Family

ID=48573555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085975 WO2013083046A1 (zh) 2011-12-09 2012-12-05 一种气体测量方法、设备及干扰气体补偿装置

Country Status (2)

Country Link
CN (1) CN103163102B (zh)
WO (1) WO2013083046A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960817A (zh) * 2017-12-22 2019-07-02 中核核电运行管理有限公司 一种基于按序测量动态误差计算法的在线测氚的方法
CN113125341A (zh) * 2019-12-30 2021-07-16 上海禾赛科技有限公司 基于多光谱成像技术的气体遥测方法和装置
CN115128027A (zh) * 2022-07-29 2022-09-30 中煤科工集团沈阳研究院有限公司 一种紫外差分光谱气体传感器环境压力补偿结构及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248584A (zh) * 2016-06-29 2016-12-21 深圳市怀睿科技有限公司 一种提高气体浓度检测精度的方法和系统
CN107990512B (zh) * 2017-11-17 2021-03-19 艾欧史密斯(中国)热水器有限公司 空气调节设备及其甲醛检测方法和装置
CN110021137A (zh) * 2019-03-28 2019-07-16 赛特威尔电子股份有限公司 一种烟雾报警方法、装置、烟雾报警设备及存储介质
CN110286093B (zh) * 2019-07-17 2020-04-17 中南大学 一种阈值动态调节的玻璃瓶内气体浓度检测方法
CN111283194B (zh) * 2020-02-06 2022-03-22 山东云则信息技术有限公司 一种智能制造系统计算机控制方法
CN117310144A (zh) * 2023-11-28 2023-12-29 深圳市瑞利医疗科技有限责任公司 零点漂移补偿方法、装置、呼气测量设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687934A (en) * 1986-01-10 1987-08-18 Andros Analyzers Incorporated Infrared gas analyzer with automatic zero adjustment
EP0400342A1 (en) * 1989-05-20 1990-12-05 Horiba, Ltd. Method of infra red analysis
CN2539173Y (zh) * 2002-04-05 2003-03-05 郭晓光 便携式氧和二氧化碳气体测试仪
CN1836154A (zh) * 2003-08-11 2006-09-20 森谢尔公司 测量误差的补偿方法以及为此目的的电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470073B (zh) * 2007-12-24 2011-03-23 深圳迈瑞生物医疗电子股份有限公司 一种气体浓度测量方法及装置
CN101271063A (zh) * 2008-05-07 2008-09-24 陕西恒智科技发展有限公司 气体红外光谱分析支持向量机校正模型方法的流程
CN101915747A (zh) * 2010-07-22 2010-12-15 热映光电股份有限公司 气体浓度量测装置及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687934A (en) * 1986-01-10 1987-08-18 Andros Analyzers Incorporated Infrared gas analyzer with automatic zero adjustment
EP0400342A1 (en) * 1989-05-20 1990-12-05 Horiba, Ltd. Method of infra red analysis
CN2539173Y (zh) * 2002-04-05 2003-03-05 郭晓光 便携式氧和二氧化碳气体测试仪
CN1836154A (zh) * 2003-08-11 2006-09-20 森谢尔公司 测量误差的补偿方法以及为此目的的电子装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960817A (zh) * 2017-12-22 2019-07-02 中核核电运行管理有限公司 一种基于按序测量动态误差计算法的在线测氚的方法
CN109960817B (zh) * 2017-12-22 2023-08-15 中核核电运行管理有限公司 一种基于按序测量动态误差计算法的在线测氚的方法
CN113125341A (zh) * 2019-12-30 2021-07-16 上海禾赛科技有限公司 基于多光谱成像技术的气体遥测方法和装置
CN113125341B (zh) * 2019-12-30 2023-09-29 上海禾赛科技有限公司 基于多光谱成像技术的气体遥测方法和装置
CN115128027A (zh) * 2022-07-29 2022-09-30 中煤科工集团沈阳研究院有限公司 一种紫外差分光谱气体传感器环境压力补偿结构及方法
CN115128027B (zh) * 2022-07-29 2023-09-19 中煤科工集团沈阳研究院有限公司 一种紫外差分光谱气体传感器环境压力补偿结构及方法

Also Published As

Publication number Publication date
CN103163102B (zh) 2017-07-18
CN103163102A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2013083046A1 (zh) 一种气体测量方法、设备及干扰气体补偿装置
EP2796856B1 (en) Coal gas component and calorific value measurement method
BR9206115A (pt) Uma técnica para eliminar substancialmente erros de medida induzidos por temperatura a partir de um medidor de coriolis
KR101842799B1 (ko) Ndir의 보정계수 산출방법 및 산출된 보정계수를 이용한 ndir의 가스농도 측정방법
JP2002506222A (ja) 調整可能なレーザスペクトル吸収センサのための自動較正アプローチ
CN114646680B (zh) 一种气体传感器自动测试系统
CN115839927A (zh) 一种基于非线性方程组解法的气体间浓度干扰补偿修正方法
CN102980870A (zh) 一种高精度微流红外气体传感器及其测量方法
CN101486917A (zh) 焦炉α值在线检测系统及其焦炉加热制度调节方法
WO2020148927A1 (ja) 組成分析装置および組成分析方法
CN117075567B (zh) 一种应用于工业废气排放的监管方法及系统
WO2009154586A1 (en) Process for prediction of parameter sensor response
WO2023155934A1 (zh) 一种igcc联合循环发电燃料组分分析及热值测量系统
CN114544536B (zh) 一种氮氧化物浓度校准模型的生成方法
CN113253067B (zh) 变压器绝缘油局部放电模拟试验产气量修正方法及系统
CN115468925A (zh) 非色散红外检测二氧化碳浓度模型的构建方法、检测方法和装置
CN111328372B (zh) 组成分析装置及组成分析方法
WO2019172584A1 (ko) 히트란 데이터와 멀티 필터를 이용한 가스분석기 및 가스분석 방법
CN113514095A (zh) 一种干熄焦焦炭烧损率的检测方法及装置
CN108732141B (zh) 一种医用呼吸二氧化碳浓度测量方法及装置
KR20030049738A (ko) 코크스 건식소화설비의 순환가스성분 제어 시스템 및 그방법
Chen et al. Quantitative Detection of SO 2 H 2 S and CS 2 Based on Ultraviolet Absorption Spectrometry and Least Squares Algorithm
SU813207A1 (ru) Компенсационный гигрометр
CN117368424B (zh) 气体浓度检测补偿方法、装置、气体检测设备及存储介质
SU1453294A1 (ru) Способ балансировки мостовой схемы термохимического газоанализатора

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12855119

Country of ref document: EP

Kind code of ref document: A1