WO2013081010A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2013081010A1
WO2013081010A1 PCT/JP2012/080754 JP2012080754W WO2013081010A1 WO 2013081010 A1 WO2013081010 A1 WO 2013081010A1 JP 2012080754 W JP2012080754 W JP 2012080754W WO 2013081010 A1 WO2013081010 A1 WO 2013081010A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
axial
axial fan
heat exchanger
flow
Prior art date
Application number
PCT/JP2012/080754
Other languages
French (fr)
Japanese (ja)
Inventor
茂久 舩橋
岩瀬 拓
慎 松下
昌紀 江沢
知憲 儘田
渡邉 修
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US14/361,090 priority Critical patent/US20140301839A1/en
Priority to DE112012004976.4T priority patent/DE112012004976B4/en
Publication of WO2013081010A1 publication Critical patent/WO2013081010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/09Reducing noise

Definitions

  • the present invention relates to a construction machine including a cooling device that supplies cooling air to a heat exchanger such as a radiator by an axial fan.
  • a hydraulic pump is driven by a diesel engine, and excavation work or traveling is performed using the hydraulic energy. Therefore, in the engine room, together with the engine and the hydraulic pump, a radiator for cooling the engine, a heat exchanger such as an oil cooler for cooling the hydraulic oil, and cooling air for supplying these heat exchangers A cooling fan is arranged.
  • Patent Document 1 is known as background art in this technical field.
  • This Patent Document 1 discloses an example of cooling a heat exchanger for a construction machine using a low-cost and thin axial flow fan.
  • the axial flow fan is connected to an engine crankshaft. It is configured to rotate by power transmitted through a pulley and a fan belt.
  • the heat exchanger is located upstream of the axial flow fan, and the air flowing in from the outside through the intake port passes through the heat exchanger and is then guided to the axial flow fan by a fan shroud and fan ring. Is done.
  • the air pressurized by the axial fan flows around the engine (structure) and is discharged to the outside through the exhaust port.
  • construction machinery In recent years, in order to comply with exhaust gas regulations for diesel engines mounted on construction machinery, construction machinery also uses air-cooled intercoolers and water-cooled EGR (Exhaust Gas Recirculation) equipment as a means to reduce exhaust gases. Installation is carried out. In addition, suppression of exhaust gas has been promoted by installing a common rail and controlling fuel injection timing.
  • EGR exhaust Gas Recirculation
  • heat exchangers have been increased in size as the cooling load increases.
  • the number of devices mounted in the limited space in the engine compartment has increased, so there is a limit to that. .
  • the size of the heat exchanger is increased in the direction of increasing the thickness of the heat exchanger.
  • the space in the direction of the rotation axis of the fan is narrowed accordingly. Accordingly, when the distance between the heat exchanger and the fan is reduced, the wind speed distribution of the air passing through the heat exchanger is deteriorated. If the distance between the fan and the engine is reduced, the flow out of the fan is likely to collide with the engine, thereby increasing the pressure loss in the cooling air flow path. Therefore, the number of fan rotations required to obtain the necessary air volume increases, and as a result, the fan shaft power and noise increase, leading to an increase in construction machine noise and fuel consumption.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to achieve a high efficiency and low efficiency in which the air velocity distribution of the heat exchanger is good and the collision of the air flowing out of the axial fan with the engine can be avoided. It is to provide noise construction machinery.
  • the present invention has an axial fan having a plurality of blade pieces and rotating around an axis, and is disposed around the axial fan.
  • a fan ring for guiding, a heat exchanger disposed upstream or downstream of the air flow from the axial fan, and a structure disposed downstream of the air fan from the axial fan.
  • the fan ring has a suction side R-shaped portion that reduces the flow path on the suction side and a discharge-side R-shaped portion that expands the flow path on the discharge side, and the blade piece has a leading edge And a rear edge and an outer peripheral edge.
  • the axial fan is attached in a posture inclined at a forward angle ⁇ from the axial center toward the rotational direction and forwardly inclined toward the suction side.
  • the suction side of the axial flow fan can be a centripetal flow and the discharge side can be a centrifugal flow, so that the air flow is more upstream than the axial flow fan.
  • a large heat exchanger arranged on the side or the downstream side it becomes possible to flow cooling air with a good wind speed distribution to the end portion.
  • the thermal radiation performance in a heat exchanger can be improved and the hot air around an engine can be ventilated efficiently, generation
  • the advance angle ⁇ is preferably in the range of 5 ° to 25 °.
  • the second intersection point where the front edge and the outer peripheral edge of the blade piece intersect is at a position protruding from the suction side R-shaped portion to the upstream side of the air flow. If comprised in this way, since the centripetal flow on the suction side and the centrifugal flow on the discharge side of the axial flow fan become smoother, the heat dissipation performance of the heat exchanger is further improved.
  • FIG. 1 is an external perspective view of a hydraulic excavator according to a first embodiment of the present invention. It is a sectional side view of the engine room of the hydraulic excavator shown in FIG. It is the side view to which the principal part of the axial fan shown in FIG. 2 and a fan ring was expanded. It is the top view to which the principal part of the axial fan shown in FIG. 2 was expanded. It is a figure which shows the relationship between the advancing angle of the blade
  • the hydraulic excavator which is an embodiment of a construction machine according to the present invention will be described with reference to the drawings.
  • the hydraulic excavator according to the first embodiment is attached to a crawler 24, an upper swing body 26 disposed on the crawler 24, and the upper swing body 26 so as to be rotatable in the vertical direction.
  • the front working machine capable of performing excavation work and the like, and the cab 25 as an operation room are provided.
  • the front work machine includes a boom 21 that is attached to the upper swing body 26 so as to be able to move up and down, an arm 22 that is rotatably attached to the tip of the boom 21, and a bucket 23 that is rotatably attached to the tip of the arm 22.
  • the upper swing body 26 has the engine room 10 built in behind it.
  • Reference numeral 27 denotes a counter weight 27.
  • the engine room 10 includes an axial fan 2, a fan ring 3 that guides the air flow to the axial fan 2, a heat exchanger 1, an engine (structure) 4, A battery 9 is installed.
  • an intake port 7 serving as an air inlet / outlet is provided in the upper portion of the engine chamber 10, and an exhaust port 8 is provided in the upper and lower portions of the engine chamber 10.
  • the positional relationship among the heat exchanger 1, the axial fan 2 and the engine 4 is such that the heat exchanger 1 is upstream of the air flow from the axial fan 2 and the engine 4 is downstream of the air flow of the axial fan 2. is there.
  • the axial fan 2 is required to have a centripetal flow toward the center of the fan on the upstream side, and a centrifugal flow toward the centrifugal direction of the fan on the downstream side. Therefore, in this embodiment, forward / forward tilting blades are employed (details will be described later).
  • the heat exchanger 1 includes a radiator, an oil cooler, and an intercooler, and each device is arranged in parallel.
  • the size of the heat exchanger 1 has been increasing in order to increase the amount of heat exchanged, and in this embodiment as well, the overall outer shape of the heat exchanger 1 is relatively larger than the axial fan 2. Yes.
  • the engine 4 includes a crankshaft (output shaft) 4a, from which power for rotating the axial fan 2 is transmitted via the pulley 5 and the fan belt 6. Then, the fan 5 is adjusted to an appropriate fan rotation speed by the pulley 5, and the fan 2 rotates.
  • the axial fan 2 includes a cylindrical hub 2b attached to the rotary shaft 2c, and a plurality of blades (blade pieces) 2a provided around the hub 2b. .
  • the fan ring 3 is formed in an annular shape, and is provided around the axial flow fan 2 as shown in FIGS. 2 and 3, and has a suction side R-shaped portion 3a having a curved surface on the suction side. It has a discharge side R-shaped portion 3b having a curved surface on the discharge side. That is, in the fan ring 3, the side edge on the suction side and the side edge on the discharge side are both formed in an R shape.
  • the blade 2 a is formed to have a front edge 2 g, an outer peripheral edge 2 e, and a rear edge 2 d, and the axial fan 2 is attached inside the fan ring 3.
  • the second intersection point Q where the front edge 2g and the outer peripheral edge 2e intersect is projected by a length L from the suction side R-shaped part 3a of the fan ring 3 to the upstream side (suction side), and the rear edge 2d and the outer peripheral edge 2e
  • the first intersection point P where the two intersect with each other is positioned within the range of the width W of the discharge-side R-shaped portion 3 b of the fan ring 3.
  • the blade 2a protrudes toward the suction side as the position has a larger diameter, and is inclined (forwardly inclined) as a whole. Further, as shown in FIG. 4, the blade 2 a protrudes in the rotational direction (moves forward) at a location having a larger radial position, and its advance angle is ⁇ . That is, the blade 2a of the axial fan 2 used in this embodiment is a forward / forward tilting blade. Note that the advancing angle ⁇ here indicates how much the trailing edge 2d of the blade 2a protrudes in the rotation direction, and specifically, the center point A of the rotating shaft 2c and the blade 2a. This is an inner angle A of the triangle AOP formed by connecting the third intersection point O where the rear edge 2d and the hub 2b intersect with the first intersection point P.
  • FIGS. 2 and 3 indicate the flow of air.
  • an axial fan with forward and forward inclined blades creates a centripetal flow that goes toward the rotation center of the fan on the upstream side (suction side), and partly sucks air from the side of the fan. have. Therefore, when the axial flow fan 2 rotates, a pressure difference is generated between before and after that, and an air flow is induced.
  • low-temperature air outside the engine compartment 10 flows into the engine compartment 10 through the intake port 7.
  • the air passes through the heat exchanger 1, it takes heat of the fluid (engine cooling water, hydraulic oil, compressed air, etc.) in the pipe of the heat exchanger 1 and becomes high temperature.
  • the refrigerant flows into the axial fan 2, is pressurized, flows out from the axial fan 2, flows around the engine 4, and is discharged from the exhaust port 8 to the outside of the engine room 10.
  • the axial fan having forward and forward inclined blades is characterized in that air tends to flow out in the axial direction along the rotary shaft 2c on the downstream side (discharge side). Therefore, if it is as it is, the air which flowed out from the axial fan 2 may collide with the engine 4, and pressure loss may increase.
  • the first intersection point P where the trailing edge 2d and the outer peripheral edge 2e intersect is positioned within the range of the width W of the discharge side R-shaped portion 3b of the fan ring 3. I try to let them.
  • the air which flowed out from the axial fan 2 flows along the discharge side R-shaped part 3b of the fan ring 3 by the Coanda effect, the air flow is easily directed in the radial direction, and the centrifugal flow It becomes.
  • the air flowing out from the axial fan 2 can be prevented from colliding with the engine 4 and the increase in pressure loss can be suppressed.
  • discharge side R-shaped portion 3b of the fan ring 3 also acts as a diffuser, it effectively decelerates the flow having a high absolute flow velocity flowing out from the first intersection P at the rear end of the blade 2a, and increases the static pressure. We can expect effect to make.
  • the heat exchanger 1 can achieve effective heat exchange with a good wind speed distribution, and the downstream side of the axial flow fan 2 is outflowed. By avoiding a collision with the engine 4 due to the air, a flow path configuration with a low pressure loss can be realized.
  • the advance angle ⁇ is too large, the centripetal flow on the suction side of the axial fan 2 and further the axial flow on the discharge side become strong, and even if it has the above-described configuration, the centrifugal flow on the downstream side is increased. It becomes difficult to realize. Further, the value of the fan noise varies depending on the value of the advance angle ⁇ , and the air volume is also affected. Therefore, the inventors conducted the following simulation analysis in order to obtain a preferable angle range of the advance angle ⁇ .
  • the construction machine is in an operating environment in which dust and dirt accumulate on the heat exchanger due to the operating environment, and the flow resistance gradually increases as an axial fan.
  • the heat exchanger and filter are cleaned to remove clogging, and the increase in flow resistance is suppressed.
  • the advance angle ⁇ is about 5 ° or more and about 40 ° or less.
  • the advance angle ⁇ as a threshold value satisfying both design requirements is 5 ° or more and 25 ° or less. Therefore, in the axial fan 2 according to the present embodiment, the advancing angle ⁇ of the blade 2a is set to 5 ° to 25 °.
  • FIG. 7 is a side sectional view of the engine chamber of the hydraulic excavator according to the second embodiment.
  • symbol is attached
  • the axial fan 2 is provided separately from the engine 4, the heat exchanger 1 is disposed on the downstream side of the axial fan 2, and the intake port 7 is the engine on the upstream side of the axial fan 2.
  • the upper and lower wall surfaces of the chamber 10 are disposed on the side surfaces as viewed from the rotating shaft 2 c of the axial fan 2.
  • the axial fan 2 is directly connected to the hydraulic motor 11 and is driven thereby.
  • a fan ring 3 is installed around the axial fan 2 as in the first embodiment.
  • the centripetal flow on the upstream side of the axial fan 2 and the centrifugal flow on the downstream side are compatible. For this reason, air flows in smoothly from the air inlet 7 provided on the side as viewed from the rotating shaft 2c.
  • the present invention is not necessarily limited thereto.
  • the fan driving method and the type of heat exchanger to be used are not limited, and the effect can be expected in construction machines other than hydraulic excavators.
  • Heat exchanger 2 Axial fan 2a Wing (blade piece) 2c Rotating shaft (axis) 2d Rear edge 2e Outer peripheral edge 2g Front edge 3 Fan ring 3a Suction side R-shaped part 3b Discharge side R-shaped part 4 Engine (structure) P First intersection point Q Second intersection point W Width of discharge-side R-shaped portion ⁇ Advance angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a highly efficient and quiet construction machine, wherein a heat exchanger has a satisfactory wind speed distribution and impact by air flowing out from an axial flow fan on an engine can be avoided. In a construction machine provided with an axial flow fan (2) having a plurality of rotor blades (2a), a fan ring (3) for leading air flow to the axial flow fan, a heat exchanger (1) disposed upstream or downstream in the air flow from the axial flow fan, and a structural body (4) disposed downstream in the air flow from the axial flow fan, the fan ring has an intake-side R-shaped part (3a) for constricting an intake-side flow channel and a discharge-side R-shaped part (3b) for expanding a discharge-side flow channel, the rotor blades are inclined at an angle of advance θ in the rotational direction from the axial center and are attached so as to be inclined forward toward the intake side, and when the axial flow fan is attached to the inner side of the fan ring, first intersection points (P) where the rear edges and outer peripheral edges of the rotor blades meet are positioned within a range the width of the discharge-side R-shaped part.

Description

建設機械Construction machinery
 本発明は、軸流ファンによってラジエータなどの熱交換器に冷却空気を供給する冷却装置を備えた建設機械に関する。 The present invention relates to a construction machine including a cooling device that supplies cooling air to a heat exchanger such as a radiator by an axial fan.
 一般に油圧ショベルなどの建設機械においては、ディーゼルエンジンによって油圧ポンプを駆動し、その油圧のエネルギを利用して掘削作業や走行などを行なっている。そのためエンジン室内には、エンジンや油圧ポンプと共に、エンジンを冷却するためのラジエータや、作動油を冷却するためのオイルクーラ等の熱交換器、及びこれらの熱交換器に冷却空気を供給するための冷却用ファンが配置されている。 Generally, in a construction machine such as a hydraulic excavator, a hydraulic pump is driven by a diesel engine, and excavation work or traveling is performed using the hydraulic energy. Therefore, in the engine room, together with the engine and the hydraulic pump, a radiator for cooling the engine, a heat exchanger such as an oil cooler for cooling the hydraulic oil, and cooling air for supplying these heat exchangers A cooling fan is arranged.
 本技術分野の背景技術として、例えば特許文献1が公知である。この特許文献1には、低コストで薄型の軸流ファンを用いて、建設機械用の熱交換器を冷却する例が開示されており、この例では、軸流ファンは、エンジンのクランク軸からプーリ、ファンベルトを介して伝えられた動力によって回転する構成となっている。多くの場合、熱交換器は軸流ファンの上流側に配置されており、吸気口を介して外部から流入した空気は熱交換器を通過した後、ファンシュラウド、ファンリングによって軸流ファンに案内される。軸流ファンで昇圧された空気はエンジン(構造体)の周囲を流れて、排気口より外部に放出される。 For example, Patent Document 1 is known as background art in this technical field. This Patent Document 1 discloses an example of cooling a heat exchanger for a construction machine using a low-cost and thin axial flow fan. In this example, the axial flow fan is connected to an engine crankshaft. It is configured to rotate by power transmitted through a pulley and a fan belt. In many cases, the heat exchanger is located upstream of the axial flow fan, and the air flowing in from the outside through the intake port passes through the heat exchanger and is then guided to the axial flow fan by a fan shroud and fan ring. Is done. The air pressurized by the axial fan flows around the engine (structure) and is discharged to the outside through the exhaust port.
 また近年は、建設機械に搭載されるディーゼルエンジンの排気ガス規制に対応するために、建設機械にも、排気ガスを低減するための手段として、空冷インタークーラや水冷EGR(Exhaust Gas Recirculation)装置の搭載が行なわれている。またコモンレールを搭載し、燃料噴射タイミングを制御することによる排気ガスの抑制も進められてきた。 In recent years, in order to comply with exhaust gas regulations for diesel engines mounted on construction machinery, construction machinery also uses air-cooled intercoolers and water-cooled EGR (Exhaust Gas Recirculation) equipment as a means to reduce exhaust gases. Installation is carried out. In addition, suppression of exhaust gas has been promoted by installing a common rail and controlling fuel injection timing.
特開2010-270670号公報JP 2010-270670 A
 上記した排気ガス対策により、従来から搭載されていたラジエータやオイルクーラに加えて、新たにインタークーラという熱交換器が追加され、さらに水冷EGR装置を冷却するためにラジエータの放熱性能も高める必要が生じるなど、近年の建設機械では、冷却のために必要な空気の風量が増大してきている。 Due to the above-mentioned exhaust gas countermeasures, in addition to the radiator and oil cooler that have been installed in the past, a new heat exchanger called an intercooler has been added, and it is also necessary to improve the radiator's heat dissipation performance in order to cool the water-cooled EGR device. For example, the amount of air necessary for cooling has increased in recent construction machines.
 また、冷却負荷の増大に合わせて熱交換器の大型化も進められているが、エンジン室内の限られた空間の中に搭載される機器が増えてきたことから、それにも限界が出てくる。熱交換器の前面面積をこれ以上拡大できない機械の場合は、熱交換器の厚さを増す方向に大型化は進められる。 In addition, heat exchangers have been increased in size as the cooling load increases. However, the number of devices mounted in the limited space in the engine compartment has increased, so there is a limit to that. . In the case of a machine in which the front area of the heat exchanger cannot be increased any more, the size of the heat exchanger is increased in the direction of increasing the thickness of the heat exchanger.
 しかしながら、熱交換器の前面面積を拡大した場合は、熱交換器がファンに対して相対的に大きくなるために、熱交換器の端部がファンから離れてしまい、その部分は冷却空気が流れにくくなる。このため、熱交換器を大型化した効果を十分に発揮することが難しくなる。寸法が許せば熱交換器に合わせてファンの大径化も考えられるが、ファンの駆動動力を増加させることは、建設機械として使用できる動力に制限を加えることになってしまう。 However, when the front area of the heat exchanger is enlarged, the end of the heat exchanger is separated from the fan because the heat exchanger is relatively large with respect to the fan, and cooling air flows through that portion. It becomes difficult. For this reason, it becomes difficult to fully exhibit the effect which enlarged the heat exchanger. If the dimensions allow, it is possible to increase the diameter of the fan in accordance with the heat exchanger. However, increasing the driving power of the fan limits the power that can be used as a construction machine.
 一方で、熱交換器の厚みを増すように大型化した場合は、その分だけファンの回転軸方向の空間が狭くなる。その分、熱交換器とファンの距離を小さくすると、熱交換器を通過する空気の風速分布は悪化する。ファンとエンジンの距離を小さくすると、ファンから流出した流れがエンジンに衝突しやすくなるため、冷却空気流路の圧力損失を増加させてしまう。したがって、必要な風量を得るために必要なファン回転数は増加し、その結果、ファンの軸動力や騒音を上昇させてしまい、ひいては建設機械の騒音上昇、燃費低下を招いてしまう。 On the other hand, when the size of the heat exchanger is increased to increase the thickness, the space in the direction of the rotation axis of the fan is narrowed accordingly. Accordingly, when the distance between the heat exchanger and the fan is reduced, the wind speed distribution of the air passing through the heat exchanger is deteriorated. If the distance between the fan and the engine is reduced, the flow out of the fan is likely to collide with the engine, thereby increasing the pressure loss in the cooling air flow path. Therefore, the number of fan rotations required to obtain the necessary air volume increases, and as a result, the fan shaft power and noise increase, leading to an increase in construction machine noise and fuel consumption.
 しかも、建設機械の場合は、自動車のように走行風による冷却吸気の取り込みが期待できないことから、必要な冷却風量を全てファンによって吸い込まなければならない。したがって、ファンの回転数は自動車に比べて高く設定することになり、ファンの軸動力や騒音も高くなりやすい。これが建設機械全体の燃費や騒音にも影響してくることになる。 In addition, in the case of construction machines, it is not possible to expect the intake of cooling air by running wind as in the case of automobiles, so all necessary cooling air volume must be sucked in by a fan. Therefore, the rotational speed of the fan is set higher than that of the automobile, and the fan shaft power and noise are likely to be high. This will affect the fuel consumption and noise of the entire construction machine.
 本発明は、上記した実情に鑑みてなされたものであり、その目的は、熱交換器の風速分布が良好で、軸流ファンから流出した空気のエンジンへの衝突を回避できる、高効率・低騒音の建設機械を提供することにある。 The present invention has been made in view of the above-described circumstances, and its purpose is to achieve a high efficiency and low efficiency in which the air velocity distribution of the heat exchanger is good and the collision of the air flowing out of the axial fan with the engine can be avoided. It is to provide noise construction machinery.
 上記の課題を解決するために、本発明は、複数の翼片を有し、軸回りに回転する軸流ファンと、この軸流ファンの周囲に配置され、空気の流れを前記軸流ファンに誘導するファンリングと、前記軸流ファンより空気の流れの上流側または下流側に配置される熱交換器と、前記軸流ファンより空気の流れの下流側に配置される構造体と、を備えた建設機械において、前記ファンリングは、吸込側の流路を縮小する吸込側R形状部と、吐出側の流路を拡大する吐出側R形状部とを有し、前記翼片は、前縁と後縁と外周縁とを有して形成されると共に、軸中心から回転方向に向かって前進角θで傾き、かつ、吸込側に前傾した姿勢で取り付けられ、前記軸流ファンが前記ファンリングの内側に取り付けられた状態で、前記翼片の前記後縁と前記外周縁とが交わる第1交点が、前記吐出側R形状部の幅の範囲内に位置していることを特徴としている。 In order to solve the above-mentioned problems, the present invention has an axial fan having a plurality of blade pieces and rotating around an axis, and is disposed around the axial fan. A fan ring for guiding, a heat exchanger disposed upstream or downstream of the air flow from the axial fan, and a structure disposed downstream of the air fan from the axial fan. In the construction machine, the fan ring has a suction side R-shaped portion that reduces the flow path on the suction side and a discharge-side R-shaped portion that expands the flow path on the discharge side, and the blade piece has a leading edge And a rear edge and an outer peripheral edge. The axial fan is attached in a posture inclined at a forward angle θ from the axial center toward the rotational direction and forwardly inclined toward the suction side. In the state of being attached to the inside of the ring, the trailing edge of the wing piece and the outer First intersection point where the edge intersection is characterized by being located within the width of the discharge-side R-shaped portion.
 このように構成された本発明によれば、軸流ファンの吸込側を求心流れとすることができ、かつ、吐出側を遠心流れとすることができるから、軸流ファンより空気の流れの上流側または下流側に配置された大型の熱交換器に対して、その端部まで良好な風速分布で冷却風を流すことが可能となる。しかも、軸流ファンから流出した空気が、下流側にあるエンジンなどの構造体に衝突することが避けられるから、冷却風流路の圧力損失増加を防ぐことが出来る。 According to the present invention configured as described above, the suction side of the axial flow fan can be a centripetal flow and the discharge side can be a centrifugal flow, so that the air flow is more upstream than the axial flow fan. With respect to a large heat exchanger arranged on the side or the downstream side, it becomes possible to flow cooling air with a good wind speed distribution to the end portion. In addition, it is possible to prevent the air flowing out from the axial fan from colliding with a structure such as an engine on the downstream side, thereby preventing an increase in pressure loss in the cooling air flow path.
 そして、本発明によれば、熱交換器における放熱性能を向上させることができ、エンジン周囲の熱気を効率良く換気できることから、エンジンあるいは作動油のオーバーヒートの発生を抑制することが出来る。さらには、熱交換器の放熱性能が向上し、冷却風流路の圧力損失が低減すると、冷却に必要な風量を少なくすることができるから、軸流ファンの回転数を抑えることができる。このことは、騒音の抑制、駆動動力低減による燃費向上などにも貢献することとなる。 And according to this invention, since the thermal radiation performance in a heat exchanger can be improved and the hot air around an engine can be ventilated efficiently, generation | occurrence | production of the engine or hydraulic oil overheating can be suppressed. Furthermore, if the heat dissipation performance of the heat exchanger is improved and the pressure loss in the cooling air flow path is reduced, the air volume necessary for cooling can be reduced, and the rotational speed of the axial fan can be suppressed. This contributes to noise suppression and improved fuel efficiency by reducing driving power.
 また、上記構成において、前記前進角θは、5°以上25°以下の範囲にあるのが好ましい。このように構成すると、設計風量(100%Q)を得るために軸流ファンの回転数を上げても、その際に発生する騒音の増加を、人が感じない程度のレベル(即ち、+3dB以下)に抑えることができる。しかも、冷却空気の吐出側に位置する構造体による抵抗を受けて圧力損失が増加したとしても、風量低下の許容の下限値(即ち、-10%)を下回ることがない。 In the above configuration, the advance angle θ is preferably in the range of 5 ° to 25 °. With this configuration, even if the rotational speed of the axial fan is increased in order to obtain the designed air volume (100% Q), a level that is not felt by humans (ie, +3 dB or less) ). Moreover, even if the pressure loss increases due to the resistance of the structure located on the cooling air discharge side, it does not fall below the allowable lower limit (ie, −10%) of the air flow reduction.
 また、上記構成において、前記翼片の前記前縁と前記外周縁とが交わる第2交点は、前記吸込側R形状部から空気の流れの上流側へ突出した位置にあるのが好ましい。このように構成すると、軸流ファンの吸込側の求心流れと吐出側の遠心流れがより一層スムーズになるから、熱交換器の放熱性能がさらに向上する。 Further, in the above configuration, it is preferable that the second intersection point where the front edge and the outer peripheral edge of the blade piece intersect is at a position protruding from the suction side R-shaped portion to the upstream side of the air flow. If comprised in this way, since the centripetal flow on the suction side and the centrifugal flow on the discharge side of the axial flow fan become smoother, the heat dissipation performance of the heat exchanger is further improved.
 本発明によれば、熱交換器の風速分布を良好に保ち、軸流ファンから流出した空気がエンジンへ衝突することを回避した、高効率・低騒音の建設機械を提供することができる。 According to the present invention, it is possible to provide a high-efficiency, low-noise construction machine that maintains a favorable wind speed distribution of the heat exchanger and avoids collision of air flowing out of the axial fan with the engine.
本発明の第1実施例に係る油圧ショベルの外観斜視図である。1 is an external perspective view of a hydraulic excavator according to a first embodiment of the present invention. 図1に示す油圧ショベルのエンジン室の側断面図である。It is a sectional side view of the engine room of the hydraulic excavator shown in FIG. 図2に示す軸流ファンとファンリングの要部を拡大した側面図である。It is the side view to which the principal part of the axial fan shown in FIG. 2 and a fan ring was expanded. 図2に示す軸流ファンの要部を拡大した平面図である。It is the top view to which the principal part of the axial fan shown in FIG. 2 was expanded. 図2に示す軸流ファンの翼の前進角と相対騒音との関係を示す図である。It is a figure which shows the relationship between the advancing angle of the blade | wing of the axial flow fan shown in FIG. 2, and relative noise. 図2に示す軸流ファンの翼の前進角と圧力損失増加時の風量変化との関係を示す図である。It is a figure which shows the relationship between the advancing angle of the blade | wing of the axial fan shown in FIG. 2, and the air volume change at the time of pressure loss increase. 本発明の第2実施例に係る油圧ショベルのエンジン室の側断面図である。It is a sectional side view of the engine room of the hydraulic shovel which concerns on 2nd Example of this invention.
 以下、本発明に係る建設機械の一実施形態である油圧ショベルについて、図面を用いて説明する。図1に示すように、第1実施例に係る油圧ショベルは、クローラ24と、このクローラ24の上に配置される上部旋回体26と、この上部旋回体26に上下方向の回動可能に取付けられ、掘削作業等を行なうことができるフロント作業機と、操作室であるキャブ25と、を備えて構成されている。フロント作業機は、上部旋回体26に俯仰動可能に取付けられるブーム21と、このブーム21の先端に回動可能に取り付けられるアーム22と、このアーム22の先端に回動可能に取り付けられるバケット23と、これらを駆動する油圧シリンダと、を備えて構成されている。また、上部旋回体26は、その後方にエンジン室10を内蔵している。なお、符号27は、カウンタウェイト27である。 Hereinafter, a hydraulic excavator which is an embodiment of a construction machine according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the hydraulic excavator according to the first embodiment is attached to a crawler 24, an upper swing body 26 disposed on the crawler 24, and the upper swing body 26 so as to be rotatable in the vertical direction. The front working machine capable of performing excavation work and the like, and the cab 25 as an operation room are provided. The front work machine includes a boom 21 that is attached to the upper swing body 26 so as to be able to move up and down, an arm 22 that is rotatably attached to the tip of the boom 21, and a bucket 23 that is rotatably attached to the tip of the arm 22. And a hydraulic cylinder for driving them. Further, the upper swing body 26 has the engine room 10 built in behind it. Reference numeral 27 denotes a counter weight 27.
 このエンジン室10には、図2に示すように、軸流ファン2と、空気の流れを軸流ファン2に誘導するファンリング3と、熱交換器1と、エンジン(構造体)4と、バッテリー9とが設置されている。また、エンジン室10の上部には、空気の出入口となる吸気口7が設けられ、エンジン室10の上部および下部には排気口8が設けられている。熱交換器1と軸流ファン2とエンジン4との位置関係は、熱交換器1が軸流ファン2より空気の流れの上流側、エンジン4が軸流ファン2の空気の流れの下流側である。このような位置関係により、軸流ファン2は、その上流側でファンの中心方向に向かう求心流れが要求され、その下流側でファンの遠心方向に向かう遠心流れが要求されることになる。そのために、本実施例では、前進・前傾翼が採用されている(詳しくは後述)。 As shown in FIG. 2, the engine room 10 includes an axial fan 2, a fan ring 3 that guides the air flow to the axial fan 2, a heat exchanger 1, an engine (structure) 4, A battery 9 is installed. In addition, an intake port 7 serving as an air inlet / outlet is provided in the upper portion of the engine chamber 10, and an exhaust port 8 is provided in the upper and lower portions of the engine chamber 10. The positional relationship among the heat exchanger 1, the axial fan 2 and the engine 4 is such that the heat exchanger 1 is upstream of the air flow from the axial fan 2 and the engine 4 is downstream of the air flow of the axial fan 2. is there. With such a positional relationship, the axial fan 2 is required to have a centripetal flow toward the center of the fan on the upstream side, and a centrifugal flow toward the centrifugal direction of the fan on the downstream side. Therefore, in this embodiment, forward / forward tilting blades are employed (details will be described later).
 熱交換器1は、ラジエータ、オイルクーラ、インタークーラで構成されており、各機器は、並列に配置されている。近年、交換熱量を高めるために熱交換器1のサイズは拡大の傾向にあり、本実施例においても、熱交換器1の全体の外形の方が相対的に軸流ファン2よりも大きくなっている。 The heat exchanger 1 includes a radiator, an oil cooler, and an intercooler, and each device is arranged in parallel. In recent years, the size of the heat exchanger 1 has been increasing in order to increase the amount of heat exchanged, and in this embodiment as well, the overall outer shape of the heat exchanger 1 is relatively larger than the axial fan 2. Yes.
 エンジン4は、クランク軸(出力軸)4aを備えており、このクランク軸4aから、プーリ5、ファンベルト6を介して軸流ファン2を回転させるための動力が伝達される。そして、プーリ5によって適正なファン回転数に調整され、ファン2は回転する。 The engine 4 includes a crankshaft (output shaft) 4a, from which power for rotating the axial fan 2 is transmitted via the pulley 5 and the fan belt 6. Then, the fan 5 is adjusted to an appropriate fan rotation speed by the pulley 5, and the fan 2 rotates.
 次に、軸流ファン2及びファンリング3の詳細について説明する。軸流ファン2は、図2に示すように、回転軸2cに取り付けられた円柱状のハブ2bと、そのハブ2bの周囲に設けられた複数の翼(翼片)2aとで構成されている。また、ファンリング3は、環状に形成され、図2及び図3に示すように、軸流ファン2の周囲に設けられていると共に、その吸込側に曲面を有した吸込側R形状部3a、吐出側に曲面を有した吐出側R形状部3bを有している。即ち、ファンリング3は、吸込側の側縁部および吐出側の側縁部が共にR形状を成しているのである。 Next, the details of the axial fan 2 and the fan ring 3 will be described. As shown in FIG. 2, the axial fan 2 includes a cylindrical hub 2b attached to the rotary shaft 2c, and a plurality of blades (blade pieces) 2a provided around the hub 2b. . The fan ring 3 is formed in an annular shape, and is provided around the axial flow fan 2 as shown in FIGS. 2 and 3, and has a suction side R-shaped portion 3a having a curved surface on the suction side. It has a discharge side R-shaped portion 3b having a curved surface on the discharge side. That is, in the fan ring 3, the side edge on the suction side and the side edge on the discharge side are both formed in an R shape.
 翼2aは、図3に示すように、前縁2gと、外周縁2eと、後縁2dとを有して形成されており、軸流ファン2がファンリング3の内側に取り付けられた状態において、前縁2gと外周縁2eとが交わる第2交点Qが、ファンリング3の吸込側R形状部3aより上流側(吸込側)に長さLだけ突出し、かつ、後縁2dと外周縁2eとが交わる第1交点Pが、ファンリング3の吐出側R形状部3bの幅Wの範囲内に位置するようになっている。 As shown in FIG. 3, the blade 2 a is formed to have a front edge 2 g, an outer peripheral edge 2 e, and a rear edge 2 d, and the axial fan 2 is attached inside the fan ring 3. The second intersection point Q where the front edge 2g and the outer peripheral edge 2e intersect is projected by a length L from the suction side R-shaped part 3a of the fan ring 3 to the upstream side (suction side), and the rear edge 2d and the outer peripheral edge 2e The first intersection point P where the two intersect with each other is positioned within the range of the width W of the discharge-side R-shaped portion 3 b of the fan ring 3.
 さらに、翼2aの詳細の形状について説明すると、翼2aは、図3に示すように、径の大きい位置ほど吸込側にせり出し、全体として傾斜(前傾)している。また、その翼2aは、図4に示すように、半径方向位置の大きい箇所ほど回転方向に出ていて(前進していて)、その前進角はθである。つまり、本実施例に用いられる軸流ファン2の翼2aは、前進・前傾翼である。なお、ここでいう前進角θは、翼2aの後縁2dが回転方向にどれだけせり出しているかを角度で示したものであり、具体的には、回転軸2cの中心点Aと、翼2aの後縁2dとハブ2bとが交わる第3交点Oと、第1交点Pとを結んで形成される三角形AOPの内角Aのことである。 Further, the detailed shape of the blade 2a will be described. As shown in FIG. 3, the blade 2a protrudes toward the suction side as the position has a larger diameter, and is inclined (forwardly inclined) as a whole. Further, as shown in FIG. 4, the blade 2 a protrudes in the rotational direction (moves forward) at a location having a larger radial position, and its advance angle is θ. That is, the blade 2a of the axial fan 2 used in this embodiment is a forward / forward tilting blade. Note that the advancing angle θ here indicates how much the trailing edge 2d of the blade 2a protrudes in the rotation direction, and specifically, the center point A of the rotating shaft 2c and the blade 2a. This is an inner angle A of the triangle AOP formed by connecting the third intersection point O where the rear edge 2d and the hub 2b intersect with the first intersection point P.
 次に、軸流ファン2による空気の流れについて説明する。なお、図2及び図3の矢印は空気の流れを示している。一般的に前進・前傾翼を有する軸流ファンは、その上流側(吸込側)でファンの回転中心に向かうような求心流れをつくり、一部、ファンの側方からも空気を吸い込むという特徴を有している。そのため、軸流ファン2が回転するとその前後に圧力差が生じ、空気の流れが誘起される。まず、吸気口7を介してエンジン室10外部の低温の空気がエンジン室10の内部に流入する。その空気は熱交換器1を通過する際に、熱交換器1管内の流体(エンジン冷却水、作動油、圧縮空気など)の熱を奪い、自身は高温となる。その後軸流ファン2に流入し、昇圧された後、軸流ファン2から流出し、エンジン4周囲を流れて、排気口8よりエンジン室10の外部に放出される。このような流れが生じることにより、軸流ファン2よりも相対的に大きい熱交換器1であっても、その端部まで空気の流れを作ることが出来、効率の良い熱交換が実現できる。 Next, the air flow by the axial fan 2 will be described. The arrows in FIGS. 2 and 3 indicate the flow of air. Generally, an axial fan with forward and forward inclined blades creates a centripetal flow that goes toward the rotation center of the fan on the upstream side (suction side), and partly sucks air from the side of the fan. have. Therefore, when the axial flow fan 2 rotates, a pressure difference is generated between before and after that, and an air flow is induced. First, low-temperature air outside the engine compartment 10 flows into the engine compartment 10 through the intake port 7. When the air passes through the heat exchanger 1, it takes heat of the fluid (engine cooling water, hydraulic oil, compressed air, etc.) in the pipe of the heat exchanger 1 and becomes high temperature. Thereafter, the refrigerant flows into the axial fan 2, is pressurized, flows out from the axial fan 2, flows around the engine 4, and is discharged from the exhaust port 8 to the outside of the engine room 10. By generating such a flow, even in the heat exchanger 1 that is relatively larger than the axial fan 2, an air flow can be made to the end portion, and efficient heat exchange can be realized.
 一方で、前進・前傾翼を有する軸流ファンは、その下流側(吐出側)では、空気が回転軸2cに沿った軸流方向に流出しやすいという特徴がある。そのため、そのままでは軸流ファン2から流出した空気がエンジン4に衝突し、圧力損失が増大してしまう可能性がある。 On the other hand, the axial fan having forward and forward inclined blades is characterized in that air tends to flow out in the axial direction along the rotary shaft 2c on the downstream side (discharge side). Therefore, if it is as it is, the air which flowed out from the axial fan 2 may collide with the engine 4, and pressure loss may increase.
 そこで、本実施例の場合は、図3に示すように、後縁2dと外周縁2eとが交わる第1交点Pを、ファンリング3の吐出側R形状部3bの幅Wの範囲内に位置させるようにしている。このようにすることで、軸流ファン2から流出した空気は、コアンダ効果によってファンリング3の吐出側R形状部3bに沿って流れるため、空気の流れが半径方向に向かいやすく、遠心的な流れとなる。この結果、軸流ファン2から流出した空気がエンジン4に衝突することを回避でき、圧力損失の増大を抑制することが出来る。また、ファンリング3の吐出側R形状部3bはディフューザとしても作用するため、翼2aの後端にある第1交点Pから流出する絶対流速の高い流れを効果的に減速させ、静圧を上昇させる効果も期待できる。 Therefore, in the case of the present embodiment, as shown in FIG. 3, the first intersection point P where the trailing edge 2d and the outer peripheral edge 2e intersect is positioned within the range of the width W of the discharge side R-shaped portion 3b of the fan ring 3. I try to let them. By doing in this way, since the air which flowed out from the axial fan 2 flows along the discharge side R-shaped part 3b of the fan ring 3 by the Coanda effect, the air flow is easily directed in the radial direction, and the centrifugal flow It becomes. As a result, the air flowing out from the axial fan 2 can be prevented from colliding with the engine 4 and the increase in pressure loss can be suppressed. Further, since the discharge side R-shaped portion 3b of the fan ring 3 also acts as a diffuser, it effectively decelerates the flow having a high absolute flow velocity flowing out from the first intersection P at the rear end of the blade 2a, and increases the static pressure. We can expect effect to make.
 以上の説明から分かるように、本実施例の油圧ショベルでは、熱交換器1においては良好な風速分布による効果的な熱交換を実現することができ、かつ、軸流ファン2下流側では、流出した空気によるエンジン4との衝突を回避できることにより低圧損の流路構成を実現することができる。 As can be seen from the above description, in the excavator of the present embodiment, the heat exchanger 1 can achieve effective heat exchange with a good wind speed distribution, and the downstream side of the axial flow fan 2 is outflowed. By avoiding a collision with the engine 4 due to the air, a flow path configuration with a low pressure loss can be realized.
 一方で、油圧ショベルでは開口部(吸気口7、排気口8)からの軸流ファン2やエンジン4の騒音の漏えいが周囲の騒音の上昇をもたらす。このため、開口部はなるべく、エンジン室10の上面や下面に設け、ファン騒音やエンジン騒音が周囲の人間に直接伝わらないようにしたいというニーズがある。その点、本実施例の構成では、軸流ファン2の径方向からの流入(求心流れ)と径方向への流出(遠心流れ)を両立しているために、軸流ファン2の回転軸2cから見て側方であるエンジン室10上部に開口部を設ける際に都合が良く、全体の圧力損失を抑制しつつ、油圧ショベル全体の騒音低減にも寄与する。 On the other hand, in the hydraulic excavator, leakage of the noise of the axial fan 2 and the engine 4 from the openings (the intake port 7 and the exhaust port 8) causes an increase in ambient noise. For this reason, there is a need to provide openings on the upper and lower surfaces of the engine room 10 as much as possible so that fan noise and engine noise are not directly transmitted to the surrounding people. In that respect, in the configuration of the present embodiment, since the inflow from the radial direction (centripetal flow) and the outflow in the radial direction (centrifugal flow) of the axial flow fan 2 are compatible, the rotating shaft 2c of the axial flow fan 2 is achieved. This is convenient when an opening is provided in the upper part of the engine chamber 10 that is a side when viewed from the side, and contributes to noise reduction of the entire hydraulic excavator while suppressing overall pressure loss.
 なお、前進角θの大きくし過ぎると、軸流ファン2の吸込側での求心流れ、さらには吐出側での軸流が強まり、上記のような構成をもってしても下流側での遠心流れを実現しにくくなる。また、前進角θの値によって、ファン騒音の値も変わってくるうえ、風量にも影響が出てくる。そこで、発明者らは、前進角θの好ましい角度の範囲を求めるために、次のようなシミュレーション解析を行った。 If the advance angle θ is too large, the centripetal flow on the suction side of the axial fan 2 and further the axial flow on the discharge side become strong, and even if it has the above-described configuration, the centrifugal flow on the downstream side is increased. It becomes difficult to realize. Further, the value of the fan noise varies depending on the value of the advance angle θ, and the air volume is also affected. Therefore, the inventors conducted the following simulation analysis in order to obtain a preferable angle range of the advance angle θ.
 まず、発明者らは、設計風量(100%Q)達成時の騒音についてのシミュレーション解析を行った。軸流ファン2の静圧が低い場合などは、冷却に必要な設計風量(100%Q)を得るためにファン回転数を上げる必要がある。設計風量を達成するための回転数アップによる騒音変化に換算すると、図5に示すようになる。なお、図5は、前進角θ=0°を基準として表したものである。なるべくならば、得られる最低騒音(即ち、θ=0°近傍)の設計にしたいが、騒音で3dBの増加(音のエネルギで2倍)は、人の耳で騒音上昇が認知されはじめるレベル差と言われており、ここまでの騒音増加であれば許容できる。この観点から考えると、前進角θは約25°以下にすれば、人の感じる騒音としてはほぼ最低レベルを達成できる。つまり、このシミュレーション解析によって、騒音を+3dB以下に抑えることのできる前進角θの上限は25°であることが分かった。 First, the inventors conducted a simulation analysis of noise when the design air volume (100% Q) was achieved. In the case where the static pressure of the axial fan 2 is low, it is necessary to increase the fan rotation speed in order to obtain the design air volume (100% Q) necessary for cooling. When converted into a noise change due to an increase in the number of rotations to achieve the design air volume, it becomes as shown in FIG. FIG. 5 shows the forward angle θ = 0 ° as a reference. If possible, we want to design the lowest noise that can be obtained (that is, near θ = 0 °). However, an increase of 3 dB in noise (twice the energy of sound) is the level difference at which the increase in noise begins to be perceived by the human ear. It is said that an increase in noise up to this point is acceptable. From this point of view, if the advance angle θ is about 25 ° or less, it is possible to achieve the lowest level of noise perceived by humans. That is, it was found from this simulation analysis that the upper limit of the advance angle θ that can suppress the noise to +3 dB or less is 25 °.
 次に、発明者らは、圧力損失(流路抵抗)が設計時より30%増加した時に、どれだけ風量が低下するかについてのシミュレーション解析を行った。その結果を示したものが図6である。建設機械はその稼動する環境から、熱交換器にゴミや土などが堆積し、軸流ファンとしては次第に流路抵抗が増加するような使用環境にある。実際には、ある程度の時間の運転の後に熱交換器やフィルタを掃除して目詰まりを除去し、流路抵抗の増加を抑えるのだが、使い勝手から言って、なるべくその掃除の間隔を長くしたい。言いかえれば、流路抵抗が増えてもなるべく風量低下が小さい軸流ファンが望ましい。そこで、風量の10%低下が許容の下限であるとすると、図6から、前進角θは、約5°以上約40°以下であることが望ましい。 Next, the inventors conducted a simulation analysis of how much the air flow decreases when the pressure loss (flow path resistance) increases by 30% from the design time. The result is shown in FIG. The construction machine is in an operating environment in which dust and dirt accumulate on the heat exchanger due to the operating environment, and the flow resistance gradually increases as an axial fan. Actually, after a certain amount of time of operation, the heat exchanger and filter are cleaned to remove clogging, and the increase in flow resistance is suppressed. In other words, it is desirable to use an axial fan with as little airflow reduction as possible even if the flow path resistance increases. Therefore, assuming that a 10% reduction in the air volume is an allowable lower limit, it is desirable from FIG. 6 that the advance angle θ is about 5 ° or more and about 40 ° or less.
 以上のシミュレーション解析の結果から、両方の設計要求を満足する閾値としての前進角θは、5°以上25°以下であることが分かった。そこで、本実施例に係る軸流ファン2は、翼2aの前進角θを5°以上25°以下としている。 From the above simulation analysis results, it was found that the advance angle θ as a threshold value satisfying both design requirements is 5 ° or more and 25 ° or less. Therefore, in the axial fan 2 according to the present embodiment, the advancing angle θ of the blade 2a is set to 5 ° to 25 °.
 次に、本発明の第2実施例について、図7を用いて説明する。図7は、第2実施例に係る油圧ショベルのエンジン室の側断面図を示している。なお、第2実施例のうち第1実施例と同じ構成については、同一の符号を付して、その説明は省略することにする。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is a side sectional view of the engine chamber of the hydraulic excavator according to the second embodiment. In addition, about the same structure as 1st Example among 2nd Example, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 本実施例では、軸流ファン2がエンジン4とは別置きとなっており、軸流ファン2の下流側に熱交換器1が配置され、吸気口7は軸流ファン2の上流側のエンジン室10の上下の壁面、特に軸流ファン2の回転軸2cから見て側面に配置されている。軸流ファン2は油圧モータ11に直結されており、これにより駆動される。軸流ファン2の周囲には第一の実施例と同様にファンリング3が設置されている。 In this embodiment, the axial fan 2 is provided separately from the engine 4, the heat exchanger 1 is disposed on the downstream side of the axial fan 2, and the intake port 7 is the engine on the upstream side of the axial fan 2. The upper and lower wall surfaces of the chamber 10 are disposed on the side surfaces as viewed from the rotating shaft 2 c of the axial fan 2. The axial fan 2 is directly connected to the hydraulic motor 11 and is driven thereby. A fan ring 3 is installed around the axial fan 2 as in the first embodiment.
 軸流ファン2が回転すると、吸気口7からエンジン室10内部に空気が流入する。空気は軸流ファン2を通過後に、熱交換器1にて熱交換をし、下流側の上下にある排気口8より外部に排出される。 When the axial fan 2 rotates, air flows into the engine compartment 10 from the intake port 7. After passing through the axial fan 2, the air exchanges heat in the heat exchanger 1 and is discharged to the outside through the exhaust ports 8 located on the upper and lower sides on the downstream side.
 第2実施例の構成においても、軸流ファン2の上流側では求心的な流れ、下流側では遠心的な流れが両立される。このため、回転軸2cから見て側方に設けられた吸気口7からスムーズに空気の流入がなされる。また、軸流ファン2から流出した流れが熱交換器1に入る際も、熱交換器1の端部にも空気が入るため、効果的な熱交換が実現できる。吸気口7及び排気口8がエンジン室10の上面および下面にあるために、軸流ファン2やモータ11の騒音は直接、周囲の人間の耳に到達しなくなるので、油圧ショベルの周囲の騒音低減に寄与できる。 Also in the configuration of the second embodiment, the centripetal flow on the upstream side of the axial fan 2 and the centrifugal flow on the downstream side are compatible. For this reason, air flows in smoothly from the air inlet 7 provided on the side as viewed from the rotating shaft 2c. In addition, when the flow that flows out of the axial fan 2 enters the heat exchanger 1, air enters the end portion of the heat exchanger 1, so that effective heat exchange can be realized. Since the intake port 7 and the exhaust port 8 are on the upper surface and the lower surface of the engine compartment 10, the noise of the axial fan 2 and the motor 11 does not directly reach the surrounding human ears, so that the noise around the hydraulic excavator is reduced. Can contribute.
 以上の実施例をもって本発明の効果を説明してきたが、本発明は必ずしもこれに限定されるものではない。本発明は、例えばファンの駆動方法や使用する熱交換器の種類は問わないし、油圧ショベル以外の建設機械においてもその効果を期待できるものである。 Although the effects of the present invention have been described with the above embodiments, the present invention is not necessarily limited thereto. In the present invention, for example, the fan driving method and the type of heat exchanger to be used are not limited, and the effect can be expected in construction machines other than hydraulic excavators.
 1 熱交換器
 2 軸流ファン
 2a 翼(翼片)
 2c 回転軸(軸)
 2d 後縁
 2e 外周縁
 2g 前縁
 3 ファンリング
 3a 吸込側R形状部
 3b 吐出側R形状部
 4 エンジン(構造体)
 P 第1交点
 Q 第2交点
 W 吐出側R形状部の幅
 θ 前進角
1 Heat exchanger 2 Axial fan 2a Wing (blade piece)
2c Rotating shaft (axis)
2d Rear edge 2e Outer peripheral edge 2g Front edge 3 Fan ring 3a Suction side R-shaped part 3b Discharge side R-shaped part 4 Engine (structure)
P First intersection point Q Second intersection point W Width of discharge-side R-shaped portion θ Advance angle

Claims (3)

  1.  複数の翼片を有し、軸回りに回転する軸流ファンと、この軸流ファンの周囲に配置され、空気の流れを前記軸流ファンに誘導するファンリングと、前記軸流ファンより空気の流れの上流側または下流側に配置される熱交換器と、前記軸流ファンより空気の流れの下流側に配置される構造体と、を備えた建設機械において、
     前記ファンリングは、吸込側の流路を縮小する吸込側R形状部と、吐出側の流路を拡大する吐出側R形状部とを有し、
     前記翼片は、前縁と後縁と外周縁とを有して形成されると共に、軸中心から回転方向に向かって前進角θで傾き、かつ、吸込側に前傾した姿勢で取り付けられ、
     前記軸流ファンが前記ファンリングの内側に取り付けられた状態で、前記翼片の前記後縁と前記外周縁とが交わる第1交点が、前記吐出側R形状部の幅の範囲内に位置していることを特徴とする建設機械。
    An axial fan having a plurality of blades and rotating about an axis; a fan ring arranged around the axial fan to guide an air flow to the axial fan; and an air flow from the axial fan In a construction machine comprising a heat exchanger disposed upstream or downstream of a flow and a structure disposed downstream of the air flow from the axial fan,
    The fan ring has a suction side R-shaped portion that reduces the flow path on the suction side, and a discharge-side R-shaped portion that expands the flow path on the discharge side,
    The blade piece is formed to have a front edge, a rear edge, and an outer peripheral edge, and is inclined in a forward angle θ from the axial center toward the rotation direction, and attached in a posture inclined forward to the suction side,
    In a state where the axial fan is attached to the inside of the fan ring, a first intersection where the trailing edge of the blade piece and the outer peripheral edge intersect is located within the range of the width of the discharge side R-shaped portion. Construction machinery characterized by
  2.  請求項1の記載において、
     前記前進角θは、5°以上25°以下の範囲にあることを特徴とする建設機械。
    In the description of claim 1,
    The advancing angle θ is in the range of 5 ° to 25 °.
  3.  請求項2の記載において、
     前記翼片の前記前縁と前記外周縁とが交わる第2交点は、前記吸込側R形状部から空気の流れの上流側へ突出した位置にあることを特徴とする建設機械。
    In the description of claim 2,
    A construction machine characterized in that a second intersection point where the front edge and the outer peripheral edge of the wing piece intersect is at a position protruding from the suction side R-shaped portion to the upstream side of the air flow.
PCT/JP2012/080754 2011-11-29 2012-11-28 Construction machine WO2013081010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/361,090 US20140301839A1 (en) 2011-11-29 2012-11-28 Construction machine
DE112012004976.4T DE112012004976B4 (en) 2011-11-29 2012-11-28 construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011260760A JP5883278B2 (en) 2011-11-29 2011-11-29 Construction machinery
JP2011-260760 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013081010A1 true WO2013081010A1 (en) 2013-06-06

Family

ID=48535461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080754 WO2013081010A1 (en) 2011-11-29 2012-11-28 Construction machine

Country Status (4)

Country Link
US (1) US20140301839A1 (en)
JP (1) JP5883278B2 (en)
DE (1) DE112012004976B4 (en)
WO (1) WO2013081010A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640949B2 (en) * 2016-03-10 2020-05-05 Hitachi Construction Machinery Co., Ltd. Construction machine
US10563751B2 (en) 2017-04-19 2020-02-18 Excel Industries, Inc. Cooling apparatus for continuously variable transmissions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988889A (en) * 1995-09-19 1997-03-31 Matsushita Refrig Co Ltd Cooling device
JP2001227497A (en) * 2000-02-16 2001-08-24 Daikin Ind Ltd Propeller fan and air conditioner therewith
JP2007040116A (en) * 2005-08-01 2007-02-15 Daikin Ind Ltd Axial fan
JP2010236372A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Axial blower, air conditioner, and ventilation fan
JP2010270670A (en) * 2009-05-21 2010-12-02 Hitachi Constr Mach Co Ltd Cooling fan device for construction machine
JP2011185236A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Blower and heat pump device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513951A (en) * 1993-03-29 1996-05-07 Nippondenso Co., Ltd. Blower device
JP3023433B2 (en) * 1995-04-10 2000-03-21 日立建機株式会社 Heat exchanger cooling system
KR100407491B1 (en) * 1998-06-17 2003-11-28 히다치 겡키 가부시키 가이샤 Fan device and shroud
JP3919496B2 (en) 2001-10-15 2007-05-23 ヤンマー株式会社 RADIATOR FAN AND ENGINE COOLING DEVICE USING THE SAME
DE102010038950A1 (en) 2010-08-05 2012-02-09 Behr Gmbh & Co. Kg Axial blower for radiator of internal combustion engine, particularly for commercial motor vehicle, is attached with casing or fan frame at engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988889A (en) * 1995-09-19 1997-03-31 Matsushita Refrig Co Ltd Cooling device
JP2001227497A (en) * 2000-02-16 2001-08-24 Daikin Ind Ltd Propeller fan and air conditioner therewith
JP2007040116A (en) * 2005-08-01 2007-02-15 Daikin Ind Ltd Axial fan
JP2010236372A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Axial blower, air conditioner, and ventilation fan
JP2010270670A (en) * 2009-05-21 2010-12-02 Hitachi Constr Mach Co Ltd Cooling fan device for construction machine
JP2011185236A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Blower and heat pump device

Also Published As

Publication number Publication date
DE112012004976B4 (en) 2022-03-31
DE112012004976T5 (en) 2014-09-11
JP5883278B2 (en) 2016-03-09
US20140301839A1 (en) 2014-10-09
JP2013113225A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
KR100254654B1 (en) Engine cooler and construction machines
EP2103746B1 (en) Engine room for construction equipment
KR100889306B1 (en) Radiator fan and engine cooling device using the radiator fan
CN102221016A (en) Compressor gas flow deflector and compressor incorporating the same
WO1998016727A1 (en) Engine cooling apparatus
JP4399398B2 (en) Cooling device and cooling device for work machine
KR101287437B1 (en) Cooling device and construction machine or working machine equipped with the same
JP5883278B2 (en) Construction machinery
WO2014027619A1 (en) Cooling fan mounting structure for construction machine
JPH08303241A (en) Engine cooling device and construction machine
EP3319210B1 (en) Electric motor support mechanism, compressor, and supercharger
US11680583B2 (en) Construction machine
JP2014234803A (en) Variable displacement turbine and variable displacement supercharger
JP2008261270A (en) Cooling air exhaust structure of working machine
JP2002201940A (en) Heat exchanger of construction machinery
JP5308234B2 (en) Cooling fan device for construction machinery
CN207527738U (en) A kind of outdoor unit and air conditioner
JP2006226200A (en) Engine cooling device
JP2007009729A (en) Cooling device and cooling device of operating machine
JP6549895B2 (en) Heat exchanger unit
JP2004225625A (en) Cooling system of construction machine
JP2012241570A (en) Shroud for cooling fan
KR20100064929A (en) Turbo charger
JP3549960B2 (en) Engine cooling equipment and construction machinery
JP2009057934A (en) Cooling fan shroud structure, and cooling unit of construction machine provided therewith

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361090

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012004976

Country of ref document: DE

Ref document number: 1120120049764

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853850

Country of ref document: EP

Kind code of ref document: A1