WO2013081121A1 - Accelerator operation response control method for automobile equipped with electric motor - Google Patents

Accelerator operation response control method for automobile equipped with electric motor Download PDF

Info

Publication number
WO2013081121A1
WO2013081121A1 PCT/JP2012/081130 JP2012081130W WO2013081121A1 WO 2013081121 A1 WO2013081121 A1 WO 2013081121A1 JP 2012081130 W JP2012081130 W JP 2012081130W WO 2013081121 A1 WO2013081121 A1 WO 2013081121A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
torque
accelerator
electric motor
speed
Prior art date
Application number
PCT/JP2012/081130
Other languages
French (fr)
Japanese (ja)
Inventor
李国棟
板倉慶宜
磯部史浩
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011263402A external-priority patent/JP2013113435A/en
Priority claimed from JP2012013656A external-priority patent/JP2013153618A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2013081121A1 publication Critical patent/WO2013081121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/106Output power
    • B60W2510/1065Transmission of zero torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/427One-way clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an accelerator operation response control method and a control device for an electric motor-equipped vehicle, which perform shock torque reduction control during the accelerator operation of the electric motor-equipped vehicle.
  • a vehicle motor drive device that transmits power to drive wheels via an electric motor, a transmission, and a differential (differential).
  • a differential differential
  • a two-way roller clutch is used for switching the gear position of the transmission.
  • this vehicle motor drive device When this vehicle motor drive device is used, it is possible to use the electric motor in a highly efficient rotational speed and torque region during driving and regeneration by switching the transmission gear ratio according to the running conditions. . In addition, by setting an appropriate gear ratio, the rotational speed of the rotating member of the transmission during high-speed traveling can be reduced, and the power loss of the transmission can be reduced to improve the energy efficiency of the vehicle.
  • a vehicle motor drive device for example, those described in Patent Literature 1 and Patent Literature 2 are known.
  • the target rotational speed of the electric motor is calculated based on the vehicle speed at the time of shift switching and the speed ratio of the selected target shift stage, and the output of the electric motor is output according to the target rotational speed of the electric motor.
  • This proposed example is a control method for switching between two feedback controls, torque control and rotation speed control.
  • the “positive direction” is a direction in which the roller clutch is engaged when the electric motor is driven. In this specification, this “positive direction” is also referred to as “driving side”.
  • the “negative direction” is a direction in which the roller clutch is engaged when the electric motor is regenerated. In this specification, this “negative direction” is also referred to as “non-driving side”.
  • “Regenerative control” is a control technique for the purpose of absorbing mechanical energy as electrical energy.
  • An accelerator operation response control method for an electric motor-equipped vehicle is a control method applied to an electric motor-equipped vehicle having the following configuration.
  • This automobile has an electric motor for traveling having a motor shaft as an output shaft, a gear train of a plurality of gears having different gear ratios, an input shaft connected to the motor shaft, and a gear train of each gear
  • a plurality of two-way roller clutches at each gear stage that can be switched between connection and disconnection, and are respectively provided in a plurality of wedge-shaped spaces provided between the cam surface of the inner ring and the outer ring.
  • Gear ratio switching wherein the switching of each of the roller clutches is performed by switching the contact and separation of the rotating friction plate connected to the retainer of each roller clutch with the outer ring by a speed change actuator.
  • a transmission having a mechanism.
  • the automobile also engages the roller clutch with the narrowed portion of the wedge-shaped space, and places the roller in the expanded portion of the wedge-shaped space with the retainer. Put the roller clutch in the disengaged state.
  • Shock reduction control which is a series of controls for switching the motor control method between two types of feedback control, torque control and rotation speed control, is performed.
  • the control method of the electric motor is switched between torque control and rotational speed control. Torque and noise can be reduced.
  • acceleration control during ON operation which is acceleration control
  • acceleration control on the condition that When the shock reduction control is operated from the accelerator ON to the accelerator OFF using the predetermined torque threshold B for regeneration determination
  • the regenerative control at the time of OFF operation which is the control to regenerate the electric motor on the condition that In order to prevent malfunction of the ON-time acceleration control and the OFF-time regenerative control when the accelerator OFF and the accelerator ON are repeatedly executed,
  • the first torque threshold A and the second torque threshold B are (first torque threshold A)> (second torque threshold B),
  • a hysteresis characteristic having a certain width may be provided between the two first and second torque threshold values A and B.
  • the electric motor control method is switched from torque control to rotation speed control, and the roller clutch roller is moved by the rotation speed control to the wedge-shaped space. It is also possible to include a process for controlling the rotational speed when the accelerator is ON to be engaged with the narrowed portion on the drive side.
  • a target rotational speed and a rotational speed limiting current used in the rotational speed control in the shock reduction control are respectively set in the speed change ECU, and the set target rotational speed and rotational speed are set in the rotational speed control.
  • the limiting current may be used according to the driving conditions.
  • the shock reduction control is a shock torque generated when the torque command value of the accelerator is excessive at the time of switching to the torque control after the completion of the rotation speed control when the accelerator is operated from the accelerator OFF to the accelerator ON.
  • Torque interpolation control for controlling the torque of the electric motor while interpolating the accelerator torque command value may be performed. By this interpolation, smooth control can be performed.
  • real-time torque control may be used in which the electric motor is torque-controlled by the real-time accelerator torque command value after interpolation of the accelerator torque command value is completed.
  • the roller clutch roller when the vehicle power source is started, the roller clutch roller is moved in the wedge-shaped space by the rotational speed control using the rotational speed control target rotational speed and the rotational speed control current set in the transmission ECU. You may make it perform the rotation speed control at the time of starting which is the control engaged with the narrow part of a drive side.
  • the shock reduction control when operated from the accelerator ON to the accelerator OFF, the control method of the electric motor is switched from the torque control to the rotational speed control, and the rollers of the roller clutch are controlled by the rotational speed control.
  • the control method switching control at the time of OFF operation which is a control for engaging with the narrow portion of the wedge-shaped space on the non-driving side, may be performed.
  • the shock reduction control is performed by switching the control method of the electric motor from the rotational speed control to the torque control so that the roller clutch roller is connected to the narrow portion on the drive side of the wedge-shaped space. It is also possible to perform stop-time control method switching control using the torque command value set in the transmission ECU as the torque command value in this torque control.
  • This method has the following advantages. Normally, when the accelerator is pulled out, the torque becomes zero, the roller clutch is returned from the forward direction engagement position to the neutral position, and it is necessary to control the roller clutch by rotation speed control at the next start. As a result, energy is wasted. Even when the vehicle is stopped, by controlling the engagement of the roller clutch in the forward direction by torque control, the electric motor can be controlled by direct torque control at the next start of the vehicle, and there is no need to control the rotational speed. Therefore, useless energy consumption is avoided.
  • An accelerator operation response control device for an electric motor-equipped vehicle is a device in the electric motor-equipped vehicle having the above-described configuration.
  • the above-mentioned device is configured to reduce the shock torque or noise of the roller clutch when either or both of the accelerator operation from ON to OFF and the accelerator operation from OFF to ON are reduced.
  • Shock reduction control means is provided for performing a series of control for switching the motor control method between two types of feedback control of torque control and rotation speed control.
  • the control method of the electric motor is switched between torque control and rotational speed control. Abnormal noise can be reduced.
  • the accelerator opening signal is set to a predetermined value during traveling by torque control during either or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON.
  • creep control which is control for setting the torque command value of the torque control to be equal to or greater than the creep positive torque threshold value, causes the rollers of the roller clutch to be narrowed on the drive side of the wedge-shaped space. Is always engaged (ie, remains engaged).
  • the creep positive torque threshold is appropriately determined by design.
  • the torque command value is set to be equal to or greater than the creep positive torque threshold.
  • the rollers of the roller clutch can always be engaged with the narrowed portion of the wedge-shaped space on the drive side, so that shock torque and noise generated when the roller clutch is engaged can be reduced.
  • the creep control may be executed over the entire speed region of the vehicle traveling speed.
  • the shock torque and noise generated when the roller clutch is engaged can always be reduced by switching the accelerator between ON and OFF.
  • the creep control performs regenerative control when the accelerator is OFF, and when the regenerative command torque value falls below the regenerative threshold value, the negative torque of the regenerative threshold value is input,
  • the roller of the roller clutch may be always engaged with a narrow portion on the non-driving side of the wedge-shaped space.
  • the vehicle speed during the execution of the regeneration control may be a predetermined vehicle speed or more.
  • the torque clutch is switched to the rotational speed control, and the roller clutch roller is narrowed on the drive side of the wedge-shaped space.
  • the portion may be switched to the narrow portion on the non-driving side of the wedge-shaped space and engaged.
  • the torque control is switched to the rotational speed control, and the roller clutch roller is moved from the narrowed portion on the drive side of the wedge-shaped space. Switching to the narrow portion on the non-driving side of the wedge-shaped space may be performed at each shift stage.
  • a map of the rotational speed difference, the limit current, and the rotational speed control execution time is displayed on the transmission ECU. It may be set in a memory such as a ROM and the rotational speed control may be performed using a map value.
  • the regeneration control may be started by switching from the rotational speed control to the torque control after the roller clutch of the current gear stage is engaged from the positive direction to the negative direction.
  • the regeneration control is executed by interpolating n times by torque control at the transition from the limit current or limit torque at the time of engaging the roller clutch at the current gear to the regeneration command torque value.
  • the interpolation control may be terminated n times.
  • the regenerative control when the regenerative command torque value falls below the absolute value (positive value) of the creep negative torque threshold value, the absolute value (positive value) of the creep negative torque threshold value is used as the regenerative command torque value during engagement.
  • the regenerative control is performed while executing the interpolation control from the limit current to the absolute value (positive value) of the creep negative torque threshold.
  • the direction of the q-axis current (torque component) of the electric motor is negative. There may be.
  • the regeneration control may be stopped when a certain period of time elapses while the accelerator opening signal exceeds the creep positive torque threshold while the regeneration control is being executed according to the regeneration command torque value.
  • stopping the regenerative control resets the elapsed time count of the predetermined time when the accelerator opening signal exceeds the creep positive torque threshold within a predetermined time, and the accelerator signal is You may start counting elapsed time from the time of exceeding the creep positive torque threshold.
  • the regeneration control may be stopped immediately when the vehicle speed falls below a given vehicle speed while the regeneration control is being executed according to the regeneration command torque value.
  • interpolation control may be performed n times by torque control in the transition from the regeneration command torque value to the limit current or limit torque at the time of engagement.
  • the rotational speed control may be performed using the value of.
  • the rotation speed control is switched to the torque control, and the interpolation control is performed n times in the transition from the limit current or the limit torque when the current speed changer roller clutch is engaged to the accelerator opening signal. May be executed.
  • control torque and time limit data set in advance in a memory such as a ROM of the speed change ECU may be fetched, and the creep control may be performed in several stages.
  • the q-axis current (torque component) of the electric motor is set so that the roller of the roller clutch at the current shift stage is engaged with the narrow portion on the drive side of the wedge-shaped space.
  • Direction may be positive.
  • the q-axis current (torque of the electric motor) is set so that the roller of the roller clutch at the current gear stage is engaged with the narrow portion on the non-drive side of the wedge-shaped space.
  • the direction of (component) may be negative.
  • the speed ratio switching mechanism includes a shift member, and the contact and separation of the friction plate with respect to the outer ring are switched by the advancement and retraction of the shift member by the speed change actuator.
  • Running with torque control to reduce shock torque and abnormal noise generated when the roller clutch is engaged during either or both of the operation from ON to OFF and from OFF to ON the torque command value for the torque control is set to be equal to or greater than the creep positive torque threshold, so that the roller 20 of the roller clutch is driven on the drive side of the wedge-shaped space. Creep control means for engaging with the narrowed portion of the.
  • the roller of the roller clutch can always be engaged with the narrow portion on the drive side of the wedge-shaped space, so that shock torque and noise generated when the roller clutch is engaged can be reduced.
  • FIG. 1 is a schematic diagram of an electric vehicle to which an accelerator operation response control method according to a first embodiment of the present invention is applied. It is the outline of the hybrid vehicle to which the accelerator operation response control method of FIG. 1 is applied.
  • FIG. 3 is a cross-sectional view of the vehicle motor drive device for the vehicle shown in FIG. 1 or FIG. 2. It is sectional drawing of the reduction ratio switching mechanism of the vehicle motor drive device of FIG.
  • FIG. 4 is a schematic block diagram of a shift control system that controls the vehicle motor drive device of FIG. 3. It is a block diagram of the inverter apparatus of the vehicle motor drive device of FIG. It is a block diagram of the inverter control apparatus of the vehicle motor drive device of FIG.
  • FIG. 5 is an exploded perspective view of a roller clutch and the like in the reduction ratio switching mechanism of FIG. 4.
  • 4 is a flowchart illustrating an example of an automatic transmission control method for the vehicle motor drive device of FIG. 3. It is a schematic block diagram of the vehicle motor drive device of the vehicle to which the accelerator operation response control method according to the second embodiment of the present invention is applied. It is explanatory drawing of the lever operation panel of an electric vehicle including the motor drive apparatus for vehicles of FIG.
  • FIG. 1 shows an electric vehicle EV in which a pair of left and right front wheels 1 are drive wheels driven by a vehicle motor drive device A, and a pair of left and right rear wheels 2 are driven wheels.
  • FIG. 2 shows a hybrid vehicle HV in which a pair of left and right front wheels 1 are main drive wheels driven by an engine E, and a pair of left and right rear wheels 2 are auxiliary drive wheels driven by a vehicle motor drive device A.
  • the hybrid vehicle HV is provided with a transmission T for shifting the rotation of the engine E and a differential D for distributing the rotation output from the transmission T to the left and right front wheels 1.
  • the accelerator operation response control method and the accelerator operation response control device for an automobile equipped with an electric motor according to the first embodiment are applied to the vehicle motor drive device A shown in FIGS.
  • the vehicle motor drive device A includes a traveling electric motor 3, a transmission 5 that shifts and outputs the rotation of the output shaft 4 of the electric motor 3, and an output from the transmission 5.
  • the differential 6 is distributed to the pair of left and right front wheels 1 of the electric vehicle EV shown in FIG. 1 or to the pair of left and right rear wheels 2 of the hybrid vehicle shown in FIG.
  • the transmission 5 has two speeds. As shown in FIG. 3, the transmission 5 has a plurality of gear trains LA and LB (two trains in this example) having different gear ratios.
  • the transmission 5 further includes two-way roller clutches 16A and 16B for each of the gear positions. These roller clutches 16A and 16B are respectively interposed in the input shaft 7 connected to the motor shaft 4 that is the output shaft of the electric motor 3 and the gear trains LA and LB of the corresponding gears, and are switched between connection and disconnection. enable.
  • the transmission 5 further includes a gear ratio switching mechanism 40 that switches between connection and disconnection of the roller clutches 16A and 16B.
  • the shifting of the two-way type roller clutches 16A and 16B is performed by controlling the shift position of a shift fork 45 (FIG. 4) described later and synchronizing control of the electric motor 3.
  • the transmission 5 includes an input shaft 7 to which rotation of the motor shaft 4 is input, an output shaft 8 arranged parallel to the input shaft 7 at intervals, and the gear trains LA and LB.
  • a parallel shaft always-mesh transmission.
  • the input gear 9A of the first gear train LA and the input gear 9B of the second gear train LB are integrally provided on the input shaft, and the output gear 10A of the first gear train LA and the output gear 10B of the second gear train LB are output shafts.
  • 8 is rotatably installed on the outer periphery.
  • the roller clutches 16A and 16B are interposed between the output gears 10A and 10B and the output shaft 8.
  • the roller clutches 16A and 16B are respectively formed of a flat cam surface 19 and an outer ring 23 on the outer periphery of the inner ring 18B having a polygonal outer peripheral surface, as described in the example of the two-speed roller clutch 16B shown in FIG.
  • a roller 20 is interposed in each wedge-shaped space S provided between the inner circumferential cylindrical surfaces.
  • both sides in the circumferential direction are narrowed, and the center in the circumferential direction is an expanded portion.
  • the roller clutch 16B is in a connected state when each roller 20 is engaged with a narrowed portion of the wedge-shaped space S, and is in a disconnected state when each roller 20 is positioned in an expanded portion of the wedge-shaped space S by the retainer 21B. is there.
  • the outer ring 23 has an outer peripheral portion as the output gears 10A and 10B.
  • the inner rings 18A and 18B are provided so as not to rotate relative to the output shaft 8 by splines or the like.
  • bearings 15 In order to enable smooth relative rotation, that is, idling, between the output gears 10A and 10B constituting the outer ring 23 and the inner rings 18A and 18B, bearings 15 (see FIG. 3 and FIG. 3), respectively, in addition to the roller clutches 16A and 16B. 4) is provided.
  • the gear ratio switching mechanism 40 switches between contact and separation of the annular friction plates 35A and 35B, which are connected to the cages 21A and 21B of the roller clutches 16A and 16B and rotate, with the outer ring 23.
  • This is a mechanism that is switched by the advancement and retraction of the shift fork 45 that is a shift member by the actuator 47.
  • the shift mechanism 41 is a mechanism portion that operates the friction plates 35 ⁇ / b> A and 35 ⁇ / b> B in the transmission ratio switching mechanism 40, and includes a transmission switching actuator 47 and a shift fork 45.
  • the shift switching actuator 47 is an electric motor for shifting.
  • the rotation of the output shaft 47a is converted into a linear motion of the shift rod 46 by the feed screw mechanism 48, and the shift fork 45 attached to the shift rod 46 is axially moved. Move to.
  • the shift sleeve 43 and the shift ring 34 move.
  • the shift ring 34 presses the friction plates 35A and 35B against the side surface of the crack outer ring 23 (output gears 10A and 10B).
  • a frictional force acts between the friction plates 35A, 35B and the outer ring 23 via the cages 21A, 21B.
  • the roller 20 can be pushed into the narrowed portion of the wedge-shaped space S (FIG. 15).
  • the cages 21A and 21B are rotatable with respect to the inner rings 18A and 18B.
  • the switch springs 22A and 22B (FIGS. 14 and 16) allow the center of the cam surface 19 (FIG. 15) of the inner rings 18A and 18B, In other words, the neutral position, which is the spreading portion of the wedge-shaped space S, is biased so that the circumferential center of the pocket 21a coincides.
  • the friction plates 35A and 35B are connected to the switch springs 22A and 22B so as to be rotatable together with the cages 21A and 21B.
  • FIG. 5 is a block diagram showing a control system for controlling the vehicle motor drive device A. As shown in FIG. This control system executes accelerator operation response control processing according to the present embodiment, which will be described later.
  • This control system has an integrated ECU 60, a transmission ECU 61, and an inverter device 62. Signal transfer among the three units of the integrated ECU 60, the shift ECU 61, and the inverter device 62 is performed by CAN (controller area network) communication.
  • CAN controller area network
  • the integrated ECU 60 is an electronic control device that performs cooperative control among all on-vehicle electronic control devices, and issues instructions in cooperation with a vehicle brake device and a steering device (not shown).
  • the integrated ECU 60 is connected to an accelerator 63 comprising an accelerator pedal and detection means for detecting the amount of depression.
  • the integrated ECU 60 calculates an accelerator signal that is a signal of the accelerator opening based on the signal from the accelerator 63 and outputs the accelerator signal to the transmission ECU 61.
  • the shift ECU 61 is an electronic control device that receives a vehicle speed detection signal and an accelerator signal output from the integrated ECU 60, and controls automatic shift.
  • the shift ECU 61 performs shift determination based on various input signals and shifts the shift of the transmission 5. Commands are given to the actuator 47 and the inverter device 62.
  • the shift ECU 61 outputs a drive command to the shift switching actuator 47, and transmits a torque command (or a rotation speed command depending on the situation) and a shift command to the inverter device 62.
  • the shift ECU 61 is operated by a driver from a shift operation unit 64 (for example, a tact switch for switching between an automatic shift mode and a manual shift mode or a shift lever for manually switching a shift stage in the manual shift mode).
  • a signal indicating the state is input.
  • a signal indicating the current vehicle speed is input from the vehicle speed sensor 65 to the transmission ECU 61.
  • the shift ECU 61 has a function of detecting the shift position from the shift position sensor 68 of the shift switching actuator 47 and acquiring the rotational speed of the electric motor 3 from the inverter device 62.
  • the speed change ECU 61 includes means (not shown) for displaying the vehicle speed, the electric motor rotational speed for traveling, the torque command value, and the like on the display unit 67 such as a liquid crystal display device or a display lamp in the driver's seat.
  • the shift ECU 61 is programmed with shift modes of an automatic shift mode and a manual shift mode, and the automatic shift mode and the manual shift mode are switched by operation of the shift operation unit 64 by the driver.
  • the speed change ECU 61 has various function achievement means 81 to 91 shown in FIG. 13, which will be described later.
  • the inverter device 62 is supplied with DC power from the battery 69 to supply AC motor driving power to the electric motor 3 and controls the supplied power based on a signal from the transmission ECU 61.
  • a signal indicating the rotation speed of the electric motor 3 is input to the inverter device 62 from a resolver 66 that is a rotation detection device provided in the electric motor 3. Further, the inverter device 62 has a function of performing control for regenerating electric power.
  • the inverter device 62 has a function of driving the electric motor 3 and a function of obtaining a rotation angle signal of the electric motor 3 from the resolver 66.
  • the inverter device 62 includes an inverter 71 composed of an IGBT module and an inverter control circuit 72 that controls the inverter 71.
  • Each phase of the electric motor 3 (at the connection point of the inverter 71, U, V, W phase upper arm switching elements Up, Vp, Wp and U, V, W phase lower arm switching elements Un, Vn, Wn) U, V, W phase) terminals are connected.
  • the electric motor 3 is commutated by three-phase sine wave energization.
  • the electric motor 3 is an IPM motor (embedded permanent magnet synchronous motor). A large current is required for driving the IPM electric motor 3, and an IGBT (Insulated Gate Bipolar Transistor) is used for each switching element in the inverter 71.
  • IPM motor embedded permanent magnet synchronous motor
  • IGBT Insulated Gate Bipolar Transistor
  • the 180-degree energization type sinusoidal energization
  • FIG. 7 is a block diagram mainly showing the configuration of the inverter control circuit 72.
  • the inverter control circuit 72 can be controlled by switching between torque control and rotation speed control. Both torque control and rotation speed control are feedback control and vector control.
  • the current command unit 101 receives a torque command generated by the torque command unit 110 of the speed change ECU 61 from the accelerator signal.
  • the torque command unit 110 and the speed command unit 106 of the speed change ECU 61 in FIG. 7 collectively indicate means for outputting a torque command and a speed command, among the components of the speed change ECU 61, respectively.
  • the current PI control unit 102 is a two-phase current calculated by the three-phase / two-phase conversion unit 104 from the values of the d-axis current O_Id and q-axis current O_Iq output from the current command unit 101 and the motor current and the rotor angle. Control amounts Vd and Vq based on voltage values by PI control are calculated from Id and Iq.
  • the two-phase / three-phase conversion unit 103 converts the three-phase PWM duties Vu, Vv, and Vw based on the input two-phase control amounts Vd and Vq.
  • the rotation angle of the motor rotor used for conversion is calculated by the prediction calculation unit 111 so that it is a value at the generation position (angle) of the next pulse without being affected by delays such as calculation time and signal transfer.
  • Rotor rotation angle (electrical angle) at current sampling time
  • OId_ ⁇ Rotor rotation angle (electrical angle) at pre-sampling time It is.
  • the power converter 62a performs PWM control of the inverter 71 (IGBT (Insulated Gate Bipolar Transistor)) (FIG. 6) according to the PWM duties Vu, Vv, and Vw, and drives the electric motor 3.
  • IGBT Insulated Gate Bipolar Transistor
  • the speed command unit 106 is a means for giving a speed command to the inverter control circuit 72 and is provided in the speed change ECU 61.
  • the speed command unit 106 calculates a target rotational speed of the electric motor 3 based on the vehicle speed at the time of shifting and the speed ratio of the selected target shift stage. The calculated target rotational speed is instructed to the inverter control circuit 72 of the inverter device 62 as a speed command.
  • the rotor angle of the electric motor 3 is acquired from the resolver 66, and the actual rotation speed of the electric motor 3 is calculated by the speed calculation unit 108.
  • the comparison unit 109 obtains the difference between the speed command of the speed command unit 106 and the actual electric motor rotation number calculated by the speed calculation unit 108, and the control unit 107 performs PID control (proportional integral derivative control) for the difference.
  • PID control proportional integral derivative control
  • PI control proportional integral control
  • the control amount is input to the current command unit 101 as a torque command.
  • a torque command based on the speed command from the speed calculation unit 108 is input to the current command unit 101 instead of the torque command from the torque command unit 110.
  • the target rotational speed of the electric motor 3 is calculated at an interval of 1 msec, and even if the vehicle speed changes suddenly during a shift, the target rotational speed of the shift has a feature that can follow the change in the vehicle speed. Thereby, the shift shock and the engagement shock during the accelerator operation can be reduced.
  • the inverter control circuit 72 is described separately for a speed control unit 73 and a torque control unit 74.
  • the torque control unit 74 is a part of the inverter control circuit 72 that performs a function of controlling the electric motor 3 by torque control.
  • the speed control unit 73 is a part of the inverter control circuit 72 that performs the function of controlling the electric motor 3 by speed control.
  • the speed control unit 73 includes a comparison unit 109 and a control unit 107. A torque command is given to the unit 101, and the subsequent control is performed by the torque control unit 74.
  • FIGS. 8 to 10 are flowcharts of accelerator OFF ⁇ ON control (shock reduction control executed when the accelerator is switched from OFF to ON), and FIGS. 11 and 12 are accelerator ON ⁇ OFF control (accelerator is switched from ON to OFF). A flowchart of shock reduction control executed when switching is shown.
  • the “forward direction” refers to the direction in which the roller clutches 16A and 16B are engaged (connected) when the electric motor 3 is driven, that is, the roller 20 of the roller clutch 16A (16B) (FIG. 15).
  • the “negative direction” is the direction in which the roller clutches 16A and 16B are engaged (connected) during regeneration of the electric motor 3, that is, the rollers (FIG. 15) of the roller clutch 16A (16B) are wedge-shaped spaces S. It is assumed that it is engaged with the narrow portion on the non-driving side of (FIG. 15).
  • FIG. 8 shows a process for performing acceleration control with the electric motor 3 when the accelerator is turned off.
  • step Q1 torque control is continued.
  • the accelerator opening voltage analog value
  • AD conversion in the integrated ECU 60 The digital conversion value of the accelerator opening is used as a torque command value.
  • the torque command value is transmitted from integrated ECU 60 to transmission ECU 61 via CAN communication.
  • the stop mode is a mode indicating the state of the roller clutches 16A and 16B when the vehicle is stopped. In order to eliminate the shock torque when starting from the vehicle stop state, the roller clutches 16A and 16B are always engaged in the positive direction in the stop mode (details will be described later with reference to FIG. 12).
  • the accelerator OFF ⁇ ON control shock reduction control corresponding to the switching from accelerator OFF to ON
  • a real-time torque command is received and transmitted to the inverter. If it is not the stop mode, it is determined whether or not the accelerator OFF ⁇ ON control should be executed.
  • the accelerator OFF ⁇ ON control it is determined whether or not the accelerator OFF ⁇ ON control should be executed.
  • a predetermined torque threshold value A first torque threshold value
  • the accelerator is turned on from the accelerator OFF
  • Torque threshold A Torque threshold A
  • the acceleration control during the ON operation that is, the accelerator OFF ⁇ ON control (shock reduction control executed when the accelerator is switched from ON to OFF) is executed.
  • the shift ECU 61 uses a first torque threshold (threshold A) used to determine whether to perform accelerator OFF ⁇ ON control and a second torque threshold (threshold A) used to determine whether accelerator ON ⁇ OFF control should be performed. It has a threshold B).
  • the threshold value B corresponds to a “threshold value for regeneration determination”.
  • threshold value A> threshold value B and a certain range of hysteresis characteristics are provided, malfunctions of accelerator OFF ⁇ ON control and accelerator ON ⁇ OFF control are prevented due to the influence of noise included in the torque command signal.
  • step Q4 accelerator OFF ⁇ ON control is executed. If it is determined that the accelerator OFF ⁇ ON control should be executed, the torque command value is first recorded (T0) (substep Q4). Next, the rotational speed of the electric motor is determined (sub-step Q5). When the electric motor rotational speed ⁇ 100 rpm, the process proceeds to the normal mode (sub-step Q6 (this process will be described later with reference to FIG. 9)). If the electric motor speed ⁇ 100 rpm, the operation proceeds to the start mode (Q7 (this process will be described later with reference to FIG. 10)). The process in the activation mode is a process that is executed only once when the vehicle is activated.
  • the control in FIG. 9 (corresponding to the processing in the normal mode (sub-step Q6) in FIG. 8) will be described.
  • the first step it is determined whether the current gear position is the first speed or the second speed (substep R1), and the current gear position stored in the memory (not shown) of the speed change ECU 61 is determined.
  • a target rotational speed and a rotational speed limiting current used for rotational speed control are extracted from the target rotational speed control table and the rotational speed limiting current table (both not shown) (substep R2).
  • a target rotational speed value is set for each of the first speed and the second speed at every vehicle speed of 5 km / h.
  • a limit current value is set for each of the first speed and the second speed at a vehicle speed of 5 km / h.
  • the rotational speed control is performed for a certain time (for example, 100 msec) (sub-step R4), and the roller clutches 16A and 16B are engaged in the forward direction to perform the rotational speed control when the accelerator is ON. Execute (that is, control the rotational speed when the accelerator is ON).
  • the accelerator signal (current (current) torque command value T1) at the completion of the rotation speed control is recorded (substep R5). While the rotational speed control is being performed, the transmission ECU 61 receives a real-time accelerator signal (accelerator signal at that time), but does not send it to the control of the electric motor 3 as a command value.
  • torque control is performed using a real-time accelerator signal (real-time torque control).
  • the control in FIG. 10 (corresponding to the start mode (sub-step Q5) process in FIG. 8) will be described.
  • the process in the start mode is a process that is performed only once when the vehicle is started.
  • sub-step S1 to S3 it is determined whether the current speed is the first speed or the second speed (sub-step S1), and the speed control target speed and the speed control current of the current speed are selected. (Sub-steps S2, S3). A first-speed target rotation speed and control current, and a second-speed target rotation speed and control current are set in the shift ECU 61, respectively.
  • the rotational speed control is performed for a certain time (for example, 500 msec) according to the target rotational speed (for example, 100 rpm) (sub-step S5), and the roller clutches 16A and 16B are engaged.
  • the rotational speed control at startup is executed (that is, the rotational speed control is performed at startup).
  • torque control is performed with a real-time accelerator signal.
  • FIG. 11 shows a process for performing regenerative control with the electric motor 3 when the accelerator is turned ON.
  • the control shown in the figure includes the control for engaging the roller clutches 16A and 16B in the negative direction and the roller clutches 16A and 16B when the vehicle is stopped in order to perform the regeneration control of the electric motor 3 after the vehicle reaches a constant speed. Includes control to engage in the positive direction.
  • the accelerator opening (voltage analog value) is input to the integrated ECU 60 and converted into a digital value by AD conversion in the integrated ECU 60.
  • the digital conversion value of the accelerator opening is used as a torque command value.
  • the torque command value is transmitted from the integrated ECU 60 to the transmission ECU via CAN communication.
  • the accelerator ON ⁇ OFF control it is determined whether or not the accelerator ON ⁇ OFF control should be executed, that is, whether or not the shock reduction control corresponding to the accelerator switching from ON to OFF may be executed.
  • the shift ECU 61 has a second torque threshold value (threshold value B) used to determine whether to perform ON ⁇ OFF control and a first torque threshold value (threshold A) used to determine whether to perform OFF ⁇ ON control. .
  • the torque command value falls below the torque threshold B, the ON ⁇ OFF control is started.
  • the rotational speed of the electric motor is determined (substep U2). If the electric motor rotation speed ⁇ 100 rpm, the process proceeds to the third step (sub-step U3). If the electric motor rotation speed ⁇ 100 rpm, the process jumps to the processing in the stop mode (substep U8) (FIG. 12). “Stop mode” is a mode indicating the state of vehicle parking.
  • the third step it is determined whether the current shift speed is the first speed or the second speed (sub-step U3), and the target used for the rotation speed control from the target rotation speed control table and the rotation speed limit current table at the current shift speed.
  • the rotational speed and the rotational speed limiting current are extracted (substep U4).
  • a target rotational speed value is set for each of the first speed and the second speed at every vehicle speed of 5 km / h.
  • a value of the speed limit current is set for each of the first speed and the second speed at every vehicle speed of 5 km / h.
  • the rotational speed control is performed for a certain time (for example, 100 msec) (sub-steps U5 and U6), and the roller clutches 16A and 16B are engaged in the negative direction (the rotational speed control is performed when the accelerator is OFF). While the rotational speed control is being performed, the transmission ECU 61 receives a real-time accelerator signal, but does not use it as a command value for controlling the electric motor 3.
  • the sub-steps U2 to U6 are referred to as OFF operation time control method switching control.
  • the rotational speed of the electric motor 3 is determined (substep U7). If the electric motor rotational speed is equal to or greater than 100 rpm, the process proceeds to the control from the OFF state to the ON state (FIG. 8) (substep U9). If the electric motor rotation speed ⁇ 100 rpm, the process proceeds to the stop mode (substep U8).
  • the control in FIG. 12 (step U8 in FIG. 11) will be described.
  • the figure shows a process of a mode (stop mode) performed when the vehicle is stopped in the control for performing regenerative control with the electric motor 3 when the accelerator is ON ⁇ OFF.
  • the control in the figure corresponds to “stop-time control method switching control”.
  • the control method of the electric motor 3 is switched from the rotational speed control to the torque control (substeps W1 and W2).
  • the torque command value used for torque control of the electric motor 3 is set to T3, the torque control is continued (substep W3), and the control time is set to, for example, 500 msec (substep). W4).
  • the stop mode is a mode used when the vehicle is stopped, and is a state where the accelerator 63 is pulled out. Normally, when the accelerator 63 is pulled out, the torque becomes zero and the roller clutches 16A and 16B are engaged in the forward direction. This is because it is necessary to control the roller clutches 16A and 16B by the rotational speed control at the time of the next start after returning to the neutral position. That is, it is for avoiding wasteful consumption of energy. In order not to waste energy wastefully, control is performed to engage the roller clutches 16A and 16B in the forward direction by torque control even when the vehicle is stopped. Thereby, when the vehicle starts next time, the electric motor can be controlled by direct torque control, and there is no need to control the rotational speed.
  • the control method of the electric motor 3 is controlled by torque control. And switching between two types of feedback control, that is, rotation speed control. Therefore, the shock torque and abnormal noise of the roller clutches 16A and 16B can be reduced.
  • an accelerator operation response control device for an electric vehicle will be described with reference to the block diagram of FIG.
  • the electric vehicle to be controlled is the electric vehicle described above with reference to FIGS. 1 to 6 to which the accelerator operation response control method of the above embodiment is applied.
  • This accelerator operation response control device is a device that implements the accelerator operation response control method of the above-described embodiment in the shift ECU 61, and is provided with shock reduction control means 83 for accelerator operation in the shift ECU 61.
  • the shift ECU 61 is an ECU including shift command generation means 81 and shift operation time control means 82 as its basic control means, and the outline thereof will be described first.
  • the shift command generation means 81 is a means for generating a shift command to the target shift stage according to a predetermined rule from an accelerator signal given from the integrated ECU and a detected value of the vehicle speed.
  • the shift operation time control means 82 is a means for performing a predetermined series of controls on the shift switching actuator 47 and the inverter device 62 in accordance with the shift command generated by the shift command generating means 81.
  • FIG. 20 shows an outline of an example of the automatic shift control method by the shift command generation means 81 and the shift operation time control means 82.
  • this automatic shift control method the rotational speed control and the torque control are used in combination even during a shift operation. Detailed description of the same figure is omitted.
  • the shock reduction control 83 indicates that the shock torque or abnormal noise of the roller clutches 16A and 16B is generated when either or both of the operation of the accelerator 63 from ON to OFF and the operation from OFF to ON are performed. It is means for performing a series of controls for switching the control method of the electric motor 3 between two types of feedback control, that is, torque control and rotation speed control, so as to reduce.
  • the shock reduction control 83 includes an ON operation acceleration control step 84, an OFF operation regeneration control means 85, a repetitive operation control means 86, a torque interpolation control means 87, a real-time torque control means 88, a startup speed control means 89, and an OFF operation.
  • An operation time control method switching means 90 and a stop time control method switching means 91 are provided.
  • the ON-operation acceleration control means 84 uses a predetermined torque threshold A for acceleration determination that is set in advance, and is operated from the accelerator OFF to the accelerator ON. (Accelerator torque command value)> (Torque threshold A) It is a means of accelerating on the condition. More specifically, the ON operation acceleration control means 84 is a means for performing the processing described above with reference to step Q3 of FIG.
  • torque threshold A In order to prevent malfunction of the ON operation acceleration control means 84 and the OFF operation regeneration control means 85 when the accelerator OFF and the accelerator ON are repeatedly executed, Regarding the torque threshold, (torque threshold A)> (torque threshold B) In addition, a hysteresis characteristic with a certain width is provided between these two torque thresholds A and B.
  • the torque interpolation control means 87 is a shock that is generated when the torque command value of the accelerator is excessive after switching to the torque control after the completion of the rotation speed control.
  • the electric motor is torque controlled while interpolating the torque command value of the accelerator.
  • the torque interpolation control means 87 performs the control in step R7 described above with reference to FIG.
  • the real-time torque control means 88 is means for controlling the torque of the electric motor 3 with the real-time accelerator torque command value after the interpolation of the torque command value of the accelerator 63 is completed.
  • the real-time torque control means 88 performs the control of step R9 described above with reference to FIG.
  • the start-up rotation speed control means 89 uses the rotation speed control target rotation speed and the rotation speed control current set in the speed change ECU 61 when the vehicle power supply is started, and controls the roller clutches 16A and 16B by rotation speed control. Rotational speed control at start-up that is control for engaging with the drive-side wedge-shaped space is performed.
  • the starting rotation speed control means 89 performs the control of steps S2 to S5 described above with reference to FIG.
  • the control method switching means 90 at the time of the OFF operation switches the control of the electric motor 3 from the torque control to the rotation speed control as one of the controls when the accelerator is operated from the accelerator ON to the roller clutch by the rotation speed control. Control to engage with the non-driving side wedge-shaped space is performed. Specifically, the OFF operation time control method switching means 90 performs the control of steps U2 to U6 described above with reference to FIG.
  • the stop time control method switching means 91 switches the control of the electric motor 3 from the rotational speed control to the torque control, and engages the roller clutches 16A and 16B with the drive-side wedge-shaped space.
  • the torque command value is a means that uses the torque command value set in the speed change ECU 61. Specifically, the stop time control method switching means 91 performs the control of steps W1 to W4 described above with reference to FIG.
  • the shock reduction control means 83 of FIG. 13 has each function which implements the accelerator operation response control method concerning this embodiment other than each above control.
  • the motor shaft 4 is coaxially arranged in series with the input shaft 7, and is rotationally driven by a stator 12 of the electric motor 3 fixed to the housing 11.
  • the input shaft 7 is rotatably supported by a pair of opposed bearings 13 incorporated in the housing 11, and the shaft end of the input shaft 7 is connected to the motor shaft 4 by spline fitting.
  • the output shaft 8 is rotatably supported by a pair of opposed bearings 14 incorporated in the housing 11.
  • the first-speed input gear 9A and the second-speed input gear 9B are arranged at an interval in the axial direction, and are fixed to the input shaft 7 so as to rotate integrally with the input shaft 7 around the input shaft 7.
  • the first-speed output gear 10A and the second-speed output gear 10B are also arranged at intervals in the axial direction.
  • the first-speed output gear 10 ⁇ / b> A is formed in an annular shape that penetrates the output shaft 8, and is supported by the output shaft 8 via a bearing 15, and the output shaft 8 is centered on the output shaft 8. And can be rotated.
  • the second speed output gear 10 ⁇ / b> B is also rotatably supported by the output shaft 8 via the bearing 15.
  • the first speed input gear 9A and the first speed output gear 10A mesh with each other, and rotation is transmitted between the first speed input gear 9A and the first speed output gear 10A.
  • the 2nd speed input gear 9B and the 2nd speed output gear 10B are also meshed, and rotation is transmitted between the 2nd speed input gear 9B and the 2nd speed output gear 10B by the meshing.
  • the reduction ratio between the second speed input gear 9B and the second speed output gear 10B is smaller than the reduction ratio between the first speed input gear 9A and the first speed output gear 10A.
  • first-speed output gear 10A and the output shaft 8 are incorporated between the first-speed output gear 10A and the output shaft 8 .
  • a 2-speed 2-way roller clutch 16B is incorporated between the 2-speed output gear 10B and the output shaft 8 to switch torque transmission and interruption between the 2-speed output gear 10B and the output shaft 8. .
  • the second-speed two-way roller clutch 16B Since the first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B have the same symmetrical configuration, the second-speed two-way roller clutch 16B will be described below.
  • the parts corresponding to the 2-speed 2-way roller clutch 16B are denoted by the same reference numerals or the reference numerals in which the alphabet B at the end is replaced with A, and the description thereof is omitted.
  • the 2-speed 2-way roller clutch 16B includes a cylindrical surface 17 provided on the inner periphery of the 2-speed output gear 10B, and an annular 2-speed fixed to the outer periphery of the output shaft 8. It comprises a cam surface 19 formed on the cam member 18B, a roller 20 incorporated between the cam surface 19 and the cylindrical surface 17, a second speed holder 21B for holding the roller 20, and a second speed switch spring 22B.
  • the cam surface 19 is a surface that forms a wedge-shaped space S that gradually narrows from the circumferential center to both ends in the circumferential direction with the cylindrical surface 17.
  • the cam surface 19 faces the cylindrical surface 17. It is a flat surface.
  • the 2-speed retainer 21 ⁇ / b> B includes a cylindrical portion 24 in which a plurality of pockets 21 a that store the rollers 20 are formed at intervals in the circumferential direction, and a radial direction from one end of the cylindrical portion 24. And an inward flange portion 25 extending inward.
  • the radially inner end of the inward flange portion 25 is supported so as to be slidable in the circumferential direction on the outer periphery of the second-speed cam member 18B, and the second-speed cage 21B causes the cam surface 19 and the cylindrical surface 17 to slide.
  • rotation relative to the output shaft 8 is possible.
  • the inward flange portion 25 of the second-speed cage 21B is restricted from moving in the axial direction, thereby making the second-speed cage 21B immovable in the axial direction.
  • each cam surface 19 is formed symmetrically with respect to a virtual plane including the center of rotation, so that the rollers 20 arranged between each cam surface 19 and the cylindrical surface 17 can rotate forward.
  • the engagement is possible in both the direction and the reverse direction. That is, when the vehicle is advanced by the torque generated by the electric motor 3, the roller 20 held by the second-speed cage 21B is rotated by rotating the second-speed cage 21B in the normal rotation direction with respect to the output shaft 8. Is engaged with a space narrowing portion on the forward rotation direction side between the cam surface 19 and the cylindrical surface 17, and torque in the forward rotation direction is transmitted between the second speed output gear 9 ⁇ / b> B and the output shaft 8 via the roller 20.
  • the second speed retainer 21B is rotated relative to the output shaft 8 in the reverse rotation direction to maintain the second speed.
  • the roller 20 held by the vessel 21B is engaged with the space narrowing portion on the reverse direction side between the cam surface 19 and the cylindrical surface 17, and between the second-speed output gear 9B and the output shaft 8 via the roller 20. Transmit torque in reverse direction It is possible to be.
  • the two-speed switch spring 22 ⁇ / b> B includes a C-shaped annular portion 26 in which a steel wire is wound in a C shape, and a pair extending radially outward from both ends of the C-shaped annular portion 26. Extending portions 27, 27.
  • the C-shaped annular portion 26 is fitted into a circular switch spring accommodating recess 28 formed on the axial end surface of the second-speed cam member 18B, and the pair of extending portions 27 and 27 are axial end surfaces of the second-speed cam member 18B. It is inserted in the radial groove 29 formed in.
  • the radial groove 29 is formed so as to extend radially outward from the inner peripheral edge of the switch spring accommodating recess 28 and reach the outer periphery of the second speed cam member 18B.
  • the extension portion 27 of the second speed switch spring 22B protrudes from the radially outer end of the radial groove 29, and the protruding portion of the extension portion 27 from the radial groove 29 is the cylindrical portion of the second speed cage 21B.
  • 24 is inserted into a notch 30 formed at the end in the axial direction.
  • the radial groove 29 and the notch 30 are formed to have the same width.
  • the extending portions 27, 27 are in contact with the inner surface facing the circumferential direction of the radial groove 29 and the inner surface facing the circumferential direction of the notch 30, respectively, and 2 by the circumferential force acting on the contact surface.
  • the speed holder 21B is elastically held in the neutral position.
  • the second-speed cage 21B when the second-speed cage 21B is rotated relative to the output shaft 8 and moved in the circumferential direction from the neutral position shown in FIG. 16, the position of the radial groove 29 and the position of the notch 30 are shifted in the circumferential direction. Therefore, the C-shaped annular portion 26 is elastically deformed in the direction in which the distance between the pair of extending portions 27, 27 is narrowed, and the pair of extending portions 27, 27 of the two-speed switch spring 22B are caused to be radially grooved 29 by the elastic restoring force. The inner surface of the notch 30 and the inner surface of the notch 30 are pressed, and a force in a direction to return the second-speed cage 21B to the neutral position is applied by the pressing.
  • the first-speed cam member 18A and the second-speed cam member 18B are prevented from rotating with respect to the output shaft 8 by spline fitting.
  • the cam surface 19 of the first speed cam member 18A and the cam surface 19 of the second speed cam member 18B have the same number and the same phase.
  • the first speed cam member 18A and the second speed cam member 18B are immovable in the axial direction by a pair of retaining rings (not shown) fitted to the outer periphery of the output shaft 8.
  • a spacer 32 is incorporated between the first speed cam member 18A and the second speed cam member 18B.
  • the first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B can be selectively engaged by the transmission actuator 33.
  • the speed change actuator 33 includes a shift ring 34 that is movably provided in the axial direction between the first speed output gear 10A and the second speed output gear 10B, and the first speed output gear 10A and the shift ring 34.
  • first-speed friction plate 35A and the second-speed friction plate 35B have the same configuration with left-right symmetry, the second-speed friction plate 35B will be described below, and the first-speed friction plate 35A corresponds to the second-speed friction plate 35B.
  • Parts are denoted by the same reference numerals or reference numerals in which the alphabet B at the end is replaced with A, and description thereof is omitted.
  • the second-speed friction plate 35B is provided with a projecting piece 36 that engages with the notch 30 of the second-speed retainer 21B.
  • the engagement between the projecting piece 36 and the notch 30 causes the second-speed friction plate 35B to hold the second speed.
  • the rotation is stopped by the vessel 21B.
  • the notch 30 of the second-speed retainer 21B accommodates the projecting piece 36 of the second-speed friction plate 35B so as to be slidable in the axial direction. By this sliding, the second-speed friction plate 35B rotates around the second-speed retainer 21B. It can move in the axial direction with respect to the second-speed retainer 21B between a position in contact with the side surface of the second-speed output gear 10B and a position away from the second-speed output gear 10B.
  • a recess 37 is formed at the tip of the projecting piece 36 of the second speed friction plate 35B, and a protrusion 38 that engages with the recess 37 is formed on the outer periphery of the spacer 32.
  • the concave portion 37 and the convex portion 38 are engaged with the concave portion 37 and the convex portion 38 in a state where the second speed friction plate 35B is located away from the side surface of the second speed output gear 10B. Is prevented from rotating around the output shaft 8 via the spacer 32. At this time, the second-speed retainer 21B, which is prevented from rotating by the second-speed friction plate 35B, is held in the neutral position.
  • a second speed separation spring 39B is incorporated in an axially compressed state, and the second speed friction plate is generated by the elastic restoring force of the second speed separation spring 39B. 35B is urged in a direction away from the side surface of the second-speed output gear 10B.
  • the second speed separating spring 39B is a coil spring wound along the outer periphery of the spacer 32, and one end thereof is supported by the end face in the axial direction of the second speed cam member 18B via the second speed washer 139B.
  • the 2-speed washer 139B is formed in an annular shape so as to cover the radial groove 29 on the axial end surface of the 2-speed cam member 18B.
  • the shift ring 34 presses the first-speed friction plate 35A to contact the side surface of the first-speed output gear 10A and the first-speed shift position SP1f to press the second-speed friction plate 35B to contact the side surface of the second-speed output gear 10B.
  • the second-speed shift position SP2f is supported so as to be movable in the axial direction. Further, a shift mechanism 41 that moves the shift ring 34 in the axial direction between the first-speed shift position SP1f and the second-speed shift position SP2f is provided.
  • the shift mechanism 41 constitutes a part of the gear ratio switching mechanism 40 as described above.
  • the shift mechanism 41 is related to a shift sleeve 43 that rotatably supports the shift ring 34 via a rolling bearing 42, and an annular groove 44 provided on the outer periphery of the shift sleeve 43.
  • It consists of a mechanism 48 (feed screw mechanism or the like).
  • the shift rod 46 is arranged parallel to the output shaft 8 at a distance, and is supported by a pair of sliding bearings 49 incorporated in the housing 11 so as to be slidable in the axial direction.
  • the rolling bearing 42 incorporated between the shift ring 34 and the shift sleeve 43 is assembled so as to be immovable in the axial direction with respect to both the shift ring 34 and the shift sleeve 43.
  • the rotation of the shift switching actuator 47 is converted into a linear motion by the motion conversion mechanism 48 and transmitted to the shift fork 45, and the linear motion of the shift fork 45 is transmitted to the shift ring 34 via the rolling bearing 42. By doing so, the shift ring 34 is moved in the axial direction.
  • a preload spring 50 that is compressible in the axial direction is incorporated in the axial clearance on both sides between the shift fork 45 and the annular groove 44.
  • the preload spring 50 is adjusted by adjusting the relative position in the axial direction of the shift fork 45 with respect to the shift sleeve 43.
  • a differential drive gear 51 that transmits the rotation of the output shaft 8 to the differential 6 is fixed to the output shaft 8.
  • the differential 6 includes a differential case 53 rotatably supported by a pair of bearings 52, a ring gear 54 that is fixed to the differential case 53 coaxially with the rotational center of the differential case 53, and meshes with the differential drive gear 51, and the rotational center of the differential case 53.
  • the pinion shaft 55 is fixed to the differential case 53 in a perpendicular direction
  • the pair of pinions 56 is rotatably supported by the pinion shaft 55
  • the pair of left and right side gears 57 that mesh with the pair of pinions 56.
  • the left side gear 57 is connected to the shaft end portion of the axle 58 connected to the left wheel
  • the right side gear 57 is connected to the shaft end portion of the axle 58 connected to the right wheel.
  • the first-speed friction plate 35A comes into contact with the side surface of the first-speed output gear 10A.
  • the first-speed friction plate 35A rotates relative to the output shaft 8 by the frictional force between the surfaces, and the first-speed retainer 21A that is prevented from rotating by the first-speed friction plate 35A resists the elastic force of the first-speed switch spring 22A.
  • the roller 20 held by the first-speed holder 21A is pushed into the narrowed portion of the wedge-shaped space S between the cylindrical surface 17 and the cam surface 19 and engaged. Become.
  • the first-speed two-way roller clutch 16A When the first-speed two-way roller clutch 16A is disengaged, if torque is transmitted via the first-speed two-way roller clutch 16A, the torque causes the roller 20 to move between the cylindrical surface 17 and the cam surface 19. Acting to push into the narrowed portion of the wedge-shaped space S between the two, the disengagement of the first-speed two-way roller clutch 16A is prevented. Therefore, when the shift ring 34 starts to move in the axial direction from the first speed shift position SP1f to the second speed shift position SP2f by the operation of the shift mechanism 41, the first speed friction plate 35A is moved to the side surface of the first speed output gear 10A. There is a possibility that the engagement of the first-speed two-way roller clutch 16A is not released even though it has already separated from the initial position.
  • the shift ECU 61 shown in FIG. 13 controls the electric motor 3 and the shift switching actuator 47, and this control engages the first-speed two-way roller clutch 16A or the second-speed two-way roller clutch 16B. The reliability of the operation when releasing is secured.
  • the accelerator operation response control method according to this embodiment includes the following electric motor-equipped vehicle control method in addition to the accelerator operation response control method according to the first embodiment described with reference to FIGS.
  • This embodiment includes the same configuration as that of the first embodiment described above, except for the matters specifically described. Accordingly, the same or corresponding parts as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 21 is a block diagram showing a control system for controlling the vehicle motor drive device A. As shown in FIG. This control system includes an integrated ECU 60A, a transmission ECU 61A, and an inverter device 62.
  • the integrated ECU 60A has the functions described below in addition to the functions described in the first embodiment. That is, the integrated ECU 60A includes an accelerator opening sensor 63a of the accelerator pedal 63b (the accelerator 63 is configured by the accelerator pedal 63b and the accelerator opening sensor 63a), a brake opening sensor 94a that detects the opening of the brake pedal 94, and the steering wheel.
  • a steering angle sensor 92a that detects the steering angle of 92, and a lever position that detects the position of a shift lever 93 that manually switches the shift speed (the shift lever 93 is an element included in the shift operation unit 64 in the first embodiment). It is connected to the sensor 93a.
  • the integrated ECU 60A sends signals relating to the accelerator opening, brake opening, steering angle, and lever position detected by the accelerator opening sensor 63a, brake opening sensor 94a, steering angle sensor 92a, and lever position sensor 93a to the shift ECU 61A. And a function of performing the cooperative control by signals of these four types of signals and other various sensors.
  • the speed change ECU 61A is an electronic control device that controls automatic speed change in accordance with various signals transmitted from the integrated ECU 60A and various signals directly input to the speed change ECU 61A, in addition to the functions described with respect to the first embodiment.
  • a shift determination is made based on various input signals, and a command is issued to the shift switching actuator 47 and the inverter device 62 of the transmission 5.
  • the transmission ECU 61 ⁇ / b> A has a function of creating a control command and transmitting it to the inverter device 62 during execution of creep control and regenerative control.
  • the transmission ECU 61A has the following functions (1) to (8).
  • the vehicle speed sensor 65 and the acceleration sensor 95 receive vehicle speed and vehicle acceleration / deceleration detection signals, receive an accelerator opening signal from the integrated ECU 60A, and determine automatic shift.
  • a position signal of the shift lever 93 is received from the integrated ECU 60A, and creep control of the electric motor is performed as necessary.
  • the first operation switch 96 is an automatic / manual shift switching toggle switch (this toggle switch is an element included in the shift operation unit 64 in the first embodiment).
  • the second operation switch 97 is a tact switch (this tact switch is also an element included in the speed change operation unit 64 in the first embodiment), and the first operation switch 96 is set by manual speed change. Only valid if.
  • the third operation switch 98 is a tact switch (this tact switch is also an element included in the speed change operation unit 64 in the first embodiment), and the first operation switch 96 is set by manual speed change. Only valid if. When the third operation switch 98 is pressed, a downshift is performed.
  • the display unit 99 displays the vehicle speed, the electric motor rotation speed, the torque command value, and the like.
  • the display unit 99 is a device that displays an image, such as a liquid crystal display device, or a device that displays a pointer.
  • a function of detecting the shift position of the shift switching actuator 47 from a shift position sensor 68 attached to the transmission 5 and a function of acquiring the rotational speed of the electric motor 3 from the inverter device 62 are provided.
  • a function of transmitting a torque command or a rotational speed command and a shift command to the inverter device 62 and a function of driving a shift switching actuator 47 attached to the transmission 5 are provided.
  • the shift ECU 61A is programmed with shift modes of an automatic shift mode and a manual shift mode, and the automatic shift mode and the manual shift mode are switched by the operation of the first operation switch 96 by the driver.
  • the shift control method which is a function added to the accelerator operation response control method described with respect to the first embodiment, relates to control in the automatic shift mode by the shift ECU 61A.
  • the transmission ECU 61A has various function achievement means (181 to 186) shown in FIG. 25, which will be described later.
  • the inverter device 62 is supplied with DC power from the battery 69 to supply AC motor driving power to the electric motor 3, and controls the supplied power based on a signal from the transmission ECU 61A. Similarly to the first embodiment, the inverter device 62 receives a signal indicating the rotation speed of the electric motor 3 from a resolver 66 that is a rotation detection device provided in the electric motor 3. Further, the inverter device 62 has a function of performing control for regenerating electric power.
  • inverter device 62 Since the inverter device 62 has been described in relation to the first embodiment, a detailed description thereof is omitted here.
  • FIG. 22 shows the configuration of the shift lever operation panel 75.
  • P parking
  • R reverse
  • N neutral
  • D drive
  • 2nd speed second
  • 1st speed low
  • the shift lever operation panel 75 is a display device indicating which range is currently switched in this way. Range selection information on the shift lever operation panel 75 is input to the integrated ECU 60A.
  • the first speed range is the first speed state.
  • the shift lever operation panel 75 may also serve as a touch panel type input unit, and may also serve as an operation unit operated by the driver instead of the shift lever 93.
  • FIG. 23 is a flowchart showing a creep control process executed in accordance with the operation of the shift lever 93.
  • a first map 184 (FIG. 25), which is a map of control torque and time limit, is set in the memory 183 (FIG. 25) including the ROM of the speed change ECU 61A in accordance with the above four situations.
  • the control torque and the time limit are set in three stages. Data is taken from the first map 184 and creep control is executed.
  • the first step it is determined whether or not it is currently in the R range within a certain time, for example, 0.5 seconds (substep Z1, substep Z2). If it is determined that the current range is in the R range, it is determined whether or not the previous range of the shift lever 93 (FIG. 21) was the R range (substep Z3).
  • control torque B and the control time B are taken from the first map 184 set in the memory 183 (FIG. 25) of the transmission ECU 61A and divided into three stages. Thus, torque control is performed (substep Z4).
  • control torque A and the control time A are taken from the first map 184, and torque control is performed in three stages (substep Z5). ).
  • the current range is recorded in the memory 183 of the transmission ECU 61A (sub-step Z6), and the electric motor is torque controlled using the real-time accelerator signal T (that is, by a torque command value corresponding to this accelerator signal). (Substep Z7).
  • the direction of the q-axis current (torque component) of the electric motor 3 is negative.
  • substep Z8 If it is determined in substep Z1 that the current range is not in the R range, the process jumps to the second step (substep Z8). In the second step, it is determined whether or not the current range is any of the D range, the second speed range, and the first speed lens within 0.5 seconds (substep Z8, substep Z9).
  • control torque D and the control time D are taken from the first map 184 set in the memory 183 of the transmission ECU 61A. Torque control is performed in three stages (substep Z11).
  • the control torque C and the control time C are taken from the first map 84, and torque control is performed in three stages (substep) Z12).
  • the current range is recorded in the memory 183 of the transmission ECU 61A (substep Z6), and then the electric motor is driven by torque control using the real-time accelerator signal T (substep Z7).
  • the direction of the q-axis current (torque component) of the electric motor is positive.
  • sub-step Z8 If it is determined in sub-step Z8 that the current range is neither the D-range, the second-speed range, or the first-speed lens, the process jumps to the third step.
  • the third step (substep Z13), it is instantaneously determined whether or not the current range is in the P range or the N range (substep Z13).
  • the torque command value is set to zero and torque control is performed (sub step Z14). If the current range is neither the P range nor the N range, the flowchart is returned to return to the first step.
  • FIG. 24 is an explanatory diagram of creep control and regenerative control.
  • the “hunting phenomenon” is a phenomenon in which a certain operation is frequently repeated.
  • “Creep control” means that when the torque command value (positive value) to the electric motor 3 falls below the absolute value (positive value) of the creep positive torque threshold value or the creep negative torque threshold value, the creep positive torque threshold value or the creep negative torque threshold value is obtained. It is the control which drives an electric motor. In “positive torque”, the direction of the q-axis current (torque component) of the electric motor 3 is positive. In “negative torque”, the direction of the q-axis current (torque component) of the electric motor 3 is negative. In any case, the regenerative torque command value or the creep torque command value is positive.
  • the creep positive torque threshold and the creep negative torque threshold are set to predetermined values.
  • the electric motor 3 is driven by torque control while the roller clutches 16A and 16B at the current gear stage are engaged in the forward direction.
  • the speed at that time is a predetermined speed, for example, 20 km / h or more.
  • the accelerator is pulled out between time t1 and t2.
  • time t2 to t3 if the accelerator opening signal falls below the creep positive torque threshold, the electric motor 3 is driven using the creep positive torque threshold as a torque command value. At this time, the actual accelerator opening signal decreases as shown by a dotted line.
  • control is performed to engage the roller clutch from the positive direction to the negative direction. If the accelerator opening signal once exceeds the creep positive torque threshold value during time t2 to t3, the control for engaging in the negative direction is not performed. Instead, the elapsed time during counting between times t2 and t3 is reset. That is, after that, the time when the accelerator opening signal falls below the creep positive torque is set as t2, and the elapsed time starts to be counted up to t3 again toward t3.
  • the threshold torque is set to the creep positive torque for the purpose of providing a hysteresis function and reducing the occurrence of the hunting phenomenon due to the influence of noise and the like.
  • the torque control is switched to the rotational speed control, and the roller clutches 16A and 16B are engaged from the positive direction to the negative direction by the rotational speed control.
  • This period (t3 to t5) is set in the memory 183 of the transmission ECU 61A.
  • the times t3 to t4 are actually periods in which the roller clutches 16A and 16B are engaged from the positive direction to the negative direction, and the times t4 to t5 are related to the roller clutches 16A and 16B being in the negative direction. This is a period during which the rotation speed control is continued in the combined state.
  • the time for executing the rotational speed control is set longer than the actual engaging time. ing. That is, the periods t3 to t5 are set so that the actual engagement times t3 to t4 are not longer than the preset times t3 to t5, and the rotation speed control is performed in the periods t4 to t5.
  • the actual engagement period t3 to t4 is longer than the preset period t3 to t5
  • the rotation from the rotational speed control to the torque control is performed in a state where the roller clutches 16A and 16B are not engaged in the negative direction.
  • a switching operation is performed, resulting in shock torque and abnormal noise.
  • the differential rotational speed and the limit current necessary for executing the rotational speed control are set in the control map (second map) 185 of the memory 183 of the transmission ECU 61A, for example, divided into 1st speed and 2nd speed at 5 km / h intervals. ing.
  • the values of the differential rotation speed and the control current are fetched from the control map 185, and the engaging operation of the roller clutches 16A and 16B is performed.
  • the rotational speed control is switched to torque control, and torque is gradually switched between the current limiting roller clutch 16A, 16B at the time of engagement (limit torque) and the regeneration command torque value.
  • interpolation control is executed n times. First, at time t5, switching from rotational speed control to torque control is performed. Since the interpolation control is n-time interpolation, the interpolation value can always track the signal of the regeneration command. In the tracking process in which the error between the interpolation value and the regenerative command value signal is reduced, when the error falls within a given range, the tracking operation is completed, and the n-time interpolation control is also completed.
  • the limit current (limit torque) value at the time of engagement is the same as the creep negative torque threshold value.
  • the absolute value (positive value) of the creep negative torque threshold is used as the regenerative command torque value. Regenerative control is performed while executing interpolation control from the limit current to the absolute value (positive value) of the creep negative torque threshold. During the regeneration control, the direction of the q-axis current (torque component) of the electric motor is negative.
  • regenerative control is executed according to the regenerative torque command value.
  • the actual accelerator opening signal is as indicated by the dotted line.
  • the regeneration control is stopped and the interpolation control is performed. Thereafter, the roller clutches 16A and 16B are moved in the negative direction. To engage in the forward direction.
  • the regeneration control is stopped at s.
  • the interpolation control is executed n times by torque control in the transition from the regenerative command torque value to the limiting current (limit torque) during engagement of the roller clutches 16A and 16B at the current gear stage.
  • the torque control is switched to the rotation speed control.
  • the rotational speed of the electric motor 3 is controlled in order to engage the roller clutches 16A, 16B from the negative direction to the positive direction.
  • This period t8 to t10 is set in the memory 183 of the transmission ECU 61A.
  • the times t8 to t10 are actually periods in which the roller clutches 16A and 16B are engaged in the positive direction from the negative direction, and the times t9 to t10 are related to the roller clutches 16A and 16B in the positive direction. This is a period during which the rotation speed control is continued in the combined state.
  • the time for executing the rotational speed control is set longer than the actual engagement time. ing. That is, the periods t8 to t10 are set so that the actual engagement periods t8 to t9 are not longer than the preset periods t8 to t10, and the rotation speed control is performed in the periods t9 to t10.
  • the rotation speed control is changed to the torque control with the roller clutches 16A and 16B not engaged in the forward direction. A switching operation is performed, resulting in shock torque and abnormal noise.
  • the differential rotational speed and the limit current necessary for executing the rotational speed control are set in the control map 185 of the memory 183 of the transmission ECU 61A by dividing into a first speed and a second speed at a predetermined interval, for example, 5 km / h. ing.
  • the differential rotation speed and the control current value are fetched from the control map 185, and the roller clutch is engaged.
  • interpolation control is executed n times by torque control in the transition from the current limit (limit torque) at the time of engagement of the current transmission roller clutches 16A and 16B to the accelerator opening signal.
  • the speed control is switched to the torque control. Since the interpolation control is n-time interpolation, the interpolation value can always track the accelerator opening signal. In the tracking process in which the error between the interpolation value and the accelerator opening signal is reduced, when the error falls within a given range, the tracking operation is completed and the interpolation control is completed n times.
  • the limit current (limit torque) value at the time of engagement is the same value as the creep positive torque threshold value.
  • the creep positive torque threshold is set as a command torque, while performing interpolation control from the limiting current at the time of engagement to the creep positive torque threshold, Perform torque control.
  • the direction of the q-axis current (torque component) of the electric motor 3 is positive.
  • the electric motor 3 is driven by torque control in a state where the roller clutches 16A and 16B are engaged in the positive direction according to the accelerator opening signal.
  • the above is a procedure for performing creep control and regenerative control. By repeating this procedure, driving and regeneration of the vehicle are realized.
  • the electric vehicle to be controlled is the same electric vehicle to which the first embodiment is applied.
  • the apparatus for executing the shift control of the electric vehicle is an apparatus for executing the shift control method of the above-described embodiment, and the shift ECU 61A is provided with a shift control means 180 that is a means for performing basic shift control. ing.
  • the speed change ECU 61A is provided with a creep control means 181 and a regeneration time control means 182, and the parameter storage area 183a of the memory 183 including the ROM of the speed change ECU 61A has each threshold value, set value, first and second maps 184, 184. 185 is stored.
  • the threshold values and maps 184 and 185 used in the following description and the control method of the above embodiment are set in the parameter storage area 183a of the memory 183.
  • the regenerative control means 182 has regenerative interpolation means 186, and performs the following description and the above-described interpolation control. Note that the shift ECU 61A outputs a torque command to the inverter control circuit 72 by the shift control means 180 as a torque control for the control of the electric motor 3 other than during the automatic shift, and switches between the torque control and the rotation speed control during the shift. .
  • the creep control means 181 has, as its basic function, the operation of one or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON, and the engagement of the roller clutches 16A and 16B.
  • the torque command value is set to be equal to or greater than the threshold, whereby the rollers 20 of the roller clutches 16A and 16B. Is always engaged with the drive side.
  • the accelerator opening degree signal falls below the threshold during traveling by torque control when the accelerator is switched between ON and OFF
  • the accelerator opening signal is set to be equal to or larger than the threshold value, so that the rollers of the roller clutches 16A and 16B Can be always engaged with the drive side, so that shock torque and noise generated when the roller clutches 16A and 16B are engaged can be reduced.
  • the creep control means 181 may perform control for setting the torque command value to be equal to or greater than the threshold when the accelerator opening signal falls below the threshold during traveling by torque control in the entire vehicle speed range. good.
  • the regenerative control means 182 performs regenerative control when the accelerator is OFF and controls the regenerative command torque when the accelerator opening signal is lower than the threshold value during traveling by torque control. If it falls below the time threshold, the roller of the roller clutch is always engaged with the non-driving side by using the negative torque of the threshold for regeneration.
  • the vehicle speed at which this regenerative control is performed may be a predetermined vehicle speed or higher.
  • the creep control means 181 performs control accompanying the operation of the shift lever 93 described above together with the flowchart of FIG. Further, the creep control means 181 and the regeneration control means 182 are each control related to creep control and control related to regeneration control explained in the control method of the above embodiment, particularly each control related to creep control explained together with FIG. Each control related to regenerative control is performed.
  • the creep control means 181 switches from torque control to rotational speed control after the accelerator opening signal falls below the creep positive torque threshold, and engages the roller clutch from the drive side direction to the non-drive side direction. In this case, the creep control means 181 switches from the torque control to the rotational speed control after the accelerator opening signal falls below the creep positive torque threshold and passes the roller clutch from the drive side direction to the non-drive side direction.
  • control for switching the engagement direction of the roller clutches 16A and 16B may be performed at each gear position.
  • the control for switching the engagement direction of the roller clutches 16A and 16B is performed at each shift stage. For example, when the engagement direction of the roller clutch is switched, a map of the rotation speed difference, the limit current, and the rotation speed control execution time (first (1 map) 184 is set in a memory 183 such as a ROM of the speed change ECU, and the rotational speed control is executed using the value of the map 184.
  • the regenerative control means 182 may perform regenerative braking by switching from rotational speed control to torque control after the roller clutches 16A and 16B of the current gear stage are engaged from the positive direction to the negative direction. good.
  • the regenerative interpolation control means 186 causes the current shift to be performed when switching from the rotational speed control to the torque control and performing the regenerative braking.
  • the interpolation control may be terminated n times.
  • the regenerative control means 182 engages with the absolute value (positive value) of the creep negative torque threshold as the torque command value. Regenerative control is performed while performing interpolation control from the current limit current to the absolute value (positive value) of the creep negative torque threshold. During regenerative control, the direction of the q-axis current (torque component) of the electric motor is negative. It may be.
  • the regenerative control means 182 may stop the regenerative control when a certain period of time elapses while the accelerator opening signal exceeds the creep positive torque threshold while the regenerative control is being executed according to the regenerative command torque value.
  • regeneration control if a certain period of time has elapsed with the accelerator opening signal exceeding the creep positive torque threshold, regeneration control is stopped. If the opening signal exceeds the creep positive torque threshold, the elapsed time during counting is reset. That is, the elapsed time may start to be counted from the time when the accelerator signal subsequently exceeds the creep positive torque threshold until the predetermined time.
  • the regenerative control means 182 may stop the regenerative control immediately when the vehicle speed falls below a certain vehicle speed while performing the regenerative control according to the regenerative command torque value.
  • the regenerative control means 182 may execute n-time interpolation control by torque control in the transition from the regenerative command torque to the limiting current or limiting torque at the time of engagement after the regenerative control is stopped.
  • a map of the rotational speed difference, the limit current, and the rotational speed control execution time set in the memory 183 of the transmission ECU (first map)
  • the rotation speed control may be executed using the value of 184.
  • the rotation speed control is switched to the torque control, and the interpolation control is executed n times in the transition from the current limit roller clutch engagement current limit or torque to the accelerator opening signal. You may do it.
  • the creep control means 181 and the regeneration control means 182 control the roller clutches 16A and 16B on the driving side or the non-driving side based on the shift range signal of the shift lever 93 when the vehicle is powered on and stopped.
  • the control torque and the time limit data set in advance in the memory 183 of the transmission ECU 61A according to the previous shift range of the shift lever 93 are fetched, and the creep control is performed in several stages. May be executed.
  • the shift range of the shift lever 93 When the shift range of the shift lever 93 is the drive range, the direction of the q-axis current (torque component) of the electric motor is positive so that the roller clutches 16A and 16B of the current gear stage are engaged with the drive-side wedge-shaped space. is there.
  • the shift range of the shift lever 93 is the reverse range, the direction of the q-axis current (torque component) of the electric motor is negative so that the roller clutches 16A and 16B of the current gear stage are engaged with the non-drive side wedge-shaped space.
  • control method for an electric motor-equipped vehicle which is a control that is an essential component of the present invention
  • the control method of the electric motor includes two types of feedback control: torque control and rotational speed.
  • torque control and rotational speed A mode that does not require a series of controls to be switched between will be described.
  • An electric motor for traveling having a motor shaft as an output shaft; A gear train of a plurality of gear stages having different gear ratios; A plurality of two-way roller clutches for each gear stage, each of which is interposed between an input shaft coupled to the motor shaft and a gear train of each gear stage and can be switched between connection and disconnection; A roller clutch in which rollers are respectively interposed in a plurality of wedge-shaped spaces provided between the cam surface and the outer ring, and the switching of the roller clutches to the outer ring of a rotating friction plate connected to a roller clutch retainer.
  • a vehicle having an electric motor equipped with a transmission having a gear ratio switching mechanism that switches between contact and separation of the The roller clutch is engaged by engaging the narrow portion of the wedge-shaped space, and the roller clutch is disconnected by positioning the roller in the expanded portion of the wedge-shaped space by the retainer.
  • Driving with torque control to reduce shock torque or abnormal noise that occurs when the roller clutch is engaged during either or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON When the accelerator opening signal detected by the accelerator opening sensor that detects the accelerator opening falls below a predetermined creep positive torque threshold, the torque command value of the torque control is controlled to be equal to or greater than the creep positive torque threshold.
  • the regeneration control is started by switching the rotational speed control to the torque control and executing the regeneration control after the roller clutch of the current gear stage is engaged from the positive direction to the negative direction.
  • Control method [Aspect 9]
  • the regeneration control is executed by interpolating n times by torque control at the transition from the limit current or limit torque when the roller clutch of the current gear stage is engaged to the regeneration command torque value.
  • the electric motor-equipped vehicle that stops the regenerative control when a certain period of time has elapsed while the accelerator opening signal exceeds the creep positive torque threshold during execution of the regenerative control according to the regenerative command torque value Control method.
  • stopping the regenerative control resets the elapsed time count of the predetermined time when the accelerator opening signal exceeds the creep positive torque threshold within a predetermined time, and the accelerator signal is A method of controlling an automobile equipped with an electric motor, wherein the elapsed time starts to be counted from the time when the creep positive torque threshold is exceeded.
  • a method for controlling an automobile equipped with an electric motor which executes rotation speed control.
  • the rotation speed control is switched to the torque control, and the interpolation control is performed n times between the current limit roller or torque when the current speed change roller clutch is engaged and the accelerator opening signal.
  • the roller clutch is engaged with the wedge-shaped space on the drive side or the non-drive side by torque control of the roller clutch based on the shift range signal of the shift operation member.
  • the creep control is executed in several stages using the control torque and the time limit data set in advance in the memory.
  • Control method when the shift range of the shift operating member is the drive range, the q-axis of the electric motor, which is a torque component, is engaged so that the roller of the roller clutch of the current gear stage is engaged with the narrow portion on the drive side of the wedge-shaped space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a control method for automobiles (EV, HV) equipped with an electric motor, said control method being capable of reducing shock torque and abnormal noise with respect to roller clutches (16A, 16B) when an accelerator (63) is operated from on to off and/or from off to on during normal travel without an accompanying shift control. This accelerator operation response control method for automobiles (EV, HV) is applicable when the accelerator (63) is operated from on to off and/or from off to on. In such cases, a shock reduction control in which the control mode of an electric motor (3) is consecutively switched between two types of feedback control, namely, a torque control and a rotation speed control, is executed in order to reduce shock torque and abnormal noise with respect to the roller clutches (16A, 16B).

Description

電動モータ搭載自動車のアクセル操作応答制御方法Accelerator response control method for automobile with electric motor 関連出願Related applications
 本出願は、2011年12月1日出願の特願2011-263402、および2012年1月26日出願の特願2012-013656の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2011-263402 filed on December 1, 2011 and Japanese Patent Application No. 2012-013656 filed on January 26, 2012, which are incorporated herein by reference in their entirety. Quote as part of it.
 この発明は、電動モータ搭載自動車のアクセル操作時のショックトルク低減制御を行う、電動モータ搭載自動車のアクセル操作応答制御方法および制御装置に関する。 The present invention relates to an accelerator operation response control method and a control device for an electric motor-equipped vehicle, which perform shock torque reduction control during the accelerator operation of the electric motor-equipped vehicle.
 電動モータ搭載自動車の駆動装置として、電動モータ、変速機、および差動装置(デファレンシャル)を介し駆動輪に動力を伝達する車両用モータ駆動装置がある。変速機の変速段の切換には、例えば2ウェイ型のローラクラッチが用いられる。 2. Description of the Related Art As a drive device for an automobile equipped with an electric motor, there is a vehicle motor drive device that transmits power to drive wheels via an electric motor, a transmission, and a differential (differential). For example, a two-way roller clutch is used for switching the gear position of the transmission.
 この車両用モータ駆動装置を使用すると、走行条件に応じて変速機の変速比を切り換えることにより、駆動および回生時において、効率の高い回転数およびトルク領域で電動モータを使用することが可能となる。また、適切な変速比とすることで、高速走行時の変速機の回転部材の回転速度が下がり、変速機の動力損失が低減して車両のエネルギ効率を向上させることができる。このような車両用モータ駆動装置として、例えば特許文献1や特許文献2に記載のものが知られている。 When this vehicle motor drive device is used, it is possible to use the electric motor in a highly efficient rotational speed and torque region during driving and regeneration by switching the transmission gear ratio according to the running conditions. . In addition, by setting an appropriate gear ratio, the rotational speed of the rotating member of the transmission during high-speed traveling can be reduced, and the power loss of the transmission can be reduced to improve the energy efficiency of the vehicle. As such a vehicle motor drive device, for example, those described in Patent Literature 1 and Patent Literature 2 are known.
 上記形式の車両用モータ駆動装置は、変速完了後、ローラクラッチ係合時、大きな変速ショックと異音が生じることがある。そこで、変速ショックと異音を低減するため、変速制御の改良方法がいくつか提案されている。 In the above-mentioned type of vehicle motor drive device, a large shift shock and abnormal noise may occur when the roller clutch is engaged after the shift is completed. Therefore, several methods for improving the shift control have been proposed in order to reduce shift shock and noise.
特開2011-57030号公報JP 2011-57030 A 特開平8-168110号公報JP-A-8-168110
 特許文献1等に記載の車両用モータ駆動装置においては、変速切換を行う際に、変速機の目標変速段のローラクラッチ係合時、大きな変速ショックトルクと異音が生じる課題が記載されている。特に、目標変速段の摩擦板と外輪間の当接完了時に、変速機の第2シャフトの回転数と外輪の回転数に大きな回転数差があると、大きな変速ショックトルクと異音が生じる。そこで、変速ショックトルクを低減するための変速制御方法が提案されている。 In the vehicle motor drive device described in Patent Document 1 and the like, there is a problem that a large shift shock torque and abnormal noise are generated when a roller clutch of a target shift stage of a transmission is engaged when performing a shift change. . In particular, if there is a large rotational speed difference between the rotational speed of the second shaft of the transmission and the rotational speed of the outer ring when the contact between the friction plate of the target gear stage and the outer ring is completed, a large shift shock torque and abnormal noise are generated. Therefore, a shift control method for reducing shift shock torque has been proposed.
 このような変速制御方法として、変速切換時の車速と選択された目標変速段の変速比に基き、電動モータの目標回転数を算出して、電動モータの目標回転数に応じて電動モータの出力を制御する技術が提案されている(例えば、特願2011-123433号)。この提案例は、トルク制御と回転数制御の二つのフィードバック制御を切り換える制御方式である。 As such a shift control method, the target rotational speed of the electric motor is calculated based on the vehicle speed at the time of shift switching and the speed ratio of the selected target shift stage, and the output of the electric motor is output according to the target rotational speed of the electric motor. Has been proposed (for example, Japanese Patent Application No. 2011-123433). This proposed example is a control method for switching between two feedback controls, torque control and rotation speed control.
 一方、アクセルのONからOFFへの操作や、OFFからONへの操作によって、ローラクラッチ係合時にショックトルクと異音が生じるという課題がある。 On the other hand, there is a problem that shock torque and abnormal noise are generated when the roller clutch is engaged due to the operation of the accelerator from ON to OFF or the operation from OFF to ON.
 この課題は、具体的には次の課題(1),(2)である。
 なお、この明細書において、
 「正方向」とは、電動モータを駆動する時に、ローラクラッチが係合している方向とする。本明細書において、この「正方向」を「駆動側」とも称する。
 「負方向」とは、電動モータを回生する時に、ローラクラッチが係合している方向とする。本明細書において、この「負方向」を「非駆動側」とも称する。
 「回生制御」とは、機械エネルギを電気エネルギとして吸収する目的とした制御技術である。
This problem is specifically the following problems (1) and (2).
In this specification,
The “positive direction” is a direction in which the roller clutch is engaged when the electric motor is driven. In this specification, this “positive direction” is also referred to as “driving side”.
The “negative direction” is a direction in which the roller clutch is engaged when the electric motor is regenerated. In this specification, this “negative direction” is also referred to as “non-driving side”.
“Regenerative control” is a control technique for the purpose of absorbing mechanical energy as electrical energy.
 (1)アクセルのONからOFFへの操作や、OFFからONへの操作によって、ローラクラッチ係合時にショックトルクと異音が生じる。アクセルを踏んだ状態(アクセルがONに操作された状態)で車を走らせると、ローラクラッチが正方向に係合している状態で、トルク制御により、電動モータを駆動する状態になる。その後、アクセルを抜く(アクセルがOFFに操作される)と現変速段のローラクラッチの係合が解除される状態になる可能性がある。一旦、現変速段のローラクラッチの係合が解除された場合、再びアクセルを踏むと、ローラクラッチが再度正方向に素早く係合するので、ショックトルクと異音が生じる。
 (2)回生制御を行うためには、ローラクラッチを負方向に係合する必要がある。トルク制御により、ローラクラッチを負方向に係合すると、同様に係合ショックと異音が生じやすい。
(1) Shock torque and noise are generated when the roller clutch is engaged due to the operation of the accelerator from ON to OFF or the operation from OFF to ON. When the vehicle is run with the accelerator depressed (the accelerator is turned on), the electric motor is driven by torque control while the roller clutch is engaged in the forward direction. Thereafter, when the accelerator is pulled out (the accelerator is turned off), there is a possibility that the engagement of the roller clutch at the current shift stage is released. Once the engagement of the roller clutch at the current gear stage is released, when the accelerator is stepped on again, the roller clutch is quickly engaged again in the forward direction, so that shock torque and noise are generated.
(2) In order to perform regenerative control, it is necessary to engage the roller clutch in the negative direction. Similarly, when the roller clutch is engaged in the negative direction by torque control, an engagement shock and abnormal noise are likely to occur.
 この発明の目的は、変速制御を伴わない通常走行において、アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の時に、ローラクラッチのショックトルクや異音を低減することができる、電動モータ搭載自動車のアクセル操作応答制御方法および制御装置を提供することである。 It is an object of the present invention to provide a shock torque or an abnormal noise of a roller clutch during normal driving without speed change control, either when an accelerator is operated from ON to OFF, and when either or both are operated from OFF to ON. It is an object to provide an accelerator operation response control method and a control device for an automobile equipped with an electric motor.
 この発明の一構成にかかる、電動モータ搭載自動車のアクセル操作応答制御方法は、次の構成の電動モータ搭載自動車に適用する制御方法である。 An accelerator operation response control method for an electric motor-equipped vehicle according to one configuration of the present invention is a control method applied to an electric motor-equipped vehicle having the following configuration.
 この自動車は、出力軸であるモータ軸を有する、走行用の電動モータと、互いに変速比が異なる複数の変速段のギヤ列、前記モータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し接続と遮断の切換えが可能な各変速段の、複数の2ウェイ型のローラクラッチであって、内輪のカム面と外輪間に設けられた複数の楔状空間にそれぞれローラが介在するローラクラッチ、および、これら各ローラクラッチの前記切換えを、各ローラクラッチの保持器に連結されて回転する摩擦板の外輪への接触と離間とを変速切換アクチュエータにより切り換えて行う変速比切換機構を有する変速機とを備える。前記自動車は、また、前記ローラが前記楔状空間の狭まり部分に係合することで前記ローラクラッチを接続状態にする一方、前記保持器により前記ローラを前記楔状空間の広がり部分に位置させることで前記ローラクラッチを切断状態にする。 This automobile has an electric motor for traveling having a motor shaft as an output shaft, a gear train of a plurality of gears having different gear ratios, an input shaft connected to the motor shaft, and a gear train of each gear A plurality of two-way roller clutches at each gear stage that can be switched between connection and disconnection, and are respectively provided in a plurality of wedge-shaped spaces provided between the cam surface of the inner ring and the outer ring. Gear ratio switching, wherein the switching of each of the roller clutches is performed by switching the contact and separation of the rotating friction plate connected to the retainer of each roller clutch with the outer ring by a speed change actuator. And a transmission having a mechanism. The automobile also engages the roller clutch with the narrowed portion of the wedge-shaped space, and places the roller in the expanded portion of the wedge-shaped space with the retainer. Put the roller clutch in the disengaged state.
 上記方法は、アクセルのONからOFFへの操作時、およびアクセルのOFFからONへの操作時のいずれか一方または両方の時に、前記ローラクラッチのショックトルクまたは異音が低減するように、前記電動モータの制御方式を、トルク制御と回転数制御との2種類のフィードバック制御の間で切換える一連の制御であるショック低減制御を行う。 In the above method, when the accelerator is operated from ON to OFF and / or when the accelerator is operated from OFF to ON, the electric torque is reduced so that the shock torque or noise of the roller clutch is reduced. Shock reduction control, which is a series of controls for switching the motor control method between two types of feedback control, torque control and rotation speed control, is performed.
 この方法によると、アクセルのONからOFFへの操作時や、アクセルのOFFからONへの操作時に、電動モータの制御方法を、トルク制御と回転数制御との間で切換えるため、ローラクラッチのショックトルクや異音を低減することができる。 According to this method, when the accelerator is operated from ON to OFF, or when the accelerator is operated from OFF to ON, the control method of the electric motor is switched between torque control and rotational speed control. Torque and noise can be reduced.
 前記構成において、前記ショック低減制御は、加速判断用の所定の第1トルク閾値Aを用いて、アクセルOFFからアクセルONに操作されたときに、
 (アクセルのトルク指令値)>(第1トルク閾値A)
となったことを条件として、加速制御であるON操作時加速制御を行うようにしても良い。
In the above configuration, when the shock reduction control is operated from the accelerator OFF to the accelerator ON using the predetermined first torque threshold A for acceleration determination,
(Acceleration torque command value)> (First torque threshold A)
On the condition that it becomes, it may be made to perform acceleration control at the time of ON operation which is acceleration control.
 前記構成において、前記ショック低減制御は、回生判断用の所定の第2トルク閾値Bを用いて、アクセルONからアクセルOFFに操作されたときに、
   (アクセルのトルク指令値)<(第2トルク閾値B)
となったことを条件として前記電動モータの回生を行う制御であるOFF操作時回生制御を行うようにしても良い。
In the above configuration, when the shock reduction control is operated from the accelerator ON to the accelerator OFF using the predetermined second torque threshold B for regeneration determination,
(Accelerator torque command value) <(second torque threshold B)
It is also possible to perform regenerative control during OFF operation, which is control for regenerating the electric motor on the condition that
 上記のように、(アクセルのトルク指令値)>(第1トルク閾値A)
となったことを条件として、加速制御であるON操作時加速制御を行う場合に、
 前記ショック低減制御は、回生判断用の所定のトルク閾値Bを用いて、アクセルONからアクセルOFFに操作されたときに、
 (アクセルのトルク指令値)<(第2トルク閾値B)
となったことを条件として前記電動モータの回生を行う制御であるOFF操作時回生制御を行い、
 アクセルOFFとアクセルONが繰り返し実行されたときに、前記ON操作時加速制御と前記OFF操作時回生制御の誤作動を防止するために、
 前記第1トルク閾値Aおよび前記第2トルク閾値Bは、(第1トルク閾値A)>(第2トルク閾値B)とし、
 かつこれら2つの第1および第2トルク閾値A,Bの間に一定幅のヒステリシス特性を持たせるようにしても良い。
As described above, (accelerator torque command value)> (first torque threshold A)
When performing acceleration control during ON operation, which is acceleration control, on the condition that
When the shock reduction control is operated from the accelerator ON to the accelerator OFF using the predetermined torque threshold B for regeneration determination,
(Accelerator torque command value) <(second torque threshold B)
The regenerative control at the time of OFF operation, which is the control to regenerate the electric motor on the condition that
In order to prevent malfunction of the ON-time acceleration control and the OFF-time regenerative control when the accelerator OFF and the accelerator ON are repeatedly executed,
The first torque threshold A and the second torque threshold B are (first torque threshold A)> (second torque threshold B),
In addition, a hysteresis characteristic having a certain width may be provided between the two first and second torque threshold values A and B.
 第1閾値A>第2閾値B、且つ一定幅のヒステリシス特性という条件を設けた場合は、トルク指令信号に含まれているノイズの影響により、アクセルOFF→ON制御とアクセルON→OFF制御の誤動作が防止される。 When the condition that the first threshold value A> the second threshold value B and the hysteresis characteristic of a certain width is provided, malfunction of the accelerator OFF → ON control and the accelerator ON → OFF control due to the influence of noise included in the torque command signal Is prevented.
 前記構成において、前記ショック低減制御における、アクセルOFFからアクセルONに操作された場合に、電動モータの制御方式をトルク制御から回転数制御へ切換えて、回転数制御によりローラクラッチのローラを前記楔状空間の駆動側の狭まり部分に係合させるアクセルON時回転数制御過程を含むようにしても良い。 In the above-mentioned configuration, when the accelerator is operated from the accelerator OFF to the accelerator ON in the shock reduction control, the electric motor control method is switched from torque control to rotation speed control, and the roller clutch roller is moved by the rotation speed control to the wedge-shaped space. It is also possible to include a process for controlling the rotational speed when the accelerator is ON to be engaged with the narrowed portion on the drive side.
 前記構成において、前記ショック低減制御における前記回転数制御で用いられる目標回転数と回転数制限電流を、変速ECU内にそれぞれ設定し、前記回転数制御において、前記設定された目標回転数と回転数制限電流を、走行条件に応じて用いるようにしても良い。 In the above configuration, a target rotational speed and a rotational speed limiting current used in the rotational speed control in the shock reduction control are respectively set in the speed change ECU, and the set target rotational speed and rotational speed are set in the rotational speed control. The limiting current may be used according to the driving conditions.
 前記構成において、前記ショック低減制御は、アクセルOFFからアクセルONに操作された場合に、前記回転数制御完了後、トルク制御に切換えた時点で、アクセルのトルク指令値が過大な場合に生じるショックトルクを低減するように、アクセルのトルク指令値を補間しながら前記電動モータをトルク制御するトルク補間制御を行うようにしても良い。この補間により、円滑な制御が行える。 In the above configuration, the shock reduction control is a shock torque generated when the torque command value of the accelerator is excessive at the time of switching to the torque control after the completion of the rotation speed control when the accelerator is operated from the accelerator OFF to the accelerator ON. Torque interpolation control for controlling the torque of the electric motor while interpolating the accelerator torque command value may be performed. By this interpolation, smooth control can be performed.
 この場合に、アクセルのトルク指令値の補間完了後、リアルタイムのアクセルのトルク指令値で電動モータをトルク制御する、リアルタイムトルク制御としても良い。 In this case, real-time torque control may be used in which the electric motor is torque-controlled by the real-time accelerator torque command value after interpolation of the accelerator torque command value is completed.
 前記構成において、車両の電源を起動した時に、変速ECU内に設定された回転数制御目標回転数と回転数制御電流を用いて、回転数制御により、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させる制御である起動時回転数制御を行うようにしても良い。 In the above-described configuration, when the vehicle power source is started, the roller clutch roller is moved in the wedge-shaped space by the rotational speed control using the rotational speed control target rotational speed and the rotational speed control current set in the transmission ECU. You may make it perform the rotation speed control at the time of starting which is the control engaged with the narrow part of a drive side.
 前記構成において、前記ショック低減制御は、アクセルONからアクセルOFFに操作された場合に、前記電動モータの制御方式を、トルク制御から回転数制御へ切換えて、回転数制御により前記ローラクラッチのローラを、前記楔状空間の非駆動側の狭まり部分に係合させる制御である、OFF操作時制御方法切換制御を行うようにしても良い。 In the above configuration, when the shock reduction control is operated from the accelerator ON to the accelerator OFF, the control method of the electric motor is switched from the torque control to the rotational speed control, and the rollers of the roller clutch are controlled by the rotational speed control. The control method switching control at the time of OFF operation, which is a control for engaging with the narrow portion of the wedge-shaped space on the non-driving side, may be performed.
 前記構成において、前記ショック低減制御は、車両を停車させるときに、前記電動モータの制御方式を回転数制御からトルク制御に切換えて、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させ、このトルク制御におけるトルク指令値として、変速ECUに設定されたトルク指令値を用いる、停車時制御方式切換制御を行うようにしても良い。 In the above configuration, when the vehicle is stopped, the shock reduction control is performed by switching the control method of the electric motor from the rotational speed control to the torque control so that the roller clutch roller is connected to the narrow portion on the drive side of the wedge-shaped space. It is also possible to perform stop-time control method switching control using the torque command value set in the transmission ECU as the torque command value in this torque control.
 この方法の場合、次の利点が得られる。通常、アクセルを抜いた状態では、トルクがゼロになり、ローラクラッチは正方向係合位置からニュートラル位置に戻され、次回の発進時、ローラクラッチを回転数制御で制御することが必要となる。そのため、無駄にエネルギを消耗してしまう。停車時も、トルク制御でローラクラッチを正方向に係合する制御を行うことによって、次回車両発進時に、直接トルク制御で電動モータを制御することが出来、回転数制御をする必要がない。そのため、無駄なエネルギ消耗が回避される。 This method has the following advantages. Normally, when the accelerator is pulled out, the torque becomes zero, the roller clutch is returned from the forward direction engagement position to the neutral position, and it is necessary to control the roller clutch by rotation speed control at the next start. As a result, energy is wasted. Even when the vehicle is stopped, by controlling the engagement of the roller clutch in the forward direction by torque control, the electric motor can be controlled by direct torque control at the next start of the vehicle, and there is no need to control the rotational speed. Therefore, useless energy consumption is avoided.
 この発明の一構成にかかる、電動モータ搭載自動車のアクセル操作応答制御装置は、上記構成の電動モータ搭載自動車における装置である。 上記装置は、アクセルのONからOFFへの操作時、およびアクセルのOFFからONへの操作時のいずれか一方または両方の時に、前記ローラクラッチのショックトルクまたは異音が低減するように、前記電動モータの制御方式を、トルク制御と回転数制御との2種類のフィードバック制御の間で切換える一連の制御を行うショック低減制御手段を備える。 An accelerator operation response control device for an electric motor-equipped vehicle according to one configuration of the present invention is a device in the electric motor-equipped vehicle having the above-described configuration. The above-mentioned device is configured to reduce the shock torque or noise of the roller clutch when either or both of the accelerator operation from ON to OFF and the accelerator operation from OFF to ON are reduced. Shock reduction control means is provided for performing a series of control for switching the motor control method between two types of feedback control of torque control and rotation speed control.
 この装置によると、アクセルのONからOFFへの操作時や、OFFからONへの操作時に、電動モータの制御方式を、トルク制御と回転数制御との間で切換えるため、ローラクラッチのショックトルクや異音を低減することができる。 According to this device, when the accelerator is operated from ON to OFF or when the accelerator is operated from OFF to ON, the control method of the electric motor is switched between torque control and rotational speed control. Abnormal noise can be reduced.
 前記構成にかかる制御方法は、アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の操作時に、トルク制御で走行中に、アクセル開度信号が所定のクリープ正トルク閾値を下回ると、前記トルク制御のトルク指令値を前記クリープ正トルク閾値以上とする制御であるクリープ制御を行うことで、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に常に係合させる(つまり、係合したままにする)。前記クリープ正トルク閾値は設計により適宜定められる。 In the control method according to the above-described configuration, the accelerator opening signal is set to a predetermined value during traveling by torque control during either or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON. When the creep positive torque threshold value is exceeded, creep control, which is control for setting the torque command value of the torque control to be equal to or greater than the creep positive torque threshold value, causes the rollers of the roller clutch to be narrowed on the drive side of the wedge-shaped space. Is always engaged (ie, remains engaged). The creep positive torque threshold is appropriately determined by design.
 この構成によると、アクセルのON,OFF間の切り換え時に、トルク制御で走行中に、アクセル開度信号が所定のクリープ正トルク閾値を下回ると、トルク指令値を前記クリープ正トルク閾値以上とするため、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に常に係合させることができ、そのため、ローラクラッチ係合時に生じるショックトルクと異音を低減させることができる。 According to this configuration, when the accelerator opening / closing signal falls below a predetermined creep positive torque threshold during torque control when the accelerator is switched between ON and OFF, the torque command value is set to be equal to or greater than the creep positive torque threshold. The rollers of the roller clutch can always be engaged with the narrowed portion of the wedge-shaped space on the drive side, so that shock torque and noise generated when the roller clutch is engaged can be reduced.
 前記構成において、トルク制御で走行中に、前記クリープ制御は、車両走行速度の全速度領域にわたって実行されても良い。この場合、常に、アクセルのON,OFF間の切り換えによってローラクラッチ係合時に生じるショックトルクと異音を低減させることができる。 In the above configuration, during traveling by torque control, the creep control may be executed over the entire speed region of the vehicle traveling speed. In this case, the shock torque and noise generated when the roller clutch is engaged can always be reduced by switching the accelerator between ON and OFF.
 前記構成において、トルク制御で走行中に、前記クリープ制御は、アクセルOFF時に回生制御を行い、回生指令トルク値が回生時用閾値を下回ると、この回生時用閾値の負トルクを入力して、前記ローラクラッチのローラを、前記楔状空間の非駆動側の狭まり部分に常に係合させるようにしても良い。 In the above configuration, during traveling with torque control, the creep control performs regenerative control when the accelerator is OFF, and when the regenerative command torque value falls below the regenerative threshold value, the negative torque of the regenerative threshold value is input, The roller of the roller clutch may be always engaged with a narrow portion on the non-driving side of the wedge-shaped space.
 この場合に、前記回生制御を実施する間の車速は、定められた車速以上としても良い。 In this case, the vehicle speed during the execution of the regeneration control may be a predetermined vehicle speed or more.
 前記構成において、さらに、前記アクセル開度信号が前記クリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えて前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分に切り換えて係合させても良い。 In the above configuration, after the accelerator opening signal falls below the creep positive torque threshold and after a certain period of time has elapsed, the torque clutch is switched to the rotational speed control, and the roller clutch roller is narrowed on the drive side of the wedge-shaped space. The portion may be switched to the narrow portion on the non-driving side of the wedge-shaped space and engaged.
 この場合に、前記アクセル開度信号が前記クリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えて前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分に切り換えて係合させることは、各変速段にて行っても良い。 In this case, after a certain period of time has elapsed after the accelerator opening signal falls below the creep positive torque threshold, the torque control is switched to the rotational speed control, and the roller clutch roller is moved from the narrowed portion on the drive side of the wedge-shaped space. Switching to the narrow portion on the non-driving side of the wedge-shaped space may be performed at each shift stage.
 このローラクラッチの係合方向を切換える制御を各変速段にて行うについては、例えば、ローラクラッチの係合方向切換時に、回転数差と制限電流、回転数制御実施時間のマップを、変速ECUのROM等のメモリに設定しておき、マップの値を用いて前記回転数制御を実施しても良い。 For controlling the engagement direction of the roller clutch at each gear position, for example, when the engagement direction of the roller clutch is switched, a map of the rotational speed difference, the limit current, and the rotational speed control execution time is displayed on the transmission ECU. It may be set in a memory such as a ROM and the rotational speed control may be performed using a map value.
 前記構成において、前記回生制御の開始は、現変速段のローラクラッチが正方向から負方向へ係合した後、回転数制御からトルク制御へ切換えて前記回生制御を行っても良い。 In the above configuration, the regeneration control may be started by switching from the rotational speed control to the torque control after the roller clutch of the current gear stage is engaged from the positive direction to the negative direction.
 この場合に、前記回生制御の実行は、現変速段のローラクラッチ係合時の制限電流または制限トルクから回生指令トルク値への移行において、トルク制御にてn回補間制御し、回生指令値の信号との誤差を縮めていく追跡過程で、誤差が所与の範囲内になると、n回補間制御を終了しても良い。 In this case, the regeneration control is executed by interpolating n times by torque control at the transition from the limit current or limit torque at the time of engaging the roller clutch at the current gear to the regeneration command torque value. When the error falls within a given range in the tracking process for reducing the error from the signal, the interpolation control may be terminated n times.
 前記構成において、前記回生制御において、回生指令トルク値がクリープ負トルク閾値の絶対値(正値)を下回ると、クリープ負トルク閾値の絶対値(正値)を回生指令トルク値として、係合時の制限電流からクリープ負トルク閾値の絶対値(正値)への補間制御を実行しながら、回生制御を行い、回生制御中には、電動モータのq軸電流(トルク成分)の方向は負であっても良い。 In the above configuration, in the regenerative control, when the regenerative command torque value falls below the absolute value (positive value) of the creep negative torque threshold value, the absolute value (positive value) of the creep negative torque threshold value is used as the regenerative command torque value during engagement. The regenerative control is performed while executing the interpolation control from the limit current to the absolute value (positive value) of the creep negative torque threshold. During the regenerative control, the direction of the q-axis current (torque component) of the electric motor is negative. There may be.
 前記構成において、前記回生指令トルク値に従って前記回生制御を実行中に、アクセル開度信号がクリープ正トルク閾値を上回った状態で一定時間経過した場合に、回生制御を停止しても良い。 In the above configuration, the regeneration control may be stopped when a certain period of time elapses while the accelerator opening signal exceeds the creep positive torque threshold while the regeneration control is being executed according to the regeneration command torque value.
 この場合に、前記回生制御を停止することは、一定時間内に、前記アクセル開度信号が前記クリープ正トルク閾値を上回った場合に、前記一定時間の経過時間カウントをリセットし、アクセル信号が前記クリープ正トルク閾値を上回った時点から経過時間をカウントし始めても良い。 In this case, stopping the regenerative control resets the elapsed time count of the predetermined time when the accelerator opening signal exceeds the creep positive torque threshold within a predetermined time, and the accelerator signal is You may start counting elapsed time from the time of exceeding the creep positive torque threshold.
 前記構成において、前記回生指令トルク値に従って前記回生制御を実行中に、車速が所与の車速を下回った場合に、直ちに回生制御を停止しても良い。 In the above configuration, the regeneration control may be stopped immediately when the vehicle speed falls below a given vehicle speed while the regeneration control is being executed according to the regeneration command torque value.
 前記構成において、さらに、前記回生制御の停止後、回生指令トルク値から係合時の制限電流または制限トルクへの移行において、トルク制御にて、n回補間制御を実施しても良い。 In the above-described configuration, after the regeneration control is stopped, interpolation control may be performed n times by torque control in the transition from the regeneration command torque value to the limit current or limit torque at the time of engagement.
 この場合に、さらに、n回補間制御の完了後、トルク制御から回転数制御への切換時に、変速ECUのROM等のメモリに設定された回転数差と制限電流、回転数制御実施時間のマップの値を用いて回転数制御を実施しても良い。 In this case, after completion of the n-time interpolation control, a map of the rotational speed difference, the limit current, and the rotational speed control execution time set in the memory such as the ROM of the speed change ECU when switching from the torque control to the rotational speed control. The rotational speed control may be performed using the value of.
 この場合に、前記回転数制御の完了後、回転数制御からトルク制御へ切換え、現変速ローラクラッチの係合時の制限電流または制限トルクからアクセル開度信号への移行において、n回補間制御を実行しても良い。 In this case, after the rotation speed control is completed, the rotation speed control is switched to the torque control, and the interpolation control is performed n times in the transition from the limit current or the limit torque when the current speed changer roller clutch is engaged to the accelerator opening signal. May be executed.
 前記構成において、車両の電源を起動時および停車時に、シフト操作部材のシフトレンジ信号に基づいてローラクラッチをトルク制御により、駆動側または非駆動側の楔状空間に係合させる制御において、前回のシフト操作部材のシフトレンジに応じて、予め変速ECUのROM等のメモリに設定された制御トルクと制限時間のデータを取込み、数段階に分けて前記クリープ制御を実施しても良い。 In the above configuration, when the power source of the vehicle is started and stopped, the previous shift in the control for engaging the roller clutch with the drive-side or non-drive-side wedge-shaped space by torque control based on the shift range signal of the shift operation member. Depending on the shift range of the operating member, control torque and time limit data set in advance in a memory such as a ROM of the speed change ECU may be fetched, and the creep control may be performed in several stages.
 前記構成において、シフト操作部材のシフトレンジがドライブレンジの場合、現変速段のローラクラッチのローラを前記楔状空間の駆動側の狭まり部分に係合させるように、電動モータのq軸電流(トルク成分)の方向は正であっても良い。 In the above configuration, when the shift range of the shift operating member is the drive range, the q-axis current (torque component) of the electric motor is set so that the roller of the roller clutch at the current shift stage is engaged with the narrow portion on the drive side of the wedge-shaped space. ) Direction may be positive.
 前記構成において、シフト操作部材のシフトレンジがリバースレンジの場合、現変速段のローラクラッチのローラを前記楔状空間の非駆動側の狭まり部分に係合させるように、電動モータのq軸電流(トルク成分)の方向は負であっても良い。 In the above configuration, when the shift range of the shift operating member is the reverse range, the q-axis current (torque of the electric motor) is set so that the roller of the roller clutch at the current gear stage is engaged with the narrow portion on the non-drive side of the wedge-shaped space. The direction of (component) may be negative.
 前記構成にかかる制御装置は、前記変速比切換機構はシフト部材を有し、前記変速切換アクチュエータによるこのシフト部材の進退によって、前記摩擦板の前記外輪への接触と離間とを切り換え、さらに、アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の操作時に、ローラクラッチの係合時に生じるショックトルクと異音を低減させるために、トルク制御で走行中に、アクセル開度信号が所定のクリープ正トルク閾値を下回ると、前記トルク制御のトルク指令値を前記クリープ正トルク閾値以上とすることで、前記ローラクラッチのローラ20を、前記楔状空間の駆動側の狭まり部分に係合させるクリープ制御手段を備える。 In the control device according to the above configuration, the speed ratio switching mechanism includes a shift member, and the contact and separation of the friction plate with respect to the outer ring are switched by the advancement and retraction of the shift member by the speed change actuator. Running with torque control to reduce shock torque and abnormal noise generated when the roller clutch is engaged during either or both of the operation from ON to OFF and from OFF to ON In addition, when the accelerator opening signal falls below a predetermined creep positive torque threshold, the torque command value for the torque control is set to be equal to or greater than the creep positive torque threshold, so that the roller 20 of the roller clutch is driven on the drive side of the wedge-shaped space. Creep control means for engaging with the narrowed portion of the.
 この構成によると、ローラクラッチのローラを常に楔状空間の駆動側の狭まり部分に係合させることができ、そのため、ローラクラッチの係合時に生じるショックトルクと異音を低減させることができる。 According to this configuration, the roller of the roller clutch can always be engaged with the narrow portion on the drive side of the wedge-shaped space, so that shock torque and noise generated when the roller clutch is engaged can be reduced.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の第1実施形態に係るアクセル操作応答制御方法を適用する電気自動車の概略図である。1 is a schematic diagram of an electric vehicle to which an accelerator operation response control method according to a first embodiment of the present invention is applied. 図1のアクセル操作応答制御方法を適用するハイブリッド車の概略である。It is the outline of the hybrid vehicle to which the accelerator operation response control method of FIG. 1 is applied. 図1または図2に示す車両の車両用モータ駆動装置の断面図である。FIG. 3 is a cross-sectional view of the vehicle motor drive device for the vehicle shown in FIG. 1 or FIG. 2. 図3の車両用モータ駆動装置の減速比切換機構の断面図である。It is sectional drawing of the reduction ratio switching mechanism of the vehicle motor drive device of FIG. 図3の車両用モータ駆動装置を制御する変速制御システムの概略ブロック図である。FIG. 4 is a schematic block diagram of a shift control system that controls the vehicle motor drive device of FIG. 3. 図3の車両用モータ駆動装置のインバータ装置の構成図である。It is a block diagram of the inverter apparatus of the vehicle motor drive device of FIG. 図3の車両用モータ駆動装置のインバータ制御装置のブロック図である。It is a block diagram of the inverter control apparatus of the vehicle motor drive device of FIG. 図1または図2に示す車両のアクセルのOFFからONに伴う制御の処理を示すフローチャートである。It is a flowchart which shows the process of the control accompanying turning off the accelerator of the vehicle shown in FIG. 1 or FIG. 図8の制御における通常モードの処理を示すフローチャートである。It is a flowchart which shows the process of the normal mode in the control of FIG. 図8の制御における起動モードの処理を示すフローチャートである。It is a flowchart which shows the process of the starting mode in the control of FIG. 図1または図2に示す車両のアクセルのONからOFFに伴う制御の処理を示すフローチャートである。It is a flowchart which shows the process of the control accompanying ON-OFF of the accelerator of the vehicle shown in FIG. 1 or FIG. 図11における停止モードの処理を示すフローチャートである。It is a flowchart which shows the process of the stop mode in FIG. この発明の第1実施形態に係るアクセル操作応答制御装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the accelerator operation response control apparatus which concerns on 1st Embodiment of this invention. 図4の減速比切換機構の一部拡大断面図である。It is a partially expanded sectional view of the reduction ratio switching mechanism of FIG. 図4のXVII-XVII線に沿った断面図である。It is sectional drawing along the XVII-XVII line of FIG. 図4のXVIII-XVIII線に沿った断面図である。It is sectional drawing along the XVIII-XVIII line of FIG. 図4のXIX-XIX線に沿った断面図である。It is sectional drawing along the XIX-XIX line of FIG. 図3の車両用モータ駆動装置のシフト機構を示す断面図である。It is sectional drawing which shows the shift mechanism of the vehicle motor drive device of FIG. 図4の減速比切換機構におけるローラクラッチ等の分解斜視図である。FIG. 5 is an exploded perspective view of a roller clutch and the like in the reduction ratio switching mechanism of FIG. 4. 図3の車両用モータ駆動装置の自動変速制御方法の一例を示すフローチャートである。4 is a flowchart illustrating an example of an automatic transmission control method for the vehicle motor drive device of FIG. 3. この発明の第2実施形態に係るアクセル操作応答制御方法を適用する車両の車両用モータ駆動装置の概略ブロック図である。It is a schematic block diagram of the vehicle motor drive device of the vehicle to which the accelerator operation response control method according to the second embodiment of the present invention is applied. 図21の車両用モータ駆動装置を含む電気自動車のレバー操作パネルの説明図である。It is explanatory drawing of the lever operation panel of an electric vehicle including the motor drive apparatus for vehicles of FIG. この発明の第2実施形態に係るアクセル操作応答制御方法における、レバー操作に伴うクリープ制御についてのフローチャートである。It is a flowchart about the creep control accompanying a lever operation in the accelerator operation response control method according to the second embodiment of the present invention. この発明の第2実施形態に係るアクセル操作応答制御方法におけるクリープ制御と回生制御の説明図である。It is explanatory drawing of creep control and regeneration control in the accelerator operation response control method which concerns on 2nd Embodiment of this invention. この発明の第2実施形態に係るアクセル操作応答制御方法を実現する制御装置の概念構成のブロックである。It is a block of a conceptual structure of the control apparatus which implement | achieves the accelerator operation response control method which concerns on 2nd Embodiment of this invention.
 この発明の第1実施形態にかかる、電動モータ搭載自動車のアクセル操作応答制御方法を説明する。図1は、左右一対の前輪1を車両用モータ駆動装置Aで駆動される駆動輪とし、左右一対の後輪2を従動輪とした電気自動車EVを示す。 An accelerator operation response control method for an automobile equipped with an electric motor according to the first embodiment of the present invention will be described. FIG. 1 shows an electric vehicle EV in which a pair of left and right front wheels 1 are drive wheels driven by a vehicle motor drive device A, and a pair of left and right rear wheels 2 are driven wheels.
 図2は、左右一対の前輪1をエンジンEによって駆動される主駆動輪とし、左右一対の後輪2を車両用モータ駆動装置Aで駆動される補助駆動輪としたハイブリッド自動車HVを示す。ハイブリッド自動車HVには、エンジンEの回転を変速するトランスミッションTと、トランスミッションTから出力された回転を左右の前輪1に分配するディファレンシャルDとが設けられている。この第1実施形態の、電動モータ搭載自動車のアクセル操作応答制御方法およびアクセル操作応答制御装置は、図1,図2の車両用モータ駆動装置Aに適用される。 FIG. 2 shows a hybrid vehicle HV in which a pair of left and right front wheels 1 are main drive wheels driven by an engine E, and a pair of left and right rear wheels 2 are auxiliary drive wheels driven by a vehicle motor drive device A. The hybrid vehicle HV is provided with a transmission T for shifting the rotation of the engine E and a differential D for distributing the rotation output from the transmission T to the left and right front wheels 1. The accelerator operation response control method and the accelerator operation response control device for an automobile equipped with an electric motor according to the first embodiment are applied to the vehicle motor drive device A shown in FIGS.
 図3に示すように、車両用モータ駆動装置Aは、走行用の電動モータ3と、電動モータ3の出力軸4の回転を変速して出力する変速機5と、その変速機5から出力された回転を図1に示す電気自動車EVの左右一対の前輪1に分配し、または、図2に示すハイブリッド車の左右一対の後輪2に分配するディファレンシャル6とを有する。 As shown in FIG. 3, the vehicle motor drive device A includes a traveling electric motor 3, a transmission 5 that shifts and outputs the rotation of the output shaft 4 of the electric motor 3, and an output from the transmission 5. The differential 6 is distributed to the pair of left and right front wheels 1 of the electric vehicle EV shown in FIG. 1 or to the pair of left and right rear wheels 2 of the hybrid vehicle shown in FIG.
 変速機5は、変速段数が2段である。図3に示すように、変速機5は、互いに変速比が異なる複数(この例では2列)の変速段のギヤ列LA,LBを有する。変速機5は、さらに、前記変速段ごとに、2ウェイ型のローラクラッチ16A,16Bを有する。これらローラクラッチ16A,16Bは、電動モータ3の出力軸であるモータ軸4に連結された入力軸7と、対応する変速段のギヤ列LA,LBとにそれぞれ介在し、接続および遮断の切換えを可能にする。変速機5は、さらに、これら各ローラクラッチ16A,16Bの接続および遮断の切換えを行う変速比切換機構40を有する。 The transmission 5 has two speeds. As shown in FIG. 3, the transmission 5 has a plurality of gear trains LA and LB (two trains in this example) having different gear ratios. The transmission 5 further includes two- way roller clutches 16A and 16B for each of the gear positions. These roller clutches 16A and 16B are respectively interposed in the input shaft 7 connected to the motor shaft 4 that is the output shaft of the electric motor 3 and the gear trains LA and LB of the corresponding gears, and are switched between connection and disconnection. enable. The transmission 5 further includes a gear ratio switching mechanism 40 that switches between connection and disconnection of the roller clutches 16A and 16B.
 前記2ウェイ型のローラクラッチ16A,16Bの変速切換は、後述のシフトフォーク45(図4)のシフト位置の制御、および電動モータ3のシンクロ制御により行われる。 The shifting of the two-way type roller clutches 16A and 16B is performed by controlling the shift position of a shift fork 45 (FIG. 4) described later and synchronizing control of the electric motor 3.
 図3,図4の変速機5および変速比切換機構40については、ここではアクセル操作応答制御方法の理解に必要な範囲で簡単に説明し、アクセル操作応答制御方法・装置の説明の後に、詳細に説明する。 The transmission 5 and the gear ratio switching mechanism 40 of FIGS. 3 and 4 will be briefly described here within a range necessary for understanding the accelerator operation response control method, and will be described in detail after the description of the accelerator operation response control method / device. Explained.
 図3において、変速機5は、モータ軸4の回転が入力される入力軸7と、入力軸7に対して間隔をおいて平行に配置された出力軸8と、上記各ギヤ列LA,LBとを有する平行軸常時噛合型変速機である。1速ギヤ列LAの入力ギヤ9Aおよび2速ギヤ列LBの入力ギヤ9Bが入力軸に一体に設けられ、1速ギヤ列LAの出力ギヤ10Aおよび2速ギヤ列LBの出力ギヤ10Bが出力軸8の外周に回転自在に設置されている。これら各出力ギヤ10A,10Bと出力軸8の間に、前記ローラクラッチ16A,16Bが介在している。 In FIG. 3, the transmission 5 includes an input shaft 7 to which rotation of the motor shaft 4 is input, an output shaft 8 arranged parallel to the input shaft 7 at intervals, and the gear trains LA and LB. A parallel shaft always-mesh transmission. The input gear 9A of the first gear train LA and the input gear 9B of the second gear train LB are integrally provided on the input shaft, and the output gear 10A of the first gear train LA and the output gear 10B of the second gear train LB are output shafts. 8 is rotatably installed on the outer periphery. The roller clutches 16A and 16B are interposed between the output gears 10A and 10B and the output shaft 8.
 各ローラクラッチ16A,16Bは、図15に示す2速のローラクラッチ16Bの例で説明するように、外周面が多角形状とされた内輪18Bの外周の平面状の各カム面19と外輪23の内周の円筒面間に設けられた各楔状空間Sにローラ20が介在する。楔状空間Sは、円周方向の両側が狭まり、円周方向の中央が広がり部分となる。ローラクラッチ16Bは、各ローラ20が楔状空間Sの狭まり部分に係合することで接続状態となり、保持器21Bにより各ローラ20を楔状空間Sの広がり部分に位置させることで切断状態となる構成である。 The roller clutches 16A and 16B are respectively formed of a flat cam surface 19 and an outer ring 23 on the outer periphery of the inner ring 18B having a polygonal outer peripheral surface, as described in the example of the two-speed roller clutch 16B shown in FIG. A roller 20 is interposed in each wedge-shaped space S provided between the inner circumferential cylindrical surfaces. In the wedge-shaped space S, both sides in the circumferential direction are narrowed, and the center in the circumferential direction is an expanded portion. The roller clutch 16B is in a connected state when each roller 20 is engaged with a narrowed portion of the wedge-shaped space S, and is in a disconnected state when each roller 20 is positioned in an expanded portion of the wedge-shaped space S by the retainer 21B. is there.
 外輪23は、外周部が前記出力ギヤ10A,10Bとされている。内輪18A,18Bは、スプライン等により出力軸8に対して相対回転不能に設けられる。円滑な相対回転、つまり空転を可能とするため、外輪23を構成する出力ギヤ10A,10Bと内輪18A,18Bとの間には、それぞれ、ローラクラッチ16A,16B以外に軸受15(図3,図4)が設けられる。 The outer ring 23 has an outer peripheral portion as the output gears 10A and 10B. The inner rings 18A and 18B are provided so as not to rotate relative to the output shaft 8 by splines or the like. In order to enable smooth relative rotation, that is, idling, between the output gears 10A and 10B constituting the outer ring 23 and the inner rings 18A and 18B, bearings 15 (see FIG. 3 and FIG. 3), respectively, in addition to the roller clutches 16A and 16B. 4) is provided.
 変速比切換機構40は、図4に示すように、ローラクラッチ16A,16Bの保持器21A,21Bに連結されて回転する環状の摩擦板35A,35Bの外輪23への接触と離間とを変速切換アクチュエータ47による、シフト部材であるシフトフォーク45の進退によって切り換える機構である。シフト機構41は、変速比切換機構40のうちの、摩擦板35A,35Bを動作させる機構部分であり、変速切換アクチュエータ47とシフトフォーク45により構成される。 As shown in FIG. 4, the gear ratio switching mechanism 40 switches between contact and separation of the annular friction plates 35A and 35B, which are connected to the cages 21A and 21B of the roller clutches 16A and 16B and rotate, with the outer ring 23. This is a mechanism that is switched by the advancement and retraction of the shift fork 45 that is a shift member by the actuator 47. The shift mechanism 41 is a mechanism portion that operates the friction plates 35 </ b> A and 35 </ b> B in the transmission ratio switching mechanism 40, and includes a transmission switching actuator 47 and a shift fork 45.
 変速切換アクチュエータ47は、シフト用の電動モータであり、その出力軸47aの回転を、送りねじ機構48によりシフトロッド46の直動運動に変換し、シフトロッド46に取り付けたシフトフォーク45を軸方向に移動させる。シフトフォーク45の移動により、シフトスリーブ43およびシフトリング34が移動する。シフトリング34が摩擦板35A,35Bを、クラック外輪23(出力ギヤ10A,10B)の側面に押し付ける。これにより、カム面付きの内輪18A,18Bと外輪23とが相対回転する場合に、摩擦板35A,35Bと外輪23との間に摩擦力(トルク)が作用し、保持器21A,21Bを介してローラ20を楔状空間S(図15)の狭まり部分に押し込むことができる。 The shift switching actuator 47 is an electric motor for shifting. The rotation of the output shaft 47a is converted into a linear motion of the shift rod 46 by the feed screw mechanism 48, and the shift fork 45 attached to the shift rod 46 is axially moved. Move to. As the shift fork 45 moves, the shift sleeve 43 and the shift ring 34 move. The shift ring 34 presses the friction plates 35A and 35B against the side surface of the crack outer ring 23 (output gears 10A and 10B). As a result, when the inner rings 18A, 18B with cam surfaces and the outer ring 23 rotate relative to each other, a frictional force (torque) acts between the friction plates 35A, 35B and the outer ring 23 via the cages 21A, 21B. The roller 20 can be pushed into the narrowed portion of the wedge-shaped space S (FIG. 15).
 なお、保持器21A,21Bは内輪18A,18Bに対して回転自在であるが、スイッチばね22A,22B(図14,図16)により、内輪18A,18Bのカム面19(図15)の中央、つまり楔状空間Sの広がり部分である中立位置とポケット21aの円周方向中央とが一致するように付勢される。摩擦板35A,35Bは、上記スイッチばね22A,22Bにより、保持器21A,21Bと共に回転可能なように連結されている。 The cages 21A and 21B are rotatable with respect to the inner rings 18A and 18B. However, the switch springs 22A and 22B (FIGS. 14 and 16) allow the center of the cam surface 19 (FIG. 15) of the inner rings 18A and 18B, In other words, the neutral position, which is the spreading portion of the wedge-shaped space S, is biased so that the circumferential center of the pocket 21a coincides. The friction plates 35A and 35B are connected to the switch springs 22A and 22B so as to be rotatable together with the cages 21A and 21B.
 図5は、車両用モータ駆動装置Aを制御する制御システムを示すブロック図である。この制御システムが、後述する、本実施形態にかかるアクセル操作応答制御の処理を実行する。この制御システムは、統合ECU60、変速ECU61、およびインバータ装置62を有する。統合ECU60、変速ECU61、およびインバータ装置62の3者間の信号転送はCAN(コントローラー・エリア・ネットワーク)通信で行われる。 FIG. 5 is a block diagram showing a control system for controlling the vehicle motor drive device A. As shown in FIG. This control system executes accelerator operation response control processing according to the present embodiment, which will be described later. This control system has an integrated ECU 60, a transmission ECU 61, and an inverter device 62. Signal transfer among the three units of the integrated ECU 60, the shift ECU 61, and the inverter device 62 is performed by CAN (controller area network) communication.
 統合ECU60は、車載全ての電子制御装置間の協調制御を行う電子制御装置であり、図示しない車両用ブレーキ装置やステアリング装置と協調して指示を出す。統合ECU60はアクセルペダルおよびその踏み込み量を検出する検出手段からなるアクセル63に接続されている。統合ECU60は、アクセル63からの信号に基づいてアクセル開度の信号であるアクセル信号を算出して、変速ECU61に出力する。 The integrated ECU 60 is an electronic control device that performs cooperative control among all on-vehicle electronic control devices, and issues instructions in cooperation with a vehicle brake device and a steering device (not shown). The integrated ECU 60 is connected to an accelerator 63 comprising an accelerator pedal and detection means for detecting the amount of depression. The integrated ECU 60 calculates an accelerator signal that is a signal of the accelerator opening based on the signal from the accelerator 63 and outputs the accelerator signal to the transmission ECU 61.
 変速ECU61は、車速の検出信号と、統合ECU60から出力されたアクセル信号を受け取り、自動変速の制御を行う電子制御装置であり、各種入力信号に基づいて変速判断を行ない、変速機5の変速切換アクチュエータ47とインバータ装置62に指令を出す。 The shift ECU 61 is an electronic control device that receives a vehicle speed detection signal and an accelerator signal output from the integrated ECU 60, and controls automatic shift. The shift ECU 61 performs shift determination based on various input signals and shifts the shift of the transmission 5. Commands are given to the actuator 47 and the inverter device 62.
 具体的には、変速ECU61は、変速切換アクチュエータ47へ駆動指令を出力し、インバータ装置62へトルク指令(状況によっては、回転数指令)と変速指令を送信する。変速ECU61には、運転者により操作される変速操作部64(例えば、自動変速モードと手動変速モードを切り換えるタクトスイッチや、手動変速モードにおいて変速段を手動で切り換えるためのシフトレバー)から変速操作の状態を示す信号が入力される。変速ECU61には、車速度センサ65から現在の車両の速度を示す信号が入力される。また、変速ECU61は、変速切換アクチュエータ47のシフト位置センサ68からシフト位置を検出し、インバータ装置62から電動モータ3の回転数を取得する機能を有する。この他に、変速ECU61は、運転席の液晶表示装置や表示ランプ等の表示部67に、車速、走行用の電動モータ回転数、トルク指令値等を表示させる手段(図示せず)を備える。 Specifically, the shift ECU 61 outputs a drive command to the shift switching actuator 47, and transmits a torque command (or a rotation speed command depending on the situation) and a shift command to the inverter device 62. The shift ECU 61 is operated by a driver from a shift operation unit 64 (for example, a tact switch for switching between an automatic shift mode and a manual shift mode or a shift lever for manually switching a shift stage in the manual shift mode). A signal indicating the state is input. A signal indicating the current vehicle speed is input from the vehicle speed sensor 65 to the transmission ECU 61. The shift ECU 61 has a function of detecting the shift position from the shift position sensor 68 of the shift switching actuator 47 and acquiring the rotational speed of the electric motor 3 from the inverter device 62. In addition, the speed change ECU 61 includes means (not shown) for displaying the vehicle speed, the electric motor rotational speed for traveling, the torque command value, and the like on the display unit 67 such as a liquid crystal display device or a display lamp in the driver's seat.
 変速ECU61には、自動変速モードと手動変速モードの変速モードがプログラムされており、自動変速モードと手動変速モードは、運転者による変速操作部64の操作によって切り換えられる。
 変速ECU61は、図13に示す各種の機能達成手段81~91を有しているが、これらの手段については後に説明する。
The shift ECU 61 is programmed with shift modes of an automatic shift mode and a manual shift mode, and the automatic shift mode and the manual shift mode are switched by operation of the shift operation unit 64 by the driver.
The speed change ECU 61 has various function achievement means 81 to 91 shown in FIG. 13, which will be described later.
 図5において、インバータ装置62は、バッテリ69から直流電力が供給されて、電動モータ3に交流のモータ駆動電力を供給するとともに、その供給電力を変速ECU61からの信号に基づいて制御する。インバータ装置62には、電動モータ3に設けられた回転検出装置であるレゾルバ66から、電動モータ3の回転数を示す信号が入力される。またインバータ装置62は、電力を回生するための制御を行う機能を備えている。 5, the inverter device 62 is supplied with DC power from the battery 69 to supply AC motor driving power to the electric motor 3 and controls the supplied power based on a signal from the transmission ECU 61. A signal indicating the rotation speed of the electric motor 3 is input to the inverter device 62 from a resolver 66 that is a rotation detection device provided in the electric motor 3. Further, the inverter device 62 has a function of performing control for regenerating electric power.
 インバータ装置62は、電動モータ3を駆動する機能、およびレゾルバ66から電動モータ3の回転角信号を得る機能を備える。インバータ装置62は、図6に示すように、IGBTモジュールからなるインバータ71と、このインバータ71を制御するインバータ制御回路72とで構成される。インバータ71と、U,V,W相の上側アームスイッチング素子Up,Vp,Wpと、U,V,W相の下側アームスイッチング素子Un,Vn,Wnの接続点に電動モータ3の各相(U,V,W相)の端子が接続される。インバータ71には、3相180度通電型(正弦波通電)の交流電力を出力するように、インバータ制御回路72から各スイッチング素子Up,Vp,Wp,Un,Vn,Wnに開閉指令が与えられる。 The inverter device 62 has a function of driving the electric motor 3 and a function of obtaining a rotation angle signal of the electric motor 3 from the resolver 66. As shown in FIG. 6, the inverter device 62 includes an inverter 71 composed of an IGBT module and an inverter control circuit 72 that controls the inverter 71. Each phase of the electric motor 3 (at the connection point of the inverter 71, U, V, W phase upper arm switching elements Up, Vp, Wp and U, V, W phase lower arm switching elements Un, Vn, Wn) U, V, W phase) terminals are connected. To the inverter 71, an open / close command is given to each switching element Up, Vp, Wp, Un, Vn, Wn from the inverter control circuit 72 so as to output three-phase 180 degree conduction type (sine wave conduction) AC power. .
 電動モータ3は、3相の正弦波通電により、転流を行っている。電動モータ3は、IPMモータ(埋込永久磁石同期モータ)である。IPM電動モータ3の駆動のためには大電流が必要であり、インバータ71内の前記各スイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)が使用されている。低騒音、高効率、高トルク等の要求に対して、上記のように、IPM電動モータ3の駆動方式は180度通電型(正弦波通電)が使用される。 The electric motor 3 is commutated by three-phase sine wave energization. The electric motor 3 is an IPM motor (embedded permanent magnet synchronous motor). A large current is required for driving the IPM electric motor 3, and an IGBT (Insulated Gate Bipolar Transistor) is used for each switching element in the inverter 71. In response to demands such as low noise, high efficiency, and high torque, the 180-degree energization type (sinusoidal energization) is used as the driving method of the IPM electric motor 3 as described above.
 図7はインバータ制御回路72の構成を主に示すブロック図である。このインバータ制御回路72は、トルク制御と回転数制御とに切り換えて制御可能としてあり、トルク制御と回転数制御とも、フィードバック制御で、かつベクトル制御である。 FIG. 7 is a block diagram mainly showing the configuration of the inverter control circuit 72. The inverter control circuit 72 can be controlled by switching between torque control and rotation speed control. Both torque control and rotation speed control are feedback control and vector control.
 同図のインバータ制御回路72の構成を、トルク制御方式の概要と共に説明する。
 電流指令部101には、トルク制御時は、アクセル信号から変速ECU61のトルク指令部110で生成されたトルク指令が入力される。なお、図7おける変速ECU61のトルク指令部110および速度指令部106は、変速ECU61の構成要素のうち、それぞれ、トルク指令および速度指令を出力する手段を総称して示している。
The configuration of the inverter control circuit 72 shown in the figure will be described together with an outline of the torque control system.
At the time of torque control, the current command unit 101 receives a torque command generated by the torque command unit 110 of the speed change ECU 61 from the accelerator signal. Note that the torque command unit 110 and the speed command unit 106 of the speed change ECU 61 in FIG. 7 collectively indicate means for outputting a torque command and a speed command, among the components of the speed change ECU 61, respectively.
 電流指令部101は、このトルク指令と、レゾルバ66で検出された電動モータ回転数とから、定められた規則に従って電流指令値を作り出す。具体的には、トルク指令と電動モータ回転数に応じて、変速ECU61またはインバータ制御回路72に設けられた最大トルク制御テーブル(図示せず)を参照し、相応なトルク指令値を算出する。算出されたトルク指令値に基づき、電動モータ3の相電流(Ia)と電流位相角(β)の指令値を生成する。これら相電流Iaと電流位相角βの指令値に基づき、d軸電流(界磁成分)O_Idと、q軸電流(トルク成分)O_Iqに分けて電流のベクトル制御およびフィードバック制御を行う。
 O_Id = -Ia * sinβ
 O_Iq = Ia * cosβ
The current command unit 101 creates a current command value from the torque command and the electric motor rotation speed detected by the resolver 66 according to a predetermined rule. Specifically, a corresponding torque command value is calculated by referring to a maximum torque control table (not shown) provided in the shift ECU 61 or the inverter control circuit 72 according to the torque command and the electric motor rotation speed. Based on the calculated torque command value, a command value for the phase current (Ia) and current phase angle (β) of the electric motor 3 is generated. Based on the command values of the phase current Ia and the current phase angle β, current vector control and feedback control are performed separately for a d-axis current (field component) O_Id and a q-axis current (torque component) O_Iq.
O_Id = -Ia * sinβ
O_Iq = Ia * cosβ
 電流PI制御部102は、電流指令部101から出力されたd軸電流O_Id、q軸電流O_Iqの値と、モータ電流および回転子角度から3相・2相変換部104で計算された2相電流Id,Iqとから、PI制御による電圧値による制御量Vd,Vqを算出する。前記3相・2相変換部104では、電流センサ105で検出される電動モータのu相電流(Iu)とw相電流(Iw)の検出値から、次式、Iv=-(Iu+Iw)、で求められるv相電流(Iv)を算出し、Iu,Iv,1wの3相電流からId,Iqの2相電流に変換する。この変換に使われる電動モータ3の回転子角度は、レゾルバ66から取得する。 The current PI control unit 102 is a two-phase current calculated by the three-phase / two-phase conversion unit 104 from the values of the d-axis current O_Id and q-axis current O_Iq output from the current command unit 101 and the motor current and the rotor angle. Control amounts Vd and Vq based on voltage values by PI control are calculated from Id and Iq. In the three-phase / two-phase conversion unit 104, from the detected values of the u-phase current (Iu) and the w-phase current (Iw) of the electric motor detected by the current sensor 105, the following equation is obtained: Iv = − (Iu + Iw) The required v-phase current (Iv) is calculated and converted from a three-phase current of Iu, Iv, 1w to a two-phase current of Id, Iq. The rotor angle of the electric motor 3 used for this conversion is acquired from the resolver 66.
 2相・3相変換部103は、入力された2相の制御量Vd,Vqに基づき、3相のPWMデューティVu,Vv,Vwに変換する。変換に使われるモータ回転子の回転角は、計算時間、信号転送等の遅れに影響されずに、次のパルスの発生位置(角度)での値となるように、予測計算部111の計算で、Θ+ΔΘ(ΔΘ=Θ-OId_Θ)式から求められる予測値を使用している。
 ここで、Θ:現サンプリング時間での回転子の回転角度(電気角)
     OId_Θ:前サンプリング時間での回転子の回転角度(電気角)
である。
The two-phase / three-phase conversion unit 103 converts the three-phase PWM duties Vu, Vv, and Vw based on the input two-phase control amounts Vd and Vq. The rotation angle of the motor rotor used for conversion is calculated by the prediction calculation unit 111 so that it is a value at the generation position (angle) of the next pulse without being affected by delays such as calculation time and signal transfer. , Θ + ΔΘ (ΔΘ = Θ−OId_Θ) is used as a predicted value.
Where Θ: Rotor rotation angle (electrical angle) at current sampling time
OId_Θ: Rotor rotation angle (electrical angle) at pre-sampling time
It is.
 電力変換部62aは、PWMデューティVu,Vv,Vwに従ってインバータ71(IGBT(Insulated Gate Bipolar Transistor))(図6)をPWM制御し、電動モータ3を駆動する。 The power converter 62a performs PWM control of the inverter 71 (IGBT (Insulated Gate Bipolar Transistor)) (FIG. 6) according to the PWM duties Vu, Vv, and Vw, and drives the electric motor 3.
 図7のインバータ制御回路72による回転数制御を説明する。
 速度指令部106は、インバータ制御回路72に対して速度指令を与える手段であり、変速ECU61に設けられている。速度指令部106は、変速時の車速と選択された目標変速段の変速比に基づき、電動モータ3の目標回転数を算出する。算出した目標回転数は、速度指令としてインバータ装置62のインバータ制御回路72に指示される。
The rotation speed control by the inverter control circuit 72 of FIG. 7 will be described.
The speed command unit 106 is a means for giving a speed command to the inverter control circuit 72 and is provided in the speed change ECU 61. The speed command unit 106 calculates a target rotational speed of the electric motor 3 based on the vehicle speed at the time of shifting and the speed ratio of the selected target shift stage. The calculated target rotational speed is instructed to the inverter control circuit 72 of the inverter device 62 as a speed command.
 また、電動モータ3の回転子角度をレゾルバ66から取得し、実際の電動モータ3の回転数を速度計算部108で算出する。速度指令部106の速度指令と、速度計算部108で算出した実際の電動モータ回転数の差分を比較部109で求め、その差分に対して、制御部107でPID制御(比例積分微分制御)、あるいはPI制御(比例積分制御)を行い、制御量をトルク指令として、電流指令部101に入力する。回転数制御時、この速度計算部108の速度指令に基づくトルク指令が、トルク指令部110からのトルク指令に代えて電流指令部101に入力される。 Also, the rotor angle of the electric motor 3 is acquired from the resolver 66, and the actual rotation speed of the electric motor 3 is calculated by the speed calculation unit 108. The comparison unit 109 obtains the difference between the speed command of the speed command unit 106 and the actual electric motor rotation number calculated by the speed calculation unit 108, and the control unit 107 performs PID control (proportional integral derivative control) for the difference. Alternatively, PI control (proportional integral control) is performed, and the control amount is input to the current command unit 101 as a torque command. During the rotation speed control, a torque command based on the speed command from the speed calculation unit 108 is input to the current command unit 101 instead of the torque command from the torque command unit 110.
 回転数制御では、電動モータ3の目標回転数は1msec間隔で計算され、変速中に車速が急に変化しても、変速の目標回転数は車速の変化を追随追及できる特徴をもつ。それによって、変速ショックやアクセル操作時の係合ショックを低減することができる。 In the rotational speed control, the target rotational speed of the electric motor 3 is calculated at an interval of 1 msec, and even if the vehicle speed changes suddenly during a shift, the target rotational speed of the shift has a feature that can follow the change in the vehicle speed. Thereby, the shift shock and the engagement shock during the accelerator operation can be reduced.
 なお、図7において、インバータ制御回路72は、速度制御部73と、トルク制御部74とに分けて説明している。
 トルク制御部74は、インバータ制御回路72のうち、トルク制御により電動モータ3の制御の機能を果たす部分であり、図7の電流指令部101、電流PI制御部102、2相・3相変化部103、3相・2相変化部104、速度計算部108、および予測部111を含む。
 速度制御部73は、インバータ制御回路72のうち、速度制御により電動モータ3の制御の機能を果たす部分であって、比較部109と、制御部107とを有し、トルク制御部74の電流制御部101へトルク指令を与え、その後の制御をトルク制御部74で行わせる。
In FIG. 7, the inverter control circuit 72 is described separately for a speed control unit 73 and a torque control unit 74.
The torque control unit 74 is a part of the inverter control circuit 72 that performs a function of controlling the electric motor 3 by torque control. The current command unit 101, the current PI control unit 102, and the two-phase / three-phase change unit in FIG. 103, a three-phase / two-phase change unit 104, a speed calculation unit 108, and a prediction unit 111.
The speed control unit 73 is a part of the inverter control circuit 72 that performs the function of controlling the electric motor 3 by speed control. The speed control unit 73 includes a comparison unit 109 and a control unit 107. A torque command is given to the unit 101, and the subsequent control is performed by the torque control unit 74.
 次に、上記構成の車両用モータ駆動装置Aを持つ電気自動車におけるアクセル操作応答制御方法を説明する。図8~10はアクセルOFF→ON制御(アクセルがオフからオンに切り換わる際に実行される、ショック低減制御)のフローチャートを、図11,12はアクセルON→OFF制御(アクセルがオンからオフに切り換わる際に実行される、ショック低減制御)のフローチャートをそれぞれ示す。 Next, an accelerator operation response control method in an electric vehicle having the vehicle motor drive device A configured as described above will be described. 8 to 10 are flowcharts of accelerator OFF → ON control (shock reduction control executed when the accelerator is switched from OFF to ON), and FIGS. 11 and 12 are accelerator ON → OFF control (accelerator is switched from ON to OFF). A flowchart of shock reduction control executed when switching is shown.
 これらの制御の説明の前に、アクセルOFF,ONの切換(つまり、アクセルが抜かれたり踏まれたりすること)に対処する制御を行う理由を説明する。
(1)電動モータ3の回生制御を行わない場合(車両起動時、停車時等)
 アクセル63が抜かれると、現変速段のローラクラッチ16A(16B)の接続状態(各ローラ20が楔状空間Sの狭まり部分に係合した状態)が解除される可能性がある。ローラクラッチ16A(16B)の係合(接続)が解除された状態で、再びアクセル63が踏まれると、現変速段のローラクラッチ16A(16B)が素早く係合されて、ショックトルク、異音が生じる。
(2)電動モータ3の回生制御を行う場合(一定車速以上で走行時)
 車速が一定以上の時にアクセル63が抜かれると、回生を行う(「回生」では、エネルギはバッテリ69で吸収する)。電動モータ3を正トルクで駆動している時、ローラクラッチ16A(16B)は正方向で係合(接続)している。一方、回生時は、ローラクラッチ16A(16B)は負方向で係合する必要がある。駆動と回生の相互の切換に伴い、ローラクラッチの係合方向は、正方向と負方向との間で切換り、その都度ショックトルク、異音が生じる。
 上記(1)と(2)に関して、ローラクラッチ係合(接続)時のショックトルク、異音を低減するために、アクセル63のOFFとON間の切換時(踏んでいたアクセルを抜く時、または抜いていたアクセルを踏む時)に、ショックトルクを低減する制御を行う必要がある。
Prior to the description of these controls, the reason for performing the control to deal with the switching between accelerator OFF and ON (that is, the accelerator being pulled or stepped on) will be described.
(1) When regenerative control of the electric motor 3 is not performed (when the vehicle is started, when it is stopped, etc.)
When the accelerator 63 is pulled out, there is a possibility that the connected state of the roller clutch 16A (16B) at the current gear stage (the state in which each roller 20 is engaged with the narrowed portion of the wedge-shaped space S) is released. If the accelerator 63 is stepped on again when the engagement (connection) of the roller clutch 16A (16B) is released, the roller clutch 16A (16B) at the current gear stage is quickly engaged, and shock torque and abnormal noise are generated. Arise.
(2) When performing regenerative control of the electric motor 3 (when traveling at a constant vehicle speed or higher)
When the accelerator 63 is pulled out when the vehicle speed is above a certain level, regeneration is performed (in "regeneration", energy is absorbed by the battery 69). When the electric motor 3 is driven with a positive torque, the roller clutch 16A (16B) is engaged (connected) in the positive direction. On the other hand, at the time of regeneration, the roller clutch 16A (16B) needs to be engaged in the negative direction. With the mutual switching between driving and regeneration, the engagement direction of the roller clutch is switched between the positive direction and the negative direction, and shock torque and noise are generated each time.
Regarding the above (1) and (2), in order to reduce shock torque and abnormal noise when the roller clutch is engaged (connected), when the accelerator 63 is switched between OFF and ON (when the accelerator is stepped on, or It is necessary to perform control to reduce the shock torque when the accelerator is removed.
 なお、本明細書を通して、「正方向」は、電動モータ3の駆動時に、ローラクラッチ16A,16Bが係合(接続)している方向、つまり、ローラクラッチ16A(16B)のローラ20(図15)が、楔状空間S(図15)の駆動側の狭まり部分に係合している方向とする。一方、「負方向」は、電動モータ3の回生時に、ローラクラッチ16A,16Bが係合(接続)している方向、つまり、ローラクラッチ16A(16B)のローラ(図15)が、楔状空間S(図15)の非駆動側の狭まり部分に係合している方とする。 Throughout this specification, the “forward direction” refers to the direction in which the roller clutches 16A and 16B are engaged (connected) when the electric motor 3 is driven, that is, the roller 20 of the roller clutch 16A (16B) (FIG. 15). ) Is a direction engaged with a narrow portion on the driving side of the wedge-shaped space S (FIG. 15). On the other hand, the “negative direction” is the direction in which the roller clutches 16A and 16B are engaged (connected) during regeneration of the electric motor 3, that is, the rollers (FIG. 15) of the roller clutch 16A (16B) are wedge-shaped spaces S. It is assumed that it is engaged with the narrow portion on the non-driving side of (FIG. 15).
 まず、図8の制御に関して説明する。同図は、アクセルOFF→ON時に、電動モータ3で加速制御を行うための処理を示す。 First, the control of FIG. 8 will be described. The figure shows a process for performing acceleration control with the electric motor 3 when the accelerator is turned off.
 第1ステップ(サブステップQ1)では、トルク制御を継続している。
 アクセル63のペダルが踏まれると、アクセル開度(電圧アナログ値)は、統合ECU60に入力され、統合ECU60内でAD変換によりデジタル値に変換される。アクセル開度のデジタル変換値はトルク指令値として使用される。トルク指令値は、統合ECU60から変速ECU61にCAN通信を経由して送信される。
In the first step (substep Q1), torque control is continued.
When the pedal of the accelerator 63 is depressed, the accelerator opening (voltage analog value) is input to the integrated ECU 60 and converted into a digital value by AD conversion in the integrated ECU 60. The digital conversion value of the accelerator opening is used as a torque command value. The torque command value is transmitted from integrated ECU 60 to transmission ECU 61 via CAN communication.
 第2ステップ(サブステップQ2)では、停止モードであるか否かを判断する。
 停止モードとは、車両停車時におけるローラクラッチ16A,16Bの状態を示すモードである。車両停止状態から発進する場合のショックトルクを無くすために、停止モードでは常にローラクラッチ16A,16Bを正方向に係合させている(詳細については、図12を参照して後述する)。停止モードの場合、アクセルOFF→ON制御(アクセルのOFFからONへの切換えに対処した、ショック低減制御)は行わず、リアルタイムのトルク指令を受信して、インバータへ送信する。停止モードでない場合は、アクセルOFF→ON制御を実行すべきか否かを判断する。
In the second step (sub-step Q2), it is determined whether or not it is a stop mode.
The stop mode is a mode indicating the state of the roller clutches 16A and 16B when the vehicle is stopped. In order to eliminate the shock torque when starting from the vehicle stop state, the roller clutches 16A and 16B are always engaged in the positive direction in the stop mode (details will be described later with reference to FIG. 12). In the stop mode, the accelerator OFF → ON control (shock reduction control corresponding to the switching from accelerator OFF to ON) is not performed, and a real-time torque command is received and transmitted to the inverter. If it is not the stop mode, it is determined whether or not the accelerator OFF → ON control should be executed.
 第3ステップ(サブステップQ3)では、アクセルOFF→ON制御を実行すべきか否かを判断する。
 このステップでは、加速判断用の所定のトルク閾値A(第1トルク閾値)を用い、アクセルOFFからアクセルONに操作されたときに、
 (アクセルのトルク指令値)>(トルク閾値A)
となったことを条件として、ON操作時加速制御、すなわちアクセルOFF→ON制御(アクセルがオンからオフに切り換わる際に実行される、ショック低減制御)を実行する。
In the third step (sub-step Q3), it is determined whether or not the accelerator OFF → ON control should be executed.
In this step, when a predetermined torque threshold value A (first torque threshold value) for determining acceleration is used and the accelerator is turned on from the accelerator OFF,
(Accelerator torque command value)> (Torque threshold A)
As a condition, the acceleration control during the ON operation, that is, the accelerator OFF → ON control (shock reduction control executed when the accelerator is switched from ON to OFF) is executed.
 変速ECU61は、アクセルOFF→ON制御を行うべきか否かの判断に用いる、第1トルク閾値(閾値A)と、アクセルON→OFF制御を行うべきか否かの判断に用いる第2トルク閾値(閾値B)を持つ。閾値Bは、「回生判断用の閾値」に相当する。閾値A>閾値Bであり、一定幅のヒステリシス特性をもつ。トルク指令値がトルク閾値Aを上回った時に、アクセルOFF→ON制御を開始する。一方、トルク指令値がトルク閾値Bを下回った時に、アクセルON→OFF制御を開始する。 The shift ECU 61 uses a first torque threshold (threshold A) used to determine whether to perform accelerator OFF → ON control and a second torque threshold (threshold A) used to determine whether accelerator ON → OFF control should be performed. It has a threshold B). The threshold value B corresponds to a “threshold value for regeneration determination”. The threshold value A> the threshold value B, and the hysteresis characteristic has a certain width. When the torque command value exceeds the torque threshold A, the accelerator OFF → ON control is started. On the other hand, when the torque command value falls below the torque threshold B, the accelerator ON → OFF control is started.
 閾値A>閾値B、且つ一定幅のヒステリシス特性という条件を設けたため、トルク指令信号に含まれているノイズの影響により、アクセルOFF→ON制御とアクセルON→OFF制御の誤動作が防止される。 Since the conditions of threshold value A> threshold value B and a certain range of hysteresis characteristics are provided, malfunctions of accelerator OFF → ON control and accelerator ON → OFF control are prevented due to the influence of noise included in the torque command signal.
 第4ステップ(サブステップQ4~Q7)では、アクセルOFF→ON制御を実行する。
 アクセルOFF→ON制御の実行をすべきであると判断されたら、最初にトルク指令値を記録する(T0)(サブステップQ4)。次に、電動モータの回転数を判断する(サブステップQ5)。電動モータ回転数≧100rpmの場合、通常モードに進む(サブステップQ6(この処理については、図9を参照して後述する))。電動モータ回転数<100rpmの場合、起動モード(Q7(この処理については、図10を参照して後述する))に進む。起動モードにおける処理は、車両起動時に一回だけ実行される処理である。
In the fourth step (substeps Q4 to Q7), accelerator OFF → ON control is executed.
If it is determined that the accelerator OFF → ON control should be executed, the torque command value is first recorded (T0) (substep Q4). Next, the rotational speed of the electric motor is determined (sub-step Q5). When the electric motor rotational speed ≧ 100 rpm, the process proceeds to the normal mode (sub-step Q6 (this process will be described later with reference to FIG. 9)). If the electric motor speed <100 rpm, the operation proceeds to the start mode (Q7 (this process will be described later with reference to FIG. 10)). The process in the activation mode is a process that is executed only once when the vehicle is activated.
 図9の制御(図8の通常モード(サブステップQ6)の処理に相当)に関して説明する。
 第1ステップ(サブステップR1,R2)では、現変速段が1速か2速か判断して(サブステップR1)、変速ECU61のメモリ(図示せず)に格納されている、現変速段の目標回転数制御テーブルと回転数制限電流テーブル(いずれも図示せず)から、回転数制御に使われる目標回転数と回転数制限電流を取り出す(サブステップR2)。
The control in FIG. 9 (corresponding to the processing in the normal mode (sub-step Q6) in FIG. 8) will be described.
In the first step (substeps R1 and R2), it is determined whether the current gear position is the first speed or the second speed (substep R1), and the current gear position stored in the memory (not shown) of the speed change ECU 61 is determined. A target rotational speed and a rotational speed limiting current used for rotational speed control are extracted from the target rotational speed control table and the rotational speed limiting current table (both not shown) (substep R2).
 前記目標回転数制御テーブルには、1速と2速、それぞれに対して、車速5km/hおきに目標回転数の値が設定されている。
 回転数制限電流制御テーブルには、1速と2速、それぞれに対して、車速5km/hおきに制限電流の値が設定されている。
In the target rotational speed control table, a target rotational speed value is set for each of the first speed and the second speed at every vehicle speed of 5 km / h.
In the rotation speed limit current control table, a limit current value is set for each of the first speed and the second speed at a vehicle speed of 5 km / h.
 第2ステップ(サブステップR3~R5)では、回転数制御を一定時間(例えば、100msec)行い(サブステップR4)、ローラクラッチ16A,16Bを正方向に係合させてアクセルON時回転数制御を実行する(つまり、アクセルON時には、回転数制御を行う)。回転数制御完了時点のアクセル信号(現時(現時点での)トルク指令値T1)を記録する(サブステップR5)。回転数制御を実施している間に、変速ECU61は、リアルタイムのアクセル信号(その時点におけるアクセル信号)を受信しているが、これを電動モータ3の制御に、指令値としては送らない。 In the second step (sub-steps R3 to R5), the rotational speed control is performed for a certain time (for example, 100 msec) (sub-step R4), and the roller clutches 16A and 16B are engaged in the forward direction to perform the rotational speed control when the accelerator is ON. Execute (that is, control the rotational speed when the accelerator is ON). The accelerator signal (current (current) torque command value T1) at the completion of the rotation speed control is recorded (substep R5). While the rotational speed control is being performed, the transmission ECU 61 receives a real-time accelerator signal (accelerator signal at that time), but does not send it to the control of the electric motor 3 as a command value.
 第3ステップ(サブステップR6~R8)では、現時トルク指令値T1とアクセルOFF→ON制御の開始時に記録されたトルク指令値T0との比較を行う(サブステップR6)。
 T1<T0であれば、第4ステップ(サブステップR9)へジャンプする。
 T1≧T0であれば、トルク指令値T2について、T2=T0+(T1-T0)t/Δtの式に基づき、トルク指令を補間して(サブステップR7)、電動モータ3をトルク制御する(トルク補間制御)。そして、トルク指令値T2とT1が等しくなると、補間動作を完了させる(サブステップR8)。ただし、上記トルク指令値T2の式において、Δtは、回転数制御の開始から完了までの時間を示し、tは補間動作開始時点からその補間動作時点までの時間を示す。
In the third step (substeps R6 to R8), the current torque command value T1 is compared with the torque command value T0 recorded at the start of accelerator OFF → ON control (substep R6).
If T1 <T0, jump to the fourth step (substep R9).
If T1 ≧ T0, the torque command is interpolated for the torque command value T2 based on the equation of T2 = T0 + (T1-T0) t / Δt (substep R7), and the electric motor 3 is torque controlled (torque) Interpolation control). When the torque command values T2 and T1 are equal, the interpolation operation is completed (substep R8). However, in the expression of the torque command value T2, Δt represents the time from the start to the completion of the rotational speed control, and t represents the time from the interpolation operation start time to the interpolation operation time.
 第4ステップ(サブステップR9)ではリアルタイムのアクセル信号を用いてトルク制御を行う(リアルタイムトルク制御)。 In the fourth step (sub-step R9), torque control is performed using a real-time accelerator signal (real-time torque control).
 図10の制御(図8の起動モード(サブステップQ5)の処理に相当)に関して説明する。起動モードにおける処理は、車両起動時に1回だけ実施される処理である。 The control in FIG. 10 (corresponding to the start mode (sub-step Q5) process in FIG. 8) will be described. The process in the start mode is a process that is performed only once when the vehicle is started.
 第1ステップ(サブステップS1~S3)では、現変速段が1速か2速かを判断して(サブステップS1)、現変速段の回転数制御目標回転数と回転数制御電流を選択する(サブステップS2,S3)。変速ECU61に、1速の目標回転数と制御電流、および2速の目標回転数と制御電流が各々設定されている。 In the first step (sub-steps S1 to S3), it is determined whether the current speed is the first speed or the second speed (sub-step S1), and the speed control target speed and the speed control current of the current speed are selected. (Sub-steps S2, S3). A first-speed target rotation speed and control current, and a second-speed target rotation speed and control current are set in the shift ECU 61, respectively.
 第2ステップ(サブステップS4,S5)では、目標回転数(例えば100rpm)に応じて、回転数制御を一定時間(例えば500msec)行って(サブステップS5)、ローラクラッチ16A,16Bを係合させて、起動時回転数制御を実行する(つまり、起動時に、回転数制御を行う)。
 第3ステップ(サブステップS6)では、リアルタイムのアクセル信号で、トルク制御を行う。
In the second step (sub-steps S4 and S5), the rotational speed control is performed for a certain time (for example, 500 msec) according to the target rotational speed (for example, 100 rpm) (sub-step S5), and the roller clutches 16A and 16B are engaged. Thus, the rotational speed control at startup is executed (that is, the rotational speed control is performed at startup).
In the third step (sub-step S6), torque control is performed with a real-time accelerator signal.
 次に、図11の制御に関して説明する。同図は、アクセルON→OFF時に、電動モータ3で回生制御を行うための処理を示す。 Next, the control of FIG. 11 will be described. The figure shows a process for performing regenerative control with the electric motor 3 when the accelerator is turned ON.
 同図の制御は、車両が一定速度に到達してから、電動モータ3の回生制御を行うために、ローラクラッチ16A,16Bを負方向に係合させる制御と車両停車時にローラクラッチ16A,16Bを正方向に係合させる制御を含む。 The control shown in the figure includes the control for engaging the roller clutches 16A and 16B in the negative direction and the roller clutches 16A and 16B when the vehicle is stopped in order to perform the regeneration control of the electric motor 3 after the vehicle reaches a constant speed. Includes control to engage in the positive direction.
 第1ステップ(同図のサブステップU1の前)では、トルク制御を継続している。
 アクセル63のペダルが抜かれると、アクセル開度(電圧アナログ値)は、統合ECU60に入力され、統合ECU60内でAD変換によりデジタル値に変換される。アクセル開度のデジタル変換値はトルク指令値として使用される。トルク指令値は、統合ECU60から変速ECUへCAN通信を経由して送信される。
In the first step (before sub-step U1 in the figure), torque control is continued.
When the pedal of the accelerator 63 is released, the accelerator opening (voltage analog value) is input to the integrated ECU 60 and converted into a digital value by AD conversion in the integrated ECU 60. The digital conversion value of the accelerator opening is used as a torque command value. The torque command value is transmitted from the integrated ECU 60 to the transmission ECU via CAN communication.
 第2ステップ(サブステップU1)では、アクセルON→OFF制御を実行すべきか否か、つまりアクセルのONからOFFへの切換えに対処したショック低減制御を実行しても良いか否かを判断する。 In the second step (sub-step U1), it is determined whether or not the accelerator ON → OFF control should be executed, that is, whether or not the shock reduction control corresponding to the accelerator switching from ON to OFF may be executed.
 変速ECU61はON→OFF制御を行うべきか否かの判断に用いる第2トルク閾値(閾値B)とOFF→ON制御を行うべきか否かの判断に用いる第1トルク閾値(閾値A)をもつ。トルク指令値がトルク閾値Bを下回った時に、ON→OFF制御を開始する。 The shift ECU 61 has a second torque threshold value (threshold value B) used to determine whether to perform ON → OFF control and a first torque threshold value (threshold A) used to determine whether to perform OFF → ON control. . When the torque command value falls below the torque threshold B, the ON → OFF control is started.
 そして、電動モータの回転数を判断する(サブステップU2)。電動モータ回転数≧100rpmの場合は、第3ステップ(サブステップU3)へ進む。電動モータ回転数<100rpmの場合は、停止モードにおける処理(サブステップU8)(図12)にジャンプする。「停止モード」は、車両駐車の状態を示すモードである。 Then, the rotational speed of the electric motor is determined (substep U2). If the electric motor rotation speed ≧ 100 rpm, the process proceeds to the third step (sub-step U3). If the electric motor rotation speed <100 rpm, the process jumps to the processing in the stop mode (substep U8) (FIG. 12). “Stop mode” is a mode indicating the state of vehicle parking.
 第3ステップでは、現変速段が1速か2速どちらかを判断して(サブステップU3)、現変速段での目標回転数制御テーブルと回転数制限電流テーブルから回転数制御に使われる目標回転数と回転数制限電流を取り出す(サブステップU4)。 In the third step, it is determined whether the current shift speed is the first speed or the second speed (sub-step U3), and the target used for the rotation speed control from the target rotation speed control table and the rotation speed limit current table at the current shift speed. The rotational speed and the rotational speed limiting current are extracted (substep U4).
 目標回転数制御テーブルは、1速と2速、それぞれに対して、車速5km/hおきに目標回転数の値が設定されている。
 回転数制限電流制御テーブルは、1速と2速、それぞれに対して、車速5km/hおきに回転数制限電流の値が設定されている。
In the target rotational speed control table, a target rotational speed value is set for each of the first speed and the second speed at every vehicle speed of 5 km / h.
In the speed limit current control table, a value of the speed limit current is set for each of the first speed and the second speed at every vehicle speed of 5 km / h.
 第4ステップでは、回転数制御を一定時間(例えば100msec)だけ行い(サブステップU5,U6)、ローラクラッチ16A,16Bを負方向に係合させる(アクセルOFF時には、回転数制御を行う)。この回転数制御を実施している間、変速ECU61はリアルタイムのアクセル信号を受信しているが、電動モータ3への制御の指令値としては使用しない。なお、サブステップU2~U6を、OFF操作時制御方式切換制御と称す。 In the fourth step, the rotational speed control is performed for a certain time (for example, 100 msec) (sub-steps U5 and U6), and the roller clutches 16A and 16B are engaged in the negative direction (the rotational speed control is performed when the accelerator is OFF). While the rotational speed control is being performed, the transmission ECU 61 receives a real-time accelerator signal, but does not use it as a command value for controlling the electric motor 3. The sub-steps U2 to U6 are referred to as OFF operation time control method switching control.
 第5ステップ(サブステップU7)では、電動モータ3の回転数を判定する(サブステップU7)。
 電動モータ回転数≧100rpmの場合は、前記OFF→ON時の制御(図8)に進む(サブステップU9)。
 電動モータ回転数<100rpm場合は、停止モードに進む(サブステップU8)。
In the fifth step (substep U7), the rotational speed of the electric motor 3 is determined (substep U7).
If the electric motor rotational speed is equal to or greater than 100 rpm, the process proceeds to the control from the OFF state to the ON state (FIG. 8) (substep U9).
If the electric motor rotation speed <100 rpm, the process proceeds to the stop mode (substep U8).
 図12の制御(図11のステップU8)について説明する。同図は、アクセルON→OFF時に電動モータ3で回生制御を行う制御において、車両停車時に行われるモード(停車モード)の処理である。同図の制御が、「停車時制御方式切換制御」に相当する。 The control in FIG. 12 (step U8 in FIG. 11) will be described. The figure shows a process of a mode (stop mode) performed when the vehicle is stopped in the control for performing regenerative control with the electric motor 3 when the accelerator is ON → OFF. The control in the figure corresponds to “stop-time control method switching control”.
 第1ステップ(サブステップW1,W2)では、アクセル63のON→OFF時に、電動モータ3の制御方式を回転数制御からトルク制御へ切換える(サブステップW1,W2)。
 第2ステップ(サブステップW3,W4)では、電動モータ3のトルク制御に使われるトルク指令値をT3とし、トルク制御を継続して(サブステップW3)、制御時間を例えば500msecとする(サブステップW4)。
In the first step (substeps W1 and W2), when the accelerator 63 is turned from ON to OFF, the control method of the electric motor 3 is switched from the rotational speed control to the torque control (substeps W1 and W2).
In the second step (substeps W3 and W4), the torque command value used for torque control of the electric motor 3 is set to T3, the torque control is continued (substep W3), and the control time is set to, for example, 500 msec (substep). W4).
 現在のアクセル信号T4がT4<T3の場合は、T4=T3として使用する。この理由は、停車モードは車両停車時に使われるモードであり、アクセル63を抜いた状態であり、通常、アクセル63を抜いた状態では、トルクがゼロになり、ローラクラッチ16A,16Bは正方向係合位置からニュートラル位置に戻され、次回の発進時、ローラクラッチ16A,16Bを回転数制御で制御することが必要となるからである。つまり、無駄にエネルギを消耗してしまうのを避けるためである。無駄にエネルギ消耗をしないように、停車時も、トルク制御で、ローラクラッチ16A,16Bを正方向に係合する制御を行う。これにより、次回車両発進時に、直接トルク制御で電動モータを制御することができ、回転数制御をする必要がない。 When the current accelerator signal T4 is T4 <T3, it is used as T4 = T3. The reason for this is that the stop mode is a mode used when the vehicle is stopped, and is a state where the accelerator 63 is pulled out. Normally, when the accelerator 63 is pulled out, the torque becomes zero and the roller clutches 16A and 16B are engaged in the forward direction. This is because it is necessary to control the roller clutches 16A and 16B by the rotational speed control at the time of the next start after returning to the neutral position. That is, it is for avoiding wasteful consumption of energy. In order not to waste energy wastefully, control is performed to engage the roller clutches 16A and 16B in the forward direction by torque control even when the vehicle is stopped. Thereby, when the vehicle starts next time, the electric motor can be controlled by direct torque control, and there is no need to control the rotational speed.
 この実施形態の電気自動車のアクセル操作応答制御方法によると、上記のように、アクセル63のONからOFFへの操作時や、OFFからONへの操作時に、電動モータ3の制御方式を、トルク制御と回転数制御との2種類のフィードバック制御の間で切換える。そのため、ローラクラッチ16A,16Bのショックトルクや異音を低減することができる。 According to the accelerator operation response control method for an electric vehicle of this embodiment, as described above, when the accelerator 63 is operated from ON to OFF, or when the accelerator 63 is operated from OFF to ON, the control method of the electric motor 3 is controlled by torque control. And switching between two types of feedback control, that is, rotation speed control. Therefore, the shock torque and abnormal noise of the roller clutches 16A and 16B can be reduced.
 次に、電気自動車のアクセル操作応答制御装置につき、図13のブロック図を参照して説明する。制御対象となる電気自動車は、上記実施形態のアクセル操作応答制御方法を適用する図1~図6と共に前述した電気自動車である。 Next, an accelerator operation response control device for an electric vehicle will be described with reference to the block diagram of FIG. The electric vehicle to be controlled is the electric vehicle described above with reference to FIGS. 1 to 6 to which the accelerator operation response control method of the above embodiment is applied.
 このアクセル操作応答制御装置は、変速ECU61に、上記実施形態のアクセル操作応答制御方法を実施する装置であって、上記変速ECU61にアクセル操作時用のショック低減制御手段83を設けたものである。 This accelerator operation response control device is a device that implements the accelerator operation response control method of the above-described embodiment in the shift ECU 61, and is provided with shock reduction control means 83 for accelerator operation in the shift ECU 61.
 変速ECU61は、その基本的な制御手段として、変速指令生成手段81、変速操作時制御手段82を備えるECUであり、これらの概要を先に説明する。 The shift ECU 61 is an ECU including shift command generation means 81 and shift operation time control means 82 as its basic control means, and the outline thereof will be described first.
 変速指令生成手段81は、統合ECUから与えられるアクセル信号と車速の検出値とから、定められた規則に従って目標変速段への変速指令を生成する手段である。
 変速操作時制御手段82は、変速指令生成手段81で生成された変速指令に従って、変速切換アクチュエータ47およびインバータ装置62に対して、定められた一連の制御を行う手段である。
The shift command generation means 81 is a means for generating a shift command to the target shift stage according to a predetermined rule from an accelerator signal given from the integrated ECU and a detected value of the vehicle speed.
The shift operation time control means 82 is a means for performing a predetermined series of controls on the shift switching actuator 47 and the inverter device 62 in accordance with the shift command generated by the shift command generating means 81.
 変速指令生成手段81および変速操作時制御手段82による自動変速制御方法の一例の概要を図20に示す。この自動変速制御方法では、変速操作時にも回転数制御とトルク制御とを併用している。同図の具体的な説明は省略する。 FIG. 20 shows an outline of an example of the automatic shift control method by the shift command generation means 81 and the shift operation time control means 82. In this automatic shift control method, the rotational speed control and the torque control are used in combination even during a shift operation. Detailed description of the same figure is omitted.
 図13において、ショック低減制御83は、アクセル63のONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の時に、ローラクラッチ16A,16Bのショックトルクまたは異音が低減するように、電動モータ3の制御方式をトルク制御と回転数制御との2種類のフィードバック制御の間で切換える一連の制御を行う手段である。 In FIG. 13, the shock reduction control 83 indicates that the shock torque or abnormal noise of the roller clutches 16A and 16B is generated when either or both of the operation of the accelerator 63 from ON to OFF and the operation from OFF to ON are performed. It is means for performing a series of controls for switching the control method of the electric motor 3 between two types of feedback control, that is, torque control and rotation speed control, so as to reduce.
 ショック低減制御83は、ON操作時加速制御制段84、OFF操作時回生制御手段85、繰り返し操作制御手段86、トルク補間制御手段87、リアルタイムトルク制御手段88、起動時回転数制御手段89、OFF操作時制御方式切換手段90、および停車時制御方式切換手段91を有する。 The shock reduction control 83 includes an ON operation acceleration control step 84, an OFF operation regeneration control means 85, a repetitive operation control means 86, a torque interpolation control means 87, a real-time torque control means 88, a startup speed control means 89, and an OFF operation. An operation time control method switching means 90 and a stop time control method switching means 91 are provided.
 ON操作時加速制御手段84は、事前に設定された、加速判断用の所定のトルク閾値Aを用いて、アクセルOFFからアクセルONに操作されたときに、
 (アクセルのトルク指令値)>(トルク閾値A)
となったことを条件として加速する手段である。
 ON操作時加速制御手段84は、より具体的には、図8のステップQ3を参照して前述した処理を行う手段である。
The ON-operation acceleration control means 84 uses a predetermined torque threshold A for acceleration determination that is set in advance, and is operated from the accelerator OFF to the accelerator ON.
(Accelerator torque command value)> (Torque threshold A)
It is a means of accelerating on the condition.
More specifically, the ON operation acceleration control means 84 is a means for performing the processing described above with reference to step Q3 of FIG.
 OFF操作時回生制御手段85は、事前に設定された、回生判断用の所定のトルク閾値Bを用いて、アクセルONからアクセルOFFに操作されたときに、
   (アクセルのトルク指令値)<(トルク閾値B)
となったことを条件として前記電動モータ3の回生を行う。
 OFF操作時回生制御手段85は、具体的には、図11のステップU1,U2の制御を行う。
When the OFF operation regeneration control means 85 is operated from the accelerator ON to the accelerator OFF using a predetermined torque threshold B for regeneration determination set in advance,
(Accelerator torque command value) <(torque threshold B)
The electric motor 3 is regenerated on the condition that
Specifically, the OFF operation regeneration control means 85 performs the control of steps U1 and U2 in FIG.
 繰り返し操作時制御手段86は、アクセルOFFとアクセルONが繰り返し実行されたときに、前記ON操作時加速制御手段84と前記OFF操作時回生制御手段85の誤作動を防止するために、
 トルク閾値に関して、(トルク閾値A)>(トルク閾値B)とし、
 かつこれら2つのトルク閾値A,Bの間に一定幅のヒステリシス特性を持たせた手段である。
In order to prevent malfunction of the ON operation acceleration control means 84 and the OFF operation regeneration control means 85 when the accelerator OFF and the accelerator ON are repeatedly executed,
Regarding the torque threshold, (torque threshold A)> (torque threshold B)
In addition, a hysteresis characteristic with a certain width is provided between these two torque thresholds A and B.
 トルク補間制御手段87は、アクセルOFFからアクセルONに操作された場合の制御の一つとして、回転数制御完了後、トルク制御に切換えた時点で、アクセルのトルク指令値が過大な場合に生じるショックトルクを低減するため、アクセルのトルク指令値を補間しながら電動モータをトルク制御する手段である。トルク補間制御手段87は、図9を参照して前述したステップR7の制御を行う。 As one of the controls when the accelerator is operated from the accelerator OFF to the accelerator ON, the torque interpolation control means 87 is a shock that is generated when the torque command value of the accelerator is excessive after switching to the torque control after the completion of the rotation speed control. In order to reduce the torque, the electric motor is torque controlled while interpolating the torque command value of the accelerator. The torque interpolation control means 87 performs the control in step R7 described above with reference to FIG.
 リアルタイムトルク制御手段88は、アクセル63のトルク指令値の補間完了後、リアルタイムのアクセルのトルク指令値で電動モータ3をトルク制御する手段である。リアルタイムトルク制御手段88は、図9を参照して前述したステップR9の制御を行う。 The real-time torque control means 88 is means for controlling the torque of the electric motor 3 with the real-time accelerator torque command value after the interpolation of the torque command value of the accelerator 63 is completed. The real-time torque control means 88 performs the control of step R9 described above with reference to FIG.
 起動時回転数制御手段89は、車両の電源を起動した時に、変速ECU61内に設定された回転数制御目標回転数と回転数制御電流を用いて、回転数制御により、ローラクラッチ16A,16Bを駆動側楔状空間に係合させる制御である起動時回転数制御を行う。起動時回転数制御手段89は、図10を参照して前述したステップS2~S5の制御を行う。 The start-up rotation speed control means 89 uses the rotation speed control target rotation speed and the rotation speed control current set in the speed change ECU 61 when the vehicle power supply is started, and controls the roller clutches 16A and 16B by rotation speed control. Rotational speed control at start-up that is control for engaging with the drive-side wedge-shaped space is performed. The starting rotation speed control means 89 performs the control of steps S2 to S5 described above with reference to FIG.
 OFF操作時制御方式切換手段90は、アクセルONからアクセルOFFに操作された場合の制御の一つとして、電動モータ3の制御を、トルク制御から回転数制御へ切換えて、回転数制御によりローラクラッチ非駆動側楔状空間に係合させる制御を行う。OFF操作時制御方式切換手段90は、具体的には、図11を参照して前述したステップU2~U6の制御を行う。 The control method switching means 90 at the time of the OFF operation switches the control of the electric motor 3 from the torque control to the rotation speed control as one of the controls when the accelerator is operated from the accelerator ON to the roller clutch by the rotation speed control. Control to engage with the non-driving side wedge-shaped space is performed. Specifically, the OFF operation time control method switching means 90 performs the control of steps U2 to U6 described above with reference to FIG.
 停車時制御方式切換手段91は、車両を停車させるときに、電動モータ3の制御を回転数制御からトルク制御に切換えて、ローラクラッチ16A,16Bを駆動側楔状空間に係合させ、この場合のトルク指令値に、変速ECU61に設定されたトルク指令値を用いる手段である。停車時制御方式切換手段91は、具体的には、図12を参照して前述したステップW1~W4の制御を行う。 When the vehicle is stopped, the stop time control method switching means 91 switches the control of the electric motor 3 from the rotational speed control to the torque control, and engages the roller clutches 16A and 16B with the drive-side wedge-shaped space. The torque command value is a means that uses the torque command value set in the speed change ECU 61. Specifically, the stop time control method switching means 91 performs the control of steps W1 to W4 described above with reference to FIG.
 図13のショック低減制御手段83は、以上の各制御の他に、この実施形態に係るアクセル操作応答制御方法を実施する各機能を有する。 The shock reduction control means 83 of FIG. 13 has each function which implements the accelerator operation response control method concerning this embodiment other than each above control.
 このアクセル操作応答制御装置によると、上記のように、アクセル63のONからOFFへの操作時や、OFFからONへの操作時に、電動モータ3の制御方式を、トルク制御と回転数制御との2種類のフィードバック制御の間で切換える。そのため、ローラクラッチ16A,16Bのショックトルクや異音を低減することができる。 According to this accelerator operation response control device, as described above, when the accelerator 63 is operated from ON to OFF, or when the accelerator 63 is operated from OFF to ON, the control method of the electric motor 3 is changed between torque control and rotational speed control. Switch between two types of feedback control. Therefore, the shock torque and abnormal noise of the roller clutches 16A and 16B can be reduced.
 図3,4のモータ駆動装置の詳細を、図14~図19と共に説明する。
 図3において、モータ軸4は、入力軸7と同軸上に直列に配置されており、ハウジング11に固定された電動モータ3のステータ12で回転駆動される。入力軸7は、ハウジング11内に組込まれた対向一対の軸受13により回転可能に支持され、入力軸7の軸端はスプライン嵌合によってモータ軸4に接続されている。出力軸8は、ハウジング11内に組込まれた対向一対の軸受14により回転可能に支持されている。
Details of the motor drive device of FIGS. 3 and 4 will be described with reference to FIGS.
In FIG. 3, the motor shaft 4 is coaxially arranged in series with the input shaft 7, and is rotationally driven by a stator 12 of the electric motor 3 fixed to the housing 11. The input shaft 7 is rotatably supported by a pair of opposed bearings 13 incorporated in the housing 11, and the shaft end of the input shaft 7 is connected to the motor shaft 4 by spline fitting. The output shaft 8 is rotatably supported by a pair of opposed bearings 14 incorporated in the housing 11.
 1速入力ギヤ9Aと2速入力ギヤ9Bは軸方向に間隔をおいて配置され、入力軸7を中心として入力軸7と一体に回転するように入力軸7に固定されている。1速出力ギヤ10Aと2速出力ギヤ10Bも軸方向に間隔をおいて配置されている。 The first-speed input gear 9A and the second-speed input gear 9B are arranged at an interval in the axial direction, and are fixed to the input shaft 7 so as to rotate integrally with the input shaft 7 around the input shaft 7. The first-speed output gear 10A and the second-speed output gear 10B are also arranged at intervals in the axial direction.
 図4に示すように、1速出力ギヤ10Aは、出力軸8を貫通させる環状に形成され、軸受15を介して出力軸8で支持されており、出力軸8を中心として出力軸8に対して回転可能となっている。同様に、2速出力ギヤ10Bも、軸受15を介して出力軸8で回転可能に支持されている。 As shown in FIG. 4, the first-speed output gear 10 </ b> A is formed in an annular shape that penetrates the output shaft 8, and is supported by the output shaft 8 via a bearing 15, and the output shaft 8 is centered on the output shaft 8. And can be rotated. Similarly, the second speed output gear 10 </ b> B is also rotatably supported by the output shaft 8 via the bearing 15.
 1速入力ギヤ9Aと1速出力ギヤ10Aは互いに噛合しており、その噛合によって1速入力ギヤ9Aと1速出力ギヤ10Aの間で回転が伝達するようになっている。2速入力ギヤ9Bと2速出力ギヤ10Bも噛合しており、その噛合によって2速入力ギヤ9Bと2速出力ギヤ10Bの間で回転が伝達するようになっている。2速入力ギヤ9Bと2速出力ギヤ10Bの減速比は、1速入力ギヤ9Aと1速出力ギヤ10Aの減速比よりも小さい。 The first speed input gear 9A and the first speed output gear 10A mesh with each other, and rotation is transmitted between the first speed input gear 9A and the first speed output gear 10A. The 2nd speed input gear 9B and the 2nd speed output gear 10B are also meshed, and rotation is transmitted between the 2nd speed input gear 9B and the 2nd speed output gear 10B by the meshing. The reduction ratio between the second speed input gear 9B and the second speed output gear 10B is smaller than the reduction ratio between the first speed input gear 9A and the first speed output gear 10A.
 1速出力ギヤ10Aと出力軸8の間には、1速出力ギヤ10Aと出力軸8の間でトルクの伝達と遮断の切換えを行なう1速の2ウェイローラクラッチ16Aが組込まれている。また、2速出力ギヤ10Bと出力軸8の間には、2速出力ギヤ10Bと出力軸8の間でトルクの伝達と遮断の切換えを行なう2速の2ウェイローラクラッチ16Bが組込まれている。 Between the first-speed output gear 10A and the output shaft 8 is incorporated a first-speed two-way roller clutch 16A that performs torque transmission and switching between the first-speed output gear 10A and the output shaft 8. Further, a 2-speed 2-way roller clutch 16B is incorporated between the 2-speed output gear 10B and the output shaft 8 to switch torque transmission and interruption between the 2-speed output gear 10B and the output shaft 8. .
 1速の2ウェイローラクラッチ16Aと2速の2ウェイローラクラッチ16Bは、左右対称の同一構成なので、2速の2ウェイローラクラッチ16Bを以下に説明し、1速の2ウェイローラクラッチ16Aについては、2速の2ウェイローラクラッチ16Bに対応する部分に同一の符号または末尾のアルファベットBをAに置き換えた符号を付して説明を省略する。 Since the first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B have the same symmetrical configuration, the second-speed two-way roller clutch 16B will be described below. The parts corresponding to the 2-speed 2-way roller clutch 16B are denoted by the same reference numerals or the reference numerals in which the alphabet B at the end is replaced with A, and the description thereof is omitted.
 図14~図16に示すように、2速の2ウェイローラクラッチ16Bは、2速出力ギヤ10Bの内周に設けられた円筒面17と、出力軸8の外周に回り止めした環状の2速カム部材18Bに形成されたカム面19と、カム面19と円筒面17の間に組み込まれたローラ20と、ローラ20を保持する2速保持器21Bと、2速スイッチばね22Bとからなる。カム面19は、円筒面17との間で周方向中央から周方向両端に向かって次第に狭くなる楔状空間Sを形成するような面であり、例えば、図15に示すように円筒面17と対向する平坦面である。 As shown in FIGS. 14 to 16, the 2-speed 2-way roller clutch 16B includes a cylindrical surface 17 provided on the inner periphery of the 2-speed output gear 10B, and an annular 2-speed fixed to the outer periphery of the output shaft 8. It comprises a cam surface 19 formed on the cam member 18B, a roller 20 incorporated between the cam surface 19 and the cylindrical surface 17, a second speed holder 21B for holding the roller 20, and a second speed switch spring 22B. The cam surface 19 is a surface that forms a wedge-shaped space S that gradually narrows from the circumferential center to both ends in the circumferential direction with the cylindrical surface 17. For example, as shown in FIG. 15, the cam surface 19 faces the cylindrical surface 17. It is a flat surface.
 図4、図19に示すように、2速保持器21Bは、ローラ20を収容する複数のポケット21aが周方向に間隔をおいて形成された円筒部24と、円筒部24の一端から径方向内方に延び出す内向きフランジ部25とを有する。内向きフランジ部25の径方向内端は、2速カム部材18Bの外周で周方向にスライド可能に支持され、この周方向のスライドによって、2速保持器21Bは、カム面19と円筒面17の間にローラ20を係合させる係合位置とローラ20の係合を解除する中立位置との間で出力軸8に対して相対回転可能となっている。また、2速保持器21Bの内向きフランジ部25は軸方向両側への移動が規制され、これにより2速保持器21Bが軸方向に非可動とされている。 As shown in FIGS. 4 and 19, the 2-speed retainer 21 </ b> B includes a cylindrical portion 24 in which a plurality of pockets 21 a that store the rollers 20 are formed at intervals in the circumferential direction, and a radial direction from one end of the cylindrical portion 24. And an inward flange portion 25 extending inward. The radially inner end of the inward flange portion 25 is supported so as to be slidable in the circumferential direction on the outer periphery of the second-speed cam member 18B, and the second-speed cage 21B causes the cam surface 19 and the cylindrical surface 17 to slide. Between the engagement position where the roller 20 is engaged and the neutral position where the engagement of the roller 20 is released, rotation relative to the output shaft 8 is possible. Further, the inward flange portion 25 of the second-speed cage 21B is restricted from moving in the axial direction, thereby making the second-speed cage 21B immovable in the axial direction.
 図15に示すように、各カム面19は、回転中心を含む仮想平面に対して対称に形成され、これにより、各カム面19と円筒面17の間に配置されたローラ20は、正転方向と逆転方向の両方向で係合可能となっている。すなわち、電動モータ3が発生するトルクにより車両を前進させるときは、2速保持器21Bを出力軸8に対して正転方向に相対回転させることにより、2速保持器21Bに保持されたローラ20を、カム面19と円筒面17の間の正転方向側の空間狭まり部分に係合させ、そのローラ20を介して2速出力ギヤ9Bと出力軸8の間で正転方向のトルクを伝達することが可能となっており、一方、電動モータ3が発生するトルクにより車両を後退させるときは、2速保持器21Bを出力軸8に対して逆転方向に相対回転させることにより、2速保持器21Bに保持されたローラ20を、カム面19と円筒面17の間の逆転方向側の空間狭まり部分に係合させ、そのローラ20を介して2速出力ギヤ9Bと出力軸8の間で逆転方向のトルクを伝達することが可能となっている。 As shown in FIG. 15, each cam surface 19 is formed symmetrically with respect to a virtual plane including the center of rotation, so that the rollers 20 arranged between each cam surface 19 and the cylindrical surface 17 can rotate forward. The engagement is possible in both the direction and the reverse direction. That is, when the vehicle is advanced by the torque generated by the electric motor 3, the roller 20 held by the second-speed cage 21B is rotated by rotating the second-speed cage 21B in the normal rotation direction with respect to the output shaft 8. Is engaged with a space narrowing portion on the forward rotation direction side between the cam surface 19 and the cylindrical surface 17, and torque in the forward rotation direction is transmitted between the second speed output gear 9 </ b> B and the output shaft 8 via the roller 20. On the other hand, when the vehicle is moved backward by the torque generated by the electric motor 3, the second speed retainer 21B is rotated relative to the output shaft 8 in the reverse rotation direction to maintain the second speed. The roller 20 held by the vessel 21B is engaged with the space narrowing portion on the reverse direction side between the cam surface 19 and the cylindrical surface 17, and between the second-speed output gear 9B and the output shaft 8 via the roller 20. Transmit torque in reverse direction It is possible to be.
 図16、図19に示すように、2速スイッチばね22Bは、鋼線をC形に巻いたC形環状部26と、C形環状部26の両端からそれぞれ径方向外方に延出する一対の延出部27,27とからなる。C形環状部26は、2速カム部材18Bの軸方向端面に形成された円形のスイッチばね収容凹部28に嵌め込まれ、一対の延出部27,27は、2速カム部材18Bの軸方向端面に形成された径方向溝29に挿入されている。 As shown in FIGS. 16 and 19, the two-speed switch spring 22 </ b> B includes a C-shaped annular portion 26 in which a steel wire is wound in a C shape, and a pair extending radially outward from both ends of the C-shaped annular portion 26. Extending portions 27, 27. The C-shaped annular portion 26 is fitted into a circular switch spring accommodating recess 28 formed on the axial end surface of the second-speed cam member 18B, and the pair of extending portions 27 and 27 are axial end surfaces of the second-speed cam member 18B. It is inserted in the radial groove 29 formed in.
 径方向溝29は、スイッチばね収容凹部28の内周縁から径方向外方に延びて2速カム部材18Bの外周に至るように形成されている。2速スイッチばね22Bの延出部27は、径方向溝29の径方向外端から突出しており、その延出部27の径方向溝29からの突出部分が、2速保持器21Bの円筒部24の軸方向端部に形成された切欠き30に挿入されている。径方向溝29と切欠き30は同じ幅に形成されている。 The radial groove 29 is formed so as to extend radially outward from the inner peripheral edge of the switch spring accommodating recess 28 and reach the outer periphery of the second speed cam member 18B. The extension portion 27 of the second speed switch spring 22B protrudes from the radially outer end of the radial groove 29, and the protruding portion of the extension portion 27 from the radial groove 29 is the cylindrical portion of the second speed cage 21B. 24 is inserted into a notch 30 formed at the end in the axial direction. The radial groove 29 and the notch 30 are formed to have the same width.
 延出部27,27は、径方向溝29の周方向で対向する内面と、切欠き30の周方向で対向する内面にそれぞれ接触しており、その接触面に作用する周方向の力によって2速保持器21Bを中立位置に弾性保持している。 The extending portions 27, 27 are in contact with the inner surface facing the circumferential direction of the radial groove 29 and the inner surface facing the circumferential direction of the notch 30, respectively, and 2 by the circumferential force acting on the contact surface. The speed holder 21B is elastically held in the neutral position.
 すなわち、2速保持器21Bを出力軸8に対して相対回転させて、図16に示す中立位置から周方向に移動させると、径方向溝29の位置と切欠き30の位置が周方向にずれるので、一対の延出部27,27の間隔が狭まる方向にC形環状部26が弾性変形し、その弾性復元力によって2速スイッチばね22Bの一対の延出部27,27が径方向溝29の内面と切欠き30の内面を押圧し、その押圧によって2速保持器21Bを中立位置に戻す方向の力が作用するようになっている。 That is, when the second-speed cage 21B is rotated relative to the output shaft 8 and moved in the circumferential direction from the neutral position shown in FIG. 16, the position of the radial groove 29 and the position of the notch 30 are shifted in the circumferential direction. Therefore, the C-shaped annular portion 26 is elastically deformed in the direction in which the distance between the pair of extending portions 27, 27 is narrowed, and the pair of extending portions 27, 27 of the two-speed switch spring 22B are caused to be radially grooved 29 by the elastic restoring force. The inner surface of the notch 30 and the inner surface of the notch 30 are pressed, and a force in a direction to return the second-speed cage 21B to the neutral position is applied by the pressing.
 図4に示すように、1速カム部材18Aと2速カム部材18Bの出力軸8に対する回り止めは、スプライン嵌合によって行なわれている。1速カム部材18Aのカム面19と2速カム部材18Bのカム面19は同数かつ同位相となっている。また、1速カム部材18Aと2速カム部材18Bは、出力軸8の外周に嵌合した一対の止め輪(図示せず)によって軸方向に非可動となっている。1速カム部材18Aと2速カム部材18Bの間には間座32が組み込まれている。 As shown in FIG. 4, the first-speed cam member 18A and the second-speed cam member 18B are prevented from rotating with respect to the output shaft 8 by spline fitting. The cam surface 19 of the first speed cam member 18A and the cam surface 19 of the second speed cam member 18B have the same number and the same phase. Further, the first speed cam member 18A and the second speed cam member 18B are immovable in the axial direction by a pair of retaining rings (not shown) fitted to the outer periphery of the output shaft 8. A spacer 32 is incorporated between the first speed cam member 18A and the second speed cam member 18B.
 1速の2ウェイローラクラッチ16Aと2速の2ウェイローラクラッチ16Bは、変速アクチュエータ33により選択的に係合することができるようになっている。 The first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B can be selectively engaged by the transmission actuator 33.
 図14に示すように、変速アクチュエータ33は、1速出力ギヤ10Aと2速出力ギヤ10Bの間に軸方向に移動可能に設けられたシフトリング34と、1速出力ギヤ10Aとシフトリング34の間に組み込まれた1速摩擦板35Aと、2速出力ギヤ10Bとシフトリング34の間に組み込まれた2速摩擦板35Bとを有する。 As shown in FIG. 14, the speed change actuator 33 includes a shift ring 34 that is movably provided in the axial direction between the first speed output gear 10A and the second speed output gear 10B, and the first speed output gear 10A and the shift ring 34. A first-speed friction plate 35A incorporated in between, and a second-speed friction plate 35B incorporated between the second-speed output gear 10B and the shift ring 34.
 ここで、1速摩擦板35Aと2速摩擦板35Bは、左右対称の同一構成なので、2速摩擦板35Bを以下に説明し、1速摩擦板35Aについては、2速摩擦板35Bに対応する部分に同一の符号または末尾のアルファベットBをAに置き換えた符号を付して説明を省略する。 Here, since the first-speed friction plate 35A and the second-speed friction plate 35B have the same configuration with left-right symmetry, the second-speed friction plate 35B will be described below, and the first-speed friction plate 35A corresponds to the second-speed friction plate 35B. Parts are denoted by the same reference numerals or reference numerals in which the alphabet B at the end is replaced with A, and description thereof is omitted.
 2速摩擦板35Bには、2速保持器21Bの切欠き30に係合する突片36が設けられ、この突片36と切欠き30の係合によって、2速摩擦板35Bが2速保持器21Bに回り止めされている。2速保持器21Bの切欠き30は、2速摩擦板35Bの突片36を軸方向にスライド可能に収容しており、このスライドによって、2速摩擦板35Bは、2速保持器21Bに回り止めされた状態のまま、2速出力ギヤ10Bの側面に接触する位置と離反する位置との間で、2速保持器21Bに対して軸方向に移動可能となっている。 The second-speed friction plate 35B is provided with a projecting piece 36 that engages with the notch 30 of the second-speed retainer 21B. The engagement between the projecting piece 36 and the notch 30 causes the second-speed friction plate 35B to hold the second speed. The rotation is stopped by the vessel 21B. The notch 30 of the second-speed retainer 21B accommodates the projecting piece 36 of the second-speed friction plate 35B so as to be slidable in the axial direction. By this sliding, the second-speed friction plate 35B rotates around the second-speed retainer 21B. It can move in the axial direction with respect to the second-speed retainer 21B between a position in contact with the side surface of the second-speed output gear 10B and a position away from the second-speed output gear 10B.
 2速摩擦板35Bの突片36の先端に凹部37が形成されて、間座32の外周には、凹部37に係合する凸部38が形成されている。そして、凹部37と凸部38は、2速摩擦板35Bが2速出力ギヤ10Bの側面から離反した位置にある状態では、凹部37と凸部38が係合することで、2速摩擦板35Bを間座32を介して出力軸8に回り止めし、このとき、2速摩擦板35Bに回り止めされた2速保持器21Bが中立位置に保持されるようになっている。また、2速摩擦板35Bが2速出力ギヤ10Bの側面に接触する位置にある状態では、凹部37と凸部38の係合が解除することで、2速摩擦板35Bの回り止めが解除されるようになっている。 A recess 37 is formed at the tip of the projecting piece 36 of the second speed friction plate 35B, and a protrusion 38 that engages with the recess 37 is formed on the outer periphery of the spacer 32. The concave portion 37 and the convex portion 38 are engaged with the concave portion 37 and the convex portion 38 in a state where the second speed friction plate 35B is located away from the side surface of the second speed output gear 10B. Is prevented from rotating around the output shaft 8 via the spacer 32. At this time, the second-speed retainer 21B, which is prevented from rotating by the second-speed friction plate 35B, is held in the neutral position. Further, in a state where the second speed friction plate 35B is in a position in contact with the side surface of the second speed output gear 10B, the engagement between the concave portion 37 and the convex portion 38 is released to release the rotation prevention of the second speed friction plate 35B. It has become so.
 2速摩擦板35Bと2速カム部材18Bの間には、軸方向に圧縮された状態で2速離反ばね39Bが組み込まれており、この2速離反ばね39Bの弾性復元力によって2速摩擦板35Bが2速出力ギヤ10Bの側面から離反する方向に付勢されている。 Between the second speed friction plate 35B and the second speed cam member 18B, a second speed separation spring 39B is incorporated in an axially compressed state, and the second speed friction plate is generated by the elastic restoring force of the second speed separation spring 39B. 35B is urged in a direction away from the side surface of the second-speed output gear 10B.
 2速離反ばね39Bは、間座32の外周に沿って巻回されたコイルスプリングであり、その一端が2速ワッシャ139Bを介して2速カム部材18Bの軸方向端面で支持されている。2速ワッシャ139Bは、2速カム部材18Bの軸方向端面の径方向溝29を覆うように環状に形成されている。 The second speed separating spring 39B is a coil spring wound along the outer periphery of the spacer 32, and one end thereof is supported by the end face in the axial direction of the second speed cam member 18B via the second speed washer 139B. The 2-speed washer 139B is formed in an annular shape so as to cover the radial groove 29 on the axial end surface of the 2-speed cam member 18B.
 シフトリング34は、1速摩擦板35Aを押圧して1速出力ギヤ10Aの側面に接触させる1速シフト位置SP1fと、2速摩擦板35Bを押圧して2速出力ギヤ10Bの側面に接触させる2速シフト位置SP2fとの間で軸方向に移動可能に支持されている。また、シフトリング34を1速シフト位置SP1fと2速シフト位置SP2fの間で軸方向に移動させるシフト機構41が設けられている。シフト機構41は、前述のように変速比切換機構40の一部を構成する。 The shift ring 34 presses the first-speed friction plate 35A to contact the side surface of the first-speed output gear 10A and the first-speed shift position SP1f to press the second-speed friction plate 35B to contact the side surface of the second-speed output gear 10B. The second-speed shift position SP2f is supported so as to be movable in the axial direction. Further, a shift mechanism 41 that moves the shift ring 34 in the axial direction between the first-speed shift position SP1f and the second-speed shift position SP2f is provided. The shift mechanism 41 constitutes a part of the gear ratio switching mechanism 40 as described above.
 図17、図18に示すように、シフト機構41は、シフトリング34を転がり軸受42を介して回転可能に支持するシフトスリーブ43と、そのシフトスリーブ43の外周に設けられた環状溝44に係合する二股状のシフトフォーク45と、シフトフォーク45が固定されたシフトロッド46と、シフトモータである変速切換アクチュエータ47と、変速切換アクチュエータ47の回転をシフトロッド46の直線運動に変換する運動変換機構48(送りねじ機構等)とからなる。 As shown in FIGS. 17 and 18, the shift mechanism 41 is related to a shift sleeve 43 that rotatably supports the shift ring 34 via a rolling bearing 42, and an annular groove 44 provided on the outer periphery of the shift sleeve 43. The two-forked shift fork 45, the shift rod 46 to which the shift fork 45 is fixed, the shift switching actuator 47 that is a shift motor, and the motion conversion that converts the rotation of the shift switching actuator 47 into the linear motion of the shift rod 46. It consists of a mechanism 48 (feed screw mechanism or the like).
 図18に示すように、シフトロッド46は、出力軸8に対して間隔をおいて平行に配置され、ハウジング11内に組み込まれた一対の滑り軸受49で軸方向にスライド可能に支持されている。シフトリング34とシフトスリーブ43の間に組み込まれた転がり軸受42は、シフトリング34とシフトスリーブ43のいずれに対しても軸方向に非可動となるように組み付けられている。 As shown in FIG. 18, the shift rod 46 is arranged parallel to the output shaft 8 at a distance, and is supported by a pair of sliding bearings 49 incorporated in the housing 11 so as to be slidable in the axial direction. . The rolling bearing 42 incorporated between the shift ring 34 and the shift sleeve 43 is assembled so as to be immovable in the axial direction with respect to both the shift ring 34 and the shift sleeve 43.
 このシフト機構41は、変速切換アクチュエータ47の回転が運動変換機構48により直線運動に変換されてシフトフォーク45に伝達し、そのシフトフォーク45の直線運動が転がり軸受42を介してシフトリング34に伝達することにより、シフトリング34を軸方向に移動させる。 In the shift mechanism 41, the rotation of the shift switching actuator 47 is converted into a linear motion by the motion conversion mechanism 48 and transmitted to the shift fork 45, and the linear motion of the shift fork 45 is transmitted to the shift ring 34 via the rolling bearing 42. By doing so, the shift ring 34 is moved in the axial direction.
 図14に示すように、シフトフォーク45と環状溝44の間の両側の軸方向隙間には、軸方向に圧縮可能な予圧ばね50が組み込まれている。これにより、シフトリング34で1速摩擦板35Aを押圧して1速出力ギヤ10Aの側面に接触させるときに、シフトスリーブ43に対するシフトフォーク45の軸方向の相対位置を調節することによって予圧ばね50のばね力を調節し、1速摩擦板35Aと1速出力ギヤ10Aの接触面間の摩擦力を調整することが可能となっている。また、シフトリング34で2速摩擦板35Bを押圧して2速出力ギヤ10Bの側面に接触させるときも、2速摩擦板35Bと2速出力ギヤ10Bの接触面間の摩擦力を調整することが可能となっている。 As shown in FIG. 14, a preload spring 50 that is compressible in the axial direction is incorporated in the axial clearance on both sides between the shift fork 45 and the annular groove 44. Thus, when the first speed friction plate 35A is pressed by the shift ring 34 and brought into contact with the side surface of the first speed output gear 10A, the preload spring 50 is adjusted by adjusting the relative position in the axial direction of the shift fork 45 with respect to the shift sleeve 43. Thus, it is possible to adjust the friction force between the contact surfaces of the first speed friction plate 35A and the first speed output gear 10A. Further, also when the second speed friction plate 35B is pressed by the shift ring 34 and brought into contact with the side surface of the second speed output gear 10B, the frictional force between the contact surfaces of the second speed friction plate 35B and the second speed output gear 10B is adjusted. Is possible.
 図3に示すように、出力軸8には、出力軸8の回転をディファレンシャル6に伝達するディファレンシャル駆動ギヤ51が固定されている。 As shown in FIG. 3, a differential drive gear 51 that transmits the rotation of the output shaft 8 to the differential 6 is fixed to the output shaft 8.
 ディファレンシャル6は、一対の軸受52で回転可能に支持されたデフケース53と、デフケース53の回転中心と同軸にデフケース53に固定され、ディファレンシャル駆動ギヤ51に噛合するリングギヤ54と、デフケース53の回転中心と直角な方向にデフケース53に固定されたピニオン軸55と、ピニオン軸55に回転可能に支持された一対のピニオン56と、その一対のピニオン56に噛合する左右一対のサイドギヤ57とからなる。左側のサイドギヤ57には、左側の車輪に接続されたアクスル58の軸端部が接続され、右側のサイドギヤ57には、右側の車輪に接続されたアクスル58の軸端部が接続されている。出力軸8が回転するとき、出力軸8の回転はディファレンシャル駆動ギヤ51を介してデフケース53に伝達され、そのデフケース53の回転がピニオン56とサイドギヤ57を介して左右の車輪に分配される。 The differential 6 includes a differential case 53 rotatably supported by a pair of bearings 52, a ring gear 54 that is fixed to the differential case 53 coaxially with the rotational center of the differential case 53, and meshes with the differential drive gear 51, and the rotational center of the differential case 53. The pinion shaft 55 is fixed to the differential case 53 in a perpendicular direction, the pair of pinions 56 is rotatably supported by the pinion shaft 55, and the pair of left and right side gears 57 that mesh with the pair of pinions 56. The left side gear 57 is connected to the shaft end portion of the axle 58 connected to the left wheel, and the right side gear 57 is connected to the shaft end portion of the axle 58 connected to the right wheel. When the output shaft 8 rotates, the rotation of the output shaft 8 is transmitted to the differential case 53 via the differential drive gear 51, and the rotation of the differential case 53 is distributed to the left and right wheels via the pinion 56 and the side gear 57.
 以下に、車両用モータ駆動装置Aの動作例を説明する。
 まず、図14に示すように、1速摩擦板35Aが1速出力ギヤ10Aの側面から離反し、かつ、2速摩擦板35Bも2速出力ギヤ10Bの側面から離反した状態では、1速保持器21Aは1速スイッチばね22Aの弾性力により中立位置に保持され、2速保持器21Bも2速スイッチばね22Bの弾性力により中立位置に保持されるので、1速の2ウェイローラクラッチ16Aはローラ20の係合が解除された状態となり、2速の2ウェイローラクラッチ16Bもローラ20の係合が解除された状態となる。
Below, the operation example of the motor drive apparatus A for vehicles is demonstrated.
First, as shown in FIG. 14, when the first speed friction plate 35A is separated from the side surface of the first speed output gear 10A and the second speed friction plate 35B is also separated from the side surface of the second speed output gear 10B, the first speed holding is performed. 21A is held in the neutral position by the elastic force of the first speed switch spring 22A, and the second speed holder 21B is also held in the neutral position by the elastic force of the second speed switch spring 22B. The engagement of the roller 20 is released, and the 2-speed 2-way roller clutch 16B is also released from the engagement of the roller 20.
 この状態では、図3に示す電動モータ3の駆動により入力軸7が回転しても、1速の2ウェイローラクラッチ16Aと2速の2ウェイローラクラッチ16Bによって回転の伝達が遮断されるので、1速出力ギヤ10Aおよび2速出力ギヤ10Bは空転し、入力軸7の回転は出力軸8に伝達されない。 In this state, even if the input shaft 7 is rotated by driving the electric motor 3 shown in FIG. 3, transmission of rotation is interrupted by the first-speed two-way roller clutch 16A and the second-speed two-way roller clutch 16B. The first speed output gear 10 </ b> A and the second speed output gear 10 </ b> B idle, and the rotation of the input shaft 7 is not transmitted to the output shaft 8.
 次に、シフト機構41を作動させて、図14に示すシフトリング34を1速出力ギヤ10Aに向けて移動させると、1速摩擦板35Aが1速出力ギヤ10Aの側面に接触し、その接触面間の摩擦力によって1速摩擦板35Aが出力軸8に対して相対回転し、この1速摩擦板35Aに回り止めされた1速保持器21Aが1速スイッチばね22Aの弾性力に抗して中立位置から係合位置に移動するので、1速保持器21Aに保持されたローラ20が、円筒面17とカム面19の間の楔状空間Sの狭まり部分に押し込まれて係合した状態となる。 Next, when the shift mechanism 41 is operated and the shift ring 34 shown in FIG. 14 is moved toward the first-speed output gear 10A, the first-speed friction plate 35A comes into contact with the side surface of the first-speed output gear 10A. The first-speed friction plate 35A rotates relative to the output shaft 8 by the frictional force between the surfaces, and the first-speed retainer 21A that is prevented from rotating by the first-speed friction plate 35A resists the elastic force of the first-speed switch spring 22A. The roller 20 held by the first-speed holder 21A is pushed into the narrowed portion of the wedge-shaped space S between the cylindrical surface 17 and the cam surface 19 and engaged. Become.
 この状態では、1速出力ギヤ10Aの回転は、1速の2ウェイローラクラッチ16Aを介して出力軸8に伝達され、出力軸8の回転が、ディファレンシャル6を介してアクスル58に伝達される。その結果、図1に示す電気自動車EVにおいては、駆動輪としての前輪1が回転駆動され、図2に示すハイブリッド車HVにおいては補助駆動輪としての後輪2が回転駆動される。 In this state, the rotation of the first-speed output gear 10A is transmitted to the output shaft 8 via the first-speed 2-way roller clutch 16A, and the rotation of the output shaft 8 is transmitted to the axle 58 via the differential 6. As a result, in the electric vehicle EV shown in FIG. 1, the front wheels 1 as drive wheels are rotationally driven, and in the hybrid vehicle HV shown in FIG. 2, the rear wheels 2 as auxiliary drive wheels are rotationally driven.
 次に、シフト機構41の作動により、シフトリング34を1速シフト位置から2速シフト位置に向かって軸方向移動させると、1速摩擦板35Aと1速出力ギヤ10Aの接触面間の摩擦力が小さくなるので、1速スイッチばね22Aの弾性力により1速保持器21Aが係合位置から中立位置に移動し、この1速保持器21Aの移動によって1速の2ウェイローラクラッチ16Aの係合が解除される。 Next, when the shift ring 34 is moved in the axial direction from the first speed shift position to the second speed shift position by the operation of the shift mechanism 41, the frictional force between the contact surfaces of the first speed friction plate 35A and the first speed output gear 10A. Therefore, the first-speed retainer 21A is moved from the engagement position to the neutral position by the elastic force of the first-speed switch spring 22A, and the first-speed two-way roller clutch 16A is engaged by the movement of the first-speed retainer 21A. Is released.
 シフトリング34が2速シフト位置に到達すると、2速摩擦板35Bがシフトリング34で押圧されて2速出力ギヤ10Bの側面に接触し、その接触面間の摩擦力によって2速摩擦板35Bが出力軸8に対して相対回転し、2速摩擦板35Bに回り止めされた2速保持器21Bが2速スイッチばね22Bの弾性力に抗して中立位置から係合位置に移動するので、2速保持器21Bに保持されたローラ20が、円筒面17とカム面19の間の楔状空間Sの狭まり部分に押し込まれて係合した状態となる。 When the shift ring 34 reaches the 2nd speed shift position, the 2nd speed friction plate 35B is pressed by the shift ring 34 and comes into contact with the side surface of the 2nd speed output gear 10B. The second-speed retainer 21B that rotates relative to the output shaft 8 and is prevented from rotating by the second-speed friction plate 35B moves from the neutral position to the engagement position against the elastic force of the second-speed switch spring 22B. The roller 20 held by the speed holder 21 </ b> B is pushed into and engaged with the narrowed portion of the wedge-shaped space S between the cylindrical surface 17 and the cam surface 19.
 この状態では、2速出力ギヤ10Bの回転は、2速の2ウェイローラクラッチ16Bを介して出力軸8に伝達され、出力軸8の回転がディファレンシャル6を介してアクスル58に伝達される。 In this state, the rotation of the 2-speed output gear 10B is transmitted to the output shaft 8 via the 2-speed 2-way roller clutch 16B, and the rotation of the output shaft 8 is transmitted to the axle 58 via the differential 6.
 同様に、シフトリング34を2速シフト位置から1速シフト位置に軸方向移動させることにより、2速の2ウェイローラクラッチ16Bの係合を解除して、1速の2ウェイローラクラッチ16Aを係合させることができる。 Similarly, by shifting the shift ring 34 in the axial direction from the 2nd gear shift position to the 1st gear shift position, the engagement of the 2nd gear 2 way roller clutch 16B is released and the 1st gear 2 way roller clutch 16A is engaged. Can be combined.
 ところで、1速の2ウェイローラクラッチ16Aを係合解除するときに、1速の2ウェイローラクラッチ16Aを介してトルクが伝達していると、そのトルクがローラ20を円筒面17とカム面19の間の楔状空間Sの狭まり部分に押し込むように作用し、1速の2ウェイローラクラッチ16Aの係合解除が妨げられる。そのため、シフト機構41の作動により、シフトリング34が1速シフト位置SP1fから2速シフト位置SP2fに向かって軸方向移動を開始したときに、1速摩擦板35Aが、1速出力ギヤ10Aの側面から既に離反しているにもかかわらず、1速の2ウェイローラクラッチ16Aの係合が解除されない可能性がある。 When the first-speed two-way roller clutch 16A is disengaged, if torque is transmitted via the first-speed two-way roller clutch 16A, the torque causes the roller 20 to move between the cylindrical surface 17 and the cam surface 19. Acting to push into the narrowed portion of the wedge-shaped space S between the two, the disengagement of the first-speed two-way roller clutch 16A is prevented. Therefore, when the shift ring 34 starts to move in the axial direction from the first speed shift position SP1f to the second speed shift position SP2f by the operation of the shift mechanism 41, the first speed friction plate 35A is moved to the side surface of the first speed output gear 10A. There is a possibility that the engagement of the first-speed two-way roller clutch 16A is not released even though it has already separated from the initial position.
 このため、1速の2ウェイローラクラッチ16Aを確実に係合解除するためには、シフト機構41の作動により、1速摩擦板35Aを1速出力ギヤ10Aの側面から離反させるだけでなく、電動モータ3の出力を制御して、入力軸7と出力軸8の間で伝達するトルクを変化させる必要がある。2速の2ウェイローラクラッチ16Bを係合解除するときも同様である。 Therefore, in order to reliably disengage the first-speed two-way roller clutch 16A, not only the first-speed friction plate 35A is separated from the side surface of the first-speed output gear 10A by the operation of the shift mechanism 41, but also the electric It is necessary to change the torque transmitted between the input shaft 7 and the output shaft 8 by controlling the output of the motor 3. The same applies when the second-speed two-way roller clutch 16B is disengaged.
 そこで、上記制御システムでは、図13に示す変速ECU61により、電動モータ3と変速切換アクチュエータ47を制御し、この制御により1速の2ウェイローラクラッチ16Aまたは2速の2ウェイローラクラッチ16Bの係合を解除するときの動作の信頼性を確保している。 Therefore, in the above control system, the shift ECU 61 shown in FIG. 13 controls the electric motor 3 and the shift switching actuator 47, and this control engages the first-speed two-way roller clutch 16A or the second-speed two-way roller clutch 16B. The reliability of the operation when releasing is secured.
 次に、本発明の第2実施形態にかかるアクセル操作応答制御方法を説明する。この実施形態にかかるアクセル操作応答制御方法は、図8~15を参照して説明した第1実施形態にかかるアクセル操作応答制御方法に加えて、以下に示す電動モータ搭載自動車制御方法を含むものである。なお、この実施形態は、特に説明した事項の他は、前述した第1の実施形態と同様の構成を含む。したがって、第1実施形態に関して説明した部分と同一または相当する部分には、同一の符号を付してその詳しい説明を省略する。 Next, an accelerator operation response control method according to the second embodiment of the present invention will be described. The accelerator operation response control method according to this embodiment includes the following electric motor-equipped vehicle control method in addition to the accelerator operation response control method according to the first embodiment described with reference to FIGS. This embodiment includes the same configuration as that of the first embodiment described above, except for the matters specifically described. Accordingly, the same or corresponding parts as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図21は、車両用モータ駆動装置Aを制御する制御システムを示すブロック図である。この制御システムは、統合ECU60A、変速ECU61A、およびインバータ装置62を有する。 FIG. 21 is a block diagram showing a control system for controlling the vehicle motor drive device A. As shown in FIG. This control system includes an integrated ECU 60A, a transmission ECU 61A, and an inverter device 62.
 統合ECU60Aは、第1実施形態に関して説明した機能に加えて、以下に説明する機能を有する。すなわち、統合ECU60Aは、アクセルペダル63bのアクセル開度センサ63a(アクセルペダル63bとアクセル開度センサ63aによってアクセル63を構成する)、ブレーキペダル94の開度を検出するブレーキ開度センサ94a、ステアリングホイール92の操舵角を検出する操舵角センサ92a、変速段を手動で切り換えるシフトレバー93(シフトレバー93は、第1実施形態における変速操作部64に含まれる要素である)の位置を検出するレバー位置センサ93aに接続されている。統合ECU60Aは、これらアクセル開度センサ63a、ブレーキ開度センサ94a、操舵角センサ92a、レバー位置センサ93aがそれぞれ検出したアクセル開度、ブレーキ開度、操舵角、およびレバー位置に関する信号を、変速ECU61Aに送信する機能、並びにこれらの4種の信号および他の各種のセンサ等の信号によって前記協調制御を行う機能を備える。 The integrated ECU 60A has the functions described below in addition to the functions described in the first embodiment. That is, the integrated ECU 60A includes an accelerator opening sensor 63a of the accelerator pedal 63b (the accelerator 63 is configured by the accelerator pedal 63b and the accelerator opening sensor 63a), a brake opening sensor 94a that detects the opening of the brake pedal 94, and the steering wheel. A steering angle sensor 92a that detects the steering angle of 92, and a lever position that detects the position of a shift lever 93 that manually switches the shift speed (the shift lever 93 is an element included in the shift operation unit 64 in the first embodiment). It is connected to the sensor 93a. The integrated ECU 60A sends signals relating to the accelerator opening, brake opening, steering angle, and lever position detected by the accelerator opening sensor 63a, brake opening sensor 94a, steering angle sensor 92a, and lever position sensor 93a to the shift ECU 61A. And a function of performing the cooperative control by signals of these four types of signals and other various sensors.
 変速ECU61Aは、第1実施形態に関して説明した機能に加えて、統合ECU60Aから送信された各種信号や、直接に変速ECU61Aに入力された各種信号により、自動変速の制御を行う電子制御装置であり、各種入力信号に基づいて変速判断を行ない、変速機5の変速切換アクチュエータ47とインバータ装置62に指令を出す。また、変速ECU61Aは、クリープ制御と回生制御の実行時に制御指令を作り、インバータ装置62に送信する機能を持つ。 The speed change ECU 61A is an electronic control device that controls automatic speed change in accordance with various signals transmitted from the integrated ECU 60A and various signals directly input to the speed change ECU 61A, in addition to the functions described with respect to the first embodiment. A shift determination is made based on various input signals, and a command is issued to the shift switching actuator 47 and the inverter device 62 of the transmission 5. The transmission ECU 61 </ b> A has a function of creating a control command and transmitting it to the inverter device 62 during execution of creep control and regenerative control.
 変速ECU61Aは、次の各機能(1)~(8)を備える。
 (1)車速度センサ65および加速度センサ95から、車速と車両の加減速度の検出信号を受け、統合ECU60Aからアクセル開度信号を受け取り、自動変速の判断を行う。
 (2)急ブレーキと判断した場合は、自動変速を行わない。
 (3)急ハンドルと判断した場合は、自動変速を行わない。
 (4)統合ECU60Aからシフトレバー93の位置信号を受け取り、必要に応じて、電動モータのクリープ制御を実施する。
The transmission ECU 61A has the following functions (1) to (8).
(1) The vehicle speed sensor 65 and the acceleration sensor 95 receive vehicle speed and vehicle acceleration / deceleration detection signals, receive an accelerator opening signal from the integrated ECU 60A, and determine automatic shift.
(2) If it is determined that the brake is sudden, automatic shift is not performed.
(3) If it is determined that the steering wheel is a sudden handle, automatic shifting is not performed.
(4) A position signal of the shift lever 93 is received from the integrated ECU 60A, and creep control of the electric motor is performed as necessary.
 (5)運転者により操作される、以下の第1~第3の操作スイッチ96~98の操作に応じた制御を行う。
 ここで、第1の操作スイッチ96は、自動/手動変速の切換用トグルスイッチ(このトグルスイッチは、第1実施形態における変速操作部64に含まれる要素である)である。第2の操作スイッチ97は、タクトスイッチ(このタクトスイッチも、第1実施形態における変速操作部64に含まれる要素である)であり、上記の第1の操作スイッチ96が手動変速で設定された場合のみ、有効とする。第2の操作スイッチ97が押されると、シフトアップ変速が実行される。第3の操作スイッチ98は、タクトスイッチ(このタクトスイッチも、第1実施形態における変速操作部64に含まれる要素である)であり、上記の第1の操作スイッチ96が手動変速で設定された場合のみ、有効とする。第3の操作スイッチ98が押されると、シフトダウン変速が実行される。
(5) Control is performed according to operations of the following first to third operation switches 96 to 98 operated by the driver.
Here, the first operation switch 96 is an automatic / manual shift switching toggle switch (this toggle switch is an element included in the shift operation unit 64 in the first embodiment). The second operation switch 97 is a tact switch (this tact switch is also an element included in the speed change operation unit 64 in the first embodiment), and the first operation switch 96 is set by manual speed change. Only valid if. When the second operation switch 97 is pressed, a shift-up shift is executed. The third operation switch 98 is a tact switch (this tact switch is also an element included in the speed change operation unit 64 in the first embodiment), and the first operation switch 96 is set by manual speed change. Only valid if. When the third operation switch 98 is pressed, a downshift is performed.
 (6)表示部99に、車速、電動モータ回転数、トルク指令値等を表示させる。表示部99は、液晶表示装置等の画像を表示する装置、または指針で表示する装置である。
 (7)変速切替アクチュエータ47のシフト位置を、変速機5に取付けられたシフト位置センサ68から検出する機能と、インバータ装置62から電動モータ3の回転数を取得する機能とを備える。
 (8)インバータ装置62にトルク指令または回転数指令と変速指令を送信する機能、および変速機5に付けられた変速切替アクチュエータ47を駆動する機能を備える。
(6) The display unit 99 displays the vehicle speed, the electric motor rotation speed, the torque command value, and the like. The display unit 99 is a device that displays an image, such as a liquid crystal display device, or a device that displays a pointer.
(7) A function of detecting the shift position of the shift switching actuator 47 from a shift position sensor 68 attached to the transmission 5 and a function of acquiring the rotational speed of the electric motor 3 from the inverter device 62 are provided.
(8) A function of transmitting a torque command or a rotational speed command and a shift command to the inverter device 62 and a function of driving a shift switching actuator 47 attached to the transmission 5 are provided.
 変速ECU61Aには、自動変速モードと手動変速モードの変速モードがプログラムされており、自動変速モードと手動変速モードは、運転者による前記第1の操作スイッチ96の操作によって切り換えられる。 The shift ECU 61A is programmed with shift modes of an automatic shift mode and a manual shift mode, and the automatic shift mode and the manual shift mode are switched by the operation of the first operation switch 96 by the driver.
 この実施形態のアクセル操作応答制御方法において、第1実施形態に関して説明したアクセル操作応答制御方法に付加された機能である変速制御方法は、変速ECU61Aによる自動変速モードにおける制御に関する。変速ECU61Aは、図25に示す各種の機能達成手段(181~186)を有しているが、これらの手段については後に説明する。 In the accelerator operation response control method of this embodiment, the shift control method, which is a function added to the accelerator operation response control method described with respect to the first embodiment, relates to control in the automatic shift mode by the shift ECU 61A. The transmission ECU 61A has various function achievement means (181 to 186) shown in FIG. 25, which will be described later.
 図21において、インバータ装置62は、バッテリ69から直流電力が供給されて、電動モータ3に交流のモータ駆動電力を供給するとともに、その供給電力を変速ECU61Aからの信号に基づいて制御する。また、第1実施形態と同様に、インバータ装置62には、電動モータ3に設けられた回転検出装置であるレゾルバ66から、電動モータ3の回転数を示す信号が入力される。またインバータ装置62は、電力を回生するための制御を行う機能を備えている。 21, the inverter device 62 is supplied with DC power from the battery 69 to supply AC motor driving power to the electric motor 3, and controls the supplied power based on a signal from the transmission ECU 61A. Similarly to the first embodiment, the inverter device 62 receives a signal indicating the rotation speed of the electric motor 3 from a resolver 66 that is a rotation detection device provided in the electric motor 3. Further, the inverter device 62 has a function of performing control for regenerating electric power.
 インバータ装置62については、第1実施形態に関連して説明したため、ここでは詳細な説明は省略する。 Since the inverter device 62 has been described in relation to the first embodiment, a detailed description thereof is omitted here.
 図22は、シフトレバー操作パネル75の構成を示す。運転手がシフトレバー93を手動操作することによって、周知の例と同様に、P(パーキング)、R(リバース)、N(ニュートラル)、D(ドライブ)、2速(セカンド)、1速(ロウ)の各レンジを切り換えることができる。シフトレバー操作パネル75は、このように切り換えられるどのレンジに現在あるかを示す表示装置である。シフトレバー操作パネル75におけるレンジ選択情報は統合ECU60Aに入力される。1速レンジは1速段状態である。なお、シフトレバー操作パネル75は、タッチパネル形式の入力手段を兼ねて、シフトレバー93に代えて運転者により操作される操作手段の役割も兼備しても良い。 FIG. 22 shows the configuration of the shift lever operation panel 75. When the driver manually operates the shift lever 93, as in the known example, P (parking), R (reverse), N (neutral), D (drive), 2nd speed (second), 1st speed (low) ) Can be switched. The shift lever operation panel 75 is a display device indicating which range is currently switched in this way. Range selection information on the shift lever operation panel 75 is input to the integrated ECU 60A. The first speed range is the first speed state. The shift lever operation panel 75 may also serve as a touch panel type input unit, and may also serve as an operation unit operated by the driver instead of the shift lever 93.
 図23は、シフトレバー93の操作に伴い実行されるクリープ制御の処理を示すフローチャートである。 FIG. 23 is a flowchart showing a creep control process executed in accordance with the operation of the shift lever 93.
 このフローチャートの処理を説明する。レバー操作時の状況には、次の(1)~(4)の4つの状況がある。
 (1)前回がR(リバース)で、現在もRである。
 (2)前回がR以外で、現在はRである。
 (3)前回がD,2速または1速で、現在もD,2速または1速である。
 (4)前回がR以外で、現在は:D,2速または1速である。
The processing of this flowchart will be described. There are the following four situations (1) to (4) when operating the lever.
(1) The last time was R (reverse) and now is R.
(2) The last time is other than R and now is R.
(3) The previous time was D, 2nd or 1st, and the current is D, 2nd or 1st.
(4) The last time was other than R, and now: D, 2nd speed or 1st speed.
 変速ECU61AのROM等からなるメモリ183(図25)に、上記の4つの状況に応じて、制御トルクと制限時間のマップである第1マップ184(図25)が設定されている。制御トルクと制限時間は、それぞれ3段階に分けて、設定されている。第1マップ184からデータを取り込んで、クリープ制御を実行する。 A first map 184 (FIG. 25), which is a map of control torque and time limit, is set in the memory 183 (FIG. 25) including the ROM of the speed change ECU 61A in accordance with the above four situations. The control torque and the time limit are set in three stages. Data is taken from the first map 184 and creep control is executed.
 第1ステップでは、現在、Rレンジにあるか否かの判断を一定時間、例えば0.5秒間以内に行う(サブステップZ1,サブステップZ2)。現在のレンジがRレンジにあると判断されると、シフトレバー93(図21)の前回のレンジがRレンジであったか否かを判断する(サブステップZ3)。 In the first step, it is determined whether or not it is currently in the R range within a certain time, for example, 0.5 seconds (substep Z1, substep Z2). If it is determined that the current range is in the R range, it is determined whether or not the previous range of the shift lever 93 (FIG. 21) was the R range (substep Z3).
 前回のレンジもRレンジにあったと判断されると、変速ECU61Aの上記メモリ183(図25)に設定されている第1マップ184から制御トルクBと制御時間Bを取込んで、3段階に分けて、トルク制御を行う(サブステップZ4)。 If it is determined that the previous range is also in the R range, the control torque B and the control time B are taken from the first map 184 set in the memory 183 (FIG. 25) of the transmission ECU 61A and divided into three stages. Thus, torque control is performed (substep Z4).
 これに対して、前回のレンジがRレンジ以外であったと判断されると、第1マップ184から制御トルクAと制御時間Aを取り込んで、3段階に分けて、トルク制御を行う(サブステップZ5)。 On the other hand, if it is determined that the previous range is other than the R range, the control torque A and the control time A are taken from the first map 184, and torque control is performed in three stages (substep Z5). ).
 その後、現在のレンジを変速ECU61Aのメモリ183に記録してから(サブステップZ6)、リアルタイムのアクセル信号Tを用いて(、つまりこのアクセル信号に相当するトルク指令値によって)、電動モータをトルク制御により駆動させる(サブステップZ7)。ここで、電動モータ3のq軸電流(トルク成分)の方向は負である。 Thereafter, the current range is recorded in the memory 183 of the transmission ECU 61A (sub-step Z6), and the electric motor is torque controlled using the real-time accelerator signal T (that is, by a torque command value corresponding to this accelerator signal). (Substep Z7). Here, the direction of the q-axis current (torque component) of the electric motor 3 is negative.
 サブステップZ1の判断で、現在のレンジがRレンジにはないと判断されると、第2ステップ(サブステップZ8)へジャンプする。第2ステップでは、現在のレンジが、Dレンジ、2速レンジおよび1速レンズのいずれかにあるか否かの判断を0.5秒間以内に行う(サブステップZ8,サブステップZ9)。 If it is determined in substep Z1 that the current range is not in the R range, the process jumps to the second step (substep Z8). In the second step, it is determined whether or not the current range is any of the D range, the second speed range, and the first speed lens within 0.5 seconds (substep Z8, substep Z9).
 現在のレンジが、Dレンジ、2速レンジおよび1速レンズのいずれかにある場合、前回のシフトレバー93のレンジが、Dレンジ、2速レンジおよび1速レンズのいずれかであったか否かを判断する(サブステップZ10)。 If the current range is either the D range, the 2nd speed range, or the 1st speed lens, it is determined whether the previous shift lever 93 range was either the D range, the 2nd speed range, or the 1st speed lens. (Substep Z10).
 前回のレンジが、Dレンジ、2速レンジおよび1速レンズのいずれかであった場合、変速ECU61Aのメモリ183に設定されている第1マップ184から制御トルクDと制御時間Dを取込んで、3段階に分けてトルク制御を行う(サブステップZ11)。 If the previous range was either the D range, the 2nd speed range, or the 1st speed lens, the control torque D and the control time D are taken from the first map 184 set in the memory 183 of the transmission ECU 61A. Torque control is performed in three stages (substep Z11).
 前回のレンジが、Dレンジ、2速レンジおよび1速レンズのいずれでもなかった場合、第1マップ84から制御トルクCと制御時間Cを取り込んで、3段階に分けてトルク制御を行う(サブステップZ12)。 If the previous range is neither the D range, the 2nd speed range or the 1st speed lens, the control torque C and the control time C are taken from the first map 84, and torque control is performed in three stages (substep) Z12).
 その後、現在のレンジを変速ECU61Aのメモリ183に記録してから(サブステップZ6)、リアルタイムのアクセル信号Tを用いて、電動モータをトルク制御により駆動させる(サブステップZ7)。ここで、電動モータのq軸電流(トルク成分)の方向は正である。 Thereafter, the current range is recorded in the memory 183 of the transmission ECU 61A (substep Z6), and then the electric motor is driven by torque control using the real-time accelerator signal T (substep Z7). Here, the direction of the q-axis current (torque component) of the electric motor is positive.
 サブステップZ8の判断で、現在のレンジがDレンジ、2速レンジおよび1速レンズのいずれにもないと判断されると、第3ステップへジャンプする。
 第3ステップ(サブステップZ13)では、現在のレンジがPレンジまたはNレンジにあるか否かの判断を瞬時に行う(サブステップZ13)。
If it is determined in sub-step Z8 that the current range is neither the D-range, the second-speed range, or the first-speed lens, the process jumps to the third step.
In the third step (substep Z13), it is instantaneously determined whether or not the current range is in the P range or the N range (substep Z13).
 現在のレンジがPレンジまたはNレンジである場合、トルク指令値をゼロに設定し、トルク制御を行う(サブステップZ14)。現在のレンジがPレンジでもNレンジでもない場合、フローチャートをリターンさせて最初のステップに戻る。 If the current range is the P range or N range, the torque command value is set to zero and torque control is performed (sub step Z14). If the current range is neither the P range nor the N range, the flowchart is returned to return to the first step.
 ここで、モータ3の制御については、図7で説明したインバータ制御が適用される。 Here, for the control of the motor 3, the inverter control described in FIG. 7 is applied.
 図24は、クリープ制御と回生制御の説明図を示す。同図において、各用語は次の意味である。
「ハンチング現象」とは、ある動作が頻繁に繰返される現象のことである。
「クリープ制御」とは、電動モータ3へのトルク指令値(正値)がクリープ正トルク閾値或いはクリープ負トルク閾値の絶対値(正値)を下回ったら、クリープ正トルク閾値或いはクリープ負トルク閾値で、電動モータを駆動させる制御のことである。
「正トルク」では、電動モータ3のq軸電流(トルク成分)の方向は正である。
「負トルク」では、電動モータ3のq軸電流(トルク成分)の方向は負である。
 いずれにしても、回生トルクの指令値或いはクリープトルクの指令値が正であることとする。
 また、クリープ正トルク閾値とクリープ負トルク閾値はそれぞれ所定の値とする。
FIG. 24 is an explanatory diagram of creep control and regenerative control. In the figure, each term has the following meaning.
The “hunting phenomenon” is a phenomenon in which a certain operation is frequently repeated.
“Creep control” means that when the torque command value (positive value) to the electric motor 3 falls below the absolute value (positive value) of the creep positive torque threshold value or the creep negative torque threshold value, the creep positive torque threshold value or the creep negative torque threshold value is obtained. It is the control which drives an electric motor.
In “positive torque”, the direction of the q-axis current (torque component) of the electric motor 3 is positive.
In “negative torque”, the direction of the q-axis current (torque component) of the electric motor 3 is negative.
In any case, the regenerative torque command value or the creep torque command value is positive.
The creep positive torque threshold and the creep negative torque threshold are set to predetermined values.
 この説明図の概要を以下に説明をする。
 時間t0~t1間では、現変速段のローラクラッチ16A,16Bが正方向に係合している状態で、トルク制御により、電動モータ3を駆動させている。その時の時速は、定められた時速、例えば20km/h以上とする。
 時間t1~t2間において、アクセルが抜かれる。
 時間t2~t3間では、アクセル開度信号がクリープ正トルク閾値を下回ったら、クリープ正トルク閾値をトルク指令値として、電動モータ3を駆動させる。この時、実際のアクセル開度信号は、点線のように減少している。さらに、時間t2~t3の間に、アクセル開度の信号がクリープ正トルク閾値を下回った状態のまま一定時間が経過すれば、ローラクラッチを正方向から負方向へ係合する制御を行う。もし、時間t2~t3の間に、アクセル開度信号が一旦クリープ正トルク閾値を上回ったら、上記の負方向に係合する制御を行わない。その代わりに、時間t2~t3間のカウント中の経過時間をリセットする。すなわち、その後にアクセル開度信号がクリープ正トルクを下回った時の時間をt2として、再びt3に向けて、上記一定時間まで経過時間をカウントし始める。
The outline of this explanatory diagram will be described below.
During the time t0 to t1, the electric motor 3 is driven by torque control while the roller clutches 16A and 16B at the current gear stage are engaged in the forward direction. The speed at that time is a predetermined speed, for example, 20 km / h or more.
The accelerator is pulled out between time t1 and t2.
During time t2 to t3, if the accelerator opening signal falls below the creep positive torque threshold, the electric motor 3 is driven using the creep positive torque threshold as a torque command value. At this time, the actual accelerator opening signal decreases as shown by a dotted line. Further, during a period of time t2 to t3, if a certain time elapses with the accelerator opening signal being below the creep positive torque threshold, control is performed to engage the roller clutch from the positive direction to the negative direction. If the accelerator opening signal once exceeds the creep positive torque threshold value during time t2 to t3, the control for engaging in the negative direction is not performed. Instead, the elapsed time during counting between times t2 and t3 is reset. That is, after that, the time when the accelerator opening signal falls below the creep positive torque is set as t2, and the elapsed time starts to be counted up to t3 again toward t3.
 ここで、クリープ正トルクに閾値トルクを設定するのは、ヒステリシス機能を持たせ、ノイズ等からの影響でハンチング現象を起こることを減らす目的である。 Here, the threshold torque is set to the creep positive torque for the purpose of providing a hysteresis function and reducing the occurrence of the hunting phenomenon due to the influence of noise and the like.
 時間t3~t5では、トルク制御から回転数制御へ切り換えて、回転数制御により、ローラクラッチ16A,16Bを正方向から負方向へ係合させる。この期間(t3~t5)は変速ECU61Aのメモリ183に設定されている。
 時間t3~t5のうち、時間t3~t4が、実際にローラクラッチ16A,16Bが正方向から負方向へ係合する期間であり、時間t4~t5が、ローラクラッチ16A,16Bが負方向に係合した状態で回転数制御を継続する期間である。
From time t3 to t5, the torque control is switched to the rotational speed control, and the roller clutches 16A and 16B are engaged from the positive direction to the negative direction by the rotational speed control. This period (t3 to t5) is set in the memory 183 of the transmission ECU 61A.
Among the times t3 to t5, the times t3 to t4 are actually periods in which the roller clutches 16A and 16B are engaged from the positive direction to the negative direction, and the times t4 to t5 are related to the roller clutches 16A and 16B being in the negative direction. This is a period during which the rotation speed control is continued in the combined state.
 ここで、減速機5の作動状況により、実際にはローラクラッチ16A,16Bの係合時間にばらつきがあることを考慮し、回転数制御を実行する時間を実際の係合時間よりも長く設定している。つまり、実際の係合時間t3~t4が、予め設定された時間t3~t5よりも長くならないように、期間t3~t5を設定し、期間t4~t5では回転数制御を行う。なお、実際の係合期間t3~t4が、予め設定された期間t3~t5よりも長くなると、ローラクラッチ16A,16Bが負方向に係合していない状態で、回転数制御からトルク制御への切換え動作が行われ、その結果、ショックトルクと異音が生じる。 Here, considering that the engaging time of the roller clutches 16A and 16B actually varies depending on the operating state of the speed reducer 5, the time for executing the rotational speed control is set longer than the actual engaging time. ing. That is, the periods t3 to t5 are set so that the actual engagement times t3 to t4 are not longer than the preset times t3 to t5, and the rotation speed control is performed in the periods t4 to t5. When the actual engagement period t3 to t4 is longer than the preset period t3 to t5, the rotation from the rotational speed control to the torque control is performed in a state where the roller clutches 16A and 16B are not engaged in the negative direction. A switching operation is performed, resulting in shock torque and abnormal noise.
 さらに、1速でクリープ制御から回生制御への切り換える場合と、2速でクリープ制御から回生制御への切り換える場合との二つの切り換えルートがある。回転数制御を実行するのに必要な差回転数と制限電流は、例えば5km/h間隔で1速と2速に分けて、変速ECU61Aのメモリ183の制御マップ(第2マップ)185に設定されている。回転数制御実行時に、制御マップ185から差回転数と制御電流の値を取り込んで、ローラクラッチ16A,16Bの係合動作を行う。 Furthermore, there are two switching routes: switching from creep control to regenerative control at the first speed and switching from creep control to regenerative control at the second speed. The differential rotational speed and the limit current necessary for executing the rotational speed control are set in the control map (second map) 185 of the memory 183 of the transmission ECU 61A, for example, divided into 1st speed and 2nd speed at 5 km / h intervals. ing. At the time of executing the rotation speed control, the values of the differential rotation speed and the control current are fetched from the control map 185, and the engaging operation of the roller clutches 16A and 16B is performed.
 時間t5~t6では、回転数制御をトルク制御に切り換え、現変速ローラクラッチ16A,16Bの係合時の制限電流(制限トルク)から回生指令トルク値までの間で、徐々に切り換えるために、トルク制御にて、n回補間制御を実行する。まず、時間t5において、回転数制御からトルク制御へ切り換える。補間制御はn回補間であるため、補間値が回生指令の信号を常に追跡することができる。補間値は回生指令値の信号との誤差を縮めていく追跡過程の中、誤差が所与の範囲内になると、追跡動作を完了させ、n回補間制御も完了させる。 From time t5 to t6, the rotational speed control is switched to torque control, and torque is gradually switched between the current limiting roller clutch 16A, 16B at the time of engagement (limit torque) and the regeneration command torque value. In the control, interpolation control is executed n times. First, at time t5, switching from rotational speed control to torque control is performed. Since the interpolation control is n-time interpolation, the interpolation value can always track the signal of the regeneration command. In the tracking process in which the error between the interpolation value and the regenerative command value signal is reduced, when the error falls within a given range, the tracking operation is completed, and the n-time interpolation control is also completed.
 なお、図示の例では、係合時の制限電流(制限トルク)値がクリープ負トルク閾値と同一である。別の例では、時間t5で、回生指令トルクがクリープ負トルク閾値の絶対値(正値)を下回る場合、クリープ負トルク閾値の絶対値(正値)を回生指令トルク値として、係合時の制限電流からクリープ負トルク閾値の絶対値(正値)への補間制御を実行しながら、回生制御を行う。回生制御実行中は、電動モータのq軸電流(トルク成分)の方向は負である。 In the illustrated example, the limit current (limit torque) value at the time of engagement is the same as the creep negative torque threshold value. In another example, when the regenerative command torque falls below the absolute value (positive value) of the creep negative torque threshold at time t5, the absolute value (positive value) of the creep negative torque threshold is used as the regenerative command torque value. Regenerative control is performed while executing interpolation control from the limit current to the absolute value (positive value) of the creep negative torque threshold. During the regeneration control, the direction of the q-axis current (torque component) of the electric motor is negative.
 時間t6~t7において、回生トルク指令値に従って、回生制御を実行する。この期間において、実際のアクセル開度信号は点線で示すとおりである。アクセル開度信号がクリープ正トルク閾値を上回った状態で所定の期間を経過した後(t7時)に、回生制御を停止させ、補間制御を行ってから、その後、ローラクラッチ16A,16Bを負方向から正方向へ係合する制御を行う。
 なお、時間t7において、車速が、定められた速度、例えば20km/hを下回ったら、sに回生制御を停止させる。
From time t6 to t7, regenerative control is executed according to the regenerative torque command value. During this period, the actual accelerator opening signal is as indicated by the dotted line. After a predetermined period of time has elapsed with the accelerator opening signal exceeding the creep positive torque threshold (at t7), the regeneration control is stopped and the interpolation control is performed. Thereafter, the roller clutches 16A and 16B are moved in the negative direction. To engage in the forward direction.
At time t7, when the vehicle speed falls below a predetermined speed, for example, 20 km / h, the regeneration control is stopped at s.
 時間t7~t8では、現変速段のローラクラッチ16A,16Bを回生指令トルク値から係合時の制限電流(制限トルク)への移行において、トルク制御にて、n回補間制御を実行する。時間t8において、トルク制御から回転数制御へ切り換える。 During time t7 to t8, the interpolation control is executed n times by torque control in the transition from the regenerative command torque value to the limiting current (limit torque) during engagement of the roller clutches 16A and 16B at the current gear stage. At time t8, the torque control is switched to the rotation speed control.
 時間t8~t10では、ローラクラッチ16A,16Bを負方向から正方向へ係合させるために、電動モータ3を回転数制御する。この期間t8~t10は変速ECU61Aのメモリ183に設定されている。
 時間t8~t10のうち、時間t8~t9が、実際にローラクラッチ16A,16Bが負方向から正方向へ係合する期間であり、時間t9~t10が、ローラクラッチ16A,16Bが正方向に係合した状態で回転数制御を継続する期間である。
From time t8 to t10, the rotational speed of the electric motor 3 is controlled in order to engage the roller clutches 16A, 16B from the negative direction to the positive direction. This period t8 to t10 is set in the memory 183 of the transmission ECU 61A.
Among the times t8 to t10, the times t8 to t9 are actually periods in which the roller clutches 16A and 16B are engaged in the positive direction from the negative direction, and the times t9 to t10 are related to the roller clutches 16A and 16B in the positive direction. This is a period during which the rotation speed control is continued in the combined state.
 ここで、減速機5の作動状況により、実際にはローラクラッチ16A,16Bの係合時間にばらつきがあることを考慮し、回転数制御の実行する時間を実際の係合時間よりも長く設定している。つまり、実際の係合期間t8~t9が、予め設定された期間t8~t10よりも長くならないように、期間t8~t10を設定し、期間t9~t10では回転数制御を行う。なお、実際の係合期間t8~t9が、予め設定された期間t8~t10よりも長くなると、ローラクラッチ16A,16Bが正方向に係合していない状態で、回転数制御からトルク制御への切換え動作が行われ、その結果、ショックトルクと異音が生じる。 Here, considering that the engagement time of the roller clutches 16A and 16B actually varies depending on the operating state of the speed reducer 5, the time for executing the rotational speed control is set longer than the actual engagement time. ing. That is, the periods t8 to t10 are set so that the actual engagement periods t8 to t9 are not longer than the preset periods t8 to t10, and the rotation speed control is performed in the periods t9 to t10. When the actual engagement period t8 to t9 is longer than the preset period t8 to t10, the rotation speed control is changed to the torque control with the roller clutches 16A and 16B not engaged in the forward direction. A switching operation is performed, resulting in shock torque and abnormal noise.
 さらに、1速で回生制御からクリープ制御へ切り換える場合と、2速で回生制御からクリープ制御へ切り換える場合との二つ切り換えルートがある。回転数制御を実行するのに必要な差回転数と制限電流は、定められた間隔、例えば5km/h間隔で1速と2速に分けて、変速ECU61Aのメモリ183の制御マップ185に設定されている。回転数制御実行時に、制御マップ185から差回転数と制御電流の値を取り込んで、ローラクラッチの係合動作を行う。 Furthermore, there are two switching routes: switching from regeneration control to creep control at the first speed and switching from regeneration control to creep control at the second speed. The differential rotational speed and the limit current necessary for executing the rotational speed control are set in the control map 185 of the memory 183 of the transmission ECU 61A by dividing into a first speed and a second speed at a predetermined interval, for example, 5 km / h. ing. At the time of executing the rotation speed control, the differential rotation speed and the control current value are fetched from the control map 185, and the roller clutch is engaged.
 時間t10~t11では、現変速ローラクラッチ16A,16Bの係合時の制限電流(制限トルク)からアクセル開度信号への移行において、トルク制御にて、n回補間制御を実行する。時間t10において、回転数制御からトルク制御へ切り換える。補間制御はn回補間であるため、補間値がアクセル開度の信号を常に追跡することができる。補間値はアクセル開度の信号との誤差を縮めていく追跡過程の中、誤差が所与の範囲内になったら、追跡動作を完了させ、n回補間制御も完了させる。 From time t10 to t11, interpolation control is executed n times by torque control in the transition from the current limit (limit torque) at the time of engagement of the current transmission roller clutches 16A and 16B to the accelerator opening signal. At time t10, the speed control is switched to the torque control. Since the interpolation control is n-time interpolation, the interpolation value can always track the accelerator opening signal. In the tracking process in which the error between the interpolation value and the accelerator opening signal is reduced, when the error falls within a given range, the tracking operation is completed and the interpolation control is completed n times.
 なお、図示の例では、係合時の制限電流(制限トルク)値がクリープ正トルク閾値と同一値である。別の例では、t10で、アクセル開度信号がクリープ正トルク閾値を下回る場合、クリープ正トルク閾値を指令トルクとして、係合時の制限電流からクリープ正トルク閾値への補間制御を実行しながら、トルク制御を行う。トルク制御中、電動モータ3のq軸電流(トルク成分)の方向は正である。 In the illustrated example, the limit current (limit torque) value at the time of engagement is the same value as the creep positive torque threshold value. In another example, when the accelerator opening signal is lower than the creep positive torque threshold at t10, the creep positive torque threshold is set as a command torque, while performing interpolation control from the limiting current at the time of engagement to the creep positive torque threshold, Perform torque control. During torque control, the direction of the q-axis current (torque component) of the electric motor 3 is positive.
 時間t11以降、補間制御の追跡動作が完了してから、アクセル開度の信号に従って、ローラクラッチ16A,16Bが正方向に係合した状態で、トルク制御により、電動モータ3を駆動させる。 After time t11, after the tracking operation of the interpolation control is completed, the electric motor 3 is driven by torque control in a state where the roller clutches 16A and 16B are engaged in the positive direction according to the accelerator opening signal.
 以上は、クリープ制御と回生制御を行う手順であり、この手順を繰り返し実施することで、自動車の駆動と回生を実現している。 The above is a procedure for performing creep control and regenerative control. By repeating this procedure, driving and regeneration of the vehicle are realized.
 次に、この電気自動車の制御システム、特にその変速ECU61Aにつき、図25のブロック図を参照して説明する。制御対象となる電気自動車は、第1実施形態が適用されるのと同様の電気自動車である。 Next, the control system for the electric vehicle, particularly the speed change ECU 61A, will be described with reference to the block diagram of FIG. The electric vehicle to be controlled is the same electric vehicle to which the first embodiment is applied.
 この電気自動車の変速制御を実行する装置は、上記実施形態の変速制御方法を実施する装置であって、上記変速ECU61Aに、変速の基本的な制御を行う手段である変速制御手段180が設けられている。この変速ECU61Aに、クリープ制御手段181および回生時制御手段182を設け、かつ変速ECU61AのROM等からなるメモリ183のパラメータ等記憶領域183aに、各閾値や設定値、第1および第2マップ184,185を記憶させている。以下の説明、および上記実施形態の制御方法で用いた各閾値およびマップ184,185は、このメモリ183のパラメータ等記憶領域183aに設定されている。回生時制御手段182は、回生時補間手段186を有していて、以下の説明、および上述した補間制御を行う。なお、変速ECU61Aは、変速制御手段180により、自動変速時以外の電動モータ3の制御はトルク制御として、トルク指令をインバータ制御回路72へ出力し、変速時にトルク制御と回転数制御を切り換る。 The apparatus for executing the shift control of the electric vehicle is an apparatus for executing the shift control method of the above-described embodiment, and the shift ECU 61A is provided with a shift control means 180 that is a means for performing basic shift control. ing. The speed change ECU 61A is provided with a creep control means 181 and a regeneration time control means 182, and the parameter storage area 183a of the memory 183 including the ROM of the speed change ECU 61A has each threshold value, set value, first and second maps 184, 184. 185 is stored. The threshold values and maps 184 and 185 used in the following description and the control method of the above embodiment are set in the parameter storage area 183a of the memory 183. The regenerative control means 182 has regenerative interpolation means 186, and performs the following description and the above-described interpolation control. Note that the shift ECU 61A outputs a torque command to the inverter control circuit 72 by the shift control means 180 as a torque control for the control of the electric motor 3 other than during the automatic shift, and switches between the torque control and the rotation speed control during the shift. .
 クリープ制御手段181は、その基本的な機能として、アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の操作時に、ローラクラッチ16A,16Bの係合時に生じるショックトルクと異音を低減させるために、トルク制御で走行中に、アクセル開度信号が閾値を下回ると、トルク指令値を前記閾値以上とすることで、前記ローラクラッチ16A,16Bのローラ20を常に駆動側に係合させる。 The creep control means 181 has, as its basic function, the operation of one or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON, and the engagement of the roller clutches 16A and 16B. In order to reduce the generated shock torque and noise, when the accelerator opening signal falls below a threshold during traveling under torque control, the torque command value is set to be equal to or greater than the threshold, whereby the rollers 20 of the roller clutches 16A and 16B. Is always engaged with the drive side.
 このように、アクセルのON,OFF間の切り換え時に、トルク制御で走行中に、アクセル開度信号が閾値を下回ると、アクセル開度信号を前記閾値以上とするため、ローラクラッチ16A,16Bのローラを常に駆動側に係合させることができ、そのため、ローラクラッチ16A,16Bの係合時に生じるショックトルクと異音を低減させることができる。 As described above, when the accelerator opening degree signal falls below the threshold during traveling by torque control when the accelerator is switched between ON and OFF, the accelerator opening signal is set to be equal to or larger than the threshold value, so that the rollers of the roller clutches 16A and 16B Can be always engaged with the drive side, so that shock torque and noise generated when the roller clutches 16A and 16B are engaged can be reduced.
 このクリープ制御手段181は、トルク制御で走行中に、アクセル開度信号が前記閾値を下回ると、トルク指令値を前記閾値以上とする制御を、車両走行速度の全速度領域で行うようにしても良い。 The creep control means 181 may perform control for setting the torque command value to be equal to or greater than the threshold when the accelerator opening signal falls below the threshold during traveling by torque control in the entire vehicle speed range. good.
 回生時制御手段182は、トルク制御で走行中に、アクセル開度信号が閾値を下回ると、アクセル開度信号を前記閾値以上とする制御につき、アクセルOFF時に回生制御を行い、回生指令トルクが回生時用の閾値を下回ると、この回生時用の閾値の負トルクを用いることで、ローラクラッチのローラを常に非駆動側に係合させる。この回生制御を行う車速は、定められた車速以上としても良い。 The regenerative control means 182 performs regenerative control when the accelerator is OFF and controls the regenerative command torque when the accelerator opening signal is lower than the threshold value during traveling by torque control. If it falls below the time threshold, the roller of the roller clutch is always engaged with the non-driving side by using the negative torque of the threshold for regeneration. The vehicle speed at which this regenerative control is performed may be a predetermined vehicle speed or higher.
 クリープ制御手段181は、詳しくは図23のフローチャートと共に前述したシフトレバー93の操作に伴う制御を行う。また、クリープ制御手段181および回生時制御手段182は、それぞれ上記実施形態の制御方法説明したクリープ制御に係る各制御および回生制御に係る各制御、特に図24等と共に説明したクリープ制御に係る各制御および回生制御に係る各制御を行う。 Specifically, the creep control means 181 performs control accompanying the operation of the shift lever 93 described above together with the flowchart of FIG. Further, the creep control means 181 and the regeneration control means 182 are each control related to creep control and control related to regeneration control explained in the control method of the above embodiment, particularly each control related to creep control explained together with FIG. Each control related to regenerative control is performed.
 クリープ制御手段181および回生時制御手段182の制御内容につき、これらの手段の制御として前述した内容以外の内容を整理すると、次の制御を行う。 If the contents other than the above-described contents are arranged as the control contents of the creep control means 181 and the regeneration time control means 182, the following control is performed.
 前記クリープ制御手段181は、アクセル開度信号がクリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えてローラクラッチを駆動側方向から非駆動側方向へ係合させる。
 この場合に、クリープ制御手段181は、アクセル開度信号がクリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えてローラクラッチを駆動側方向から非駆動側方向へ係合させる制御につき、ローラクラッチ16A,16Bの係合方向を切換える制御を各変速段にて行っても良い。
The creep control means 181 switches from torque control to rotational speed control after the accelerator opening signal falls below the creep positive torque threshold, and engages the roller clutch from the drive side direction to the non-drive side direction.
In this case, the creep control means 181 switches from the torque control to the rotational speed control after the accelerator opening signal falls below the creep positive torque threshold and passes the roller clutch from the drive side direction to the non-drive side direction. As for the control to be combined, control for switching the engagement direction of the roller clutches 16A and 16B may be performed at each gear position.
 このローラクラッチ16A,16Bの係合方向を切換える制御を各変速段にて行うについては、例えば、ローラクラッチの係合方向切換時に、回転数差と制限電流、回転数制御実行時間のマップ(第1マップ)184を、変速ECUのROM等のメモリ183に設定しておき、マップ184の値を用いて前記回転数制御を実行する。 The control for switching the engagement direction of the roller clutches 16A and 16B is performed at each shift stage. For example, when the engagement direction of the roller clutch is switched, a map of the rotation speed difference, the limit current, and the rotation speed control execution time (first (1 map) 184 is set in a memory 183 such as a ROM of the speed change ECU, and the rotational speed control is executed using the value of the map 184.
 前記回生時制御手段182は、回生制動の開始につき、現変速段のローラクラッチ16A,16Bが正方向から負方向へ係合した後、回転数制御からトルク制御へ切換えて回生制動を行っても良い。この場合に、現変速段のローラクラッチ16A,16Bが正方向から負方向へ係合した後、回転数制御からトルク制御へ切換えて回生制動を行うにつき、回生時補間制御手段186により、現変速段のローラクラッチ16A,16Bの係合時の制限電流または制限トルクから回生指令トルクへの移行において、トルク制御にてn回補間制御し、回生指令値の信号との誤差を縮めていく追跡過程で、誤差が所与の範囲内になると、n回補間制御を終了しても良い。 When the regenerative braking is started, the regenerative control means 182 may perform regenerative braking by switching from rotational speed control to torque control after the roller clutches 16A and 16B of the current gear stage are engaged from the positive direction to the negative direction. good. In this case, after the roller clutches 16A and 16B of the current gear stage are engaged from the positive direction to the negative direction, the regenerative interpolation control means 186 causes the current shift to be performed when switching from the rotational speed control to the torque control and performing the regenerative braking. Tracking process of interpolating control n times by torque control and reducing the error from the signal of the regenerative command value at the transition from the limiting current or limiting torque to the regenerative command torque when the stage roller clutches 16A and 16B are engaged. When the error falls within a given range, the interpolation control may be terminated n times.
 前記回生時制御手段182は、回生制動につき、回生指令トルクがクリープ負トルク閾値の絶対値(正値)を下回ると、クリープ負トルク閾値の絶対値(正値)をトルク指令値として、係合時の制限電流からクリープ負トルク閾値の絶対値(正値)への補間制御を実行しながら、回生制御を行い、回生制御中には、電動モータのq軸電流(トルク成分)の方向は負であっても良い。 When the regenerative command torque falls below the absolute value (positive value) of the creep negative torque threshold for regenerative braking, the regenerative control means 182 engages with the absolute value (positive value) of the creep negative torque threshold as the torque command value. Regenerative control is performed while performing interpolation control from the current limit current to the absolute value (positive value) of the creep negative torque threshold. During regenerative control, the direction of the q-axis current (torque component) of the electric motor is negative. It may be.
 前記回生時制御手段182は、回生指令トルク値に従い回生制御実行中、アクセル開度信号がクリープ正トルク閾値を上回った状態で一定時間経過した場合に、回生制御を停止としても良い。 The regenerative control means 182 may stop the regenerative control when a certain period of time elapses while the accelerator opening signal exceeds the creep positive torque threshold while the regenerative control is being executed according to the regenerative command torque value.
 この場合に、回生指令トルク値に従い回生制御実行中、アクセル開度信号がクリープ正トルク閾値を上回った状態で一定時間経過した場合、回生制御を停止するが、この一定時間が経過する前にアクセル開度信号がクリープ正トルク閾値を上回った場合には、カウント中の経過時間をリセットする。すなわち、その後にアクセル信号がクリープ正トルク閾値を上回った時点から、上記一定時間まで経過時間をカウントし始めても良い。 In this case, during regeneration control according to the regeneration command torque value, if a certain period of time has elapsed with the accelerator opening signal exceeding the creep positive torque threshold, regeneration control is stopped. If the opening signal exceeds the creep positive torque threshold, the elapsed time during counting is reset. That is, the elapsed time may start to be counted from the time when the accelerator signal subsequently exceeds the creep positive torque threshold until the predetermined time.
 回生時制御手段182は、回生指令トルク値に従って回生制御を実行中に、車速が一定車速を下回った場合に、直ちに回生制御を停止しても良い。 The regenerative control means 182 may stop the regenerative control immediately when the vehicle speed falls below a certain vehicle speed while performing the regenerative control according to the regenerative command torque value.
 回生時制御手段182は、回生制御の停止後、回生指令トルクから係合時の制限電流または制限トルクへの移行において、トルク制御にて、n回補間制御を実行しても良い。 The regenerative control means 182 may execute n-time interpolation control by torque control in the transition from the regenerative command torque to the limiting current or limiting torque at the time of engagement after the regenerative control is stopped.
 この場合に、n回補間制御の完了後、トルク制御から回転数制御へ切換時に、変速ECUのメモリ183に設定された回転数差と制限電流、回転数制御実行時間のマップ(第1マップ)184の値を用いて回転数制御を実行しても良い。 In this case, after completion of the n-time interpolation control, when switching from the torque control to the rotational speed control, a map of the rotational speed difference, the limit current, and the rotational speed control execution time set in the memory 183 of the transmission ECU (first map) The rotation speed control may be executed using the value of 184.
 この場合に、上記回転数制御の完了後、回転数制御からトルク制御へ切換え、現変速ローラクラッチの係合の制限電流または制限トルクからアクセル開度信号への移行において、n回補間制御を実行しても良い。 In this case, after the rotation speed control is completed, the rotation speed control is switched to the torque control, and the interpolation control is executed n times in the transition from the current limit roller clutch engagement current limit or torque to the accelerator opening signal. You may do it.
 前記クリープ制御手段181および回生時制御手段182は、車両の電源を起動時および停車時に、シフトレバー93のシフトレンジ信号に基づいてローラクラッチ16A,16Bをトルク制御により、駆動側または非駆動側の楔状空間に係合させる制御において、前回のシフトレバー93のシフトレンジに応じて、予め変速ECU61Aのメモリ183に設定された制御トルクと制限時間のデータを取込み、数段階に分けて前記クリープ制御を実行しても良い。 The creep control means 181 and the regeneration control means 182 control the roller clutches 16A and 16B on the driving side or the non-driving side based on the shift range signal of the shift lever 93 when the vehicle is powered on and stopped. In the control to engage with the wedge-shaped space, the control torque and the time limit data set in advance in the memory 183 of the transmission ECU 61A according to the previous shift range of the shift lever 93 are fetched, and the creep control is performed in several stages. May be executed.
 また、シフトレバー93のシフトレンジがドライブレンジの場合、現変速段のローラクラッチ16A,16Bを駆動側楔状空間に係合させるように、電動モータのq軸電流(トルク成分)の方向は正である。
 シフトレバー93のシフトレンジがリバースレンジの場合、現変速段のローラクラッチ16A,16Bを非駆動側楔状空間に係合させるように、電動モータのq軸電流(トルク成分)の方向は負である。
When the shift range of the shift lever 93 is the drive range, the direction of the q-axis current (torque component) of the electric motor is positive so that the roller clutches 16A and 16B of the current gear stage are engaged with the drive-side wedge-shaped space. is there.
When the shift range of the shift lever 93 is the reverse range, the direction of the q-axis current (torque component) of the electric motor is negative so that the roller clutches 16A and 16B of the current gear stage are engaged with the non-drive side wedge-shaped space. .
 以下、電動モータ搭載自動車の制御方法についての態様であって、本発明の必須の構成要素である制御であって、電気モータの制御方式を、トルク制御と回転数との2種類のフィードバック制御の間で切換える一連の制御を行うことを要件としない態様について説明する。 The following is an aspect of a control method for an electric motor-equipped vehicle, which is a control that is an essential component of the present invention, and the control method of the electric motor includes two types of feedback control: torque control and rotational speed. A mode that does not require a series of controls to be switched between will be described.
[態様1]
 出力軸であるモータ軸を有する、走行用の電動モータと、
  互いに変速比が異なる複数の変速段のギヤ列、
  前記モータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し接続と遮断の切換えが可能な各変速段の、複数の2ウェイ型のローラクラッチであって、内輪のカム面と外輪間に設けられた複数の楔状空間にそれぞれローラが介在するローラクラッチ、および
  これら各ローラクラッチの前記切換えを、各ローラクラッチの保持器に連結されて回転する摩擦板の外輪への接触と離間とを変速切換アクチュエータにより切り換えて行う変速比切換機構を有する変速機とを備えた、電動モータ搭載自動車の制御方法であって、
 前記ローラが前記楔状空間の狭まり部分に係合することで前記ローラクラッチを接続状態にする一方、前記保持器により前記ローラを前記楔状空間の広がり部分に位置させることで前記ローラクラッチを切断状態にし、
 アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の操作時に、前記ローラクラッチ係合時に生じるショックトルクまたは異音を低減させるように、トルク制御で走行中に、アクセル開度を検出するアクセル開度センサが検出したアクセル開度信号が所定のクリープ正トルク閾値を下回ると、前記トルク制御のトルク指令値を前記クリープ正トルク閾値以上とする制御であるクリープ制御を行うことで、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させる、電動モータ搭載の制御方法。
[Aspect 1]
An electric motor for traveling having a motor shaft as an output shaft;
A gear train of a plurality of gear stages having different gear ratios;
A plurality of two-way roller clutches for each gear stage, each of which is interposed between an input shaft coupled to the motor shaft and a gear train of each gear stage and can be switched between connection and disconnection; A roller clutch in which rollers are respectively interposed in a plurality of wedge-shaped spaces provided between the cam surface and the outer ring, and the switching of the roller clutches to the outer ring of a rotating friction plate connected to a roller clutch retainer. A vehicle having an electric motor equipped with a transmission having a gear ratio switching mechanism that switches between contact and separation of the
The roller clutch is engaged by engaging the narrow portion of the wedge-shaped space, and the roller clutch is disconnected by positioning the roller in the expanded portion of the wedge-shaped space by the retainer. ,
Driving with torque control to reduce shock torque or abnormal noise that occurs when the roller clutch is engaged during either or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON When the accelerator opening signal detected by the accelerator opening sensor that detects the accelerator opening falls below a predetermined creep positive torque threshold, the torque command value of the torque control is controlled to be equal to or greater than the creep positive torque threshold. A control method equipped with an electric motor, wherein creep control is performed to engage a roller of the roller clutch with a narrow portion on the drive side of the wedge-shaped space.
[態様2]
 態様1において、トルク制御で走行中に、前記クリープ制御は、車両走行速度の全速度領域にわたって実行される、電動モータ搭載自動車の制御方法。
[態様3]
 態様1において、トルク制御で走行中に、前記クリープ制御は、アクセルのOFFからONへの操作時に回生制御を実行し、この回生制御における回生指令トルク値が回生時用閾値を下回ると、この回生時用閾値の負トルクを入力して、前記ローラクラッチのローラを、前記楔状空間の非駆動側の狭まり部分に係合させる、電動モータ搭載自動車の制御方法。
[態様4]
 態様3において、前記回生制御は、一定車速以上の場合に実行する、電動モータ搭載自動車の制御方法。
[態様5]
 態様1において、さらに、前記アクセル開度信号が前記クリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えて前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分に切り換えて係合させる、電動モータ搭載自動車の制御方法。
[態様6]
 態様5において、前記アクセル開度信号が前記クリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えて前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分に切り換えて係合させることは、各変速段にて実行される、電動モータ搭載自動車の制御方法。
[態様7]
 態様6において、前記各変速段にて実行される、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分への切換えは、回転数差と制限電流、回転数制御実施時間のマップを予めメモリに設定しておき、このマップの値を用いて前記回転数制御を実行する、電動モータ搭載自動車の制御方法。
[態様8]
 態様3において、前記回生制御の開始は、現変速段のローラクラッチが正方向から負方向へ係合した後、回転数制御からトルク制御へ切換えて前記回生制御を実行する、電動モータ搭載自動車の制御方法。
[態様9]
 態様8において、前記回生制御の実行は、現変速段のローラクラッチ係合時の制限電流または制限トルクから回生指令トルク値への移行において、トルク制御にてn回補間制御し、回生指令値の信号との誤差を縮めていく追跡過程で、誤差が所与の範囲内になると、n回補間制御を終了する、電動モータ搭載自動車の制御方法。
[態様10]
 態様3において、前記回生制御において、回生指令トルク値がクリープ負トルク閾値の絶対値を下回ると、クリープ負トルク閾値の絶対値を回生指令トルク値として、係合時の制限電流からクリープ負トルク閾値の絶対値への補間制御を実行しながら、回生制御を行い、回生制御中には、トルク成分である電動モータのq軸電流の方向は負である、電動モータ搭載自動車の制御方法。
[態様11]
 態様3において、前記回生指令トルク値に従って前記回生制御を実行中に、アクセル開度信号が前記クリープ正トルク閾値を上回った状態で一定時間経過した場合、前記回生制御を停止する、電動モータ搭載自動車の制御方法。
[態様12]
 態様11において、前記回生制御を停止することは、一定時間内に、前記アクセル開度信号が前記クリープ正トルク閾値を上回った場合に、前記一定時間の経過時間カウントをリセットし、アクセル信号が前記クリープ正トルク閾値を上回った時点から経過時間をカウントし始める、電動モータ搭載自動車の制御方法。
[態様13]
 態様3において、前記回生指令トルク値に従って前記回生制御を実行中に、車速が所与の車速を下回った場合に、直ちに回生制御を停止する、電動モータ搭載自動車の制御方法。
[態様14]
 態様13において、さらに、前記回生制御の停止後、回生指令トルク値から係合時の制限電流または制限トルクへの移行において、トルク制御にて、n回補間制御を実行する、電動モータ搭載自動車の制御方法。
[態様15]
 態様14において、さらに、n回補間制御の完了後、トルク制御から回転数制御への切換時に、メモリに設定された回転数差と制限電流、回転数制御実行時間のマップの値を用いて、回転数制御を実行する、電動モータ搭載自動車の制御方法。
[態様16]
 態様15において、前記回転数制御の完了後、回転数制御からトルク制御へ切換え、現変速ローラクラッチの係合時の制限電流または制限トルクからアクセル開度信号までの間で、n回補間制御を実行する、電動モータ搭載自動車の制御方法。
[態様17]
 態様1において、車両の電源を起動時および停車時に、シフト操作部材のシフトレンジ信号に基づいてローラクラッチをトルク制御により、駆動側または非駆動側の前記楔状空間に前記ローラクラッチのローラを係合させる制御において、前回のシフト操作部材のシフトレンジに応じて、予めメモリに設定された制御トルクと制限時間のデータを用いて、数段階に分けて前記クリープ制御を実行する、電動モータ搭載自動車の制御方法。
[態様18]
 態様1において、シフト操作部材のシフトレンジがドライブレンジの場合、現変速段のローラクラッチのローラを前記楔状空間の駆動側の狭まり部分に係合させるように、トルク成分である電動モータのq軸電流の方向を正とする、電動モータ搭載自動車の制御方法。
[態様19]
 態様1において、シフト操作部材のシフトレンジがリバースレンジの場合、現変速段のローラクラッチのローラを前記楔状空間の非駆動側の狭まり部分に係合させるように、トルク成分である電動モータのq軸電流の方向を負とする、電動モータ搭載自動車の制御方法。
[Aspect 2]
The control method for an electric motor-equipped automobile, wherein the creep control is executed over the entire speed range of the vehicle traveling speed during traveling by torque control.
[Aspect 3]
In the aspect 1, during the traveling by the torque control, the creep control executes the regeneration control when the accelerator is operated from OFF to ON, and when the regeneration command torque value in the regeneration control falls below the regeneration threshold value, A method for controlling an automobile equipped with an electric motor, wherein a negative torque as a threshold for time is inputted and the roller of the roller clutch is engaged with a narrow portion on the non-driving side of the wedge-shaped space.
[Aspect 4]
In the aspect 3, the regenerative control is executed when the vehicle speed is equal to or higher than a constant vehicle speed.
[Aspect 5]
In the first aspect, after the accelerator opening signal falls below the creep positive torque threshold and after a predetermined time has elapsed, the torque clutch is switched to the rotation speed control, and the rollers of the roller clutch are narrowed on the drive side of the wedge-shaped space. A method for controlling an automobile equipped with an electric motor, wherein the portion is switched from a portion to a narrow portion on the non-driving side of the wedge-shaped space.
[Aspect 6]
In Aspect 5, after the accelerator opening signal falls below the creep positive torque threshold and a fixed time has elapsed, the torque control is switched to the rotational speed control, and the roller clutch roller is moved from the narrowed portion on the drive side of the wedge-shaped space. The method of controlling an automobile equipped with an electric motor, wherein switching and engaging with a narrowed portion on the non-driving side of the wedge-shaped space is executed at each shift stage.
[Aspect 7]
In the aspect 6, switching from the narrowed portion on the driving side of the wedge-shaped space to the narrowed portion on the non-driving side of the wedge-shaped space executed at each of the shift speeds is performed by controlling the rotational speed difference, the limiting current, and the rotational speed control. A method for controlling an automobile equipped with an electric motor, wherein a time map is set in a memory in advance, and the rotation speed control is executed using a value of the map.
[Aspect 8]
In the aspect 3, the regeneration control is started by switching the rotational speed control to the torque control and executing the regeneration control after the roller clutch of the current gear stage is engaged from the positive direction to the negative direction. Control method.
[Aspect 9]
In the aspect 8, the regeneration control is executed by interpolating n times by torque control at the transition from the limit current or limit torque when the roller clutch of the current gear stage is engaged to the regeneration command torque value. A control method for an automobile equipped with an electric motor, wherein the interpolation control is terminated n times when the error falls within a given range in the tracking process of reducing the error from the signal.
[Aspect 10]
In the aspect 3, in the regenerative control, when the regenerative command torque value falls below the absolute value of the creep negative torque threshold, the absolute value of the creep negative torque threshold is set as the regenerative command torque value, and the creep negative torque threshold is calculated from the limiting current at the time of engagement. A method for controlling an automobile equipped with an electric motor, in which regenerative control is performed while performing interpolation control to an absolute value of the motor, and the direction of the q-axis current of the electric motor, which is a torque component, is negative during regenerative control.
[Aspect 11]
In aspect 3, the electric motor-equipped vehicle that stops the regenerative control when a certain period of time has elapsed while the accelerator opening signal exceeds the creep positive torque threshold during execution of the regenerative control according to the regenerative command torque value Control method.
[Aspect 12]
In the aspect 11, stopping the regenerative control resets the elapsed time count of the predetermined time when the accelerator opening signal exceeds the creep positive torque threshold within a predetermined time, and the accelerator signal is A method of controlling an automobile equipped with an electric motor, wherein the elapsed time starts to be counted from the time when the creep positive torque threshold is exceeded.
[Aspect 13]
The control method for an electric motor vehicle-equipped vehicle according to the aspect 3, wherein the regeneration control is immediately stopped when the vehicle speed falls below a given vehicle speed while the regeneration control is being performed according to the regeneration command torque value.
[Aspect 14]
In the aspect 13, the electric motor-equipped vehicle that further executes the interpolation control n times in the torque control in the transition from the regenerative command torque value to the limiting current or the limiting torque at the time of engagement after the regeneration control is stopped. Control method.
[Aspect 15]
In aspect 14, after completion of n-time interpolation control, when switching from torque control to rotational speed control, the rotational speed difference and limit current set in the memory, and the rotational speed control execution time map values are used. A method for controlling an automobile equipped with an electric motor, which executes rotation speed control.
[Aspect 16]
In the aspect 15, after the rotation speed control is completed, the rotation speed control is switched to the torque control, and the interpolation control is performed n times between the current limit roller or torque when the current speed change roller clutch is engaged and the accelerator opening signal. A method for controlling an automobile equipped with an electric motor to be executed.
[Aspect 17]
In aspect 1, when the power source of the vehicle is started and stopped, the roller clutch is engaged with the wedge-shaped space on the drive side or the non-drive side by torque control of the roller clutch based on the shift range signal of the shift operation member. In the control to be performed, according to the shift range of the previous shift operation member, the creep control is executed in several stages using the control torque and the time limit data set in advance in the memory. Control method.
[Aspect 18]
In aspect 1, when the shift range of the shift operating member is the drive range, the q-axis of the electric motor, which is a torque component, is engaged so that the roller of the roller clutch of the current gear stage is engaged with the narrow portion on the drive side of the wedge-shaped space. A method for controlling an electric motor-equipped vehicle, in which the direction of current is positive.
[Aspect 19]
In aspect 1, when the shift range of the shift operation member is the reverse range, the q of the electric motor, which is a torque component, is engaged so that the roller of the roller clutch of the current gear stage is engaged with the narrow portion on the non-driving side of the wedge-shaped space. A method for controlling an automobile equipped with an electric motor in which the direction of the shaft current is negative.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
3…電動モータ
5…変速機
7…入力軸
8…出力軸
16A,16B…ローラクラッチ
19…カム面
20…ローラ
18A,18B…内輪
21A,21B…保持器
23…外輪
35A,35B…摩擦板
40…変速比切換機構
47…変速切換アクチュエータ
EV…電気自動車
HV…ハイブリッド自動車
LA,LB…ギヤ列
S…楔状空間
DESCRIPTION OF SYMBOLS 3 ... Electric motor 5 ... Transmission 7 ... Input shaft 8 ... Output shaft 16A, 16B ... Roller clutch 19 ... Cam surface 20 ... Roller 18A, 18B ... Inner ring 21A, 21B ... Cage 23 ... Outer ring 35A, 35B ... Friction plate 40 ... gear ratio switching mechanism 47 ... gear change actuator EV ... electric vehicle HV ... hybrid vehicle LA, LB ... gear train S ... wedge-shaped space

Claims (32)

  1.  出力軸であるモータ軸を有する、走行用の電動モータと、
      互いに変速比が異なる複数の変速段のギヤ列、
      前記モータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し接続と遮断の切換えが可能な各変速段の、複数の2ウェイ型のローラクラッチであって、内輪のカム面と外輪間に設けられた複数の楔状空間にそれぞれローラが介在するローラクラッチ、および
      これら各ローラクラッチの前記切換えを、各ローラクラッチの保持器に連結されて回転する摩擦板の外輪への接触と離間とを変速切換アクチュエータにより切り換えて行う変速比切換機構を有する変速機とを備えた、電動モータ搭載自動車におけるアクセル制御方法であって、
     前記ローラが前記楔状空間の狭まり部分に係合することで前記ローラクラッチを接続状態にする一方、前記保持器により前記ローラを前記楔状空間の広がり部分に位置させることで前記ローラクラッチを切断状態にし、
     アクセルのONからOFFへの操作時、およびアクセルのOFFからONへの操作時のいずれか一方または両方の時に、前記ローラクラッチのショックトルクまたは異音が低減するように、前記電動モータの制御方式を、トルク制御と回転数制御との2種類のフィードバック制御の間で切換える一連の制御であるショック低減制御を行う、電動モータ搭載自動車のアクセル操作応答制御方法。
    An electric motor for traveling having a motor shaft as an output shaft;
    A gear train of a plurality of gear stages having different gear ratios;
    A plurality of two-way roller clutches for each gear stage, each of which is interposed between an input shaft coupled to the motor shaft and a gear train of each gear stage and can be switched between connection and disconnection; A roller clutch in which rollers are respectively interposed in a plurality of wedge-shaped spaces provided between the cam surface and the outer ring, and the switching of the roller clutches to the outer ring of a rotating friction plate connected to a roller clutch retainer. An accelerator control method in an automobile equipped with an electric motor, comprising: a transmission having a transmission ratio switching mechanism that performs switching between contact and separation of each other by a transmission switching actuator;
    The roller clutch is engaged by engaging the narrow portion of the wedge-shaped space, and the roller clutch is disconnected by positioning the roller in the expanded portion of the wedge-shaped space by the retainer. ,
    Control method of the electric motor so that the shock torque or abnormal noise of the roller clutch is reduced when the accelerator is operated from ON to OFF and / or when the accelerator is operated from OFF to ON. Is an accelerator operation response control method for an automobile equipped with an electric motor, which performs shock reduction control, which is a series of controls for switching between two types of feedback control of torque control and rotational speed control.
  2.  請求項1において、前記ショック低減制御は、加速判断用の所定の第1トルク閾値を用いて、アクセルOFFからアクセルONへの操作時に、
     (アクセルのトルク指令値)>(第1トルク閾値)
    となったことを条件として、加速制御であるON操作時加速制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。
    The shock reduction control according to claim 1, wherein the shock reduction control uses a predetermined first torque threshold value for determining acceleration, during an operation from the accelerator OFF to the accelerator ON.
    (Acceleration torque command value)> (First torque threshold)
    An accelerator operation response control method for an automobile equipped with an electric motor, which executes acceleration control during ON operation that is acceleration control on the condition that
  3.  請求項1において、前記ショック低減制御は、回生判断用の所定の第2トルク閾値を用いて、アクセルのONからOFFへの操作時に、
     (アクセルのトルク指令値)<(第2トルク閾値)
    となったことを条件として、前記電動モータの回生を行う制御であるOFF操作時回生制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。
    In claim 1, the shock reduction control uses a predetermined second torque threshold for regeneration determination, and when the accelerator is operated from ON to OFF,
    (Acceleration torque command value) <(Second torque threshold value)
    The accelerator operation response control method for an automobile equipped with an electric motor, wherein regenerative control during OFF operation, which is control for regenerating the electric motor, is executed on the condition that
  4.  請求項2において、前記ショック低減制御は、回生判断用の所定の第2トルク閾値を用いて、アクセルのONからOFFへの操作時に、
     (アクセルのトルク指令値)<(第2トルク閾値)
    となったことを条件として、前記電動モータの回生を行う制御であるOFF操作時回生制御を実行し、
     アクセルOFFとアクセルONとが繰り返し実行されたときに、前記ON操作時加速制御と前記OFF操作時回生制御の誤作動を防止するように、
     前記第1トルク閾値および前記第2トルク閾値は、(第1トルク閾値)>(第2トルク閾値)であり、
     かつこれら2つの第1および第2トルク閾値の間に一定幅のヒステリシス特性を持たせた、電動モータ搭載自動車のアクセル操作応答制御方法。
    In claim 2, the shock reduction control uses a predetermined second torque threshold for regeneration determination, and when the accelerator is operated from ON to OFF,
    (Acceleration torque command value) <(Second torque threshold value)
    On condition that the electric motor is regenerated, the OFF operation regenerative control is executed,
    When the accelerator OFF and the accelerator ON are repeatedly executed, in order to prevent malfunction of the acceleration control during the ON operation and the regeneration control during the OFF operation,
    The first torque threshold and the second torque threshold are (first torque threshold)> (second torque threshold),
    An accelerator operation response control method for an automobile equipped with an electric motor, wherein a hysteresis characteristic having a certain width is provided between the two first and second torque threshold values.
  5.  請求項1において、前記ショック低減制御は、アクセルのOFFからONへの操作時に、前記電動モータの制御方式をトルク制御から回転数制御へ切換えて、回転数制御により前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させて、アクセルON時回転数制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 The shock reduction control according to claim 1, wherein when the accelerator is operated from OFF to ON, the control method of the electric motor is switched from torque control to rotational speed control, and the roller clutch roller is controlled by the rotational speed control. An accelerator operation response control method for an automobile equipped with an electric motor, wherein the rotation speed control is executed when the accelerator is ON by engaging with a narrow portion on the drive side of the wedge-shaped space.
  6.  請求項1において、さらに、
     各変速段での各走行速度に対する、前記ショック低減制御における前記回転数制御で用いられる目標回転数と回転数制限電流を、変速ECU内にそれぞれ設定し、
     前記回転数制御において、前記設定された目標回転数と回転数制限電流を、走行条件に応じて用いる、電動モータ搭載自動車のアクセル操作応答制御方法。
    The claim 1, further comprising:
    A target rotational speed and a rotational speed limiting current used in the rotational speed control in the shock reduction control for each traveling speed at each shift speed are set in the shift ECU, respectively.
    An accelerator operation response control method for an electric motor-equipped automobile, wherein the set target rotation speed and rotation speed limit current are used in accordance with driving conditions in the rotation speed control.
  7.  請求項1において、前記ショック低減制御は、アクセルのOFFからONへの操作時において、前記回転数制御完了後、トルク制御に切換えた時点で、アクセルのトルク指令値が過大な場合に生じるショックトルクを低減するように、アクセルのトルク指令値を補間しながら前記電動モータをトルク制御するトルク補間制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 The shock reduction control according to claim 1, wherein the shock reduction control is a shock torque generated when an accelerator torque command value is excessive at a time of switching to torque control after completion of the rotation speed control when the accelerator is operated from OFF to ON. An accelerator operation response control method for an automobile equipped with an electric motor, wherein torque interpolation control is performed to perform torque control of the electric motor while interpolating an accelerator torque command value so as to reduce the acceleration.
  8.  請求項7において、前記ショック低減制御は、アクセルのトルク指令値の補間完了後、リアルタイムのアクセルのトルク指令値で電動モータをトルク制御する、リアルタイムトルク制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 8. The accelerator operation of an automobile equipped with an electric motor according to claim 7, wherein the shock reduction control performs real-time torque control in which the electric motor is torque-controlled with a real-time accelerator torque command value after interpolation of the accelerator torque command value is completed. Response control method.
  9.  請求項1において、前記ショック低減制御は、車両の電源を起動した時に、変速ECU内に設定された回転数制御目標回転数と回転数制御電流を用いて、回転数制御により、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させて、起動時回転数制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 2. The shock reduction control according to claim 1, wherein when the vehicle power source is started, the rotation speed control is performed using the rotation speed control target rotation speed and the rotation speed control current set in the speed change ECU. An accelerator operation response control method for an automobile equipped with an electric motor, wherein a rotation speed control at start-up is executed by engaging a roller with a narrow portion on the drive side of the wedge-shaped space.
  10.  請求項1において、前記ショック低減制御は、アクセルのONからOFFへの操作時に、前記電動モータの制御方式をトルク制御から回転数制御へ切換えて、回転数制御により前記ローラクラッチのローラを、前記楔状空間の非駆動側の狭まり部分に係合させて、OFF操作時制御方式切換制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 The shock reduction control according to claim 1, wherein when the accelerator is operated from ON to OFF, the control method of the electric motor is switched from torque control to rotational speed control, and the rollers of the roller clutch are controlled by the rotational speed control. An accelerator operation response control method for an automobile equipped with an electric motor, wherein the control method switching control at the time of OFF operation is executed by engaging with a narrow portion on the non-drive side of the wedge-shaped space.
  11.  請求項1において、前記ショック低減制御は、車両を停車させるときに、前記電動モータの制御方式を回転数制御からトルク制御に切換えて、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させ、このトルク制御におけるトルク制御値として、変速ECUに設定されたトルク指令値を用いる、停車時制御方式切換制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 2. The shock reduction control according to claim 1, wherein when the vehicle is stopped, the control method of the electric motor is switched from rotation speed control to torque control, and the roller clutch roller is narrowed on the drive side of the wedge-shaped space. An accelerator operation response control method for an automobile equipped with an electric motor, wherein a stop-time control method switching control is performed using a torque command value set in a speed change ECU as a torque control value in the torque control.
  12.  出力軸であるモータ軸を有する、走行用の電動モータと、
      互いに変速比が異なる複数の変速段のギヤ列、
      前記モータ軸に連結された入力軸と前記各変速段のギヤ列との間にそれぞれ介在し接続と遮断の切換えが可能な各変速段の、複数の2ウェイ型のローラクラッチ、および
      保持器にそれぞれ連結されて回転する複数の摩擦板のそれぞれに対して、外輪への接触と離間とを切り換える変速切換アクチュエータを有する変速比切換機構であって、前記変速切換アクチュエータによって前記各ローラクラッチの接続と遮断を行う変速比切換機構を有する変速機とを備え、
     前記各ローラクラッチは、内輪のカム面と外輪間に設けられた複数の楔状空間にそれぞれローラが介在し、前記ローラが前記楔状空間の狭まり部分に係合することで接続状態となり、前記保持器により各ローラを前記楔状空間の広がり部分に位置させることで切断状態となる構成である、電動モータ搭載自動車におけるアクセル操作応答制御装置であって、さらに、
     アクセルのONからOFFへの操作時、およびアクセルのOFFからONへの操作時のいずれか一方または両方の時に、前記ローラクラッチのショックトルクまたは異音が低減するように、前記電動モータの制御方式を、トルク制御と回転数制御との2種類のフィードバック制御の間で切換える一連の制御を行うショック低減制御手段を備えた、電動モータ搭載自動車のアクセル操作応答制御装置。
    An electric motor for traveling having a motor shaft as an output shaft;
    A gear train of a plurality of gear stages having different gear ratios;
    A plurality of two-way roller clutches for each shift stage, which are respectively interposed between an input shaft connected to the motor shaft and a gear train of each shift stage and can be switched between connection and disconnection, and a cage; A gear ratio switching mechanism having a gear change switching actuator for switching between contact and separation with the outer ring for each of a plurality of friction plates that are connected and rotated, wherein the roller clutch is connected to each other by the gear change actuator. A transmission having a gear ratio switching mechanism for performing shut-off,
    Each of the roller clutches has a plurality of wedge-shaped spaces provided between the cam surface of the inner ring and the outer ring, and the rollers are engaged when the rollers are engaged with a narrowed portion of the wedge-shaped space. An accelerator operation response control device in an electric motor-equipped automobile, wherein the roller is configured to be in a disconnected state by positioning each roller in the spread portion of the wedge-shaped space,
    Control method of the electric motor so that the shock torque or abnormal noise of the roller clutch is reduced when the accelerator is operated from ON to OFF and / or when the accelerator is operated from OFF to ON. An accelerator operation response control device for an automobile equipped with an electric motor, comprising a shock reduction control means for performing a series of controls for switching between two types of feedback control of torque control and rotational speed control.
  13.  請求項1において、アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の操作時に、前記ローラクラッチ係合時に生じるショックトルクまたは異音を低減させるように、トルク制御で走行中に、アクセル開度を検出するアクセル開度センサが検出したアクセル開度信号が所定のクリープ正トルク閾値を下回ると、前記トルク制御のトルク指令値を前記クリープ正トルク閾値以上とする制御であるクリープ制御を行うことで、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させる、電動モータ搭載自動車のアクセル操作応答制御方法。 The shock torque or abnormal noise generated when the roller clutch is engaged is reduced in any one or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON. When the accelerator opening signal detected by the accelerator opening sensor that detects the accelerator opening is less than a predetermined creep positive torque threshold during running under torque control, the torque control torque command value is equal to or greater than the creep positive torque threshold. An accelerator operation response control method for an electric motor-equipped automobile, in which creep control, which is control of the above, is performed, so that the roller of the roller clutch is engaged with a narrow portion on the drive side of the wedge-shaped space.
  14.  請求項13において、トルク制御で走行中に、前記クリープ制御は、車両走行速度の全速度領域にわたって実行される、電動モータ搭載自動車のアクセル操作応答制御方法。 14. The accelerator operation response control method for an automobile equipped with an electric motor according to claim 13, wherein the creep control is executed over the entire speed range of the vehicle traveling speed during traveling by torque control.
  15.  請求項13において、トルク制御で走行中に、前記クリープ制御は、アクセルのOFFからONへの操作時に回生制御を実行し、この回生制御における回生指令トルク値が回生時用閾値を下回ると、この回生時用閾値の負トルクを入力して、前記ローラクラッチのローラを、前記楔状空間の非駆動側の狭まり部分に係合させる、電動モータ搭載自動車のアクセル操作応答制御方法。 In claim 13, during traveling by torque control, the creep control performs regenerative control when the accelerator is operated from OFF to ON, and when the regenerative command torque value in the regenerative control falls below a regenerative threshold value, An accelerator operation response control method for an automobile equipped with an electric motor, wherein a negative torque as a threshold value for regeneration is input and a roller of the roller clutch is engaged with a narrow portion of the wedge-shaped space on the non-driving side.
  16.  請求項15において、前記回生制御は、一定車速以上の場合に実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 16. The accelerator operation response control method for a vehicle equipped with an electric motor according to claim 15, wherein the regeneration control is executed when the vehicle speed exceeds a certain value.
  17.  請求項13において、さらに、前記アクセル開度信号が前記クリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えて前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分に切り換えて係合させる、電動モータ搭載自動車のアクセル操作応答制御方法。 In Claim 13, after the accelerator opening signal has fallen below the creep positive torque threshold and a predetermined time has elapsed, the control is switched from torque control to rotational speed control so that the rollers of the roller clutch are driven on the drive side of the wedge-shaped space. An accelerator operation response control method for an automobile equipped with an electric motor, wherein switching is performed from a narrowed portion to a narrowed portion on the non-driving side of the wedge-shaped space.
  18.  請求項17において、前記アクセル開度信号が前記クリープ正トルク閾値を下回って一定時間経過した後、トルク制御から回転数制御へ切換えて前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分に切り換えて係合させることは、各変速段にて実行される、電動モータ搭載自動車のアクセル操作応答制御方法。 18. The narrowed portion on the drive side of the wedge-shaped space by switching from torque control to rotational speed control after a certain time has elapsed after the accelerator opening signal falls below the creep positive torque threshold value. The accelerator operation response control method for an automobile equipped with an electric motor, wherein switching and engaging with a narrowed portion on the non-driving side of the wedge-shaped space is executed at each shift stage.
  19.  請求項18において、前記各変速段にて実行される、前記楔状空間の駆動側の狭まり部分から前記楔状空間の非駆動側の狭まり部分への切換えは、回転数差と制限電流、回転数制御実施時間のマップを予めメモリに設定しておき、このマップの値を用いて前記回転数制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 19. The switching between the narrowed portion on the driving side of the wedge-shaped space and the narrowed portion on the non-driving side of the wedge-shaped space performed at each of the shift speeds according to claim 18 includes: An accelerator operation response control method for an automobile equipped with an electric motor, wherein a map of an execution time is set in a memory in advance, and the rotation speed control is executed using a value of the map.
  20.  請求項15において、前記回生制御の開始は、現変速段のローラクラッチが正方向から負方向へ係合した後、回転数制御からトルク制御へ切換えて前記回生制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 16. The electric motor-equipped vehicle according to claim 15, wherein the regeneration control is started by switching the rotational speed control to the torque control and executing the regeneration control after the roller clutch of the current gear stage is engaged from the positive direction to the negative direction. Accelerator operation response control method.
  21.  請求項20において、前記回生制御の実行は、現変速段のローラクラッチ係合時の制限電流または制限トルクから回生指令トルク値までの間で、トルク制御にてn回補間制御し、回生指令値の信号との誤差を縮めていく追跡過程で、誤差が所与の範囲内になると、n回補間制御を終了する、電動モータ搭載自動車のアクセル操作応答制御方法。 21. The regeneration control according to claim 20, wherein the execution of the regeneration control is performed by performing interpolation control n times by torque control between a current limit or torque when the roller clutch is engaged at the current gear stage and a regeneration command torque value. A method for controlling an accelerator operation response of an automobile equipped with an electric motor, wherein the interpolation control is terminated n times when the error falls within a given range in the tracking process of reducing the error from the signal.
  22.  請求項15において、前記回生制御において、回生指令トルク値がクリープ負トルク閾値の絶対値を下回ると、クリープ負トルク閾値の絶対値を回生指令トルク値として、係合時の制限電流からクリープ負トルク閾値の絶対値への補間制御を実行しながら、回生制御を行い、回生制御中には、トルク成分である電動モータのq軸電流の方向は負である、電動モータ搭載自動車のアクセル操作応答制御方法。 16. In the regenerative control according to claim 15, when the regenerative command torque value falls below the absolute value of the creep negative torque threshold, the creep negative torque is determined from the limiting current at the time of engagement using the absolute value of the creep negative torque threshold as the regenerative command torque value. Regenerative control is performed while performing interpolation control to the absolute value of the threshold value. During the regenerative control, the direction of the q-axis current of the electric motor, which is a torque component, is negative. Method.
  23.  請求項15において、前記回生指令トルク値に従って前記回生制御を実行中に、アクセル開度信号が前記クリープ正トルク閾値を上回った状態で一定時間経過した場合、前記回生制御を停止する、電動モータ搭載自動車のアクセル操作応答制御方法。 16. The electric motor mounted device according to claim 15, wherein when the accelerator opening signal exceeds a creep positive torque threshold and a predetermined time elapses during execution of the regeneration control according to the regeneration command torque value, the regeneration control is stopped. Accelerator operation response control method for automobiles.
  24.  請求項23において、前記回生制御を停止することは、一定時間内に、前記アクセル開度信号が前記クリープ正トルク閾値を上回った場合に、前記一定時間の経過時間カウントをリセットし、アクセル信号が前記クリープ正トルク閾値を上回った時点から経過時間をカウントし始める、電動モータ搭載自動車のアクセル操作応答制御方法。 24. The stopping of the regeneration control according to claim 23, wherein when the accelerator opening signal exceeds the creep positive torque threshold within a certain time, the elapsed time count of the certain time is reset, and the accelerator signal is An accelerator operation response control method for an automobile equipped with an electric motor, which starts counting elapsed time from the time when the creep positive torque threshold is exceeded.
  25.  請求項15において、前記回生指令トルク値に従って前記回生制御を実行中に、車速が所与の車速を下回った場合に、直ちに回生制御を停止する、電動モータ搭載自動車のアクセル操作応答制御方法。 16. The accelerator operation response control method for an automobile equipped with an electric motor according to claim 15, wherein when the vehicle speed falls below a given vehicle speed during execution of the regeneration control according to the regeneration command torque value, the regeneration control is immediately stopped.
  26.  請求項25において、さらに、前記回生制御の停止後、回生指令トルク値から係合時の制限電流または制限トルクまでの間で、トルク制御にて、n回補間制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 26. The vehicle equipped with an electric motor according to claim 25, further comprising executing n-time interpolation control by torque control between a regeneration command torque value and a limiting current or limiting torque at the time of engagement after the regeneration control is stopped. Accelerator operation response control method.
  27.  請求項26において、さらに、n回補間制御の完了後、トルク制御から回転数制御への切換時に、メモリに設定された回転数差と制限電流、回転数制御実行時間のマップの値を用いて、回転数制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 27. Further, according to claim 26, after completion of n-time interpolation control, when switching from torque control to rotational speed control, the rotational speed difference, limit current, and rotational speed control execution time map values set in the memory are used. An accelerator operation response control method for an automobile equipped with an electric motor, which executes rotation speed control.
  28.  請求項27において、前記回転数制御の完了後、回転数制御からトルク制御へ切換え、現変速ローラクラッチの係合時の制限電流または制限トルクからアクセル開度信号までの間で、n回補間制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 28. The interpolation control according to claim 27, wherein after the rotation speed control is completed, the rotation speed control is switched to the torque control, and the interpolation current is controlled n times between the current limit or torque when the current speed change roller clutch is engaged and the accelerator opening signal. An accelerator operation response control method for an automobile equipped with an electric motor is executed.
  29.  請求項13において、車両の電源を起動時および停車時に、シフト操作部材のシフトレンジ信号に基づいてローラクラッチをトルク制御により、駆動側または非駆動側の前記楔状空間に前記ローラクラッチのローラを係合させる制御において、前回のシフト操作部材のシフトレンジに応じて、予めメモリに設定された制御トルクと制限時間のデータを用いて、数段階に分けて前記クリープ制御を実行する、電動モータ搭載自動車のアクセル操作応答制御方法。 14. The roller clutch according to claim 13, wherein the roller clutch is engaged with the wedge-shaped space on the driving side or the non-driving side by torque control of the roller clutch based on the shift range signal of the shift operation member when the vehicle is powered on and stopped. In the control to be combined, the electric motor-equipped vehicle that executes the creep control in several stages using the control torque and the time limit data set in advance in the memory according to the shift range of the previous shift operation member Accelerator operation response control method.
  30.  請求項13において、シフト操作部材のシフトレンジがドライブレンジの場合、現変速段のローラクラッチのローラを前記楔状空間の駆動側の狭まり部分に係合させるように、トルク成分である電動モータのq軸電流の方向を正とする、電動モータ搭載自動車のアクセル操作応答制御方法。 14. The electric motor q as a torque component according to claim 13, wherein when the shift range of the shift operation member is a drive range, the roller of the current gear stage is engaged with the narrow portion of the wedge-shaped space on the drive side. An accelerator operation response control method for an automobile equipped with an electric motor, wherein the direction of the shaft current is positive.
  31.  請求項13において、シフト操作部材のシフトレンジがリバースレンジの場合、現変速段のローラクラッチのローラを前記楔状空間の非駆動側の狭まり部分に係合させるように、トルク成分である電動モータのq軸電流の方向を負とする、電動モータ搭載自動車のアクセル操作応答制御方法。 In Claim 13, when the shift range of the shift operating member is the reverse range, the roller of the current gear stage is engaged with the narrow portion of the wedge-shaped space on the non-driving side of the electric motor. An accelerator operation response control method for an automobile equipped with an electric motor, wherein the direction of the q-axis current is negative.
  32.  請求項12において、前記変速比切換機構はシフト部材を有し、前記変速切換アクチュエータによるこのシフト部材の進退によって、前記摩擦板の前記外輪への接触と離間とを切り換え、
     さらに、アクセルのONからOFFへの操作時、およびOFFからONへの操作時のいずれか一方または両方の操作時に、トルク制御で走行中に、アクセル開度信号が所定のクリープ正トルク閾値を下回ると、前記トルク制御のトルク指令値を前記クリープ正トルク閾値以上とすることで、前記ローラクラッチのローラを、前記楔状空間の駆動側の狭まり部分に係合させるクリープ制御手段を備えた、電動モータ搭載自動車のアクセル操作応答制御装置。
    The shift ratio switching mechanism according to claim 12, wherein the shift ratio switching mechanism includes a shift member, and switching between contact and separation of the friction plate with the outer ring by the advancement and retraction of the shift member by the shift switching actuator.
    Further, the accelerator opening signal falls below a predetermined creep positive torque threshold during running by torque control during either or both of the operation from ON to OFF of the accelerator and the operation from OFF to ON. And an electric motor comprising a creep control means for engaging the roller of the roller clutch with the narrow portion on the drive side of the wedge-shaped space by setting the torque command value of the torque control to be equal to or greater than the creep positive torque threshold. Accelerator operation response control device for onboard vehicles.
PCT/JP2012/081130 2011-12-01 2012-11-30 Accelerator operation response control method for automobile equipped with electric motor WO2013081121A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-263402 2011-12-01
JP2011263402A JP2013113435A (en) 2011-12-01 2011-12-01 Method and device for controlling accelerator operation response of electric vehicle
JP2012-013656 2012-01-26
JP2012013656A JP2013153618A (en) 2012-01-26 2012-01-26 Control method and control system for electric vehicle

Publications (1)

Publication Number Publication Date
WO2013081121A1 true WO2013081121A1 (en) 2013-06-06

Family

ID=48535569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081130 WO2013081121A1 (en) 2011-12-01 2012-11-30 Accelerator operation response control method for automobile equipped with electric motor

Country Status (1)

Country Link
WO (1) WO2013081121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203509A1 (en) * 2015-06-15 2016-12-22 日産自動車株式会社 Vehicle control method and vehicle control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168110A (en) * 1994-12-09 1996-06-25 Mitsubishi Motors Corp Speed-change control method of electric vehicle
JP2001213182A (en) * 1999-10-12 2001-08-07 Toyota Motor Corp Hybrid vehicle and control method therefor
JP2003032806A (en) * 2001-07-17 2003-01-31 Ntn Corp In-wheel motor driving unit and hybrid system
JP2007051664A (en) * 2005-08-17 2007-03-01 Ntn Corp Reverse input cutoff clutch
JP2011125150A (en) * 2009-12-11 2011-06-23 Ntn Corp Device and method for controlling electric vehicle
JP2011195119A (en) * 2010-03-23 2011-10-06 Toyota Motor Corp Clutch device for hybrid vehicle
JP2011213304A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Vehicle control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168110A (en) * 1994-12-09 1996-06-25 Mitsubishi Motors Corp Speed-change control method of electric vehicle
JP2001213182A (en) * 1999-10-12 2001-08-07 Toyota Motor Corp Hybrid vehicle and control method therefor
JP2003032806A (en) * 2001-07-17 2003-01-31 Ntn Corp In-wheel motor driving unit and hybrid system
JP2007051664A (en) * 2005-08-17 2007-03-01 Ntn Corp Reverse input cutoff clutch
JP2011125150A (en) * 2009-12-11 2011-06-23 Ntn Corp Device and method for controlling electric vehicle
JP2011195119A (en) * 2010-03-23 2011-10-06 Toyota Motor Corp Clutch device for hybrid vehicle
JP2011213304A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Vehicle control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203509A1 (en) * 2015-06-15 2016-12-22 日産自動車株式会社 Vehicle control method and vehicle control device
JPWO2016203509A1 (en) * 2015-06-15 2017-11-09 日産自動車株式会社 Vehicle control method and vehicle control apparatus
RU2663257C1 (en) * 2015-06-15 2018-08-03 Ниссан Мотор Ко., Лтд. Method and device for vehicle control
US10118494B2 (en) 2015-06-15 2018-11-06 Nissan Motor Co., Ltd. Vehicle control method and vehicle control device

Similar Documents

Publication Publication Date Title
WO2013058238A1 (en) Gear shift control method and gear shift control device for electric vehicle
US7617896B2 (en) Control device for an electric vehicle
JP3208866B2 (en) Drive for electric vehicles
JPH09196128A (en) Device and method for transmission of electric vehicle
US20170267246A1 (en) Control device and control method for vehicle
JP2013152001A (en) Shift control method and shift control device of electric vehicle
WO2012165146A1 (en) Gear-shift control method for vehicle motor-driving apparatus, and gear-shift control method for vehicle
JP5151704B2 (en) Vehicle drive control apparatus and method
JP2015007459A (en) Gear-shifting control device of electric vehicle
WO2012137812A1 (en) Vehicle motor drive apparatus, and automobile
JP2019123327A (en) Vehicle control device and on-board device
JP2009292315A (en) Driving device of vehicle
JP2014121225A (en) Speed control device and speed control method for electric vehicle
WO2013176074A1 (en) Shift control method for electric vehicle and shift control device
WO2015068474A1 (en) Vehicular automatic transmission
JP2013255329A (en) Method and device for controlling gear shift of electric vehicle
JP2007181289A (en) Controller for four-wheel-drive vehicle
WO2013081121A1 (en) Accelerator operation response control method for automobile equipped with electric motor
JP2014109346A (en) Gear change control device
JP2001352605A (en) Parallel hybrid vehicle
JP2014001746A (en) Shift control method and shift control device for electric vehicle
JP3306985B2 (en) Driving force control device for electric vehicles
JP2011057030A (en) Vehicular motor driving device and automobile
JP2014047817A (en) Shift control method and shift control device for electric automobile
JP2013153618A (en) Control method and control system for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853447

Country of ref document: EP

Kind code of ref document: A1