WO2013080746A1 - Engine starting device and starting method - Google Patents

Engine starting device and starting method Download PDF

Info

Publication number
WO2013080746A1
WO2013080746A1 PCT/JP2012/078560 JP2012078560W WO2013080746A1 WO 2013080746 A1 WO2013080746 A1 WO 2013080746A1 JP 2012078560 W JP2012078560 W JP 2012078560W WO 2013080746 A1 WO2013080746 A1 WO 2013080746A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
rotational speed
current
energization
Prior art date
Application number
PCT/JP2012/078560
Other languages
French (fr)
Japanese (ja)
Inventor
宏泰 城吉
西岡 明
義秋 長澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201280057686.7A priority Critical patent/CN103946537B/en
Publication of WO2013080746A1 publication Critical patent/WO2013080746A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/041Starter speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/02Battery voltage drop at start, e.g. drops causing ECU reset
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/106Control of starter current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/108Duty cycle control or pulse width modulation [PWM]

Definitions

  • the present invention relates to an engine starting device and a starting method for starting an engine using a DC motor, and more particularly to an engine starting device and a starting method suitable for restarting an engine with an idle stop system.
  • an idle stop system that temporarily stops the engine when a predetermined condition is satisfied during operation for the purpose of saving energy resources and protecting the environment.
  • This idle stop system automatically stops the engine when the driver stops the vehicle, for example, when waiting for a signal, and then the driver needs to be restarted or the engine needs to be operated.
  • the engine is automatically restarted when When restarting the engine, a so-called pinion extrusion type starter motor is used, and at the start, the pinion is pushed out and meshed with a ring gear directly connected to the engine shaft, and the engine is started by cranking by the starter motor. .
  • Patent Document 1 and Patent Document 2 since the battery current is controlled so as to decrease with time, the output torque of the starter motor decreases, engine cranking cannot be performed sufficiently, and engine restart is not possible. It may take a long time to start.
  • An object of the present invention is to provide an engine starter and a start method that can restart an engine as quickly as possible within an allowable range of a battery voltage drop.
  • the present invention provides an engine starter for transmitting the rotational force of a direct current motor to the engine to start the engine, and a rotational speed detecting means for detecting the rotational speed of the direct current motor. And a control means for PWM-controlling energization to the DC motor, the control means preliminarily receiving a current flowing through the DC motor based on the rotational speed of the DC motor detected by the rotational speed detection means.
  • the energization ratio of the PWM control is continuously changed so that the set constant value is obtained, so that the battery current is allowed to be a substantially constant set current value from the start of motor energization to the completion of engine start. The value is kept within a range and a constant value close to the allowable value. With this configuration, the engine can be restarted as quickly as possible within the allowable range of the battery voltage drop.
  • control means energizes using the fact that the current flowing to the DC motor can be approximated to be proportional to the square of the energization ratio when the energization to the DC motor is PWM controlled. The ratio is determined.
  • the rotational speed detection means of the direct current motor detects the rotational speed of the direct current motor indirectly using the rotational speed of the engine.
  • the control means is configured such that the rotational speed of the DC motor detected by indirectly using the rotational speed of the engine deviates from the actual rotational speed of the DC motor.
  • the control means is configured to determine that the rotational speed of the DC motor detected by the determination means indirectly using the rotational speed of the engine is the actual rotational speed of the DC motor.
  • the actual rotational speed of the DC motor is estimated and used for calculation for determining the energization ratio of the PWM control.
  • the control means based on a current flowing in an electric device that uses the battery as a power source other than the DC motor, totals a current flowing in a battery serving as a power source of the vehicle.
  • the current supplied to the DC motor is changed so as to have a predetermined value, and the energization ratio of the PWM control is determined.
  • the present invention relates to an engine starting method for starting the engine by transmitting the rotational force of the DC motor to the engine, the rotation of the DC motor detected by the rotational speed detecting means. Based on the number, the energization ratio of the PWM control is continuously changed so that the current flowing through the DC motor becomes a predetermined constant value.
  • the inter-cell battery current is set to a substantially constant current value, and the battery voltage is also kept within a permissible range and to a constant value close to the permissible value. With this method, the engine can be restarted as quickly as possible within the allowable range of the battery voltage drop.
  • the engine can be restarted as quickly as possible within the allowable range of the battery voltage drop.
  • FIG. 1 is a configuration diagram of an engine starter according to an embodiment of the present invention.
  • the starter 101 is roughly composed of a magnet switch 102, a pinion gear 103, and a motor 105.
  • the motor 105 is a so-called DC motor, and a rotational driving force is generated by applying a DC voltage.
  • the pinion gear 103 moves on the motor rotation shaft when the magnet switch 102 pulls the lever when necessary, and meshes with the ring gear 104 directly connected to the engine shaft. If the pinion gear 103 and the ring gear 104 are engaged, the motor 105 is rotated by energizing the motor 105, and the rotational force of the motor 105 is transmitted to the ring gear 104 through the pinion gear 108 to rotate the engine.
  • the control device 109 controls the idle stop based on various information such as the brake pedal state and the vehicle speed in addition to the normal fuel injection, ignition and air control (electronic control throttle).
  • the motor rotation detection sensor 110 detects the rotation of the motor. Information on the detected motor rotation speed is input to the control device 109. Instead of directly detecting the rotation of the motor with a sensor, the engine rotation detection sensor 110A may be used to indirectly detect the rotation speed of the motor using the engine rotation.
  • the magnet switch 105 is controlled by the control device 109 via the switch 106.
  • a mechanical relay switch can be used as the switch 106.
  • the energization of the motor 105 is also controlled by the control device 109 via the switching element 107.
  • the switching element 107 for example, a switching element using a semiconductor such as a MOSFET can be used.
  • FIG. 2 is an explanatory diagram of energization signals for PWM control used in the engine starter according to one embodiment of the present invention.
  • the control device 109 outputs the PWM signal shown in FIG. 2 as an energization signal.
  • T shown in FIG. 2 is the length of one cycle of PWM control.
  • T is 0.1 ms.
  • the frequency of PWM control is determined so as to be sufficiently faster than the electric time constant of the motor.
  • TON shown in FIG. 2 is a section in which power is supplied to the motor in one cycle.
  • the energization ratio D is defined as the ratio of the energized section in one cycle as in the following equation (1).
  • D energization ratio in PWM control
  • TON section [s] where the motor is energized in one period
  • T period length [s].
  • the energization ratio D is a variable that can be changed between 0.0 and 1.0.
  • the control device 109 controls the energization amount to the motor by changing the energization ratio D.
  • FIG. 3 is an explanatory diagram of a method for determining the energization ratio D in the engine starter according to the embodiment of the present invention.
  • Fig. 3 shows a simple circuit diagram of the battery and starter.
  • the battery 301 has an internal resistance Rb, and assuming that the initial voltage of the battery is V0, the output voltage Vb of the battery is determined by the following equation (2).
  • Vb battery output voltage [V]
  • V0 initial voltage of the battery (voltage when no current flows) [V]
  • Ib current flowing through the battery [A]
  • Rb internal resistance of the battery [ ⁇ ].
  • the battery voltage is determined by the battery current, and if the current can be controlled to a predetermined value, the battery voltage can also be controlled to the predetermined value.
  • the battery voltage Vb can be expressed by the following expression (3) when wiring, motor internal resistance, switching element resistance, and the like are collectively set as the motor resistance Rm.
  • Vb battery output voltage [V]
  • Ib current flowing through the battery [A]
  • Rm motor resistance (including wiring resistance, internal resistance, switching element resistance) [ ⁇ ]
  • Ve motor rotation Are the counter electromotive voltage [V]
  • ke motor counter electromotive voltage coefficient [V / rpm]
  • Nm motor rotation speed [rpm].
  • the current Ib flowing through the battery in the PWM control is proportional to the square of the energization ratio D.
  • the current Im flowing through the motor is proportional to the square of the energization ratio D when the energization to the DC motor is PWM controlled. Then it can be approximated.
  • This relationship was theoretically determined through experimental observations by the inventors.
  • the equation (5) is an approximation that is established only in a range in which one cycle of PWM can be regarded as being sufficiently fast with respect to the electric time constant of the motor. Indicates that it is determined by a variable. To reversely use this relationship and determine the energization ratio D so that the predetermined battery current Ib is obtained, the equation (5) is transformed into the following equation (6).
  • the battery current Ib is set to a predetermined value, and the energization ratio D is continuously determined based on the motor rotation speed Nm.
  • the energization ratio D calculated by the equation (6) exceeds 1.0, the energization ratio is set to 1.0.
  • an allowable battery current is determined in advance using Equation (2) based on the allowable value of the battery voltage drop.
  • the allowable minimum voltage of the battery is set to 10.5V, for example.
  • a variable other than the motor rotational speed Nm in equation (6) including the battery current value is measured in advance and stored in the control device 109 in advance.
  • FIG. 4 is a flowchart showing the contents of the engine starting method in the engine starting device according to the embodiment of the present invention.
  • step 401 the control device 109 shown in FIG. 1 connects the starter and the engine.
  • the pinion 103 in FIG. 1 is pushed out and meshed with the ring gear 104 directly connected to the engine. If the starter and the engine are in the connected state during the idle stop, and the starter and the engine are already in the connected state when the restart request is generated, step 401 is not necessary.
  • step 402 the control device 109 calculates the energization ratio D of the PWM control by the equation (6) using the variable stored in advance and the rotation speed Nm of the motor, and the waveform of the PWM control. Is output. Current starts to flow to the motor by PWM control, and the torque of the motor is transmitted to the engine to start rotation.
  • the control device 109 continues the calculation in step 402 until the engine start completion condition shown in step 403 is satisfied.
  • the engine start completion condition in step 403 can be determined to be that the engine start has been completed, for example, when the engine rotation has reached a predetermined rotation speed or higher.
  • the control device 109 detects the motor speed at a constant interval (for example, 2 ms), calculates the energization ratio D, and updates the output.
  • the battery current is substantially constant from the start of motor energization to the completion of engine start, and thus the set current value. Therefore, the battery voltage is also substantially constant, and the value is within the allowable range and close to the allowable value.
  • the motor rotational speed can be indirectly obtained from the engine rotational speed.
  • step 401 in FIG. 4 that is, if the starter and the engine are in a connected state, the rotational speed of the motor can be indirectly calculated from the rotational speed of the engine.
  • an engine rotation detection sensor 110A that detects the engine speed is provided.
  • Many automobiles are equipped with an engine rotation detection sensor 110A. Therefore, the motor rotation detection sensor 110 is newly installed by calculating the rotation speed of the starter motor indirectly from the detected engine rotation speed. This is no longer necessary, leading to cost reduction.
  • the following equation (7) can be used.
  • Nm motor rotation speed [rpm]
  • Ne engine rotation speed [rpm]
  • g rotation speed conversion coefficient.
  • the rotational speed conversion coefficient g in Equation (7) can be obtained from the gear ratio between the engine and the motor. Specifically, when connected by a pinion and ring gear, in addition to the gear ratio determined by the number of teeth of the pinion and ring gear, when a reduction mechanism is provided between the motor and the pinion inside the starter, it depends on the reduction ratio of the reduction mechanism.
  • the rotation speed conversion coefficient g can be obtained.
  • the rotational speed conversion coefficient is stored in the control device 109 in advance, and is converted into the motor rotational speed Nm in the control device 109 based on the detected engine rotational speed Ne.
  • FIG. 5 is a flowchart showing the contents of the method for estimating the rotational speed of the motor in the engine starting device according to the embodiment of the present invention.
  • the energization ratio D is calculated using Nm_out, where Nm_out is the estimated rotation speed with respect to the detected rotation speed Nm of the motor. This is repeated for each control cycle, and the calculation result before one control cycle is stored in the control device as Nm_outt-1. Further, ⁇ N is set in advance as the upper limit of the increase in the motor rotation speed for each control cycle.
  • step 501 the control device 109 in FIG. 1 adds the upper limit value ⁇ N to the estimated motor rotation speed Nm_out ⁇ 1 to obtain a new estimated motor rotation speed Nm ′.
  • the newly estimated motor rotational speed Nm ′ is considered to be the maximum value that can increase within one control period with respect to the motor rotational speed Nm_outt ⁇ 1 one period before.
  • control device 109 compares the detected motor rotation speeds Nm and Nm ′ to determine whether or not a deviation from the actual motor rotation speed has occurred.
  • step 502 If it is determined in step 502 that the determination unit 109A of FIG. 1 does not satisfy Nm ⁇ Nm ′, it is determined that there is no difference between the detected value and the actual motor speed, and in step 504, the control device 109 Is used to calculate the energization ratio D by substituting the detected rotational speed Nm as it is for Nm_out.
  • Step 502 if Nm ⁇ Nm ′, it is determined that there is a difference between the detected value and the actual motor speed. In this case, in step 503, the control device 109 substitutes Nm ′ for Nm_out and uses it for calculation of the energization ratio D.
  • the energization ratio D can be calculated correctly even if a deviation from the actual motor rotational speed occurs.
  • FIG. 6 is a waveform diagram showing an example of a control state in the engine starting device according to the embodiment of the present invention.
  • FIG. 6 shows the engine speed, the energization ratio D output from the control device 109, and the changes in the battery voltage and battery current at the time when the engine starting device of the present embodiment is implemented.
  • the energization ratio is calculated using only the engine speed. Since the motor rotational speed is detected indirectly from the engine rotational speed, a section where the estimated motor rotational speed is different from the actual speed and the motor rotational speed is estimated is indicated by a dotted line 603.
  • the estimated motor rotational speed 603 indicates a value obtained by converting the rotational speed of the motor into the rotational speed on the engine shaft with the gear ratio of the motor and the engine.
  • the battery current 605 at the time of energization it is almost flat from the start of energization and is kept constant, and is almost in accordance with the set battery current. It can be seen that the battery voltage 604 at the time of energization was also leveled off and the engine was restarted without falling below the allowable minimum voltage.
  • FIG. 7 is an explanatory diagram of another method for determining the energization ratio D in the engine starting device according to the embodiment of the present invention.
  • FIG. 7 shows a simple circuit diagram in the case where there are electrical devices other than the starter. Assuming that the current flowing through the battery 301 is Ib, the current flowing through the motor of the starter 302 is Im, and the current flowing through the electric device 303 other than the motor is Ie, the relationship shown in the following equation (8) is established.
  • Ib current flowing through the battery
  • Im current flowing through the motor
  • Ie total current flowing through the electrical equipment other than the motor.
  • the current Ib flowing through the battery is the sum of the current Im flowing through the motor and the current Ie flowing through the electric device other than the motor. Therefore, from the allowable battery current, the current Ie of the electric device other than the motor.
  • the battery current is kept constant and allowed to be maintained as a total value.
  • the current Ie flowing through the electrical equipment other than the motor is configured to be recognized directly or indirectly.
  • the current Ie flowing through an electrical device other than a motor is directly measured by a current sensor, or the current normally used by each electrical device other than a motor is individually stored in advance in the control device and used by the electrical device. In the case where the stored current flows, the current flowing indirectly through the electric device other than the motor may be calculated.
  • the following equation (9) for calculating the energization ratio D to the motor is used.
  • the current Im flowing through the motor is determined using the equation (8), and the energization ratio D to the motor is calculated using the equation (9).
  • the engine can be kept constant, and the engine can be restarted as quickly as possible while keeping the voltage drop of the battery within an allowable range.
  • the battery voltage can be kept substantially constant by determining the energization ratio based on the motor speed and keeping the motor current at an almost constant arbitrary value. By doing so, the battery voltage does not fall below the allowable value when the engine is restarted, and the engine is restarted as quickly as possible.
  • the battery voltage drops even if a large current flows in equipment other than the motor. It can be suppressed within an allowable range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided are an engine starting device and a starting method by means of which it is possible to restart an engine as quickly as possible within the allowable range for decreases in battery voltage. A rotation detection sensor (110) detects the rotation speed of a DC motor (105). A control means (109) performs a PWM control for electrification of the DC motor. The control means (109) continuously changes the current-carrying rate (D) of the PWM control on the basis of the rotation speed of the DC motor detected by the rotation detection sensor (110) so that the electric current flowing to the DC motor stays at a preset constant value. Thus, the battery electric current from the start of motor electrification to the completion of engine starting is held at a constant value, said value being a nearly constant electric current value, which is within the allowable battery voltage range and near the allowable value.

Description

エンジン始動装置および始動方法Engine starting device and starting method
 本発明は、直流モータを用いてエンジンを始動させるエンジン始動装置および始動方法に係り、特に、アイドルストップシステムでエンジンを再始動する際に好適なエンジン始動装置および始動方法に関する。 The present invention relates to an engine starting device and a starting method for starting an engine using a DC motor, and more particularly to an engine starting device and a starting method suitable for restarting an engine with an idle stop system.
 近年の自動車においては、エネルギー資源の節約と環境保全を目的として、運転中に所定の条件が成立した時にエンジンを一時停止させるアイドルストップシステムを搭載したものがある。このアイドルストップシステムは、例えば信号待ちなどで運転者が車両を停止させる際などにエンジンを自動的に停止し、その後、運転者の再始動要求が生じた時点や、エンジンの稼働が必要になった時に自動的にエンジンを再始動するものである。エンジンを再始動させるにあたって、いわゆるピニオン押し出し式のスタータモータを用い、始動時にピニオンを押し出してピニオンをエンジン軸と直結されているリングギヤに噛合わせ、スタータモータによるクランキングによってエンジンを始動させる方法が多い。 Recently, some automobiles are equipped with an idle stop system that temporarily stops the engine when a predetermined condition is satisfied during operation for the purpose of saving energy resources and protecting the environment. This idle stop system automatically stops the engine when the driver stops the vehicle, for example, when waiting for a signal, and then the driver needs to be restarted or the engine needs to be operated. The engine is automatically restarted when When restarting the engine, a so-called pinion extrusion type starter motor is used, and at the start, the pinion is pushed out and meshed with a ring gear directly connected to the engine shaft, and the engine is started by cranking by the starter motor. .
 エンジンを始動させる際、スタータモータへの通電によりバッテリに電流が流れ、バッテリの特性上電流に対応して電圧が下がることが知られている。運転中も頻繁にエンジンを再始動させるアイドルストップシステムにおいては、電圧が下がると例えばカーナビゲーションシステムなどの電装品がリセットすることになる。このため、従来のアイドルストップシステムを搭載している車両は補助電源等で対応しているが、搭載性の悪化やコストアップに繋がる。 When starting the engine, it is known that a current flows through the battery by energizing the starter motor, and the voltage drops corresponding to the current due to the characteristics of the battery. In an idle stop system that frequently restarts the engine even during operation, an electrical component such as a car navigation system is reset when the voltage decreases. For this reason, a vehicle equipped with a conventional idle stop system is supported by an auxiliary power source or the like, but this leads to deterioration in mountability and cost increase.
 一方で、従来、回路に抵抗を追加することで突入電流を低減しエンジン始動初期のバッテリ電圧降下を抑制し、その後は抵抗を短絡することで電流を流しクランキングトルクを確保するものが知られている(例えば、特許文献1参照)。 On the other hand, conventionally, a resistor is added to the circuit to reduce the inrush current and suppress the battery voltage drop at the start of the engine start, and then the resistor is short-circuited to pass the current and secure the cranking torque. (For example, refer to Patent Document 1).
 また、他の例として、エンジン再始動時にスイッチング素子によってモータへの通電を制御し、PWM制御によりデューティ比を徐々に大きくしてモータの印加電圧を上昇させることで通電開始直後のバッテリ電圧降下を防止するものが知られている(例えば、特許文献2参照)。 As another example, when the engine is restarted, the energization of the motor is controlled by the switching element, and the duty ratio is gradually increased by the PWM control to increase the applied voltage of the motor. What is prevented is known (for example, see Patent Document 2).
特開2004-308645号公報JP 2004-308645 A 特開2010-106825号公報JP 2010-106825 A
 しかしながら、特許文献1や特許文献2記載のものでは、バッテリ電流が時間と共に低下するように制御されているため、スタータモータの出力トルクが減少し、エンジンのクランキングを十分に行えず、エンジン再始動に時間がかかる恐れがある。 However, in Patent Document 1 and Patent Document 2, since the battery current is controlled so as to decrease with time, the output torque of the starter motor decreases, engine cranking cannot be performed sufficiently, and engine restart is not possible. It may take a long time to start.
 本発明の目的は、バッテリ電圧降下の許容範囲内で最大限に素早くエンジンを再始動させることができるエンジン始動装置および始動方法を提供することにある。 An object of the present invention is to provide an engine starter and a start method that can restart an engine as quickly as possible within an allowable range of a battery voltage drop.
 (1)上記目的を達成するために、本発明は、直流モータの回転力をエンジンへ伝えてエンジンを始動させるエンジン始動装置であって、前記直流モータの回転数を検出する回転数検出手段と、前記直流モータへの通電をPWM制御する制御手段とを備え、前記制御手段は、前記回転数検出手段により検出された前記直流モータの回転数をもとに、前記直流モータに流れる電流が予め設定した一定値となるように前記PWM制御の通電比率を連続的に変化させ、これにより、モータ通電開始からエンジン始動完了までの間バッテリ電流はほぼ一定の設定した電流値として、バッテリ電圧も許容範囲内で、かつ、許容値に近い一定値に抑えるようにしたものである。 
 かかる構成により、バッテリ電圧降下の許容範囲内で最大限に素早くエンジンを再始動させることができるものとなる。
(1) In order to achieve the above object, the present invention provides an engine starter for transmitting the rotational force of a direct current motor to the engine to start the engine, and a rotational speed detecting means for detecting the rotational speed of the direct current motor. And a control means for PWM-controlling energization to the DC motor, the control means preliminarily receiving a current flowing through the DC motor based on the rotational speed of the DC motor detected by the rotational speed detection means. The energization ratio of the PWM control is continuously changed so that the set constant value is obtained, so that the battery current is allowed to be a substantially constant set current value from the start of motor energization to the completion of engine start. The value is kept within a range and a constant value close to the allowable value.
With this configuration, the engine can be restarted as quickly as possible within the allowable range of the battery voltage drop.
 (2)上記(1)において、好ましくは、前記制御手段は、前記直流モータへ流れる電流は直流モータへの通電をPWM制御する際の通電比率の2乗に比例すると近似できることを利用して通電比率を決定するようにしたものである。 (2) In the above (1), preferably, the control means energizes using the fact that the current flowing to the DC motor can be approximated to be proportional to the square of the energization ratio when the energization to the DC motor is PWM controlled. The ratio is determined.
 (3)上記(1)において、好ましくは、前記直流モータの回転数検出手段は、前記エンジンの回転数を間接的に利用し、前記直流モータの回転数を検出するようにしたものである。 (3) In the above (1), preferably, the rotational speed detection means of the direct current motor detects the rotational speed of the direct current motor indirectly using the rotational speed of the engine.
 (4)上記(3)において、好ましくは、前記制御手段は、前記エンジンの回転数を間接的に利用して検出した前記直流モータの回転数が、実際の前記直流モータの回転数と乖離したことを判断する判断手段を備え、前記制御手段は、前記判断手段により、前記エンジンの回転数を間接的に利用して検出した前記直流モータの回転数が、実際の前記直流モータの回転数と乖離したことが判断された場合には、実際の前記直流モータの回転数を推測し、前記PWM制御の通電比率を決定する計算に利用するようにしたものである。 (4) In the above (3), preferably, the control means is configured such that the rotational speed of the DC motor detected by indirectly using the rotational speed of the engine deviates from the actual rotational speed of the DC motor. The control means is configured to determine that the rotational speed of the DC motor detected by the determination means indirectly using the rotational speed of the engine is the actual rotational speed of the DC motor. When it is determined that there is a divergence, the actual rotational speed of the DC motor is estimated and used for calculation for determining the energization ratio of the PWM control.
 (5)上記(1)において、好ましくは、前記制御手段は、前記直流モータ以外で前記バッテリを電源とする電気機器に流れる電流を元に、前記車両の電源を担うバッテリに流れる電流がトータルで所定の値となるように、前記直流モータに流す電流を変化させ、前記PWM制御の通電比率を決定するようにしたものである。 (5) In the above (1), preferably, the control means, based on a current flowing in an electric device that uses the battery as a power source other than the DC motor, totals a current flowing in a battery serving as a power source of the vehicle. The current supplied to the DC motor is changed so as to have a predetermined value, and the energization ratio of the PWM control is determined.
 (6)また、上記目的を達成するために、本発明は、直流モータの回転力をエンジンへ伝えてエンジンを始動させるエンジン始動方法であって、回転数検出手段により検出された直流モータの回転数をもとに、前記直流モータに流れる電流が予め設定した一定値となるように前記PWM制御の通電比率を連続的に変化させるものであり、ここで、モータ通電開始からエンジン始動完了までの間バッテリ電流はほぼ一定の設定した電流値として、バッテリ電圧も許容範囲内で、かつ、許容値に近い一定値に抑えるようにしたものである。 
 かかる方法により、バッテリ電圧降下の許容範囲内で最大限に素早くエンジンを再始動させることができるものとなる。
(6) In order to achieve the above object, the present invention relates to an engine starting method for starting the engine by transmitting the rotational force of the DC motor to the engine, the rotation of the DC motor detected by the rotational speed detecting means. Based on the number, the energization ratio of the PWM control is continuously changed so that the current flowing through the DC motor becomes a predetermined constant value. Here, from the start of energization of the motor to the completion of engine start. The inter-cell battery current is set to a substantially constant current value, and the battery voltage is also kept within a permissible range and to a constant value close to the permissible value.
With this method, the engine can be restarted as quickly as possible within the allowable range of the battery voltage drop.
 本発明によれば、バッテリ電圧降下の許容範囲内で最大限に素早くエンジンを再始動させることができるものとなる。 According to the present invention, the engine can be restarted as quickly as possible within the allowable range of the battery voltage drop.
本発明の一実施形態によるエンジン始動装置の構成図である。It is a lineblock diagram of the engine starting device by one embodiment of the present invention. 本発明の一実施形態によるエンジン始動装置に用いるPWM制御の通電信号の説明図である。It is explanatory drawing of the energization signal of PWM control used for the engine starting apparatus by one Embodiment of this invention. 本発明の一実施形態によるエンジン始動装置における通電比率Dの決定方法の説明図である。It is explanatory drawing of the determination method of the electricity supply ratio D in the engine starting apparatus by one Embodiment of this invention. 本発明の一実施形態によるエンジン始動装置におけるエンジンの始動方法の内容を示すフローチャートである。It is a flowchart which shows the content of the starting method of the engine in the engine starting apparatus by one Embodiment of this invention. 本発明の一実施形態によるエンジン始動装置において、モータの回転数の推測方法の内容を示すフローチャートである。5 is a flowchart showing the contents of a method for estimating the rotational speed of a motor in an engine starter according to an embodiment of the present invention. 本発明の一実施形態によるエンジン始動装置における制御状態の一例を示す波形図である。It is a wave form diagram showing an example of the control state in the engine starting device by one embodiment of the present invention. 本発明の一実施形態によるエンジン始動装置における通電比率Dの他の決定方法の説明図である。It is explanatory drawing of the other determination method of the electricity supply ratio D in the engine starting apparatus by one Embodiment of this invention.
 以下、図1~図7を用いて、本発明の一実施形態によるエンジン始動装置の構成及び動作について説明する。 
 最初に、図1を用いて、本実施形態によるエンジン始動装置の構成について説明する。
 
 図1は、本発明の一実施形態によるエンジン始動装置の構成図である。
Hereinafter, the configuration and operation of an engine starter according to an embodiment of the present invention will be described with reference to FIGS.
First, the configuration of the engine starter according to the present embodiment will be described with reference to FIG.

FIG. 1 is a configuration diagram of an engine starter according to an embodiment of the present invention.
 図1に示すように、スタータ101は、大きく分けて、マグネットスイッチ102と、ピニオンギヤ103と、モータ105とによって構成される。モータ105は、いわゆる直流モータであり、直流の電圧を付加することで回転駆動力が発生する。ピニオンギヤ103は、必要な時にマグネットスイッチ102がレバーを引っ張ることでモータ回転軸上を移動し、エンジン軸と直結されているリングギヤ104と噛み合う。ピニオンギヤ103とリングギヤ104とが噛合った状態であれば、モータ105に通電することでモータ105は回転し、モータ105の回転力はピニオンギヤ108を通じてリングギヤ104に伝達されエンジンを回す構造にする。 As shown in FIG. 1, the starter 101 is roughly composed of a magnet switch 102, a pinion gear 103, and a motor 105. The motor 105 is a so-called DC motor, and a rotational driving force is generated by applying a DC voltage. The pinion gear 103 moves on the motor rotation shaft when the magnet switch 102 pulls the lever when necessary, and meshes with the ring gear 104 directly connected to the engine shaft. If the pinion gear 103 and the ring gear 104 are engaged, the motor 105 is rotated by energizing the motor 105, and the rotational force of the motor 105 is transmitted to the ring gear 104 through the pinion gear 108 to rotate the engine.
 制御装置109は、通常の燃料噴射、点火、空気制御(電子制御スロットル)に加え、ブレーキペダル状態、車速等の各種情報より、アイドルストップを制御する。 The control device 109 controls the idle stop based on various information such as the brake pedal state and the vehicle speed in addition to the normal fuel injection, ignition and air control (electronic control throttle).
 モータ回転検知センサ110は、モータの回転を検知する。検知されたモータ回転数の情報は、制御装置109に入力される。なお、モータの回転を直接センサで検知するのに代えて、エンジン回転検知センサ110Aを用いてエンジン回転を使って間接的にモータの回転数を検知する構成にしても良い。 The motor rotation detection sensor 110 detects the rotation of the motor. Information on the detected motor rotation speed is input to the control device 109. Instead of directly detecting the rotation of the motor with a sensor, the engine rotation detection sensor 110A may be used to indirectly detect the rotation speed of the motor using the engine rotation.
 マグネットスイッチ105は、スイッチ106を介して制御装置109によって制御される。スイッチ106は、例えば機械式リレースイッチを使うことができる。また、モータ105への通電も、スイッチング素子107を介して制御装置109によって制御される。スイッチング素子107は、例えばMOSFETなどの半導体を用いたスイッチング素子を使うことができる。 The magnet switch 105 is controlled by the control device 109 via the switch 106. For example, a mechanical relay switch can be used as the switch 106. The energization of the motor 105 is also controlled by the control device 109 via the switching element 107. As the switching element 107, for example, a switching element using a semiconductor such as a MOSFET can be used.
 次に、図2を用いて、本実施形態によるエンジン始動装置に用いるPWM制御の通電信号について説明する。 
 図2は、本発明の一実施形態によるエンジン始動装置に用いるPWM制御の通電信号の説明図である。
Next, with reference to FIG. 2, the energization signal for PWM control used in the engine starter according to the present embodiment will be described.
FIG. 2 is an explanatory diagram of energization signals for PWM control used in the engine starter according to one embodiment of the present invention.
 制御装置109は、図2に示すPWM信号を通電信号として出力する。 The control device 109 outputs the PWM signal shown in FIG. 2 as an energization signal.
 図2で示すTは、PWM制御の1周期の長さであり、例えばPWM制御の周波数を10KHzに設定した場合は、Tは0.1msとなる。本実施形態では、モータの電気的時定数よりも十分に速くなるようにPWM制御の周波数を決定する。 T shown in FIG. 2 is the length of one cycle of PWM control. For example, when the frequency of PWM control is set to 10 KHz, T is 0.1 ms. In this embodiment, the frequency of PWM control is determined so as to be sufficiently faster than the electric time constant of the motor.
 図2に示すTONは1周期の中でモータへの通電を行う区間である。通電比率Dを次式(1)のように、1周期の中での通電する区間の割合と定義する。 TON shown in FIG. 2 is a section in which power is supplied to the motor in one cycle. The energization ratio D is defined as the ratio of the energized section in one cycle as in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、D:PWM制御における通電比率、TON:1周期の中でモータへ通電する区間[s]、T:1周期の長さ[s]である。 Here, D: energization ratio in PWM control, TON: section [s] where the motor is energized in one period, and T: period length [s].
 通電比率Dは、0.0~1.0の間で変化させることができる変数である。制御装置109は、通電比率Dを変えることで、モータへの通電量を制御する。 The energization ratio D is a variable that can be changed between 0.0 and 1.0. The control device 109 controls the energization amount to the motor by changing the energization ratio D.
 次に、図3を用いて、本実施形態によるエンジン始動装置における通電比率Dの決定方法について説明する。 
 図3は、本発明の一実施形態によるエンジン始動装置における通電比率Dの決定方法の説明図である。
Next, a method for determining the energization ratio D in the engine starter according to the present embodiment will be described with reference to FIG.
FIG. 3 is an explanatory diagram of a method for determining the energization ratio D in the engine starter according to the embodiment of the present invention.
 図3は、バッテリとスタータの簡易的な回路図を示している。バッテリ301は内部抵抗Rbを有し、バッテリの初期電圧をV0とすると、バッテリの出力電圧Vbは、次式(2)によって決まる。 Fig. 3 shows a simple circuit diagram of the battery and starter. The battery 301 has an internal resistance Rb, and assuming that the initial voltage of the battery is V0, the output voltage Vb of the battery is determined by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Vb:バッテリの出力電圧[V]、V0:バッテリの初期電圧(電流が流れていない時の電圧)[V]、Ib:バッテリを流れる電流[A]、Rb:バッテリの内部抵抗[Ω]である。 Here, Vb: battery output voltage [V], V0: initial voltage of the battery (voltage when no current flows) [V], Ib: current flowing through the battery [A], Rb: internal resistance of the battery [ Ω].
 式(2)から分かるように、バッテリ電圧はバッテリ電流によって決められ、電流を所定の値にコントロールできればバッテリ電圧も所定の値にコントロールすることができる。図3のモータ部302も同様に、配線やモータ内部の抵抗、スイッチング素子の抵抗などをまとめてモータ抵抗Rmとした時、バッテリ電圧Vbは、次式(3)によって表すことができる。 As can be seen from Equation (2), the battery voltage is determined by the battery current, and if the current can be controlled to a predetermined value, the battery voltage can also be controlled to the predetermined value. Similarly, in the motor unit 302 of FIG. 3, the battery voltage Vb can be expressed by the following expression (3) when wiring, motor internal resistance, switching element resistance, and the like are collectively set as the motor resistance Rm.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、Vb:バッテリの出力電圧[V]、Ib:バッテリを流れる電流 [A]、Rm:モータの抵抗(配線抵抗、内部抵抗、スイッチング素子の抵抗を含む)[Ω]、Ve:モータ回転による逆起電圧[V]、ke:モータの逆起電圧係数[V/rpm]、Nm:モータの回転数[rpm]である。 Where Vb: battery output voltage [V], Ib: current flowing through the battery [A], Rm: motor resistance (including wiring resistance, internal resistance, switching element resistance) [Ω], Ve: motor rotation Are the counter electromotive voltage [V], ke: motor counter electromotive voltage coefficient [V / rpm], and Nm: motor rotation speed [rpm].
 ここで、式(2),式(3)により、次式(4)の関係が得られる。 Here, the relationship of the following equation (4) is obtained from the equations (2) and (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)から分かるように、一般的には直流モータにおいて回転数Nmが0の時、つまり通電し始めの時に電流が一番多く流れ、回転数が速くなれば電流は少なくなることが知られている。 As can be seen from equation (4), in general, in a DC motor, when the rotational speed Nm is 0, that is, when the energization starts, the current flows most, and when the rotational speed increases, the current decreases. It has been.
 ここで、PWM制御の通電比率Dを変化させることで電流を一定に制御するために、発明者らの研究では通電比率に対し電流は次式で近似できることを発見した。 Here, in order to control the current to be constant by changing the energization ratio D of the PWM control, the inventors have found that the current can be approximated to the energization ratio by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)から分かるように、本実施形態ではPWM制御においてバッテリに流れる電流Ibは通電比率Dの2乗に比例するとする。なお、図3に示す構成では、モータ302に流れるモータ電流Imは、バッテリ電流Ibに等しいため、モータへ流れる電流Imは直流モータへの通電をPWM制御する際の通電比率Dの2乗に比例すると近似できる。この関係性は発明者らの研究により実験的に観測したうえで理論的に決定したものである。ただし、式(5)はPWMの1周期がモータの電気的時定数に対し十分速いと見なせる範囲においてのみ成立する近似であり、バッテリ電流Ibが定数とモータ回転数Nm、通電比率Dの二つの変数によって決められることを表している。この関係を逆に利用し、所定のバッテリ電流Ibになるように通電比率Dを決めるには、式(5)を次式(6)のように変形する。 As can be seen from Equation (5), in this embodiment, the current Ib flowing through the battery in the PWM control is proportional to the square of the energization ratio D. In the configuration shown in FIG. 3, since the motor current Im flowing through the motor 302 is equal to the battery current Ib, the current Im flowing through the motor is proportional to the square of the energization ratio D when the energization to the DC motor is PWM controlled. Then it can be approximated. This relationship was theoretically determined through experimental observations by the inventors. However, the equation (5) is an approximation that is established only in a range in which one cycle of PWM can be regarded as being sufficiently fast with respect to the electric time constant of the motor. Indicates that it is determined by a variable. To reversely use this relationship and determine the energization ratio D so that the predetermined battery current Ib is obtained, the equation (5) is transformed into the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)により、本実施形態では、バッテリ電流Ibを所定の値に設定したうえで、モータ回転数Nmにより通電比率Dを連続的に決定する。ただし式(6)によって計算された通電比率Dが1.0を超えた場合は通電比率を1.0とする。実際のシステムへ組込む際は、まずバッテリの電圧降下の許容値を元に、式(2)を用いて許容されるバッテリ電流を事前に決定する。バッテリの許容最低電圧は、例えば、10.5Vに設定される。そしてこのバッテリ電流値を含む、式(6)においてモータ回転数Nm以外の変数を予め計測するなどしたうえで、制御装置109に予め記憶させておく。 According to Equation (6), in the present embodiment, the battery current Ib is set to a predetermined value, and the energization ratio D is continuously determined based on the motor rotation speed Nm. However, when the energization ratio D calculated by the equation (6) exceeds 1.0, the energization ratio is set to 1.0. When incorporating into an actual system, first, an allowable battery current is determined in advance using Equation (2) based on the allowable value of the battery voltage drop. The allowable minimum voltage of the battery is set to 10.5V, for example. Then, a variable other than the motor rotational speed Nm in equation (6) including the battery current value is measured in advance and stored in the control device 109 in advance.
 次に、図4を用いて、本実施形態によるエンジン始動装置におけるエンジンの始動方法について説明する。 
 図4は、本発明の一実施形態によるエンジン始動装置におけるエンジンの始動方法の内容を示すフローチャートである。
Next, the engine starting method in the engine starting apparatus according to the present embodiment will be described with reference to FIG.
FIG. 4 is a flowchart showing the contents of the engine starting method in the engine starting device according to the embodiment of the present invention.
 図4に示すように、エンジンの再始動要請が発生すると、ステップ401にて、図1に示した制御装置109は、スタータとエンジンを連結させる。ピニオン押出し方式の場合は、図1のピニオン103を押し出し、エンジンに直結されているリングギヤ104と噛合わせる。アイドルストップ中はスタータとエンジンが連結状態にあるアイドルストップ方式で、再始動要請が発生した時に既にスタータとエンジンが連結状態の場合は、ステップ401は必要ない。 As shown in FIG. 4, when an engine restart request is generated, in step 401, the control device 109 shown in FIG. 1 connects the starter and the engine. In the case of the pinion extrusion method, the pinion 103 in FIG. 1 is pushed out and meshed with the ring gear 104 directly connected to the engine. If the starter and the engine are in the connected state during the idle stop, and the starter and the engine are already in the connected state when the restart request is generated, step 401 is not necessary.
 次に、ステップ402にて、制御装置109は、予め記憶しておいた変数とモータの回転数Nmを利用し、式(6)にてPWM制御の通電比率Dを計算し、PWM制御の波形を出力する。PWM制御によりモータに電流が流れ始め、モータのトルクがエンジンに伝達され回転を始める。 Next, in step 402, the control device 109 calculates the energization ratio D of the PWM control by the equation (6) using the variable stored in advance and the rotation speed Nm of the motor, and the waveform of the PWM control. Is output. Current starts to flow to the motor by PWM control, and the torque of the motor is transmitted to the engine to start rotation.
 そして、制御装置109は、ステップ403に示すエンジン始動完了条件が成立するまで、ステップ402の計算を継続する。ステップ403のエンジン始動完了条件は、例えばエンジン回転が所定の回転数以上になったことでエンジン始動が完了したと判断することができる。エンジン始動完了までは、制御装置109は、一定間隔(例えば2ms)でモータ回転数を検知し、通電比率Dを計算し出力を更新する。こうすることでモータ通電開始からエンジン始動完了までの間バッテリ電流はほぼ一定で、設定した電流値となるためバッテリ電圧もほぼ一定となり許容範囲内で、かつ、許容値に近い値に抑えられる。 Then, the control device 109 continues the calculation in step 402 until the engine start completion condition shown in step 403 is satisfied. The engine start completion condition in step 403 can be determined to be that the engine start has been completed, for example, when the engine rotation has reached a predetermined rotation speed or higher. Until the engine start is completed, the control device 109 detects the motor speed at a constant interval (for example, 2 ms), calculates the energization ratio D, and updates the output. In this way, the battery current is substantially constant from the start of motor energization to the completion of engine start, and thus the set current value. Therefore, the battery voltage is also substantially constant, and the value is within the allowable range and close to the allowable value.
 なお、再始動が完了するまではモータの回転力をエンジンに伝達するためにスタータとエンジンは連結状態にあるので、エンジン回転数から間接的にモータ回転数を得ることもできる。 Since the starter and the engine are connected to transmit the rotational force of the motor to the engine until the restart is completed, the motor rotational speed can be indirectly obtained from the engine rotational speed.
 図4のステップ401以降、つまりスタータとエンジンが連結状態にあるならば、エンジンの回転数からモータの回転数を間接的に計算することができる。図1に示すように、エンジン回転数を検知するエンジン回転検知センサ110Aを備える。多くの自動車には、エンジン回転検知センサ110Aを備えているので、検知されているエンジン回転数から間接的にスタータのモータの回転数を計算することで、新規にモータ回転検知センサ110を搭載する必要がなくなり、コスト低減に繋がる。エンジン回転数からスタータのモータ回転数を計算する際は、例えば次式(7)を使うことができる。 After step 401 in FIG. 4, that is, if the starter and the engine are in a connected state, the rotational speed of the motor can be indirectly calculated from the rotational speed of the engine. As shown in FIG. 1, an engine rotation detection sensor 110A that detects the engine speed is provided. Many automobiles are equipped with an engine rotation detection sensor 110A. Therefore, the motor rotation detection sensor 110 is newly installed by calculating the rotation speed of the starter motor indirectly from the detected engine rotation speed. This is no longer necessary, leading to cost reduction. When calculating the motor speed of the starter from the engine speed, for example, the following equation (7) can be used.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、Nm:モータの回転数[rpm]、Ne:エンジン回転数[rpm]、g:回転数変換係数である。 Here, Nm: motor rotation speed [rpm], Ne: engine rotation speed [rpm], g: rotation speed conversion coefficient.
 式(7)における回転数変換係数gは、エンジンとモータのギヤ比によって得ることができる。具体的にはピニオンとリングギヤで連結されている場合はピニオンとリングギヤの歯数によって決まるギヤ比に加え、スタータ内部でモータとピニオンの間に減速機構を設けている場合は減速機構の減速比によって、回転数変換係数gを得ることができる。回転数変換係数は予め制御装置109に記憶させておき、検知されたエンジン回転数Neを元に制御装置109内部にてモータ回転数Nmに変換される。 The rotational speed conversion coefficient g in Equation (7) can be obtained from the gear ratio between the engine and the motor. Specifically, when connected by a pinion and ring gear, in addition to the gear ratio determined by the number of teeth of the pinion and ring gear, when a reduction mechanism is provided between the motor and the pinion inside the starter, it depends on the reduction ratio of the reduction mechanism. The rotation speed conversion coefficient g can be obtained. The rotational speed conversion coefficient is stored in the control device 109 in advance, and is converted into the motor rotational speed Nm in the control device 109 based on the detected engine rotational speed Ne.
 多くのスタータはモータからエンジンへ回転力を伝達する間にワンウェイクラッチを設け、スタータ側からのみ回転力を伝達する構成になっている。エンジンが燃焼を開始しスタータによる回転よりも回転数が速くなるとクラッチの接続が切れるようになっているため、この時エンジン回転数から計算したスタータ回転数と実際のスタータ回転数は一致しない。 Many starters are provided with a one-way clutch while transmitting torque from the motor to the engine, and transmit torque only from the starter side. Since the clutch is disconnected when the engine starts combustion and the rotation speed becomes faster than the rotation by the starter, the starter rotation speed calculated from the engine rotation speed at this time does not match the actual starter rotation speed.
 ここで、エンジン回転数から間接的にモータ回転数を計算する場合、計算した値と実際のモータ回転数に乖離が発生した時のモータ回転数を推測する方法について説明する。 Here, a method for estimating the motor rotation speed when a difference occurs between the calculated value and the actual motor rotation speed when the motor rotation speed is calculated indirectly from the engine rotation speed will be described.
 多くのスタータはモータからエンジンへ回転力を伝達する間にワンウェイクラッチ108を設け、スタータ側からのみ回転力を伝達する構成になっている。つまりモータの回転力によってエンジンを回転させることはできるが、エンジンがモータを回転させることはないため、実際のモータ回転数よりエンジン回転数から間接的に計算したモータ回転数の方が高い値を示すことがある。その時は、モータ回転数を推測する。 Many starters are provided with a one-way clutch 108 while transmitting torque from the motor to the engine, and transmit torque only from the starter side. In other words, the engine can be rotated by the rotational force of the motor, but the engine does not rotate the motor. Therefore, the motor speed calculated indirectly from the engine speed is higher than the actual motor speed. May show. At that time, the motor rotation speed is estimated.
 ここで、図5を用いて、本実施形態によるエンジン始動装置において、モータの回転数の推測方法について説明する。 
 図5は、本発明の一実施形態によるエンジン始動装置において、モータの回転数の推測方法の内容を示すフローチャートである。
Here, the method for estimating the rotational speed of the motor in the engine starter according to the present embodiment will be described with reference to FIG.
FIG. 5 is a flowchart showing the contents of the method for estimating the rotational speed of the motor in the engine starting device according to the embodiment of the present invention.
 燃焼によりエンジン回転数が跳ね上がった際はクラッチの接続が切れ、ほぼ無負荷の状態となったモータは一定の傾きで回転数が上がると仮定したうえで、間接的に検知したモータ回転数Nmに対し、制御周期毎の回転数の上昇に上限を設けることでエンジン回転の急上昇に対しモータ回転数を推測する。 When the engine speed jumps due to combustion, the clutch is disconnected, and it is assumed that the motor that has become almost unloaded increases in speed with a constant inclination. On the other hand, by setting an upper limit for the increase in the rotation speed for each control cycle, the motor rotation speed is estimated for a sudden increase in engine rotation.
 ここで、検知したモータの回転数Nmに対し推測された回転数をNm_outとして、Nm_outを使い通電比率Dを計算する。これを制御周期毎に繰り返し、1制御周期前の計算結果をNm_outt-1として制御装置内で記憶しておく。また、制御周期毎のモータ回転数の上昇の上限としてΔNを予め設定しておく。 Here, the energization ratio D is calculated using Nm_out, where Nm_out is the estimated rotation speed with respect to the detected rotation speed Nm of the motor. This is repeated for each control cycle, and the calculation result before one control cycle is stored in the control device as Nm_outt-1. Further, ΔN is set in advance as the upper limit of the increase in the motor rotation speed for each control cycle.
 そして、ステップ501にて、図1の制御装置109は、推測されたモータ回転数Nm_outt-1に上限値ΔNを加えて新しい推測されたモータ回転数Nm´とする。新たに推測されたモータ回転数Nm´は、1周期前のモータ回転数Nm_outt-1に対し1制御周期内で上昇し得る最大の値と考えられる。 In step 501, the control device 109 in FIG. 1 adds the upper limit value ΔN to the estimated motor rotation speed Nm_out−1 to obtain a new estimated motor rotation speed Nm ′. The newly estimated motor rotational speed Nm ′ is considered to be the maximum value that can increase within one control period with respect to the motor rotational speed Nm_outt−1 one period before.
 次に、ステップ502にて、制御装置109は、検知したモータ回転数NmとNm´を比較し実際のモータ回転数と乖離が発生しているかどうかを判定する。 Next, at step 502, the control device 109 compares the detected motor rotation speeds Nm and Nm ′ to determine whether or not a deviation from the actual motor rotation speed has occurred.
 ステップ502にて、図1の判断手段109AがNm≧Nm´ではないと判定された場合は、検知した値と実際のモータ回転数に乖離はないと判断し、ステップ504にて、制御装置109は、Nm_outに検知した回転数Nmをそのまま代入し通電比率Dの計算に使う。 If it is determined in step 502 that the determination unit 109A of FIG. 1 does not satisfy Nm ≧ Nm ′, it is determined that there is no difference between the detected value and the actual motor speed, and in step 504, the control device 109 Is used to calculate the energization ratio D by substituting the detected rotational speed Nm as it is for Nm_out.
 ステップ502にて、Nm≧Nm´である場合は、検知した値と実際のモータ回転数に乖離があると判断する。その場合はステップ503にて、制御装置109は、Nm_outにNm´を代入し通電比率Dの計算に使う。 In Step 502, if Nm ≧ Nm ′, it is determined that there is a difference between the detected value and the actual motor speed. In this case, in step 503, the control device 109 substitutes Nm ′ for Nm_out and uses it for calculation of the energization ratio D.
 こうすることで、エンジン回転数から間接的にモータ回転数を求めた場合に実際のモータ回転数と乖離が発生しても正しく通電比率Dを計算することができる。 In this way, when the motor rotational speed is obtained indirectly from the engine rotational speed, the energization ratio D can be calculated correctly even if a deviation from the actual motor rotational speed occurs.
 次に、図6を用いて、本実施形態によるエンジン始動装置における制御状態の一例について説明する。 
 図6は、本発明の一実施形態によるエンジン始動装置における制御状態の一例を示す波形図である。
Next, an example of a control state in the engine starter according to the present embodiment will be described with reference to FIG.
FIG. 6 is a waveform diagram showing an example of a control state in the engine starting device according to the embodiment of the present invention.
 図6は、本実施形態のエンジン始動装置を実施した際の、エンジン回転数と制御装置109から出力された通電比率D、およびその時のバッテリ電圧とバッテリ電流の変化を示している。 FIG. 6 shows the engine speed, the energization ratio D output from the control device 109, and the changes in the battery voltage and battery current at the time when the engine starting device of the present embodiment is implemented.
 この例では、エンジン回転数のみを用いて通電比率を計算している。エンジン回転数より間接的にモータ回転数を検知しているため、推測したモータ回転数と実際とが乖離しモータの回転数の推測を行っている区間を点線で603に示す。なおこの推測したモータ回転数603はモータの回転数をモータとエンジンのギヤ比で持ってエンジン軸上の回転数に換算した値を示す。通電時のバッテリ電流605に示すように通電開始からほど横ばいで一定に保たれていて、ほぼ設定したバッテリ電流通りになっている。通電時のバッテリ電圧604も同様に横ばいで許容最低電圧を下回ることなくエンジンを再始動させたことがわかる。 In this example, the energization ratio is calculated using only the engine speed. Since the motor rotational speed is detected indirectly from the engine rotational speed, a section where the estimated motor rotational speed is different from the actual speed and the motor rotational speed is estimated is indicated by a dotted line 603. The estimated motor rotational speed 603 indicates a value obtained by converting the rotational speed of the motor into the rotational speed on the engine shaft with the gear ratio of the motor and the engine. As shown by the battery current 605 at the time of energization, it is almost flat from the start of energization and is kept constant, and is almost in accordance with the set battery current. It can be seen that the battery voltage 604 at the time of energization was also leveled off and the engine was restarted without falling below the allowable minimum voltage.
 次に、図7を用いて、本実施形態によるエンジン始動装置における通電比率Dの他の決定方法について説明する。 
 図7は、本発明の一実施形態によるエンジン始動装置における通電比率Dの他の決定方法の説明図である。
Next, another method for determining the energization ratio D in the engine starter according to the present embodiment will be described with reference to FIG.
FIG. 7 is an explanatory diagram of another method for determining the energization ratio D in the engine starting device according to the embodiment of the present invention.
 ここでは、スタータのモータ以外の機器の電力需要に合わせてモータに流す電流を適宜変更する方法について説明する。これまでは図3の簡易的な回路図にて示す通り、バッテリから流れる電流はほとんどモータに流れることを前提として説明したが、実際の車両ではスタータのモータ以外にも電流が流れる電気機器は存在する。 Here, a method for appropriately changing the current flowing through the motor in accordance with the power demand of equipment other than the starter motor will be described. Up to now, as shown in the simplified circuit diagram of FIG. 3, the explanation has been made on the assumption that almost all of the current flowing from the battery flows to the motor. However, in actual vehicles, there are electrical devices that carry current in addition to the starter motor. To do.
 図7は、スタータ以外の電気機器が存在する場合の簡易的な回路図を示している。バッテリ301を流れる電流をIb、スタータ302のモータに流れる電流をImとし、モータ以外の電気機器303に流れる電流をIeとすると、次式(8)に示す関係が成り立つ。 FIG. 7 shows a simple circuit diagram in the case where there are electrical devices other than the starter. Assuming that the current flowing through the battery 301 is Ib, the current flowing through the motor of the starter 302 is Im, and the current flowing through the electric device 303 other than the motor is Ie, the relationship shown in the following equation (8) is established.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、Ib:バッテリを流れる電流、Im:モータを流れる電流、Ie:モータ以外の電気機器に流れる電流の合計である。 Here, Ib: current flowing through the battery, Im: current flowing through the motor, and Ie: total current flowing through the electrical equipment other than the motor.
 式(8)に示すように、バッテリを流れる電流Ibはモータを流れる電流Imとモータ以外の電気機器を流れる電流Ieの和であるので、許容されるバッテリ電流からモータ以外の電気機器の電流Ieを差し引いた値をモータ電流として設定することで、トータルとしてバッテリ電流を一定にし許容される値に保つ構成にする。モータ以外の電気機器を流れる電流Ieは、直接的または間接的認知できる構成にする。例えば、モータ以外の電気機器を流れる電流Ieを電流センサによって直接計測するか、または、モータ以外の各電気機器の通常使用する電流を個々に予め制御装置に記憶させておき、その電気機器が使用されている場合には記憶しておいた電流が流れるものとして間接的にモータ以外の電気機器を流れる電流を算出する構成にしても良い。この時モータへの通電比率Dを計算する次式(9)を用いる。 As shown in the equation (8), the current Ib flowing through the battery is the sum of the current Im flowing through the motor and the current Ie flowing through the electric device other than the motor. Therefore, from the allowable battery current, the current Ie of the electric device other than the motor. By setting the value obtained by subtracting as the motor current, the battery current is kept constant and allowed to be maintained as a total value. The current Ie flowing through the electrical equipment other than the motor is configured to be recognized directly or indirectly. For example, the current Ie flowing through an electrical device other than a motor is directly measured by a current sensor, or the current normally used by each electrical device other than a motor is individually stored in advance in the control device and used by the electrical device. In the case where the stored current flows, the current flowing indirectly through the electric device other than the motor may be calculated. At this time, the following equation (9) for calculating the energization ratio D to the motor is used.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 モータ以外の電気機器を流れる電流Ie変化しても、式(8)を用いてモータに流れる電流Imを決定しモータへの通電比率Dを式(9)を用いて計算することでバッテリ電流Ibを一定に保つことができ、バッテリの電圧降下を許容範囲に抑えながら最大限にエンジンを素早く再始動させることができる。 Even if the current Ie flowing through the electrical equipment other than the motor changes, the current Im flowing through the motor is determined using the equation (8), and the energization ratio D to the motor is calculated using the equation (9). The engine can be kept constant, and the engine can be restarted as quickly as possible while keeping the voltage drop of the battery within an allowable range.
 以上説明したように、本実施形態によれば、モータ回転数をもとに通電比率を決定しモータ電流をほぼ一定の任意の値に保つことで、バッテリ電圧もほぼ一定に保つことができる。そうすることで、エンジン再始動時にバッテリ電圧は許容値を下回ることなく、なおかつ最大限にすばやくエンジンを再始動させる効果がある。 As described above, according to the present embodiment, the battery voltage can be kept substantially constant by determining the energization ratio based on the motor speed and keeping the motor current at an almost constant arbitrary value. By doing so, the battery voltage does not fall below the allowable value when the engine is restarted, and the engine is restarted as quickly as possible.
 また、エンジン回転数から間接的にモータの回転数を計算する場合、スタータに回転検出用のセンサを取り付ける必要がないためコスト低減に繋がる。 Also, when calculating the motor speed indirectly from the engine speed, it is not necessary to attach a rotation detection sensor to the starter, leading to cost reduction.
 さらに、モータ以外でバッテリを電源とする電気機器に流れる電流を検知しバッテリ電流をトータルで一定になるようにモータ制御する場合は、モータ以外の機器に大きな電流が流れてもバッテリの電圧降下を許容範囲内に抑えることができる。 In addition, when detecting the current flowing in electrical equipment that uses a battery as a power source other than the motor and controlling the motor so that the battery current remains constant, the battery voltage drops even if a large current flows in equipment other than the motor. It can be suppressed within an allowable range.
101…スタータ本体
102…マグネットスイッチ
103…ピニオン
104…リングギヤ
105…直流モータ
106…マグネットスイッチ通電用スイッチ
107…モータ通電用スイッチング素子
108…ワンウェイクラッチ
109,109A…制御装置
110,110A…回転検知センサ
DESCRIPTION OF SYMBOLS 101 ... Starter body 102 ... Magnet switch 103 ... Pinion 104 ... Ring gear 105 ... DC motor 106 ... Switch for energizing magnet switch 107 ... Switching element 108 for energizing motor ... One- way clutch 109, 109A ... Control device 110, 110A ... Rotation detection sensor

Claims (6)

  1.  直流モータの回転力をエンジンへ伝えてエンジンを始動させるエンジン始動装置であって、
     前記直流モータの回転数を検出する回転数検出手段と、
     前記直流モータへの通電をPWM制御する制御手段とを備え、
     前記制御手段は、前記回転数検出手段により検出された前記直流モータの回転数をもとに、前記直流モータに流れる電流が予め設定した一定値となるように前記PWM制御の通電比率を連続的に変化させ、
     これにより、モータ通電開始からエンジン始動完了までの間バッテリ電流はほぼ一定の設定した電流値として、バッテリ電圧も許容範囲内で、かつ、許容値に近い一定値に抑えることを特徴とするエンジン始動装置。
    An engine starter that transmits the rotational force of a DC motor to the engine to start the engine,
    A rotational speed detection means for detecting the rotational speed of the DC motor;
    Control means for PWM control of energization to the DC motor,
    The control means continuously sets the energization ratio of the PWM control based on the rotation speed of the DC motor detected by the rotation speed detection means so that the current flowing through the DC motor becomes a predetermined constant value. Change to
    As a result, the battery current is set to a substantially constant current value from the start of energization of the motor to the completion of engine start, and the battery voltage is also kept within a permissible range and close to a permissible value. apparatus.
  2.  請求項1記載のエンジン始動装置において、
     前記制御手段は、前記直流モータへ流れる電流は直流モータへの通電をPWM制御する際の通電比率の2乗に比例すると近似できることを利用して通電比率を決定することを特徴とするエンジン始動装置。
    The engine starter according to claim 1, wherein
    The control means determines an energization ratio using the fact that the current flowing to the DC motor can be approximated to be proportional to the square of the energization ratio when the energization to the DC motor is PWM-controlled. .
  3.  請求項1記載のエンジン始動装置において、
     前記直流モータの回転数検出手段は、前記エンジンの回転数を間接的に利用し、前記直流モータの回転数を検出することを特徴とするエンジン始動装置。
    The engine starter according to claim 1, wherein
    The engine starter characterized in that the DC motor rotation speed detecting means indirectly detects the rotation speed of the DC motor by indirectly using the rotation speed of the engine.
  4.  請求項3記載のエンジン始動装置において、
     前記制御手段は、前記エンジンの回転数を間接的に利用して検出した前記直流モータの回転数が、実際の前記直流モータの回転数と乖離したことを判断する判断手段を備え、
     前記制御手段は、前記判断手段により、前記エンジンの回転数を間接的に利用して検出した前記直流モータの回転数が、実際の前記直流モータの回転数と乖離したことが判断された場合には、実際の前記直流モータの回転数を推測し、前記PWM制御の通電比率を決定する計算に利用することを特徴とするエンジン始動装置。
    The engine starter according to claim 3,
    The control means comprises a judging means for judging that the rotational speed of the DC motor detected by indirectly utilizing the rotational speed of the engine deviates from the actual rotational speed of the DC motor,
    When the determination means determines that the rotational speed of the DC motor detected indirectly by using the rotational speed of the engine has deviated from the actual rotational speed of the DC motor. Is an engine starter characterized in that it estimates the actual rotational speed of the DC motor and uses it for the calculation for determining the energization ratio of the PWM control.
  5.  請求項1記載のエンジン始動装置において、
     前記制御手段は、前記直流モータ以外で前記バッテリを電源とする電気機器に流れる電流を元に、前記車両の電源を担うバッテリに流れる電流がトータルで所定の値となるように、前記直流モータに流す電流を変化させ、前記PWM制御の通電比率を決定することを特徴とするエンジン始動装置。
    The engine starter according to claim 1, wherein
    The control means controls the direct current motor so that the current flowing through the battery serving as the power source of the vehicle becomes a predetermined value based on the current flowing through the electric equipment using the battery as a power source other than the direct current motor. An engine starter characterized in that a current to be supplied is changed to determine an energization ratio of the PWM control.
  6.  直流モータの回転力をエンジンへ伝えてエンジンを始動させるエンジン始動方法であって、
     回転数検出手段により検出された直流モータの回転数をもとに、前記直流モータに流れる電流が予め設定した一定値となるように前記PWM制御の通電比率を連続的に変化させるものであり、
     ここで、モータ通電開始からエンジン始動完了までの間バッテリ電流はほぼ一定の設定した電流値として、バッテリ電圧も許容範囲内で、かつ、許容値に近い一定値に抑えることを特徴とするエンジン始動方法。
    An engine starting method for transmitting the rotational force of a DC motor to the engine and starting the engine,
    Based on the rotational speed of the DC motor detected by the rotational speed detection means, the energization ratio of the PWM control is continuously changed so that the current flowing through the DC motor becomes a predetermined constant value.
    Here, the battery current is set to a substantially constant current value from the start of motor energization to the completion of the engine start, and the battery voltage is also kept within a permissible range and close to a permissible value. Method.
PCT/JP2012/078560 2011-11-29 2012-11-05 Engine starting device and starting method WO2013080746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280057686.7A CN103946537B (en) 2011-11-29 2012-11-05 Engine starting gear and starting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-260943 2011-11-29
JP2011260943A JP5761717B2 (en) 2011-11-29 2011-11-29 Engine starting device and starting method

Publications (1)

Publication Number Publication Date
WO2013080746A1 true WO2013080746A1 (en) 2013-06-06

Family

ID=48535214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078560 WO2013080746A1 (en) 2011-11-29 2012-11-05 Engine starting device and starting method

Country Status (3)

Country Link
JP (1) JP5761717B2 (en)
CN (1) CN103946537B (en)
WO (1) WO2013080746A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034916A (en) * 2012-08-08 2014-02-24 Hitachi Automotive Systems Ltd Engine starting device
WO2014196242A1 (en) * 2013-06-07 2014-12-11 日産自動車株式会社 Hybrid vehicle control device
WO2014199772A1 (en) * 2013-06-14 2014-12-18 日立オートモティブシステムズ株式会社 Engine start-up device, and engine-start-up control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645046B2 (en) * 2015-07-03 2020-02-12 いすゞ自動車株式会社 Starter motor replacement judgment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308645A (en) * 2003-03-25 2004-11-04 Denso Corp Engine starter
JP2004312950A (en) * 2003-04-10 2004-11-04 Nippon Soken Inc Engine starter
JP2005020795A (en) * 2003-06-23 2005-01-20 Toyota Motor Corp Apparatus and method for start control of internal combustion engine
JP2010106825A (en) * 2008-10-04 2010-05-13 Denso Corp Automatic engine stop and start controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007393A1 (en) * 2003-02-28 2004-09-09 Denso Corp., Kariya Machine starter with a starter motor
JP4545103B2 (en) * 2006-02-24 2010-09-15 三菱重工業株式会社 Engine starter composed of single cylinder cylinder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308645A (en) * 2003-03-25 2004-11-04 Denso Corp Engine starter
JP2004312950A (en) * 2003-04-10 2004-11-04 Nippon Soken Inc Engine starter
JP2005020795A (en) * 2003-06-23 2005-01-20 Toyota Motor Corp Apparatus and method for start control of internal combustion engine
JP2010106825A (en) * 2008-10-04 2010-05-13 Denso Corp Automatic engine stop and start controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034916A (en) * 2012-08-08 2014-02-24 Hitachi Automotive Systems Ltd Engine starting device
WO2014196242A1 (en) * 2013-06-07 2014-12-11 日産自動車株式会社 Hybrid vehicle control device
CN105283335A (en) * 2013-06-07 2016-01-27 日产自动车株式会社 Hybrid vehicle control device
JPWO2014196242A1 (en) * 2013-06-07 2017-02-23 日産自動車株式会社 Control device for hybrid vehicle
WO2014199772A1 (en) * 2013-06-14 2014-12-18 日立オートモティブシステムズ株式会社 Engine start-up device, and engine-start-up control method
JP2015001187A (en) * 2013-06-14 2015-01-05 日立オートモティブシステムズ株式会社 Engine starting device and engine start controlling method
US9765745B2 (en) 2013-06-14 2017-09-19 Hitachi Automotive Systems, Ltd. Engine start-up device, and engine-start-up control method
EP3009667A4 (en) * 2013-06-14 2017-09-20 Hitachi Automotive Systems, Ltd. Engine start-up device, and engine-start-up control method

Also Published As

Publication number Publication date
CN103946537B (en) 2017-03-08
JP5761717B2 (en) 2015-08-12
JP2013113228A (en) 2013-06-10
CN103946537A (en) 2014-07-23

Similar Documents

Publication Publication Date Title
RU2576642C2 (en) Engine automatic shutoff and start
JP4488238B2 (en) Fuel pump drive control device
US8862365B2 (en) Vehicular power supply device
JP6062324B2 (en) Engine starter and engine start control method
JP5761717B2 (en) Engine starting device and starting method
US8549939B2 (en) Start control device
JP6036048B2 (en) Vehicle control device
JP5304625B2 (en) Automatic stop / start control device for internal combustion engine
JP2005351202A (en) Engine stop/start control device
JP4869395B2 (en) Engine starter
KR102417347B1 (en) Method and appratus for starting engine of mild hybrid electric vehicle
JP5353422B2 (en) Vehicle power generation control device
JP6192191B2 (en) Engine torque assist device and torque assist method using ISG
JP7268626B2 (en) hybrid vehicle drive system
JP6181919B2 (en) Control device for vehicle generator
JP6925914B2 (en) Vehicle control device
JP2005127199A (en) Engine start system and engine start method
JP6851743B2 (en) Jumping start judgment device
JP2014079103A (en) Power generation controller for vehicle
JP5903328B2 (en) Engine starter
JP5655050B2 (en) Generator control device
JP2016030524A (en) Control device of vehicle
JP2020084892A (en) Vehicle control device
JP2015065779A (en) Battery charge controller for vehicle
JP2017190729A (en) Engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853313

Country of ref document: EP

Kind code of ref document: A1